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Rectangle Replacement and Variable Ordering: Two Techniques for
Logic Minimization Using If-Then-Else DAGs
Soren Soe

ABSTRACT

This thesis explores logic minimization techniques for Boolean functions represented as
if-then-else DAGs. In particular the thesis presents algorithms for two areas of multi-level
logic minimization: Rectangle Covering and Variable Ordering.

Rectangle covering is the process of factoring and extracting common sub-expressions in
Boolean functions. Boolean functions are represented as Boolean matrices, and rectangles of
these matrices represent either a factor of a function or a sub-expression that can be shared
among several functions. An eflicient heuristic algorithm two-column rectangle replacement
for finding rectangles of a Boolean matrix is presented. The heuristic is particular well
suited for optimizing circuits for area, while controlling the delay. A slight variation of the
heuristic optimizes with respect to delay.

Variable ordering is a problem specific to canonical if-then-else DAGs and ordered binary
decision diagrams. This thesis presents an improved depth-first ordering heuristic based on
reconvergent fanout. This heuristic is fast and produces variable orders resulting in smaller
canonical forms than previously published traversal-based ordering heuristics, and is suitable
when using canonical form for verification purposes. The thesis also presents a new ordering
heuristic called SplitOrder, which is especially well suited for finding good variable orders
for ordered binary decision diagrams (0BDDs). SplitOrder constructs the variable order by
building an 0OBDD top-down one level at a time, choosing the next variable such that the
corresponding level in the 0BDD has few nodes and represents expressions that are as small
as possible. SplitOrder is compared to several depth-first ordering heuristics and show that
when converting to oBDDs SplitOrder averages 25% fewer nodes than taking the best of 8

depth-first techniques (37% better than the best single depth-first technique). Finally it



is demonstrated that applying SplitOrder to a set of expressions already represented as an
OBDD often results in significantly better variable orders, thus making it beneficial to iterate

SplitOrder.

All of the algorithms presented in this thesis have been implemented, tested, and

installed as part of the logic minimizer 1TEM.
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1. Introduction

Logic synthesis and in particular logic minimization becomes increasingly more impor-
tant as Very Large Scale Integration (VLSI) continues to offer more and more complexity in
a single integrated circuit. As the complexity grows so does the number of different design
styles. Application specific intergrated circuits (ASICs) designed from scratch are still very
popular, but recently many varieties of programmable logic devices have gained increasing
popularity. The field-programmable gate array (FPGA) market is today the single fastest
growing area of the logic market, and everyday new and more complex FPGAs are invented.

The challenge is to develop a synthesis system that can handle all aspects of logic devices
efficiently. Conventional logic synthesis tools are based on a two-level logic representation,
which has proven to be the right representation style when the targeted logic device also
represents logic in a two-level form. When logic is represented in multiple levels and by
devices that in no way resembles two-level logic components, it is not clear that sum-of-
products form is the best representation.

In this thesis we develop logic minimization algorithms using the if-then-else DAG data
structure to represent Boolean logic. We demonstrate that Boolean expressions can be
represented effliciently using if-then-else DAGs and that the if-then-else DAG data structure
is a flexible representation style when applying higher-level logic minimizations techniques to
minimize Boolean expressions. The thesis addresses two major areas in logic minimization:
extraction of common sub-expressions and conversion to canonical form under different
variable orders. Techniques are demonstrated using the logic synthesis tool ITEM, where
ITEM stands for If-Then-FElse Minimizer.

Although this thesis concentrates on higher-level technology-independent optimizations,
published papers [Kar91d, Kar9la, Kar93] show that the if-then-else DAG representation
style indeed is efficient when targeting various FPGA style logic components.

In order to put the work presented in this thesis into perspective we describe the role

of logic minimization in a computer-aided design environment for production of very large



scale integrated circuits (VLSI). Such an environment, in which logic minimization is just

one small part, is also known as silicon compilation.

1.1 Silicon compilation

Silicon compilation is the translation from behavior to silicon. Depending on the level
of abstraction a behavioral description can range from a high-level algorithmic description
to a low-level description in terms of Boolean equations. Dave Johannsen [Joh79] first
used the term silicon compilation in 1979 for an automatic synthesis system that assembled
parameterized pieces of layout. Since then the term has been used in a much broader sense
to define the translation process from a higher-level description into layout [GDP86]. The
main purpose of silicon compilation can be summarized in three points:

e To broaden the scope of designers who can construct ASICs. Using a silicon compiler,

a designer is working at a higher level of abstraction and need not have any detailed

knowledge about IC design, thus more designers can construct 1Cs.

e To improve design quality. Ideally, any component instantiated by a silicon compiler
is free of errors and satisfies design rules. Errors can only propagate from a higher

level, whereas manual design leaves many possibilities for introducing errors.

e To increase design productivity. Design productivity is increased as a result of shorter

design time due to the higher level of abstraction.

Of course there are disadvantages involved in silicon compilation. A silicon compiler
designed to cover all the aspects of a design and for a wide variety of applications, will have
to make compromises that affect the quality of the final design.

In silicon compilation the term synthesis denotes the process of converting a functional
representation of a circuit into a structural representation. Silicon compilation is separated
into several abstraction levels as illustrated in Figure 1.1. The figure illustrates that logic

minimization is a part of logic synthesis.



Representation Level of synthesis

Algorithm

Processor, RTL

Register transfer

Boolean equation

Netlist of gates

Mask layout

Figure 1.1: Different abstraction levels for silicon compilation. The behavioral
description of a design is synthesized into control and data path structures during
behavioral synthesis. In finite-state-machine synthesis the control structures are
state encoded. Data path synthesis partitions the data structures into states and
assigns registers to variables that are used in multiple states. The operations
performed in each state are synthesized into functional units, which during module
synthesis are converted into building blocks available in the target technology. In
logic synthesis the combinational blocks of logic are synthesized into a netlist of
gates that implements the desired functions, meeting area and timing constraints.
Finally, the netlist of gates is synthesized into a mask layout ready for production.

1.2 Logic synthesis

In logic synthesis combinational blocks of logic are synthesized. If the register transfer
description contains any storage constructs, they will be set aside during and reconnected
after the logic synthesis.

The task of logic synthesis is to convert a description of a set of Boolean functions into



a netlist of gates that implements the functions, meeting area and timing constraints or

testing requirements. Logic synthesis is divided into two important areas:

Logic minimization and optimization, which involves changing the Boolean functions
such that circuits built from them are better. The key parts of logic minimization
are factoring to reduce complexity and sharing common subexpressions to reduce

redundant circuitry.

Technology mapping, which takes the result of logic minimization, and finds a realization
of the minimized equations in a particular circuit technology producing a netlist of
gates.

Logic synthesis can be compared to language compilers; the first part, logic minimiza-
tion, consists of technology-independent optimizations, which corresponds to language-
independent optimizations and technology mapping corresponds to code generation and
peephole optimizations. K. Keutzer [Keu87] related the problem of technology mapping to
that of code generation in language compilers. From a set of decomposed functions (the
result of logic minimization) a circuit graph (known as the subject graph) in a simple base
technology is constructed. The base technology should be as simple as possible to keep the
number of different nodes low. In [Keu87] the base technology is two-input NAND-gates
and inverters, while in work done by Karplus the if-then-else operator has been used as the
base technology [Kar89]. The logic function for each library gate is also represented as a
graph (known as the pattern graph) in the base technology. For each logic function there are
many different representations using the base technology, and hence many different pattern
graphs. Technology mapping now amounts to finding the minimum cost covering of the
subject graph by choosing from the library of pattern graphs. This problem is well known
from code generation in language compilers, where each machine instruction is decomposed
into a DAG of atomic operations (the pattern graph), and where the optimized program
itself is a DAG of atomic operations (the subject graph). As in language compilers, special-
purpose techniques for specific targets often work better than general-purpose technology

mappers.



1.3 Logic minimization

The work in this thesis will concentrate on the logic synthesis level, with primary focus
on technology-independent logic minimization. We do not distinguish between logic min-
imization and optimization—both denote the changing of the representation of a Boolean
function such that the representation is as “good” as possible. Even though minimization
leads one to think of methods that make the function representation small, we will use the
terms to also include the cases where we in fact enlarge the functions to meet other goals,
such as testing requirements.

Logic minimization is divided into two-level and multi-level logic minimization. In fwo-
level logic minimization the combinational logic is represented in a two-level form that
corresponds directly to a physical representation in terms of Or-And (sum-of-products) logic
or And-Or (products-of-sum) logic. In the sum-of-products form the goal of two-level logic
minimization is to reduce the number of products and the number of inputs to each product.
In VLSI a common method for implementing a two-level form uses a Programmable Logic
Array (PLA). A PLA consists of an And-plane and an Or-plane. The And-plane produces
the products by performing an And operation on the inputs. The Or-plane produces the
output signals by performing an Or-operation on the products fed by the And-plane. The
height of a PLA is determined by the number of products, and the width is determined by
the number of inputs and outputs.

The area of two-level logic minimization is mature and near-minimum PLA realizations
can almost always be found [BHMS84, Rudf89]. Unfortunately, there are many designs for
which a two-level representation is inappropriate. Not only can the number of products be
exponential in the number of inputs, but a two-level representation of a design may also be
considerably slower than a representation using multiple levels of logic.

Multi-level logic minimization minimizes with the object of implementing the final circuit
in random logic. Most previous work in multi-level logic minimization is based on exten-
sions to two-level logic minimization techniques [Bra87a, BRSWS87a, BHJT87, BCGHS6;

a notable example is the misll multi-level logic minimization system [BRSWS87a]. Many



multi-level minimizers use two-level minimization as a subroutine, usually based on the
espresso two-level minimizer [BHMS84]. The objectives in multi-level logic minimization
are

e To minimize area of the fabricated circuit.

e To minimize critical path delay.

e To make routability in layout synthesis easier.

e To make testability of the final circuit easier, and in some cases, to provide a test set.

Logic minimization is the technology-independent part of logic synthesis, but some
knowledge of the target technology is useful for guiding the minimization in the right
direction.

Testing optimizations, or synthesis for testability, refers to optimizations that ensure the
design is testable with a small set of test patterns. Logic synthesis has made it possible to
produce 100% testable circuits automatically. The result of logic minimization is a circuit
that, ideally, is irredundant, and therefore testable. Some techniques of logic minimization
can be proven to preserve testability [Kar91b], and thus if the starting point is a testable
circuit the final circuit will also be testable.

The objectives of logic minimization have been solved using two different approaches:

e The local-transformation/rule-based approach.

e The algorithmic approach.

The local-transformation/rule-based approach is a compiler-like approach, where the
circuit is represented as a graph. Transformations are applied to small parts of the graph to
transform it into a functionally equivalent, but simpler graph. Local transformations are a
rather ad hoc set of rules, and it can be difficult to assure that the number of included rules
is in fact sufficient. There is no limit to the number of rules that can be added to a system in
order to achieve logic minimization. An example of a rule-based system is LSS [DBGT84],
where the level of specification ranges from low-level close to hardware, through register-

transfer-level to very high-level descriptions with no assumptions of structural decisions.



The algorithmic approach is more global in the sense that small changes may affect
the entire circuit. The main global techniques are factorization, extraction of common
subexpression extraction, and various algorithms for finding common subexpressions and
factors. The most notable example of an algorithmic system is misIl [BRSW87a], which
evolved from algorithms developed for two-level logic synthesis [BHMS84].

More recently the local-transformation/rule-based and algorithmic approach has been
combined, where the algorithmic approach is used in the initial phase of logic minimization,
and the rule-based approach is used towards the end and in particular for technology
mapping. SOCRATES [BCGHS86] and more resent versions of 1SS [BT88] are examples
of systems combining the two approaches. A slightly different approach is to use local
transformations and make them have global effect. This approach is used in ITEM [Kar91lc,
Kar89] and is accomplished by using a global symbol table to store unique expressions. If
a transformation transforms a part of the circuit into a form that already exists somewhere
in the circuit, the common form will be explicitly shared. However, there is no guarantee
that identical expressions will be recognized and transformed to a common form, and thus
ITEM also incorporates some global techniques [SK91, SK93].

Extracting common sub-expressions in a set of Boolean functions is important for min-
imizing the area occupied by the logic equations. In thesis a new algorithm two-column
rectangle replacement for factoring and extracting common sub-expressions in Boolean func-
tions is presented. The algorithm is an improved variant of Brayton’s Brayton’s rectangle
covering problem [Bra87a, BRSWS87b], and it is particularly well suited for optimizing cir-
cuits for area, while controlling delay. We also present a slight variation of the heuristic,
which optimizes with respect to delay.

Canonical form representation of Boolean expressions is an important part of logic
synthesis and verification. In canonical form, two expressions representing the same logic
function have identical structure. The identical structure of logically equivalent expressions
make canonical forms useful for tautology checking and Boolean verification. Boolean

verification is used frequently in logic synthesis to verify that minimization has not changed



the function of a Boolean expression. If-then-else DAGs and binary decision diagrams have
very convenient canonical forms that are easy to compute. Unfortunately the sizes of a
canonical if-then-else DAG and ordered binary decision diagrams are very sensitive to the
variable order, and hence finding a good order is essential for efficient converting to canonical
form.

A major part of this thesis investigates techniques for computing variable orders that
result in small canonical forms. We have developed a new improved depth-first ordering
heuristics based on reconvergent fanout. This heuristic is fast and produces variable or-
derings that are superior compared to variable orders found by other depth-first ordering
heuristics. We also introduce a new ordering heuristic called SplitOrder, which is especially
well suited for finding good variable orders for ordered binary decision diagrams (0OBDDs). A
nice property of the SplitOrder heuristic (not found with the depth-first ordering heuristics)

is that it can be iterated to improve the resulting variable order.

1.4 Organization of the thesis

The research in this thesis is concerned with technology-independent optimization.
Chapters 2 and 3 are overviews of what has been done in logic minimization. Chapter 2
summarizes different methods for representing Boolean expressions. Chapter 3 shows some
different techniques for logic minimization.

In Chapter 4, the UC Santa Cruz If-Then-Else Minimizer ITEM is described briefly.
ITEM is an interactive multi-level logic synthesis tool, which contains several algorithms for
technology-independent minimization and technology mapping. A major part of the work
involved in this thesis has been designing and implementing parts of ITEM, and all the ideas
presented in this thesis have been implemented in ITEM.

Chapter 5 and 6 are the main contributions to the area. Chapter 5 presents a new
algorithm for extracting common sub-expressions from a logic network. The technique,
which we call two-column rectangle replacement, builds on the rectangle covering problem

introduced by Brayton et al. [BRSWS87b].



Chapter 6 is concerned with variable ordering for ordered binary decision diagrams
(0BDDs) and canonical if-then-else DAGs. The chapter presents new heuristics for finding
variable orders that result in small canonical DAGs. The first part of the chapter investigates
depth-first, traversal-based ordering heuristics and a new improved depth-first ordering
heuristic based on reconvergent fanout is introduced. The second part of the chapter
introduces a new ordering heuristic called SplitOrder, which is especially well suited for
finding variable orders that result in small ordered binary decision diagrams. Experiments
are presented that show that even though SplitOrder is targeted for ordered binary decision

diagrams it also results in good orders for canonical if-then-else DAGs.
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2. Representing Boolean expressions

When designing a logic synthesis system, the first thing to decide is how to represent
Boolean expressions internally. There is no specific representation scheme that is best for
all tasks of logic synthesis. One representation scheme may be the best for finding common
subexpressions and another may be better for verifying that two Boolean expressions are
equivalent. In this chapter we will summarize four of the most common representation
schemes used and we will demonstrate how these schemes are used when representing a

network of functions.

Boolean expressions

Given a Boolean algebra B, the set of Boolean expression on n symbols @1, &, - -, &, is

defined using the following recursive rules:
e The elements of B are Boolean expressions.
e The symbols zq, 29, -+, 2z, are Boolean expressions.
e If f and ¢ are Boolean expressions, then so are
- (/) +(9)
- (N)g)
- (f)
Expressions defined by the above rules are referred to as n-variable Boolean expressions.
We relax the definition somewhat by allowing the removal of pairs of parenthesis (- -)

where such a removal doesn’t introduce ambiguity.

In a finite Boolean algebra (the B in (B,+,-,0,1) is a finite set), the set of Boolean

expressions is infinite.

Boolean functions

A function f : B" — B is an n-variable Boolean function if and only if it can be

expressed by a Boolean expression. In the definition below we need to associate a function
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with each n-variable Boolean expression on B. Given a Boolean algebra B, the set of n-

variable Boolean functions on B is defined by the following recursive rules:

o Lor all elements b € B, the constant function defined by
f($1,$2,"',$n)2b V($1,$2,"',$n)€Bn

is a m-variable Boolean function.

e lor any symbols z; in the set (z1,z2,---,,) the function

f(xlvx%"'vxn):xi V($1,$2,"',$n)€Bn

is a m-variable Boolean function.

e If f and g are n-variable Boolean functions, then for all (21,22, --,2,) € B” the
functions
(f‘|‘g)($17$27"'7$n) = f($1,$2,"',$n)+g($1,$2,"',$n)
(fg)(xlvx%"'vxn) = f(xlvx%"'vxn)'g(xlvw%"'vxn)
(gl)($1,$2,"',$n) = (g($17$27"'7$n))/

are also n-variable Boolean functions.

In a finite Boolean algebra (the B in (B, +,-,0,1) is a finite set), the set of n-variable
Boolean expressions is infinite. However, the set of n-variable Boolean functions is finite.
In a function table specifying an n-variable Boolean function there are |B|"™ rows specifying
all possible input combinations. Since each input combination can map to | B| values in the
range, there must be | B ||B|n n-variable Boolean functions in a Boolean algebra with | B |
elements. Since we are dealing with a 2-element algebra, there are 22" n-input functions.

The mapping from Boolean expressions to Boolean functions is a many-to-one mapping,
and this gives rise to the main purpose of logic minimization which is to find the “best”

expression for representing a Boolean function.
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2.1 Sum-of-products form

Because of two-level (PLA) minimization, sum-of-products form has become a very pop-
ular, and probably the most common, way of representing Boolean expressions in logic syn-
thesis tools. Many multi-level minimization techniques rely on methods developed for two-
level minimization and the sum-of-products form seemed the obvious way to go [BRSW87a,
BHJT87]. Throughout this thesis we often use the terminology related to sum-of-products

form.

A wvariable is a symbol representing a single coordinate of the Boolean space B" (e.g.,

A literal is a variable or its negation, or a constant (element of B) or its negation. (e.g.,
z orz').

A cube, a product, or a term is either 1, a single literal, or a conjunction of literals in
which no variable or constant appears more than once. It is common to view a cube as a
set C' of literals, such that # € C implies 2’ ¢ . For example {z,y,z'} is a cube, but
{z,y,y'} is not.

A Boolean expression is a disjunction of cubes. It is common to view an expression as
a set F' of cubes. For example, {{z},{y, 2’} } is an expression.

A Boolean function is a mapping of vertices in the Boolean space to members of B, that
is, f: B" — B. The mapping is defined by a Boolean expression.

The support of a Boolean expression f (support(f)) is the set of variables, such that for
each v € support(f), v € C for some cube C' € f,orv' € C for cube C € f.

Two Boolean expressions f and ¢ are said to orthogonal or disjointif support( f) Nsupport(g)=

For a Boolean function ¢ the set of vertices in the Boolean space B™ that satisfies
g(v) = 1, is said to be the on-set of g. The set of vertices that satisfies g(v) = 0, is said to
be the off-set of g. The set of vertices for which we don’t care about the value of ¢ is said

to be the don’t-care-set of g. A Boolean function for which the don’t-care-set is empty is a
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completely specified function. If the don’t-care-set is non-empty then ¢ is an incompletely
specified function. An incompletely specified function is denoted by the triplet (f,d,r),
where f, d, and r are completely specified Boolean functions representing respectively the
on-set, don’t-care-set, and off-set of the incompletely specified function.

An implicant of a Boolean function (f,d,r)is a cube ¢ that is included in the union of
the on-set and don’t-care-set, f U d, and such that cnNr = (.

A Boolean function ¢ is said to contain another Boolean function h if each implicant of
h is also an implicant of g¢.

A prime implicant of (f,d,r) is an implicant that ceases to be so if any of its literals is
removed. This means that a prime implicant cannot be contained in any other implicant of
(f,d,r).

An idrredundant expression for a Boolean function (f,d,r) is a disjunction of prime

implicants of (f,d,r) that represents (f,d,r) and ceases to do so if any of its cubes is

deleted.

2.2 Factored form

One of the tasks of multi-level logic minimization is factoring of expressions to reduce
complexity. Unfortunately the sum-of-products form can not represent factored forms in a
simple way. As an example consider the Boolean function fi = bdg + 0'd’g + df g, which in

a multi-level representation could look like

F = g3
S1 = d82 + b/d/
S22 = f + b7

where s; and sy are factors which are represented in sum-of-products form.
Factored forms are introduced to make multi-level representations easier. The factored
form for representing Boolean expressions is defined recursively as follows:

e a literal is a factored form,
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e a sum of factored forms is a factored form,
e a product of factored forms is a factored form.
The expression bdg + b'd’'g + dfg can be written in factored form as g(d(f + b) + b'd’).

Note, that factored forms are not unique, for example,
(d+c)d + )+ (a+b)(+d)+d+d'b+ ed + ab

(a+b+c+d)(d+0 + +d)

are distinct Boolean expressions both representing the same Boolean function. By using
De Morgan’s law the negation of a factored form is easily obtained and is itself a factored
form.

The literature has reported several attempts to minimize factored forms, see [BHS90] for
a list of references, but unlike sum-of-products form it is hard to determine if a given factored
form is optimal. Lawler [Law64] presented an algorithm for obtaining optimal factored

forms, but the approach is only feasible for low-complexity functions of few inputs [Wan89].

2.3 Binary decision diagrams

Binary decision diagrams offer an alternative way of representing and manipulating
Boolean expressions [Bry86]. They have recently become very popular for verification
purposes [Bry86, Bry85, MWBS88], and attempts to use them for logic minimization has
also been reported [FF'K88].

A binary decision diagram is a directed acyclic graph that use a single universal operator:
the if-then-else operator.

Definition 1: The if-then-else operator is a ternary Boolean function, with (if a then b
else ¢) defined as ab + —ac or, equivalently, (a + ¢)(—a + b).

The if-then-else operator is very flexible and can directly represent 2-input AND, OR,
XOR, and IF expressions.

Binary decision diagrams restrict the if-part to always being a single variable, and are

defined as follows:
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Figure 2.1: Binary decision diagram for abc + —ad + —bd

Definition 2: A binary decision diagram is a binary directed acyclic graph with two leaves
TRUE and FALSE, in which each non-leaf node is labelled with a variable and has two
out-edges pointing to the then-part and the else-part. The meaning of a binary de-
cision diagram is defined recursively as (if label(node) then meaning(then-part) else
meaning(else-part)).

Figure 2.1 shows a binary decision diagram for the Boolean expression abc 4+ —ad + —bd.
It should be noted that each non-leaf node itself represents a Boolean expression.

Binary decision diagrams are easy to construct [Bry86], but without other restrictions
they can be difficult to simplify or compare for equality—a + b can be represented with
two different binary decision diagrams: one can have a as root and the other b as root. In
Section 3.3 we will show how binary decision diagrams can be canonically represented using

Bryant’s canonical form.

2.4 If-Then-Else DAGs

A major focus of this thesis will be on if-then-else DAGs, which basically are extended
binary decision diagrams that allows for sharing of the if-part [Kar89, Kar88].

Like binary decision diagrams, if-then-else DAGs use the universal if-then-else operator,
but unlike binary decision diagrams, there is no restriction that the if-part must be a single

variable:
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a b TRUE
Figure 2.2: If-then-else DAG for abe + —ad + —bd. The left branch from a node
points to the if-part, the center to the then-part, and the right to the else-part.
Definition 3: An if-then-else DAG is a directed acyclic graph in which each leaf is labelled
with TRUE or a variable, and each internal node has three out-edges pointing to the if-,
then-, and else-parts. Fach edge is labelled with either plus or minus. The meaning of a
node in the DAG 1is defined recursively:

o The meaning of a leaf node is the label on the node.

e The meaning of a pointer is the meaning of the node pointed to (if the label on the

edge is plus) or its negation (if the label on the edge is minus).

o The meaning of an internal node is
(if meaning(if-part) then meaning(then-part) else meaning(else-part)).

Two nodes are equivalent if their meanings are logically equivalent.

An edge with a minus label pointing to TRUE will sometimes be referred to as an edge
pointing to FALSE. In all figures only minus labels are shown.

Figure 2.2 shows the if-then-else DAG for the Boolean expression abec + —ad + —bd, here
it is represented as (if (if « then b else FALSE) then ¢ else d).

Like BDDs, if-then-else DAGs are impractical to manipulate if they can appear in any
form. Several restrictions are placed on if-then-else DAGs to make them canonical, refer to
Section 3.3. In practice however, we only require the following subset of the canonical form
restrictions to be satisfied:

Systematic-negation conditions: A systematic choice must be made between the equivalent
DAGs (if a then b else ¢) and (if ¢’ then ¢ else b) and between (if a then b else ¢)

and (if a then V' else ¢/)’. We require that if- and then-parts of a node be pointers
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labeled plus, with negation allowed only for the else-part or the pointer to a root of

the pDaAG.

Weak distinct-cases condition: The then- and else-parts of a node must be different
pointers or the else-part must be a pointer labeled with minus. In canonical form

the restriction implies that the then- and else-parts are different Boolean functions.

No-constant-if condition: Triples whose if-part points to TRUE are prohibited, and should

be replaced by the then-part.

No-two-constant condition: Triples in which both the then- and else-parts point to TRUE
(with either plus or minus labels) are prohibited. The triple should be replaced by an

appropriately labeled pointer to the if-part or to TRUE.

2.5 Two input NORs

If-then-else DAGs and binary decision diagrams use the single universal if-then-else
operator. An alternative single universal operator, which has been used in LSS [DBGT84]
is the two-input NOR gate. Obviously it is less flexible than the if-then-else operator as it
can only represent only 5 Boolean functions: 0, 1, 21, 2}, and 2/ z/. However, it has proven
to be useful and successful in a rule-based logic synthesis system and it is also quite popular

as the fine-grain network for technology mapping [Rud89].

2.6 Representing Boolean networks

One of the tasks of logic minimization is to find common subexpressions in a network
of Boolean functions constituting the entire block of logic we are optimizing. We therefore
also need a way to represent a network of Boolean functions as an entity, this entity is called
a Boolean network.

One way of representing a set of Boolean functions is as a directed acyclic graph, in which

each node represents a Boolean expression and all leafs are simple variables or constants
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Figure 2.3: Boolean network with three primary outputs and 4 primary inputs.
The expressions are represented are fi = a+b, fo = a+b+c,and fs = a+b+c+d.
(constants are elements of the Boolean algebra, which are TRUE and FALSE for the two-
element Boolean algebra). Some nodes are designated as output nodes and are referred to as
primary outputs; these nodes are associated with the Boolean functions we are representing.

Similarly all leaf node variables, except the constants, are denoted primary inputs.

In sum-of-products (or factored) form a Boolean network is DAG in which each node is
associated with a variable y; and a sum-of-products (or factored) representation of a function
fi. An arc from node ¢ to node j indicates that y; is used explicitly in the representation of
f;. Figure 2.3 shows a Boolean network for the set of functions f1 =a 40, fo =a+b+c,
and fs3 = a+ b+ ¢+ d. The functions are decomposed into fi = a+ b, fo = fi + ¢, and
f3=f+d

A Boolean network is a gate-level representation of a set of Boolean functions—each
node is a gate, which is allowed to fanout to several other gates. Minimization of a Boolean
network consist of two steps:

e Rearranging the overall structure of the Boolean network. This involves finding

common subexpressions, which are then extracted and added to Boolean network

as separate nodes.

e Minimizing each node of the Boolean network separately.
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a TRUE b

Figure 2.4: Multiply-rooted if-then-else DAG. The three expressions represented
are fi=a+b, fo=a+b+cand fs=a+b+c+d.

The disadvantages of using a Boolean network like the one shown in Figure 2.3 is
that different representations are used for the DAG itself and for the nodes of the DAG.
The Boolean network is a graph structure, whereas the nodes are some representation of
Boolean expressions. Due to this different representation, each node must be labeled with
an intermediate variable y;, which is then used explicitly by other nodes. By using y; in the
representation of f; (node ¢ fans out to node j) rather than the expression that represents
y;, information is lost. The lost information is summarized in the intermediate don’t-care
set, IMpc:

IMpc =Y yi® fi

U
An if-then-else DAG can represent a network of functions directly. Instead of having
one root we allow an if-then-else DAG to be multiply-rooted, where each root represents a
primary output. Figure 2.4 shows an example of a multiply-rooted if-then-else DAG. Notice,
that the representation is the same as in Figure 2.2, and the only extra information that
needs to be kept is a table of pointers to the multiple roots.
Minimization of a multiply-rooted if-then-else DAG usually consists of

e Minimization using local transformations at any level in the DAG.

e Iinding common subexpressions.
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The advantage of if-then-else DAGs is that the universal if-then-else operator is the level
of representation for both a single Boolean expression and a network of Boolean functions.
This means that there is no artificial partitioning into “gates”, and hence the intermediate
don’t-care set is non existent.

Binary decision diagrams can represent network of functions in a manner similar to
if-then-else DAGs, however, since a BDD cannot directly represent all 2-input gates and
selectors, it is less flexible than an if-then-else DAG, and some rearrangements are necessary

when constructing a multiply-rooted BDD.
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3. Logic minimization techniques

We now turn towards solving the objectives of logic minimization. This chapter gives an
overview of previous and current work by other researchers and new work done in connection
with this thesis.

Some of the methods described in this section have been briefly touched upon in preced-
ing sections, but here we will be slightly more detailed. For each method we first describe
its purpose in the context of logic minimization, and we then outline some techniques that
have been used for implementing the method and solving the particular problem.

Before starting out it may be helpful to review the objectives of logic minimization as
they were mentioned in Section 1.3:

Area, minimize the area and cost of the fabricated circuit.
Delay, minimize the critical path delay.

Routability, make routing of the final layout easier.

Testability, make testing of the fabricated circuit easier, and in some cases provide a test
set.

All of the above objectives interact in that it is almost always impossible to find an

implementation of a function that is optimal in all objectives. Optimizing for area is

usually at the cost of increased delay and more difficult routing. Testability can be hard to

preserve when certain powerful transformations, such as the generalized bypass transform

by McGeer [MBSS91], are used.

3.1 Factoring

Factoring is the process of transforming a Boolean expression to a factored form, see
Section 2.2. For example,

G =bdg+bdg+dfg

can be factored to
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G =g(d(f+0b)+¥'d)

In a Boolean network, see Section 2.6, where the underlying representation is sum-of-
products form, factorization is one of the main techniques for minimizing the node functions.
Another important technique used prior to factorization is 2-level logic minization as in
espresso [BHMS84].

In sum-of-products form, factorization of a function usually consists of finding a “factor
candidate” and then “dividing” the function by this candidate. Division is not defined
in a Boolean algebra, since the only operators are the binary + and * (also known as
disjunction and conjunction). However, we can define an operation, which behaves like the
division operation. Given two Boolean functions f and p, division of f by p generates a

quotient q and a remainder r, such that the following equation is satisfied:

f=pg+r.

Obviously such a division operation can not be unique.

The function p is called a Boolean divisor of f, or if f = pq then p is called a Boolean
factor of f. The number of Boolean divisors and factors is clarified by the following
propositions borrowed from [BHS90]:

Proposition 1: A logic function p is a Boolean factor of a logic function f if and only if
fap =0, ve., if [ isin sum-of-products form then every term of f contains p.
Proposition 2: A logic function p is a Boolean divisor of a logic function f if and only if
fp#0, i.e., some term in f must not contain —p.

Any function containing f is a Boolean factor of f. Any function not orthogonal to f is
a Boolean divisor of f. Factorization of f is usually a recursive procedure, where we first
find a factor candidate p, then perform the division to generate ¢ and r, which are then
factored recursively. The factor candidates are sought among the divisors of f, but only a
few of the many divisors are suitable for factorizing f, and the real problem is to determine

these suitable divisors—performing the division is a simple task.
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The first way to restrict the number of divisors is to consider only algebraic divisors.
The function p is an algebraic divisor of f if f = gp + r, where ¢p is non-null and ¢ and p
are orthogonal (support(p)U support(q) = @), so that the multiplication pg can be carried
out without considering Boolean identities and complements (pq is an algebraic product).
Brayton [BHS90] presents an algorithm that performs algebraic division, that is, given f
and p it uniquely determines ¢ and r such that,

® pg is an algebraic product,

e 7 has a few cubes as possible, and

e pg+ 7 and f are the same expression (having the same number of cubes).

This algorithm is know as WEAK_DIV and denoted by the symbol /.

The number of candidate divisors can be further limited by considering only kernels. A
kernel k of an expression f is an expression such that

e k is the quotient of f and a cube ¢, k=f/c (¢ is called the co-kernel),

o k is cubefree, meaning that k does not contain any factors that are simple cubes.

Kernels provide a useful set of divisors to choose from when factoring a function, and

various algorithms for finding kernels are presented in [Bra87b].

3.2 Sub-expression extraction

Consider a Boolean function f represented by the Boolean expression F. Define a sub-

expression of F as an expression &, such that f can be written as
f = QG+ R (3.1)

where () and R are Boolean expressions and () is non-zero. Sometimes G is referred to as
a factor or diwvisor of F and @) is referred to as the quotient of I’ with respect to G.

Given two Boolean expressions F' and G and their associated Boolean functions, a
common sub-expression of F and G is an expression ' such that the functions f and ¢ can

be written as
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f = QC+R (3.2)

g = Q0+ Ry (3.3)

Sub-expression extraction is the problem of finding and extracting common sub-expression
in a network of functions. A new node is created for each common sub-expression and the
node is the made to fan out explicitly to all the expressions that use the common sub-
expression.

The purpose of sub-expression extraction is to maximize sharing in the network of
functions, and thus extracting sub-expressions will tend to reduce the area needed to
implement the functions. Adding nodes to the network will increase the number of levels in
the DAG and maybe increase the number of levels on the critical path, hence sub-expression
extraction may increase the delay. Extracting sub-expression tends to make placement and
routability more difficult since common nodes have multiple fanout and perhaps can’t be
placed close to all fanout nodes at once. Testability can be preserved if all products in the

rewritten expressions (3.1)—(3.3) are limited to be algebraic products [HJKM89].

Types of sub-expressions

In sum-of-products forms, common sub-expressions are sought among the set of cubes
and kernels. Recall that a cube is the either 1, a single literal, or a conjunction of literals.
A kernel of a function f is a cubefree (it contains more than one cube) divisor of f.

In misIll [BRSW8T7a] the common subexpressions are sought in the set of cubes and
kernels, known as common-cube extraction and kernel-intersection extraction. In common-
cube extraction divisors are cube intersections common to two or more expressions. For

example, the functions

fi = abm

fo = abk

have the cube ab in common, and hence both f; and f, are divided by ab to obtain
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i = am
Ja = ok
xr = ab

In kernel-intersection extraction divisors are kernel intersections common to two or more

expressions. For example, the functions

fi = abk+ abl + abm

fo = cdk+ edl+ cdn

have the the cubefree expression k+/in common. This expression, which is the intersection

of the kernels k + !+ m and k + [ + n, is divided into both f; and f, to obtain

fi = abx +abm
fo = cdx+ecdn
z = k+1

3.3 Canonical form, verification and testability

In canonical form the representations of two logically equivalent expressions are identical.

We can distinguish between weak canonical forms, in which logically equivalent expres-
sions have identical structure, but may occur in different locations in memory, and strong
canonical forms, in which expressions in different locations represent different Boolean func-
tions. Strong canonical forms are particularly useful, because they guarantee that any ex-
plicitly represented subexpression is shared by all expressions that need it. Thus one of the
most common tasks of logic minimization, that of finding common subexpressions, can be
achieved in part by converting an expression to strong canonical form. Unfortunately, the
major limitation of canonical forms is that subexpressions are not necessarily explicit, and
one challenge is to come up with a canonical form that is capable of expressing as much

sharing as possible.
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Some representation schemes have more convenient canonical forms than others. The
most inconvenient canonical form is for the sum-of-products and factored form, where all
implicants are reduced! to minterms, that is, the canonical form for a function (f,d,r)
consist of all the minterms covered by the f U d. For example, the canonical form for the

completely specified function f(z,y,z) = 2"y + 2" + zyz is

felz,y,2) = 2'y(z+ )+ (e +2)y+y) +2y2

1ot

= x'yz + x'yz’ + xyz’ + xy’z’ +zyz +ayz

Due to the large number of minterms (up to 2” — 1) the sum-of-products canonical form
quickly becomes impractical, and more recently researchers have adapted the binary decision
diagram representation for verification purposes [MWBS88, MF89].

Binary decision diagrams and if-then-else DAGs have very convenient canonical forms.
Bryant formulated a canonical form for binary decision diagrams [Bry86]. As originally
described, it is a weak canonical form, but adding a permanent symbol table to give unique
ids to each node makes it a strong canonical form. Bryant’s canonical form is obtained
by ordering the set of variables, and constructing the binary decision diagram such that
the variable at each node in the diagram is earlier in the order than the variables of its
children. A second restriction requires that the BDD is reduced, meaning that it contains
no nodes of the form (if 7 then 2 else z), nor does it contain distinct nodes representing
the same Boolean function. The reduced condition ensures that a single binary decision
diagram will be in strong canonical form, but since each expression is handled separately,
two independently built expressions may occupy different memory locations, but be logically
equivalent. The size of a canonical binary decision diagram is very dependent on the variable
ordering and finding the best ordering is a co-NP-complete problem [Bry86]. The binary

decision diagram in Figure 2.1 is in canonical form with respect to the ordering (a,b, ¢, d),

! An implicant is reduced by adding literals to the implicant—this awkward terminology was introduced
in espresso [BHMS84]
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Figure 3.1: Binary decision diagram for abc + —ad + —bd, with respect to the
ordering (¢, d, a,b).
whereas the DAG in Figure 3.1 shows the same function in canonical form with respect to
the ordering (¢, d, a,b).

Karplus [Kar89] formulated a different strong canonical form for if-then-else DAGs.
Conversion to canonical form consist of 7 rules, three of which (the systematic-negation
condition, the no-constant-if condition, and the no-two-constant condition) are usually used
in all representations of if-then-else DAGs, even non-canonical ones, refer to Section 2.4. The
remaining 4 rules are

Variable ordering condition: A total ordering is imposed on the variables, and all the
variables in the if-part must be earlier in the order than all variables in the then- and

else-parts.

A weaker restriction, that the variables of the if-part be disjoint from those of the
then- and else-parts is not enough to make the if-then-else DAG canonical, but is all
that is needed for path-delay-fault testability. This weaker restriction is referred to

as the separate-support condition.

Distinct-cases condition: The then- and else-parts of a node must be distinct Boolean

functions—exactly as in Bryant’s canonical form.
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No-common-cut condition: In the triple (if @ then b else ¢), b and ¢ must not share both
then- and else-parts. If b = (if b, then b, elsec.) and ¢ = (if ¢, then b, else c.),
then the correct representation is (if (if @ then b, else ¢,) then b, else ¢.). If
b = (if b, then b, else b.) and ¢ = (if ¢, then b, else b;), then use (if (if ¢ then b,
else ¢/) then b, else b,).

No-collapsed-cut condition: In the triple (if ¢ then b else ¢), b must not contain ¢ as a
then- or else-part. If b = (if b; then by else ¢) or b = (if by then celse b, ), then the
DAG should be changed to (if (if @ then b; else FaLSE) then b else ¢) or (if (if @ then
by else TRUE) then celse b.). If cis a constant (TRUE or FALSE), then this restriction
amounts to choosing left-associativity for commutative AND or OR operations. The
symmetric test for ¢ = (if ¢; then ¢, else b) or ¢ = (if ¢ then b else ¢, ) is also needed.

The variable ordering and distinct-cases conditions correspond directly to the restrictions
Bryant imposed on BDDs to make them canonical.

As in OBDDs the rule with the most influence on the size of the DAG is the wvariable
ordering condition. The if-then-else DAG in Figure 2.2 is in canonical form with respect to
the ordering (a, b, ¢,d), whereas the DAG in Figure 3.2 shows the same function in canonical
form with respect to the ordering (¢, d, a,b). Note, that Figure 3.2 is in fact an OBDD, since
each if-branch is a single variable. The main difference between Figure 3.1 and Figure 3.2
is that the if-then-else DAG uses systematic negation, which allows an expression and its
negation to be represented by the same subDAG.

Karplus [Kar91b] recently showed that if-then-else DAGs in canonical form are 100%
path-delay fault testable, and hence testable for single and multiple stuck-at faults. By
converting to canonical form and using testability-preserving transformations we can opti-
mize for testability.

In strong canonical form, identical expressions are stored in the same memory location
and hence common subexpressions will be explicitly shared. Unfortunately conversion to
canonical form isn’t guaranteed to give the best decomposition of a set of functions—this

is clearly illustrated by Figure 2.2 and 3.2. Even if the best variable order is found, the size
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Figure 3.2: Canonical if-then-else DAG for abe + —ad 4+ —bd, with respect to the
ordering (¢, d, a,b).
of the canonical DAG may be larger than a corresponding non-canonical DAG.

In both 0BDDs and canonical if-then-else DAGs equivalence checking can be done by a
simple traversal of the pAG (taking O(n) time), or, if in strong canonical form by comparing,
two pointers (O(1)). Because equivalence checking is fast in canonical form, but equivalence
checking in non-canonical form is equivalent to the complement of the NP-complete problem
SATISFIABILITY, refer to Gary and Johnson [GJ79, page 261], we are almost guaranteed that
conversion to canonical form is exponential in the worst case.

The NP completeness result guarantees that some functions will have exponentially
large OBDDs or canonical if-then-else DAGs. Bryant proved that some useful functions (the
middle output of an integer multiplier) have exponentially large 0BDDs for any variable
order [Bry91]. His results apply equally well to if-then-else DAGSs, though there are canonical

if-then-else DAGs with exponentially larger OBDDs.
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4. ITEM

ITEM is our if-then-else minimizer used as an environment for testing various logic
synthesis techniques. ITEM is implemented in c++ and currently consists of approximately
50,000 lines of code. ITEM is an interactive system like the mMisII minimizer [BRSW87a].

Figure 4.1 shows a general overview of ITEM. ITEM constructs its initial multiply-rooted
if-then-else DAG from some network description. Various optimizations are then applied to
the if-then-else DAG to improve area, delay, or testability of the circuit. Once optimized
the circuit is mapped to a target technology. ITEM currently supports mapping to field-
programmable gate-arrays and complex gates. The optimizations and the mapping can be
iterated to improve results. After the final mapping, ITEM can output a netlist in different

formats, which then can be passed to other synthesis tools.

Read BLIF, EQN, PLA

Opti@ Area, Delay, Testability
MD Xilinx, Actel

Write BLIF, EQN, PLA, XNF

Figure 4.1: General outline of ITEM. After reading a description of a network,
various optimizations are applied. The mapping phase supports mapping to field-
programmable gate-arrays and complex gates. Both the mapping phase and the
optimization phase can be iterated to improve results. Finally, ITEM can output a
netlist in different formats, which then can be passed to other synthesis tools.
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4.1 Reading and writing different formats

Most of the standard benchmarks are available in either the Berkeley Logic Interchange
Format (BLIF, for short) or in the Berkeley equation format (EQN, for short). BLIF
is capable of expressing both combinational and sequential logic, whereas EQN can only
express combinational logic.

To allow comparisons with other tools, particularly mMisll, we have chosen to use the
BLIF and EQN file formats as our main interchange formats for both input and output. We
also use other formats as needed (for instance, we can output XNF format after mapping
to Xilinx cells).

The 10 module of ITEM reads a textual file containing a description of a circuit, and
converts to the internal if-then-else DAG format. Because the different formats have dif-
ferent underlying models of the circuits, conversions are more than just a simple textual
substitution. For example, conversion of the sum-of-products format in BLIF to if-then-else

DAGs requires something roughly equivalent to single-cube factoring [Kar89)].

4.2 Optimizations in ITEM

After constructing the initial multiply-rooted if-then-else DAG we apply optimizations to
produce a DAG that meets the requirements we have set forth. Generally the optimizations
are technology independent, but some knowledge of the target technology can be used in
guiding the optimizations in the right direction. For instance, in a technology, where routing
is a problem, it might be beneficial to minimize the number of edges in the DAG. Some
other technologies would perhaps benefit from minimizing the number of nodes in the DAG.
ITEM currently offers the following optimizations:

o Minimizing using local transformations.

o Conversion to canonical form for verification or to create a fully testable circuit.

o Finding shared sub-expressions using local and global techniques.
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Compute a variable order

anonica

Form

Figure 4.2: One view of the optimization phase in ITEM. First some variable order
is computed, then different optimizations are applied. The variable ordering step
can be skipped if the optimization step itself does not rely on variable order. If no
variable is computed the system will use a default order if needed. The highlighted
areas are the subjects of Chapter 5 and Chapter 6 of this thesis.
Figure 4.2 shows one way to organize the optimizations in ITEM. Many of our optimiza-
tions rely on an ordering of the input variables before they can be applied, hence the first
step is to compute a variable order. The various optimizations can be iterated to improve

results. The double circled areas of Figure 4.2 are the original contributions and are the

topics of the remaining chapters in this thesis.

4.2.1 LocalFactor

Our initial work in logic minimization used local transformations applied to all portions
of the DAG, generally in a depth-first traversal from the outputs. We came up with two sets
of transformations: Printform and LocalFactor.

The Printform transformations [Kar89] preserves testability, but are not good at min-
imizing circuit area. The reason they are not good circuit minimizers is that they were
originally designed to minimize the size of printed Boolean expressions, not multi-level cir-

cuits. They attempt to minimize the pcount measure [Kar89], which predicts printing size
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quite well, but which is not a good predictor of circuit area or delay.

The LocalFactor transformations are a rather ad hoc collection of transformations that
do an adequate job of minimizing circuit area [Kar89]. Unfortunately, they do not preserve
path-delay-fault testability. LocalFactor relies on variable order, since one of its most
powerful transformations is conversion to canonical form applied small parts of the DAG.
Unlike conventional sum-of-products minimizers, which minimize the number of literals in
the network, LocalFactor can be used to minimize whatever estimator we have decided best

predicts the property (area or delay) that we are trying to minimize.

4.2.2 Block covering

The local transformation techniques often find interesting ways to rearrange functions,
but the resulting expressions often have common subexpressions that have not been merged.

The block covering! algorithms developed for misII [BRSWS87h, BRSWS87a] are very
effective at finding shared expressions, but are too expensive to apply to entire circuits
(m1sII applies them only at the gate level). We have developed a cheaper variant, two-
column rectangle replacement, which can be applied to Boolean matrices derived from
entire large circuits, and which is quite effective at finding sharing. The heuristics of
the replacement strategy can be tuned to maximize sharing (minimizing circuit area) or
to balance operator trees (minimizing delay) [SK91]. Two-column rectangle replacement
preserves path-delay-fault testability [Kar91b]. Two-column rectangle replacement does not
rely on variable order. Chapter 5 presents the two-column rectangle replacement we have

developed.

4.2.3 Conversion to canonical form

Conversion to canonical form has several advantages. As pointed out in Section 3.3 an
if-then-else DAG in canonical form is 100% path-delay fault testable, and hence testable

for single- and multiple stuck at faults. This means that converting to canonical form can

! Block covering is also referred to as rectangle covering
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be the first step in synthesis for testability, which can then be followed by applying only
testability-preserving transformations. The most effective testability-preserving transfor-
mation available in ITEM appears to be conversion to canonical form with different variable
orderings, optionally followed by two-column rectangle replacement.

Strong canonical form also offers the detection of shared subexpressions, since logically
equivalent expressions are stored in the same memory location. This is exactly what
LocalFactor makes use of when it converts small parts of the DAG to canonical form.

Unfortunately the size of an if-then-else DAG in canonical form is very sensitive to the
variable ordering, and hence finding a good ordering is essential for efficient conversion
to canonical form, and for achieving good minimization. In Chapter 6 we present several

variable ordering heuristics for finding variable orders that result in small canonical forms.

4.3 Mapping

ITEM currently supports mapping to complex gates and field-programmable gate ar-
rays [Kar91ld, Kar9la]. Field-programmable gate array mappers have been developed for
Xilinx-style arrays (Xmap [Kar91d], Xemap and Xtmap [Kar93]) and for Actel-style arrays

(Amap [Kar91a]). Both Amap and Xmap preserve testability.



35

5. Rectangle Replacement

This chapter describes the use of rectangle replacement for multi-level logic minimization
on functions represented as if-then-else DAGs. We define the concept of Boolean matrices,
and give formal definitions of blocks and rectangles and their meanings. We introduce a
new heuristic, two-column rectangle replacement for finding rectangle coverings of Boolean
matrices. This heuristic is particularly well suited for optimizing circuits for area, while
controlling the delay. A slight variation of the heuristic optimizes with respect to delay.
The results of using two-column rectangle replacement on if-then-else DAGs are reported for

several benchmark examples.

5.1 Introduction

This chapter is concerned with factoring and recognizing shared subexpressions in
Boolean functions. We use a technique we call two-column rectangle replacement of Boolean
matrices. Boolean functions are represented as Boolean matrices, and rectangles of these
matrices represent either a factor of a function or a subexpression that can be shared among
several functions. The rectangle replacement problem is a variant of Brayton’s rectangle-
covering problem [Bra87a, BRSW87b]. In both we find sets of rectangles that cover all
the 1’s of the Boolean matrix—rectangle replacement differs from rectangle covering in the
way rectangles are replaced. In Brayton’s rectangle covering, rectangles were replaced in
parallel—the aim was to find a set of rectangles that best covered a Boolean matrix, and
then replace all of these rectangles in one step. In rectangle replacement and two-column
rectangle replacement, we replace rectangles in sequence, that is, we find and replace one
rectangle at a time, until the Boolean matrix is covered. Because the Boolean matrix
changes after each replacement, the solution to the two problems may differ significantly.

We show how to create Boolean matrices from functions represented as if-then-else
DAGs, and we give formal definitions of blocks and their meanings. We introduce a new

heuristic, two-column rectangle replacement, a simple yet eflicient method for optimizing
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multi-level logic. Even though our starting point is if-then-else DAGs, two-column rectangle
replacement does not rely on the if-then-else DAG representation—it could be applied any
time that rectangle covering is useful.

In Section 5.2 we focus on Boolean matrices and blocks and rectangles of Boolean
matrices. We formally define the semantics of blocks and rectangles, and we show how
to replace rectangles of the matrix with simpler rectangles, while maintaining the meaning
of any blocks in the matrix. We finally define the rectangle replacement problem, which
consists of finding and replacing rectangles in the right order.

In Section 5.3, we use two-column rectangle replacement in ITEM. We first show how to
create Boolean matrices from if-then-else DAGs, and then we give an algorithm for solving the
rectangle-replacement problem. This algorithm is based on a heuristic method for selecting
the order of rectangle replacement. Two-column rectangle replacement consists of finding
rectangles with exactly two columns in the matrix. These two columns have associated
Boolean expressions, which will be combined into a new expression using an associative and
commutative logic operator.

Two-column rectangle replacement is well suited for optimizing multi-level logic with
respect to both delay and area. For all the cases we are considering in this chapter, an
expression is created from several other expressions by pairwise combining expressions with
an associative and commutative operator. It has been shown [Kar89] that the height of an
if-then-else DAG is a usable, though not very good, delay estimate for the final circuit. The
easiest way to keep the height under control is to balance the DAG when we are creating it.
Clearly, if we combine the if-then-else DAGs such that low height DAGs gets combined first,
we achieve a form of tree balancing that will keep the delay under control. Thus it is possible
to optimize for delay by replacing two-column rectangles in the order of increasing height.
A similar tree balancing approach named DMIG, has been used in DAGMAP [CCDT92] to
transform an arbitrary Boolean network into a n-input network of minimum height, where
all gates have at most n inputs. ITEM also includes a direct implementation of DMIG and in

the results section we compare two-column rectangle replacement with DMIG. The original
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idea behind DMIG is due to Wang [Wan89], who proposed a timing-driven decomposition
algorithm for timing optimization.
Section 5.4 presents some results of minimizing multi-level logic benchmarks using two-

column rectangle replacement.

Motivation

The original motivation behind two-column rectangle replacement was the need for a
global optimization technique that would merge logically equivalent if-then-else DAGs.

Local factoring techniques can be used to factor if-then-else paGs [Kar89]. If factor-
ing results in two identical if-then-else sub-DAGs they will be merged into a single copy.
Unfortunately local factoring techniques fail to give us the global view needed to identify
that that two expression can be identical even though they are represented differently. For
instance, a 4+ b+ ¢ could be represented as (if (if « then TRUE else b) then TRUE else ¢) or
as (if a then TRUE else (if ¢ then TRUE else b)). If both the representations are used, they
will not be recognized as being the same expressions, unless they happen to be transformed
to a common form. Although we have used canonical forms to merge such common subex-
pressions, the computation of canonical forms is often too expensive, as they will sometimes
be exponentially large, even for some common circuits such as multipliers [Bry91].

In this chapter we explore rectangle replacement, a variant of rectangle covering [Bra87a,
BRSW8T7b], which has been useful for finding common subexpressions in sum-of-products
minimizers, and see how it can be applied to if-then-else DAGs. We use rectangle replacement
primarily to recognize commonality in commutative and associative operations—roughly the

equivalent of the common-cube extraction operation of MisII.

5.2 Blocks and rectangles

The rectangle-covering problem applied to logic synthesis was first presented by Robert
Brayton [Bra87a]. He showed how a set of Boolean functions could be represented as

a Boolean matrix, and that finding “rectangles” of this matrix was the same as finding
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factors of expressions and common subexpressions of a network of functions. In this section
we introduce rectangle replacement, a serialized version of rectangle covering.
We define only the concepts needed to introduce and prove the correctness of our two-

column rectangle replacement algorithm.

5.2.1 Boolean matrices and blocks of Boolean matrices

A Boolean matriz is a two-dimensional matrix representing a logic expression or a
set of logic expressions. Fach row and each column in the matrix is associated with its
own expression. The row expressions are built out of some combination of the column
expressions. For example, if the rows are sum-of-products expressions, then each column
would correspond to a product term (cube) in some row expression. We are not limited to
sum-of-products or product-of-sums representations, but allow arbitrary expressions on the
columns and any associative, commutative operation to combine the column expressions
into rows.

An entry B,. in the Boolean matrix takes the values 1, 0, and d depending on whether
the expression for row r contains column ¢ (1), doesn’t contain it (0), or we don’t care
whether it contains it or not (d).

Consider the functions

fi = a+b+de
fo = b+dete(f+yg)
f3 = cf teyg,

which are all sum-of-products. A Boolean matrix representing these functions is shown in
Figure 5.1—the matrix is referred to as an OR-matrix, since each row is the OR of the
corresponding columns.

We need to be able to talk about parts of the matrix as single entities, and so we define

a block:



OR-matrix a b de c(f+g) cf cg
fi=a+b+de 1 1 1 0 0 0
fo=btdete(f+g) 0 1 1 1 0 0
fs=cf+cy 0 0 0 0 1 1

Figure 5.1: Boolean matrix for the functions fy, fo, and fs. This is an OR-matrix,
in that each row is the OR of the corresponding columns. Note that the columns
are not limited to simple AND-terms.
Definition 4: A block of a Boolean matriz B is any subset R of rows and any subset C' of
columns in B.
The meaning of a row or a block depends on the operation that relates the row and

column expressions in the Boolean matrix.

Definition 5: After setting each don’t-care independently to either 0 or 1, the meaning of a
row in an OR-matrix is the expression obtained by or-ing together all the column expressions
for columns that have a 1 in the row. That is,
meaning_row(r,C', B) = \/ c.
c€C,Bre=1
Definition 6: The meaning of a block in an OR-matriz is the expression obtained by and-
ing together the meanings of each row in the block. The operator should be a true Boolean
operator, so that abab = ab. That 1is,
meaning_block((R,C'), B) = /\ meaning_row(r,C, B) .
reR

The definitions for the meaning of rows and blocks in AND and XOR matrices are
similar—we just change the operators according to Table 5.1. We require that both opera-
tors be commutative and associative, but do not require distributivity.

In order to handle the don’t-cares correctly when we define replacement of blocks, we
need to define acceptable row expressions:
Definition 7: Row r9 is an acceptable replacement for row ry if for every setting sy of the
d’s in 1o there exists a setting s1 of the d’s in rq, such that the meaning of v based on the
setting s1 is the same as the meaning of ro based on the setting so. Note that the rows do

not have to use the same columns.
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XOR-matrix | AND-matrix | OR-matrix
row from columns & N V

block from rows N V A

Table 5.1: Operators for determining the meanings of blocks in Boolean matrices

of different types. Each row expression is the first operator applied to the selected
column expressions. The meaning of entire block is the second operator applied

to the row expressions.

We can similarly define a block to be an acceptable replacement if for every setting of

don’t-cares in the new block, there is a setting of the don’t-cares in the original block that

gives the two blocks the same meaning.

Finally, we need the definition of a rectangle!. In Figure 5.1 the first two rows of the
matrix have two columns that have 1’s in both rows. We call such combinations of rows

and columns a rectangle:

Definition 8: We say that a block (R,C') of a Boolean matriz B is a rectangle if for every
r € R and ¢ € C', we have B,. # 0.

5.2.2 Replacing rectangles in a Boolean matrix

The main operation in rectangle replacement is to add a new column to a matrix
corresponding to some rectangle of the matrix, and to replace 1’s in the original rectangle
with the 1’s in the new column.

The replacement should preserve the meaning of important blocks of the Boolean matrix.
There are two particularly interesting cases: each row represents some function we wish to
compute, or the entire matrix interpreted as a block is the function which we wish to
compute. In this chapter we consider only the first case, which corresponds to common

cube extraction in MIsII.
Lemma 1 (Replacement): A rectangle of a matriz can be replaced by adding a new

column Chew, whose associated expression is the meaning of the rectangle, to the matrizx.

Putting a 1 in Chew n each row contained in the rectangle and changing the 1’s in the

! We prefer the name full block, but for compatibility with Brayton’s work we have used rectangle
throughout this chapter.
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rectangle to d’s, makes any row in the new matrix an acceptable replacement for the same
row in the old matriz.

In fact, the meaning of any block in the old matriz containing all the columns of the
rectangle can be acceptably replaced by the corresponding block with column Clew added in

the new matrix.

The proof follows immediately from the definition of the meaning of a block and the
definition of acceptable replacement, by setting d’s in the rectangle before replacement equal
to 1, and setting other d’s to match the setting in the new block. Note that the lemma is
essentially the correctness proof for MisIl’s cube extraction algorithm.

Note, that Lemma 1 is for the OR-matrix and AND-matrix only. For the XOR-
matrix, we must make sure that each 1 in the matrix is covered an odd number of times.
Alternatively, we can modify the definition of a rectangle, so that it is not allowed to contain
d’s.

Replacing a rectangle in the matrix reduces the number of 1’s in the matrix by an
amount we call the value of a rectangle:

Definition 9: The value of a rectangle is equal to the difference in the number of 1’s in the
matriz before and after replacement of the rectangle. Since the replacement of a rectangle
results in one new column with a 1 for each row of the rectangle, the value of a rectangle is
the same as the number of 1’s in the rectangle minus the number of rows in the rectangle.

As an example, consider the Boolean matrix shown in Figure 5.1. If we replace the
rectangle consisting of the first and second row and the second and third column (value=2),
we end up with the matrix shown in Figure 5.2. Rectangles that span more than one
row and more than one column are particularly useful to replace, as the new column, in
this case b + de, will then be explicitly used as a shared subexpression for the rows of the
rectangle. Note that this technique unfortunately does not recognize the commonality of
c(f+g)and cf + cg. misll finds such commonality using kernel extraction, however, this
is a fairly expensive technique and is only applied to small expressions. We are still looking

for methods to find such common subexpressions at an acceptable cost.
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OR-matrix a b de of+g) cf cg b+de
fi=a+b+de 1 d d 0 0 0 1
fo=bt+de+e(f4+9) |0 d d 1 0 0 1
fa=cf +cg 0 0 0 0 1 1 0

Figure 5.2: Boolean matrix for the functions fy, f3, and fs, after the new column
b + de has replaced the columns b and de.

5.2.3 The rectangle replacement problem

In Section 5.2.2 we saw that a rectangle could be taken out of the Boolean matrix
and replaced by a block consisting of one column representing the meaning of the original
rectangle, and containing the same rows. We define the rectangle-replacement problem to be
the problem of sequentially replacing rectangles of a Boolean matrix until all the rectangles
have value zero or less. This termination condition guarantees that each row has at most one
1 in it, and rows that start out with 1’s end up with exactly one 1. The order in which we
replace rectangles affects the quality of the resulting representation for the functions. The
rectangle-replacement problem is to choose an ordering for the replacement of rectangles
that minimizes the predicted area or delay for the circuit. Solving the rectangle-replacement
problem also solves the rectangle-covering problem as we have covered all the 1’s in the
Boolean matrix.

For the rest of this chapter we will focus on replacement problems in which each row
of the Boolean matrix represents a function we need to compute (the equivalent of misII’s
cube extraction). After solving the rectangle-replacement problem, we replace each row
expression by the column expression for which the row has a 1. A column expression may
contain a row expression as a subexpression, in which further substitution is done. We do
the replacement by a depth-first traversal of the paG from the roots (outputs). Each edge

of the final DAG is traversed only once, and so the replacement is quickly done.

5.3 Two-column rectangle replacement and if-then-else DAGs

In this section we will show how we apply the rectangle-replacement problem to mini-

mization using if-then-else DAGs. The technique that will be described corresponds roughly
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to cube extraction in MislII.

Section 5.3.1 will describe how we create Boolean matrices from multiply-rooted if-then-
else DAGs. Section 5.3.2 will outline our algorithm for solving the rectangle-replacement
problem, and Section 5.3.3 gives our new heuristic for choosing the order of rectangle

replacement.

5.3.1 Creating Boolean matrices from if-then-else DAGs

An if-then-else triple can directly represent five different Boolean operators: NOT, AND,
OR, XOR, and IF. Since we consistently require systematic negation to be satisfied, refer
to Section 2.4, we have eliminated all NOT-triples, and so all triples can be classified into
one of the other four types.

Three of these triples, the AND, OR, and XOR, are associative and commutative, and
consequently can represent the same expression in more than one way. By using De Morgan’s
laws we merge the sets of AND- and OR-expressions, and create two Boolean matrices: the
OR-matrix for the combined AND- and OR-expressions, and the XOR-matrix for XOR-
expressions.

The OR-matrix and the XOR-matrix are built by traversing the if-then-else DAG from
each root and looking for AND-, OR-, and XOR-triples. Whenever we find one, we check
to see if any of the children of the triple (its inputs) are triples of the same type, in which
case we recursively include them in the row expression we are about to create. The inputs
to the expression become columns of the matrix.

For example, in traversing fs of Figure 2.4, we would discover that the triple pointed
to by f5 is also an OR-expression and similarly with fy, thus giving us ¢ + b+ ¢ + d as one
row in matrix.

The routine FindInputs shown in Figure 5.3 is used when finding the inputs of a
commutative triple e. The routine determines the immediate inputs of e (the non-constant
children of e), and recursively finds the inputs of these. The recursion stops when a child-

triple is of different type than its parent. FindInputs has two optional arguments, which can
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FindInputs(e, op, prop, limit)
if (Operator(e) # op)
return {e}
if (Operator(e) = IfOp)
return {e.ie.t,e.e}
if (Property(e,prop) > limit)
return {e}
(i1,i2) < the two inputs to the operator represented by e
return
{FindInputs(i1,op,prop,limit) U FindInputs(i2,op,prop,limit)}

Figure 5.3: FindInputs takes as argument an if-then-else triple e and the operator
op we are finding inputs for. The argument prop represents an integer property
associated with e, which if greater than limit, stops the recursion. Both prop and
limit are optional arguments.
be used to stop the recursive traversal at triples that satisfy some constraint. For example, if
a triple has a high fanout, it may be beneficial to avoid restructuring the triple by changing
its associativity or commutativity, thus we can tell FindInputs to stop recursion at triples
with more than n fanouts. The type of constraint is specified by the argument prop, which

identifies a certain property stored with a triple (like the fanout of a triple). The recursion

stops at triples whos property value exceeds or equals the limit limit.

5.3.2 Rectangle replacement algorithm

After creating a matrix we apply the rectangle replacement algorithm to it. The algo-
rithm replaces rectangles of a Boolean matrix B sequentially by using two sub-procedures:
select_rectangle, which selects a rectangle based on a heuristic method described in

Section 5.3.3,
replace_rectangle, which replaces a rectangle according to the replacement strategy pre-

sented in Section 5.2.2.
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The algorithm itself is fairly simple:
replace_rectangles(B) =
while (3 rectangles with value>0 in B) do

{

rect = select_rectangle( B)
replace_rectangle(rect, B)

}

When the algorithm terminates, each row contains exactly one 1 (a row with n 1’s contains a
rectangle with value n —1). We create a new multiply-rooted if-then-else DAG by traversing
the old one from the roots, replacing each sub-DAG that corresponds to a row with the
column expression for which that row has a 1. We continue the traversal with the children

of the column expression, so that all necessary replacements are done in one traversal.

5.3.3 Selecting rectangles

Selecting rectangles for replacement is the most difficult part of rectangle covering

[Bra87a]. The main step in rectangle replacement is to add a new column to the Boolean
matrix, where the new column is an acceptable replacement for some rectangle of the
matrix. Because the if-then-else DAG representation forces n-ary associative operators to be
represented as binary trees, we create new columns from exactly two existing columns. This
means that we need only look at two-column rectangles, rather than multi-column rectangles
where several columns are combined arbitrarily. The two-column rectangle replacement
heuristic is formulated as follows:
Replacement method 1 (Two-column rectangle replacement): Aslong as there are
rectangles containing exactly 2 columns with value>0, replace the rectangle of greatest value.
If two or more rectangles have the same value, choose the one in which the new column would
have the earliest estimated arrival time.

By considering only two-column rectangles and only one rectangle at a time, we have
reduced the problem of finding rectangles. Also the work associated with finding the
right two-column rectangle is considerably less than that of finding the right multi-column
rectangle (a prime rectangle [Bra87a, BRSW87b]). In a matrix with n columns there are

(g) possible two-column rectangles and 2" possible prime rectangles. Hence, we can afford
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Figure 5.4: Multiply-rooted if-then-else DAG representing the three expressions
fi=a+b, fo=a+b+c,and fs=a+b+c+d.

OR-matrix
f1:a+b
fo=a+b+c
fs=a+b+c+d
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Figure 5.5: Boolean matrix for fy =a+b, fo=a+b+c,and fs=a+b+c+d,
showing overlapping rectangles.
to enumerate all two-column rectangles and choose the best, whereas choosing a prime
rectangle must resort to a limited enumeration.

As was noted in Section 5.2.2, rectangles spanning more than one row are particularly
useful to replace. This is also reflected in the two-column rectangle replacement method,
as we specifically choose the rectangle with the highest value (the value of a two-column
rectangle of all 1’s is equal to the number of rows the rectangle covers). Choosing the two-
column rectangle of highest value for replacement also handles overlapping rectangles. To
see this, consider the matrix show in Figure 5.5 for the multiply-rooted DAG in Figure 5.4.
Replacing the highest valued two-column rectangle results in the matrix shown in Figure 5.6,
where a + b is explicitly used by all rows. Continuing to replace the highest valued two-
column rectangle of Figure 5.6, results in Figure 5.7, and finally, replacing the last two-
column rectangle gives us the matrix shown in Figure 5.8. An if-then-else DAG representation
corresponding to the expressions in the last matrix is shown in Figure 2.4.

The primary goal of two-column rectangle replacement is to optimize with respect to

area, but if two or more rectangles have the same value, we choose the one that will result
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a b ¢ d a+b
fiza+d d d 0 0 1
fo=a+b+c d d 1 0 1
fs=a+b+ect+d||d d 1 1 1

Figure 5.6: Replacing the highest valued two-column rectangle in the matrix of

Figure 5.5.
a b ¢ d a+b (a+b)+c
fi=a+b d d 0 0 1 0
fo=a+b+c d d d 0 d 1
fazat+b+ct+d|d d d 1 d 1

Figure 5.7: Replacing the highest valued two-column rectangle in the matrix of

Figure 5.6.
a b ¢ d a+bdb (a+b)+c d+((a+b)+¢)
fi=a+bd d d 0 0 1 0 0
fo=a+b+c d d d 0 d 1 0
fa=za+b+tct+d|d d d d d d 1

Figure 5.8: Replacing the only remaining rectangle with positive value in the
matrix of Figure 5.7.
in the earliest arrival time of the new column expression. We have previously seen that the
height of a DAG is a usable delay estimate for the final circuit [Kar89], and so we use height
as our arrival time estimator. Using the height of DAGs to break ties results in a primitive

form of tree balancing.

5.3.4 Tree balancing

Tree balancing can be carried a little further than in Section 5.3.3. By changing the
two-column rectangle replacement method only slightly, we can optimize for delay instead

of area:

Replacement method 2 (Two-column rectangle replacement, optimizing for delay):

As long as there are rectangles containing exactly 2 columns with value>0, replace the rect-
angle in which the new column would have the earliest arrival time. If two or more rectangles

result in the same arrival time, choose the one with the greatest value.
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If we use the height of the DAGs as our delay estimate, this replacement method will
balance the DAG. It is possible to use a weighted sum of height and value to sacrifice area

for delay, or delay for area.

5.3.5 Expanding IF-expressions

In our main algorithm for minimizing a multiply-rooted if-then-else DAG, we first apply
rectangle replacement to the XOR-matrix, then we create the OR-matrix and apply rect-
angle replacement to this matrix. In creating the OR-matrix we have found that it exposes
more sharing if we expand IF- and XOR-triples that are inputs to OR- or AND-expressions.
An IF-expression is expanded to either ab+—ac or (a4 c¢)(—a+b) depending on whether it is
input to an OR- or AND-expression. However, if the expressions resulting from the expan-
sion are used only for the original IF- or XOR-triple, we have lost the compact I[F-expression
without gaining more sharing, and we should recover the original IF-expression.

In the matrix, a column expression that is not shared will occur as a column with exactly
one 1 (the column is used in exactly one row—it is an unshared column). If a row r contains
two or more such columns they will form a rectangle rect spanning only the row r. If we
replace rect before we replace other rectangles of perhaps greater value, we can check to see
if any pair of columns in rect form an IF-expression when combined.

If we precede OR-matrix covering by replacing rectangles of unshared columns, we have
an easy way of recovering exactly those IF-expressions and XOR-expressions that were
expanded uselessly. Since no other row expression uses the part of the expanded expression
we are free to change it back to an IF- or XOR-triple.

After replacing rectangles containing unshared columns, we can remove all unshared
columns, since they will never be part of a rectangle again. This removal will result in a
speedup of the rectangle replacement algorithm, since there are fewer columns to consider.
By using the described technique we achieved anywhere from 0% to 80% reduction in the
number of columns over the benchmark examples we ran. The mean reduction in column

count was 36%, which shows that the matrices are generally sparse.
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5.4 Results

In this section we show the results of using two-column rectangle replacement on a set
of examples from the 1989 International Workshop on Logic Synthesis [Lis88].

In Table 5.2 we present the results of applying two-column rectangle replacement to
examples optimized by LocalFactor in 1TEM (refer to Section 4.2.1). The columns headed
with count reports the count of the optimized if-then-else DAG. The count metric is our
technology independent area predictor, corresponding roughly to (number of outputs) +
(number of literals in factored form) - (number of gates) [Kar89]. The columns headed with
height reports the height of the optimized if-then-else DAG. Columns 2 and 3 are the results
of using only LocalFactor. Columns 4 and 5 are the results of using LocalFactor followed
by two-column rectangle replacement optimizing for area. The next two columns are when
using two-column rectangle replacement optimizing for delay as described in Section 5.3.4.
Finally the last two columns reports the result of applying DMIG [CCD'92] to the networks
optimized by LocalFactor. DMIG is a tree-balancing technique that rebalances associative
operators to minimize the height of the network. DMIG is guaranteed to give the smallest
possible height, but while rebalancing the network it completely ignores other properties of
the network, such as keeping area under control.

The results are summarized in Figure 5.9, Figure 5.10, and Figure 5.11. The first figure
compares the circuits produced by two-column rectangle replacement with those produced
by LocalFactor alone. We plot the ratios of the count measure on the z-axis, and the ratio
of the heights on the y-axis. On the average we achieved a 10.2% reduction in count. The
height of the network on the average remained unchanged.

Figure 5.10 compares LocalFactor to two-column rectangle replacement optimizing for
delay. We see that the tree-balancing scheme used by two-column rectangle replacement
actually does well, reducing the height in all but 10 examples where there was no change. On
average the height was reduced by 30%, whereas the count measure varied by £20%—but

the average count didn’t change significantly.
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LocalFactor || LocalFactor || LocalFactor || LocalFactor

TwoColumn || TwoColumn DMIG
area delay

Example [count |height||count|height||count|height||count |height
alu? 404 | 11 402 11 404 | 11 412 11
alu4 764 | 30 737 | 34 792 | 24 935 23
apex6 | 792 | 17 779 | 20 862 | 13 968 13
apex?7 | 245 | 13 243 14 265 | 11 313 11
b9 117 | 10 108 10 112 8 121 8
c8 175 9 164 | 10 166 7 192 7
cc 67 5 64 5 72 5 76 4
cht 184 3 184 3 184 3 184 3
cml38a | 24 5 24 5 25 3 26 3
cmlbla | 35 9 35 10 36 8 36 8
cmlb2a | 22 3 22 3 22 3 22 3
cml162a | 41 7 40 8 42 6 54 6
cml63a | 40 6 39 7 40 6 47 6
cm42a | 28 3 27 3 28 2 30 2
cm8ba | 43 6 43 10 47 6 52 6
cmb 40 9 40 11 41 5 43 5
count 143 | 18 143 18 160 7 242 7
cu 71 7 52 7 57 6 63 6
decod 46 4 42 3 47 3 46 3
example2| 313 | 13 305 | 13 355 8 431 7
f51m 90 6 88 7 90 6 91 6
frgl 235 | 21 216 15 216 | 14 236 14
frg2 1279 15 980 15 || 1244 | 10 1426 9
lal 105 | 12 94 10 102 6 130 6
Idd 121 7 110 8 113 6 128 6
pcle 64 9 64 9 70 6 87 6
pcler8 88 11 88 11 111 7 146 6
pml 59 6 49 6 51 5 65 5
sct 95 10 70 9 74 6 93 6
terml | 231 17 211 | 21 235 | 12 268 12
ttt2 247 7 243 8 245 7 259 7
unreg | 128 3 128 3 128 3 128 3
vda 1321 39 |[|1083] 24 |[1176| 12 1490 | 12
x1 343 | 14 300 14 311 10 361 10
x2 52 7 51 7 53 6 61 5
x3 941 18 864 | 18 908 | 12 976 11
x4 511 11 391 10 463 7 516 7
z4ml 67 7 65 10 65 7 68 7

[TOTAL [9571] 408 [[8588] 410 [[9412] 287 [[10822] 280 |

Table 5.2: The result of two-column rectangle replacement applied to a network
optimized by LocalFactor. The table shows the results of optimizing for area
(minimizing the count metric), and optimizing for delay (minimizing the height
of the paG). The table also shows the result of applying DMIG to the same
starting point as two-column rectangle replacement optimizing. DMIG ensures
minimum height, and hence makes it easy to verify how well two-column rectangle
replacement for delay performed.
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calFactoring (local) and by LocalFactoring plus two-column rectangle replacement
optimizing for delay (tc).
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Figure 5.11: Comparison of the count and height of circuits minimized by DMIG
(dmig) and by LocalFactoring plus two-column rectangle replacement for delay

(tc).

Figure 5.11 compares the circuits produced by two-column rectangle replacement with
those produced by DMIG. We see that two-column rectangle replacement performs remark-
able well. Totally DMIG only decreases the height by 2.5% when compared to two-column
rectangle replacement for delay. For almost all examples DMIG resulted in an increase in
the area estimate—overall DMIG increased count by 13.5%. When compared to LocalFactor

alone DMIG increased the count measure in all but 5 examples.

Expanding if-expressions

An experiment was performed to see the effects of expanding if-triples as described in
Section 5.3.5. We use the same examples as before and show the results in the scatter dia-
gram in Figure 5.12. The diagram compares two-column rectangle replacement optimizing
for area with and without expanding if-expressions. Again we plot the ratios of the count
measure on the z-axis, and the ratio of the heights on the y-axis.

We see that expanding if-expressions generally results in a smaller counts at the expense

of a significant increase in height. Totally the improvement in count was no more than
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Figure 5.12: Comparison of the count and height of circuits minimized by two-
column rectangle replacement with (tce) and without (tc) expanding if-expressions.

2.6%, and one example even resulted in an increase in count.

5.5 Conclusions and future work

We have shown that rectangle replacement can be effectively applied to other repre-
sentations than sum-of-products form, particularly if-then-else DaGs. Qur new heuristic
for solving the rectangle replacement problem appears to be effective in finding common
subexpressions. Two-column rectangle replacement, which was inspired by the structure of
if-then-else DAGs, is particular interesting as it combines finding common subexpressions
with balancing operator trees.

We are still looking for better ways to select rectangles for replacement. When optimizing
for area the optimal replacement may be the one that covers all one’s in the Boolean matrix
with the fewest replacements.

When optimizing for delay we have the problem that the height of the DAG is not a very
good delay estimate, and the heuristic we are using does not always balance the pDaG. This

however, is solved in the current implementation, since we can ask the program to use any
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available cost function as delay estimator. Thus if we have more knowledge of the target
technology, we may decide to use a different delay estimator (like lutheight for FPGA

table-lookup architectures).
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6. Variable ordering

6.1 Introduction

The area of variable ordering is a problem specific to binary decision diagrams and if-
then-else DAGs. As we saw in Section 3.3 the size of an ordered binary decision diagram
(0BDD) or canonical if-then-else DAG is very dependent on the order selected for the input
variables—a bad order may result in exponentially many nodes, whereas a good order may
result in canonical DAG taht is a very small representation of the logic—indeed some of our
best minimization results come from converting to canonical if-then-else DAGs.

In this chapter we investigate techniques for finding variable orders that keep the
canonical DAG as small as possible, or make transformations that depend on variable order
perform better. First some background is given as to what other researchers have done in
the area. The primary focus of this chapter is on two types of heuristics: the traversal-based
heuristics and the split-order heuristics.

Traversal-based heuristics, Section 6.3, all traverse an initial network representation of
the Boolean expressions we wish converted to a canonical DAG. The traversal methods we
have implemented are all depth-first; they differ in the order in which branches are chosen
for traversal and in how multiple variable orders are merged into one total variable order.
In Section 6.3 we present a depth-first ordering algorithm, which generalizes the depth-
first ordering heuristics of Fujita [FFK88], Malik [MWBS88], Karplus [Kar90] and the new
reconvergent ordering heuristics introduced in Section 6.3.3.

The split order heuristics, Section 6.4, are not traversal-based, instead they construct the
total order one variable at a time, where the next variable in the order is chosen among the
remaining variables depending on some cost estimate. After a variable v has been chosen,
each expression e used in estimating its cost is “split” into the two expressions e|, and e|,r,
which will now constitute the expressions we are trying to find a variable order for.

The main emphasis in Section 6.3 and Section 6.4 is more on the heuristics themselves

than on the context in which they are used. In Section 6.5 we finally show how the variable
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order may affect other transformations besides conversion to canonical form.

6.2 Background

Variable order in binary decision diagrams (BDDs) has been an issue ever since Bryant
presented a canonical form for BDDs called ordered binary decision diagrams (0BDDs) [Bry86].
In Chapter 3 both Bryant’s canonical form for BDDs and Karplus’ canonical form for if-then-
else DAGs were presented, and we saw that the one condition that can influences the size of

the canonical DAG is the variable order condition:

Variable order condition for OBDDs: A total order is imposed on the variables, and

the variable at each node in the OBDD is earlier in the order than the variables of its children.

Variable order condition for if-then-else DaGs: A total order is imposed on the
variables, and all the variables in the if-part must be earlier in the order than all variables

in the then- and else-parts.

As was mentioned in Section 3.3, the size of both Bryant’s canonical form and Karplus’
canonical form can be exponential regardless of the variable order. However, in most cases
there exist variable orders that result in polynomial canonical DAGs. Even when exponential
blow-up is avoided, the size of a canonical DAGs remains extremely sensitive to the variable
order. Figure 6.1 is a scatter diagram showing the result of using two random variable orders
on some arbitrarily chosen examples. The plot shows the ratio of the two sizes obtained
when converting each example to a canonical if-then-else DaG. We see that the dots are
scattered around y = 1 with up to a factor of 2 variation in both directions.

If we are using conversion to canonical form as a transformation for reducing size,
it is important that we find the order that results in the smallest canonical DAG. An
optimum order could be found by considering all permutations of the variables, and Nair
& Brand [NB86] present an O(n!2") algorithm that does this for binary decision diagrams.
Their algorithm considers all permutations, but avoids constructing all of the corresponding

binary decision digrams, cutting the running time in half.
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Figure 6.1: The ratio of the sizes of canonical if-then-else DAG when using two
random orders. The x-axis is the size of when using the first random order.

Friedman and Supowit [FS87] later came up with an algorithm that finds the optimal
order with complexity O(n?3"). They developed a dynamic programming algorithm around
the fact that given the optimal order for various sets of k variables (k < n) the search for
the optimal order for sets of k + 1 variables can be restricted to contain only those sets
that were optimal for k variables. That is, if we have 4 sets of k variables such that each
set is optimal (the first k levels of the OBDDs constructed from the 4 sets, contain the least
possible number of nodes), then the search for optimal sets containing k£ 4 1 variables are
limited to only 4(n — k) candidates, namely each of the four optimal k sets with one more
variable appended.

Finding an optimal order is only feasible for functions of up to 10 variables, and so we
must resort to heuristics for finding a good order. Nair & Brand [NB86] presented some
heuristics based on their optimal algorithm, but even then the complexity was exponential in
the number of variables. Their main disadvantage is in the representation of binary decision

diagrams—all of their heuristics and their optimal algorithm use a complete truth table! to

1A complete truth table for a function of n variables contains 2™ entries and can be thought of as a
binary tree with a unique path from the root to a leaf node for every of the 2" input combinations.
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represent the function they are computing an order for. Hence the space complexity gets
out of hand fairly quickly.

Several researchers have presented heuristics for finding variable orders that result in
small oBDDs [FFK88, MWBS88, BRKM91, FFM93]. Here the starting point is a Boolean
network, which is traversed once in a depth- or breadth-first manner to determine a total
order of the variables, which is then used for building the ordered binary decision diagram.
The primary advantage of traversal-based methods is that they are fast. A variable order is
computed during a single traversal of the initial network, and thus the complexity is O(n)
where n is the number of nodes in the network.

Unfortunately, all traversal-based heuristics have one thing in common: no single heuris-
tic is superior. In [BRKM91] various combinations of both breadth- and depth-first heuris-
tics are tried, but one of their conclusions directly contradicts what other researchers have
concluded: they conclude that for depth-first traversals, ordering inputs with least (or
high) fanout first creates only minor differences in ordering results. Fujita [FFK88, FF'M93]
presents a depth-first method that orders high fanout inputs before other inputs.

Still, fast ordering heuristics are sometimes more important than spending a lot of time
finding the best (or near best) variable order. In Section 6.3 we experiment with two types of
depth-first ordering heuristics: one which appends variables to the total order in the order
the variables are visited during the traversal, and a new heuristic which uses a merging
scheme based on reconvergent fanout for merging intersecting variable orders.

Other approaches for finding a good variable order include

e Sorting the input variables depending on whether they are control or data vari-

ables [Bry86]. This method requires knowledge of the circuit function, and so is

not feasible in many applications.

e Simulation-based heuristics [BRKMO91]. Initially all primary inputs are set to unknown
and the state of the circuit is recorded. Next the circuit is simulated by setting each

primary input to 0 first and then to 1, counting the number of changes in the simulated
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circuit. The variable that is most controlling is chosen as the next in the order, and

its value is now fixed to either 0 or 1 while the remaining variables are ordered.

Testability-measure-based heuristics [BRKM91]. Primary inputs are assigned weights

based on their observability and sorted in decreasing order of their weights.

Simulated annealing techniques [MKR92]. Here a heuristically selected order is used
initially, and in one annealing step a variable is moved to a randomly chosen position
at most £5 from its position in the current order. Each time a variable is moved, an
ordered partial decision diagram OPDD [Ros90, MKR92] is constructed to evaluate
the cost of the new order. An OPDD is a sample of the 0BDD for the same order. A
limit is placed on the largest number of nodes allowed in the 0BDD, and if the limit
is exceeded, some nodes become undefined. An OPDD tends to represent the top

portion of the OBDD containing the shortest paths to TRUE and FALSE.

Sifting heuristic [Rud93]. This heuristic is a dynamic ordering technique which is
applied during the construction of an 0BDD. When a certain limit on the number
of nodes in the 0BDD is reached, the variables are sorted according to their number
of occurrences in the 0BDD. Then each variable in turn is sifted down and up in
the oBDD until all positions have been tried, and the best position is chosen for the

particular variable.

Our approach to variable ordering

The variable ordering heuristics we present in this chapter have all been implemented

in our If-Then-Else Minimizer 1TEM. All heuristics fit into a three-step approach, which is

also the main optimization loop in 1ITEM. The three steps (illustrated in Figure 6.2) are

1.

2.

Build an if-then-else DAG from the circuit description or a set of equations.
Construct a variable order by applying the variable-order heuristic to the constructed
DAG or parts of the constructed DAG.

Transform the DAG using the obtained variable order. The transformation can be any

transformation in ITEM that relies on a good variable order.
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Build an initial

if-then-else DAG

Compute a variable order

Figure 6.2: General outline of the optimization loop in ITEM. First we construct
an if-then-else DAG from a circuit description. We then compute a variable order,
and finally apply transformations to the paG. The variable order computation and
the transformations can be iterated to improve results.

The transformation in the third step depends on what objective we are trying to meet.
For verification purposes we would transform the DAG to canonical form, but as we will see
in Section 6.5, other transformations also rely on good variable orders.

Our three-step approach differs from that of other researchers in that we use an if-then-
else DAG as our starting point and that we rely on good variable orders for more than
just transformation to canonical form. Most previous work in finding a good order for the
variables in ordered binary decision diagrams and if-then-else DAGs has used a Boolean
network as starting point. In work done by Malik [MWBSS88] the initial DAG is a Boolean
network, where nodes are in sum-of-products form.

Our heuristics could be equally well applied to Boolean networks using almost any rep-
resentation for the logic—we chose if-then-else DAGs because we had significant investment
in code for manipulating them. One advantage of the if-then-else DAG approach is that we

can iterate the last two steps as illustrated in Figure 6.2 and perhaps get a better order in
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Order(Node node)
if (node is a variable)
return Variable( node)
<dy,ds,---,d,> = Sort(Children(node),property)
01 = Order(dy)
0y = Order(dy)

o, = Order(d,)

return MergeOrders(oq, 09, -+, 0,)

Figure 6.3: General depth-first ordering algorithm.

that way. Iterating in the approach taken by Malik requires a bit more programming effort.

6.3 Depth-first ordering heuristics

Most published work in the area of variable ordering for binary decision diagrams is
based on a depth-first traversal of an initial network, followed by constructing the OBDD.

In this section we consider the depth-first ordering heuristics we have implemented in
ITEM. The heuristics presented here traverse an initial DAG only once, and hence the
complexity of the heuristics are O(n) in the number of nodes.

The second step in our approach to variable ordering, that of constructing a variable
order, can be implemented as shown in Figure 6.3. We refer to the algorithm in Figure 6.3
as our general depth-first ordering algorithm, as it generalizes the depth-first ordering
heuristics of Fujita [FFK88], Malik [MWBS88], Karplus [Kar90], and the other heuristics
presented here.

The algorithm traverses each subnaG (children) of a node (node) in an order determined
by the routine Sort, which returns a sorted list of the subDaGs of node. The list is sorted
according to some property associated with each of the subbDAGs of node. The subDAGs are
then traversed in the order returned by Sort, and the variable orders obtained are finally
merged into a new order.

By changing the property passed to Sort, we can implement several different depth-first

ordering heuristics, differing only in the order in which the branches are traversed.
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If the initial DAG is multiply-rooted, as in Figure 2.4, the output nodes (the roots of the
DAG ) are sorted using the same Sort routine as in Figure 6.3.

The implementation of the algorithm in 1TEM is slightly different from the simplified
version in Figure 6.3 as it ensures that a node in DAG is visited only once, hence making

the algorithm O(n).

6.3.1 Children of a node

In the context of if-then-else DAG we have the option of treating the descendents of a
node n in two ways:
Direct children (DC(n)) are the subbaGs rooted as the if-part, then-part, and else-part
of n.
Commutative children (CC(n)) If n is a commutative operator (Op(n) is one of XOR,

AND, or OR), then the commutative children of n are
CC(n)={s|s € DC(n)ANOp(s) # Op(n)} UCC(s|s € DC(n) AOp(s) = Op(n))

that is, all the inputs to n that are part of the operator n represents.

It should be noted that the formal definition of commutative children corresponds to the
algorithm FindInputs shown in Figure 5.3.
6.3.2 Incremental ordering heuristics

One class of depth-first ordering heuristics use a very simple MergeOrders procedure,
where we first make sure that the subDAG orders do not intersect and then concatenate

them to form a total order. This version of MergeOrders would return the order
01 <(og—01)<--+<(0f —0Op—1—+-+—01). (6.1)

The operator — is left associative in this context, and the result of the subtraction o, —og

is the same order as o, but with the variables of 0 removed.
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With this definition of MergeOrders, we can simplify the ordering procedure. We keep
a mark with each node once it has been visited, and append a variable to the total order if
and only if it has not been marked. The second time we visit a node, we know that all the
descendents of that node have also been visited and that the leaf nodes (variables) therefore
already appear in the total order.

In our implementation of the incremental ordering heuristic we provide as a parameter
the property by which the subbDAcGs of node are sorted, thus giving us as many different
heuristics as we have properties. In Section 6.3.4 we provide results using the following four
incremental ordering heuristics:

Simple Depth heuristic, where the if-part is traversed before the then-part, which is
traversed before the else-part. This heuristic corresponds to the one previously used

by Karplus in 1TEM [Kar90].

Fanout heuristic, where the subpacGs are sorted in order of decreasing fanout. This

heuristic corresponds to the one described by Fujita et al. [FFKS88].

Height heuristic, where the subbpaas are sorted in order of decreasing height. This

heuristic corresponds to a heuristic described by Malik et al. [MWBSS88].

Count heuristic, where the subDAGs are sorted in order of decreasing count. Count is our
technology-independent area estimate, corresponding roughly to (number of outputs)

+ (number of literals in factored form) - (number of gates) [Kar89].

Simple depth heuristic

The simple depth ordering heuristic is the simplest incremental heuristic: it traverses
the pDAG by first traversing the if-part followed by the then-part and finally the else-part.
This heuristic is only applicable to if-then-else DAGs and binary decision diagrams. It is
easy to see that if applied to a canonical DAG the heuristic will produce the same order as

the one used to create the canonical DAG.
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The very simple heuristic is particularly effective because of the way ITEM constructs the
initial multiply-rooted if-then-else DAG from a circuit description [Kar89]. When construct-
ing an if-then-else DAG from a set of terms (a sum-of-products expression) the terms are
factored using a technique similar to simple literal factoring [Bra87a]. This technique will
move variables appearing in many terms into if-parts of an if-then-else triple. For example,
in constructing an if-then-else DAG F for a set of terms T', the first variable vy is factored
out by grouping together those terms that don’t use vy (1), those that use -vy (7p), and
those that use vy (7T1). Then vy is stripped off the terms of each group and the routine
is applied recursively to get the three expressions F4, Fg, and Fy. The expression F is
constructed as (if (if v then F; else Ey) then TRUE else Fy).

When using the simple depth heuristic on a DAG constructed in this way, vy will be
ordered before the variables in Fy and Fy, thus we may be able to preserve the factorization

in the canonical form.

Fanout heuristic

Fujita et al. [FFK88] used a simple incremental depth-first heuristic to determine the
variable order. Their starting point was a Boolean network, where the input nets of a node
were traversed in order of decreasing fanout.

Fujita et al. justified their heuristic with a theorem, which assures that whenever a
network is composed of only AND, OR, and NOT gates and has only one input or gate
with a fanout of more than one, then the best order is acquired by a depth-first traversal
of the network, but a sub-net with a fanout of more than one should be traversed first.

This theorem is easily related to cube- and kernel factorization of sum-of-products
expressions [Bra87a]. If a cube or kernel appears in more than one term the expression
can be factored by using the cube as the factor. That is, the expression abc + (ab)'d can
be factored into zc + 2'd with z = ab, and in an if-then-else DAG this factorization can
be directly represented as (if (if a then b else FALSE) then ¢ else d), which is in canonical

form.
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The main problem is of course that a network rarely satisfies the requirement of a fanout
of one for all but one of its nodes, and Fujita used a generalized version of the theorem
where the requirement is dropped.

We have implemented a fanout heuristic similar to the heuristic used by Fujita et
al. [FFK88], except that the starting point is an if-then-else DAG. It makes a depth-first

traversal of the DAG traversing the subDAGs of a node in order of decreasing fanout.

Height heuristic

Malik et al. [MWBS88] used a strategy similar to Fujita, but they argued that the
inputs of a node should be traversed in order of decreasing transitive fanin DAG height. The
transitive fanin DAG of a node n consists of n, all the transitive fanins of n (nodes that can
be reached through some path from n), and the edges between these nodes. The height of
a transitive fanin DAG is the maximum distance from any of its nodes to a primary input.

Malik justified their heuristic intuitively by pointing out a similarity between the inter-
mediate nodes in a Boolean network and the nodes in an 0BDD. At a given level in an OBDD
the nodes encode information about the variables seen so far. The intermediate nodes are
used in subsequent levels to compute the value of the function. In the Boolean network the
function of a node n is encoded by the means of the transitive fanin DAGs, suggesting a
depth-first traversal of each input DAG of node n in order to compute them before the node
n. The order in which to traverse the input DAGs should be in decreasing order of height,
thus computing the most compute-intensive nodes first. Berman [Ber91] later related the
order of traversal in Malik’s heuristic to the problem of register allocation, saying that the
height of a fanin DAG can be taken as a rough estimate to the number of registers required
to evaluate the function represented by the fanin DAG. Again this is intuitively clear—at
any given level in an OBDD the nodes correspond to the amount of information we need in
order to compute the rest of the function. Thus if we compute the most difficult subDAG
s first (requiring k registers) and if none of the variables in s are used in other subpaGs

then after computing s we only need one register to hold the value of s thus freeing k — 1
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registers to compute the less difficult subbpaas.

The height heuristic we have implemented is similar to the heuristic used by Malik et

al. It traverses the subDAGs of a node in order of decreasing height.

Count heuristic

The count heuristic is a slightly modified version of the height heuristic. Instead of
traversing the subDAGs in order of decreasing height, it traverses in order of decreasing
count, where count is our technology-independent area estimate. The use of count to
sort the subDAGs is inspired by Berman’s paper of relating ordering heuristics to register
allocation [Ber91]. Berman states that Malik’s height heuristic is an approximation to
the optimal register allocation technique as described in [SU70]. By choosing the highest
subDAG first Malik et al. has achieved a rough estimate of the number of registers required
to evaluate the logic.

Intuitively we thought that the area estimate of a subDAG would be a better measure

for the number of registers, and thus came up with the count heuristic.

6.3.3 Reconvergent ordering heuristics

Another class of depth-first ordering heuristics generalized by the general ordering
algorithm in Figure 6.3 is the reconvergent ordering heuristics. This class of heuristics
was introduced in [SK93]. In the reconvergent ordering heuristics the subbaG orders are
not made disjoint before merging, and therefore MergeOrders must resolve inconsistencies.

In Figure 6.4 we show how we resolve inconsistencies when merging three intersecting
orders (the merging can be generalized to n orders). The variable orders o;,09,05 are
obtained from traversing the subDAGs returned by Sort in Figure 6.3. Intersecting variables
are ordered according to the order of the lowest numbered subDAG order, that is, the
variables intersecting all three orders will appear first in the merged order, and they will

appear in the same order as in oy.
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Figure 6.4: Merging of the orders for the three subbAGs of an if-then-else node
in reconvergent ordering heuristics. The numbers indicate the order the variables
will have in the merged order.

The merging in the reconvergent ordering heuristics makes shared variables come before
other non-shared variables in the total order. Having shared variables early in the order
increases the likelihood that these variables will appear in an if-part in the canonical form,
rather than duplicated in the then- and else-parts. For example, consider the expression
abc 4 d(a’ +b') represented as shown in Figure 6.5 (a). After traversing the subnaGs of the
root node we may have obtained the order b < ¢ < @ for the if-part and d < a < b
for the else-part. When merging these two orders we would obtain the final variable
order b < a < ¢ < d and in canonical form this would result in the representation (if
(if bthen a else FALSE) then ¢ else d) shown in Figure 6.5 (b), thus moving the shared
variables to the if-part and achieving the desired factorization.

It is easy to verify that none of the incremental ordering heuristics would have obtained
the best order with a starting point as shown in Figure 6.5 (a).

One can think of variations to the merging strategy, which would make just as much
sense as the one depicted in Figure 6.4:

e Count the number of subDAGs each variable occurs in. Then order the most frequently

occurring variables first, while matching the order they have in the lowest numbered
subDAG.

We have experimented with variants of the merging strategy, but none were found to
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TRUE
b FALSE d TRUE c d
c a FALSE « FALSE b a FALSE

(a) (b)

Figure 6.5: (a) Anif-then-else DAG representation for the expression abe+d(a’+0').
When traversing the if-part of the root node we get the order b < ¢ < a, for the
else-part we get the order d < @ < b. Reconvergent merging results in the order
b<a<c<dand (b)shows the same expression in canonical form with respect
to this order.

be superior. As will become clear from the result section, all of the depth-first ordering
heuristics have the same problem: none of them are universally superior. It is possible to
come up of with an unlimited number of variations each of which will perform excellent on
a few examples, but very poorly on other examples.

In the result section, the merging strategy shown in Figure 6.4 is the one used.

The reconvergent ordering heuristics are easily related to the fanout heuristic (Sec-
tion 6.3.2), where the subDAGs are visited in order of decreasing fanout. Since a subbaG
with a fanout of more than one is a shared subpaG, the variables of the shared subpAG
will come before the variables of the other subbAGs in the total order. The reconvergent
ordering heuristics do not rely on the fanout to detect shared variables—they always detect
shared variables and order them before other variables. The relation to the incremental
height, count, and simple depth heuristic is not that obvious.

In the result section we use the reconvergent ordering heuristics corresponding to all the
incremental heuristics, that is, we sort the subDaGs using the same cost functions. This
gives us:

Reconvergent Simple Depth, where the subnDaGs are just the if-, then-, and else-part.

Reconvergent Fanout, where the subDAGs are sorted in order of decreasing fanout.
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Reconvergent Height, where the subnaGs are sorted in order of decreasing height.
Reconvergent Count, where the subbDAGs are sorted in order of decreasing count.
Again, since the cost function is just passed as an argument to the ordering heuristic, we

are not limited to only these four variations of the reconvergent ordering heuristics.

6.3.4 Results

In this section we present results of applying the depth-first ordering heuristics to exam-
ples from the benchmark set for the 1989 International Workshop on Logic Synthesis [Lis88].
We provide results both for canonical if-then-else DAGs and ordered binary decision dia-
grams.

For all examples, our primary goal is to compute a single variable order that works well
for all the primary outputs of the network. To do this, we pass all output expressions to
the ordering heuristic at once and then convert all the outputs to canonical form using the
order returned by the heuristic.

The numbers reported in the tables are nodes in the canonical representation. For
canonical if-then-else DAGs we use size, which counts the number of if-then-else triples
plus distinct variables in the DAG. For ordered binary decision diagrams we use siscount,
which produces the same counts as _bdd_sizein sis, that is, it counts the number of different
nodes in the oBDD. It should be noted that size can be applied to non-canonical if-then-
else DAGs without changing its definition. Similarly, siscount can be applied to unordered
binary decision diagrams without changing its definition.

We first compare the heuristics on a set of small examples. Table 6.1 shows the number
of nodes (using size) and the height for canonical if-then-else DAGs. In Table 6.2 we report
the same measures (using siscount) when converting to ordered binary decision diagrams.
In both tables the first column is the name of the example, the next four columns are
the 4 incremental depth-first ordering heuristics. Column five through eight are the four
reconvergent depth-first ordering heuristics. The column label sis is the result of running

the same examples through sis using the command _bdd_create -o dfs. We modified sis
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to report the variable order it computed, and then used this order in ITEM. Finally, the
column labeled best is the best (smallest number of nodes) of all the previous columns.

From the tables we see that the most significant difference between canonical if-then-else
DAGs and ordered binary decision diagrams is the height, where canonical if-then-else DAGs
are on the average 15% lower than oBDDs. In verification the height is not important, but
in logic minimization the height is a reasonable estimate for delay, and here if-then-else
DAGs have a clear advantages over binary decision diagrams.

From the results we can see that the reconvergent count heuristic is the best overall
depth-first heuristic. In general the reconvergent ordering heuristics are superior to their
incremental counterparts. The reconvergent count heuristic is on the average 11% better
than the best incremental ordering heuristic.

The bad performance of the incremental height heuristic is due to one example, frgil,
where it is approximately 40 times worse than the best. This illustrates that generally no
single traversal-based heuristic is particular efficient, and trying combinations of several will
almost always improve the results [BRKM91].

In Table 6.3 and Table 6.4 we compare the depth-first ordering heuristics on examples
from the ISCAS benchmarks for testing [Lis88]. The results here are much more mixed and
for several of the examples we ran out of memory (entries marked with oom) when converting
to canonical form. It is interesting to observe that the difference in size and in height between
0BDDs and canonical if-then-else DAGs is much less significant for these examples. In fact
there are several orderings for which the OBDD is less than the corresponding canonical
if-then-else DAG for the same ordering.

In Table 6.5 and Table 6.6 we summarize the results of Table 6.1 and Table 6.2. We
compare the totals and extract how many times a given heuristic finds a best depth-first
order. A best depth-first order is an order that results in the canonical if-then-else DAG sizes
shown as bestin Table 6.1 and 6.2. The row Total is copied directly from the corresponding
table, and shows the sum of the nodes over all the examples for the given depth-first

heuristic, when converting to canonical from. The rows Best found indicates how many
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Canonical If-Then-Else DAGs

Incremental Reconvergent

Example |Simple |Fanout |Height |Count |Simple |Fanout |Height |Count |sis best

alu2  [153:9 [181:9 |220:9 |[175:9 [152:9 |[181:9 |165:9 [165:9 [257:9 |[[152:9
alud  |464:12 |356:12 |472:13 |347:13 |302:11 |356:12 |687:13 [465:13 |1197:13||302:11
apex6 |(838:18 |693:19 (970:12 |1435:17|831:18 |689:19 |1135:16{1120:16|1031:14||689:19
apex7 |(246:12 |345:12 (265:12 |245:10 |241:12 |347:12 |393:17 |238:17 |473:15 ||238:17
b9 169:10 (168:9 (174:9 |186:10 |165:10 |173:9 |168:9 |164:9 |178:10 |{164:9

c8 165:10 (153:10 (120:9 (120:8 |199:10 |213:10 |102:9 |102:9 |121:8 |{102:9

ce 68:5 87:6 64:5 63:5 68:5 87:6 64:5 63:5 60:4 60:4

cht 137:4  (137:4 |145:5 (140:4 |133:4 |127:4 |145:5 |141:4 |135:4 |[127:4
cml138a |42:5 42:5 22:5 22:5 42:5 42:5 22:5 22:5 22:5 22:5
cmlbla |42:7 31:7 31:7 31:7 28:5 28:5 28:5 28:5 427 28:5

cmlb2a |18:3 18:3  [36:5 36:5 18:3 18:3  |26:4 26:4 26:4 18:3
cml162a |61:7 51:7 43:7  |43:7  |56:7 44:6 43:7  144:6 64:8 43:7
cml63a |48:5 40:7  |45:6 45:6 49:5 40:7  |45:6 40:7  |46:5 40:7
cmd2a (26:3 24:3 22:5 22:5 26:3 24:3 22:5 22:5 22:5 22:3
cm8da [45:9 45:9 479 49:9 45:9 45:9 1479 479 48:9 459

cmb  [47:11 |47:11  |46:11 |49:11 |47:11 |[47:11 |46:11 |49:11 |49:11 ||46:11
count |141:17 |98:18 |131:18 [131:18 [141:17 [98:18 |131:18 |131:18 |132:17 ||98:18
cu 48:7  |48:7 |70 \T1:T 0 148:7  |48:7  |h9:8 55:8 70:9 48:7
decod |49:4 49:4 35:/ 35:/ 49:4 49:4 35:/ 35:/ 35:/ 35:4
example2|364:13 [368:12 [386:12 |334:12 |364:13 |344:12 |368:12 |390:10 [364:12 ||334:12

f5Im |57:7  |67:7 72:7 72:7 57:7  |69:7 72:7 72:7 66:7 57:7
frgl [269:22 |264:22 [5576:21|941:20 |178:19 [178:19 |146:19 |144:19 |227:18 |[144:19
frg2  2244:19(3126:18|1038:17|941:15 |2245:19|3114:18|982:14 |937:14 |862:153 ||862:13
lal 112:11 |101:10 {103:11 (103:11 |112:11 |105:10 |103:11 |103:11 |116:10 |{101:10
ldd 76:6 76:6 96:8 96:8 76:6 76:6  |80:7 80:7 76:6 76:6

pcle |82:10 (82:10 |76:10 |76:10 |82:10 |82:10 |66:10 |66:10 |73:10 ||66:10
pcler8 |134:10 |140:10 |143:10 |143:10 |134:10 |140:10 |127:11 |127:11 |113:10 ||113:10
pml [59:7 59:7 71:8 58:7 59:7 59:7 71:8 61:8 o717 57:7

sct 135:10 {119:10 |79:6 79:6 131:10 |119:10 |79:6 79:6 119:8 ||79:6
tcon |41:2 41:2 27:2 27:2 41:2 41:2 27:2 27:2 25:1 25:1

terml (248:13 |245:13 |301:14 |300:14 |245:13 (245:13 |209:14 |209:14 |376:14 |/209:14
662 (179:12 |155:11 |171:11 |171:9 |176:11 (149:10 |168:11 |163:9 |165:11 ||149:10

unreg [99:3 87:4 1354 |135:4 199:3 87:4 1354 |135:4 |138:4 ||87:4
vda  [1291:13|563:11 |541:12 |541:12 |1291:13]563:11 [585:12 [585:12 |570:11 |[5h41:12
x1 828:19 |734:19 |931:20 (977:22 |816:19 |726:19 |926:20 [958:21 [1072:19|726:19

X2 49:6 49:6 47:6 45:6 49:6 49:6 46:6 45:6 44:6 44:6

x3 938:18 |855:18 952:17 |1133:18(929:18 |847:18 |1354:19|1174:18]|1314:13|847:18

x4 407:9 |1396:9 |410:12 |413:9 |398:9 |396:9 |404:11 |429:9 |423:13 |{396:9
z4dml  |32:6 32:6 41:6 31:6 41:6 41:6 41:6 27:6 426 27:6

Nodes (10451 |10172 (14161 (9861 |10163 (10086 (9352 |8768 |10250 ||7219

Height |374 373 373 366 367 366 373 366 358 360

Table 6.1: The columns headed with name of heuristics report the total number of
nodes and height after converting all the primary outputs to canonical if-then-else
DAGs. The two last rows report the total number of nodes and the total height
over all examples. We used the cost function size to count the number of nodes
in an if-then-else DAG. For each example we use italics to indicate which heuristics
found the best variable order.
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Ordered Binary Decision Diagrams

Incremental Reconvergent
Example |Simple [Fanout |Height |Count |Simple |Fanout [Height |[Count |sIs best
alu2  [176:9 [180:9 [215:9 |18R8:9 [177:9 |180:9 [180:9 |180:9 [250:9 ||176:9
alud  [499:13 |446:13 |555:13 |505:13 |466:13 [446:13 |734:13 |547:13 |1168:13|[446:13
apex6 [1000:19|888:19 [1066:19(1744:19/991:19 |886:19 (1295:19|1350:19|1346:19||886:19
apex7 |[483:18 |596:18 [4553:18 |502:20 |484:18 |597:18 [551:18 |H37:19 |667:18 |[453:18
b9 185:13 (210:12 [182:12 (192:12 |180:12 |219:12 |177:12 |184:12 |214:12 ||177:12
c8 207:12 |225:12 |150:12 |140:12 |219:11 |236:11 |98:9 113:9  [144:12 ||98:9
cce 82:5 96:6 78:5 79:5 82:5 96:6 78:5 79:5 78:5 78:5
cht 138:4  |138:4 [145:5 (139:4 |134:4 |131:4 |145:5 |140:4 |135:4 |[131:4
cml138a (19:5 19:5  |39:5 39:5 19:5 19:5  139:5 39:5 39:5 19:5
cmlbla |32:7 23:7 25:7 25:7 22:5 22:5 22:5 22:5 1327 22:5
cmlb2a |17:3 17:3  |26:5 26:5 17:3 17:3 18:4 18:4 18:4 17:3
cml62a |65:9 55:9 45:9 45:9  163:9 51:9 45:9  |51:9 60:9 45:9
cml63a |H2:7 41:7  |46:8 46:8 49:7 41:7  |46:8 41:7 47T 41:7
cmd2a (21:5 21:5 23:3 23:3 21:5 21:5 25:3 25:3 23:3 21:3
cm8ba (40:9 40:9 42:9 42:9 40:9 40:9 42:9 42:9 42:9 40:9
cmb (37:11 |37:11 |\37:11 |37:11 |37:11 |37:11 |37:11 |87:11 |37:11 ||37:11
count |233:18 [202:18 |234:19 |234:19 |233:18 (202:18 |234:19 |234:19 [235:18 (|202:18
cu 64:9 64:9 51:10  |41:10 |63:9 64:9 56:9 50:9 68:9 41:10
decod |[33:4 33:/ 39:4 39:4 33:/ 33:/ 39:4 39:4 39:4 33:4
example2|h65:13 (514:13 |746:14 |636:13 |568:13 |531:13 |772:13 |770:13 |754:13 ||514:13
f5Im |48:7  |69:7 75:7 75:7 53:7 70:7 75:7 75:7 67:7 48:7
frgl  |504:23 [504:23 |5540:24(946:24 |168:22 |168:22 [130:22 [128:22 |186:23 ||128:22
frg2  |3786:21|5055:19|2440:20(2457:20(3787:21|5073:19|2680:20|2448:20|2103:20(|12103:20
lal 104:12 (102:12 [105:12 (105:12 |104:12 |105:12 [105:12 |105:12 |101:12 |[101:12
ldd  |81:7 81:7 86:8 86:8 81:7 81:7 74:7 74:7  |81:7 747
pcle |101:10 (64:10 196:11 |96:11 |101:10 |64:10 |71:10 |71:10 [96:10 ||54:10
pcler8 |189:11 [154:11 |155:11 |155:11 |189:11 |154:11 |135:11 [133:11 |141:11 ||133:11
pml |[53:8 53:8 56:8 51:8 53:8 53:8 56:8 49:8  |59:8 49:8
sct 142:13 (142:12 |75:12 |75:12 |139:13 |142:12 |75:12 |75:12 |103:12 ||75:12
tcon |42:2 42:2 27:2 27:2 42:2 42:2 27:2 27:2 26:1 26:1
term1 [487:19 [487:19 [386:19 [391:19 [415:19 (415:19 |210:19 [208:19 |616:19 |(|208:19
162 199:13 |175:13 |213:13 |189:13 [206:13 [183:13 |215:13 [157:15 {175:13 ||157:13
unreg |99:3 86:4 135:4  |135:4 |99:3 86:4 135:4 |135:4 |136:5 |[86:4
vda  [1256:13|528:12 |522:12 |522:12 |1256:13|528:12 |555:12 |555:12 |533:12 |[522:12
x1 1089:22(941:22 {1084:22(1045:22|{1106:22(935:22 (1080:22|1071:22|1165:22|{935:22
x2 41:6  |43:6 44:7 41:6  |41:6 |43:6 45:6 41:6  |43:6 41:6
x3 1112:19(1062:19(1019:19|11226:21{1100:19{1052:19|1577:19|1099:19|1492:21({1019:19
x4 908:14 |900:14 |608:14 |755:14 |900:14 |900:14 |603:14 |767:14 |596:14 (|596:14
z4dml  |46:6 46:6 39:6 38:6 39:6 39:6 39:6 36:6  |38:6 36:6
Nodes |14235 14369 (16902 [13137 [13777 |13992 |12518 |11752 |[13153 ||9868
Height |420 417 428 429 415 413 415 414 420 411

Table 6.2: The columns headed with name of heuristics report the total number
of nodes and height after converting all the primary outputs to ordered binary
decision diagrams. The two last rows report the total number of nodes and the
total height over all examples. We used the cost function siscount to count the
number of nodes in an 0BDD. For each example we use italics to indicate which
heuristics found the best variable order.
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Canonical If-Then-Else DAGs
Incremental Reconvergent
Example| Simple | Fanout | Height | Count | Simple | Fanout | Height | Count SIS best
C432 [29069:35(26686:35|31870:35|31870:35(|29069:35(26686:35|31864:35|31864:35|29069:35|(26686:35
C499 |53889:40|53657:40|40733:40(40733:40|51585:40|51353:40(62273:40|62273:40(43458:40((40733:40
C880 oom oom 5124:33 | 4953:34 oom oom TT08:37 | 8462:37 | 4477:33 || 4477:33
C1355 | 53889:4 | 53657:4 |40733:40(40733:40|51585:40(51353:40|62273:40|62273:40(43458:40((40733:40
C1908 [18331:30(18353:30|18684:30|15806:30|16693:30(17439:30|18829:30(12782:30(12825:30((12782:30

C2670 oom oom oom oom oom oom oom oom oom —
C3540 oom oom oom oom oom oom oom oom oom —
C5315 oom oom 29810:53 oom oom oom oom oom 22692:50(|22692:50

Table 6.3: The columns headed with name of heuristics report the total number of
nodes and height after converting all the primary outputs to canonical if-then-else
DAGs. The two last rows report the total number of nodes and the total height
over all examples. We used the cost function size to count the number of nodes
in an if-then-else DAG. For each example we use italics to indicate which heuristics
found the best variable order.

Ordered Binary Decision Diagrams
Incremental Reconvergent

Example| Simple | Fanout | Height | Count | Simple | Fanout | Height | Count SIS best
C432 [31179:35|29866:85(32279:35(32279:35|31179:35|29866:85(32273:35|32273:35|31179:35((29866:35
C499 |53867:40|53635:40(40659:40(40659:40|51563:40|51331:40(61511:40{61511:40|44299:40(|40659:40
C880 oom oom 6845:41 | 6863:41 oom oom 9635:40 | 9643:40 | 7724:41 || 6845:41
C1355 |53867:40|53635:40(40659:40(40659:40(51563:40|51331:40(61511:40{61511:40|44299:40|{40659:40
C1908 [17759:30/19403:30(19499:30(16787:30(16628:30|18760:30(19609:30|12203:30|12713:30({12203:30

C2670 oom oom oom oom oom oom oom oom oom
C3540 oom oom oom oom oom oom oom oom oom —
C5315 oom oom 36151:53 oom oom oom oom oom 26066:53(|126066:53

Table 6.4: The columns headed with name of heuristics report the total number
of nodes and height after converting all the primary outputs to ordered binary
decision diagrams. The two last rows report the total number of nodes and the
total height over all examples. We used the cost function siscount to count the
number of nodes in an 0BDD. For each example we use italics to indicate which
heuristics found the best variable order.

times a given heuristic and class of heuristic finds a best depth-first order.

Among the depth-first ordering heuristics the reconvergent merging strategy is superior
to the incremental merging strategy finding a best order in 30 versus 18 examples when
converting to canonical if-then-else DAGs and 28 versus 22 when converting to OBDDs.
Reconvergent count appears to give the best overall result, but otherwise no one depth-
first heuristic appears to be significantly better than another. The large total size for

incremental height is due to one bad order.

The results presented in this section show that none of the depth-first heuristics described
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Canonical If-Then-Else DAGs
Class Incremental Reconvergent
Heuristic||Simple|Fanout|{Height|Count||Simple| Fanout|Height|Count|| sIs
Total Nodes|| 10541 | 10172 | 14161 | 9861 || 10163 | 10086 | 9352 | 8768 ||10250
Best found|| 5 9 7 7 108 14 10 13 10
Best found 18 30

Table 6.5:  This table compares depth-first heuristics only. Simple is short for
Simple Depth, refer to Section 6.3. For each depth-first heuristic the table shows
total size when converting to canonical if-then-else DAG over all 39 examples we
used. Best found indicates the number of examples for which a given heuristic and
class of heuristic finds a depth-first order that results in canonical if-then-else DAG
sizes as reported under best in Table 6.1.

Ordered Binary Decision Diagrams

Class Incremental Reconvergent
Heuristic||Simple|Fanout|{Height|Count||Simple| Fanout|Height|Count|| sIs

Total Nodes|| 14235 | 14369 | 16902 | 13137 || 13777 | 13992 | 12518 | 11752{[13153
Best found|| 9 11 7 6 6 8 14 9 12 6

Best found 22 28

Table 6.6: Same as Table 6.5 except that we here compare OBDDs.

here work well as a general ordering heuristic. All the heuristics are far from obtaining the
best total, and all fail badly on a few examples. For reasonable sized examples it may be

worthwhile to try a number of different heuristics and pick the best result as we have done.

6.4 SplitOrder heuristic

We now turn to the SplitOrder heuristic, which is especially well suited for finding
good variable orders for ordered binary decision diagrams. Unlike the depth-first ordering
heuristics, SplitOrder is not traversal-based—instead it constructs an OBDD top-down one
level at a time.

Even though the heuristic is targeted towards finding good orders for 0BDDs we found
that a good order for an OBDD is rarely a bad order for an if-then-else DAG. We compare
SplitOrder to several depth-first ordering heuristics and show that when converting to OBDDs

SplitOrder averages 25% fewer nodes than taking the best of 8 depth-first techniques (36%
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SplitOrder( exprSet,support,order)
if (support is empty) return
best_exprSet =
best_variable = 0
foreach v € support
E =10
foreach e € exprSet
E'= E" U{e|y, €|}
if (Cost(E’) < Cost(best_exprSet))
best_exprSet = E’
best_variable = v
support = support —{best_variable}
append best_variable to the end of order
SplitOrder( best_exprSet,support,order)

Figure 6.6: Split order algorithm. The argument exprSet is the set of expressions

to find a variable order for. Initially this is the set of expressions we want to

transform using a variable-order-dependent transformation. The argument support

is the set of variables still to order. Initially this set contains the primary inputs

of the expressions in exprSet. The argument order is the accumulated total order.
better than the best single depth-first technique). We do not see the same size reduction
when converting to canonical if-then-else DAGs.

The split order heuristic constructs the total order one variable at a time, where the
next variable in the order is chosen among the remaining variables depending on some cost
estimate. The cost of a variable » is based on how much it would cost to “split” each
expression e, in the set of expressions for which we are computing an order, into the two
expressions e|, (e given that v is true) and €|, (e given that v is false). After a variable
v has been chosen, the set of ¢|, and e|, expressions will be the new set of expressions we
need to compute an order for.

Figure 6.6 shows a pseudo-code version of the split order heuristic. The algorithm is
passed a set of expressions exprSet, which is used in determining the cost of a variable.
Initially exprSet is the set of expressions we wish to transform using some transformation
that relies on a good variable order (such as conversion to canonical form). The variables
that still need to be ordered are passed to SplitOrder as the set support. Initially, support

contains all variables of the expressions in exprSet. The list order is the accumulated total
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order.

In each recursive call to SplitOrder, the algorithm finds the “best” variable in support,
and appends it to the total order order. The best variable v is determined based on how
much it would cost to factor each expression e in exprSet into (ve|, + v'e|,s). For all
expressions in exprSet, the expressions e|, and e[, are collected in a new expression set F’,
and if £’ is the best seen so far it is stored together with v. On the next recursive call to
SplitOrder, exprSet is the best of all of the E’ we constructed. To avoid recomputing e|,
and e|, for the same expression e and variable v at each recursive call to SplitOrder, we

cache both e|, and e, with e.

6.4.1 Choosing the cost function

Testing the effect of all variables one by one is what makes the SplitOrder targeted
towards finding good orders for binary decision diagrams rather than targeted to if-then-
else DAGs. If SplitOrder is called with one expression e then at the k" recursive call the k**
variable in the order is chosen, and this variable will occur at level k£ in the 0BDD for that
expression. This argument is carried a little further in the following lemma, which shows

that SplitOrder actually creates the 0BDD (0bdd) for e as it goes along:

Lemma 2: At level k the number of nodes in an obdd is less than or equal to the cardinality
of the expression set exprSet passed as argument to SplitOrder in the k™ recursive call. In
fact, the set of Boolean functions represented by the expressions in exprSet is exactly the

same as the set of Boolean functions represented by the nodes at level k in the obdd.

Proof: We start with second part and prove it by induction. Initially exprSet contains the
one expression we wish to convert to an 0BDD. Since the conversion to an OBDD does not
change the function represented and since the 0BDD at level 0 has one node our base case
is ok. Assume that the hypothesis holds for level £ — 1; we will now show that it also holds
for level k. At the k& — 1% recursive call the functions represented by the expressions in
exprSet are the same as the functions represented by the nodes at level £ — 1 in the obdd.

After the k — 1" pass through the algorithm, the k& — 1** variable v;_y in the total order has
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been chosen and each expression e in exprSet has been factored into vy_qe|,, _, + v2_16|%_1

and the expressions €|, _, and €|,; have been inserted in eSet. Since €|, _, and ¢|,; are

exactly the functions that appear at level k in obdd and since eSet is passed to SplitOrder as
exprSet in the k¥ calls we have proven the second part of the lemma is true for k provided
it is true for £ — 1. This together with the base case proves the second part of the lemma.

The first part of the lemma follows directly from the second part. Since the expressions
in exprSet are not in canonical form we can not be sure that no two expressions represent
the same function, and thus we can not change the less than or equal to equal.

O

We can use Lemma 2 to select an appropriate cost function for evaluating the cost of

a variable. The cost function Cost can be chosen so as to optimize for different objectives.

Our main goal is to find an order that results in a canonical form that is as small as possible.

We currently try to meet two objectives:

Primary objective: Try to minimize the number of nodes in the canonical form by
minimizing the number of nodes in the representation of E’, the set of expressions
remaining after the next variable has been chosen.

Secondary objective: Keep the number of nodes at any given level in the OBDD as small
as possible. From Lemma 2 we see that this objective can be met by having “SecCost”
return the cardinality of the expression set passed as argument.

To solve these objectives we use a weighted sum of the number of nodes in E’ and the

cardinality of F’ as
Cost(E') = ay Nodes(E')+ az |E|,

where Nodes(FE') counts the number of different nodes in the expressions with roots in E’.

Making ay much larger than ey would tend to minimize the cardinality of exprSet at each
recursive call to SplitOrder, while ignoring the size of the expressions rooted in exprSet.
Even though |ezprSet| is an estimate on the number of nodes at a given level in the 0BDD,
it generally is a bad idea to ignore the size of the expressions (see Lemma 3), and we have

found that keeping a1 = 1 and ay = 1 works well overall.



78
6.4.2 Computing €|, and €|,

The cost function used by SplitOrder is strongly dependent on the accuracy of the given
that operator when it computes ¢|, and e[, for each expression e in exprSet.

The expression e|, is computed in one traversal of e. If all the operator does is to
traverse the DAG and set v to TRUE or FALSE, but otherwise doesn’t change the structure
of the DAG, then the cost function will be very inaccurate, and the resulting order will be,
as shown in Lemma 3, in increasing order of occurrences in the original set of expressions
passed to SplitOrder.

Lemma 3: Without simplifications by the given-that operator, SplitOrder returns a variable
order, where the variables are sorted in increasing order of number of occurrences in the
expressions in exproet.

Proof: First observe that the number of nodes in the expressions rooted at exprSet remains
unchanged at each recursive call to SplitOrder, since given that only replaces variables with

constants. This simplifies the cost function used by SplitOrder to
Cost(E') = constant + ay |E'l.

Let s be the subset of expressions in exprSet that contains variable v. Each expression e € s

will be split into two expressions e[, and e|,» and the number of expressions in F’ will then

be
|FE'| = 2|s| + |exprSet| — |s| = |exprSet| + |s|.

Since the cost function will choose the split variable that results in the smallest cost it will
then choose the variable that minimizes |s| and this is the variable that occurs in fewest of
the expressions in exprSet.
O

If, on the other hand, the operator transforms €|, making use of all the reductions
that occur when a variable is set to either TRUE or FALSE, then the cost function can be

very accurate. If e[, and €|, are converted to canonical form and identical expressions are
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merged, then, according to Lemma 2, the cardinality of E’ (|E’|) will always be exactly the
number of nodes at level £ in the 0BDD.

Obviously, doing no reductions at all and converting to canonical form are two
extremes—the first is useless and the second is computationally too expensive. We in-
stead allow given that to propagate any constant time simplifications that occur as a result
of replacing v with TRUE:

No-two-constant: Triples in which both the then- and else-parts point to TRUE (with
either plus or minus labels) are replaced by an appropriately labeled pointer to the

if-part or to TRUE.

Weak distinct-cases: Triples whose then- and else-parts are the same pointer are replaced

with just this pointer.

No-constant-if: Triples whose if-part points to TRUE (FALSE) are replaced by the then
(else-part).

Distinct-if: Triples whose if-part is the same pointer as the then- and/or else-part are
replaced with a triple in which the then- and/or else-part is an appropriately labeled
pointer to TRUE.

Since the given that operation does not convert to canonical form, the expression set £’
may contain different representations of the same Boolean function. However, the set does
not necessarily grow exponentially with the number of variables ordered, since duplicate

expressions (same pointers) are eliminated.

6.4.3 Complexity

In this subsection we will analyze the complexity of the split order heuristic. In one
pass through the algorithm in Figure 6.6 the running time is bounded by the product of
the cardinality of support and the time it takes to compute given that on all the expressions
in exprSet. Since each recursive call decreases the size of support by one, the running time

of the algorithm is:
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> iG),
=0
where n is the number of variables and G(¢) is the complexity of computing the given that
operation in the i*" recursion through SplitOrder.

Let us examine G(7) a little closer by first looking at how the given that operator com-
putes ¢|, and €|,,. The simple and most straight forward given that makes one traversal of
the expression e to compute e|v, replacing each occurrence of v with TRUE and propagating
constant time simplifications. Clearly this has complexity O(m), where m is the number
of nodes in the DAG representation of e. We can easily modify the given that operator to
compute both e|v and e|, in the same traversal, giving us the algorithm GivenThat shown
in Figure 6.7.

Each time GivenThat visits a node it checks to see if we have already computed the given
that for the node, in which case we just return the cached versions. Otherwise, we compute
given that for the node, and cache the results with the node for future reference. The
IfThenFlse operator is called with three expressions (i,t, and e), and returns an expression
that is logically equivalent to the expression (if 7 then ¢ else e). The complexity of
IfThenFlse varies depending on what conditions the returned expressions should satisfy,
see Section 2.4 and 3.3. The conditions SplitOrder requires are shown in Section 6.4.2 and
can all be carried out in constant time, making GivenThat an O(m) algorithm, where m is
the number of nodes in the DAG representation of e.

With the version of GivenThat in Figure 6.7, we can see that the complexity of G/(7)
is still O(m), with m being the number of nodes in the multiply-rooted paG with roots in
exprSet.

We now need to determine m for the multiply-rooted DAG with roots in exprSet. To prove
that m is exponential in the worst case is easy, here we just need to consider SplitOrder
called with one expression e for which we wish to compute an order, and then use the
following two lemmas:

Lemma 4: SplitOrder constructs all the nodes in the OBDD representation for e with respect

to the order returned by SplitOrder.
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GivenThat(Expr e, Variable v, var Expr egv, var Expr egnv)
if (v € Support(e))
equ — egnu «— e
return
if (e is marked)
eqv «+ cached value
egnv < cached value
return
mark e as visited
if (e=vore=7)
egv — (e = v) 7 TRUE : FALSE
egnv — (e = v) 7 FALSE : TRUE
cache both egv and egnv with e
return
<ej, e, €.> — <if-part(e),then-part(e),else-part(e)>
Expr egv;,egnu;
GivenThat(e;,v,egv;,egnv;)
Expr egvs, egnuy
GivenThat(e;,v,egv,egnvy)
Expr egv.,egnu,
GivenThat(e.,v,egv.,egnv.)
egv — IfThenElse(egv;,egv,,egv,)
egnv — IfThenElse(egnv;,egnv,egnv,)
cache both egv and egnv with e
return

Figure 6.7: Computing e|, and e,/ in one traversal of e. IfThenElse(i,t,e) returns
an expression representing the function (if ¢ then ¢ else ¢)

Proof: Follows from Lemma 2.

O

Lemma 5: There exist functions for which the number of nodes in a corresponding OBDD
i1s exponential in the number of input variables regardless of chosen variable order.

Proof: Bryant [Bry91, Theorem 4] showed that any 0BDD representation for the Boolean
function representing the middle output of an integer multiplier for word size n is exponential

in the number of nodes.

a

Lemmas 4 and 5 prove that the complexity of the algorithm shown in Figure 6.6 is ex-
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ponential in the worst-case, since it must construct all the nodes in the OBDD corresponding
to the order it computes. Lemma 2 guarantees that at the k' recursive call to SplitOrder
the cardinality of exprSet is greater than or equal to the number of nodes at level k in the
OBDD representation for e, thus we are ensured that |exprSet| grows exponentially in the
worst-case, meaning that m, the number of nodes in the multiply-rooted DAG with roots in
exprSet, also grows exponentially in the worst-case.

With the exception of integer multiplication, most Boolean functions in digital logic
design applications have reasonable size 0BDDs. Thus the average complexity of SplitOrder
is more likely to be a function of how well GivenThat manages to propagate simplifications
once variables are replaced with constants. From Lemma 3 we can see that using no
simplifications could result in an almost doubling of exprSet at each recursive call to
SplitOrder, which in turn would make SplitOrder exponential even when the resulting OBDD

is polynomial.

6.4.4 Inefficiencies in computing given that

As mentioned in the proof of Lemma 2 we can not assure that |exprSet| is equal to the
number of nodes at the corresponding level in the OBDD representation of an expressions e,
since the expressions in exprSet are not in canonical form. Thus, many of the expressions
passed to SplitOrder as exprSet may be different representations of the same Boolean
function.

To see how bad things were we took the ISCAS benchmark €432 and passed all 7 outputs
to SplitOrder. We then counted the number of expressions in exprSet (|exprSet|) at each
recursive call to SplitOrder and compared it with the minimum achievable. The minimum
achievable can be computed by converting each expression in exprSet to canonical form and
removing duplicate expressions (expressions with identical pointers) from the set.

In Table 6.7 we show the results. The first column shows the number of variables in
support at each recursive call to SplitOrder. The second column shows the cardinality of

exprSet in each call. We see that even though exprSet does not grow exponentially it still



83

gets quite big. The set sizes are even more disappointing when compared to the minimum
achievable shown in column 3 in Table 6.7.

The huge difference between the actual cardinalities encountered by SplitOrder and the
minimum achievable, indicates that the given that operator is not very good at propagating
the consequences of setting a variable to TRUE and FALSE. For example, when 7 variables
remain in order, SplitOrder had to call GivenThat for 10207 expressions which represented
only 46 different Boolean functions.

The main problem is illustrated in Figure 6.8. Assume the function f to be represented
as shown in Figure 6.8 (a), and assume that we want to compute f|,. The result as it would
be returned by GivenThat is shown in Figure 6.8 (b). The IfThenklse operator has no
easy way of detecting that the if-part of some triple doesn’t appear in the then- and else-
parts (the only condition that would detect this situation is the Variable order condition).
Since GivenThat repeatedly sets variables to TRUE and FALSE the situation appearing in
Figure 6.8 (b) is very common.

The transformation that would be required to go from Figure 6.8 (b) — (¢) is an O(m)
operation if the DAG is a tree (m is then the number of nodes in the tree), but when nodes
have multiple fanout the transformation can not be carried out in one traversal of the DAG.

It is still an open problem to improve the given that operator so that it will propagate

simplifications more efficiently.

6.4.5 Results

The result of applying the SplitOrder heuristic to examples from the benchmark set for
the 1989 International WorkShop on Logic Synthesis [Lis88] are summarized in Table 6.8.
The examples used in this table are the same as those used in Table 6.1 and Table 6.2.
The results reported in this table use the same starting point as the depth-first ordering
heuristics, that is, we apply SplitOrder without doing any higher level transformations that

normally result in more structured networks and hence better orders.
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Remaining variables || |ezprSet| | Minimum
36 7 7
35 12 12
34 22 21
33 34 33
32 55 53
31 84 7
30 123 103
29 130 91
28 111 62
27 217 117
26 323 156
25 324 124
24 279 62
23 541 119
22 541 110
21 732 93
20 652 62
19 1242 121
18 1242 114
17 1844 101
16 2772 7
15 3894 117
14 3866 106
13 5752 85
12 3141 47
11 5216 75
10 5045 68

9 7668 55
8 6419 32
7 10207 46
6 9633 41
5 9616 44
4 42 21
3 29 13
2 9 5
1 2 2

Table 6.7: Computing a variable order for the 7 primary output of C432 using
SplitOrder as shown Figure 6.6. First column indicates how many variables there
are in support at each recursive call to SplitOrder. Second column is the cardinality
of exprSet at that recursive call to SplitOrder. The third column shows the
minimum achievable cardinalities of exprSet which are computed by converting
the expressions in exprSet to canonical form and removing duplicate pointers.



a b TRUE — — FALSE

c TRUE a b TRUE c

b TRUE b TRUE b c TRUE
c _FALSE c TRUE TFALSE
b TRUE c

(b) (c) (d)
Figure 6.8: (a): An if-then-else DAG representation for the function f = ab’ +
(c+a' )b+ ¢). (b): The result of computing f|,, notice how GivenThat fails to
propagate changes in if-branches to then and else-branches. (c): Propagating the
changes of the if-branches. (d): Final result, obtained directly from (c) but not
from (b) by using the No-Two-Constants condition.

All numbers in the table report the number of nodes and the height of the canonical
if-then-else DAG and ordered binary decision diagram. For canonical if-then-else DAGs we
use size to count nodes and for 0BDDs we use siscount (refer to Section 6.3.4). The first
column is the name of the benchmark example. Columns 2 through 4 report results when
converting to 0BDDs. Column 2, depth, contains the sizes and height of the OBDDs using
the order acquired by the best depth-first ordering heuristic; these numbers are taken from
column best of Table 6.2. Column 3, split, reports the same measures using the variable

order obtained by SplitOrder. Column 4, rev(s), reports the size and height of 0BDDs when

using the reverse of the order obtained by the SplitOrder heuristic. Finally, columns 5
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Figure 6.9: The size of 0BDD when using SplitOrder divided by the size when
using the best of the depth-first ordering heuristics. Squares below 1 indicate that
SplitOrder wins.
through 7 are the results when converting to a canonical if-then-else DAG. All columns are
summed up, and the total can be taken as an estimate of the area needed to implement all
examples using one particular strategy.

The data from Table 6.8 is summarized in Figure 6.9 and Figure 6.10, which shows
scatter diagrams for all 39 examples comparing the depth-first heuristic to the split order
heuristic when converting to respectively an OBDD and a canonical if-then-else DAG.

When converting to an OBDD, the new split order heuristic wins in all but a few examples.
In 39 examples SplitOrder won in 28 examples and lost in only 6 examples. In the winning
examples the size reductions were anywhere from 2% to 59% averaging 20%. In the 6 losses
the worst size increase was 52% and the average was 18%. Over all 39 examples, SplitOrder
resulted in a 25% decrease in size of oBDDs. Comparing SplitOrder to the best single
depth-first heuristic (reconvergent count) we see that SplitOrder results in a 37% reduction
in number of nodes.

When converting to a canonical if-then-else DAG, the new split order heuristics wins in

16 examples and looses in 20 examples. In the winning examples the size reductions were
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OBDD canonical ited
Example depth split rev(s) depth split rev(s)
alu? 176:9 176:9 267:9 152:9 160:9 2779
alu4 446:13 370:15 941:13 302:11 352:13 958:13
apex6 886:19 643:19 2126:23 689:19 550:1/ 2295:19
apex7 453:18 319:18 1053:23 258:17 292:13 528:18
b9 177:12 148:12 203:13 164:9 153:9 173:11
c8 98:9 106:10 248:12 102:9 96:10 179:11
cc 78:5 65:5 52:6 60:4 54:5 90:6
cht 131:4 136:4 118:5 127:4 139:4 189:4
cm138a 19:5 19:5 39:5 22:5 42:5 22:5
cmlbla 22:5 20:6 74:9 28:5 25:6 72:9
cml1b2a 17:3 17:3 384:10 18:3 18:3 384:10
cml162a 45:9 39:9 56:10 43:7 40:7 5R:7
cml63a 41:7 37:7 42:8 40:7 36:7 51:8
cm4?2a 21:3 21:3 25:3 22:5 26:3 22:3
cm&Ha 40:9 31:9 41:9 45:9 37:6 45:8
cmb 37:11 35:11 37:11 46:11 49:11 48:11
count 202:18 82:18 205:19 98:18 203:18 130:18
cu 41:10 58:9 79:12 48:7 57:8 98:11
decod 33:4 33:4 47:4 35:4 49:4 35:4
example2 514:13 355:13 746:15 354:12 537:12 494:12
f51m 48:7 40:7 75:7 57:7 49:6 68:7
frgl 128:22 195:22 199:24 144:19 195:17 220:20
frg2 2103:20 1420:22 2563:23 862:15 1512:15 1247:18
lal 101:12 98:12 117:12 101:10 100:10 97:11
Idd 747 75:7 111:8 76:6 78:7 99:8
pcle 54:10 44:10 114:11 66:10 81:10 82:10
pcler8 133:11 131:11 152:12 113:10 111:10 148:11
pml 49:8 51:8 46:8 57:7 52:6 61:7
sct 75:12 58:13 95:12 79:6 86:11 68:9
tcon 26:1 26:1 35:2 25:1 25:1 41:2
term1 208:19 113:19 200:19 209:14 120:10 140:13
ttt2 157:13 139:15 219:13 149:10 163:9 184:11
unreg 86:4 83:3 121:5 87:4 84:3 196:5
vda 522:12 511:12 5082:16 541:12 547:12 5089:16
x1 935:22 481:21 612:22 726:19 468:18 605:19
x2 41:6 37:6 75:9 44:6 45:6 T1:7
x3 1019:19 700:19 1419:22 847:18 687:14 1407:15
x4 596:14 434:14 570:14 396:9 480:11 377:12
z4ml 36:6 25:6 28:6 27:6 27:6 22:6
| TOTAL | 9868:411 7371:413 18616:464 | 7219:360 7825:349 16370:404

Table 6.8:

The size and height after applying the various ordering heuristics to

an initial if-then-else DAG. The first column is the name of the example. The next
three columns are size (siscount) and height when converting the network to an
OBDD using the best of the depth-first ordering heuristics, the split order heuristic,
and the reverse of the split order. The last three columns are the size (size) and
height when converting to a canonical if-then-else DAG. The row Total shows the
total size of implementing all examples using the given heuristic.
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Figure 6.10: The size of canonical if-then-else DAG when using SplitOrder divided

by the size when using the best of the depth-first ordering heuristics.
anywhere from 1% to 43% averaging 13%. In the losing examples the worst size increase
was 107% (count) averaging 28%. Over all 39 examples, SplitOrder resulted in a 8.3%
increase in size of if-then-else DAGs. Comparing SplitOrder to the best single depth-first
heuristic for if-then-else DAGs (reconvergent count) we see that SplitOrder results in a 11%
reduction in number of nodes, which still makes SplitOrder the single best variable ordering
heuristic for if-then-else DAGs.

The results are impressive when converting to OBDDs, but quite disappointing when
converting to if-then-else DAGs. However, it does appear as if canonical if-then-else DAGs
are less sensitive to the variable order than OBDDs, hence the room for improvement may
be greater for 0BDDs than for canonical if-then-else DAGs. It comes as no surprise that
SplitOrder performs best on OBDDs, since it actually constructs the oBDD and not the
canonical if-then-else DAG as it goes along. The “split” variable is based on how much
it would cost to factor an expression e into ve|, + v’e|,s, and this is exactly the function
represented by one of the nodes with label » in the OBDD.

If the split order heuristic constructed the canonical if-then-else DAG as it went along, the

choice of a “split” wouldn’t be a simple variable, but a general expression. If the expression
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we are converting to a canonical if-then-else DAG has n variables and the order is decided
for k of these, then the search would be among 27~* variable sets instead of n — k variables.

Even though there is no improvement when converting to canonical if-then-else DaAG
using SplitOrder (remember though, that SplitOrder was compared against 9 depth-first
ordering heuristics), it still seems that a good variable order for an 0BDD is generally also
a good variable order for a canonical if-then-else DAG. In the cases where the blow-up is
significant, as in examples cm138a and count, part of the reason is that canonical if-then-
else DAG are left-associative, whereas OBDDs are right-associative, so a simple reversal of
the order will improve the result. However, as can be seen from the table it is not generally
the case that reversing the order for an 0BDD will result in a good order for an if-then-else
DAG, in fact it most often results in a worse order. It is interesting to observe, that the only
examples where a reversal of the order helps are those for which SplitOrder lost over the

depth-first order.

Applying SplitOrder to optimized examples

The previously presented results all used unoptimized circuits as starting point. Nor-
mally optimized circuits are more structured than unoptimized and hence we would expect
SplitOrder to find better orderings if applied to former. Here we present results using Spli-
tOrder on the same examples as before, but prior to running SplitOrder we optimize each
example with sis using the standard script coming with sis.

Table 6.8 compares the results of applying SplitOrder to the sis optimized examples
and the non-optimized examples. The columns marked noopt are the result of SplitOrder
applied to the non-optimized examples—these columns are copied from Table 6.8. The
columns marked opt are the result of applying SplitOrder to the sis optimized examples.
The table also includes columns best, which shows the best over all the results presented in
this chapter. The columns best are used later when we compare the sizes of OBDDs against

those of canonical if-then-else DAGs.
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OBDD canonical ited
Example noopt opt best noopt opt best
alu? 176:9 179:9 176:9 160:9 183:9 152:9
alu4 370:13 441:13 370:13 352:13 446:13 302:11
apex6 643:19 741:19 643:19 550:14 690:14 550:14
apex7 319:18 299:18 299:18 292:13 243:15 238:17
b9 148:12 148:12 148:12 153:9 169:10 153:9
c8 106:10 98:10 98:10 96:10 85:10 85:10
cc 65:5 62:6 52:6 54:5 70:6 54:5
cht 136:4 127:3 118:5 139:4 122:3 122:3
cm138a 19:5 19:5 19:5 42:5 42:5 22:5
cmlbla 20:6 19:4 19:4 25:6 21:4 21:4
cml1b2a 17:3 17:3 17:3 18:3 18:3 18:3
cml162a 39:9 37:9 37:9 40:7 55:8 40:7
cml63a 377 27:7 27:7 36:7 42:7 36:7
cm4?2a 21:3 21:3 21:3 26:3 26:3 22:3
cm8&ba 31:9 30:9 30:9 37:6 37:6 37:6
cmb 35:11 32:11 32:11 49:11 49:11 46:11
count 82:18 82:18 82:18 203:18 203:18 98:18
cu 58:9 59:9 41:10 57:8 61:7 48:7
decod 33:4 33:4 33:4 49:4 49:4 35:4
example2 355:13 496:13 355:13 537:12 367:11 334:12
f51m 40:7 40:7 40:7 49:6 46:7 46:7
frgl 195:22 130:22 128:22 195:17 148:18 144:19
frg2 1420:22 1142:20 1142:20 1512:15 1273:15 862:13
lal 98:12 91:12 91:12 100:10 105:10 97:11
Idd 75:7 777 74:7 78:7 777 76:6
pcle 44:10 45:10 44:10 81:10 85:10 66:10
pcler8 131:11 114:11 114:11 111:10 134:10 111:10
pml 51:8 49:8 46:8 52:6 55:6 52:6
sct 58:13 60:13 58:13 86:11 88:9 68:9
tcon 26:1 26:1 26:1 25:1 25:1 25:1
term1 113:19 108:19 108:19 120:10 123:10 120:10
ttt2 139:13 136:13 136:13 163:9 158:9 149:10
unreg 83:3 110:4 83:3 84:3 111:4 84:3
vda 511:12 512:12 511:12 547:12 530:12 530:12
x1 481:21 508:21 481:21 468:18 518:19 468:18
x2 37:6 34:6 34:6 45:6 42:6 42:6
x3 700:19 669:19 669:19 687:14 636:15 636:15
x4 434:14 420:14 420:14 480:11 498:10 377:12
z4ml 25:6 18:6 18:6 27:6 22:6 22:6

| TOTAL [ 7371:413 7256:410 | 6840:412 || 7825:349 7652:351 | 6388:349 |

Table 6.9: This table compares the result of applying SplitOrder to unoptimized
examples and examples that have been optimized with sis using the standard
script. Columns named noopt are copied from Table 6.8. The columns headed
with opt are the results of applying SplitOrder to the sis optimized examples.
The columns headed with best shows the best results presented in this chapter
for a particular example, and can be used to compare the sizes of OBDDs against
canonical if-then-else DAGs.
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Figure 6.11: The size of 0BDDs when using SplitOrder on unoptimized examples
divided by the size when using the sis optimized examples. Squares below 1
indicate that the optimized examples resulted in better variable order.

As we see from the table, the total improvement is not significant—for 0BDDs we got a
1.5% decrease in size and for canonical if-then-else DAGs the decrease was 2.2%. However, if
look at the number of examples that were improved, we see that for 0BDDs 20 examples got
better, 11 worse and 8 remained unchanged. For canonical if-then-else DAGs 14 examples
got better, 17 worse and 8 remained unchanged. The data from Table 6.9 is plotted in
Figure 6.11 and 6.12 which shows scatter diagrams for all examples comparing the result of

SplitOrder applied to unoptimized and optimized examples.

Comparing the sizes of canonical if-then-else DAGs to the sizes of OBDDs

From Table 6.9 it can be seen the total size of canonical if-then-else DAGSs is only 6.6%
smaller than the total size of 0BDDs. It can also be seen that in general 0BDDs have fewer
nodes than canonical if-then-else DAGs. Figure 6.13 shows the ratio of the canonical if-then-
else DAG size over OBDD size for the examples in Table 6.9. For each example we have used
the smallest canonical if-then-else DAG and smallest OBDD found during the experiments in

this chapter—this corresponds to plotting the ratio of the columns best in Table 6.9.
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Figure 6.12: The size of canonical if-then-else DAGs when using SplitOrder on
unoptimized examples divided by the size when using the sis optimized examples.
Squares below 1 indicate that the optimized examples resulted in better variable
order.
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Figure 6.13: The number of nodes (size) in canonical if-then-else DAGs divided
by the the number of nodes (siscount) in 0BDDs. Squares below 1 indicate that
the if-then-else DAG is smaller than the 0BDD. For each example we used the
smallest canonical if-then-else DAG and smallest OBDD obtained through all the
experiments in this chapter.
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It is interesting to observe that for small examples it appears as if the OBDD is winning,
whereas the larger examples have smaller canonical if-then-else DAGs. This is believed to
be more a coincidence than a general rule. Looking at Table 6.3 and 6.4 we see that for a
different set of large examples, 0BDDs and canonical if-then-else DAGs are almost the same
size with no leaning towards one or the other.

We finally compare OBDDs and canonical if-then-else DAGs towards the total best of both
canonical representations. In Table 6.10 we summarize the results by normalizing the total
of each heuristic (all the heuristics used in this chapter) to the total best of both canonical
representations. Let BestSize denote the smallest number of nodes in any of the canonical
forms (the smallest of the columns best in Table 6.9) for a particular example. Table 6.10
then reports the ratio between the total for each heuristic and the total BestSize. In the
table we report the ratios for both canonical if-then-else paGs (ItemCanonical) and 0BDDs,
and thus the table also compares canonical if-then-else DAGs sizes with OBDD sizes. Each
row identifies a given heuristic. The row best is the result of normalizing the columns best
in Table 6.9 to BestSize. The row Original is the result of using the variable order as it
appears in the input file. The row Random is the result of using a randomly generated
variable order.

From Table 6.10 we see that the canonical if-then-else DaGs are only 3% larger than the
best known canonical form whereas OBDDs are 11% larger than the best known canonical
form. We also see that if-then-else DAGs are not quite as sensitive to the variable order as
OBDDs. Again, the latter is not surprising since allowing general expressions in the if-part
makes an if-then-else DAG more flexible than an OBDD. We see that SplitOrder is the only
variable ordering heuristic that performs better on 0OBDDs than on if-then-else DAGs, and

that it is the single best heuristic for both canonical if-then-else DAGs and OBDDs.

Applying SplitOrder to larger examples

In Table 6.3 and 6.4 we showed results of applying the depth-first ordering heuristics to

examples from the ISCAS benchmark set for testing [Lis88]. We repeat the same examples
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Total Size/Total BestSize
ItemCanonical OBDD

Method Incremental | Reconvergent || Incremental | Reconvergent
Simple Depth 1.69 1.64 2.30 2.23
Fanout 1.64 1.63 2.32 2.26
Height 2.29 1.51 2.73 2.02
Count 1.59 1.42 2.12 1.90
SIS 1.66 2.13

Split 1.26 1.19

best 1.03 1.11
Original 3.36 4.15
Random 3.01 3.14

Table 6.10: The result of normalizing each heuristic to the best of all heuristics.
This table shows the ratio between the total number of nodes using one heuristic
and the total BestSize. BestSize, for a particular example, is the smallest number
of nodes seen with any of the variable orders tried in the canonical if-then-else
DAG or OBDD whichever is the smallest. The row best is the result of normalizing
the columns best in table 6.9 to BestSize.

using SplitOrder and the results are shown in Table 6.11.

For some of the examples, we were unable to complete SplitOrder on all the outputs
at once, and had to run it on just the largest output. In Table 6.11 we indicate this by
giving the name of the output we passed to SplitOrder. For many of the ISCAS examples,
a good order for the largest output is also a reasonable order for the other outputs, and
hence converting all the outputs to canonical form with the order computed for the largest
output works well.

We see that with SplitOrder we are now able to compute an order for which we can
construct the canonical forms. This was not the case with the depth-first ordering heuristics

(see Table 6.3 and 6.4).

Iterating SplitOrder

We finally show the results of iterating SplitOrder on examples from the ISCAS bench-
mark set [Lis88]. Table 6.12 contains the results for the examples for which we could find
previous results in the literature [MWBS88, FFM93, MKR92].
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Problem Outputs OBDD ItemCan
C432 all 1570:35 | 1307:35
C499 all 42162:40 | 42181:40
C880 all 9021:42 | T7188:37
C1355 | 1324GAT(583) | 77746:40 | 77765:40
1908 75(866) 10356:30 | 9876:30
C2670 all 54895:70 | 40754:42
(3540 all 61054:37 | 58659:37
Ch315 all 3327:46 | 2639:26

Table 6.11:  Result of SplitOrder on examples from the ISCAS benchmark set.
The second column indicates which outputs were used to obtain the order; all
refers to using SplitOrder on all the outputs at once. The third column is the total
number of nodes (siscount) and height in the multiply-rooted 0BDD with roots
in the primary outputs. The fourth column is the total number of nodes (size)
and height in corresponding canonical if-then-else DAG.

SplitOrder is iterated according to Figure 6.2. We start with a non-canonical if-then-else
DAG and compute a variable order for all the primary outputs at once (this is done by passing
all primary output expressions to SplitOrder). Then the canonical form transformation is
used to convert each primary output to ordered binary decision diagrams, which in the next
iteration are passed to SplitOrder to compute a new variable order.

For some of the examples, we were unable to complete SplitOrder on all the outputs
at once, and had to run it on just the largest output. In Table 6.12 we indicate this by
giving the name of the output we passed to SplitOrder. For many of the ISCAS examples, a
good order for the largest output is also a reasonable order for the other outputs, and hence
converting all the outputs to OBDDs with the order computed for the largest output works
well. Furthermore, after converting all the outputs to 0OBDDs using the order computed for
the largest output, we are often able to iterate SplitOrder on all the outputs at once.

For all the examples, we report both the total size over all outputs, and the size for the
largest output alone. Total size of a network, where all the outputs have been converted to
one multiply-rooted OBDD, has received little consideration in the literature. It is important

to realize that just finding an order that results in size k for the largest output, and sizes less

than k for the other outputs, doesn’t necessarily mean that the total number of different
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nodes for all the outputs have been minimized, since a multiply-rooted BDD can share
varying amounts of the subbacGs. This is illustrated most clearly in the iteration for C1908.

Table 6.12 contains a set of rows for each example. The first row for each example
is the result of applying SplitOrder and OBDD conversion to the initial DAG, which is not
in canonical form, but merely a multiply-rooted if-then-else DAG. If we were unable to
run SplitOrder on all the outputs at once, the output named was chosen among all the
outputs as the largest of the non-canonical roots in the multiply-rooted if-then-else DAG.
The remaining rows correspond to iterating on the result of the previous row. In the column
Total we report the total size over all outputs, that is, we count the number of different
nodes in the multiply-rooted 0BDD with roots in the primary outputs. For the column
Largest output we report the size of the output that is largest with respect to the order
computed. It should be noted that this output may change from iteration to iteration.

For all the examples, we achieve a significant reduction in size when SplitOrder is
iterated. In all but 3 examples we beat the previous best order for the largest output
by as much as 60%. We do poorly on C2670, which is the only example we were unable to
iterate on. C1908 illustrates how minimizing the largest output does not reduce the total
size—here we achieve further reduction in the total size while increasing the size of the
largest output. The most unstable example was C3540, where total size fluctuates from
36200 to 42400 if iteration is continued beyond the last row. All other examples were stable
within less than 1% of the result in the last row.

C1355 is logically equivalent to C499, but SplitOrder came up with different orders for
the two examples. Generally the starting point for the iteration has a big influence on the
final result. We tried converting C1355 to an OBDD using the input order (the order in
which the primary inputs occur in the input file) and then iterating from that point. This
gave us a smaller total size for C1355 (32169) but the largest output had increased to 2308.
For both C499 and C1355 we were unable to iterate SplitOrder on all the outputs at once,

thus making it impossible to optimize for total size in the most logical way.
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Problem | Method Total | Largest output | Best previous
largest output
C432 all;obdd 1570 454
all;obdd 1326 388
all;obdd 1288 370 369 IMKR92]
€499 all;obdd 42162 2088
0D0(242);0bdd 41074 2055
0D0(242);0bdd 40794 2047 4283 [MIKR92]
C880 all;obdd 9021 3057
all;:obdd 5709 2172
all;obdd 5537 1969
all;obdd 4829 1853 1248 IMKR92]
C1355 | 1324GAT(583);0bdd | 77746 3330
1324GAT(583);0bdd | 37706 2063
all;:obdd 35842 1991
all;obdd 35298 1959 4283 [MIKR92]
C1908 | 75(866);0bdd 10356 1357
75(866);0bdd 9541 1264 1606 [MKR92]
75(866);0bdd 9515 1265
all;obdd 8863 1408
all;obdd 8805 1403
C2670 | 311(1278);0bdd 54895 30560 14763 [FFM93]
C3540 | 405(1717);0bdd 61054 21791
405(1717);0bdd 43163 11269
405(1717);0bdd 36155 10334
all;:obdd 42436 12462
all;obdd 36274 10305 17747 IMKR92]
Ch315 | all;obdd 3327 780
all;:obdd 2381 492
all;obdd 2289 472 1296 [MKR92]
all;:obdd 2320 472
Table 6.12: Result of iterating SplitOrder. The second column is the method

used to obtain the order, all refers to using SplitOrder on all the outputs at once,
obdd is converting all the outputs to OBDD using the computed order. If obdd is
preceded by z(y) then this is the name of a primary output and means that we
ran SplitOrder only on this output, but used that order for all the other outputs
as well when converting to 0BDD. The third column is the total number of nodes
(siscount in the multiply-rooted 0BDD with roots in the primary outputs. The
fourth column is the total number of nodes in the OBDD rooted at the largest
output. Finally the last column gives the previous best known size of the largest

output.
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6.5 The effect of variable order on other transformations

In the previous sections we focused on finding variable orders that result in small canon-
ical forms. In this section we will show that not only the canonical form transformations
rely on variable order.

As has already pointed out in Chapter 4, LocalFactor gets most of its power from
converting small parts of the DAG to canonical form. Using the strong canonical form
described in Section 3.3 it is clear that identical subDAGs will result in explicit sharing. But
as has become clear from this chapter different orderings result in very different sharing,
and hence it is important to find the ordering that results in the most explicit sharing.

Encouraged by the results of iterating SplitOrder (see Table 6.12) we decided to make
the experiment shown in Figure 6.14 (these are the commands used by 1TEM). We first
construct the initial if-then-else DAG, which we optimize using LocalFactor (transform -m
local) and two-column rectangle replacement (bcov). The first time through LocallFactor
uses default variable order constructed as it occurred in the input file. LocalFactor and two-
column rectangle replacement are iterated as this generally improves the results slightly.
The optimized DAG is then used by SplitOrder (order split -c siscount) to compute
a variable order from which we construct an OBDD (obdd). With the 0oBDD we iterate
SplitOrder once and with the resulting order we iterate the entire script?.

The 1TEM script in Figure 6.14 was iterated 5 times. LEven though there were some
fluctuations we only report the results for the first and last run through the script. In
Table 6.13 we show the results. We report the measures count, edges, size, and height,
all of which (except edges which counts the number of edges in the DAG) we have used in
other sections. For each example and each cost measure we report the initial result, the
last result, and the difference (last—initial). The last row sums up the difference for each

cost measure.

2 1TEM caches logically equivalent expressions in equivalent rings and during optimization of a function

it always checks the equivalent ring to see if it contains a “better” implementation. Hence, before iterating
the script we must clear all equivalent rings so that the starting point is the same for each run through the
script.
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Example Count Edges Size Height
first | last | diff || first | last | diff || first | last | diff ||first |last | diff
alu2 393 | 374 | -19 || 447 | 424 | -23 || 175|166 | -9 || 11 | 9 | -2
alud 728 | 763 | 35 || 1085 | 894 | -191 || 492 | 353 |-139]| 34 | 14 |-20
apex6 781 | 775 | -6 || 1184 | 1061 | -123 || 631 | 551 | -80 || 20 | 12 | -8
apex’7 245|239 | -6 399 | 375 | -24 || 221207 |-14) 14 [ 14| 0
b9 101 (101 O 172 | 172 0 115 (115 0 91910
c8 133 | 132 | -1 152 | 147 -5 79 | 76 | -3 9 1910
cc 64 | 64 | 0O 87 87 0 51 | 51 0 51510
cht 184 | 184 | 0 221 | 221 0 121 (121 ] 0 31310
cml38a || 24 | 24 | 0O 40 40 0 22 | 22| 0 51510
cmlbla || 27 | 24 | -3 40 25 -15 29 | 20 | -9 9 14 |-5
cmlb2a || 22 | 22 | 0O 22 22 0 18 | 18 | 0 31310
cml62a || 40 | 42 | 2 63 64 1 41 | 41 0 8 1 810
cml63a || 39 | 40 1 61 60 -1 42 | 41 | -1 7T 710
cmd42a, 27 | 27| O 44 44 0 21 | 21 0 31310
cm8ba, 43 | 49 | 6 71 65 -6 43 | 37 | -6 || 10 | 6 | -4
cmb 40 | 40 | 0O 67 67 0 46 | 46 | 0 11 |11 (0
count 143 1143 | 0 174 | 174 0 98 | 98 | 0 18 | 18 | 0
cu 51 | b1 0 79 79 0 46 | 46 | 0 6 | 6|0
decod 42 | 42 | 0 68 68 0 31 | 31 0 31310
example2|| 304 | 309 | 5 464 | 465 1 2711270 -1 |12 |12 ] 0
f51m 88 | 84 | -4 108 | 112 4 48 | 52 | 4 718 |1
frgl 174 | 144 | -30 || 264 | 204 | -60 || 145|115 |-30|| 14 | 18 | 4
frg2 979 | 964 | -15 || 1690 | 1648 | -42 || 897 | 874 | -23 || 15 | 14 | -1
lal 92 | 91 | -1 156 | 145 | -11 93 | 86 | -7 || 10 |10 | O
ldd 113 | 103 | -10 || 156 | 151 -5 69 | 69 | 0 6 |10 | 4
pcle 64 | 64 | 0O 98 98 0 60 | 60 | O 91910
pcler8 88 | 88 | 0 138 | 138 0 84 | 84 | 0 11 |11 (0
pml 49 | 44 | -5 79 72 -7 48 | 45 | -3 6 | 6|0
sct 70 | 71 1 107 | 106 -1 62 | 61 | -1 8 1 810
tcon 40 | 40 | 0O 40 40 0 25 | 25| 0O 1 110
term1 209 | 117 | -92 || 354 | 158 | -196 || 197 | 97 |-100| 21 | 10 |-11
ttt2 240 | 200 | -40 || 330 | 274 | -56 || 157 | 133 |-24 || 8 | 10| 2
unreg 128 | 128 | 0 144 | 144 0 84 | 84 | 0 31310
vda 1074|1114 40 || 1473 | 1361 | -112 || 628 | 540 | -88 || 24 | 16 | -8
x1 300|305 | 5 523 | 521 -2 288 | 285 -3 || 14 |15 ] 1
X2 51 | b1 0 80 77 -3 44 | 42 | -2 716 |-1
x3 865 | 792 | -73 || 1214 | 1005 | -209 || 623 | 508 |-115|| 17 | 14 | -3
x4 390 | 395 | 5 625 | 530 | -95 || 357 (292 |-65]| 10 | 8 | -2
z4ml 61 | 37 | -24 88 43 -45 44 | 22 |22 9 | 5 | -4

| TOTAL |[8506[8277]-229][12607|11381|-1226 || 6546|5805 |-741] 400 | 343 |-57 |

Table 6.13:

Results extracted from iterating the script in Figure 6.14. The first
column is the name of the example, the following 4 columns report the specified
cost metric after the first and last run through the script. The number diff reports
the difference in the cost metric between the first and last run.
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# optimize the network using LocalFactor and bcov
transform -m local
bcov
transform -m local
bcov
transform -m local
bcov
print count() edges() size() height()
# compute a variable order
order split -c siscount
# convert the outputs to 0BDDs
obdd
# recompute a variable order
order split -c siscount
# iterate the script

Figure 6.14: Optimization script used with ITEM to show the effect of variable
order on other optimizations by LocalFactor. The script was iterated 5 times.

From the table we see that overall there is a significant difference between the first and
last run through the script for all the metrics. The most significant differences were in the
size, edges, and height metrics. This makes sense, since LocalFactor specifically tries to
reduce the number of edges and SplitOrder attempts to find an order that reduces the size
of the canonical DAG. The results demonstrate that a good variable order is important when
applying local transformations to the paG. Finally, the size column of Table 6.13 should
be compared to the best column for canonical if-then-else DAGs in Table 6.9. The difference
(totally 9.1%) can be taken as an estimate for the cost of converting a non-canonical if-

then-else DAG to canonical form.

6.6 Conclusion

In this chapter we have presented several depth-first ordering heuristics and the new
SplitOrder heuristic for finding variable orders for canonical if-then-else DAGs and OBDDs.
Among the depth-first ordering heuristics the new reconvergent merging scheme improves

the results while maintaining the O(n) complexity associated with traversal-based heuristics.
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The new SplitOrder heuristic results in significant improvement over the depth-first
heuristics when converting to 0BDDs. When converting to canonical if-then-else DAGs,
SplitOrder is still the single best heuristic, but only about as good as trying 8 different
depth-first ordering heuristics and choosing the best for each example. For canonical if-
then-else DAGs, trying all the different heuristics presented in this chapter, results on the
average in 14% fewer nodes than using SplitOrder alone (2% 0BDDs).

An open problem is to find ordering heuristics that are targeted for canonical if-then-else
DAGs rather than OBDDs.

It appears as if OBDDs in general have fewer nodes than canonical if-then-else DAGs. The
height of canonical if-then-else DAGs is almost always significantly less than the height of
0BDDs. The results also demonstrate that 0BDDs are more sensitive to the variable order
than canonical if-then-else DAGs.

We also showed that iterating SplitOrder on the ISCAS benchmark set greatly improves
the resulting variable order for oBDDs. We have experimented with iteration of the depth-
first ordering heuristics, but here the results did not converge and didn’t seem to fluctuate
between any fixed sizes.

Finally we showed that we could improve the results of logic optimization by iterating
through combinations of paths in Figure 6.2, and in particular we showed how the variable

order can affect the final result of logic optimization.
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7. Conclusions and future research

This thesis presented two important aspects of logic optimization: common subexpres-
sion extraction using two-column rectangle replacement and variable ordering for Boolean

functions represented as if-then-else DAGs and binary decision diagrams.

7.1 Two-column rectangle replacement

Two-column rectangle replacement is a general sub-expression extraction technique that
does not rely on the underlying representation of Boolean expressions. Two-column rect-
angle replacement recognizes commonality between commutative and associative Boolean
expressions.

We showed how Boolean matrices could be used to represent Boolean expressions and
how rectangles of the matrices corresponded to common subexpressions. Specifically we
constructed an XOR-matrix and an OR-matrix, where the first represents the XOR and
XNOR expressions in a set of expressions and the latter represents the AND, NAND, OR,
and NOR-expressions.

In two-column rectangle replacement, rectangles of exactly two columns are replaced
sequentially with a new single column until each row uses exactly one column. The two-
column rectangle-replacement problem is to replace rectangles in such an order that the
area or delay of the final circuit is minimized.

When optimizing for area the order of replacement is determined based on the value of
a rectangle. The value of a rectangle is the difference in the number of 1’s in the matrix
before and after a replacement. The results demonstrated a 10% improvement in our area
estimate when applying two-column rectangle replacement to expressions minimized using
LocalFactor (an optimization technique in 1TEM, which relies on canonical form to detect
sharing).

When optimizing for delay we showed that two-column rectangle replacement could

effectively be used in balancing any cost measure of DAG. Typically, we use height as
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our delay estimate and by replacing the two-column rectangle in which the new column
will have the lowest height, we balance the DAG and thus minimize the delay estimate. We
demonstrated that this technique was very effective in balancing the DAG, while keeping the
area under control. Especially the latter is important—there are easier and more efficient
techniques (DMIG) for balancing a network of commutative and associative operators, but
these techniques completely ignore other cost measures such as area of the final circuit. We
compared two-column rectangle replacement for delay with DMIG, which ensures minimum
height, and found that two-column rectangle replacement for delay totally resulted in height
that was only 2.5% from the optimum. When compared to LocalFactor alone, DMIG
increased the area estimated by more than 13%, while two-column rectangle didn’t change
the total area estimate significantly.

The power of two-column rectangle replacement comes from having to consider only
rectangles of two columns rather than rectangle spanning multiple columns. In two-column
rectangle replacement we can afford to enumerate all possible rectangles and replace the

best.

7.2 Variable ordering

The second topic addressed by this thesis was a problem specific to if-then-else DAGs
and binary decision diagrams. We showed techniques for finding variable orders that result
in small canonical if-then-else DAGs and small ordered binary decision diagrams. Two
different approaches to the problem were investigated: depth-first ordering heuristics and
the SplitOrder heuristic.

The depth-first ordering heuristics all compute a total variable order based on a single
depth-first traversal of an initial non-canonical if-then-else DAG. The heuristics merge total
orders into a new total order using two different variants: the incremental merging strategy,
which orders the variables in the order they are visisted, and the new reconvergent merging
strategy, which is based on reconvergent fanout and tend to order shared variables first.

Among the depth-first ordering heuristics the reconvergent merging strategy is superior; it
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produces variable orders that on the average result in 11% smaller canonical forms than the
best incremental ordering heuristic. Still, no single traversal-based heuristic is particular
effective, and trying combinations of several will almost always improve the results.

The second approach to variable ordering was based on the SplitOrder heuristic, which is
especially well suited for finding good variable orders for ordered binary decision diagrams.
SplitOrder constructs the variable order by building an 0OBDD top-down one level at a time,
choosing the next variable such that the corresponding level in the 0BDD has few nodes and
represents expressions that are as small as possible. When converting to 0BDDs SplitOrder
averages 25% fewer nodes than taking the best of 8 depth-first techniques (36% better than
the best single depth-first technique). A nice property of the SplitOrder heuristic (not found
with the depth-first ordering heuristics) is that it can be iterated to improve the resulting
variable order. By iterating SplitOrder we achieved variable orders that result in up to
50% smaller 0BDDs than what other researchers have reported using depth-first traversal
or simulated annealing.

Finally, we showed that variable ordering is important for more than just the canonical
form transformation of if-then-else DAGs. Especially we showed that our general transforma-
tions for technology-independent logic optimization (LocalFactor together with two-column
rectangle replacement) performed much better if they started from an order computed by

SplitOrder rather than a default order.

7.3 Future work

The thesis leaves open the problem of finding variable ordering heuristics that are target
for canonical if-then-else DAGs rather than 0BDDs. LEven though SplitOrder is the single
best ordering heuristics for canonical if-then-else DAGs, it still, on the average, results in
20% larger DAGs than what could be achieved by trying all the heuristics presented in this
thesis.

The given that operator presented in Section 6.4.2 should be improved to propagate

simplifications more efficiently. This would greatly improve the accuracy of the cost function
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used by SplitOrder.
There are many more areas of interest that still need work.
e Better local transformations for factoring including testability-preserving transforma-
tions. The current transformations are rather ad hoc and part of this research would
involve getting them into a theoretical background that will make them easier to

explain. We also want to modify LocalFactor to preserve path-delay-fault testability.

e Improve synthesis for testability by finding better testability preserving transforma-

tions for factoring and sub-expression extraction.

e Better delay and area estimates are important for technology-independent minimiza-
tion. When optimizing for delay using two-column rectangle replacement we have
used the height of the DAG to estimate delay. Height is the most widely used estimate
for delay, but unfortunately it is not very accurate. When targeting FPGA look-up
table architectures we often use look-up table height as the delay estimate, but even

then, this is inaccurate since it does not take into account routing delay.

e Techniques for minimizing sequential circuits. ITEM has only recently been extended
to handle sequential logic as well as combinational logic, but so far all our optimization

techniques are for combinational logic only.

e Adaptations of other logic minimization work to if-then-else DAGs. We have had great
success with the rectangle covering techniques and also see use for other techniques

such as global flow algorithms [BT88].

e New technology mappers to cell libraries or cell generators. We are also looking for

mappers for sequential logic.

e Don’t-care information is used by the current factoring transformations, but not very
effectively. There are several ways in which the don’t-care usage could be increased,
and we need to determine which of these are effective and inexpensive. Also, the

algorithms that apply don’t-care information need to be sped up.
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