
University of CaliforniaSanta CruzRectangle Replacement and Variable Ordering: Two Techniques forLogic Minimization Using If-Then-Else DAGsA dissertation submitted in partial satisfactionof the requirements for the degree ofDoctor of PhilosophyinComputer EngineeringbyS�ren S�eJune 1994The dissertation of S�ren S�e is approved:Kevin KarplusMartine SchlagGlen LangdonDean of Graduate Studies and Research

Copyright c
 byS�ren S�e1994

Rectangle Replacement and Variable Ordering: Two Techniques forLogic Minimization Using If-Then-Else DAGsS�ren S�eabstractThis thesis explores logic minimization techniques for Boolean functions represented asif-then-else dags. In particular the thesis presents algorithms for two areas of multi-levellogic minimization: Rectangle Covering and Variable Ordering.Rectangle covering is the process of factoring and extracting common sub-expressions inBoolean functions. Boolean functions are represented as Boolean matrices, and rectangles ofthese matrices represent either a factor of a function or a sub-expression that can be sharedamong several functions. An e�cient heuristic algorithm two-column rectangle replacementfor �nding rectangles of a Boolean matrix is presented. The heuristic is particular wellsuited for optimizing circuits for area, while controlling the delay. A slight variation of theheuristic optimizes with respect to delay.Variable ordering is a problem speci�c to canonical if-then-else dags and ordered binarydecision diagrams. This thesis presents an improved depth-�rst ordering heuristic based onreconvergent fanout. This heuristic is fast and produces variable orders resulting in smallercanonical forms than previously published traversal-based ordering heuristics, and is suitablewhen using canonical form for veri�cation purposes. The thesis also presents a new orderingheuristic called SplitOrder, which is especially well suited for �nding good variable ordersfor ordered binary decision diagrams (obdds). SplitOrder constructs the variable order bybuilding an obdd top-down one level at a time, choosing the next variable such that thecorresponding level in the obdd has few nodes and represents expressions that are as smallas possible. SplitOrder is compared to several depth-�rst ordering heuristics and show thatwhen converting to obdds SplitOrder averages 25% fewer nodes than taking the best of 8depth-�rst techniques (37% better than the best single depth-�rst technique). Finally it

is demonstrated that applying SplitOrder to a set of expressions already represented as anobdd often results in signi�cantly better variable orders, thus making it bene�cial to iterateSplitOrder.All of the algorithms presented in this thesis have been implemented, tested, andinstalled as part of the logic minimizer item.

vAcknowledgementsI �rst of all want to thank my research advisor Kevin Karplus for his support andencouragement through the past 5 years. Kevin has been a source of inspiration ever sinceI joined the Ph.D. program at UC Santa Cruz|without his insight, ideas, and valuablesuggestions this thesis would have been impossible. I have been very fortunate to haveKevin as a research advisor and I truly will miss his sharp comments on the work I do inthe future. Thank you Kevin.I also wish to thank Martine Schlag for serving on my thesis committee, reading draftsof this thesis, providing useful comments, and catching errors. My thanks also goes toprofessor Glen Langdon for taking time to serve on my thesis committee and reading mythesis.Several fellow graduate students have been involved in the item project, and here I espe-cially want to thank Merhdad Parsa for many inspiring discussions during the developmentof item.I have several funds to thanks. Most of all I must thank Rotary International for selectingme as a recipient of a one year scholarship, without this scholarship I most likely wouldnever have come to study in the US. Through Rotary I also met friends who introduced meto the American way of living. After Rotary I was funded in part by the Danish ResearchAcademy for three full years. The Danish Research Academy is a government institution,which graciously supports Danish Ph.D. students in foreign countries by covering parts oftheir tuition and living expenses. They even make sure you don't loose touch with yourhome country by providing a round-trip ticket for each of the three years you are supported.Yes, we do pay a lot of taxes in Denmark, but it's worth it, and one day I will pay my share.My thanks also goes to the following private Danish funds who have supported me and mywife during my studies at UC Santa Cruz: Augustinus Fondon, Thomas B. Thriges Fond,Otto M�nsteds Fond, Fisker & Nielsens Fond, Laurits Andersens Fond, and Henry og MarySkovs Fond.

viMy friend S�ren Christensen, who works at Sun Microsystems, also has to be thanked.S�ren supported me with valuable computer resources, with which I have spend so manyhours. His hardware support made it possible for me to work from home and spend moretime with my wife.Finally, but not least, I would like to thank my wife Jeanette for her patience andsupport during the time it has taken to get this thesis done. She showed me that there wasa life outside school, but at the same time she encouraged me to stay long hours in front ofmy computer making sure I got some work done.

viiContentsAbstract iiiAcknowledgements v1. Introduction 11.1 Silicon compilation : 21.2 Logic synthesis : 31.3 Logic minimization : 51.4 Organization of the thesis : 82. Representing Boolean expressions 102.1 Sum-of-products form : 122.2 Factored form : 132.3 Binary decision diagrams : 142.4 If-Then-Else DAGs : 152.5 Two input NORs : 172.6 Representing Boolean networks : 173. Logic minimization techniques 213.1 Factoring : 213.2 Sub-expression extraction : 233.3 Canonical form, veri�cation and testability : : : : : : : : : : : : : : : : : : 254. ITEM 304.1 Reading and writing di�erent formats : 314.2 Optimizations in item : 314.2.1 LocalFactor : 32

viii4.2.2 Block covering : 334.2.3 Conversion to canonical form : 334.3 Mapping : 345. Rectangle Replacement 355.1 Introduction : 355.2 Blocks and rectangles : 375.2.1 Boolean matrices and blocks of Boolean matrices : : : : : : : : : : : 385.2.2 Replacing rectangles in a Boolean matrix : : : : : : : : : : : : : : : 405.2.3 The rectangle replacement problem : : : : : : : : : : : : : : : : : : : 425.3 Two-column rectangle replacement and if-then-else DAGs : : : : : : : : : : 425.3.1 Creating Boolean matrices from if-then-else DAGs : : : : : : : : : : 435.3.2 Rectangle replacement algorithm : 445.3.3 Selecting rectangles : 455.3.4 Tree balancing : 475.3.5 Expanding IF-expressions : 485.4 Results : 495.5 Conclusions and future work : 536. Variable ordering 556.1 Introduction : 556.2 Background : 566.3 Depth-�rst ordering heuristics : 616.3.1 Children of a node : 626.3.2 Incremental ordering heuristics : 626.3.3 Reconvergent ordering heuristics : 666.3.4 Results : 696.4 SplitOrder heuristic : 74

ix6.4.1 Choosing the cost function : 766.4.2 Computing ejv and ejv0 : 786.4.3 Complexity : 796.4.4 Ine�ciencies in computing given that : : : : : : : : : : : : : : : : : 826.4.5 Results : 836.5 The e�ect of variable order on other transformations : : : : : : : : : : : : : 986.6 Conclusion : 1007. Conclusions and future research 1027.1 Two-column rectangle replacement : 1027.2 Variable ordering : 1037.3 Future work : 104References 106

xList of Figures1.1 Di�erent abstraction levels for silicon compilation. : : : : : : : : : : : : : : 32.1 Binary decision diagram for abc+ :ad+ :bd : : : : : : : : : : : : : : : : : 152.2 If-then-else dag for abc+ :ad+ :bd. : 162.3 Boolean network with three primary outputs and 4 primary inputs. Theexpressions are represented are f1 = a+b, f2 = a+b+c, and f3 = a+b+c+d. 182.4 Multiply-rooted if-then-else dag. The three expressions represented aref1 = a+ b, f2 = a+ b+ c and f3 = a+ b+ c+ d. : : : : : : : : : : : : : : 193.1 Binary decision diagram for abc + :ad + :bd, with respect to the ordering(c; d; a; b). : 273.2 Canonical if-then-else dag for abc+:ad+:bd, with respect to the ordering(c; d; a; b). : 294.1 General outline of item. : 304.2 One view of the optimization phase in item. : : : : : : : : : : : : : : : : : 325.1 Boolean matrix for the functions f1 = a+ b+ de, f2 = b+ de+ c(f + g), andf3 = cf + cg. : 395.2 Boolean matrix for the functions f1, f2, and f3, after the new column b+ dehas replaced the columns b and de. : 425.3 The FindInputs routine. : 445.4 Multiply-rooted if-then-else dag representing the three expressions f1 = a+b,f2 = a+ b+ c, and f3 = a+ b+ c+ d. : 465.5 Boolean matrix for f1 = a+ b, f2 = a+ b+ c, and f3 = a+ b+ c+d, showingoverlapping rectangles. : 465.6 Replacing the highest valued two-column rectangle in the matrix of Figure 5.5. 47

xi5.7 Replacing the highest valued two-column rectangle in the matrix of Figure 5.6. 475.8 Replacing the only remaining rectangle with positive value in the matrix ofFigure 5.7. : 475.9 Comparison of the count and height of circuits minimized by LocalFactoringand by LocalFactoring plus two-column rectangle replacement optimizing forarea. : 515.10 Comparison of the count and height of circuits minimized by LocalFactoringand by LocalFactoring plus two-column rectangle replacement optimizing fordelay. : 515.11 Comparison of the count and height of circuits minimized by DMIG and byLocalFactoring plus two-column rectangle replacement for delay. : : : : : : 525.12 Comparison of the count and height of circuits minimized by two-columnrectangle replacement with and without expanding if-expressions. : : : : : : 536.1 The ratio of the sizes of canonical if-then-else DAG when using two randomorders. The x-axis is the size of when using the �rst random order. : : : : : 576.2 General outline of the optimization loop in item. : : : : : : : : : : : : : : : 606.3 General depth-�rst ordering algorithm. : 616.4 Merging of the orders for the three subdags of an if-then-else node in recon-vergent ordering heuristics. : 676.5 Reconvergent merging of the orders b < c < a and d < a < b. : : : : : : : : 686.6 Split order algorithm. : 756.7 Computing ejv and ejv0 in one traversal of e. : : : : : : : : : : : : : : : : : : 816.8 The result of computing f ja in an if-then-else dag representing the expressionf = ab0 + (c+ a0)(b+ c0). : 856.9 The size of obdd when using SplitOrder divided by the size when using thebest of the depth-�rst ordering heuristics. : : : : : : : : : : : : : : : : : : : 86

xii6.10 The size of canonical if-then-else DAG when using SplitOrder divided by thesize when using the best of the depth-�rst ordering heuristics. : : : : : : : : 886.11 The size of obdds when using SplitOrder on unoptimized examples dividedby the size when using the sis optimized examples. : : : : : : : : : : : : : : 916.12 The size of canonical if-then-else dags when using SplitOrder on unoptimizedexamples divided by the size when using the sis optimized examples. : : : : 926.13 The number of nodes (size) in canonical if-then-else dags divided by thethe number of nodes (siscount) in obdds. : : : : : : : : : : : : : : : : : : 926.14 Optimization script used with item to show the e�ect of variable order onother optimizations by LocalFactor. : 100

xiiiList of Tables5.1 Operators for determining the meanings of blocks in Boolean matrices ofdi�erent types. : 405.2 The result of two-column rectangle replacement applied to a network opti-mized by LocalFactor. : 506.1 Results when converting to canonical if-then-else dags using a depth-�rstvariable order. : 716.2 Results when converting to obdds using a depth-�rst variable order. : : : : 726.3 Results when converting large examples to canonical if-then-else dags usinga depth-�rst variable order. : 736.4 Results when converting large examples to obdds using a depth-�rst variableorder. : 736.5 Comparing depth-�rst ordering heuristics. : : : : : : : : : : : : : : : : : : : 746.6 Same as Table 6.5 except that we here compare obdds. : : : : : : : : : : : 746.7 Comparing the cardinality of exprSet computed by GivenThat with the minu-mum achievable. : 846.8 The size and height after applying the various ordering heuristics to an initialif-then-else dag. : 876.9 Comparing the result of applying SplitOrder to unoptimized examples andexamples that have been optimized with sis using the standard script. : : : 906.10 The result of normalizing each heuristic to the best of all heuristics. : : : : 946.11 Result of SplitOrder on examples from the ISCAS benchmark set. : : : : : 956.12 Result of iterating SplitOrder. : 976.13 Results from iterating the script in Figure 6.14. : : : : : : : : : : : : : : : : 99

11. IntroductionLogic synthesis and in particular logic minimization becomes increasingly more impor-tant as Very Large Scale Integration (VLSI) continues to o�er more and more complexity ina single integrated circuit. As the complexity grows so does the number of di�erent designstyles. Application speci�c intergrated circuits (ASICs) designed from scratch are still verypopular, but recently many varieties of programmable logic devices have gained increasingpopularity. The �eld-programmable gate array (FPGA) market is today the single fastestgrowing area of the logic market, and everyday new and more complex FPGAs are invented.The challenge is to develop a synthesis system that can handle all aspects of logic devicese�ciently. Conventional logic synthesis tools are based on a two-level logic representation,which has proven to be the right representation style when the targeted logic device alsorepresents logic in a two-level form. When logic is represented in multiple levels and bydevices that in no way resembles two-level logic components, it is not clear that sum-of-products form is the best representation.In this thesis we develop logic minimization algorithms using the if-then-else dag datastructure to represent Boolean logic. We demonstrate that Boolean expressions can berepresented e�ciently using if-then-else dags and that the if-then-else dag data structureis a
exible representation style when applying higher-level logic minimizations techniques tominimize Boolean expressions. The thesis addresses two major areas in logic minimization:extraction of common sub-expressions and conversion to canonical form under di�erentvariable orders. Techniques are demonstrated using the logic synthesis tool item, whereitem stands for If-Then-Else Minimizer.Although this thesis concentrates on higher-level technology-independent optimizations,published papers [Kar91d, Kar91a, Kar93] show that the if-then-else dag representationstyle indeed is e�cient when targeting various FPGA style logic components.In order to put the work presented in this thesis into perspective we describe the roleof logic minimization in a computer-aided design environment for production of very large

2scale integrated circuits (VLSI). Such an environment, in which logic minimization is justone small part, is also known as silicon compilation.1.1 Silicon compilationSilicon compilation is the translation from behavior to silicon. Depending on the levelof abstraction a behavioral description can range from a high-level algorithmic descriptionto a low-level description in terms of Boolean equations. Dave Johannsen [Joh79] �rstused the term silicon compilation in 1979 for an automatic synthesis system that assembledparameterized pieces of layout. Since then the term has been used in a much broader senseto de�ne the translation process from a higher-level description into layout [GDP86]. Themain purpose of silicon compilation can be summarized in three points:� To broaden the scope of designers who can construct ASICs. Using a silicon compiler,a designer is working at a higher level of abstraction and need not have any detailedknowledge about IC design, thus more designers can construct ICs.� To improve design quality. Ideally, any component instantiated by a silicon compileris free of errors and satis�es design rules. Errors can only propagate from a higherlevel, whereas manual design leaves many possibilities for introducing errors.� To increase design productivity. Design productivity is increased as a result of shorterdesign time due to the higher level of abstraction.Of course there are disadvantages involved in silicon compilation. A silicon compilerdesigned to cover all the aspects of a design and for a wide variety of applications, will haveto make compromises that a�ect the quality of the �nal design.In silicon compilation the term synthesis denotes the process of converting a functionalrepresentation of a circuit into a structural representation. Silicon compilation is separatedinto several abstraction levels as illustrated in Figure 1.1. The �gure illustrates that logicminimization is a part of logic synthesis.

3Level of synthesisBehavioralsynthesisFSMsynthesis Data pathsynthesisModulesynthesisLogicsynthesisLayoutsynthesis LogicminimizationTechnologymapping
RepresentationAlgorithmProcessor, RTLRegister transferBoolean equationsNetlist of gatesMask layoutFigure 1.1: Di�erent abstraction levels for silicon compilation. The behavioraldescription of a design is synthesized into control and data path structures duringbehavioral synthesis. In �nite-state-machine synthesis the control structures arestate encoded. Data path synthesis partitions the data structures into states andassigns registers to variables that are used in multiple states. The operationsperformed in each state are synthesized into functional units, which during modulesynthesis are converted into building blocks available in the target technology. Inlogic synthesis the combinational blocks of logic are synthesized into a netlist ofgates that implements the desired functions, meeting area and timing constraints.Finally, the netlist of gates is synthesized into a mask layout ready for production.1.2 Logic synthesisIn logic synthesis combinational blocks of logic are synthesized. If the register transferdescription contains any storage constructs, they will be set aside during and reconnectedafter the logic synthesis.The task of logic synthesis is to convert a description of a set of Boolean functions into

4a netlist of gates that implements the functions, meeting area and timing constraints ortesting requirements. Logic synthesis is divided into two important areas:Logic minimization and optimization, which involves changing the Boolean functionssuch that circuits built from them are better. The key parts of logic minimizationare factoring to reduce complexity and sharing common subexpressions to reduceredundant circuitry.Technology mapping, which takes the result of logic minimization, and �nds a realizationof the minimized equations in a particular circuit technology producing a netlist ofgates.Logic synthesis can be compared to language compilers; the �rst part, logic minimiza-tion, consists of technology-independent optimizations, which corresponds to language-independent optimizations and technology mapping corresponds to code generation andpeephole optimizations. K. Keutzer [Keu87] related the problem of technology mapping tothat of code generation in language compilers. From a set of decomposed functions (theresult of logic minimization) a circuit graph (known as the subject graph) in a simple basetechnology is constructed. The base technology should be as simple as possible to keep thenumber of di�erent nodes low. In [Keu87] the base technology is two-input NAND-gatesand inverters, while in work done by Karplus the if-then-else operator has been used as thebase technology [Kar89]. The logic function for each library gate is also represented as agraph (known as the pattern graph) in the base technology. For each logic function there aremany di�erent representations using the base technology, and hence many di�erent patterngraphs. Technology mapping now amounts to �nding the minimum cost covering of thesubject graph by choosing from the library of pattern graphs. This problem is well knownfrom code generation in language compilers, where each machine instruction is decomposedinto a DAG of atomic operations (the pattern graph), and where the optimized programitself is a DAG of atomic operations (the subject graph). As in language compilers, special-purpose techniques for speci�c targets often work better than general-purpose technologymappers.

51.3 Logic minimizationThe work in this thesis will concentrate on the logic synthesis level, with primary focuson technology-independent logic minimization. We do not distinguish between logic min-imization and optimization|both denote the changing of the representation of a Booleanfunction such that the representation is as \good" as possible. Even though minimizationleads one to think of methods that make the function representation small, we will use theterms to also include the cases where we in fact enlarge the functions to meet other goals,such as testing requirements.Logic minimization is divided into two-level and multi-level logic minimization. In two-level logic minimization the combinational logic is represented in a two-level form thatcorresponds directly to a physical representation in terms of Or-And (sum-of-products) logicor And-Or (products-of-sum) logic. In the sum-of-products form the goal of two-level logicminimization is to reduce the number of products and the number of inputs to each product.In VLSI a common method for implementing a two-level form uses a Programmable LogicArray (PLA). A PLA consists of an And-plane and an Or-plane. The And-plane producesthe products by performing an And operation on the inputs. The Or-plane produces theoutput signals by performing an Or-operation on the products fed by the And-plane. Theheight of a PLA is determined by the number of products, and the width is determined bythe number of inputs and outputs.The area of two-level logic minimization is mature and near-minimum PLA realizationscan almost always be found [BHMS84, Rud89]. Unfortunately, there are many designs forwhich a two-level representation is inappropriate. Not only can the number of products beexponential in the number of inputs, but a two-level representation of a design may also beconsiderably slower than a representation using multiple levels of logic.Multi-level logic minimizationminimizes with the object of implementing the �nal circuitin random logic. Most previous work in multi-level logic minimization is based on exten-sions to two-level logic minimization techniques [Bra87a, BRSW87a, BHJ+87, BCGH86];a notable example is the misII multi-level logic minimization system [BRSW87a]. Many

6multi-level minimizers use two-level minimization as a subroutine, usually based on theespresso two-level minimizer [BHMS84]. The objectives in multi-level logic minimizationare � To minimize area of the fabricated circuit.� To minimize critical path delay.� To make routability in layout synthesis easier.� To make testability of the �nal circuit easier, and in some cases, to provide a test set.Logic minimization is the technology-independent part of logic synthesis, but someknowledge of the target technology is useful for guiding the minimization in the rightdirection.Testing optimizations, or synthesis for testability, refers to optimizations that ensure thedesign is testable with a small set of test patterns. Logic synthesis has made it possible toproduce 100% testable circuits automatically. The result of logic minimization is a circuitthat, ideally, is irredundant, and therefore testable. Some techniques of logic minimizationcan be proven to preserve testability [Kar91b], and thus if the starting point is a testablecircuit the �nal circuit will also be testable.The objectives of logic minimization have been solved using two di�erent approaches:� The local-transformation/rule-based approach.� The algorithmic approach.The local-transformation/rule-based approach is a compiler-like approach, where thecircuit is represented as a graph. Transformations are applied to small parts of the graph totransform it into a functionally equivalent, but simpler graph. Local transformations are arather ad hoc set of rules, and it can be di�cult to assure that the number of included rulesis in fact su�cient. There is no limit to the number of rules that can be added to a system inorder to achieve logic minimization. An example of a rule-based system is LSS [DBG+84],where the level of speci�cation ranges from low-level close to hardware, through register-transfer-level to very high-level descriptions with no assumptions of structural decisions.

7The algorithmic approach is more global in the sense that small changes may a�ectthe entire circuit. The main global techniques are factorization, extraction of commonsubexpression extraction, and various algorithms for �nding common subexpressions andfactors. The most notable example of an algorithmic system is misII [BRSW87a], whichevolved from algorithms developed for two-level logic synthesis [BHMS84].More recently the local-transformation/rule-based and algorithmic approach has beencombined, where the algorithmic approach is used in the initial phase of logic minimization,and the rule-based approach is used towards the end and in particular for technologymapping. SOCRATES [BCGH86] and more resent versions of LSS [BT88] are examplesof systems combining the two approaches. A slightly di�erent approach is to use localtransformations and make them have global e�ect. This approach is used in item [Kar91c,Kar89] and is accomplished by using a global symbol table to store unique expressions. Ifa transformation transforms a part of the circuit into a form that already exists somewherein the circuit, the common form will be explicitly shared. However, there is no guaranteethat identical expressions will be recognized and transformed to a common form, and thusitem also incorporates some global techniques [SK91, SK93].Extracting common sub-expressions in a set of Boolean functions is important for min-imizing the area occupied by the logic equations. In thesis a new algorithm two-columnrectangle replacement for factoring and extracting common sub-expressions in Boolean func-tions is presented. The algorithm is an improved variant of Brayton's Brayton's rectanglecovering problem [Bra87a, BRSW87b], and it is particularly well suited for optimizing cir-cuits for area, while controlling delay. We also present a slight variation of the heuristic,which optimizes with respect to delay.Canonical form representation of Boolean expressions is an important part of logicsynthesis and veri�cation. In canonical form, two expressions representing the same logicfunction have identical structure. The identical structure of logically equivalent expressionsmake canonical forms useful for tautology checking and Boolean veri�cation. Booleanveri�cation is used frequently in logic synthesis to verify that minimization has not changed

8the function of a Boolean expression. If-then-else dags and binary decision diagrams havevery convenient canonical forms that are easy to compute. Unfortunately the sizes of acanonical if-then-else dag and ordered binary decision diagrams are very sensitive to thevariable order, and hence �nding a good order is essential for e�cient converting to canonicalform.A major part of this thesis investigates techniques for computing variable orders thatresult in small canonical forms. We have developed a new improved depth-�rst orderingheuristics based on reconvergent fanout. This heuristic is fast and produces variable or-derings that are superior compared to variable orders found by other depth-�rst orderingheuristics. We also introduce a new ordering heuristic called SplitOrder, which is especiallywell suited for �nding good variable orders for ordered binary decision diagrams (obdds). Anice property of the SplitOrder heuristic (not found with the depth-�rst ordering heuristics)is that it can be iterated to improve the resulting variable order.1.4 Organization of the thesisThe research in this thesis is concerned with technology-independent optimization.Chapters 2 and 3 are overviews of what has been done in logic minimization. Chapter 2summarizes di�erent methods for representing Boolean expressions. Chapter 3 shows somedi�erent techniques for logic minimization.In Chapter 4, the UC Santa Cruz If-Then-Else Minimizer item is described brie
y.item is an interactive multi-level logic synthesis tool, which contains several algorithms fortechnology-independent minimization and technology mapping. A major part of the workinvolved in this thesis has been designing and implementing parts of item, and all the ideaspresented in this thesis have been implemented in item.Chapter 5 and 6 are the main contributions to the area. Chapter 5 presents a newalgorithm for extracting common sub-expressions from a logic network. The technique,which we call two-column rectangle replacement, builds on the rectangle covering problemintroduced by Brayton et al. [BRSW87b].

9Chapter 6 is concerned with variable ordering for ordered binary decision diagrams(obdds) and canonical if-then-else dags. The chapter presents new heuristics for �ndingvariable orders that result in small canonical dags. The �rst part of the chapter investigatesdepth-�rst, traversal-based ordering heuristics and a new improved depth-�rst orderingheuristic based on reconvergent fanout is introduced. The second part of the chapterintroduces a new ordering heuristic called SplitOrder, which is especially well suited for�nding variable orders that result in small ordered binary decision diagrams. Experimentsare presented that show that even though SplitOrder is targeted for ordered binary decisiondiagrams it also results in good orders for canonical if-then-else dags.

102. Representing Boolean expressionsWhen designing a logic synthesis system, the �rst thing to decide is how to representBoolean expressions internally. There is no speci�c representation scheme that is best forall tasks of logic synthesis. One representation scheme may be the best for �nding commonsubexpressions and another may be better for verifying that two Boolean expressions areequivalent. In this chapter we will summarize four of the most common representationschemes used and we will demonstrate how these schemes are used when representing anetwork of functions.Boolean expressionsGiven a Boolean algebra B, the set of Boolean expression on n symbols x1; x2; � � � ; xn isde�ned using the following recursive rules:� The elements of B are Boolean expressions.� The symbols x1; x2; � � � ; xn are Boolean expressions.� If f and g are Boolean expressions, then so are{ (f) + (g){ (f)(g){ (f)0Expressions de�ned by the above rules are referred to as n-variable Boolean expressions.We relax the de�nition somewhat by allowing the removal of pairs of parenthesis (� � �)where such a removal doesn't introduce ambiguity.In a �nite Boolean algebra (the B in (B;+; �; 0; 1) is a �nite set), the set of Booleanexpressions is in�nite.Boolean functionsA function f : Bn 7! B is an n-variable Boolean function if and only if it can beexpressed by a Boolean expression. In the de�nition below we need to associate a function

11with each n-variable Boolean expression on B. Given a Boolean algebra B, the set of n-variable Boolean functions on B is de�ned by the following recursive rules:� For all elements b 2 B, the constant function de�ned byf(x1; x2; � � � ; xn) = b 8(x1; x2; � � � ; xn) 2 Bnis a n-variable Boolean function.� For any symbols xi in the set (x1; x2; � � � ; xn) the functionf(x1; x2; � � � ; xn) = xi 8(x1; x2; � � � ; xn) 2 Bnis a n-variable Boolean function.� If f and g are n-variable Boolean functions, then for all (x1; x2; � � � ; xn) 2 Bn thefunctions (f + g)(x1; x2; � � � ; xn) = f(x1; x2; � � � ; xn) + g(x1; x2; � � � ; xn)(fg)(x1; x2; � � � ; xn) = f(x1; x2; � � � ; xn) � g(x1; x2; � � � ; xn)(g0)(x1; x2; � � � ; xn) = (g(x1; x2; � � � ; xn))0are also n-variable Boolean functions.In a �nite Boolean algebra (the B in (B;+; �; 0; 1) is a �nite set), the set of n-variableBoolean expressions is in�nite. However, the set of n-variable Boolean functions is �nite.In a function table specifying an n-variable Boolean function there are jB jn rows specifyingall possible input combinations. Since each input combination can map to jB j values in therange, there must be jB jjBjn n-variable Boolean functions in a Boolean algebra with jB jelements. Since we are dealing with a 2-element algebra, there are 22n n-input functions.The mapping from Boolean expressions to Boolean functions is a many-to-one mapping,and this gives rise to the main purpose of logic minimization which is to �nd the \best"expression for representing a Boolean function.

122.1 Sum-of-products formBecause of two-level (PLA) minimization, sum-of-products form has become a very pop-ular, and probably the most common, way of representing Boolean expressions in logic syn-thesis tools. Many multi-level minimization techniques rely on methods developed for two-level minimization and the sum-of-products form seemed the obvious way to go [BRSW87a,BHJ+87]. Throughout this thesis we often use the terminology related to sum-of-productsform.A variable is a symbol representing a single coordinate of the Boolean space Bn (e.g.,x). A literal is a variable or its negation, or a constant (element of B) or its negation. (e.g.,x or x0).A cube, a product, or a term is either 1, a single literal, or a conjunction of literals inwhich no variable or constant appears more than once. It is common to view a cube as aset C of literals, such that x 2 C implies x0 62 C. For example fx; y; z0g is a cube, butfx; y; y0g is not.A Boolean expression is a disjunction of cubes. It is common to view an expression asa set F of cubes. For example, ffxg; fy; z0gg is an expression.A Boolean function is a mapping of vertices in the Boolean space to members of B, thatis, f : Bn 7! B. The mapping is de�ned by a Boolean expression.The support of a Boolean expression f (support(f)) is the set of variables, such that foreach v 2 support(f), v 2 C for some cube C 2 f , or v0 2 C for cube C 2 f .Two Boolean expressions f and g are said to orthogonal or disjoint if support(f)\ support(g)=;. For a Boolean function g the set of vertices in the Boolean space Bn that satis�esg(v) = 1, is said to be the on-set of g. The set of vertices that satis�es g(v) = 0, is said tobe the o�-set of g. The set of vertices for which we don't care about the value of g is saidto be the don't-care-set of g. A Boolean function for which the don't-care-set is empty is a

13completely speci�ed function. If the don't-care-set is non-empty then g is an incompletelyspeci�ed function. An incompletely speci�ed function is denoted by the triplet (f; d; r),where f , d, and r are completely speci�ed Boolean functions representing respectively theon-set, don't-care-set, and o�-set of the incompletely speci�ed function.An implicant of a Boolean function (f; d; r) is a cube c that is included in the union ofthe on-set and don't-care-set, f [d, and such that c \ r = ;.A Boolean function g is said to contain another Boolean function h if each implicant ofh is also an implicant of g.A prime implicant of (f; d; r) is an implicant that ceases to be so if any of its literals isremoved. This means that a prime implicant cannot be contained in any other implicant of(f; d; r).An irredundant expression for a Boolean function (f; d; r) is a disjunction of primeimplicants of (f; d; r) that represents (f; d; r) and ceases to do so if any of its cubes isdeleted.2.2 Factored formOne of the tasks of multi-level logic minimization is factoring of expressions to reducecomplexity. Unfortunately the sum-of-products form can not represent factored forms in asimple way. As an example consider the Boolean function f1 = bdg + b0d0g + dfg, which ina multi-level representation could look likeF = gs1s1 = ds2 + b0d0s2 = f + b;where s1 and s2 are factors which are represented in sum-of-products form.Factored forms are introduced to make multi-level representations easier. The factoredform for representing Boolean expressions is de�ned recursively as follows:� a literal is a factored form,

14� a sum of factored forms is a factored form,� a product of factored forms is a factored form.The expression bdg + b0d0g + dfg can be written in factored form as g(d(f + b) + b0d0).Note, that factored forms are not unique, for example,(d+ c)(a0 + b0) + (a+ b)(c0+ d0) + c0d+ a0b+ cd0 + ab0(a+ b+ c+ d)(a0 + b0 + c0 + d0)are distinct Boolean expressions both representing the same Boolean function. By usingDe Morgan's law the negation of a factored form is easily obtained and is itself a factoredform.The literature has reported several attempts to minimize factored forms, see [BHS90] fora list of references, but unlike sum-of-products form it is hard to determine if a given factoredform is optimal. Lawler [Law64] presented an algorithm for obtaining optimal factoredforms, but the approach is only feasible for low-complexity functions of few inputs [Wan89].2.3 Binary decision diagramsBinary decision diagrams o�er an alternative way of representing and manipulatingBoolean expressions [Bry86]. They have recently become very popular for veri�cationpurposes [Bry86, Bry85, MWBS88], and attempts to use them for logic minimization hasalso been reported [FFK88].A binary decision diagram is a directed acyclic graph that use a single universal operator:the if-then-else operator.De�nition 1: The if-then-else operator is a ternary Boolean function, with (if a then belse c) de�ned as ab+ :ac or, equivalently, (a+ c)(:a+ b).The if-then-else operator is very
exible and can directly represent 2-input AND, OR,XOR, and IF expressions.Binary decision diagrams restrict the if-part to always being a single variable, and arede�ned as follows:

15d cba 10 0 10 1 1010Figure 2.1: Binary decision diagram for abc+ :ad+ :bdDe�nition 2: A binary decision diagram is a binary directed acyclic graph with two leavestrue and false, in which each non-leaf node is labelled with a variable and has twoout-edges pointing to the then-part and the else-part. The meaning of a binary de-cision diagram is de�ned recursively as (if label(node) then meaning(then-part) elsemeaning(else-part)).Figure 2.1 shows a binary decision diagram for the Boolean expression abc+:ad+:bd.It should be noted that each non-leaf node itself represents a Boolean expression.Binary decision diagrams are easy to construct [Bry86], but without other restrictionsthey can be di�cult to simplify or compare for equality|a + b can be represented withtwo di�erent binary decision diagrams: one can have a as root and the other b as root. InSection 3.3 we will show how binary decision diagrams can be canonically represented usingBryant's canonical form.2.4 If-Then-Else DAGsA major focus of this thesis will be on if-then-else dags, which basically are extendedbinary decision diagrams that allows for sharing of the if-part [Kar89, Kar88].Like binary decision diagrams, if-then-else dags use the universal if-then-else operator,but unlike binary decision diagrams, there is no restriction that the if-part must be a singlevariable:

16{a b truec dFigure 2.2: If-then-else dag for abc+ :ad + :bd. The left branch from a nodepoints to the if-part, the center to the then-part, and the right to the else-part.De�nition 3: An if-then-else dag is a directed acyclic graph in which each leaf is labelledwith true or a variable, and each internal node has three out-edges pointing to the if-,then-, and else-parts. Each edge is labelled with either plus or minus. The meaning of anode in the dag is de�ned recursively:� The meaning of a leaf node is the label on the node.� The meaning of a pointer is the meaning of the node pointed to (if the label on theedge is plus) or its negation (if the label on the edge is minus).� The meaning of an internal node is(if meaning(if-part) then meaning(then-part) else meaning(else-part)).Two nodes are equivalent if their meanings are logically equivalent.An edge with a minus label pointing to true will sometimes be referred to as an edgepointing to false. In all �gures only minus labels are shown.Figure 2.2 shows the if-then-else dag for the Boolean expression abc+ :ad+ :bd, hereit is represented as (if (if a then b else false) then c else d).Like bdds, if-then-else dags are impractical to manipulate if they can appear in anyform. Several restrictions are placed on if-then-else dags to make them canonical, refer toSection 3.3. In practice however, we only require the following subset of the canonical formrestrictions to be satis�ed:Systematic-negation conditions: A systematic choice must be made between the equivalentdags (if a then b else c) and (if a0 then c else b) and between (if a then b else c)and (if a then b0 else c0)0. We require that if- and then-parts of a node be pointers

17labeled plus, with negation allowed only for the else-part or the pointer to a root ofthe dag.Weak distinct-cases condition: The then- and else-parts of a node must be di�erentpointers or the else-part must be a pointer labeled with minus. In canonical formthe restriction implies that the then- and else-parts are di�erent Boolean functions.No-constant-if condition: Triples whose if-part points to true are prohibited, and shouldbe replaced by the then-part.No-two-constant condition: Triples in which both the then- and else-parts point to true(with either plus or minus labels) are prohibited. The triple should be replaced by anappropriately labeled pointer to the if-part or to true.2.5 Two input NORsIf-then-else dags and binary decision diagrams use the single universal if-then-elseoperator. An alternative single universal operator, which has been used in LSS [DBG+84]is the two-input NOR gate. Obviously it is less
exible than the if-then-else operator as itcan only represent only 5 Boolean functions: 0, 1, x1, x01, and x01x02. However, it has provento be useful and successful in a rule-based logic synthesis system and it is also quite popularas the �ne-grain network for technology mapping [Rud89].2.6 Representing Boolean networksOne of the tasks of logic minimization is to �nd common subexpressions in a networkof Boolean functions constituting the entire block of logic we are optimizing. We thereforealso need a way to represent a network of Boolean functions as an entity, this entity is calleda Boolean network.One way of representing a set of Boolean functions is as a directed acyclic graph, in whicheach node represents a Boolean expression and all leafs are simple variables or constants

18
a+ b y1 + c y2 + dy1 y2a b c df1 f2 f3

Figure 2.3: Boolean network with three primary outputs and 4 primary inputs.The expressions are represented are f1 = a+b, f2 = a+b+c, and f3 = a+b+c+d.(constants are elements of the Boolean algebra, which are true and false for the two-element Boolean algebra). Some nodes are designated as output nodes and are referred to asprimary outputs; these nodes are associated with the Boolean functions we are representing.Similarly all leaf node variables, except the constants, are denoted primary inputs.In sum-of-products (or factored) form a Boolean network is dag in which each node isassociated with a variable yi and a sum-of-products (or factored) representation of a functionfi. An arc from node i to node j indicates that yi is used explicitly in the representation offj . Figure 2.3 shows a Boolean network for the set of functions f1 = a + b, f2 = a+ b+ c,and f3 = a + b + c + d. The functions are decomposed into f1 = a + b, f2 = f1 + c, andf3 = f2 + d.A Boolean network is a gate-level representation of a set of Boolean functions|eachnode is a gate, which is allowed to fanout to several other gates. Minimization of a Booleannetwork consist of two steps:� Rearranging the overall structure of the Boolean network. This involves �ndingcommon subexpressions, which are then extracted and added to Boolean networkas separate nodes.� Minimizing each node of the Boolean network separately.

19f1 f2 f3
a true btrue ctrue dFigure 2.4: Multiply-rooted if-then-else dag. The three expressions representedare f1 = a+ b, f2 = a+ b+ c and f3 = a+ b+ c+ d.The disadvantages of using a Boolean network like the one shown in Figure 2.3 isthat di�erent representations are used for the dag itself and for the nodes of the dag.The Boolean network is a graph structure, whereas the nodes are some representation ofBoolean expressions. Due to this di�erent representation, each node must be labeled withan intermediate variable yi, which is then used explicitly by other nodes. By using yi in therepresentation of fj (node i fans out to node j) rather than the expression that representsyi, information is lost. The lost information is summarized in the intermediate don't-careset, IMDC : IMDC =Xni yi � fiAn if-then-else dag can represent a network of functions directly. Instead of havingone root we allow an if-then-else dag to be multiply-rooted, where each root represents aprimary output. Figure 2.4 shows an example of a multiply-rooted if-then-else dag. Notice,that the representation is the same as in Figure 2.2, and the only extra information thatneeds to be kept is a table of pointers to the multiple roots.Minimization of a multiply-rooted if-then-else dag usually consists of� Minimization using local transformations at any level in the dag.� Finding common subexpressions.

20The advantage of if-then-else dags is that the universal if-then-else operator is the levelof representation for both a single Boolean expression and a network of Boolean functions.This means that there is no arti�cial partitioning into \gates", and hence the intermediatedon't-care set is non existent.Binary decision diagrams can represent network of functions in a manner similar toif-then-else dags, however, since a bdd cannot directly represent all 2-input gates andselectors, it is less
exible than an if-then-else dag, and some rearrangements are necessarywhen constructing a multiply-rooted bdd.

213. Logic minimization techniquesWe now turn towards solving the objectives of logic minimization. This chapter gives anoverview of previous and current work by other researchers and new work done in connectionwith this thesis.Some of the methods described in this section have been brie
y touched upon in preced-ing sections, but here we will be slightly more detailed. For each method we �rst describeits purpose in the context of logic minimization, and we then outline some techniques thathave been used for implementing the method and solving the particular problem.Before starting out it may be helpful to review the objectives of logic minimization asthey were mentioned in Section 1.3:Area, minimize the area and cost of the fabricated circuit.Delay, minimize the critical path delay.Routability, make routing of the �nal layout easier.Testability, make testing of the fabricated circuit easier, and in some cases provide a testset.All of the above objectives interact in that it is almost always impossible to �nd animplementation of a function that is optimal in all objectives. Optimizing for area isusually at the cost of increased delay and more di�cult routing. Testability can be hard topreserve when certain powerful transformations, such as the generalized bypass transformby McGeer [MBSS91], are used.3.1 FactoringFactoring is the process of transforming a Boolean expression to a factored form, seeSection 2.2. For example, G = bdg+ b0d0g + dfgcan be factored to

22G = g(d(f + b) + b0d0)In a Boolean network, see Section 2.6, where the underlying representation is sum-of-products form, factorization is one of the main techniques for minimizing the node functions.Another important technique used prior to factorization is 2-level logic minization as inespresso [BHMS84].In sum-of-products form, factorization of a function usually consists of �nding a \factorcandidate" and then \dividing" the function by this candidate. Division is not de�nedin a Boolean algebra, since the only operators are the binary + and � (also known asdisjunction and conjunction). However, we can de�ne an operation, which behaves like thedivision operation. Given two Boolean functions f and p, division of f by p generates aquotient q and a remainder r, such that the following equation is satis�ed:f = pq + r :Obviously such a division operation can not be unique.The function p is called a Boolean divisor of f , or if f = pq then p is called a Booleanfactor of f . The number of Boolean divisors and factors is clari�ed by the followingpropositions borrowed from [BHS90]:Proposition 1: A logic function p is a Boolean factor of a logic function f if and only iff:p = 0, i.e., if f is in sum-of-products form then every term of f contains p.Proposition 2: A logic function p is a Boolean divisor of a logic function f if and only iffp 6= 0, i.e., some term in f must not contain :p.Any function containing f is a Boolean factor of f . Any function not orthogonal to f isa Boolean divisor of f . Factorization of f is usually a recursive procedure, where we �rst�nd a factor candidate p, then perform the division to generate q and r, which are thenfactored recursively. The factor candidates are sought among the divisors of f , but only afew of the many divisors are suitable for factorizing f , and the real problem is to determinethese suitable divisors|performing the division is a simple task.

23The �rst way to restrict the number of divisors is to consider only algebraic divisors.The function p is an algebraic divisor of f if f = qp + r, where qp is non-null and q and pare orthogonal (support(p)[support(q) = ;), so that the multiplication pq can be carriedout without considering Boolean identities and complements (pq is an algebraic product).Brayton [BHS90] presents an algorithm that performs algebraic division, that is, given fand p it uniquely determines q and r such that,� pq is an algebraic product,� r has a few cubes as possible, and� pq + r and f are the same expression (having the same number of cubes).This algorithm is know as WEAK DIV and denoted by the symbol =.The number of candidate divisors can be further limited by considering only kernels. Akernel k of an expression f is an expression such that� k is the quotient of f and a cube c, k=f=c (c is called the co-kernel),� k is cubefree, meaning that k does not contain any factors that are simple cubes.Kernels provide a useful set of divisors to choose from when factoring a function, andvarious algorithms for �nding kernels are presented in [Bra87b].3.2 Sub-expression extractionConsider a Boolean function f represented by the Boolean expression F . De�ne a sub-expression of F as an expression G, such that f can be written asf = QG+R (3.1)where Q and R are Boolean expressions and Q is non-zero. Sometimes G is referred to asa factor or divisor of F and Q is referred to as the quotient of F with respect to G.Given two Boolean expressions F and G and their associated Boolean functions, acommon sub-expression of F and G is an expression C such that the functions f and g canbe written as

24f = Q1C + R1 (3.2)g = Q2C + R2 (3.3)Sub-expression extraction is the problem of �nding and extracting common sub-expressionin a network of functions. A new node is created for each common sub-expression and thenode is the made to fan out explicitly to all the expressions that use the common sub-expression.The purpose of sub-expression extraction is to maximize sharing in the network offunctions, and thus extracting sub-expressions will tend to reduce the area needed toimplement the functions. Adding nodes to the network will increase the number of levels inthe DAG and maybe increase the number of levels on the critical path, hence sub-expressionextraction may increase the delay. Extracting sub-expression tends to make placement androutability more di�cult since common nodes have multiple fanout and perhaps can't beplaced close to all fanout nodes at once. Testability can be preserved if all products in therewritten expressions (3.1){(3.3) are limited to be algebraic products [HJKM89].Types of sub-expressionsIn sum-of-products forms, common sub-expressions are sought among the set of cubesand kernels. Recall that a cube is the either 1, a single literal, or a conjunction of literals.A kernel of a function f is a cubefree (it contains more than one cube) divisor of f .In misII [BRSW87a] the common subexpressions are sought in the set of cubes andkernels, known as common-cube extraction and kernel-intersection extraction. In common-cube extraction divisors are cube intersections common to two or more expressions. Forexample, the functions f1 = abmf2 = abkhave the cube ab in common, and hence both f1 and f2 are divided by ab to obtain

25f1 = xmf2 = xkx = abIn kernel-intersection extraction divisors are kernel intersections common to two or moreexpressions. For example, the functionsf1 = abk + abl+ abmf2 = cdk+ cdl+ cdnhave the the cubefree expression k+ l in common. This expression, which is the intersectionof the kernels k + l +m and k + l + n, is divided into both f1 and f2 to obtainf1 = abx+ abmf2 = cdx+ cdnx = k + l3.3 Canonical form, veri�cation and testabilityIn canonical form the representations of two logically equivalent expressions are identical.We can distinguish between weak canonical forms, in which logically equivalent expres-sions have identical structure, but may occur in di�erent locations in memory, and strongcanonical forms, in which expressions in di�erent locations represent di�erent Boolean func-tions. Strong canonical forms are particularly useful, because they guarantee that any ex-plicitly represented subexpression is shared by all expressions that need it. Thus one of themost common tasks of logic minimization, that of �nding common subexpressions, can beachieved in part by converting an expression to strong canonical form. Unfortunately, themajor limitation of canonical forms is that subexpressions are not necessarily explicit, andone challenge is to come up with a canonical form that is capable of expressing as muchsharing as possible.

26Some representation schemes have more convenient canonical forms than others. Themost inconvenient canonical form is for the sum-of-products and factored form, where allimplicants are reduced1 to minterms, that is, the canonical form for a function (f; d; r)consist of all the minterms covered by the f [d. For example, the canonical form for thecompletely speci�ed function f(x; y; z) = x0y + z0 + xyz isfc(x; y; z) = x0y(z + z0) + (x+ x0)(y + y0)z0 + xyz= x0yz + x0yz0 + xyz0 + xy0z0 + x0y0z0 + xyzDue to the large number of minterms (up to 2n � 1) the sum-of-products canonical formquickly becomes impractical, and more recently researchers have adapted the binary decisiondiagram representation for veri�cation purposes [MWBS88, MF89].Binary decision diagrams and if-then-else dags have very convenient canonical forms.Bryant formulated a canonical form for binary decision diagrams [Bry86]. As originallydescribed, it is a weak canonical form, but adding a permanent symbol table to give uniqueids to each node makes it a strong canonical form. Bryant's canonical form is obtainedby ordering the set of variables, and constructing the binary decision diagram such thatthe variable at each node in the diagram is earlier in the order than the variables of itschildren. A second restriction requires that the bdd is reduced, meaning that it containsno nodes of the form (if i then x else x), nor does it contain distinct nodes representingthe same Boolean function. The reduced condition ensures that a single binary decisiondiagram will be in strong canonical form, but since each expression is handled separately,two independently built expressions may occupy di�erent memory locations, but be logicallyequivalent. The size of a canonical binary decision diagram is very dependent on the variableordering and �nding the best ordering is a co-NP-complete problem [Bry86]. The binarydecision diagram in Figure 2.1 is in canonical form with respect to the ordering (a; b; c; d),1 An implicant is reduced by adding literals to the implicant|this awkward terminology was introducedin espresso [BHMS84]

27cd da ab b0 1
0 101 0 101 0 101 0 1Figure 3.1: Binary decision diagram for abc + :ad + :bd, with respect to theordering (c; d; a; b).whereas the dag in Figure 3.1 shows the same function in canonical form with respect tothe ordering (c; d; a; b).Karplus [Kar89] formulated a di�erent strong canonical form for if-then-else dags.Conversion to canonical form consist of 7 rules, three of which (the systematic-negationcondition, the no-constant-if condition, and the no-two-constant condition) are usually usedin all representations of if-then-else dags, even non-canonical ones, refer to Section 2.4. Theremaining 4 rules areVariable ordering condition: A total ordering is imposed on the variables, and all thevariables in the if-part must be earlier in the order than all variables in the then- andelse-parts.A weaker restriction, that the variables of the if-part be disjoint from those of thethen- and else-parts is not enough to make the if-then-else dag canonical, but is allthat is needed for path-delay-fault testability. This weaker restriction is referred toas the separate-support condition.Distinct-cases condition: The then- and else-parts of a node must be distinct Booleanfunctions|exactly as in Bryant's canonical form.

28No-common-cut condition: In the triple (if a then b else c), b and c must not share boththen- and else-parts. If b = (if ba then bb else cc) and c = (if ca then bb else cc),then the correct representation is (if (if a then ba else ca) then bb else cc). Ifb = (if ba then bb else bc) and c = (if ca then bc else bb), then use (if (if a then baelse c0a) then bb else bc).No-collapsed-cut condition: In the triple (if a then b else c), b must not contain c as athen- or else-part. If b = (if b1 then bb else c) or b = (if b2 then c else bc), then thedag should be changed to (if (if a then b1 else false) then bb else c) or (if (if a thenb2 else true) then c else bc). If c is a constant (true or false), then this restrictionamounts to choosing left-associativity for commutative AND or OR operations. Thesymmetric test for c = (if c1 then cb else b) or c = (if c2 then b else cc) is also needed.The variable ordering and distinct-cases conditions correspond directly to the restrictionsBryant imposed on bdds to make them canonical.As in obdds the rule with the most in
uence on the size of the dag is the variableordering condition. The if-then-else dag in Figure 2.2 is in canonical form with respect tothe ordering (a; b; c; d), whereas the dag in Figure 3.2 shows the same function in canonicalform with respect to the ordering (c; d; a; b). Note, that Figure 3.2 is in fact an obdd, sinceeach if-branch is a single variable. The main di�erence between Figure 3.1 and Figure 3.2is that the if-then-else dag uses systematic negation, which allows an expression and itsnegation to be represented by the same subdag.Karplus [Kar91b] recently showed that if-then-else dags in canonical form are 100%path-delay fault testable, and hence testable for single and multiple stuck-at faults. Byconverting to canonical form and using testability-preserving transformations we can opti-mize for testability.In strong canonical form, identical expressions are stored in the same memory locationand hence common subexpressions will be explicitly shared. Unfortunately conversion tocanonical form isn't guaranteed to give the best decomposition of a set of functions|thisis clearly illustrated by Figure 2.2 and 3.2. Even if the best variable order is found, the size

29
{{cd atrued trueb trueFigure 3.2: Canonical if-then-else dag for abc + :ad + :bd, with respect to theordering (c; d; a; b).of the canonical dag may be larger than a corresponding non-canonical dag.In both obdds and canonical if-then-else dags equivalence checking can be done by asimple traversal of the dag (taking O(n) time), or, if in strong canonical form by comparing,two pointers (O(1)). Because equivalence checking is fast in canonical form, but equivalencechecking in non-canonical form is equivalent to the complement of the NP-complete problemsatisfiability, refer to Gary and Johnson [GJ79, page 261], we are almost guaranteed thatconversion to canonical form is exponential in the worst case.The NP completeness result guarantees that some functions will have exponentiallylarge obdds or canonical if-then-else dags. Bryant proved that some useful functions (themiddle output of an integer multiplier) have exponentially large obdds for any variableorder [Bry91]. His results apply equally well to if-then-else dags, though there are canonicalif-then-else dags with exponentially larger obdds.

304. ITEMitem is our if-then-else minimizer used as an environment for testing various logicsynthesis techniques. item is implemented in c++ and currently consists of approximately50,000 lines of code. item is an interactive system like the misII minimizer [BRSW87a].Figure 4.1 shows a general overview of item. item constructs its initial multiply-rootedif-then-else dag from some network description. Various optimizations are then applied tothe if-then-else dag to improve area, delay, or testability of the circuit. Once optimizedthe circuit is mapped to a target technology. item currently supports mapping to �eld-programmable gate-arrays and complex gates. The optimizations and the mapping can beiterated to improve results. After the �nal mapping, item can output a netlist in di�erentformats, which then can be passed to other synthesis tools.ReadOptimizeMapWrite
BLIF, EQN, PLAArea, Delay, TestabilityXilinx, ActelBLIF, EQN, PLA, XNFFigure 4.1: General outline of item. After reading a description of a network,various optimizations are applied. The mapping phase supports mapping to �eld-programmable gate-arrays and complex gates. Both the mapping phase and theoptimization phase can be iterated to improve results. Finally, item can output anetlist in di�erent formats, which then can be passed to other synthesis tools.

314.1 Reading and writing di�erent formatsMost of the standard benchmarks are available in either the Berkeley Logic InterchangeFormat (BLIF, for short) or in the Berkeley equation format (EQN, for short). BLIFis capable of expressing both combinational and sequential logic, whereas EQN can onlyexpress combinational logic.To allow comparisons with other tools, particularly misII, we have chosen to use theBLIF and EQN �le formats as our main interchange formats for both input and output. Wealso use other formats as needed (for instance, we can output XNF format after mappingto Xilinx cells).The IO module of item reads a textual �le containing a description of a circuit, andconverts to the internal if-then-else dag format. Because the di�erent formats have dif-ferent underlying models of the circuits, conversions are more than just a simple textualsubstitution. For example, conversion of the sum-of-products format in BLIF to if-then-elsedags requires something roughly equivalent to single-cube factoring [Kar89].4.2 Optimizations in ITEMAfter constructing the initial multiply-rooted if-then-else dag we apply optimizations toproduce a dag that meets the requirements we have set forth. Generally the optimizationsare technology independent, but some knowledge of the target technology can be used inguiding the optimizations in the right direction. For instance, in a technology, where routingis a problem, it might be bene�cial to minimize the number of edges in the dag. Someother technologies would perhaps bene�t from minimizing the number of nodes in the dag.item currently o�ers the following optimizations:� Minimizing using local transformations.� Conversion to canonical form for veri�cation or to create a fully testable circuit.� Finding shared sub-expressions using local and global techniques.

32Compute a variable orderLocal-Factor BlockCovering CanonicalFormFigure 4.2: One view of the optimization phase in item. First some variable orderis computed, then di�erent optimizations are applied. The variable ordering stepcan be skipped if the optimization step itself does not rely on variable order. If novariable is computed the system will use a default order if needed. The highlightedareas are the subjects of Chapter 5 and Chapter 6 of this thesis.Figure 4.2 shows one way to organize the optimizations in item. Many of our optimiza-tions rely on an ordering of the input variables before they can be applied, hence the �rststep is to compute a variable order. The various optimizations can be iterated to improveresults. The double circled areas of Figure 4.2 are the original contributions and are thetopics of the remaining chapters in this thesis.4.2.1 LocalFactorOur initial work in logic minimization used local transformations applied to all portionsof the dag, generally in a depth-�rst traversal from the outputs. We came up with two setsof transformations: Printform and LocalFactor.The Printform transformations [Kar89] preserves testability, but are not good at min-imizing circuit area. The reason they are not good circuit minimizers is that they wereoriginally designed to minimize the size of printed Boolean expressions, not multi-level cir-cuits. They attempt to minimize the pcount measure [Kar89], which predicts printing size

33quite well, but which is not a good predictor of circuit area or delay.The LocalFactor transformations are a rather ad hoc collection of transformations thatdo an adequate job of minimizing circuit area [Kar89]. Unfortunately, they do not preservepath-delay-fault testability. LocalFactor relies on variable order, since one of its mostpowerful transformations is conversion to canonical form applied small parts of the dag.Unlike conventional sum-of-products minimizers, which minimize the number of literals inthe network, LocalFactor can be used to minimize whatever estimator we have decided bestpredicts the property (area or delay) that we are trying to minimize.4.2.2 Block coveringThe local transformation techniques often �nd interesting ways to rearrange functions,but the resulting expressions often have common subexpressions that have not been merged.The block covering1 algorithms developed for misII [BRSW87b, BRSW87a] are verye�ective at �nding shared expressions, but are too expensive to apply to entire circuits(misII applies them only at the gate level). We have developed a cheaper variant, two-column rectangle replacement , which can be applied to Boolean matrices derived fromentire large circuits, and which is quite e�ective at �nding sharing. The heuristics ofthe replacement strategy can be tuned to maximize sharing (minimizing circuit area) orto balance operator trees (minimizing delay) [SK91]. Two-column rectangle replacementpreserves path-delay-fault testability [Kar91b]. Two-column rectangle replacement does notrely on variable order. Chapter 5 presents the two-column rectangle replacement we havedeveloped.4.2.3 Conversion to canonical formConversion to canonical form has several advantages. As pointed out in Section 3.3 anif-then-else dag in canonical form is 100% path-delay fault testable, and hence testablefor single- and multiple stuck at faults. This means that converting to canonical form can1 Block covering is also referred to as rectangle covering

34be the �rst step in synthesis for testability, which can then be followed by applying onlytestability-preserving transformations. The most e�ective testability-preserving transfor-mation available in item appears to be conversion to canonical form with di�erent variableorderings, optionally followed by two-column rectangle replacement.Strong canonical form also o�ers the detection of shared subexpressions, since logicallyequivalent expressions are stored in the same memory location. This is exactly whatLocalFactor makes use of when it converts small parts of the dag to canonical form.Unfortunately the size of an if-then-else dag in canonical form is very sensitive to thevariable ordering, and hence �nding a good ordering is essential for e�cient conversionto canonical form, and for achieving good minimization. In Chapter 6 we present severalvariable ordering heuristics for �nding variable orders that result in small canonical forms.4.3 MappingITEM currently supports mapping to complex gates and �eld-programmable gate ar-rays [Kar91d, Kar91a]. Field-programmable gate array mappers have been developed forXilinx-style arrays (Xmap [Kar91d], Xcmap and Xtmap [Kar93]) and for Actel-style arrays(Amap [Kar91a]). Both Amap and Xmap preserve testability.

355. Rectangle ReplacementThis chapter describes the use of rectangle replacement for multi-level logic minimizationon functions represented as if-then-else dags. We de�ne the concept of Boolean matrices,and give formal de�nitions of blocks and rectangles and their meanings. We introduce anew heuristic, two-column rectangle replacement for �nding rectangle coverings of Booleanmatrices. This heuristic is particularly well suited for optimizing circuits for area, whilecontrolling the delay. A slight variation of the heuristic optimizes with respect to delay.The results of using two-column rectangle replacement on if-then-else dags are reported forseveral benchmark examples.5.1 IntroductionThis chapter is concerned with factoring and recognizing shared subexpressions inBoolean functions. We use a technique we call two-column rectangle replacement of Booleanmatrices. Boolean functions are represented as Boolean matrices, and rectangles of thesematrices represent either a factor of a function or a subexpression that can be shared amongseveral functions. The rectangle replacement problem is a variant of Brayton's rectangle-covering problem [Bra87a, BRSW87b]. In both we �nd sets of rectangles that cover allthe 1's of the Boolean matrix|rectangle replacement di�ers from rectangle covering in theway rectangles are replaced. In Brayton's rectangle covering, rectangles were replaced inparallel|the aim was to �nd a set of rectangles that best covered a Boolean matrix, andthen replace all of these rectangles in one step. In rectangle replacement and two-columnrectangle replacement, we replace rectangles in sequence, that is, we �nd and replace onerectangle at a time, until the Boolean matrix is covered. Because the Boolean matrixchanges after each replacement, the solution to the two problems may di�er signi�cantly.We show how to create Boolean matrices from functions represented as if-then-elsedags, and we give formal de�nitions of blocks and their meanings. We introduce a newheuristic, two-column rectangle replacement, a simple yet e�cient method for optimizing

36multi-level logic. Even though our starting point is if-then-else dags, two-column rectanglereplacement does not rely on the if-then-else dag representation|it could be applied anytime that rectangle covering is useful.In Section 5.2 we focus on Boolean matrices and blocks and rectangles of Booleanmatrices. We formally de�ne the semantics of blocks and rectangles, and we show howto replace rectangles of the matrix with simpler rectangles, while maintaining the meaningof any blocks in the matrix. We �nally de�ne the rectangle replacement problem, whichconsists of �nding and replacing rectangles in the right order.In Section 5.3, we use two-column rectangle replacement in item. We �rst show how tocreate Boolean matrices from if-then-else dags, and then we give an algorithm for solving therectangle-replacement problem. This algorithm is based on a heuristic method for selectingthe order of rectangle replacement. Two-column rectangle replacement consists of �ndingrectangles with exactly two columns in the matrix. These two columns have associatedBoolean expressions, which will be combined into a new expression using an associative andcommutative logic operator.Two-column rectangle replacement is well suited for optimizing multi-level logic withrespect to both delay and area. For all the cases we are considering in this chapter, anexpression is created from several other expressions by pairwise combining expressions withan associative and commutative operator. It has been shown [Kar89] that the height of anif-then-else dag is a usable, though not very good, delay estimate for the �nal circuit. Theeasiest way to keep the height under control is to balance the dag when we are creating it.Clearly, if we combine the if-then-else dags such that low height dags gets combined �rst,we achieve a form of tree balancing that will keep the delay under control. Thus it is possibleto optimize for delay by replacing two-column rectangles in the order of increasing height.A similar tree balancing approach named DMIG, has been used in DAGMAP [CCD+92] totransform an arbitrary Boolean network into a n-input network of minimum height, whereall gates have at most n inputs. item also includes a direct implementation of DMIG and inthe results section we compare two-column rectangle replacement with DMIG. The original

37idea behind DMIG is due to Wang [Wan89], who proposed a timing-driven decompositionalgorithm for timing optimization.Section 5.4 presents some results of minimizing multi-level logic benchmarks using two-column rectangle replacement.MotivationThe original motivation behind two-column rectangle replacement was the need for aglobal optimization technique that would merge logically equivalent if-then-else dags.Local factoring techniques can be used to factor if-then-else dags [Kar89]. If factor-ing results in two identical if-then-else sub-dags they will be merged into a single copy.Unfortunately local factoring techniques fail to give us the global view needed to identifythat that two expression can be identical even though they are represented di�erently. Forinstance, a+ b+ c could be represented as (if (if a then true else b) then true else c) oras (if a then true else (if c then true else b)). If both the representations are used, theywill not be recognized as being the same expressions, unless they happen to be transformedto a common form. Although we have used canonical forms to merge such common subex-pressions, the computation of canonical forms is often too expensive, as they will sometimesbe exponentially large, even for some common circuits such as multipliers [Bry91].In this chapter we explore rectangle replacement, a variant of rectangle covering [Bra87a,BRSW87b], which has been useful for �nding common subexpressions in sum-of-productsminimizers, and see how it can be applied to if-then-else dags. We use rectangle replacementprimarily to recognize commonality in commutative and associative operations|roughly theequivalent of the common-cube extraction operation of misII.5.2 Blocks and rectanglesThe rectangle-covering problem applied to logic synthesis was �rst presented by RobertBrayton [Bra87a]. He showed how a set of Boolean functions could be represented asa Boolean matrix, and that �nding \rectangles" of this matrix was the same as �nding

38factors of expressions and common subexpressions of a network of functions. In this sectionwe introduce rectangle replacement, a serialized version of rectangle covering.We de�ne only the concepts needed to introduce and prove the correctness of our two-column rectangle replacement algorithm.5.2.1 Boolean matrices and blocks of Boolean matricesA Boolean matrix is a two-dimensional matrix representing a logic expression or aset of logic expressions. Each row and each column in the matrix is associated with itsown expression. The row expressions are built out of some combination of the columnexpressions. For example, if the rows are sum-of-products expressions, then each columnwould correspond to a product term (cube) in some row expression. We are not limited tosum-of-products or product-of-sums representations, but allow arbitrary expressions on thecolumns and any associative, commutative operation to combine the column expressionsinto rows.An entry Brc in the Boolean matrix takes the values 1, 0, and d depending on whetherthe expression for row r contains column c (1), doesn't contain it (0), or we don't carewhether it contains it or not (d).Consider the functions f1 = a+ b+ def2 = b+ de+ c(f + g)f3 = cf + cg;which are all sum-of-products. A Boolean matrix representing these functions is shown inFigure 5.1|the matrix is referred to as an OR-matrix, since each row is the OR of thecorresponding columns.We need to be able to talk about parts of the matrix as single entities, and so we de�nea block:

39OR-matrix a b de c(f+g) cf cgf1 = a + b+ de 1 1 1 0 0 0f2 = b+ de+ c(f + g) 0 1 1 1 0 0f3 = cf + cg 0 0 0 0 1 1Figure 5.1: Boolean matrix for the functions f1, f2, and f3. This is an OR-matrix,in that each row is the OR of the corresponding columns. Note that the columnsare not limited to simple AND-terms.De�nition 4: A block of a Boolean matrix B is any subset R of rows and any subset C ofcolumns in B.The meaning of a row or a block depends on the operation that relates the row andcolumn expressions in the Boolean matrix.De�nition 5: After setting each don't-care independently to either 0 or 1, the meaning of arow in an OR-matrix is the expression obtained by or-ing together all the column expressionsfor columns that have a 1 in the row. That is,meaning row(r; C; B) = _c2C;Brc=1 c :De�nition 6: The meaning of a block in an OR-matrix is the expression obtained by and-ing together the meanings of each row in the block. The operator should be a true Booleanoperator, so that abab = ab. That is,meaning block((R;C); B) = r̂2Rmeaning row(r; C;B) :The de�nitions for the meaning of rows and blocks in AND and XOR matrices aresimilar|we just change the operators according to Table 5.1. We require that both opera-tors be commutative and associative, but do not require distributivity.In order to handle the don't-cares correctly when we de�ne replacement of blocks, weneed to de�ne acceptable row expressions:De�nition 7: Row r2 is an acceptable replacement for row r1 if for every setting s2 of thed's in r2 there exists a setting s1 of the d's in r1, such that the meaning of r1 based on thesetting s1 is the same as the meaning of r2 based on the setting s2. Note that the rows donot have to use the same columns.

40XOR-matrix AND-matrix OR-matrixrow from columns � V Wblock from rows V W VTable 5.1: Operators for determining the meanings of blocks in Boolean matricesof di�erent types. Each row expression is the �rst operator applied to the selectedcolumn expressions. The meaning of entire block is the second operator appliedto the row expressions.We can similarly de�ne a block to be an acceptable replacement if for every setting ofdon't-cares in the new block, there is a setting of the don't-cares in the original block thatgives the two blocks the same meaning.Finally, we need the de�nition of a rectangle1. In Figure 5.1 the �rst two rows of thematrix have two columns that have 1's in both rows. We call such combinations of rowsand columns a rectangle:De�nition 8: We say that a block (R;C) of a Boolean matrix B is a rectangle if for everyr 2 R and c 2 C, we have Brc 6= 0.5.2.2 Replacing rectangles in a Boolean matrixThe main operation in rectangle replacement is to add a new column to a matrixcorresponding to some rectangle of the matrix, and to replace 1's in the original rectanglewith the 1's in the new column.The replacement should preserve the meaning of important blocks of the Boolean matrix.There are two particularly interesting cases: each row represents some function we wish tocompute, or the entire matrix interpreted as a block is the function which we wish tocompute. In this chapter we consider only the �rst case, which corresponds to commoncube extraction in misII.Lemma 1 (Replacement): A rectangle of a matrix can be replaced by adding a newcolumn Cnew, whose associated expression is the meaning of the rectangle, to the matrix.Putting a 1 in Cnew in each row contained in the rectangle and changing the 1's in the1 We prefer the name full block, but for compatibility with Brayton's work we have used rectanglethroughout this chapter.

41rectangle to d's, makes any row in the new matrix an acceptable replacement for the samerow in the old matrix.In fact, the meaning of any block in the old matrix containing all the columns of therectangle can be acceptably replaced by the corresponding block with column Cnew added inthe new matrix.The proof follows immediately from the de�nition of the meaning of a block and thede�nition of acceptable replacement, by setting d's in the rectangle before replacement equalto 1, and setting other d's to match the setting in the new block. Note that the lemma isessentially the correctness proof for misII's cube extraction algorithm.Note, that Lemma 1 is for the OR-matrix and AND-matrix only. For the XOR-matrix, we must make sure that each 1 in the matrix is covered an odd number of times.Alternatively, we can modify the de�nition of a rectangle, so that it is not allowed to containd's.Replacing a rectangle in the matrix reduces the number of 1's in the matrix by anamount we call the value of a rectangle:De�nition 9: The value of a rectangle is equal to the di�erence in the number of 1's in thematrix before and after replacement of the rectangle. Since the replacement of a rectangleresults in one new column with a 1 for each row of the rectangle, the value of a rectangle isthe same as the number of 1's in the rectangle minus the number of rows in the rectangle.As an example, consider the Boolean matrix shown in Figure 5.1. If we replace therectangle consisting of the �rst and second row and the second and third column (value=2),we end up with the matrix shown in Figure 5.2. Rectangles that span more than onerow and more than one column are particularly useful to replace, as the new column, inthis case b+ de, will then be explicitly used as a shared subexpression for the rows of therectangle. Note that this technique unfortunately does not recognize the commonality ofc(f + g) and cf + cg. misII �nds such commonality using kernel extraction, however, thisis a fairly expensive technique and is only applied to small expressions. We are still lookingfor methods to �nd such common subexpressions at an acceptable cost.

42OR-matrix a b de c(f + g) cf cg b+ def1 = a+ b+ de 1 d d 0 0 0 1f2 = b+ de+ c(f + g) 0 d d 1 0 0 1f3 = cf + cg 0 0 0 0 1 1 0Figure 5.2: Boolean matrix for the functions f1, f2, and f3, after the new columnb+ de has replaced the columns b and de.5.2.3 The rectangle replacement problemIn Section 5.2.2 we saw that a rectangle could be taken out of the Boolean matrixand replaced by a block consisting of one column representing the meaning of the originalrectangle, and containing the same rows. We de�ne the rectangle-replacement problem to bethe problem of sequentially replacing rectangles of a Boolean matrix until all the rectangleshave value zero or less. This termination condition guarantees that each row has at most one1 in it, and rows that start out with 1's end up with exactly one 1. The order in which wereplace rectangles a�ects the quality of the resulting representation for the functions. Therectangle-replacement problem is to choose an ordering for the replacement of rectanglesthat minimizes the predicted area or delay for the circuit. Solving the rectangle-replacementproblem also solves the rectangle-covering problem as we have covered all the 1's in theBoolean matrix.For the rest of this chapter we will focus on replacement problems in which each rowof the Boolean matrix represents a function we need to compute (the equivalent of misII'scube extraction). After solving the rectangle-replacement problem, we replace each rowexpression by the column expression for which the row has a 1. A column expression maycontain a row expression as a subexpression, in which further substitution is done. We dothe replacement by a depth-�rst traversal of the dag from the roots (outputs). Each edgeof the �nal dag is traversed only once, and so the replacement is quickly done.5.3 Two-column rectangle replacement and if-then-else DAGsIn this section we will show how we apply the rectangle-replacement problem to mini-mization using if-then-else dags. The technique that will be described corresponds roughly

43to cube extraction in misII.Section 5.3.1 will describe how we create Boolean matrices from multiply-rooted if-then-else dags. Section 5.3.2 will outline our algorithm for solving the rectangle-replacementproblem, and Section 5.3.3 gives our new heuristic for choosing the order of rectanglereplacement.5.3.1 Creating Boolean matrices from if-then-else DAGsAn if-then-else triple can directly represent �ve di�erent Boolean operators: NOT, AND,OR, XOR, and IF. Since we consistently require systematic negation to be satis�ed, referto Section 2.4, we have eliminated all NOT-triples, and so all triples can be classi�ed intoone of the other four types.Three of these triples, the AND, OR, and XOR, are associative and commutative, andconsequently can represent the same expression in more than one way. By using De Morgan'slaws we merge the sets of AND- and OR-expressions, and create two Boolean matrices: theOR-matrix for the combined AND- and OR-expressions, and the XOR-matrix for XOR-expressions.The OR-matrix and the XOR-matrix are built by traversing the if-then-else dag fromeach root and looking for AND-, OR-, and XOR-triples. Whenever we �nd one, we checkto see if any of the children of the triple (its inputs) are triples of the same type, in whichcase we recursively include them in the row expression we are about to create. The inputsto the expression become columns of the matrix.For example, in traversing f3 of Figure 2.4, we would discover that the triple pointedto by f2 is also an OR-expression and similarly with f1, thus giving us a+ b+ c+ d as onerow in matrix.The routine FindInputs shown in Figure 5.3 is used when �nding the inputs of acommutative triple e. The routine determines the immediate inputs of e (the non-constantchildren of e), and recursively �nds the inputs of these. The recursion stops when a child-triple is of di�erent type than its parent. FindInputs has two optional arguments, which can

44FindInputs(e, op, prop, limit)if (Operator(e) 6= op)return fegif (Operator(e) = IfOp)return fe.i,e.t,e.egif (Property(e,prop) � limit)return feg(i1,i2) the two inputs to the operator represented by ereturnfFindInputs(i1,op,prop,limit) [FindInputs(i2,op,prop,limit)gFigure 5.3: FindInputs takes as argument an if-then-else triple e and the operatorop we are �nding inputs for. The argument prop represents an integer propertyassociated with e, which if greater than limit, stops the recursion. Both prop andlimit are optional arguments.be used to stop the recursive traversal at triples that satisfy some constraint. For example, ifa triple has a high fanout, it may be bene�cial to avoid restructuring the triple by changingits associativity or commutativity, thus we can tell FindInputs to stop recursion at tripleswith more than n fanouts. The type of constraint is speci�ed by the argument prop, whichidenti�es a certain property stored with a triple (like the fanout of a triple). The recursionstops at triples whos property value exceeds or equals the limit limit.5.3.2 Rectangle replacement algorithmAfter creating a matrix we apply the rectangle replacement algorithm to it. The algo-rithm replaces rectangles of a Boolean matrix B sequentially by using two sub-procedures:select rectangle, which selects a rectangle based on a heuristic method described inSection 5.3.3,replace rectangle, which replaces a rectangle according to the replacement strategy pre-sented in Section 5.2.2.

45The algorithm itself is fairly simple:replace rectangles(B) =while (9 rectangles with value>0 in B) dof rect = select rectangle(B)replace rectangle(rect; B)gWhen the algorithm terminates, each row contains exactly one 1 (a row with n 1's contains arectangle with value n�1). We create a new multiply-rooted if-then-else dag by traversingthe old one from the roots, replacing each sub-dag that corresponds to a row with thecolumn expression for which that row has a 1. We continue the traversal with the childrenof the column expression, so that all necessary replacements are done in one traversal.5.3.3 Selecting rectanglesSelecting rectangles for replacement is the most di�cult part of rectangle covering[Bra87a]. The main step in rectangle replacement is to add a new column to the Booleanmatrix, where the new column is an acceptable replacement for some rectangle of thematrix. Because the if-then-else dag representation forces n-ary associative operators to berepresented as binary trees, we create new columns from exactly two existing columns. Thismeans that we need only look at two-column rectangles, rather than multi-column rectangleswhere several columns are combined arbitrarily. The two-column rectangle replacementheuristic is formulated as follows:Replacement method 1 (Two-column rectangle replacement): As long as there arerectangles containing exactly 2 columns with value>0, replace the rectangle of greatest value.If two or more rectangles have the same value, choose the one in which the new column wouldhave the earliest estimated arrival time.By considering only two-column rectangles and only one rectangle at a time, we havereduced the problem of �nding rectangles. Also the work associated with �nding theright two-column rectangle is considerably less than that of �nding the right multi-columnrectangle (a prime rectangle [Bra87a, BRSW87b]). In a matrix with n columns there are�n2� possible two-column rectangles and 2n possible prime rectangles. Hence, we can a�ord

46-a bfalsef1 a trueb truec true df3 --b false ac truef2Figure 5.4: Multiply-rooted if-then-else dag representing the three expressionsf1 = a+ b, f2 = a+ b+ c, and f3 = a + b+ c+ d.OR-matrix a b c df1 = a+ b 1 1 0 0f2 = a+ b+ c 1 1 1 0f3 = a + b+ c+ d 1 1 1 1Figure 5.5: Boolean matrix for f1 = a+ b, f2 = a+ b+ c, and f3 = a+ b+ c+ d,showing overlapping rectangles.to enumerate all two-column rectangles and choose the best, whereas choosing a primerectangle must resort to a limited enumeration.As was noted in Section 5.2.2, rectangles spanning more than one row are particularlyuseful to replace. This is also re
ected in the two-column rectangle replacement method,as we speci�cally choose the rectangle with the highest value (the value of a two-columnrectangle of all 1's is equal to the number of rows the rectangle covers). Choosing the two-column rectangle of highest value for replacement also handles overlapping rectangles. Tosee this, consider the matrix show in Figure 5.5 for the multiply-rooted dag in Figure 5.4.Replacing the highest valued two-column rectangle results in the matrix shown in Figure 5.6,where a + b is explicitly used by all rows. Continuing to replace the highest valued two-column rectangle of Figure 5.6, results in Figure 5.7, and �nally, replacing the last two-column rectangle gives us the matrix shown in Figure 5.8. An if-then-else dag representationcorresponding to the expressions in the last matrix is shown in Figure 2.4.The primary goal of two-column rectangle replacement is to optimize with respect toarea, but if two or more rectangles have the same value, we choose the one that will result

47a b c d a+ bf1 = a+ b d d 0 0 1f2 = a+ b+ c d d 1 0 1f3 = a+ b+ c+ d d d 1 1 1Figure 5.6: Replacing the highest valued two-column rectangle in the matrix ofFigure 5.5. a b c d a+ b (a+ b) + cf1 = a+ b d d 0 0 1 0f2 = a+ b+ c d d d 0 d 1f3 = a+ b+ c+ d d d d 1 d 1Figure 5.7: Replacing the highest valued two-column rectangle in the matrix ofFigure 5.6. a b c d a+ b (a+ b) + c d+ ((a+ b) + c)f1 = a + b d d 0 0 1 0 0f2 = a+ b+ c d d d 0 d 1 0f3 = a+ b+ c+ d d d d d d d 1Figure 5.8: Replacing the only remaining rectangle with positive value in thematrix of Figure 5.7.in the earliest arrival time of the new column expression. We have previously seen that theheight of a dag is a usable delay estimate for the �nal circuit [Kar89], and so we use heightas our arrival time estimator. Using the height of dags to break ties results in a primitiveform of tree balancing.5.3.4 Tree balancingTree balancing can be carried a little further than in Section 5.3.3. By changing thetwo-column rectangle replacement method only slightly, we can optimize for delay insteadof area:Replacement method 2 (Two-column rectangle replacement, optimizing for delay):As long as there are rectangles containing exactly 2 columns with value>0, replace the rect-angle in which the new column would have the earliest arrival time. If two or more rectanglesresult in the same arrival time, choose the one with the greatest value.

48If we use the height of the dags as our delay estimate, this replacement method willbalance the dag. It is possible to use a weighted sum of height and value to sacri�ce areafor delay, or delay for area.5.3.5 Expanding IF-expressionsIn our main algorithm for minimizing a multiply-rooted if-then-else dag, we �rst applyrectangle replacement to the XOR-matrix, then we create the OR-matrix and apply rect-angle replacement to this matrix. In creating the OR-matrix we have found that it exposesmore sharing if we expand IF- and XOR-triples that are inputs to OR- or AND-expressions.An IF-expression is expanded to either ab+:ac or (a+c)(:a+b) depending on whether it isinput to an OR- or AND-expression. However, if the expressions resulting from the expan-sion are used only for the original IF- or XOR-triple, we have lost the compact IF-expressionwithout gaining more sharing, and we should recover the original IF-expression.In the matrix, a column expression that is not shared will occur as a column with exactlyone 1 (the column is used in exactly one row|it is an unshared column). If a row r containstwo or more such columns they will form a rectangle rect spanning only the row r. If wereplace rect before we replace other rectangles of perhaps greater value, we can check to seeif any pair of columns in rect form an IF-expression when combined.If we precede OR-matrix covering by replacing rectangles of unshared columns, we havean easy way of recovering exactly those IF-expressions and XOR-expressions that wereexpanded uselessly. Since no other row expression uses the part of the expanded expressionwe are free to change it back to an IF- or XOR-triple.After replacing rectangles containing unshared columns, we can remove all unsharedcolumns, since they will never be part of a rectangle again. This removal will result in aspeedup of the rectangle replacement algorithm, since there are fewer columns to consider.By using the described technique we achieved anywhere from 0% to 80% reduction in thenumber of columns over the benchmark examples we ran. The mean reduction in columncount was 36%, which shows that the matrices are generally sparse.

495.4 ResultsIn this section we show the results of using two-column rectangle replacement on a setof examples from the 1989 International Workshop on Logic Synthesis [Lis88].In Table 5.2 we present the results of applying two-column rectangle replacement toexamples optimized by LocalFactor in item (refer to Section 4.2.1). The columns headedwith count reports the count of the optimized if-then-else dag. The count metric is ourtechnology independent area predictor, corresponding roughly to (number of outputs) +(number of literals in factored form) - (number of gates) [Kar89]. The columns headed withheight reports the height of the optimized if-then-else dag. Columns 2 and 3 are the resultsof using only LocalFactor. Columns 4 and 5 are the results of using LocalFactor followedby two-column rectangle replacement optimizing for area. The next two columns are whenusing two-column rectangle replacement optimizing for delay as described in Section 5.3.4.Finally the last two columns reports the result of applying DMIG [CCD+92] to the networksoptimized by LocalFactor. DMIG is a tree-balancing technique that rebalances associativeoperators to minimize the height of the network. DMIG is guaranteed to give the smallestpossible height, but while rebalancing the network it completely ignores other properties ofthe network, such as keeping area under control.The results are summarized in Figure 5.9, Figure 5.10, and Figure 5.11. The �rst �gurecompares the circuits produced by two-column rectangle replacement with those producedby LocalFactor alone. We plot the ratios of the count measure on the x-axis, and the ratioof the heights on the y-axis. On the average we achieved a 10.2% reduction in count. Theheight of the network on the average remained unchanged.Figure 5.10 compares LocalFactor to two-column rectangle replacement optimizing fordelay. We see that the tree-balancing scheme used by two-column rectangle replacementactually does well, reducing the height in all but 10 examples where there was no change. Onaverage the height was reduced by 30%, whereas the count measure varied by �20%|butthe average count didn't change signi�cantly.

50LocalFactor LocalFactor LocalFactor LocalFactorTwoColumn TwoColumn DMIGarea delayExample count height count height count height count heightalu2 404 11 402 11 404 11 412 11alu4 764 30 737 34 792 24 935 23apex6 792 17 779 20 862 13 968 13apex7 245 13 243 14 265 11 313 11b9 117 10 108 10 112 8 121 8c8 175 9 164 10 166 7 192 7cc 67 5 64 5 72 5 76 4cht 184 3 184 3 184 3 184 3cm138a 24 5 24 5 25 3 26 3cm151a 35 9 35 10 36 8 36 8cm152a 22 3 22 3 22 3 22 3cm162a 41 7 40 8 42 6 54 6cm163a 40 6 39 7 40 6 47 6cm42a 28 3 27 3 28 2 30 2cm85a 43 6 43 10 47 6 52 6cmb 40 9 40 11 41 5 43 5count 143 18 143 18 160 7 242 7cu 71 7 52 7 57 6 63 6decod 46 4 42 3 47 3 46 3example2 313 13 305 13 355 8 431 7f51m 90 6 88 7 90 6 91 6frg1 235 21 216 15 216 14 236 14frg2 1279 15 980 15 1244 10 1426 9lal 105 12 94 10 102 6 130 6ldd 121 7 110 8 113 6 128 6pcle 64 9 64 9 70 6 87 6pcler8 88 11 88 11 111 7 146 6pm1 59 6 49 6 51 5 65 5sct 95 10 70 9 74 6 93 6term1 231 17 211 21 235 12 268 12ttt2 247 7 243 8 245 7 259 7unreg 128 3 128 3 128 3 128 3vda 1321 39 1083 24 1176 12 1490 12x1 343 14 300 14 311 10 361 10x2 52 7 51 7 53 6 61 5x3 941 18 864 18 908 12 976 11x4 511 11 391 10 463 7 516 7z4ml 67 7 65 10 65 7 68 7TOTAL 9571 408 8588 410 9412 287 10822 280Table 5.2: The result of two-column rectangle replacement applied to a networkoptimized by LocalFactor. The table shows the results of optimizing for area(minimizing the count metric), and optimizing for delay (minimizing the heightof the dag). The table also shows the result of applying DMIG to the samestarting point as two-column rectangle replacement optimizing. DMIG ensuresminimum height, and hence makes it easy to verify how well two-column rectanglereplacement for delay performed.

51
0.50.60.70.80.91
2
0.9 1 1.1 1.2 1.3 1.4

local/tcheight local/tc count3 333 3333333 333333 3333 3 33333 3 3333 333 3 33Figure 5.9: Comparison of the count and height of circuits minimized by Local-Factoring (local) and by LocalFactoring plus two-column rectangle replacementoptimizing for area (tc).
11.522.533.54
0.7 0.8 0.9 1 1.1 1.2 1.3

local/tcheight local/tc count3333 333 333 33333 33 333 3 333 333 3 33 33
333 3 33Figure 5.10: Comparison of the count and height of circuits minimized by Lo-calFactoring (local) and by LocalFactoring plus two-column rectangle replacementoptimizing for delay (tc).

52
0.80.910.9 1 1.1 1.2 1.3 1.4

dmig/tcheight dmig/tc count
3 33 33 3

3
3 333 333 33 33 33 3 3 33 3 333333 3333 33

Figure 5.11: Comparison of the count and height of circuits minimized by DMIG(dmig) and by LocalFactoring plus two-column rectangle replacement for delay(tc).Figure 5.11 compares the circuits produced by two-column rectangle replacement withthose produced by DMIG. We see that two-column rectangle replacement performs remark-able well. Totally DMIG only decreases the height by 2.5% when compared to two-columnrectangle replacement for delay. For almost all examples DMIG resulted in an increase inthe area estimate|overall DMIG increased count by 13.5%. When compared to LocalFactoralone DMIG increased the count measure in all but 5 examples.Expanding if-expressionsAn experiment was performed to see the e�ects of expanding if-triples as described inSection 5.3.5. We use the same examples as before and show the results in the scatter dia-gram in Figure 5.12. The diagram compares two-column rectangle replacement optimizingfor area with and without expanding if-expressions. Again we plot the ratios of the countmeasure on the x-axis, and the ratio of the heights on the y-axis.We see that expanding if-expressions generally results in a smaller counts at the expenseof a signi�cant increase in height. Totally the improvement in count was no more than

53
0.911.11.21.31.41.51.61.7

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
tce/tcheight tce/tc count

3
333333

3
3333333 333333 333 33333333 33 333Figure 5.12: Comparison of the count and height of circuits minimized by two-column rectangle replacement with (tce) and without (tc) expanding if-expressions.2.6%, and one example even resulted in an increase in count.5.5 Conclusions and future workWe have shown that rectangle replacement can be e�ectively applied to other repre-sentations than sum-of-products form, particularly if-then-else dags. Our new heuristicfor solving the rectangle replacement problem appears to be e�ective in �nding commonsubexpressions. Two-column rectangle replacement, which was inspired by the structure ofif-then-else dags, is particular interesting as it combines �nding common subexpressionswith balancing operator trees.We are still looking for better ways to select rectangles for replacement. When optimizingfor area the optimal replacement may be the one that covers all one's in the Boolean matrixwith the fewest replacements.When optimizing for delay we have the problem that the height of the dag is not a verygood delay estimate, and the heuristic we are using does not always balance the dag. Thishowever, is solved in the current implementation, since we can ask the program to use any

54available cost function as delay estimator. Thus if we have more knowledge of the targettechnology, we may decide to use a di�erent delay estimator (like lutheight for FPGAtable-lookup architectures).

556. Variable ordering6.1 IntroductionThe area of variable ordering is a problem speci�c to binary decision diagrams and if-then-else dags. As we saw in Section 3.3 the size of an ordered binary decision diagram(obdd) or canonical if-then-else dag is very dependent on the order selected for the inputvariables|a bad order may result in exponentially many nodes, whereas a good order mayresult in canonical dag taht is a very small representation of the logic|indeed some of ourbest minimization results come from converting to canonical if-then-else dags.In this chapter we investigate techniques for �nding variable orders that keep thecanonical dag as small as possible, or make transformations that depend on variable orderperform better. First some background is given as to what other researchers have done inthe area. The primary focus of this chapter is on two types of heuristics: the traversal-basedheuristics and the split-order heuristics.Traversal-based heuristics, Section 6.3, all traverse an initial network representation ofthe Boolean expressions we wish converted to a canonical dag. The traversal methods wehave implemented are all depth-�rst; they di�er in the order in which branches are chosenfor traversal and in how multiple variable orders are merged into one total variable order.In Section 6.3 we present a depth-�rst ordering algorithm, which generalizes the depth-�rst ordering heuristics of Fujita [FFK88], Malik [MWBS88], Karplus [Kar90] and the newreconvergent ordering heuristics introduced in Section 6.3.3.The split order heuristics, Section 6.4, are not traversal-based, instead they construct thetotal order one variable at a time, where the next variable in the order is chosen among theremaining variables depending on some cost estimate. After a variable v has been chosen,each expression e used in estimating its cost is \split" into the two expressions ejv and ejv0 ,which will now constitute the expressions we are trying to �nd a variable order for.The main emphasis in Section 6.3 and Section 6.4 is more on the heuristics themselvesthan on the context in which they are used. In Section 6.5 we �nally show how the variable

56order may a�ect other transformations besides conversion to canonical form.6.2 BackgroundVariable order in binary decision diagrams (bdds) has been an issue ever since Bryantpresented a canonical form for bdds called ordered binary decision diagrams (obdds) [Bry86].In Chapter 3 both Bryant's canonical form for bdds and Karplus' canonical form for if-then-else dags were presented, and we saw that the one condition that can in
uences the size ofthe canonical dag is the variable order condition:Variable order condition for OBDDs: A total order is imposed on the variables, andthe variable at each node in the obdd is earlier in the order than the variables of its children.Variable order condition for if-then-else dags: A total order is imposed on thevariables, and all the variables in the if-part must be earlier in the order than all variablesin the then- and else-parts.As was mentioned in Section 3.3, the size of both Bryant's canonical form and Karplus'canonical form can be exponential regardless of the variable order. However, in most casesthere exist variable orders that result in polynomial canonical dags. Even when exponentialblow-up is avoided, the size of a canonical dags remains extremely sensitive to the variableorder. Figure 6.1 is a scatter diagram showing the result of using two random variable orderson some arbitrarily chosen examples. The plot shows the ratio of the two sizes obtainedwhen converting each example to a canonical if-then-else dag. We see that the dots arescattered around y = 1 with up to a factor of 2 variation in both directions.If we are using conversion to canonical form as a transformation for reducing size,it is important that we �nd the order that results in the smallest canonical dag. Anoptimum order could be found by considering all permutations of the variables, and Nair& Brand [NB86] present an O(n!2n) algorithm that does this for binary decision diagrams.Their algorithm considers all permutations, but avoids constructing all of the correspondingbinary decision digrams, cutting the running time in half.

57
0.20.30.40.50.60.70.80.912

10 100 1000 2000
random1/random2 random1 size

33 3 33333 33 333 3333 33 333 33 3333 33 3 33 33 333 333 333Figure 6.1: The ratio of the sizes of canonical if-then-else DAG when using tworandom orders. The x-axis is the size of when using the �rst random order.Friedman and Supowit [FS87] later came up with an algorithm that �nds the optimalorder with complexity O(n23n). They developed a dynamic programming algorithm aroundthe fact that given the optimal order for various sets of k variables (k � n) the search forthe optimal order for sets of k + 1 variables can be restricted to contain only those setsthat were optimal for k variables. That is, if we have 4 sets of k variables such that eachset is optimal (the �rst k levels of the obdds constructed from the 4 sets, contain the leastpossible number of nodes), then the search for optimal sets containing k + 1 variables arelimited to only 4(n� k) candidates, namely each of the four optimal k sets with one morevariable appended.Finding an optimal order is only feasible for functions of up to 10 variables, and so wemust resort to heuristics for �nding a good order. Nair & Brand [NB86] presented someheuristics based on their optimal algorithm, but even then the complexity was exponential inthe number of variables. Their main disadvantage is in the representation of binary decisiondiagrams|all of their heuristics and their optimal algorithm use a complete truth table1 to1 A complete truth table for a function of n variables contains 2n entries and can be thought of as abinary tree with a unique path from the root to a leaf node for every of the 2n input combinations.

58represent the function they are computing an order for. Hence the space complexity getsout of hand fairly quickly.Several researchers have presented heuristics for �nding variable orders that result insmall obdds [FFK88, MWBS88, BRKM91, FFM93]. Here the starting point is a Booleannetwork, which is traversed once in a depth- or breadth-�rst manner to determine a totalorder of the variables, which is then used for building the ordered binary decision diagram.The primary advantage of traversal-based methods is that they are fast. A variable order iscomputed during a single traversal of the initial network, and thus the complexity is O(n)where n is the number of nodes in the network.Unfortunately, all traversal-based heuristics have one thing in common: no single heuris-tic is superior. In [BRKM91] various combinations of both breadth- and depth-�rst heuris-tics are tried, but one of their conclusions directly contradicts what other researchers haveconcluded: they conclude that for depth-�rst traversals, ordering inputs with least (orhigh) fanout �rst creates only minor di�erences in ordering results. Fujita [FFK88, FFM93]presents a depth-�rst method that orders high fanout inputs before other inputs.Still, fast ordering heuristics are sometimes more important than spending a lot of time�nding the best (or near best) variable order. In Section 6.3 we experiment with two types ofdepth-�rst ordering heuristics: one which appends variables to the total order in the orderthe variables are visited during the traversal, and a new heuristic which uses a mergingscheme based on reconvergent fanout for merging intersecting variable orders.Other approaches for �nding a good variable order include� Sorting the input variables depending on whether they are control or data vari-ables [Bry86]. This method requires knowledge of the circuit function, and so isnot feasible in many applications.� Simulation-based heuristics [BRKM91]. Initially all primary inputs are set to unknownand the state of the circuit is recorded. Next the circuit is simulated by setting eachprimary input to 0 �rst and then to 1, counting the number of changes in the simulated

59circuit. The variable that is most controlling is chosen as the next in the order, andits value is now �xed to either 0 or 1 while the remaining variables are ordered.� Testability-measure-based heuristics [BRKM91]. Primary inputs are assigned weightsbased on their observability and sorted in decreasing order of their weights.� Simulated annealing techniques [MKR92]. Here a heuristically selected order is usedinitially, and in one annealing step a variable is moved to a randomly chosen positionat most �5 from its position in the current order. Each time a variable is moved, anordered partial decision diagram OPDD [Ros90, MKR92] is constructed to evaluatethe cost of the new order. An OPDD is a sample of the obdd for the same order. Alimit is placed on the largest number of nodes allowed in the obdd, and if the limitis exceeded, some nodes become unde�ned. An OPDD tends to represent the topportion of the obdd containing the shortest paths to true and false.� Sifting heuristic [Rud93]. This heuristic is a dynamic ordering technique which isapplied during the construction of an obdd. When a certain limit on the numberof nodes in the obdd is reached, the variables are sorted according to their numberof occurrences in the obdd. Then each variable in turn is sifted down and up inthe obdd until all positions have been tried, and the best position is chosen for theparticular variable.Our approach to variable orderingThe variable ordering heuristics we present in this chapter have all been implementedin our If-Then-Else Minimizer item. All heuristics �t into a three-step approach, which isalso the main optimization loop in item. The three steps (illustrated in Figure 6.2) are1. Build an if-then-else dag from the circuit description or a set of equations.2. Construct a variable order by applying the variable-order heuristic to the constructeddag or parts of the constructed dag.3. Transform the dag using the obtained variable order. The transformation can be anytransformation in item that relies on a good variable order.

60Build an initialif-then-else DAGCompute a variable orderLocal-Factor BlockCovering CanonicalFormFigure 6.2: General outline of the optimization loop in item. First we constructan if-then-else dag from a circuit description. We then compute a variable order,and �nally apply transformations to the dag. The variable order computation andthe transformations can be iterated to improve results.The transformation in the third step depends on what objective we are trying to meet.For veri�cation purposes we would transform the dag to canonical form, but as we will seein Section 6.5, other transformations also rely on good variable orders.Our three-step approach di�ers from that of other researchers in that we use an if-then-else dag as our starting point and that we rely on good variable orders for more thanjust transformation to canonical form. Most previous work in �nding a good order for thevariables in ordered binary decision diagrams and if-then-else dags has used a Booleannetwork as starting point. In work done by Malik [MWBS88] the initial dag is a Booleannetwork, where nodes are in sum-of-products form.Our heuristics could be equally well applied to Boolean networks using almost any rep-resentation for the logic|we chose if-then-else dags because we had signi�cant investmentin code for manipulating them. One advantage of the if-then-else dag approach is that wecan iterate the last two steps as illustrated in Figure 6.2 and perhaps get a better order in

61Order(Node node)if (node is a variable)return Variable(node)<d1; d2; � � � ; dn> = Sort(Children(node),property)o1 = Order(d1)o2 = Order(d2)...on = Order(dn)return MergeOrders(o1; o2; � � � ; on)Figure 6.3: General depth-�rst ordering algorithm.that way. Iterating in the approach taken by Malik requires a bit more programming e�ort.6.3 Depth-�rst ordering heuristicsMost published work in the area of variable ordering for binary decision diagrams isbased on a depth-�rst traversal of an initial network, followed by constructing the obdd.In this section we consider the depth-�rst ordering heuristics we have implemented initem. The heuristics presented here traverse an initial dag only once, and hence thecomplexity of the heuristics are O(n) in the number of nodes.The second step in our approach to variable ordering, that of constructing a variableorder, can be implemented as shown in Figure 6.3. We refer to the algorithm in Figure 6.3as our general depth-�rst ordering algorithm, as it generalizes the depth-�rst orderingheuristics of Fujita [FFK88], Malik [MWBS88], Karplus [Kar90], and the other heuristicspresented here.The algorithm traverses each subdag (children) of a node (node) in an order determinedby the routine Sort, which returns a sorted list of the subdags of node. The list is sortedaccording to some property associated with each of the subdags of node. The subdags arethen traversed in the order returned by Sort, and the variable orders obtained are �nallymerged into a new order.By changing the property passed to Sort, we can implement several di�erent depth-�rstordering heuristics, di�ering only in the order in which the branches are traversed.

62If the initial dag is multiply-rooted, as in Figure 2.4, the output nodes (the roots of thedag) are sorted using the same Sort routine as in Figure 6.3.The implementation of the algorithm in item is slightly di�erent from the simpli�edversion in Figure 6.3 as it ensures that a node in dag is visited only once, hence makingthe algorithm O(n).6.3.1 Children of a nodeIn the context of if-then-else dag we have the option of treating the descendents of anode n in two ways:Direct children (DC(n)) are the subdags rooted as the if-part, then-part, and else-partof n.Commutative children (CC(n)) If n is a commutative operator (Op(n) is one of XOR,AND, or OR), then the commutative children of n areCC(n) = fsjs 2 DC(n)^Op(s) 6= Op(n)g [CC(sjs 2 DC(n) ^Op(s) = Op(n))that is, all the inputs to n that are part of the operator n represents.It should be noted that the formal de�nition of commutative children corresponds to thealgorithm FindInputs shown in Figure 5.3.6.3.2 Incremental ordering heuristicsOne class of depth-�rst ordering heuristics use a very simple MergeOrders procedure,where we �rst make sure that the subdag orders do not intersect and then concatenatethem to form a total order. This version of MergeOrders would return the ordero1 < (o2 � o1) < � � � < (ok � ok�1 � � � � � o1): (6.1)The operator � is left associative in this context, and the result of the subtraction on�okis the same order as on but with the variables of ok removed.

63With this de�nition of MergeOrders, we can simplify the ordering procedure. We keepa mark with each node once it has been visited, and append a variable to the total order ifand only if it has not been marked. The second time we visit a node, we know that all thedescendents of that node have also been visited and that the leaf nodes (variables) thereforealready appear in the total order.In our implementation of the incremental ordering heuristic we provide as a parameterthe property by which the subdags of node are sorted, thus giving us as many di�erentheuristics as we have properties. In Section 6.3.4 we provide results using the following fourincremental ordering heuristics:Simple Depth heuristic, where the if-part is traversed before the then-part, which istraversed before the else-part. This heuristic corresponds to the one previously usedby Karplus in item [Kar90].Fanout heuristic, where the subdags are sorted in order of decreasing fanout. Thisheuristic corresponds to the one described by Fujita et al. [FFK88].Height heuristic, where the subdags are sorted in order of decreasing height. Thisheuristic corresponds to a heuristic described by Malik et al. [MWBS88].Count heuristic, where the subdags are sorted in order of decreasing count. Count is ourtechnology-independent area estimate, corresponding roughly to (number of outputs)+ (number of literals in factored form) - (number of gates) [Kar89].Simple depth heuristicThe simple depth ordering heuristic is the simplest incremental heuristic: it traversesthe dag by �rst traversing the if-part followed by the then-part and �nally the else-part.This heuristic is only applicable to if-then-else dags and binary decision diagrams. It iseasy to see that if applied to a canonical dag the heuristic will produce the same order asthe one used to create the canonical dag.

64The very simple heuristic is particularly e�ective because of the way item constructs theinitial multiply-rooted if-then-else dag from a circuit description [Kar89]. When construct-ing an if-then-else dag from a set of terms (a sum-of-products expression) the terms arefactored using a technique similar to simple literal factoring [Bra87a]. This technique willmove variables appearing in many terms into if-parts of an if-then-else triple. For example,in constructing an if-then-else dag E for a set of terms T , the �rst variable v1 is factoredout by grouping together those terms that don't use v1 (Td), those that use :v1 (T0), andthose that use v1 (T1). Then v1 is stripped o� the terms of each group and the routineis applied recursively to get the three expressions Ed, E0, and E1. The expression E isconstructed as (if (if v thenE1 elseE0) then true elseEd).When using the simple depth heuristic on a dag constructed in this way, v1 will beordered before the variables in E1 and E0, thus we may be able to preserve the factorizationin the canonical form.Fanout heuristicFujita et al. [FFK88] used a simple incremental depth-�rst heuristic to determine thevariable order. Their starting point was a Boolean network, where the input nets of a nodewere traversed in order of decreasing fanout.Fujita et al. justi�ed their heuristic with a theorem, which assures that whenever anetwork is composed of only AND, OR, and NOT gates and has only one input or gatewith a fanout of more than one, then the best order is acquired by a depth-�rst traversalof the network, but a sub-net with a fanout of more than one should be traversed �rst.This theorem is easily related to cube- and kernel factorization of sum-of-productsexpressions [Bra87a]. If a cube or kernel appears in more than one term the expressioncan be factored by using the cube as the factor. That is, the expression abc + (ab)0d canbe factored into xc + x0d with x = ab, and in an if-then-else dag this factorization canbe directly represented as (if (if a then b else false) then c else d), which is in canonicalform.

65The main problem is of course that a network rarely satis�es the requirement of a fanoutof one for all but one of its nodes, and Fujita used a generalized version of the theoremwhere the requirement is dropped.We have implemented a fanout heuristic similar to the heuristic used by Fujita etal. [FFK88], except that the starting point is an if-then-else dag. It makes a depth-�rsttraversal of the dag traversing the subdags of a node in order of decreasing fanout.Height heuristicMalik et al. [MWBS88] used a strategy similar to Fujita, but they argued that theinputs of a node should be traversed in order of decreasing transitive fanin dag height. Thetransitive fanin dag of a node n consists of n, all the transitive fanins of n (nodes that canbe reached through some path from n), and the edges between these nodes. The height ofa transitive fanin dag is the maximum distance from any of its nodes to a primary input.Malik justi�ed their heuristic intuitively by pointing out a similarity between the inter-mediate nodes in a Boolean network and the nodes in an obdd. At a given level in an obddthe nodes encode information about the variables seen so far. The intermediate nodes areused in subsequent levels to compute the value of the function. In the Boolean network thefunction of a node n is encoded by the means of the transitive fanin dags, suggesting adepth-�rst traversal of each input dag of node n in order to compute them before the noden. The order in which to traverse the input dags should be in decreasing order of height,thus computing the most compute-intensive nodes �rst. Berman [Ber91] later related theorder of traversal in Malik's heuristic to the problem of register allocation, saying that theheight of a fanin dag can be taken as a rough estimate to the number of registers requiredto evaluate the function represented by the fanin dag. Again this is intuitively clear|atany given level in an obdd the nodes correspond to the amount of information we need inorder to compute the rest of the function. Thus if we compute the most di�cult subdags �rst (requiring k registers) and if none of the variables in s are used in other subdagsthen after computing s we only need one register to hold the value of s thus freeing k � 1

66registers to compute the less di�cult subdags.The height heuristic we have implemented is similar to the heuristic used by Malik etal. It traverses the subdags of a node in order of decreasing height.Count heuristicThe count heuristic is a slightly modi�ed version of the height heuristic. Instead oftraversing the subdags in order of decreasing height, it traverses in order of decreasingcount, where count is our technology-independent area estimate. The use of count tosort the subdags is inspired by Berman's paper of relating ordering heuristics to registerallocation [Ber91]. Berman states that Malik's height heuristic is an approximation tothe optimal register allocation technique as described in [SU70]. By choosing the highestsubdag �rst Malik et al. has achieved a rough estimate of the number of registers requiredto evaluate the logic.Intuitively we thought that the area estimate of a subdag would be a better measurefor the number of registers, and thus came up with the count heuristic.6.3.3 Reconvergent ordering heuristicsAnother class of depth-�rst ordering heuristics generalized by the general orderingalgorithm in Figure 6.3 is the reconvergent ordering heuristics. This class of heuristicswas introduced in [SK93]. In the reconvergent ordering heuristics the subdag orders arenot made disjoint before merging, and therefore MergeOrders must resolve inconsistencies.In Figure 6.4 we show how we resolve inconsistencies when merging three intersectingorders (the merging can be generalized to n orders). The variable orders o1; o2; o3 areobtained from traversing the subdags returned by Sort in Figure 6.3. Intersecting variablesare ordered according to the order of the lowest numbered subdag order, that is, thevariables intersecting all three orders will appear �rst in the merged order, and they willappear in the same order as in o1.

6712 3546 7o1
o2 o3

Figure 6.4: Merging of the orders for the three subdags of an if-then-else nodein reconvergent ordering heuristics. The numbers indicate the order the variableswill have in the merged order.The merging in the reconvergent ordering heuristics makes shared variables come beforeother non-shared variables in the total order. Having shared variables early in the orderincreases the likelihood that these variables will appear in an if-part in the canonical form,rather than duplicated in the then- and else-parts. For example, consider the expressionabc+ d(a0+ b0) represented as shown in Figure 6.5 (a). After traversing the subdags of theroot node we may have obtained the order b < c < a for the if-part and d < a < bfor the else-part. When merging these two orders we would obtain the �nal variableorder b < a < c < d and in canonical form this would result in the representation (if(if b then a else false) then c else d) shown in Figure 6.5 (b), thus moving the sharedvariables to the if-part and achieving the desired factorization.It is easy to verify that none of the incremental ordering heuristics would have obtainedthe best order with a starting point as shown in Figure 6.5 (a).One can think of variations to the merging strategy, which would make just as muchsense as the one depicted in Figure 6.4:� Count the number of subdags each variable occurs in. Then order the most frequentlyoccurring variables �rst, while matching the order they have in the lowest numberedsubdag.We have experimented with variants of the merging strategy, but none were found to

68{bc a falsefalsetrued truea b false(a) b a c dfalse(b)Figure 6.5: (a) An if-then-else dag representation for the expression abc+d(a0+b0).When traversing the if-part of the root node we get the order b < c < a, for theelse-part we get the order d < a < b. Reconvergent merging results in the orderb < a < c < d and (b) shows the same expression in canonical form with respectto this order.be superior. As will become clear from the result section, all of the depth-�rst orderingheuristics have the same problem: none of them are universally superior. It is possible tocome up of with an unlimited number of variations each of which will perform excellent ona few examples, but very poorly on other examples.In the result section, the merging strategy shown in Figure 6.4 is the one used.The reconvergent ordering heuristics are easily related to the fanout heuristic (Sec-tion 6.3.2), where the subdags are visited in order of decreasing fanout. Since a subdagwith a fanout of more than one is a shared subdag, the variables of the shared subdagwill come before the variables of the other subdags in the total order. The reconvergentordering heuristics do not rely on the fanout to detect shared variables|they always detectshared variables and order them before other variables. The relation to the incrementalheight, count, and simple depth heuristic is not that obvious.In the result section we use the reconvergent ordering heuristics corresponding to all theincremental heuristics, that is, we sort the subdags using the same cost functions. Thisgives us:Reconvergent Simple Depth, where the subdags are just the if-, then-, and else-part.Reconvergent Fanout, where the subdags are sorted in order of decreasing fanout.

69Reconvergent Height, where the subdags are sorted in order of decreasing height.Reconvergent Count, where the subdags are sorted in order of decreasing count.Again, since the cost function is just passed as an argument to the ordering heuristic, weare not limited to only these four variations of the reconvergent ordering heuristics.6.3.4 ResultsIn this section we present results of applying the depth-�rst ordering heuristics to exam-ples from the benchmark set for the 1989 International Workshop on Logic Synthesis [Lis88].We provide results both for canonical if-then-else dags and ordered binary decision dia-grams.For all examples, our primary goal is to compute a single variable order that works wellfor all the primary outputs of the network. To do this, we pass all output expressions tothe ordering heuristic at once and then convert all the outputs to canonical form using theorder returned by the heuristic.The numbers reported in the tables are nodes in the canonical representation. Forcanonical if-then-else dags we use size, which counts the number of if-then-else triplesplus distinct variables in the dag. For ordered binary decision diagrams we use siscount,which produces the same counts as bdd size in sis, that is, it counts the number of di�erentnodes in the obdd. It should be noted that size can be applied to non-canonical if-then-else dags without changing its de�nition. Similarly, siscount can be applied to unorderedbinary decision diagrams without changing its de�nition.We �rst compare the heuristics on a set of small examples. Table 6.1 shows the numberof nodes (using size) and the height for canonical if-then-else dags. In Table 6.2 we reportthe same measures (using siscount) when converting to ordered binary decision diagrams.In both tables the �rst column is the name of the example, the next four columns arethe 4 incremental depth-�rst ordering heuristics. Column �ve through eight are the fourreconvergent depth-�rst ordering heuristics. The column label sis is the result of runningthe same examples through sis using the command bdd create -o dfs. We modi�ed sis

70to report the variable order it computed, and then used this order in item. Finally, thecolumn labeled best is the best (smallest number of nodes) of all the previous columns.From the tables we see that the most signi�cant di�erence between canonical if-then-elsedags and ordered binary decision diagrams is the height, where canonical if-then-else dagsare on the average 15% lower than obdds. In veri�cation the height is not important, butin logic minimization the height is a reasonable estimate for delay, and here if-then-elsedags have a clear advantages over binary decision diagrams.From the results we can see that the reconvergent count heuristic is the best overalldepth-�rst heuristic. In general the reconvergent ordering heuristics are superior to theirincremental counterparts. The reconvergent count heuristic is on the average 11% betterthan the best incremental ordering heuristic.The bad performance of the incremental height heuristic is due to one example, frg1,where it is approximately 40 times worse than the best. This illustrates that generally nosingle traversal-based heuristic is particular e�cient, and trying combinations of several willalmost always improve the results [BRKM91].In Table 6.3 and Table 6.4 we compare the depth-�rst ordering heuristics on examplesfrom the ISCAS benchmarks for testing [Lis88]. The results here are much more mixed andfor several of the examples we ran out of memory (entries marked with oom) when convertingto canonical form. It is interesting to observe that the di�erence in size and in height betweenobdds and canonical if-then-else dags is much less signi�cant for these examples. In factthere are several orderings for which the obdd is less than the corresponding canonicalif-then-else dag for the same ordering.In Table 6.5 and Table 6.6 we summarize the results of Table 6.1 and Table 6.2. Wecompare the totals and extract how many times a given heuristic �nds a best depth-�rstorder. A best depth-�rst order is an order that results in the canonical if-then-else dag sizesshown as best in Table 6.1 and 6.2. The row Total is copied directly from the correspondingtable, and shows the sum of the nodes over all the examples for the given depth-�rstheuristic, when converting to canonical from. The rows Best found indicates how many

71Canonical If-Then-Else DAGsIncremental ReconvergentExample Simple Fanout Height Count Simple Fanout Height Count sis bestalu2 153:9 181:9 220:9 175:9 152:9 181:9 165:9 165:9 257:9 152:9alu4 464:12 356:12 472:13 347:13 302:11 356:12 687:13 465:13 1197:13 302:11apex6 838:18 693:19 970:12 1435:17 831:18 689:19 1135:16 1120:16 1031:14 689:19apex7 246:12 345:12 265:12 245:10 241:12 347:12 393:17 238:17 473:15 238:17b9 169:10 168:9 174:9 186:10 165:10 173:9 168:9 164:9 178:10 164:9c8 165:10 153:10 120:9 120:8 199:10 213:10 102:9 102:9 121:8 102:9cc 68:5 87:6 64:5 63:5 68:5 87:6 64:5 63:5 60:4 60:4cht 137:4 137:4 145:5 140:4 133:4 127:4 145:5 141:4 135:4 127:4cm138a 42:5 42:5 22:5 22:5 42:5 42:5 22:5 22:5 22:5 22:5cm151a 42:7 31:7 31:7 31:7 28:5 28:5 28:5 28:5 42:7 28:5cm152a 18:3 18:3 36:5 36:5 18:3 18:3 26:4 26:4 26:4 18:3cm162a 61:7 51:7 43:7 43:7 56:7 44:6 43:7 44:6 64:8 43:7cm163a 48:5 40:7 45:6 45:6 49:5 40:7 45:6 40:7 46:5 40:7cm42a 26:3 24:3 22:3 22:3 26:3 24:3 22:3 22:3 22:3 22:3cm85a 45:9 45:9 47:9 49:9 45:9 45:9 47:9 47:9 48:9 45:9cmb 47:11 47:11 46:11 49:11 47:11 47:11 46:11 49:11 49:11 46:11count 141:17 98:18 131:18 131:18 141:17 98:18 131:18 131:18 132:17 98:18cu 48:7 48:7 77:10 71:7 48:7 48:7 59:8 55:8 70:9 48:7decod 49:4 49:4 35:4 35:4 49:4 49:4 35:4 35:4 35:4 35:4example2 364:13 368:12 386:12 334:12 364:13 344:12 368:12 390:10 364:12 334:12f51m 57:7 67:7 72:7 72:7 57:7 69:7 72:7 72:7 66:7 57:7frg1 269:22 264:22 5576:21 941:20 178:19 178:19 146:19 144:19 227:18 144:19frg2 2244:19 3126:18 1038:17 941:15 2245:19 3114:18 982:14 937:14 862:13 862:13lal 112:11 101:10 103:11 103:11 112:11 105:10 103:11 103:11 116:10 101:10ldd 76:6 76:6 96:8 96:8 76:6 76:6 80:7 80:7 76:6 76:6pcle 82:10 82:10 76:10 76:10 82:10 82:10 66:10 66:10 73:10 66:10pcler8 134:10 140:10 143:10 143:10 134:10 140:10 127:11 127:11 113:10 113:10pm1 59:7 59:7 71:8 58:7 59:7 59:7 71:8 61:8 57:7 57:7sct 135:10 119:10 79:6 79:6 131:10 119:10 79:6 79:6 119:8 79:6tcon 41:2 41:2 27:2 27:2 41:2 41:2 27:2 27:2 25:1 25:1term1 248:13 245:13 301:14 300:14 245:13 245:13 209:14 209:14 376:14 209:14ttt2 179:12 155:11 171:11 171:9 176:11 149:10 168:11 163:9 165:11 149:10unreg 99:3 87:4 135:4 135:4 99:3 87:4 135:4 135:4 138:4 87:4vda 1291:13 563:11 541:12 541:12 1291:13 563:11 585:12 585:12 570:11 541:12x1 828:19 734:19 931:20 977:22 816:19 726:19 926:20 958:21 1072:19 726:19x2 49:6 49:6 47:6 45:6 49:6 49:6 46:6 45:6 44:6 44:6x3 938:18 855:18 952:17 1133:18 929:18 847:18 1354:19 1174:18 1314:13 847:18x4 407:9 396:9 410:12 413:9 398:9 396:9 404:11 429:9 423:13 396:9z4ml 32:6 32:6 41:6 31:6 41:6 41:6 41:6 27:6 42:6 27:6Nodes 10451 10172 14161 9861 10163 10086 9352 8768 10250 7219Height 374 373 373 366 367 366 373 366 358 360Table 6.1: The columns headed with name of heuristics report the total number ofnodes and height after converting all the primary outputs to canonical if-then-elsedags. The two last rows report the total number of nodes and the total heightover all examples. We used the cost function size to count the number of nodesin an if-then-else dag. For each example we use italics to indicate which heuristicsfound the best variable order.

72Ordered Binary Decision DiagramsIncremental ReconvergentExample Simple Fanout Height Count Simple Fanout Height Count sis bestalu2 176:9 180:9 215:9 188:9 177:9 180:9 180:9 180:9 250:9 176:9alu4 499:13 446:13 555:13 505:13 466:13 446:13 734:13 547:13 1168:13 446:13apex6 1000:19 888:19 1066:19 1744:19 991:19 886:19 1295:19 1350:19 1346:19 886:19apex7 483:18 596:18 453:18 502:20 484:18 597:18 551:18 537:19 667:18 453:18b9 185:13 210:12 182:12 192:12 180:12 219:12 177:12 184:12 214:12 177:12c8 207:12 225:12 150:12 140:12 219:11 236:11 98:9 113:9 144:12 98:9cc 82:5 96:6 78:5 79:5 82:5 96:6 78:5 79:5 78:5 78:5cht 138:4 138:4 145:5 139:4 134:4 131:4 145:5 140:4 135:4 131:4cm138a 19:5 19:5 39:5 39:5 19:5 19:5 39:5 39:5 39:5 19:5cm151a 32:7 23:7 25:7 25:7 22:5 22:5 22:5 22:5 32:7 22:5cm152a 17:3 17:3 26:5 26:5 17:3 17:3 18:4 18:4 18:4 17:3cm162a 65:9 55:9 45:9 45:9 63:9 51:9 45:9 51:9 60:9 45:9cm163a 52:7 41:7 46:8 46:8 49:7 41:7 46:8 41:7 47:7 41:7cm42a 21:3 21:3 23:3 23:3 21:3 21:3 25:3 25:3 23:3 21:3cm85a 40:9 40:9 42:9 42:9 40:9 40:9 42:9 42:9 42:9 40:9cmb 37:11 37:11 37:11 37:11 37:11 37:11 37:11 37:11 37:11 37:11count 233:18 202:18 234:19 234:19 233:18 202:18 234:19 234:19 235:18 202:18cu 64:9 64:9 51:10 41:10 63:9 64:9 56:9 50:9 68:9 41:10decod 33:4 33:4 39:4 39:4 33:4 33:4 39:4 39:4 39:4 33:4example2 565:13 514:13 746:14 636:13 568:13 531:13 772:13 770:13 754:13 514:13f51m 48:7 69:7 75:7 75:7 53:7 70:7 75:7 75:7 67:7 48:7frg1 504:23 504:23 5540:24 946:24 168:22 168:22 130:22 128:22 186:23 128:22frg2 3786:21 5055:19 2440:20 2457:20 3787:21 5073:19 2680:20 2448:20 2103:20 2103:20lal 104:12 102:12 105:12 105:12 104:12 105:12 105:12 105:12 101:12 101:12ldd 81:7 81:7 86:8 86:8 81:7 81:7 74:7 74:7 81:7 74:7pcle 101:10 54:10 96:11 96:11 101:10 54:10 71:10 71:10 96:10 54:10pcler8 189:11 154:11 155:11 155:11 189:11 154:11 133:11 133:11 141:11 133:11pm1 53:8 53:8 56:8 51:8 53:8 53:8 56:8 49:8 59:8 49:8sct 142:13 142:12 75:12 75:12 139:13 142:12 75:12 75:12 103:12 75:12tcon 42:2 42:2 27:2 27:2 42:2 42:2 27:2 27:2 26:1 26:1term1 487:19 487:19 386:19 391:19 415:19 415:19 210:19 208:19 616:19 208:19ttt2 199:13 175:13 213:13 189:13 206:13 183:13 215:13 157:13 175:13 157:13unreg 99:3 86:4 135:4 135:4 99:3 86:4 135:4 135:4 136:5 86:4vda 1256:13 528:12 522:12 522:12 1256:13 528:12 555:12 555:12 533:12 522:12x1 1089:22 941:22 1084:22 1045:22 1106:22 935:22 1080:22 1071:22 1165:22 935:22x2 41:6 43:6 44:7 41:6 41:6 43:6 45:6 41:6 43:6 41:6x3 1112:19 1062:19 1019:19 1226:21 1100:19 1052:19 1577:19 1099:19 1492:21 1019:19x4 908:14 900:14 608:14 755:14 900:14 900:14 603:14 767:14 596:14 596:14z4ml 46:6 46:6 39:6 38:6 39:6 39:6 39:6 36:6 38:6 36:6Nodes 14235 14369 16902 13137 13777 13992 12518 11752 13153 9868Height 420 417 428 429 415 413 415 414 420 411Table 6.2: The columns headed with name of heuristics report the total numberof nodes and height after converting all the primary outputs to ordered binarydecision diagrams. The two last rows report the total number of nodes and thetotal height over all examples. We used the cost function siscount to count thenumber of nodes in an obdd. For each example we use italics to indicate whichheuristics found the best variable order.

73Canonical If-Then-Else DAGsIncremental ReconvergentExample Simple Fanout Height Count Simple Fanout Height Count sis bestC432 29069:35 26686:35 31870:35 31870:35 29069:35 26686:35 31864:35 31864:35 29069:35 26686:35C499 53889:40 53657:40 40733:40 40733:40 51585:40 51353:40 62273:40 62273:40 43458:40 40733:40C880 oom oom 5124:33 4953:34 oom oom 7708:37 8462:37 4477:33 4477:33C1355 53889:4 53657:4 40733:40 40733:40 51585:40 51353:40 62273:40 62273:40 43458:40 40733:40C1908 18331:30 18353:30 18684:30 15806:30 16693:30 17439:30 18829:30 12782:30 12825:30 12782:30C2670 oom oom oom oom oom oom oom oom oom |C3540 oom oom oom oom oom oom oom oom oom |C5315 oom oom 29810:53 oom oom oom oom oom 22692:50 22692:50Table 6.3: The columns headed with name of heuristics report the total number ofnodes and height after converting all the primary outputs to canonical if-then-elsedags. The two last rows report the total number of nodes and the total heightover all examples. We used the cost function size to count the number of nodesin an if-then-else dag. For each example we use italics to indicate which heuristicsfound the best variable order.Ordered Binary Decision DiagramsIncremental ReconvergentExample Simple Fanout Height Count Simple Fanout Height Count sis bestC432 31179:35 29866:35 32279:35 32279:35 31179:35 29866:35 32273:35 32273:35 31179:35 29866:35C499 53867:40 53635:40 40659:40 40659:40 51563:40 51331:40 61511:40 61511:40 44299:40 40659:40C880 oom oom 6845:41 6863:41 oom oom 9635:40 9643:40 7724:41 6845:41C1355 53867:40 53635:40 40659:40 40659:40 51563:40 51331:40 61511:40 61511:40 44299:40 40659:40C1908 17759:30 19403:30 19499:30 16787:30 16628:30 18760:30 19609:30 12203:30 12713:30 12203:30C2670 oom oom oom oom oom oom oom oom oom |C3540 oom oom oom oom oom oom oom oom oom |C5315 oom oom 36151:53 oom oom oom oom oom 26066:53 26066:53Table 6.4: The columns headed with name of heuristics report the total numberof nodes and height after converting all the primary outputs to ordered binarydecision diagrams. The two last rows report the total number of nodes and thetotal height over all examples. We used the cost function siscount to count thenumber of nodes in an obdd. For each example we use italics to indicate whichheuristics found the best variable order.times a given heuristic and class of heuristic �nds a best depth-�rst order.Among the depth-�rst ordering heuristics the reconvergent merging strategy is superiorto the incremental merging strategy �nding a best order in 30 versus 18 examples whenconverting to canonical if-then-else dags and 28 versus 22 when converting to obdds.Reconvergent count appears to give the best overall result, but otherwise no one depth-�rst heuristic appears to be signi�cantly better than another. The large total size forincremental height is due to one bad order.The results presented in this section show that none of the depth-�rst heuristics described

74Canonical If-Then-Else DAGsClass Incremental ReconvergentHeuristic Simple Fanout Height Count Simple Fanout Height Count sisTotal Nodes 10541 10172 14161 9861 10163 10086 9352 8768 10250Best found 5 9 7 7 10 8 14 10 13 10Best found 18 30Table 6.5: This table compares depth-�rst heuristics only. Simple is short forSimple Depth, refer to Section 6.3. For each depth-�rst heuristic the table showstotal size when converting to canonical if-then-else dag over all 39 examples weused. Best found indicates the number of examples for which a given heuristic andclass of heuristic �nds a depth-�rst order that results in canonical if-then-else dagsizes as reported under best in Table 6.1.Ordered Binary Decision DiagramsClass Incremental ReconvergentHeuristic Simple Fanout Height Count Simple Fanout Height Count sisTotal Nodes 14235 14369 16902 13137 13777 13992 12518 11752 13153Best found 9 11 7 6 6 8 14 9 12 6Best found 22 28Table 6.6: Same as Table 6.5 except that we here compare obdds.here work well as a general ordering heuristic. All the heuristics are far from obtaining thebest total, and all fail badly on a few examples. For reasonable sized examples it may beworthwhile to try a number of di�erent heuristics and pick the best result as we have done.6.4 SplitOrder heuristicWe now turn to the SplitOrder heuristic, which is especially well suited for �ndinggood variable orders for ordered binary decision diagrams. Unlike the depth-�rst orderingheuristics, SplitOrder is not traversal-based|instead it constructs an obdd top-down onelevel at a time.Even though the heuristic is targeted towards �nding good orders for obdds we foundthat a good order for an obdd is rarely a bad order for an if-then-else dag. We compareSplitOrder to several depth-�rst ordering heuristics and show that when converting to obddsSplitOrder averages 25% fewer nodes than taking the best of 8 depth-�rst techniques (36%

75SplitOrder(exprSet,support,order)if (support is empty) returnbest exprSet = ;best variable = 0foreach v 2 supportE 0 = ;foreach e 2 exprSetE 0 = E 0 [fejv; ejv0gif (Cost(E 0) < Cost(best exprSet))best exprSet = E 0best variable = vsupport = support �fbest variablegappend best variable to the end of orderSplitOrder(best exprSet,support,order)Figure 6.6: Split order algorithm. The argument exprSet is the set of expressionsto �nd a variable order for. Initially this is the set of expressions we want totransform using a variable-order-dependent transformation. The argument supportis the set of variables still to order. Initially this set contains the primary inputsof the expressions in exprSet. The argument order is the accumulated total order.better than the best single depth-�rst technique). We do not see the same size reductionwhen converting to canonical if-then-else dags.The split order heuristic constructs the total order one variable at a time, where thenext variable in the order is chosen among the remaining variables depending on some costestimate. The cost of a variable v is based on how much it would cost to \split" eachexpression e, in the set of expressions for which we are computing an order, into the twoexpressions ejv (e given that v is true) and ejv0 (e given that v is false). After a variablev has been chosen, the set of ejv and ejv0 expressions will be the new set of expressions weneed to compute an order for.Figure 6.6 shows a pseudo-code version of the split order heuristic. The algorithm ispassed a set of expressions exprSet, which is used in determining the cost of a variable.Initially exprSet is the set of expressions we wish to transform using some transformationthat relies on a good variable order (such as conversion to canonical form). The variablesthat still need to be ordered are passed to SplitOrder as the set support. Initially, supportcontains all variables of the expressions in exprSet. The list order is the accumulated total

76order.In each recursive call to SplitOrder, the algorithm �nds the \best" variable in support,and appends it to the total order order. The best variable v is determined based on howmuch it would cost to factor each expression e in exprSet into (vejv + v0ejv0). For allexpressions in exprSet, the expressions ejv and ejv0 are collected in a new expression set E 0,and if E 0 is the best seen so far it is stored together with v. On the next recursive call toSplitOrder, exprSet is the best of all of the E 0 we constructed. To avoid recomputing ejvand ejv0 for the same expression e and variable v at each recursive call to SplitOrder, wecache both ejv and ejv0 with e.6.4.1 Choosing the cost functionTesting the e�ect of all variables one by one is what makes the SplitOrder targetedtowards �nding good orders for binary decision diagrams rather than targeted to if-then-else dags. If SplitOrder is called with one expression e then at the kth recursive call the kthvariable in the order is chosen, and this variable will occur at level k in the obdd for thatexpression. This argument is carried a little further in the following lemma, which showsthat SplitOrder actually creates the obdd (obdd) for e as it goes along:Lemma 2: At level k the number of nodes in an obdd is less than or equal to the cardinalityof the expression set exprSet passed as argument to SplitOrder in the kth recursive call. Infact, the set of Boolean functions represented by the expressions in exprSet is exactly thesame as the set of Boolean functions represented by the nodes at level k in the obdd.Proof: We start with second part and prove it by induction. Initially exprSet contains theone expression we wish to convert to an obdd. Since the conversion to an obdd does notchange the function represented and since the obdd at level 0 has one node our base caseis ok. Assume that the hypothesis holds for level k� 1; we will now show that it also holdsfor level k. At the k � 1th recursive call the functions represented by the expressions inexprSet are the same as the functions represented by the nodes at level k � 1 in the obdd.After the k�1th pass through the algorithm, the k�1th variable vk�1 in the total order has

77been chosen and each expression e in exprSet has been factored into vk�1ejvk�1 + v0k�1ejv0k�1and the expressions ejvk�1 and ejv0k�1 have been inserted in eSet. Since ejvk�1 and ejv0k�1 areexactly the functions that appear at level k in obdd and since eSet is passed to SplitOrder asexprSet in the kth calls we have proven the second part of the lemma is true for k providedit is true for k � 1. This together with the base case proves the second part of the lemma.The �rst part of the lemma follows directly from the second part. Since the expressionsin exprSet are not in canonical form we can not be sure that no two expressions representthe same function, and thus we can not change the less than or equal to equal.2 We can use Lemma 2 to select an appropriate cost function for evaluating the cost ofa variable. The cost function Cost can be chosen so as to optimize for di�erent objectives.Our main goal is to �nd an order that results in a canonical form that is as small as possible.We currently try to meet two objectives:Primary objective: Try to minimize the number of nodes in the canonical form byminimizing the number of nodes in the representation of E 0, the set of expressionsremaining after the next variable has been chosen.Secondary objective: Keep the number of nodes at any given level in the obdd as smallas possible. From Lemma 2 we see that this objective can be met by having \SecCost"return the cardinality of the expression set passed as argument.To solve these objectives we use a weighted sum of the number of nodes in E 0 and thecardinality of E 0 as Cost(E 0) = a1Nodes(E 0) + a2 jE 0j;where Nodes(E 0) counts the number of di�erent nodes in the expressions with roots in E 0.Making a2 much larger than a1 would tend to minimize the cardinality of exprSet at eachrecursive call to SplitOrder, while ignoring the size of the expressions rooted in exprSet .Even though jexprSetj is an estimate on the number of nodes at a given level in the obdd,it generally is a bad idea to ignore the size of the expressions (see Lemma 3), and we havefound that keeping a1 = 1 and a2 = 1 works well overall.

786.4.2 Computing ejv and ejv0The cost function used by SplitOrder is strongly dependent on the accuracy of the giventhat operator when it computes ejv and ejv0 for each expression e in exprSet.The expression ejv is computed in one traversal of e. If all the operator does is totraverse the dag and set v to true or false, but otherwise doesn't change the structureof the dag, then the cost function will be very inaccurate, and the resulting order will be,as shown in Lemma 3, in increasing order of occurrences in the original set of expressionspassed to SplitOrder.Lemma 3: Without simpli�cations by the given-that operator, SplitOrder returns a variableorder, where the variables are sorted in increasing order of number of occurrences in theexpressions in exprSet.Proof: First observe that the number of nodes in the expressions rooted at exprSet remainsunchanged at each recursive call to SplitOrder, since given that only replaces variables withconstants. This simpli�es the cost function used by SplitOrder toCost(E 0) = constant + a2 jE 0j:Let s be the subset of expressions in exprSet that contains variable v. Each expression e 2 swill be split into two expressions ejv and ejv0 and the number of expressions in E 0 will thenbe jE 0j = 2 jsj+ jexprSetj � jsj = jexprSetj+ jsj:Since the cost function will choose the split variable that results in the smallest cost it willthen choose the variable that minimizes jsj and this is the variable that occurs in fewest ofthe expressions in exprSet.2 If, on the other hand, the operator transforms ejv making use of all the reductionsthat occur when a variable is set to either true or false, then the cost function can bevery accurate. If ejv and ejv0 are converted to canonical form and identical expressions are

79merged, then, according to Lemma 2, the cardinality of E 0 (jE 0j) will always be exactly thenumber of nodes at level k in the obdd.Obviously, doing no reductions at all and converting to canonical form are twoextremes|the �rst is useless and the second is computationally too expensive. We in-stead allow given that to propagate any constant time simpli�cations that occur as a resultof replacing v with true:No-two-constant: Triples in which both the then- and else-parts point to true (witheither plus or minus labels) are replaced by an appropriately labeled pointer to theif-part or to true.Weak distinct-cases: Triples whose then- and else-parts are the same pointer are replacedwith just this pointer.No-constant-if: Triples whose if-part points to true (false) are replaced by the then(else-part).Distinct-if: Triples whose if-part is the same pointer as the then- and/or else-part arereplaced with a triple in which the then- and/or else-part is an appropriately labeledpointer to true.Since the given that operation does not convert to canonical form, the expression set E 0may contain di�erent representations of the same Boolean function. However, the set doesnot necessarily grow exponentially with the number of variables ordered, since duplicateexpressions (same pointers) are eliminated.6.4.3 ComplexityIn this subsection we will analyze the complexity of the split order heuristic. In onepass through the algorithm in Figure 6.6 the running time is bounded by the product ofthe cardinality of support and the time it takes to compute given that on all the expressionsin exprSet. Since each recursive call decreases the size of support by one, the running timeof the algorithm is:

80i=n�1Xi=0 i G(i);where n is the number of variables and G(i) is the complexity of computing the given thatoperation in the ith recursion through SplitOrder.Let us examine G(i) a little closer by �rst looking at how the given that operator com-putes ejv and ejv0 . The simple and most straight forward given that makes one traversal ofthe expression e to compute ejv, replacing each occurrence of v with true and propagatingconstant time simpli�cations. Clearly this has complexity O(m), where m is the numberof nodes in the dag representation of e. We can easily modify the given that operator tocompute both ejv and ejv0 in the same traversal, giving us the algorithm GivenThat shownin Figure 6.7.Each time GivenThat visits a node it checks to see if we have already computed the giventhat for the node, in which case we just return the cached versions. Otherwise, we computegiven that for the node, and cache the results with the node for future reference. TheIfThenElse operator is called with three expressions (i,t, and e), and returns an expressionthat is logically equivalent to the expression (if i then t else e). The complexity ofIfThenElse varies depending on what conditions the returned expressions should satisfy,see Section 2.4 and 3.3. The conditions SplitOrder requires are shown in Section 6.4.2 andcan all be carried out in constant time, making GivenThat an O(m) algorithm, where m isthe number of nodes in the dag representation of e.With the version of GivenThat in Figure 6.7, we can see that the complexity of G(i)is still O(m), with m being the number of nodes in the multiply-rooted dag with roots inexprSet.We now need to determinem for the multiply-rooted dag with roots in exprSet. To provethat m is exponential in the worst case is easy, here we just need to consider SplitOrdercalled with one expression e for which we wish to compute an order, and then use thefollowing two lemmas:Lemma 4: SplitOrder constructs all the nodes in the obdd representation for e with respectto the order returned by SplitOrder.

81GivenThat(Expr e, Variable v, var Expr egv, var Expr egnv)if (v 62 Support(e))egv egnv ereturnif (e is marked)egv cached valueegnv cached valuereturnmark e as visitedif (e = v or e = v0)egv (e = v) ? true : falseegnv (e = v) ? false : truecache both egv and egnv with ereturn<ei; et; ee> <if-part(e),then-part(e),else-part(e)>Expr egvi,egnviGivenThat(ei,v,egvi,egnvi)Expr egvt,egnvtGivenThat(et,v,egvt,egnvt)Expr egve,egnveGivenThat(ee,v,egve,egnve)egv IfThenElse(egvi,egvt,egve)egnv IfThenElse(egnvi,egnvt,egnve)cache both egv and egnv with ereturnFigure 6.7: Computing ejv and ejv0 in one traversal of e. IfThenElse(i,t,e) returnsan expression representing the function (if i then t else e).Proof: Follows from Lemma 2.2Lemma 5: There exist functions for which the number of nodes in a corresponding obddis exponential in the number of input variables regardless of chosen variable order.Proof: Bryant [Bry91, Theorem 4] showed that any obdd representation for the Booleanfunction representing the middle output of an integer multiplier for word size n is exponentialin the number of nodes.2 Lemmas 4 and 5 prove that the complexity of the algorithm shown in Figure 6.6 is ex-

82ponential in the worst-case, since it must construct all the nodes in the obdd correspondingto the order it computes. Lemma 2 guarantees that at the kth recursive call to SplitOrderthe cardinality of exprSet is greater than or equal to the number of nodes at level k in theobdd representation for e, thus we are ensured that jexprSetj grows exponentially in theworst-case, meaning that m, the number of nodes in the multiply-rooted dag with roots inexprSet, also grows exponentially in the worst-case.With the exception of integer multiplication, most Boolean functions in digital logicdesign applications have reasonable size obdds. Thus the average complexity of SplitOrderis more likely to be a function of how well GivenThat manages to propagate simpli�cationsonce variables are replaced with constants. From Lemma 3 we can see that using nosimpli�cations could result in an almost doubling of exprSet at each recursive call toSplitOrder, which in turn would make SplitOrder exponential even when the resulting obddis polynomial.6.4.4 Ine�ciencies in computing given thatAs mentioned in the proof of Lemma 2 we can not assure that jexprSetj is equal to thenumber of nodes at the corresponding level in the obdd representation of an expressions e,since the expressions in exprSet are not in canonical form. Thus, many of the expressionspassed to SplitOrder as exprSet may be di�erent representations of the same Booleanfunction.To see how bad things were we took the ISCAS benchmark C432 and passed all 7 outputsto SplitOrder. We then counted the number of expressions in exprSet (jexprSetj) at eachrecursive call to SplitOrder and compared it with the minimum achievable. The minimumachievable can be computed by converting each expression in exprSet to canonical form andremoving duplicate expressions (expressions with identical pointers) from the set.In Table 6.7 we show the results. The �rst column shows the number of variables insupport at each recursive call to SplitOrder. The second column shows the cardinality ofexprSet in each call. We see that even though exprSet does not grow exponentially it still

83gets quite big. The set sizes are even more disappointing when compared to the minimumachievable shown in column 3 in Table 6.7.The huge di�erence between the actual cardinalities encountered by SplitOrder and theminimum achievable, indicates that the given that operator is not very good at propagatingthe consequences of setting a variable to true and false. For example, when 7 variablesremain in order, SplitOrder had to call GivenThat for 10207 expressions which representedonly 46 di�erent Boolean functions.The main problem is illustrated in Figure 6.8. Assume the function f to be representedas shown in Figure 6.8 (a), and assume that we want to compute f ja. The result as it wouldbe returned by GivenThat is shown in Figure 6.8 (b). The IfThenElse operator has noeasy way of detecting that the if-part of some triple doesn't appear in the then- and else-parts (the only condition that would detect this situation is the Variable order condition).Since GivenThat repeatedly sets variables to true and false the situation appearing inFigure 6.8 (b) is very common.The transformation that would be required to go from Figure 6.8 (b) { (c) is an O(m)operation if the dag is a tree (m is then the number of nodes in the tree), but when nodeshave multiple fanout the transformation can not be carried out in one traversal of the dag.It is still an open problem to improve the given that operator so that it will propagatesimpli�cations more e�ciently.6.4.5 ResultsThe result of applying the SplitOrder heuristic to examples from the benchmark set forthe 1989 International WorkShop on Logic Synthesis [Lis88] are summarized in Table 6.8.The examples used in this table are the same as those used in Table 6.1 and Table 6.2.The results reported in this table use the same starting point as the depth-�rst orderingheuristics, that is, we apply SplitOrder without doing any higher level transformations thatnormally result in more structured networks and hence better orders.

84Remaining variables jexprSetj Minimum36 7 735 12 1234 22 2133 34 3332 55 5331 84 7730 123 10329 130 9128 111 6227 217 11726 323 15625 324 12424 279 6223 541 11922 541 11021 732 9320 652 6219 1242 12118 1242 11417 1844 10116 2772 7715 3894 11714 3866 10613 5752 8512 3141 4711 5216 7510 5045 689 7668 558 6419 327 10207 466 9633 415 9616 444 42 213 29 132 9 51 2 2Table 6.7: Computing a variable order for the 7 primary output of C432 usingSplitOrder as shown Figure 6.6. First column indicates how many variables thereare in support at each recursive call to SplitOrder. Second column is the cardinalityof exprSet at that recursive call to SplitOrder. The third column shows theminimum achievable cardinalities of exprSet which are computed by convertingthe expressions in exprSet to canonical form and removing duplicate pointers.

85 truea b true false{c true a {b true c(a)b truec false{b true c(b) b truec true false(c) b c true(d)Figure 6.8: (a): An if-then-else dag representation for the function f = ab0 +(c + a0)(b+ c0). (b): The result of computing f ja, notice how GivenThat fails topropagate changes in if-branches to then and else-branches. (c): Propagating thechanges of the if-branches. (d): Final result, obtained directly from (c) but notfrom (b) by using the No-Two-Constants condition.All numbers in the table report the number of nodes and the height of the canonicalif-then-else dag and ordered binary decision diagram. For canonical if-then-else dags weuse size to count nodes and for obdds we use siscount (refer to Section 6.3.4). The �rstcolumn is the name of the benchmark example. Columns 2 through 4 report results whenconverting to obdds. Column 2, depth, contains the sizes and height of the obdds usingthe order acquired by the best depth-�rst ordering heuristic; these numbers are taken fromcolumn best of Table 6.2. Column 3, split, reports the same measures using the variableorder obtained by SplitOrder. Column 4, rev(s), reports the size and height of obdds whenusing the reverse of the order obtained by the SplitOrder heuristic. Finally, columns 5

86
0.20.30.40.50.60.70.80.912

10 100 1000 2000
split/depth depth-�rst ordering size

33 3 33333 33 333 3333 33 333 33 3333 33 3 33 33 333 3 33 333
Figure 6.9: The size of obdd when using SplitOrder divided by the size whenusing the best of the depth-�rst ordering heuristics. Squares below 1 indicate thatSplitOrder wins.through 7 are the results when converting to a canonical if-then-else dag. All columns aresummed up, and the total can be taken as an estimate of the area needed to implement allexamples using one particular strategy.The data from Table 6.8 is summarized in Figure 6.9 and Figure 6.10, which showsscatter diagrams for all 39 examples comparing the depth-�rst heuristic to the split orderheuristic when converting to respectively an obdd and a canonical if-then-else dag.When converting to an obdd, the new split order heuristic wins in all but a few examples.In 39 examples SplitOrder won in 28 examples and lost in only 6 examples. In the winningexamples the size reductions were anywhere from 2% to 59% averaging 20%. In the 6 lossesthe worst size increase was 52% and the average was 18%. Over all 39 examples, SplitOrderresulted in a 25% decrease in size of obdds. Comparing SplitOrder to the best singledepth-�rst heuristic (reconvergent count) we see that SplitOrder results in a 37% reductionin number of nodes.When converting to a canonical if-then-else dag, the new split order heuristics wins in16 examples and looses in 20 examples. In the winning examples the size reductions were

87obdd canonical itedExample depth split rev(s) depth split rev(s)alu2 176:9 176:9 267:9 152:9 160:9 277:9alu4 446:13 370:13 941:13 302:11 352:13 958:13apex6 886:19 643:19 2126:23 689:19 550:14 2295:19apex7 453:18 319:18 1053:23 238:17 292:13 528:18b9 177:12 148:12 203:13 164:9 153:9 173:11c8 98:9 106:10 248:12 102:9 96:10 179:11cc 78:5 65:5 52:6 60:4 54:5 90:6cht 131:4 136:4 118:5 127:4 139:4 189:4cm138a 19:5 19:5 39:5 22:5 42:5 22:5cm151a 22:5 20:6 74:9 28:5 25:6 72:9cm152a 17:3 17:3 384:10 18:3 18:3 384:10cm162a 45:9 39:9 56:10 43:7 40:7 58:7cm163a 41:7 37:7 42:8 40:7 36:7 51:8cm42a 21:3 21:3 25:3 22:3 26:3 22:3cm85a 40:9 31:9 41:9 45:9 37:6 45:8cmb 37:11 35:11 37:11 46:11 49:11 48:11count 202:18 82:18 205:19 98:18 203:18 130:18cu 41:10 58:9 79:12 48:7 57:8 98:11decod 33:4 33:4 47:4 35:4 49:4 35:4example2 514:13 355:13 746:15 334:12 537:12 494:12f51m 48:7 40:7 75:7 57:7 49:6 68:7frg1 128:22 195:22 199:24 144:19 195:17 220:20frg2 2103:20 1420:22 2563:23 862:13 1512:15 1247:18lal 101:12 98:12 117:12 101:10 100:10 97:11ldd 74:7 75:7 111:8 76:6 78:7 99:8pcle 54:10 44:10 114:11 66:10 81:10 82:10pcler8 133:11 131:11 152:12 113:10 111:10 148:11pm1 49:8 51:8 46:8 57:7 52:6 61:7sct 75:12 58:13 95:12 79:6 86:11 68:9tcon 26:1 26:1 35:2 25:1 25:1 41:2term1 208:19 113:19 200:19 209:14 120:10 140:13ttt2 157:13 139:13 219:13 149:10 163:9 184:11unreg 86:4 83:3 121:5 87:4 84:3 196:5vda 522:12 511:12 5082:16 541:12 547:12 5089:16x1 935:22 481:21 612:22 726:19 468:18 605:19x2 41:6 37:6 75:9 44:6 45:6 71:7x3 1019:19 700:19 1419:22 847:18 687:14 1407:15x4 596:14 434:14 570:14 396:9 480:11 377:12z4ml 36:6 25:6 28:6 27:6 27:6 22:6TOTAL 9868:411 7371:413 18616:464 7219:360 7825:349 16370:404Table 6.8: The size and height after applying the various ordering heuristics toan initial if-then-else dag. The �rst column is the name of the example. The nextthree columns are size (siscount) and height when converting the network to anobdd using the best of the depth-�rst ordering heuristics, the split order heuristic,and the reverse of the split order. The last three columns are the size (size) andheight when converting to a canonical if-then-else DAG. The row Total shows thetotal size of implementing all examples using the given heuristic.

88
0.30.40.50.60.70.80.91210 100 1000 2000

split/depth depth-�rst ordering size33 3 33333 33 333 3333 33 333 33 3333 33 3 33 33 333 3 33 333
Figure 6.10: The size of canonical if-then-else DAG when using SplitOrder dividedby the size when using the best of the depth-�rst ordering heuristics.anywhere from 1% to 43% averaging 13%. In the losing examples the worst size increasewas 107% (count) averaging 28%. Over all 39 examples, SplitOrder resulted in a 8.3%increase in size of if-then-else dags. Comparing SplitOrder to the best single depth-�rstheuristic for if-then-else dags (reconvergent count) we see that SplitOrder results in a 11%reduction in number of nodes, which still makes SplitOrder the single best variable orderingheuristic for if-then-else dags.The results are impressive when converting to obdds, but quite disappointing whenconverting to if-then-else dags. However, it does appear as if canonical if-then-else dagsare less sensitive to the variable order than obdds, hence the room for improvement maybe greater for obdds than for canonical if-then-else dags. It comes as no surprise thatSplitOrder performs best on obdds, since it actually constructs the obdd and not thecanonical if-then-else dag as it goes along. The \split" variable is based on how muchit would cost to factor an expression e into vejv + v0ejv0 , and this is exactly the functionrepresented by one of the nodes with label v in the obdd.If the split order heuristic constructed the canonical if-then-else dag as it went along, thechoice of a \split" wouldn't be a simple variable, but a general expression. If the expression

89we are converting to a canonical if-then-else dag has n variables and the order is decidedfor k of these, then the search would be among 2n�k variable sets instead of n�k variables.Even though there is no improvement when converting to canonical if-then-else dagusing SplitOrder (remember though, that SplitOrder was compared against 9 depth-�rstordering heuristics), it still seems that a good variable order for an obdd is generally alsoa good variable order for a canonical if-then-else dag. In the cases where the blow-up issigni�cant, as in examples cm138a and count, part of the reason is that canonical if-then-else dag are left-associative, whereas obdds are right-associative, so a simple reversal ofthe order will improve the result. However, as can be seen from the table it is not generallythe case that reversing the order for an obdd will result in a good order for an if-then-elsedag, in fact it most often results in a worse order. It is interesting to observe, that the onlyexamples where a reversal of the order helps are those for which SplitOrder lost over thedepth-�rst order.Applying SplitOrder to optimized examplesThe previously presented results all used unoptimized circuits as starting point. Nor-mally optimized circuits are more structured than unoptimized and hence we would expectSplitOrder to �nd better orderings if applied to former. Here we present results using Spli-tOrder on the same examples as before, but prior to running SplitOrder we optimize eachexample with sis using the standard script coming with sis.Table 6.8 compares the results of applying SplitOrder to the sis optimized examplesand the non-optimized examples. The columns marked noopt are the result of SplitOrderapplied to the non-optimized examples|these columns are copied from Table 6.8. Thecolumns marked opt are the result of applying SplitOrder to the sis optimized examples.The table also includes columns best, which shows the best over all the results presented inthis chapter. The columns best are used later when we compare the sizes of obdds againstthose of canonical if-then-else dags.

90obdd canonical itedExample noopt opt best noopt opt bestalu2 176:9 179:9 176:9 160:9 183:9 152:9alu4 370:13 441:13 370:13 352:13 446:13 302:11apex6 643:19 741:19 643:19 550:14 690:14 550:14apex7 319:18 299:18 299:18 292:13 243:15 238:17b9 148:12 148:12 148:12 153:9 169:10 153:9c8 106:10 98:10 98:10 96:10 85:10 85:10cc 65:5 62:6 52:6 54:5 70:6 54:5cht 136:4 127:3 118:5 139:4 122:3 122:3cm138a 19:5 19:5 19:5 42:5 42:5 22:5cm151a 20:6 19:4 19:4 25:6 21:4 21:4cm152a 17:3 17:3 17:3 18:3 18:3 18:3cm162a 39:9 37:9 37:9 40:7 55:8 40:7cm163a 37:7 27:7 27:7 36:7 42:7 36:7cm42a 21:3 21:3 21:3 26:3 26:3 22:3cm85a 31:9 30:9 30:9 37:6 37:6 37:6cmb 35:11 32:11 32:11 49:11 49:11 46:11count 82:18 82:18 82:18 203:18 203:18 98:18cu 58:9 59:9 41:10 57:8 61:7 48:7decod 33:4 33:4 33:4 49:4 49:4 35:4example2 355:13 496:13 355:13 537:12 367:11 334:12f51m 40:7 40:7 40:7 49:6 46:7 46:7frg1 195:22 130:22 128:22 195:17 148:18 144:19frg2 1420:22 1142:20 1142:20 1512:15 1273:15 862:13lal 98:12 91:12 91:12 100:10 105:10 97:11ldd 75:7 77:7 74:7 78:7 77:7 76:6pcle 44:10 45:10 44:10 81:10 85:10 66:10pcler8 131:11 114:11 114:11 111:10 134:10 111:10pm1 51:8 49:8 46:8 52:6 55:6 52:6sct 58:13 60:13 58:13 86:11 88:9 68:9tcon 26:1 26:1 26:1 25:1 25:1 25:1term1 113:19 108:19 108:19 120:10 123:10 120:10ttt2 139:13 136:13 136:13 163:9 158:9 149:10unreg 83:3 110:4 83:3 84:3 111:4 84:3vda 511:12 512:12 511:12 547:12 530:12 530:12x1 481:21 508:21 481:21 468:18 518:19 468:18x2 37:6 34:6 34:6 45:6 42:6 42:6x3 700:19 669:19 669:19 687:14 636:15 636:15x4 434:14 420:14 420:14 480:11 498:10 377:12z4ml 25:6 18:6 18:6 27:6 22:6 22:6TOTAL 7371:413 7256:410 6840:412 7825:349 7652:351 6388:349Table 6.9: This table compares the result of applying SplitOrder to unoptimizedexamples and examples that have been optimized with sis using the standardscript. Columns named noopt are copied from Table 6.8. The columns headedwith opt are the results of applying SplitOrder to the sis optimized examples.The columns headed with best shows the best results presented in this chapterfor a particular example, and can be used to compare the sizes of obdds againstcanonical if-then-else dags.

91
0.60.70.80.9110 100 1000

opt/noopt noopt size3
3 33333 3333 333 33 333 33 3 3333 3333 3 33 333 333Figure 6.11: The size of obdds when using SplitOrder on unoptimized examplesdivided by the size when using the sis optimized examples. Squares below 1indicate that the optimized examples resulted in better variable order.As we see from the table, the total improvement is not signi�cant|for obdds we got a1.5% decrease in size and for canonical if-then-else dags the decrease was 2.2%. However, iflook at the number of examples that were improved, we see that for obdds 20 examples gotbetter, 11 worse and 8 remained unchanged. For canonical if-then-else dags 14 examplesgot better, 17 worse and 8 remained unchanged. The data from Table 6.9 is plotted inFigure 6.11 and 6.12 which shows scatter diagrams for all examples comparing the result ofSplitOrder applied to unoptimized and optimized examples.Comparing the sizes of canonical if-then-else dags to the sizes of OBDDsFrom Table 6.9 it can be seen the total size of canonical if-then-else dags is only 6.6%smaller than the total size of obdds. It can also be seen that in general obdds have fewernodes than canonical if-then-else dags. Figure 6.13 shows the ratio of the canonical if-then-else dag size over obdd size for the examples in Table 6.9. For each example we have usedthe smallest canonical if-then-else dag and smallest obdd found during the experiments inthis chapter|this corresponds to plotting the ratio of the columns best in Table 6.9.

92
0.60.70.80.9110 100 1000

opt/noopt noopt size
3 3 33333 3333 333 3 3 333 33 3333 33 33 3 33 333 333Figure 6.12: The size of canonical if-then-else dags when using SplitOrder onunoptimized examples divided by the size when using the sis optimized examples.Squares below 1 indicate that the optimized examples resulted in better variableorder.

0.60.70.80.9110 100 1000
ite/obdd obdd size3 3 33333 3333 333 33 333 33 3 3333 33 33 3 33 333 333

Figure 6.13: The number of nodes (size) in canonical if-then-else dags dividedby the the number of nodes (siscount) in obdds. Squares below 1 indicate thatthe if-then-else dag is smaller than the obdd. For each example we used thesmallest canonical if-then-else dag and smallest obdd obtained through all theexperiments in this chapter.

93It is interesting to observe that for small examples it appears as if the obdd is winning,whereas the larger examples have smaller canonical if-then-else dags. This is believed tobe more a coincidence than a general rule. Looking at Table 6.3 and 6.4 we see that for adi�erent set of large examples, obdds and canonical if-then-else dags are almost the samesize with no leaning towards one or the other.We �nally compare obdds and canonical if-then-else dags towards the total best of bothcanonical representations. In Table 6.10 we summarize the results by normalizing the totalof each heuristic (all the heuristics used in this chapter) to the total best of both canonicalrepresentations. Let BestSize denote the smallest number of nodes in any of the canonicalforms (the smallest of the columns best in Table 6.9) for a particular example. Table 6.10then reports the ratio between the total for each heuristic and the total BestSize. In thetable we report the ratios for both canonical if-then-else dags (ItemCanonical) and obdds,and thus the table also compares canonical if-then-else dags sizes with obdd sizes. Eachrow identi�es a given heuristic. The row best is the result of normalizing the columns bestin Table 6.9 to BestSize. The row Original is the result of using the variable order as itappears in the input �le. The row Random is the result of using a randomly generatedvariable order.From Table 6.10 we see that the canonical if-then-else dags are only 3% larger than thebest known canonical form whereas obdds are 11% larger than the best known canonicalform. We also see that if-then-else dags are not quite as sensitive to the variable order asobdds. Again, the latter is not surprising since allowing general expressions in the if-partmakes an if-then-else dag more
exible than an obdd. We see that SplitOrder is the onlyvariable ordering heuristic that performs better on obdds than on if-then-else dags, andthat it is the single best heuristic for both canonical if-then-else dags and obdds.Applying SplitOrder to larger examplesIn Table 6.3 and 6.4 we showed results of applying the depth-�rst ordering heuristics toexamples from the ISCAS benchmark set for testing [Lis88]. We repeat the same examples

94Total Size/Total BestSizeItemCanonical OBDDMethod Incremental Reconvergent Incremental ReconvergentSimple Depth 1.69 1.64 2.30 2.23Fanout 1.64 1.63 2.32 2.26Height 2.29 1.51 2.73 2.02Count 1.59 1.42 2.12 1.90sis 1.66 2.13Split 1.26 1.19best 1.03 1.11Original 3.36 4.15Random 3.01 3.14Table 6.10: The result of normalizing each heuristic to the best of all heuristics.This table shows the ratio between the total number of nodes using one heuristicand the total BestSize. BestSize, for a particular example, is the smallest numberof nodes seen with any of the variable orders tried in the canonical if-then-elsedag or obdd whichever is the smallest. The row best is the result of normalizingthe columns best in table 6.9 to BestSize.using SplitOrder and the results are shown in Table 6.11.For some of the examples, we were unable to complete SplitOrder on all the outputsat once, and had to run it on just the largest output. In Table 6.11 we indicate this bygiving the name of the output we passed to SplitOrder. For many of the ISCAS examples,a good order for the largest output is also a reasonable order for the other outputs, andhence converting all the outputs to canonical form with the order computed for the largestoutput works well.We see that with SplitOrder we are now able to compute an order for which we canconstruct the canonical forms. This was not the case with the depth-�rst ordering heuristics(see Table 6.3 and 6.4).Iterating SplitOrderWe �nally show the results of iterating SplitOrder on examples from the ISCAS bench-mark set [Lis88]. Table 6.12 contains the results for the examples for which we could �ndprevious results in the literature [MWBS88, FFM93, MKR92].

95Problem Outputs obdd ItemCanC432 all 1570:35 1307:35C499 all 42162:40 42181:40C880 all 9021:42 7188:37C1355 1324GAT(583) 77746:40 77765:40C1908 75(866) 10356:30 9876:30C2670 all 54895:70 40754:42C3540 all 61054:37 58659:37C5315 all 3327:46 2639:26Table 6.11: Result of SplitOrder on examples from the ISCAS benchmark set.The second column indicates which outputs were used to obtain the order; allrefers to using SplitOrder on all the outputs at once. The third column is the totalnumber of nodes (siscount) and height in the multiply-rooted obdd with rootsin the primary outputs. The fourth column is the total number of nodes (size)and height in corresponding canonical if-then-else dag.SplitOrder is iterated according to Figure 6.2. We start with a non-canonical if-then-elsedag and compute a variable order for all the primary outputs at once (this is done by passingall primary output expressions to SplitOrder). Then the canonical form transformation isused to convert each primary output to ordered binary decision diagrams, which in the nextiteration are passed to SplitOrder to compute a new variable order.For some of the examples, we were unable to complete SplitOrder on all the outputsat once, and had to run it on just the largest output. In Table 6.12 we indicate this bygiving the name of the output we passed to SplitOrder. For many of the ISCAS examples, agood order for the largest output is also a reasonable order for the other outputs, and henceconverting all the outputs to obdds with the order computed for the largest output workswell. Furthermore, after converting all the outputs to obdds using the order computed forthe largest output, we are often able to iterate SplitOrder on all the outputs at once.For all the examples, we report both the total size over all outputs, and the size for thelargest output alone. Total size of a network, where all the outputs have been converted toone multiply-rooted obdd, has received little consideration in the literature. It is importantto realize that just �nding an order that results in size k for the largest output, and sizes lessthan k for the other outputs, doesn't necessarily mean that the total number of di�erent

96nodes for all the outputs have been minimized, since a multiply-rooted BDD can sharevarying amounts of the subdags. This is illustrated most clearly in the iteration for C1908.Table 6.12 contains a set of rows for each example. The �rst row for each exampleis the result of applying SplitOrder and obdd conversion to the initial dag, which is notin canonical form, but merely a multiply-rooted if-then-else dag. If we were unable torun SplitOrder on all the outputs at once, the output named was chosen among all theoutputs as the largest of the non-canonical roots in the multiply-rooted if-then-else dag.The remaining rows correspond to iterating on the result of the previous row. In the columnTotal we report the total size over all outputs, that is, we count the number of di�erentnodes in the multiply-rooted obdd with roots in the primary outputs. For the columnLargest output we report the size of the output that is largest with respect to the ordercomputed. It should be noted that this output may change from iteration to iteration.For all the examples, we achieve a signi�cant reduction in size when SplitOrder isiterated. In all but 3 examples we beat the previous best order for the largest outputby as much as 60%. We do poorly on C2670, which is the only example we were unable toiterate on. C1908 illustrates how minimizing the largest output does not reduce the totalsize|here we achieve further reduction in the total size while increasing the size of thelargest output. The most unstable example was C3540, where total size
uctuates from36200 to 42400 if iteration is continued beyond the last row. All other examples were stablewithin less than 1% of the result in the last row.C1355 is logically equivalent to C499, but SplitOrder came up with di�erent orders forthe two examples. Generally the starting point for the iteration has a big in
uence on the�nal result. We tried converting C1355 to an obdd using the input order (the order inwhich the primary inputs occur in the input �le) and then iterating from that point. Thisgave us a smaller total size for C1355 (32169) but the largest output had increased to 2308.For both C499 and C1355 we were unable to iterate SplitOrder on all the outputs at once,thus making it impossible to optimize for total size in the most logical way.

97Problem Method Total Largest output Best previouslargest outputC432 all;obdd 1570 454all;obdd 1326 388all;obdd 1288 370 369 [MKR92]C499 all;obdd 42162 2088OD0(242);obdd 41074 2055OD0(242);obdd 40794 2047 4283 [MKR92]C880 all;obdd 9021 3057all;obdd 5709 2172all;obdd 5537 1969all;obdd 4829 1853 1248 [MKR92]C1355 1324GAT(583);obdd 77746 33301324GAT(583);obdd 37706 2063all;obdd 35842 1991all;obdd 35298 1959 4283 [MKR92]C1908 75(866);obdd 10356 135775(866);obdd 9541 1264 1606 [MKR92]75(866);obdd 9515 1265all;obdd 8863 1408all;obdd 8805 1403C2670 311(1278);obdd 54895 30560 14763 [FFM93]C3540 405(1717);obdd 61054 21791405(1717);obdd 43163 11269405(1717);obdd 36155 10334all;obdd 42436 12462all;obdd 36274 10305 17747 [MKR92]C5315 all;obdd 3327 780all;obdd 2381 492all;obdd 2289 472 1296 [MKR92]all;obdd 2320 472Table 6.12: Result of iterating SplitOrder. The second column is the methodused to obtain the order, all refers to using SplitOrder on all the outputs at once,obdd is converting all the outputs to obdd using the computed order. If obdd ispreceded by x(y) then this is the name of a primary output and means that weran SplitOrder only on this output, but used that order for all the other outputsas well when converting to obdd. The third column is the total number of nodes(siscount in the multiply-rooted obdd with roots in the primary outputs. Thefourth column is the total number of nodes in the obdd rooted at the largestoutput. Finally the last column gives the previous best known size of the largestoutput.

986.5 The e�ect of variable order on other transformationsIn the previous sections we focused on �nding variable orders that result in small canon-ical forms. In this section we will show that not only the canonical form transformationsrely on variable order.As has already pointed out in Chapter 4, LocalFactor gets most of its power fromconverting small parts of the dag to canonical form. Using the strong canonical formdescribed in Section 3.3 it is clear that identical subdags will result in explicit sharing. Butas has become clear from this chapter di�erent orderings result in very di�erent sharing,and hence it is important to �nd the ordering that results in the most explicit sharing.Encouraged by the results of iterating SplitOrder (see Table 6.12) we decided to makethe experiment shown in Figure 6.14 (these are the commands used by item). We �rstconstruct the initial if-then-else dag, which we optimize using LocalFactor (transform -mlocal) and two-column rectangle replacement (bcov). The �rst time through LocalFactoruses default variable order constructed as it occurred in the input �le. LocalFactor and two-column rectangle replacement are iterated as this generally improves the results slightly.The optimized dag is then used by SplitOrder (order split -c siscount) to computea variable order from which we construct an obdd (obdd). With the obdd we iterateSplitOrder once and with the resulting order we iterate the entire script2.The item script in Figure 6.14 was iterated 5 times. Even though there were some
uctuations we only report the results for the �rst and last run through the script. InTable 6.13 we show the results. We report the measures count, edges, size, and height,all of which (except edges which counts the number of edges in the dag) we have used inother sections. For each example and each cost measure we report the initial result, thelast result, and the di�erence (last�initial). The last row sums up the di�erence for eachcost measure.2 item caches logically equivalent expressions in equivalent rings and during optimization of a functionit always checks the equivalent ring to see if it contains a \better" implementation. Hence, before iteratingthe script we must clear all equivalent rings so that the starting point is the same for each run through thescript.

99Example Count Edges Size Height�rst last di� �rst last di� �rst last di� �rst last di�alu2 393 374 -19 447 424 -23 175 166 -9 11 9 -2alu4 728 763 35 1085 894 -191 492 353 -139 34 14 -20apex6 781 775 -6 1184 1061 -123 631 551 -80 20 12 -8apex7 245 239 -6 399 375 -24 221 207 -14 14 14 0b9 101 101 0 172 172 0 115 115 0 9 9 0c8 133 132 -1 152 147 -5 79 76 -3 9 9 0cc 64 64 0 87 87 0 51 51 0 5 5 0cht 184 184 0 221 221 0 121 121 0 3 3 0cm138a 24 24 0 40 40 0 22 22 0 5 5 0cm151a 27 24 -3 40 25 -15 29 20 -9 9 4 -5cm152a 22 22 0 22 22 0 18 18 0 3 3 0cm162a 40 42 2 63 64 1 41 41 0 8 8 0cm163a 39 40 1 61 60 -1 42 41 -1 7 7 0cm42a 27 27 0 44 44 0 21 21 0 3 3 0cm85a 43 49 6 71 65 -6 43 37 -6 10 6 -4cmb 40 40 0 67 67 0 46 46 0 11 11 0count 143 143 0 174 174 0 98 98 0 18 18 0cu 51 51 0 79 79 0 46 46 0 6 6 0decod 42 42 0 68 68 0 31 31 0 3 3 0example2 304 309 5 464 465 1 271 270 -1 12 12 0f51m 88 84 -4 108 112 4 48 52 4 7 8 1frg1 174 144 -30 264 204 -60 145 115 -30 14 18 4frg2 979 964 -15 1690 1648 -42 897 874 -23 15 14 -1lal 92 91 -1 156 145 -11 93 86 -7 10 10 0ldd 113 103 -10 156 151 -5 69 69 0 6 10 4pcle 64 64 0 98 98 0 60 60 0 9 9 0pcler8 88 88 0 138 138 0 84 84 0 11 11 0pm1 49 44 -5 79 72 -7 48 45 -3 6 6 0sct 70 71 1 107 106 -1 62 61 -1 8 8 0tcon 40 40 0 40 40 0 25 25 0 1 1 0term1 209 117 -92 354 158 -196 197 97 -100 21 10 -11ttt2 240 200 -40 330 274 -56 157 133 -24 8 10 2unreg 128 128 0 144 144 0 84 84 0 3 3 0vda 1074 1114 40 1473 1361 -112 628 540 -88 24 16 -8x1 300 305 5 523 521 -2 288 285 -3 14 15 1x2 51 51 0 80 77 -3 44 42 -2 7 6 -1x3 865 792 -73 1214 1005 -209 623 508 -115 17 14 -3x4 390 395 5 625 530 -95 357 292 -65 10 8 -2z4ml 61 37 -24 88 43 -45 44 22 -22 9 5 -4TOTAL 8506 8277 -229 12607 11381 -1226 6546 5805 -741 400 343 -57Table 6.13: Results extracted from iterating the script in Figure 6.14. The �rstcolumn is the name of the example, the following 4 columns report the speci�edcost metric after the �rst and last run through the script. The number di� reportsthe di�erence in the cost metric between the �rst and last run.

100# optimize the network using LocalFactor and bcovtransform -m localbcovtransform -m localbcovtransform -m localbcovprint count() edges() size() height()# compute a variable orderorder split -c siscount# convert the outputs to OBDDsobdd# recompute a variable orderorder split -c siscount# iterate the scriptFigure 6.14: Optimization script used with item to show the e�ect of variableorder on other optimizations by LocalFactor. The script was iterated 5 times.From the table we see that overall there is a signi�cant di�erence between the �rst andlast run through the script for all the metrics. The most signi�cant di�erences were in thesize, edges, and height metrics. This makes sense, since LocalFactor speci�cally tries toreduce the number of edges and SplitOrder attempts to �nd an order that reduces the sizeof the canonical dag. The results demonstrate that a good variable order is important whenapplying local transformations to the dag. Finally, the size column of Table 6.13 shouldbe compared to the best column for canonical if-then-else dags in Table 6.9. The di�erence(totally 9.1%) can be taken as an estimate for the cost of converting a non-canonical if-then-else dag to canonical form.6.6 ConclusionIn this chapter we have presented several depth-�rst ordering heuristics and the newSplitOrder heuristic for �nding variable orders for canonical if-then-else dags and obdds.Among the depth-�rst ordering heuristics the new reconvergentmerging scheme improvesthe results while maintaining theO(n) complexity associated with traversal-based heuristics.

101The new SplitOrder heuristic results in signi�cant improvement over the depth-�rstheuristics when converting to obdds. When converting to canonical if-then-else dags,SplitOrder is still the single best heuristic, but only about as good as trying 8 di�erentdepth-�rst ordering heuristics and choosing the best for each example. For canonical if-then-else dags, trying all the di�erent heuristics presented in this chapter, results on theaverage in 14% fewer nodes than using SplitOrder alone (2% obdds).An open problem is to �nd ordering heuristics that are targeted for canonical if-then-elsedags rather than obdds.It appears as if obdds in general have fewer nodes than canonical if-then-else dags. Theheight of canonical if-then-else dags is almost always signi�cantly less than the height ofobdds. The results also demonstrate that obdds are more sensitive to the variable orderthan canonical if-then-else dags.We also showed that iterating SplitOrder on the ISCAS benchmark set greatly improvesthe resulting variable order for obdds. We have experimented with iteration of the depth-�rst ordering heuristics, but here the results did not converge and didn't seem to
uctuatebetween any �xed sizes.Finally we showed that we could improve the results of logic optimization by iteratingthrough combinations of paths in Figure 6.2, and in particular we showed how the variableorder can a�ect the �nal result of logic optimization.

1027. Conclusions and future researchThis thesis presented two important aspects of logic optimization: common subexpres-sion extraction using two-column rectangle replacement and variable ordering for Booleanfunctions represented as if-then-else dags and binary decision diagrams.7.1 Two-column rectangle replacementTwo-column rectangle replacement is a general sub-expression extraction technique thatdoes not rely on the underlying representation of Boolean expressions. Two-column rect-angle replacement recognizes commonality between commutative and associative Booleanexpressions.We showed how Boolean matrices could be used to represent Boolean expressions andhow rectangles of the matrices corresponded to common subexpressions. Speci�cally weconstructed an XOR-matrix and an OR-matrix, where the �rst represents the XOR andXNOR expressions in a set of expressions and the latter represents the AND, NAND, OR,and NOR-expressions.In two-column rectangle replacement, rectangles of exactly two columns are replacedsequentially with a new single column until each row uses exactly one column. The two-column rectangle-replacement problem is to replace rectangles in such an order that thearea or delay of the �nal circuit is minimized.When optimizing for area the order of replacement is determined based on the value ofa rectangle. The value of a rectangle is the di�erence in the number of 1's in the matrixbefore and after a replacement. The results demonstrated a 10% improvement in our areaestimate when applying two-column rectangle replacement to expressions minimized usingLocalFactor (an optimization technique in item, which relies on canonical form to detectsharing).When optimizing for delay we showed that two-column rectangle replacement coulde�ectively be used in balancing any cost measure of dag. Typically, we use height as

103our delay estimate and by replacing the two-column rectangle in which the new columnwill have the lowest height, we balance the dag and thus minimize the delay estimate. Wedemonstrated that this technique was very e�ective in balancing the dag, while keeping thearea under control. Especially the latter is important|there are easier and more e�cienttechniques (DMIG) for balancing a network of commutative and associative operators, butthese techniques completely ignore other cost measures such as area of the �nal circuit. Wecompared two-column rectangle replacement for delay with DMIG, which ensures minimumheight, and found that two-column rectangle replacement for delay totally resulted in heightthat was only 2.5% from the optimum. When compared to LocalFactor alone, DMIGincreased the area estimated by more than 13%, while two-column rectangle didn't changethe total area estimate signi�cantly.The power of two-column rectangle replacement comes from having to consider onlyrectangles of two columns rather than rectangle spanning multiple columns. In two-columnrectangle replacement we can a�ord to enumerate all possible rectangles and replace thebest.7.2 Variable orderingThe second topic addressed by this thesis was a problem speci�c to if-then-else dagsand binary decision diagrams. We showed techniques for �nding variable orders that resultin small canonical if-then-else dags and small ordered binary decision diagrams. Twodi�erent approaches to the problem were investigated: depth-�rst ordering heuristics andthe SplitOrder heuristic.The depth-�rst ordering heuristics all compute a total variable order based on a singledepth-�rst traversal of an initial non-canonical if-then-else dag. The heuristics merge totalorders into a new total order using two di�erent variants: the incremental merging strategy,which orders the variables in the order they are visisted, and the new reconvergent mergingstrategy, which is based on reconvergent fanout and tend to order shared variables �rst.Among the depth-�rst ordering heuristics the reconvergent merging strategy is superior; it

104produces variable orders that on the average result in 11% smaller canonical forms than thebest incremental ordering heuristic. Still, no single traversal-based heuristic is particulare�ective, and trying combinations of several will almost always improve the results.The second approach to variable ordering was based on the SplitOrder heuristic, which isespecially well suited for �nding good variable orders for ordered binary decision diagrams.SplitOrder constructs the variable order by building an obdd top-down one level at a time,choosing the next variable such that the corresponding level in the obdd has few nodes andrepresents expressions that are as small as possible. When converting to obdds SplitOrderaverages 25% fewer nodes than taking the best of 8 depth-�rst techniques (36% better thanthe best single depth-�rst technique). A nice property of the SplitOrder heuristic (not foundwith the depth-�rst ordering heuristics) is that it can be iterated to improve the resultingvariable order. By iterating SplitOrder we achieved variable orders that result in up to50% smaller obdds than what other researchers have reported using depth-�rst traversalor simulated annealing.Finally, we showed that variable ordering is important for more than just the canonicalform transformation of if-then-else dags. Especially we showed that our general transforma-tions for technology-independent logic optimization (LocalFactor together with two-columnrectangle replacement) performed much better if they started from an order computed bySplitOrder rather than a default order.7.3 Future workThe thesis leaves open the problem of �nding variable ordering heuristics that are targetfor canonical if-then-else dags rather than obdds. Even though SplitOrder is the singlebest ordering heuristics for canonical if-then-else dags, it still, on the average, results in20% larger dags than what could be achieved by trying all the heuristics presented in thisthesis.The given that operator presented in Section 6.4.2 should be improved to propagatesimpli�cations more e�ciently. This would greatly improve the accuracy of the cost function

105used by SplitOrder.There are many more areas of interest that still need work.� Better local transformations for factoring including testability-preserving transforma-tions. The current transformations are rather ad hoc and part of this research wouldinvolve getting them into a theoretical background that will make them easier toexplain. We also want to modify LocalFactor to preserve path-delay-fault testability.� Improve synthesis for testability by �nding better testability preserving transforma-tions for factoring and sub-expression extraction.� Better delay and area estimates are important for technology-independent minimiza-tion. When optimizing for delay using two-column rectangle replacement we haveused the height of the dag to estimate delay. Height is the most widely used estimatefor delay, but unfortunately it is not very accurate. When targeting FPGA look-uptable architectures we often use look-up table height as the delay estimate, but eventhen, this is inaccurate since it does not take into account routing delay.� Techniques for minimizing sequential circuits. item has only recently been extendedto handle sequential logic as well as combinational logic, but so far all our optimizationtechniques are for combinational logic only.� Adaptations of other logic minimization work to if-then-else dags. We have had greatsuccess with the rectangle covering techniques and also see use for other techniquessuch as global
ow algorithms [BT88].� New technology mappers to cell libraries or cell generators. We are also looking formappers for sequential logic.� Don't-care information is used by the current factoring transformations, but not verye�ectively. There are several ways in which the don't-care usage could be increased,and we need to determine which of these are e�ective and inexpensive. Also, thealgorithms that apply don't-care information need to be sped up.

106References[BCGH86] Karen Bartlett,William Cohen, AartDeGeus, andGaryHachtel. Synthesis andoptimization of multilevel logic under timing constraints. IEEETransactions onComputer-Aided Design of Integrated Circuits and Systems, CAD-5(4):582{596,October 1986.[Ber91] C. Leonard Berman. Circuit width, register allocation, and reduced functiongraphs. IEEE Transactions on Computer-Aided Design of Integrated Circuitsand Systems, CAD-10(8):1059{1066, August 1991.[BHJ+87] D. Bostick, G. D. Hachtel, R. Jacoby, M. R. Lightner, P. H. Moceyunas, C. R.Morrison, and D. Ravenscroft. The boulder optimal logic desing system. InIEEE International Conference on Computer-Aided Design ICCAD-87, pages62{65, Santa Clara, CA, 9{12 November 1987.[BHMS84] Robert K. Brayton, Gary D. Hachtel, Curtis T. McMullen, and Alberto L.Sangiovanni-Vincentelli. Logic Minimization Algorithms for VLSI Synthesis.Kluwer Academic Publishers, 1984.[BHS90] R. K. Brayton, G. D. Hachtel, and A. L. Alberto Sangiovanni-Vincentelli.Multilevel logic synthesis. Proceedings of the IEEE, 78(2):264{300, February1990.[Bra87a] Robert K. Brayton. Algorithms for multi-level logic synthesis and optimization.In G. De Micheli, Alberto Sangiovanni-Vincentelli, and P. Antognetti, editors,Design Systems for VLSI Circuits|Logic Synthesis and Silicon Compilation,pages 197{247. Martinus Nijho� Publishers, 1987.[Bra87b] Robert K. Brayton. Factoring logic functions. IBM Journal of research anddevelopment, 31(2):187{198, March 1987.[BRKM91] KennethM.Butler, DonE.Ross, Rohit Kapur, andM.RayMercer. Heuristics tocompute variable orderings for e�cient manipulation of ordered binary decisiondiagrams. InACMIEEE 28thDesignAutomation ConferenceProceedings, pages417{420, San Francisco, California, June 17{21 1991.[BRSW87a] Robert K. Brayton, Richard Rudell, Alberto Sangiovanni-Vincentelli, and Al-bert R. Wang. MIS: A multiple-level logic optimization system. IEEE Trans-actions on Computer-Aided Design of Integrated Circuits and Systems, CAD-6(6):1062{1081, November 1987.[BRSW87b] Robert K. Brayton, Richard Rudell, Alberto Sangiovanni-Vincentelli, and Al-bert Wang. Multi-level logic optimization and the rectangle covering problem.In IEEE International Conference onComputer-Aided Design ICCAD-87, pages66{69, Santa Clara, CA, November 1987.[Bry85] Randal Everitt Bryant. Symbolic veri�cation of MOS circuits. In Henry Fuchs,editor, 1985 Chapel Hill Conference on Very Large Scale Integration, pages419{438. Computer Science Press, 1985.[Bry86] Randal Everitt Bryant. Graph-based algorithms for Boolean function manipu-lation. IEEE Transactions on Computers, C-35(8):677{691, August 1986.

107[Bry91] Randal E. Bryant. On the complexity of VLSI implementations and graphrepresentations of Boolean functions with application to integer multiplication.IEEE Transactions on Computers, 40(2):205{213, February 1991.[BT88] Leonard Berman and Louise Trevillyan. A global approach to circuit sizereduction. In Jonathan Allen and F. Thomson Leighton, editors, Proceedingof the 5th MIT Conference on Advanced Research in VLSI, pages 203{214,Cambridge, MA, March 1988.[CCD+92] Kuang-Chien Chen, Jason Cong, Yuzheng Ding, Andrew B. Kahng, and Pe-ter Trajmar. DAG-Map: Graph-based FPGA technology mapping for delayoptimization. IEEE Design and Test of Computers, pages 7{20, September1992.[DBG+84] John A. Darringer, Daniel Brand, John V. Gerbi, Jr. William H Joyner, andLouise Trevillyan. LSS: A system for production logic synthesis. IBM Journalof research and development, 28(5):537{545, September 1984.[FFK88] Masahiro Fujita, Hisanori Fujisawa, and Nobuaki Kawato. Evaluation and im-provements of Boolean comparison method based on binary decision diagrams.In IEEE International Conference onComputer-Aided Design ICCAD-88, pages2{5, Santa Clara, CA, 7{10 November 1988.[FFM93] Masahiro Fujita, Hisanori Fujisawa, and Yusuke Matsunaga. Variable orderingalgorithms for ordered binary decision diagrams and their evaluation. IEEETransactions on Computer-Aided Design of Integrated Circuits and Systems,CAD-12(1):6{12, January 1993.[FS87] Steven J. Friedman and Kenneth J. Supowit. Finding the optimal variableordering for binary decision diagrams. In ACM IEEE 24th Design AutomationConference Proceedings, pages 348{355,Miami Beach, FL, 28 June{1 July 1987.[GDP86] D.D. Gajski, N.D. Dutt, and B.M. Pangrle. Silicon Compilation. Addison-Wesley Publishing Company, 1986.[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability, A Guideto theTheory of NP-Completeness. W.H.Freeman andCompany, SanFrancisco,CA, 1979.[HJKM89] G. Hachtel, R. Jacoby, K. Keutzer, and C. Morrison. On the relationshipbetween area optimization and multifault testability of multilevel logic. InIEEE International Conference on Computer-Aided Design ICCAD-89, pages422{425, Santa Clara, CA, November 1989.[Joh79] Dave Johannsen. Bristle blocks: A silicon compiler. In Proceedings of 16thDesign Automation Conference, pages 310{313, 1979.[Kar88] Kevin Karplus. Representing Boolean functions with If-Then-Else DAGs. Tech-nical Report UCSC-CRL-88-28, Board of Studies in Computer Engineering,University of California at Santa Cruz, Santa Cruz, CA 95064, December 1988.[Kar89] Kevin Karplus. Using if-then-else dags for multi-level logic minimization. InCharles L. Seitz, editor,AdvancedResearch inVLSI:Proceedings of theDecennialCaltech Conference on VLSI, pages 101{118, Pasadena, CA, 20-22 March 1989.[Kar90] Kevin Karplus. Discussions in daily meetings, Fall 1990.

108[Kar91a] Kevin Karplus. Amap: a technology mapper for selector-based �eld-programmable gate arrays. In ACM IEEE 28th Design Automation ConferenceProceedings, pages 244{247, San Francisco, California, June 17{21 1991.[Kar91b] Kevin Karplus. Canonical forms of if-then-else dags are robustly path-delay-fault testable, April 1991. Unpublished paper.[Kar91c] Kevin Karplus. Item: an if-then-else minimizer for logic synthesis, April 1991.Unpublished paper.[Kar91d] Kevin Karplus. Xmap: a technology mapper for table-lookup �eld-programmable gate arrays. In ACM IEEE 28th Design Automation ConferenceProceedings, pages 240{243, San Francisco, California, June 17{21 1991.[Kar93] Kevin Karplus. Xtmap: a generate-and-test mapper for table-lookup gatearrays. In Compcon 1993, pages 391{399, 22{26 Feb 1993.[Keu87] Kurt Keutzer. DAGON: Technology binding and local optmization by DAGmatching. InACMIEEE 24thDesignAutomation ConferenceProceedings, pages341{347, Miami Beach, FL, 28 June{1 July 1987.[Law64] Eugene L. Lawler. An approach to multilevel Boolean minimization. Journalof the Association for Computing Machinery, 11(3):283{295, July 1964.[Lis88] RobertLisanke. Logic synthesis andoptimizationbenchmarks. Technical report,Microelectronics Center of North Carolina, P.O. Box 12889, Research TrianglePark, NC 27709, 16 December 1988.[MBSS91] Patrick C. McGeer, Robert K. Brayton, Alberto Sangiovanni-Vincentelli, andSartaj K. Sahni. Performance enhancement through the generalized bypasstransform. In IEEE International Conference on Computer-Aided DesignICCAD-91, pages 184{187, Santa Clara, CA, 11{14 November 1991.[MF89] Y. Matsunaga and Masahiro Fujita. Multi-level logic optimization using bi-nary decision diagrams. In IEEE International Conference on Computer-AidedDesign ICCAD-89, pages 556{559, Santa Clara, CA, November 1989.[MKR92] M. Ray Mercer, Rohit Kapur, and Don E. Ross. Functional approaches togenerating orderings for e�cient symbolic representations. In ACM IEEE29th Design Automation Conference Proceedings, pages 624{627, Anaheim,California, June 1992.[MWBS88] Sharad Malik, Albert R. Wang, Robert K. Brayton, and Alberto Sangiovanni-Vincentelli. Logic veri�cation using binary decision diagrams in a logic synthesisenvironment. In IEEE International Conference on Computer-Aided DesignICCAD-88, pages 6{9, Santa Clara, CA, 7{10 November 1988.[NB86] Ravi Nair and Daniel Brand. Construction of optimal DCVS trees. TechnicalReport RC 11863, IBM Thomas J. Watson Research Center, Yorktown Heights,NY, 19 March 1986.[Ros90] Don E. Ross. Functional calculations using ordered partial multi decision dia-grams. PhD thesis, The University of Texas at Austin, Austin, Texas, August1990.

109[Rud89] Richard L. Rudell. Logic Synthesis for VLSIDesign. PhD thesis, Department ofElectrical and Computer Science, University of California at Berkeley, Berkeley,CA, May 1989.[Rud93] RichardRudell. Dynamic variable ordering for orderedbinarydecisiondiagrams.In International Workshop on Logic Synthesis, Lake Tahoe, May 1993.[SK91] S�ren S�e and Kevin Karplus. Logic minimization using two-column rectanglereplacement. In ACM IEEE 28th Design Automation Conference Proceedings,San Francisco, CA, 17{21 June 1991.[SK93] S�ren S�e and Kevin Karplus. Ordering heuristics for ordered binary decisiondiagrams and canonical if-then-else dags. In International Workshop on LogicSynthesis, Lake Tahoe, CA, May 1993.[SU70] Ravi Sethi and J. D. Ullman. The generation of optimal code for arithmeticexpressions. Journals of the ACM, 17(4):715{728, 1970.[Wan89] Albert Ren Rui Wang. Algorithms for Multilevel Logic Optimization. PhDthesis, Department of Electrical and Computer Science, University of Californiaat Berkeley, Berkeley, CA, May 1989.

