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11. Introduction1.1 What is Computer Sculpting?We will de�ne computer sculpting as interactive geometric modeling in which the goals and/ortechniques of traditional sculpture are emulated. Speci�cally, the key goal of sculpting is the designof free-form three-dimensional objects, while the principal techniques are direct manipulation ofa material by hand or indirect manipulation through sculpting tools. The term free-form is usedto contrast sculpted shapes with more traditional computer graphics models, which tend towardsymmetric, precise, and angular forms. To clarify our de�nition, we require computer sculptingsystems to possess the following characteristics:1. Concentration on the modeling of generally free-form shapes2. Intuitive model behavior reminiscent of a traditional sculpting material3. Interactive, real time performance4. Manipulation and deformation of model using virtual toolsIn this report, sculpting will be used to mean computer sculpting. Its central goal is to createcomplex models suitable for use in rendering or animation programs [CP76, PMTT91]. There iscurrently an active consumer market for such models [Lew93]. In the past, di�culty in renderingand modeling of irregular free-form shapes has commonly resulted in computer generated imagespopulated with unrealistically simple objects. Sculpting addresses this problem by allowing designersto translate their understanding of form directly into a �nished geometric model.1.2 Contributions of this ReportThe goal of this work is to create an intuitive computer sculpting system. This has been achievedby a novel uni�cation of known techniques, some of which have been adapted to our purposes fromuse in di�erent contexts. Our work builds upon the techniques of interactive polygon manipulationusing decay functions initially proposed by Parent [Par77] and extended by Allan et al [AWW89]. Wefurther enhance these capabilities by incorporating adaptive subdivision and smoothing techniques.More importantly, we have used virtual tools to identify regions of interest, which can then bepushed or pulled by the user in an intuitive way. In previous sculpting systems, virtual tools havebeen used only in conjunction with boolean operations. Finally, interactive shadows and use of avirtual trackball provide the user the intuition necessary to manipulate these objects with ease. Forconvenience, we will refer to our system as SAM-IAM 1, an acronym for Sculpture of Artistic Modelsusing InterActive Methods.To our knowledge, no interactive sculpting system has contained the following features, all foundin SAM-IAM:� Virtual tool representation using superquadric functions� Combination of decay functions with virtual tools� Adaptive subdivision and adaptive smoothing using virtual tools� Interactive shadows via shadow volumes and stencil bitplanes� Use of a virtual trackball for tool and mesh manipulationThe rest of this report is organized in the following manner. Chapter 2 discusses the previouswork in polygonal mesh modeling and virtual tools. Chapter 3 describes the features of the computersculpting system SAM-IAM, while Chapter 4 focuses on implementation issues. Chapter 5 describessome models created using SAM-IAM. Chapter 6 concludes with a discussion of the advantages anddisadvantages of the system. Readers interested in a more thorough description of any of thesetopics should see the original thesis [Bil94].1Pronounced Sam-I-Am. Inspired by Seuss [Seu60].



2 2. Related Work2. Related WorkWhile there has been a great deal of interactive modeling research that is marginally related tosculpting, in this chapter we concentrate on research in polygon mesh sculpting and virtual tools. Wehave chosen the polygon mesh representation over other representations of geometric models becauseits simplicity allows the user to focus on the manipulation of tools rather than the properties of thesurface, over which the user may have less intuition.2.1 Polygonal Mesh SculptingThe polygon mesh is a simple and powerful means of representing the geometry of an object;in fact, it is termed the most popular type of geometric modeling representation by Paouri et al[PMTT91]. Polygon meshes are well suited to sculpting applications, provided that a platform isavailable which allows storage and speedy rendering of large numbers of polygons.The four most signi�cant polygon mesh based sculpting system are those of Parent, Allan et al,Leblanc et al, and Elson and Malone [Par77, AWW89, LPMTT91, Els90b, Els90a]. Parent initiateduse of the basic vertex-movement + decay function technique used in all of these systems. His isthe only polygon mesh system that uses virtual tools. Allan advanced the use of decay functionsand de�ned \move-vertex" as the fundamental deformation technique; both concepts are reected inour work. Leblanc chiey concentrated on improving the interface to an Allan-like system. Elson'spapers illustrate models sculpted with the S-Geometry polygonal modeler created by Malone. Unlikethe others, this system relied heavily on subdivision and smoothing techniques. Its explanation ofthe winged edge representation's suitability to polygonal sculpting inspired us to use a winged edgescheme as the foundation for SAM-IAM. Figure 2.1 summarizes the relationships between thesepolygon-mesh based systems and compares them to our system.
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2.2. Virtual Tools 32.2 Virtual ToolsWhile the basic operation of moving a point is central to interactive modeling, virtual toolso�er a higher level of deformation control. They allow multiple primitive operations to be appliedto a model simultaneously, in an intuitive fashion. Virtual tools have been used in a number ofmodeling systems, most typically as a method of de�ning boolean operations to be applied to solidand volumetric models. They are used in this way by Parent (whose polygonal models describedsolids), Naylor (1990), and Mingxian et al (1993), and in a related way by Galyean [Par77, Nay90,GH91, MFD93]. Mingxian uses CSG-based virtual modeling tools in a non-free-form CAD system.Pushing and pulling points as we propose to do has been done to some extent by Brewer (1977),Hsu (1992), and Szeliski (1992) [BA77, HHK92, ST92]. Brewer pushed parametric surfaces' controlpoints with a planar tool. Szeliski used tools to apply and cancel forces in a particle-based modeler.Hsu used pushing and pulling tools to impart free-form deformation (FFD). The most relevant workis that of Naylor and Galyean; this will be described in more detail below.Naylor's SCULPT system extended Parent's idea of using boolean operations and virtual toolsto sculpt polyhedral representations of solids. At the time of the 1990 paper on SCULPT, the CSGoperations making up its sculpting technique were limited to reliance on simple, convex, prede�nedsculpting tools. Since no semblance to direct vertex movement with decay functions is provided,smooth shape variations would seem a di�cult task for SCULPT.Galyean's volumetric sculpting system makes extensive use of both virtual tools and interestinginput devices. Virtual tools are represented as volumetric objects existing in the same space asthe model. The tools implemented include a subtractive \routing" tool that removes material, anadditive tool or \toothpaste tube" that adds material, and a \heat gun" tool that \melts away"material over time. Smoothing and coloring tools are also implemented, and Galyean includes ashopping list of other tools that would be useful. The user positions the current tool by using apen-shaped pointing device which returns a stream of position and orientation data to the program.While a number of di�culties arise in its use, it does functionally correlate the user's space and theobject space of the program to provide a truly 3D virtual sculpting experience. While the modelsproducible with the system show improvement over previous systems, they remain very limited bythe system's spatial resolution and the di�culties in establishing precise, intuitive control with the3D input devices tested.The SAM-IAM system advances the work of these researchers in a number of ways. Thoughvirtual tools and decay functions have been implemented previously, no system to our knowledgehas used virtual tools in conjunction with decay functions to sculpt a polygonal mesh. SAM-IAM'sinternal representation of tools as superquadric functions and its methods of tool/mesh collisiondetection are also extensions of these researchers' work.



4 3. Features of the System3. Features of the SystemThis chapter presents an overview of the most notable features of the system; polygonal meshmodeling, mesh re�nement operations, virtual tools, mesh sculpting, and the user interface. Imple-mentation details of these features are discussed in Chapter 4.3.1 Polygonal Mesh ModelingWe have chosen to use a polygonal mesh to represent the model being sculpted. A polygonalmesh is completely speci�ed using only points in space and the connectivity of these points. Meshesare e�ective in sculpting applications due to their simplicity and generality; their simplicity makesthem easy to understand, manipulate, and implement, while their generality allows them to representfree-form objects to any desired degree of precision. Bene�ts include:� Polygonal meshes are probably the easiest to understand of all representation schemes.� Polygonal data can easily be converted to and from other representation schemes.� Digitized data is easiest to represent as a polygon mesh.� Resolution can be easily controlled using mesh subdivision.� Many current graphics machines are optimized for the display of polygonal surfaces.Some of the di�culties associated with the polygon mesh representation are:� Storage requirements are quite large.� Large numbers of polygons are usually required to represent smooth surfaces.� Geometric continuity is much more di�cult to control than with higher-level geometric modelssuch as parametric surfaces.In SAM-IAM, the user initially selects a starting mesh or model, which may be read from a�le or may be chosen from a number of prede�ned initial con�gurations, including plane, sphere,tetrahedron, cylinder, and box shapes. The user also chooses an initial level of re�nement. Defaultmeshes will be triangular, although the systems supports N-faceted polygonal meshes as well. SAM-IAM's only output will be the data �les describing the vertices, edges, faces, and normal vectors ofthe sculpted model.3.2 Mesh Re�nement OperationsMesh re�nement operations di�er from the sculpting operations to be explained in Section 3.4in that they may change the actual topology of a mesh. While the two types of operations areapplied di�erently, the de�ne-region action allows the virtual tool metaphor to be used consistentlythroughout. The supported mesh re�nement operations include adaptive mesh subdivision, smooth-ing, hole-�lling, and deletion of subparts of a mesh. The intersection of the tool and mesh de�nesthe region to apply the operation to. Subdivision allows the region to be subdivided to whateverdegree is desired. Furthermore, a region can be smoothed, which transforms the mesh subregion intoone that appears smoother. Depending on the type of smoothing done, the number of vertices in theregion may or may not increase. Hole-�lling allows a hole in the mesh to be replaced with a face.Deletion removes all vertices and incident edges in a a region, and can be used to either introduceholes to the mesh or to replace mesh subregions with a single face. After any re�nement operation,the resulting mesh can be further re�ned and/or sculpted.



3.3. Virtual Tools 53.3 Virtual ToolsVirtual tools are 3D geometric objects of di�erent shapes and sizes. The user selects a virtualtool and uses it to sculpt a polygonal mesh into the desired shape. Virtual tools are a very attractive,intuitive means for users to modify a mesh in very di�erent ways while maintaining the consistentinteraction metaphor of sculpting a model with a tool. Our tools have two main attributes: shapeand action. Currently, the supported basic tool shapes are box, cylinder, and sphere, all of whichare rendered as polyhedra. Since the tool can be interactively scaled along any principal axis at anytime, a variety of tool shapes such as ellipsoids, cubes, and disks can be generated from the threebasic forms.The three tool actions supported are termed de�ne-region, push, and pull. De�ne-region toolssimply de�ne regions of the mesh for the mesh re�nement operations to be applied to. Push toolsact like a solid and push away vertices they come in contact with. Pull tools pull vertices in contactwith the tool as it is moved. De�ne-region tools simply de�ne regions of the mesh for the meshre�nement operations to be applied to.The user must also de�ne a currently active decay function for the push and pull actions. Thedecay function determines the way a vertex translation propagates to surrounding vertices. Alldecay functions possess a type and a range. Figure 3.1 illustrates the basic shapes of SAM-IAM'sstandard set of decay functions; these include Goo, Bell, Cusp, Cone, and Flat. Decay functionsalso have a range, which determines the number of surrounding vertices that can be a�ected. Thechosen decay function has a great e�ect on the way the tool a�ects the model.
Goo Bell Cusp Cone FlatFigure 3.1: Shapes of decay functions in the basic set.3.4 Collision Detection and Mesh SculptingUsing the keyboard, a user can toggle between deformation and non-deformation modes. Non-deformation mode is simply for positioning and viewing of the tool and mesh. In this mode, nocollision detection between the tool and mesh takes place.It is in deformation mode that the virtual tools are actually used. Collisions are detected andresult in vertices being translated based on the relative movement of the tool and model. Verticeswhich collide with the tool are translated directly, while surrounding vertices may also move basedon their distance from collision points and the current decay function in use. The overall e�ect willbe to create smooth or sharp bulges and stretches in the mesh. Mesh re�nement operations requirethat SAM-IAM be in deformation mode and that the current tool be a de�ne-region tool. An undofacility allows the single most recent deformation to be undone.



6 3. Features of the System3.5 User InterfaceSince sculpting systems are intended more for artists and designers than for graphics researchers,highly intuitive interfaces cannot merely be considered desirable{ they are crucial. A centralchallenge of this work is to create as realistic a sculpting metaphor as possible using only theminimal input con�guration of keyboard and mouse, and minimal feedback of a single object view.The two most interesting aspects of the interface are its geometric manipulation methods and itsincorporation of shadows into the viewing of the tool and mesh.3.5.1 Geometric ManipulationThe same geometric manipulation methods are used for the tools and the model. At any time,a single object is selected for manipulation. Through simple mouse movements and mouse buttons,the selected object can be translated in the xy plane parallel to the screen and the xz and yz planesperpendicular to the screen plane. Each object has either a local center of rotation (COR), whichmoves with it as the object is translated, or a global COR that remains stationary. Rotationsaround the COR can be in any direction and are controlled with a virtual trackball. The trackballalso allows rotations to be constrained to a single axis. CORs can be freely edited, providing greatexibility in rotations; the user does this by de�ning a point in space using a 3D crosshair, anddeclaring the point to be a global or local COR to either object. Global scaling of the mesh andtools, using sliders, is also possible.3.5.2 ViewingThe classical method of viewing an object in modeling systems, popular in CAD, is to simulta-neously display several projections of the object from di�erent viewpoints. This gives the viewer aclear notion of the object's complete structure, but is problematic in that the user's eyes must keepmoving between di�erent views instead of being able to concentrate on a single one. In this waythe several-projection interface does not conform to a sculpting metaphor. In SAM-IAM, a singleperspective view of the work space is maintained at all times. In order to better indicate the spatialrelationship between the tool and model, the tool can cast a shadow on the model, and the positionsof the two light sources can be freely modi�ed.



74. Implementation HighlightsThis chapter gives a very brief description of the algorithms and data structures used to imple-ment the features described in the previous chapter.4.1 Winged-Edge Object RepresentationSAM-IAM uses the winged-edge polyhedra data structure to represent both the mesh and the tools.Winged-edge polyhedra were originally developed by Baumgart [Bau74] to represent solid geometricmodels. A solid geometric model is generally de�ned to be a representation of a physically realizable3D object. As such, solid models have a well de�ned inside, outside, and surface (or boundary).
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Figure 4.1: Winged edge con�guration as viewed from exterior of object.In a winged-edge representation, as seen in Figure 4.1, each edge is described by a structurecontaining pointers to its two incident faces, pointers to its two end vertices, and pointers to itsfour wings, which are de�ned to be the edges incident to the current edge and bordering the edge'stwo incident faces. Since edges in space have no inherent right, left, up or down, it is necessaryto impose an arti�cial orientation on the edges in order to understand and maintain the spatialrelationships between an edge and its vertices, faces, and wings. This is done by assuming that anedge is being viewed from the exterior of the object boundary at all times, and that it is orientedpointing upwards, from its Nvertex to its PV ertex. Then, the PFace is said to be the face to theright of the edge, and the NFace is said to be on the left. The upper left wing is the PCW , orP-ClockWise wing. Following the same convention, the other edges are termed the PCCW;NCW ,and NCCW wings. Figure 4.1 illustrates these relationships. Note that an edge may have otherincident edges between its wings, but the four wings are the only incident edges it records.The winged-edge data structure has been chosen to optimize rendering time and ease of objectdeformation. The implementation we use is essentially identical to that recommended by Hanrahanand Glassner and is described in detail in the original thesis [Han82, Gla91, Bil94].4.2 Mesh Re�nement OperationsThe mesh re�nement operations supported by our system include adaptive subdivision, adaptivesmoothing, hole-�lling, and deletion of subparts of a mesh. We make a clear distinction betweensmoothing and subdivision and support them independently.



8 4. Implementation HighlightsSubdivision here refers to the splitting of a face into a number of smaller faces, while smoothingrefers to perturbation of the vertices of a mesh in order to give the mesh a smoother appearance.While the two operations are especially powerful when combined, they are also useful independently.The term adaptive refers to application of an operation (here subdivision or smoothing) on asubregion of the mesh only, with surrounding regions of the mesh being altered only as is necessaryto accommodate the changes in the smoothed or subdivided region.4.2.1 Adaptive SubdivisionAdaptive subdivision allows mesh complexity to be increased only where detail is to be added.This \conservation of complexity" is invaluable in mesh sculpting, since the number of polygonsin a region grows very quickly as that region is subdivided. SAM-IAM supports three types ofsubdivision, which we refer to as subdivision with propagation, subdivision without propagation,and triangulation. Figure 4.2 illustrates the di�erence between subdivision with propagation andsubdivision without propagation. In subdivision with propagation, the faces adjoining the selectedregion are also subdivided such that no faces with more than 3 sides are created as a result ofthe subdivision. In subdivision without propagation, no subdivision occurs outside of the selectedregion, so faces outside the selected region may increase in number of vertices. Triangulation refersto subdividing only those selected faces that are not already triangular.
Vertices selected by intersection with tool Selected faces subdivided with propagation

Vertices selected by intersection with tool Selected faces subdivided without propagationFigure 4.2: Triangular subdivision, with and without propagation.A single function provides high-level control of all three types of subdivision using the followingalgorithm:1. Set propagation ag to true if propagation requested2. Clear data ags on all vertices and faces3. Get the list of selected faces4. Partition this list into lists of triangular and N-sided faces5. Call the appropriate lower-level routine for each face in each listThe propagation ag indicates whether the non-selected faces adjacent to subdivided faces shouldbe divided in order to enforce triangularity of the faces adjoining the subdivided region. Whenpropagation is not enacted, no new faces are created outside of the selected region. In triangulation,all non-triangular faces in a region are split into triangular faces. Triangular faces in the selected



4.2. Mesh Re�nement Operations 9region are not modi�ed. Since di�erent lower-level subdivision schemes are used for triangular and N-sided faces, two separate lists of selected faces are created. The two distinct methods of subdividingindividual faces are illustrated in Figure 4.3 and described separately below.Figure 4.3: Quaternary triangular face subdivision and N-sided face subdivision.Subdividing Triangular FacesSAM-IAM subdivides single triangular faces using the quaternary method described by Samet[Sam90]. In this method, a single triangle is replaced with four triangles by connecting the midpointsof each edge of the triangle to form a new central face and three new faces adjacent to the centraltriangle and incident to the original triangle's corners (see �g. 4.3). This method maintainstriangularity, limits vertex degree (new vertices all have �ve or six neighbors) and breaks up existingfaces such that the new faces have a fairly regular shape.While the subdivision of an individual face using this method is a trivial operation, subdivision ofa group of connected triangular faces is nontrivial, since the new vertices generated for each originalface must be properly incorporated into the subdivision of neighboring faces. Depending on howmany neighboring triangular faces have been subdivided, a face to be subdivided may have anywherefrom three to six vertices. Since vertices' data ags are set upon vertex creation and pre-existingvertices' data ags were cleared at the beginning of the subdivision process, the data ags can beused to distinguish between old and new corner vertices of the face to be subdivided. By traversingthe perimeter of the face (a simple matter using edges' wing pointers), the relationship between oldand new vertices is determined and the correct edges to split are found. If the propagation ag hasbeen set, each adjoining non-selected face is split using the new vertex on its perimeter. Four-sidedfaces are converted to a pair of triangular faces through a split of the face from the new vertex tothe vertex opposite it (see Figure 4.2). Faces with more than four sides are split using the functiondescribed below.Subdividing N-Sided FacesThe previous method cannot be used for N-sided faces for several reasons: the central facecreated will not be triangular, the new faces may have widely varying areas, and the method is notwell-de�ned for concave faces. Therefore, N-sided faces are divided by connecting each corner of theface to a single new central vertex. SAM-IAM currently averages the face's vertices to calculate thenew vertex. The face's centroid, or center of area (a notion similar to a physical object's center ofmass), would lead to a more regular subdivision. Since this method does not introduce additionalvertices to adjacent faces, there is no notion of propagation of this type of subdivision; faces can besubdivided with no consideration of adjoining faces. The implementation of this method is thereforemuch simpler than that of the previous technique.This method has two principal disadvantages: new faces tend to be long and thin (which can leadto rendering artifacts), and the number of edges incident to some vertices can become very large.The latter problem leads to a disparity in the inuence of vertices upon their surrounding regions,since a vertex's inuence is directly proportional to the number of other vertices it is adjacent to.



10 4. Implementation Highlights4.2.2 Adaptive SmoothingSmoothing refers to alterations in vertex positions induced in order to make a region of the meshappear more smooth. The method used by SAM-IAM calculates a new position for each vertexin the selected region by calculating a weighted average of the vertex's original position and thepositions of its neighbor vertices, according to the formula:v0 = v!(n) + (v1 + v2 + � � �+ vn)n+ !(n) (4.1)where !(n) = n�(n)1� �(n) (4.2)and �(n) = 2(38 + cos(2�=n)4 )2 � 14 (4.3). Here v is the original position of the vertex being smoothed, v0 is its new position, n is thenumber or vertices surrounding v (its valence), and v1 + v2 + � � � + vn is the vector sum of thevertices surrounding v. This smoothing algorithm, originally proposed and analyzed by Loop [Loo87],consists of a subdivision step in which each facet of a triangular mesh is subdivided into four facesas in SAM-IAM, and an averaging step in which the mask above (!(n)) is used to calculate thenew position of a vertex. The best-known smoothing algorithm is perhaps Chaikin's corner cuttingalgorithm for biquadratic tensor-product B-spline surfaces and its generalization to bicubic tensor-product B-spline surfaces [Cha74]. Unfortunately, Chaikin's algorithm only works for rectangularmeshes. The two other best-known smoothing techniques, those of Doo and Sabin [Doo78] andCatmull and Clark [CC78] are generalizations of Chaikin's algorithm to arbitrary meshes but stillwork best for rectangular and nearly rectangular meshes. Loop's subdivision algorithm seems tobe the most judicious choice because it is a generalization of the box-spline smoothing algorithmfrom triangular meshes to arbitrary meshes, and the meshes used in our system are predominantlytriangular. Previous experience in sculpting has shown that some sort of smoothing is highlydesirable in any sculpting system. It is intriguing, however, that the inventors of sculpting systemsare woefully silent about the details of the smoothing techniques that they have used. The modelscreated using Elson and Malone's S-Geometry system suggest that they have used the Doo-Sabinalgorithm, though this is not explicitly stated in their publications [Els90b, Els90a]. Allan et al alsouse a \smoothing" decay function which appears to do a sort of averaging with no subdivision step[AWW89], although no concrete details are provided.SAM-IAM o�ers users the option of choosing whether or not to subdivide before applying thesmoothing technique. Should the user decide on smoothing with subdivision, subdivision withoutpropagation as described in the previous section is executed, and all selected vertices are thensmoothed. Smoothing without subdivision applies the above perturbation technique directly to theselected vertices; the mesh undergoes no change in topology. Since the !(n) are �xed for particularn, these values are stored in a lookup table to avoid unnecessary recalculation.Since SAM-IAM allows adaptive smoothing to subregions of a mesh, models having smoothregions as well as rough, angular regions can be created.4.2.3 Filling Holes and Deleting Mesh RegionsUsers may re�ne meshes further by �lling and creating holes and to replacing mesh regions withsingle faces. To �ll holes, we de�ne the average point of the vertices on the perimeter of the hole,and connect each vertex to this new vertex, replacing the hole as if it was an N-sided face.



4.3. Tool De�nition 11A two-step algorithm is used both to replace regions with a single face and to create holes. First,it deletes all edges which border two selected faces, which eventually results in all selected regionsbeing reduced to a single selected face. If the intent was to replace all selected mesh regions withsingle faces, we are �nished at this point. If the intent was to create holes, we then delete theremaining singular selected faces and update the edges around them to point to outside world.4.3 Tool De�nitionEach of SAM-IAM's virtual tools is represented internally in two ways: as an analytical su-perquadric equation, and as a winged-edge structure of faces, vertices, and edges corresponding tothe equation. Superquadrics are extensions to the standard quadric equations, which describe thefamiliar ellipsoid, torus, hyperboloid of one sheet, and hyperboloid of two sheets. The equation isused in collision detection calculations, while the winged-edge structure is used for the rendering ofthe tool. Both representations will be described in this section. It should be stressed that the tworepresentations must be maintained separately by the program; neither is generated from the other.4.3.1 Internal Analytical DescriptionEach of SAM-IAM's tool shapes is described internally using a superquadric equation. Su-perquadrics are a form of implicit equations, which have the general form f(x; y; z) = 0. Implicitequations are ideally suited for solid modeling and collision detection applications in which the\in/out/on" relationship of the surface to a point in space must be determined. Speci�cally, thefunction f(x; y; z) is evaluated at the point of interest p = (xp; yp; zp). f(xp; yp; zp) < 0 implies thatp is inside the surface described by f , f(xp; yp; zp) = 0 implies that the point is on the surface, andf(xp; yp; zp) > 0 implies that p is outside the surface.SAM-IAM's tools are all described by the superellipsoid, the superquadric version of the ellipsoidequation. Superellipsoids are described by the equationf(x; y; z) = ((x=a1)2=�1 + (y=a2)2=�2)�1=�2 + (z=a3)2=�1 � r2 = 0 (4.4)wherer is the radius of the (unscaled) shape,a1; a2; and a3 are scaling factors in the x, y, and z directions, and�1 and �2 are squareness parameters in the longitudinal and latitudinal directions, respectively.The squareness parameters allow the superellipsoid equation to describe angular shapes such ascylinders and boxes as well as basic ellipsoids and spheres. �1 = �2 = 0:2 is used for SAM-IAM'sbox-shaped tool, while �1 = 0:3; �2 = 1 is used for the cylindrical tool. Setting �1 = �2 = 1 gives thebasic ellipsoid equation used to describe SAM-IAM's sphere and ellipsoid tools.These equations provide a consistent, elegant means to represent tools internally and allow speedycollision detection using the equations' \in/out/on" capabilities. Furthermore, when a tool is scaled,changes to the a1; a2; and a3 factors are all that is needed to reect the tool's new shape. The useof superquadrics in interactive modeling is described in more detail by Barr and Franklin ([Bar81,FB81]) and Pentland et al ([PEF+91]).4.3.2 Winged-Edge RepresentationWhile the equation associated with a tool provides an e�ective means to detect collisions betweenthe tool and mesh vertices, the tool must still be represented in terms of vertices, edges, and facesin order for it to be rendered. For each tool, this information is stored using a winged-edge schemeidentical to that used for the mesh. Care is taken to ensure that the initial tool shapes describedby the winged edge structure match the shape de�ned by the equation. Both representations mustthen be scaled consistently in order to maintain the correspondence between the tool shape the user



12 4. Implementation Highlightssees (its winged-edge structure) and the shape used internally in collision detection calculations (itsequation).4.3.3 Tool ActionsAll tools have an action in addition to a shape. Each tool stores its own action; the current actionrefers to the action of the currently active tool. Pull, Push, and De�ne-Region actions are currentlysupported. As described earlier, SAM-IAM users toggle between deformation and non-deformationmodes while sculpting, and collision detection only takes place in deformation mode.
Figure 4.4: Box-shaped tool pushing downwards on at mesh.PushWhen the current tool action is Push and the system is in deformation mode, a call to thecollision detection function, described in section 4.4.1, must be made with each movement of thetool or the mesh. All vertices found to be within the tool then are translated away from it accordingto the incremental change in translation or rotation describing the movement. This simple currentmethod produces action that is realistic as long as the tool moves into the mesh slowly. Quickermovements can cause vertices to jump away from the tool as it comes in contact with them. Figure4.4 shows a box-shaped tool pushing down on a at mesh while a Goo decay function with a rangeof four vertices is active. Decay functions are described in detail in Section 4.4.3.PullWhen the current tool action is Pull and deformation mode is switched on, all vertices in contactwith the tool are recorded via a single call to the collision detection function. During all subsequenttool or model movements until deformation mode is switched o�, these vertices will be transformedsuch that their displacement in the tool's coordinate system remains constant. Figures 4.5 and 4.6show the results of pulling a single vertex while various decay functions are in use.De�ne-RegionDe�ne-Region tools are used to used to de�ne a region of the mesh to apply smoothing orsubdivision to, or as a non-destructive means to view the intersection of the tool with the mesh. Indeformation mode, the mesh vertices intersecting De�ne-Region tools are recorded and highlighted,but not moved. Decay functions are not considered when the current tool is of this type. As with



4.4. Tool/Mesh Interaction 13Push tools, collisions must be detected with every movement of an active De�ne-Region tool. Useof De�ne-Region and Push tools is therefore much slower than use of Pull tools.4.4 Tool/Mesh Interaction4.4.1 Collision DetectionIn collision detection, a list of vertices in contact with the tool is generated and stored in alist referred to as VertSet. The collision detection function converts each vertex of the mesh intothe tool's coordinate space and tests for collision with the tool through direct use of the tool's\in/out/on" equation. Selected vertices (those in VertSet) are subsequently marked by displaying asmall red sphere at each's location. The current method of examing each vertex of the mesh is a verynaive and slow method of collision detection. Our chapter on conclusions and future work explainshow better performance could be obtained through spatial decomposition of the mesh vertices.4.4.2 Decay FunctionsDecay functions are a means by which movements of a vertex are propagated to the verticessurrounding it. They are an e�ective, though not physically correct means to simulate elasticityin real objects. They are also useful for generating deformations to aggregates of points throughdisplacement of a single point.At all times, SAM-IAM maintains a current decay function range and type. The range is thedistance (in vertices) over which the decay function a�ects neighbors of a selected vertex (a vertexbeing moved by a tool). All decay functions DF have the following characteristics:� DF : f0; 1; : : :; Rg ! [0; 1], where R is the current range� DF (0) = 1SAM-IAM currently includes the following decay functions:� Goo: DF (n) = (1 + sin(�2 � nR�))=2� Bell: DF (n) = 1� nR2� Cusp: DF (n) = ( nR � 1)2� Cone: DF (n) = 1� nR� Flat: DF (n) = 1Figures 4.5 and 4.6 illustrate some of these functions applied to a mesh. Note that Goo andCusp are the only ones that provide a continuous transition between the vertices in the decay rangeand the surrounding stationary mesh.The main problem with this implementation of decay functions is that distances from the selectedregion are onlymeasured in number of nodes. While this is often very reasonable, in certain situationsusing the true spatial distance would give better results. Therefore, SAM-IAM's decay functionsproduce the most intuitive results when applied in mesh regions with a relatively regular distributionof vertices.4.5 User Interface4.5.1 Rotation Using the Virtual TrackballThe user rotates objects through use of a virtual trackball, a popular interface mechanism throughwhich a user can intuitively specify rotations around arbitrary axes in space using only a mouse. Thetrackball is represented to the user as a circular screen region corresponding to the forward-facinghemisphere of a simulated trackball. By clicking and dragging the cursor in this region, a rotation
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Figure 4.5: Goo and bell decay functions as applied to pulls of a single vertex.
Figure 4.6: Cusp and cone decay functions as applied to pulls of a single vertex.around some axis is described; the direction of the cursor movement determines the rotation axis,and the initial position of the mouse and the length of the movement vector determine the angle ofrotation. Implementation speci�cs are given by Chen [CMS88].Modifying the Center of RotationThe center of rotation (COR) of an object is the point around which it may be rotated. A localCOR follows an object as it is moved about; a global COR is una�ected by the transformationsapplied to an object. SAM-IAM increases the power of trackball-based rotation by allowing users tofreely edit the COR of each object. At any time, users may choose to de�ne a point in world spaceby using a 3D crosshair that is manipulated in the same manner as the mesh and tools. That pointcan than be declared to be the new COR for the tool or the mesh. Objects' CORs can be declaredglobal or local at any time as well; they are local by default, as this is generally more intuitive anduseful.4.5.2 ShadowsIn order to improve the spatial cues provided to users, SAM-IAM is able to display shadows castby the sculpting tool onto the mesh. The algorithm used is based on the shadow volume techniqueinitially proposed by Crow [Cro77] and updated by Hudson [Hud92]. Our algorithm improves uponthese methods through use of the stencil bitplanes available on modern higher-end Silicon Graphics



4.5. User Interface 15workstations. Stencils are bitplanes which are modi�ed by drawing routines according to variouspixel-by-pixel stencil functions involving current values of the stencil, the zbu�er, and the color bit-planes [Sil90]. The shadows are drawn after the mesh, and before the tool. The process is illustratedin Figure 4.7. An overview of the algorithm is as follows:1. Calculate the vector to the light source in the tool's coordinate system2. Calculate the contour polygon of the tool3. De�ne the shadow polygons making up the shadow volume4. Switch o� updates to the zbu�er and the color bitplanes5. clear the stencil plane6. Draw the shadow polygons into the stencil plane, incrementing stencil pixels wherever polygonswould be drawn7. Switch color bitplane updates back on8. Using the stencil region with value 1 as a mask, draw the shadow polygons using screen-doortransparency9. Switch zbu�er updates back on
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Figure 4.7: Shadow rendering: (A)-(D) are intermediate steps in the algorithm, (E) is the�nal view after the tool is drawn, and (F) is the �nal view with the shadow volume visible.The contour polygon of the tool is the collection of edges which would make up its silhouette asviewed from the light source. Contour edges are identi�ed by calculating the dot product of each oftheir incident faces with the vector to the light source. Should the signs of these dot products di�er,the edge must be a contour edge; one of its faces faces the light source and the other faces awayfrom it. The shadow volume is de�ned by forming a polygon for each contour edge by connectingthe edge with an edge translated some large distance away from the light source. The collection



16 4. Implementation Highlightsof these polygons encloses a volume extending away from the light source and having the contourpolygon as its consistent cross section. This is the volume that the tool blocks from the light source(see Figure 4.7(F).) After the shadow polygon is created, stencil bitplanes are used to mask theshadow volume display to an area which will correspond to where the shadow of the tool would fallon other objects in its scene. The actual shadows are rendered using screen-door transparency, acommon technique in which a �ll pattern of alternating black and \clear" pixels is used to darken anarea without completely obscuring it. The main advantage of this method over those of Crow andHudson is that it is not necessary to partition shadow polygons into front-facing and back-facingsets, which can potentially be a very costly operation for complex volumes.4.6 Loading and Saving ObjectsThe user may save the current mesh object to �le at any time. The name of a �le of this type maybe given to SAM-IAM as an argument at startup, or may be speci�ed interactively using the GUI.Several simple beginning mesh shapes can also be generated spontaneously via a menu. Currently,these include sheet, tetrahedron, box, sphere, and cylinder shapes. Since SAM-IAM allows only onemesh to be sculpted at any time, loading a mesh from �le or replacing the current mesh with one ofthe default shapes entails freeing the memory required by the current mesh (if any).The format of the �les SAM-IAM produces and can read is as follows:VERTSn0 V0[x] V0[y] V0[z] V N0[x] V N0[y] V N0[z]...n-1 Vn�1[x] Vn�1[y] Vn�1[z] V Nn�1[x] V Nn�1[y] V Nn�1[z]FACESm0 FN0[x] FN0[y] FN0[z]...m-1 FNm�1[x] FNm�1[y] FNm�1[z]EDGESp0 NV0 PV0 NF0 PF0 NCCW0 PCW0 NCW0 PCCW0...p-1 NVp�1 PVp�1 NFp�1 PFp�1 NCCWp�1 PCWp�1 NCWp�1 PCCWp�1Here n,m, and p are the numbers of vertices, faces, and edges of the object; the �rst numberof each data line is the number of that respective vertex, face, or edge. The V are the vertexcoordinates, while the V N and FN are the vertex and face normal vectors. In the lines of edgeinformation, all data �elds are integers. Section 4.1 on implementation details regarding to thewinged-edge data structure explains the meaning of these �elds.



175. Models CreatedThis section illustrates a few models created with SAM-IAM to demonstrate its capabilities. We�rst give a detailed description of the creation of a dog model. A collection of other interesting modelscreated using the system is then presented. Each model will be described by both an illustrationand complexity statistics (number of vertices, edges, and faces).

Figure 5.1: Major steps in the creation of a dog model.5.1 Sculpting a DogFigure 5.1 shows six stages in the sculpting of a dog, supposed to be of the Doberman Pinscervariety. The initial ellipsoid-shape, shown in the upper left corner, was created through two applica-tions of subdivision with smoothing to an initial box shape. In the top center image, the beginningsof the legs and neck have been pulled out of the torso. A Goo decay function was used for the rearlegs, a Cusp function for the front legs, and a Bell function for the neck. In the third frame, theneck region was subdivided and a crude head shape formed. By the fourth frame, the tips of the legshave been pulled out and front paws added, and in the following frame the legs have been stretchedfurther and pulled into a walking pose. The �nal (lower right) frame shows the resulting model afterthe head, paws, and tail regions, respectively, have been subdivided and detailed. The model in thisimage is made up of 2523 vertices, 4746 faces, and 7267 edges. Figure 5.2 shows a detail after theentire model was smoothed with subdivision one �nal time, resulting in a model with 9927 vertices,
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Figure 5.2: Detail of dog face after smoothing with subdivision.19850 faces, and 29775 edges.5.2 Other Models1. Fish (Figure 5.3)Figure 5.3 presents a simple �sh sculpted out of a sphere and rendered in hidden-line mode.Note the adaptive subdivision in regions where more detail is needed, such as the eye, �ns, andtail. The �sh is made up of 525 vertices, 1489 edges, and 966 faces, and originally was a sphere.2. Slug (Figure 5.4)Here we see a 3D version of our campus mascot, the Fighting Banana Slug. This model wascreated during a live demo of the program and illustrates what may be done in a very shorttime using the system (the modeling time here was only about 5 minutes). The slug wascreated from a sphere and consists of 1036 vertices (a large proportion of which are groupedin the highly subdivided eyestalks region), 1966 faces, and 3000 edges.



5.2. Other Models 19
Figure 5.3: A �sh.

Figure 5.4: A banana slug.3. TV Set (Figure 5.5)While the system is designed with the modeling of smooth, naturalistic shapes in mind, angu-lar, non-natural shapes such as this TV set can also be produced. This model consists of 561vertices, 985 faces, and 1544 edges.4. Triceratops (Figure 5.6)A model of the famous dinosaur triceratops is seen in Figure 5.6. The triceratops was initiallya cylinder; the �nal shape consists of 1700 vertices, 3181 faces, and 4879 edges.
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Figure 5.5: Three views of a TV set.
Figure 5.6: A dinosaur: triceratops.5. Flower (Figure 5.7)This ower was sculpted during the �rst modeling session with the program. It was createdby pulling up the corners of a at sheet to create petals, and then pulling a stem and a pis-til/stamen structure out of the mesh. The ower model consists of 894 vertices, 2456 edges,and 1563 faces.
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Figure 5.7: A ower.



22 6. Conclusions and Future Work6. Conclusions and Future Work6.1 AnalysisIn this chapter we evaluate the strengths and weaknesses of our system. Overall, SAM-IAM hasproven to be a very easy to use, versatile, and e�ective system. Its main shortcomings are in speed(some operations are somewhat slow) and in its interface. Some of these problems are inherent inour design; others could be alleviated through the future modi�cations described in Section 6.2.6.1.1 SuccessesVirtual tools have shown themselves to be highly versatile, intuitive, and elegant means tospecify operations to apply to a geometric model. In SAM-IAM, both sculpting operations andmesh re�nement operations to be applied using virtual tools as a consistent interaction metaphor.Combining the tools with decay functions increases their usefulness greatly. An important goal ofthis project was to use tools to extend the power of the vertex manipulation operations implementedin many sculpting systems, and this goal has been achieved. The interactive shadows are immediatelyseen to be a great aid in understanding the spatial relationship of the tool and the mesh. This resultsin more accurate sculpting. The adaptive nature of subdivision and smoothing operations makesit very easy to vary detail levels and control smoothness in the mesh being sculpted. Particularly,adaptive subdivision and the ability to interactively replace mesh regions with single faces allows allunnecessary polygons to be eliminated from the mesh; thus, mesh complexity can be conserved.6.1.2 ShortcomingsSAM-IAM can become bogged down when the number of vertices in the mesh being modeledgrows into the low thousands. Since manymore points than this can be required to represent complexobjects, this is a signi�cant problem. One possible way to reduce memory usage is presented inSection 6.2.SAM-IAM uses a single view at all times, in an attempt to simulate actual sculpting. It alsouses the basic input con�guration of keyboard and mouse. Both of these approaches are inherentlylimited. While we have addressed their respective shortcomings using shadows and the virtualtrackball, precise spatial understanding and object positioning can still be di�cult. Again, somepossibilities for improvement in this area are described in the next section.Another inherent limitation of our system is its inability to detect and respond to collisions of themesh with itself. This problem was also described by Allan et al as a shortcoming of their system[AWW89]. While allowing the mesh to intersect itself can sometimes be useful, care is usuallyneeded to prevent the creation of meshes with unattractive crinkles and discontinuous shading dueto unwelcome self-intersections. We have, however, found that judicious smoothing of these areasoften alleviates the problem.6.2 Future WorkWe have demonstrated the e�ectiveness of our sculpting software through the example modelspresented in Chapter 5. This section describes a number of modi�cations likely to improve thesystem further. We also discuss the feasibility and potential inherent in combining our system withtrue 3D interfaces and parametric surface modeling.SAM-IAM currently uses the naive method of checking all mesh vertices to determine collisionswith the tool. Instead, a spatial decomposition technique or bounding-box tests could be used togenerate a set of the vertices in the general neighborhood of the tool.



6.2. Future Work 23One major current problem with SAM-IAM is the excessive memory requirement due to thewinged-edge implementation using the structure recommended by Glassner and Hanrahan ([Gla91,Han82], in which each face and vertex points its own ring of edge structures. In Baumgart's originalimplementation, each face and vertex stores only a single pointer to any adjacent edge, and doesn'thave separate edge and edgedata structures. The other edges around the face or vertex are found byfollowing the stored edge's wing pointers. While the ring method simpli�es access to edges somewhat,the excessive redundancy in this structure seems to cripple memory unacceptably. In many cases,since the rings are not ordered, we must traverse wing edges anyway to determine their clockwiseor counterclockwise ordering. It can be inferred that Baumgart's method uses approximately 1/3 to1/2 of the memory of the other memory for typical meshes. Neither Glassner or Hanrahan gives ananalysis of this organization with regards to space/time complexity. It would be relatively simpleto convert to SAM-IAM to use Baumgart's original con�guration; we suspect that this would allowlarger meshes to be created without noticeable penalties to performance.While the current push action is fairly realistic, the tool equations could be better utilized tocorrectly determine the distance from vertices to the nearest point on the tool. This would allowthe vertex to be moved in a more realistic manner than is done currently. The vertex could beallowed to cling to the tool or slide against it with a variable degree of \friction". This touches onthe very interesting question, explored by many researchers, of whether object interactions with ahigh degree of physical realism can be generated using only simple geometry, without di�erentialequations [PW89, PEF+90, PEF+91, WGW90, TPBF87, TF88].A wide variety of fairly low-level extensions could be made to the system that would make iteven more useful. For instance, interactive coloring of objects could be done by de�ning a \paint"tool action in which a selected mesh region can be colored or textured by the user. The ability tomanipulate and merge a number of meshes at once would be very useful. Additionally, the �le I/Ocapabilities of our system are still quite primitive; only a single �le format is readable. A methodof converting from SAM-IAM's �le format to those used by other popular graphics programs wouldobviously be of great bene�t.While the suggestions above are straightforward improvements to our system, many more ad-vanced applications can be envisioned. One interesting enhancement would be to create a truly3D virtual sculpting system through addition of 3D input devices such as force-feedback units anddatagloves. Also, SAM-IAM could be adapted to manipulate control points of parametric surfacesor free-form deformation lattices. A system such as ours would also be very e�ective as a free-formsubsystem to a traditional CAD or CSG-based modeler.
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