
Unsupervised learning ofdistributions on binary vectorsusing two layer networksYoav FreundDavid HausslerUCSC-CRL-94-25June 22, 1994Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractWe present a distribution model for binary vectors, called the in
uence combination model andshow how this model can be used as the basis for unsupervised learning algorithms for feature se-lection. The model is closely related to the Harmonium model de�ned by Smolensky [RM86][Ch.6].In the �rst part of the paper we analyze properties of this distribution representation scheme. Weshow that arbitrary distributions of binary vectors can be approximated by the combination model.We show how the weight vectors in the model can be interpreted as high order correlation patternsamong the input bits. We compare the combination model with the mixture model and with prin-ciple component analysis. In the second part of the paper we present two algorithms for learningthe combination model from examples. The �rst algorithm is based on gradient ascent. Here wegive a closed form for this gradient that is signi�cantly easier to compute than the correspondinggradient for the general Boltzmann machine. The second learning algorithm is a greedy methodthat creates the hidden units and computes their weights one at a time. This method is a variant ofprojection pursuit density estimation. In the third part of the paper we give experimental resultsfor these learning methods on synthetic data and on natural data of handwritten digit images.

11. IntroductionSuppose that we are given a large (unordered) set of binary vectors and that we wish to �nd the typesof correlations and redundancies that exist between the bits in these vectors. We assume that each binaryvector is of the form ~x = fx1; : : : ; xng 2 f�1gn, and that each vector is generated independently at randomaccording some unknown distribution on f�1gn. Such an assumption is natural, for instance, when eachinstance consists of (possibly noisy) measurements of n di�erent binary attributes of a randomly selectedobject. Our interest is in cases where the dimension n of the vectors is large, say n > 50. One exampleof this type of scenario is when the instances are binary images of handwritten digits, where each bitcorresponds to the black or white color of a single pixel in the image. The correlations that we expect tosee in this case correspond to the fact that the values of neighboring pixels or pixels that lie along lines orcurves are strongly dependent on each other.Knowledge of the correlations between di�erent bits of the binary vector is useful when we want touse a set of measurements for various classi�cation and prediction tasks. The idea that features thatare useful for classi�cation can be deduced from the distribution of typical inputs is the basis of severalexisting algorithms for unsupervised learning. One type of algorithm selects projections of the input basedon Principle Component analysis [San89, Oja89]. Another type of algorithm clusters data based on anassumption that the underlying distribution is a mixture of Gaussians [EH81, Now90]. The combinationmodel presented in this paper is related to both of these lines of work and has some advantages over eachof them.If we �nd a good model of the distribution, we can tackle other interesting learning problems, such asthe problem of estimating the conditional distribution on certain components of the vector ~x when providedwith the values for the other components (a kind of regression problem), or predicting the actual valuesfor certain components of ~x based on the values of the other components (a kind of pattern completiontask). In the example of the binary images presented above, this would amount to the task of recoveringthe value of a pixel whose value has been corrupted. We can often also use the distribution model to helpus in a supervised learning task. This is because it is often easier to express the mapping of an instanceto the correct label by using \features" that are correlation patterns among the bits of the instance. Forexample, it is easier to describe each of the ten digits in terms of patterns such as lines and circles, ratherthan in terms of the values of individual pixels, that are more likely to change between di�erent instancesof the same digit.The process of learning an unknown distribution from examples is usually called density estimation orparameter estimation in statistics, depending on the nature of the class of distributions used as models.There has been considerable work on density/parameter estimation for distributions on real vector spaces(see e.g. [DH73]), and less on binary vector spaces. The most popular mainstream statistics models fordistributions on f�1gn for large n appear to be small mixtures of Bernoulli product distributions1 [EH81,Now90], and models in which only k-wise dependencies between the components of the input are allowed,1A Bernoulli product distribution is a distribution over binary vectors in which each component is chosen independentlyof the rest.

2 1. Introductionfor some k << n [Fre87, CS89]. Newer and more exciting models include Bayes networks [Pea88] andMarkov random �elds [Pea88, GG84, Gem86]. In the neural network area, both Hop�eld nets [Hop82] andBoltzmann machines [AHS85] can be used as models of probability distributions on f�1gn for relativelylarge n. We will look at a class of models de�ned by a special type of Boltzmann machine.Hop�eld networks, Boltzmann machines and Markov random �elds are all based on the statisticalphysics concepts of energy and local interaction between units whose state is binary.2 The models de�nedby Hop�eld networks and Boltzmann Machines are special cases of the more general Markov random �eldmodel. The units in a Hop�eld network correspond to the bits of the binary vectors and the interactionbetween units are restricted to symmetric pairwise interactions. Boltzmann machines also employ onlypairwise interactions, but in addition to the units that correspond to bits of the data vectors, commonlycalled the input units, there are hidden units, which correspond to unobserved binary variables. Thesehidden units interact with the input units and generate correlations between the vector bits that the inputunits represent. The distribution of the binary vectors generated by the Boltzmann Machine is de�nedas the marginal distribution induced on the state of the input units by the Markov random �eld over allunits, both observed and hidden.While the Hop�eld network is relatively well understood, it is limited in the types of distributions thatit can model. On the other hand, Boltzmann machines are universal in the sense that they are powerfulenough to model any distribution (to any degree of approximation), but the mathematical analysis of theircapabilities is often intractable. Moreover, the standard learning algorithm for the Boltzmann machine,a gradient ascent heuristic to compute the maximum likelihood estimates for the weights and thresholds,requires repeated stochastic approximation, which results in unacceptably slow learning. Many methodshave been proposed to speed up learning in Boltzmann machines. One of these methods is the mean-�eldapproximation [PA87]. In Section 2.2 we shall see some relations between one of our learning rules and themean �eld approximation.In our research we have attempted to narrow the gap between Hop�eld networks and Boltzmannmachines by �nding a model that will be powerful enough to be universal, yet simple enough to beanalyzable and computationally e�cient.3 The model that we use in this work is essentially a BoltzmannMachine whose connection graph is bipartite. There are two types of nodes: \input" nodes and \hidden"nodes. Each input node is connected to each of the hidden nodes, and no other connections exist. We call2Informally, a Markov random �eld consists of a set of random variables that are connected as nodes in a graph. Thedistribution of each random variable is determined by the value of its neighbors. In other words, given the value of all theneighbors of random variables, the value of the random variable is independent of the state of the rest of the random variables.The Markov process is a special case of the Markov �eld in which each random variable corresponds to a speci�c time step andits neighbors are the random variables that correspond to the previous and the succeeding time steps. In general, Markov-�elddistributions have a canonical description that is based on the concept of interaction energy.3Recent work on modeling correlations by hidden units has also been done by Radford M. Neal [Nea90]. In his work he givesa di�erent variant of the Boltzmann Machine algorithm that uses distribution models similar to Judea Pearl's Bayes Networks[Pea88, GP87]. His model is superior to the Boltzmann Machine in the sense that the connection weights are interpreted asconditional probabilities, which is a more accessible interpretation than local energy interactions. The learning algorithmsthat Neal used are based on stochastic approximation. The question of whether a two-layer model of this type has universalrepresentation capabilities is open.

3this model the in
uence combination machine, or, for short, the combination machine. We refer to thedistribution that is de�ned on the binary vectors by the combination machine as the combination model.This type of Boltzmann machine was previously studied by Smolensky in his harmony theory [RM86][Ch.6].In his work he discusses several possible ways of using this type of model for solving problems in Arti�cialIntelligence. In our work we concentrate on the mathematical properties of the model and on e�cientalgorithms for learning the model from random instances.The combination machine consists of two types of units: input units, each of which holds one componentof the input vector, and hidden units, representing hidden variables. There is a weighted connection betweeneach input unit and each hidden unit, and no connections between input units or between hidden units (seeFigure 2.1). The presence of the hidden units induces dependencies, or correlations, between the variablesmodeled by input units. To illustrate the representational power of the combination model, consider thedistribution of people that visit a speci�c co�ee shop on Sunday. Let each of the n input variables representthe presence (+1) or absence (�1) of a particular person that Sunday. These random variables are clearlynot independent. For example, if Fred's wife and daughter are there, it is more likely that Fred is thereas well, if you see three members of the golf club, you expect to see other members of the golf club, ifBill is there, you are unlikely to see his ex-wife Brenda there, etc. This situation can be modeled by acombination model in which each hidden variable represents the presence or absence of a social group. Theweights connecting a hidden unit and an input unit measure the tendency of the corresponding person tobe associated with the corresponding group. In this co�ee shop situation, several social groups may bepresent at the same time, exerting a combined in
uence on the distribution of customers. In Sections 2.3and 2.4 we discuss why the combination model is better for describing this type of distributions thanpopular models such as the mixture model and principal components methods.4We show that the combination model is a universal model in the sense that any probability distributionon f�1gn can be represented by a combination model with n input units to within any desired accuracy.Then we show that the standard Boltzmann machine learning rule, when applied to a combination model,can be computed in closed form, instead of using random sampling techniques. Thus we get a fasterlearning algorithm than the standard Boltzmann rule that is also exact. The computational complexity ofthe learning rule is exponential in the number of hidden units. However, under certain natural conditionswe show that there exists a good approximation that requires only polynomial time.We then explore the relationships between the distributions generated by the combination model andthose studied in Projection Pursuit density estimation [Hub85, FWS84, Fri87]. We show that the searchfor hidden variables that have a strong in
uence on the input distribution can be interpreted as a searchfor projections of the input that have a non-Normal marginal distribution. Based on this observation, wepropose a learning algorithm based on exploratory projection pursuit for the combination model. Thismethod is a greedy method that adds a single hidden unit at a time to the model. The time complexity ofthis method is linear in the number of hidden units compared to the exponential complexity of the gradientbased method. However, while the gradient based method is guaranteed to converge to a local minimumin the model space, the projection pursuit method does not have this guarantee.4Noisy-OR gates have been introduced in the framework of Bayes Networks to allow for such combinations [Pea88]. However,using this in networks with hidden units has not been studied, to the best of our knowledge.

4 1. IntroductionWe conclude this paper with results of some experiments. The �rst set of experiments compare the twolearning algorithms on synthetically generated data, and demonstrate their advantages and de�ciencies.The second set of experiments compare the performance of the combination model to that of the mixturemodel and demonstrate the di�erence in the type of distribution representations that they generate.

52. The in
uence combination distribution model2.1 NotationFor the most part, we use standard algebraic notation in our formulas. Elements from the n-dimensionalspaces Rn and f�1;+1gn are denoted by vectors ~x; ~y; : : :. We denote by jj~xjj1,jj~xjj2 the l1 and l2 normsof ~x, and by ~x � ~y the dot product between two vectors. We use the standard hyperbolic trigonometricfunctions sinh(x) = ex � e�x2 ; cosh(x) = ex + e�x2 ; tanh(x) = sinh(x)cosh(x) :We denote the natural base logarithm by \ln". Finally, we use the function logistic(x) = 1=(1 + exp(�x))that is commonly used in the de�nition of Boltzmann Machines.2.2 The ModelIn this section we present the combination machine and the corresponding distribution model, whichis the in
uence combination distribution model. The combination machine is a simple Connectionist typemodel which is a special case of the Boltzmann Machine [AHS85]. As we shall see, the simplicity of thisspecial case makes it easier to analyze than the general Boltzmann machine and allows the use of moree�cient learning algorithms. At the same time, the model is still powerful enough to approximate anydistribution of binary vectors.To model a distribution on f�1gn we use a machine with n +m units. There are two types of units,n input units, each of which represents a single bit in the random vector, and m hidden units, whose roleis the create correlation between the values of the input units. These units are connected in a bipartitegraph as illustrated in Figure (2.1).
h1 h2 h3

x5x1 x2 x3 x4

m=3

n=5

w (2)

1

Hidden Units

Input UnitsFigure 2.1: The bipartite graph of the combination model

6 2. The in
uence combination distribution modelThe random variables represented by the input units each take values in f+1;�1g, while the hiddenvariables, represented by the hidden units, take values in f0; 1g. The state of the machine is de�ned bythe values of these random variables. We denote by ~x = (x1; : : : ; xn) 2 f�1gn the state of the input units,and by ~h = (h1; : : : ; hm) 2 f0; 1gm the state of the hidden units.There arem(n+1) real-valued parameters associated with the machine. Each particular setting of theseparameters de�nes the parameter vector of the machine. Each parameter vector de�nes a distribution onthe states of the machine. Summing over the state of the hidden units we get a distribution on theinput units, which is the in
uence combination distribution de�ned by the particular parameter vector.There are two variants of the combination model, which we call the binary valued and the real valuedcombination machines. While we are mostly interested in the binary model, the real valued model is auseful approximation in some cases.The parameters are all real-valued and are de�ned as follows. There is a weight parameter associatedwith each edge in the bipartite graph. We denote by !(i)j the weight of the edge connecting the ith hiddenunit to the jth input unit. We also use ~!(i) to denote the vector of all n weights associated with the ithhidden unit.1 There is a bias parameter associated with each hidden unit. We denote the bias of the ithhidden unit by �(i) 2 R. The complete parameter vector of a binary combination model is denoted by�B = f(~!(1); �(1)); : : : ; (~!(m); �(m))g. For a given �B, the energy of a state of the combination machine isde�ned as E(~x;~hj�B) = � mXi=1(~!(i) � ~x+ �(i))hi (2:1)and the probability of a state is de�ned to bePr(~x;~hj�B) = 1ZB e�E(~x;~hj�B) where ZB =X~x;~h e�E(~x;~hj�B):We �nd it useful to de�ne the \combined weight" of a particular state of the hidden units as the sum ofthe weight vectors corresponding to the hidden units whose state is 1:~!(~h) = mXi=1 hi~!(i)Plugging the de�nition of the energy into the de�nition of ZB, we get thatZB =X~x;~h exp mXi=1(~!(i) � ~x+ �(i))hi! :Expanding the sum in the exponent we get thatZB = X~h2f0;1gm0@exp(mXi=1 hi�(i)) X~x2f�1;+1gn exp(~x � ~!(~h))1A :1In [RM86][Ch.6], binary connection weights are used, here we use real-valued weights.

2.2. The Model 7Expanding the sum over ~x 2 f�1;+1gn, we get thatZB = X~h2f0;1gm0@exp(mXi=1 hi�(i)) nYj=1(exp(~!(~h)j) + exp(�~!(~h)j))1A ;where ~!(~h)j denotes the jth component of ~!(~h). Using the de�nition of cosh(x), we can rewrite the lastexpression as ZB = 2n X~h2f0;1gm24exp(mXi=1 hi�(i)) nYj=1 cosh(~!(~h)j)35 : (2:2)Note that the trivial model, in which there are no hidden units, de�nes the uniform distribution overthe state vectors ~x. In the general case the probability distribution over possible state vectors on the inputunits is given byPr(~xj�B) = X~h2f0;1gmPr(~x;~hj�B) = 1ZB X~h2f0;1gm exp mXi=1(~!(i) � ~x+ �(i))hi! (2:3)By separating the sum over ~h into a sum over all ~h such that hm = 0 and a sum over all ~h such thathm = 1, we can rewrite Equation (2.3) in the following form:Pr(~xj�B) = 1ZB �e0 + e~!(m) �~x+�(m)� Xfh1;:::;hm�1g2f0;1gm�1 exp m�1Xi=1 (~!(i) � ~x+ �(i))hi!Repeating this manipulation for all m components of ~h we get thatPr(~xj�B) = 1ZB mYi=1�1 + e~!(i) �~x+�(i)� : (2:4)Equation (2.4) is a simple closed form representation of the distribution de�ned by the parameter vector�B. Notice that the hidden unit variables, hi, are not explicitly present in this formula. Each factor in theproduct is associated with one hidden unit in the corresponding machine. This product form is particularto the combination model, and does not hold for general Boltzmann machines. Product form distributionmodels have been used for density estimation in Projection Pursuit [Hub85, FWS84, Fri87]. We shall lookfurther into this relationship in Section 3.2.In some of the following discussion we shall �nd it useful to use a variant of the combination model thatde�nes distributions over the whole real space Rn, i.e. to allow each input to have any real-value insteadof limiting it to only +1 and -1. The structure of the machine is the same, we keep the hidden variablesf0; 1g-valued, and the distribution is de�ned in a similar way, but the energy function has an extra termthat is necessary for ensuring that the distribution can be normalized. This term corresponds to each inputunit having a connection of strength �1 to itself. To di�erentiate between the binary and the real-valuedmodels we subscript quantities relating to the real-valued model by R. The energy of a particular state ofthe real-valued model is given byE(~x;~hj�R) = � mXi=1(~wi � ~x+ �(i))hi!+ 12 jj~xjj22; (2:5)

8 2. The in
uence combination distribution modelwhich produces the following distribution over the Rn:Pr(~xj�R) = X~h2f0;1gmPr(~x;~hj�R) = e� 12 jj~xjj22 1ZR mYi=1 �1 + e~wi�~x+�(i)� ; (2:6)where ZR = ZRn X~h2f0;1gm exp ��E(~x;~hj�R)�d~x (2.7)= X~h2f0;1gm ZRn exp �12 jj~xjj22 + mXi=1(~wi � ~x+ �(i))hi!d~x= (2�)n=2 X~h2f0;1gm exp " mXi=1 hi�(i) + 12 jj~!(~h)jj22# ; (2.8)using the integral of the Gaussian distribution.We discuss the relation between the real-valued and the binary-valued model in Section 2.6.2.3 Discussion of the modelThe right hand side of Equation (2.4) has a simple intuitive interpretation. The ith factor in the productcorresponds to the hidden variable hi and is an increasing function of the dot product between ~x and theweight vector of the ith hidden unit. Hence an input vector ~x will tend to have large probability when it isin the direction of one of the weight vectors ~wi (i.e. when ~wi � ~x is large), and small probability otherwise.This is the way that the hidden variables can be seen to exert their "in
uence"; each corresponds to apreferred or "prototypical" direction in space. The bias parameter �(i), together with the length jj~wijj2of the weight vector, control the strength of the in
uence of the ith hidden variable in comparison withthe other hidden variables, as well as its \width", i.e. how close in direction ~x has to be to ~wi before itsigni�cantly in
uences its probability. Increasing either jj~wijj2 or �(i) increases the strength of the in
uenceof the hidden unit. Decreasing �(i) and, at the same time, increasing jj~wijj2, decreases the \width" of thein
uence, making the in
uence of the ith hidden unit more restricted to input vectors whose direction isvery close to the direction of ~wi. This is true for both the binary-valued and the real-valued combinationmodels.Equation (2.3) shows that the combination model can be written as a mixture of 2m distributions ofthe form 1Z(~h) exp mXi=1(~!(i) � ~x+ �(i))hi! ;where ~h 2 f0; 1gm and Z(~h) is the appropriate normalization factor. Each of these distributions is a productof n Bernoulli distribution, i.e. the xj is drawn independently at random and attains a value of �1 or +1with probabilities logistic(�2~!(~h)j) and logistic(+2~!(~h)j) respectively, which implies that the mean of xjin according to this distribution is tanh(~!(~h)j). We shall refer to this type of distribution as a \Bernoulliproduct distribution". The combination model is a mixture of 2m Bernoulli product distributions, eachcorresponding to a setting of ~h and each having a mixture coe�cient Z(~h).

2.3. Discussion of the model 9It is interesting to compare the class of combination models to the standard class of models de�nedby a mixture of Bernoulli product distributions. The same bipartite graph described in Figure (2.1) canbe used to de�ne a standard mixture model. Assign each of the m hidden units a weight vector ~wi and aprobability pi such that Pmi=1 pi = 1. To generate an example, choose one of the hidden units according tothe distribution de�ned by the pi's, and then choose the vector ~x according to Pi(~x) = 1Zi e~wi�~x, where Ziis the appropriate normalization factor so that P~x2f�1gn Pi(~x) = 1. We thus get the distributionP (~x) = mXi=1 piZi e~wi�~x (2:9)This form for presenting the standard mixture model emphasizes the similarity between this model andthe combination model. A vector ~x will have large probability if the dot product ~wi � ~x is large for some1 � i � m (so long as pi is not too small). However, unlike the standard mixture model, the combinationmodel allows more than one hidden variable to be +1 for any generated example. This means that severalhidden in
uences can combine in the generation of a single example, because several hidden variables canbe +1 at the same time.To see why this is useful, consider two examples. First, consider the co�ee shop example given in theintroduction. At any moment of time it is reasonable to �nd several social groups of people sitting in theshop. The combination model will have a natural representation for this situation, while in order for thestandard mixture model to describe it accurately, a hidden variable has to be assigned to each combinationof social groups that is likely to be found in the shop at the same time. Similarly, when we want torepresent the distribution of binary images of digits, it is reasonable to assume that each speci�c imagecontains several patterns, such as lines and curves. Of course, the whole digit can be perceived as a pattern,in which case the mixture model is the relevant distribution model. However, we claim that it is often moreappropriate to represent each digit image as a combination of patterns rather than a single pattern. Inother words, we claim that, for typical sets of images of digits, the maximal likelihood combination modelwill have larger likelihood than a mixture model with the same number of parameters. In Section 4 we giveexperimental evidence to support this claim. In cases where this claim is correct the combination modelis exponentially more succinct than the standard mixture model, and naturally captures the underlyingproduct structure of the distribution. Of course, if the space of hidden variables does not have a productstructure of this type, then the combination model is no better than the standard mixture model.In analogy with the binary combination model, the real-valued combination model can be shown torepresent a mixture of 2m symmetric Gaussian distributions. From Equation (2.6) we get that for theempty case, m = 0, where there are no hidden variables present, the distribution is a symmetric Gaussianby de�nition. When a single hidden variable is present, the distribution becomesPr(~xj�R) = e� 12 jj~xjj22 1Z �1 + e~w1�~x+�(1)� = 1Z �e� 12 jj~xjj22 + e� 12 jj~xjj22+~w1�~x+�(1)� =1Z �e� 12 jj~xjj22 + e� 12 jj~x�~w1jj22+ 12 jj~w1jj22+�(1)� :This is a mixture of two Gaussians, both of which have spherical symmetry. They di�er only in the locationof the mean, which is ~0 for the �rst component and ~w1 for the second component, and in their relative

10 2. The in
uence combination distribution modelprobabilities (mixture weights). Each additional hidden unit has the e�ect of transforming the previousdistribution into a mixture of two distributions, one is the previous distribution, and the other is theoriginal distribution shifted by ~wi (See Figure 2.2).
w1

w2

w3Figure 2.2: The distribution over R2 generated by a (real valued) combination model withthree hidden units. Each pair of concentric circles denotes a single Gaussian distribution. Thedistribution de�ned by the combination model is a mixture of these eight Gaussians.In the general case the combination model with m hidden units is equivalent to a mixture of 2mGaussians whose expected values are located at the combined weight, ~!(~h), corresponding to each of the2m possible states of ~h.2 This interpretation of the real-valued model will be used in Section (3.5) in aProjection Pursuit algorithm for learning the combination model.2.4 Comparison with principal components analysisPrincipal Component Analysis (PCA) is a popular method for the analysis of high order correlations(see e.g. [Jol86]). Many algorithms for unsupervised learning are based on this method, among themsome learning rules for neural networks [San89, Oja89]. The method is based on the covariance matrix,which measures pairwise correlations among input bits. The main assumption underlying the method isthat the low dimension projections of the data that retain the largest amount of information are thoseprojections that have the largest variance. One justi�cation of this assumption is that if the data has asimple enough distribution such as a Gaussian distribution then the reconstruction of the original inputfrom its projections is optimal for this choice of projections. The directions with largest variance are equalto the directions of the eigenvectors of the covariance matrix that have the largest eigenvalues.2Compare this to the mixture of Bernoulli products whose expected values are tanh(~!(~h)). A more detailed comparison ofthe two models will be given in Section 2.6.

2.5. Universality of the model 11The neural network implementation of PCA is usually a two layer network with the same architectureas the combination model. The learning rule, however, is di�erent, and tries to make the weight vectorsof the hidden units equal to eigenvectors of the covariance matrix of the input. The outputs of the hiddenunits are thus projections of the data (or a nonlinear transformation of such projections).This type of network is capable of representing each input as a combination of correlation patterns. Inthis sense it is as powerful as the combination model and does not su�er from the de�ciencies of mixturemodels described in the previous section. However, as this method of analysis is based only on the secondorder correlations among pixels it necessarily ignores part of the structure of the distribution. In thecombination model, on the other hand, each hidden unit can represent correlations of arbitrary order. Weclaim that some natural distributions have strong high order correlation and that taking into account onlythe second order correlations ignores some of the most important information available in the distribution.In Section 4 we shall give some experimental evidence to support this claim.2.5 Universality of the modelDespite its limited connectivity, it is not hard to show that the class of binary combination models isuniversal in the sense that for every n and every distribution on f�1gn there is a combination model withn input units that approximates that distribution to within any desired accuracy. The argument is similarto an argument for the same claim regarding the class of mixtures of Bernoulli product distributions.Assume �rst that the distribution we want to estimate is Pr(~x) = p for ~x = (1; 1; : : : ; 1) and Pr(~x) =1�p2n�1 for ~x 6= (1; 1; : : : ; 1). Here we need only one hidden unit. We de�ne q = p(2n�1)1�p and choose~!(1) = (a; a; : : : ; a) and �(1) = �na + ln(q � 1), where a = 12 ln(q � 1) + 12 ln(1=�). We get the followingvalues for f(~x) := 1 + e~!(1)�~x+�(1) .If ~x = (+1;+1; : : : ;+1), then f(~x) is equal to q. For a vector where exactly one component is equalto �1 and all the rest are +1, f(~x) is equal to 1 + �, and for a vector ~x which has k components that areequal to �1, f(~x) is equal to 1 + (q � 1)(�=(q � 1))k � 1 + �k . By setting � small enough we can make1 + e~!(1)�~x+�(1) arbitrarily close to 1 for all ~x 6= ~x = (+1;+1; : : : ;+1). Normalizing the distribution to sumto 1 we can get a distribution that is arbitrarily close to the desired distribution.To approximate an arbitrary distribution, we multiply 2n factors, each approximating a distributionthat is highly concentrated on a single setting of ~x and almost uniform on all other settings. By appropriatechoice of the parameters we can approximate the arbitrary distribution closely for each value of ~x. Of coursethis requires exponentially many hidden units, but this is unavoidable since it requires an exponentialnumber of parameters to specify an arbitrary distribution over f�1gn in any reasonable parametric model.Of course, we are interested in cases where the distribution of the data can be represented well bya small combination model. While a general distribution might require many hidden units to model it,distributions that are encountered in nature are often simple, and can be modeled well by a model that hasonly a small number of hidden units. In Section 4 we show that the distribution of images of handwrittendigits can be approximated well by a combination model with few hidden units.

12 2. The in
uence combination distribution model2.6 Relations between the binary-valued and the real-valued modelsTwo variants of the combination model were introduced in Section 2.2, the binary-valued model(Equations (2.1) to (2.4)) and the real-valued model (Equations (2.5) to (2.8)). The binary-valued modelis the natural model for representing distributions of binary vectors, and thus, ideally, we would like touse only this model. On the other hand, the real-valued model has properties that make it possible touse more e�cient learning algorithms to learn it. As we show in this section, the real-valued model is anapproximation of the binary model when the weights are all small. Thus we can use the algorithms for thereal-valued model to �nd an approximate parameter vector of the binary model.The real-valued model de�nes a density function, in contrast with the binary model, which de�nes apoint mass distribution. However, the ratio between the densities assigned by a real-valued model to anypair of points in f�1;+1gn is equal to the ratio of the probabilities assigned to the same points by a binarymodel with the same parameters. This is because the factor of e� 12 jj~xjj22 in the density function is equal toe�n=2 for all vectors in f�1;+1gn.This does not mean that the maximum-likelihood parameter vector for a given set of examples is equalfor both models. This is because the normalization factors ZB and ZR are di�erent for each of the twocases. However, as we shall now see, when the weight vectors ~! are small the normalization factors arevery close to each other.Recall Equation (2.2):ZB = 2n X~h2f0;1gm24exp mXi=1 hi�(i)! nYj=1 cosh �~!(~h)j�35 :The Taylor expansion of cosh(x) around x = 0 is:cosh(x) = 1 + x22! + x44! + x66! + : : :thus the �rst order approximation of ZB for small values of !(i)j is:ZB � 2n X~h2f0;1gm24exp mXi=1 hi�(i)! nYj=1�1 + 12 �~!(~h)j�2�35On the other hand, note that Equation (2.8) can also be written as:ZR = (2�)n=2 X~h2f0;1gm24exp mXi=1 hi�(i)! nYj=1 exp�12 �~!(~h)j�2�35 ;The Taylor expansion of exp(x) around x = 0 isexp(x) = 1 + x+ x22! + x33! + : : :

2.6. Relations between the binary-valued and the real-valued models 13thus the �rst order approximation of ZR for small values of !(i)j is:ZR � (2�)n=2 X~h2f0;1gm24exp mXi=1 hi�(i)! nYj=1�1 + 12 �~!(~h)j�2�35 � ��2�n=2ZB :The fact that the two models di�er by a constant factor is of no consequence when looking for the maximal-likelihood parameter vector, because this constant factor disappears in the derivative of the log of thelikelihood.The di�erence between the two approximations is of the order of jj~!(~h)jj42. Thus if jj~!(~h)jj2 is muchsmaller than 1 the approximation is reasonable.There is another way in which the two models can be compared. In Section 2.3 we have shown thatboth the real-valued and the binary-valued combination models are equivalent to mixture models. Thereal-valued model is equal to a mixture of 2m Gaussian distributions. Each mixture component correspondsto a setting of ~h and has an expected value of ~!(~h). Similarly, the binary-valued combination model isequivalent to a mixture of 2m Bernoulli product distributions, each of which has an expected value oftanh(~!(~h)). When ~!(~h) is small tanh(~!(~h)) � ~!(~h).It is easy to show that every one dimensional projection of a Gaussian distribution generates a Normalmarginal distribution. Thus the marginal distribution that is generated by the real-valued combinationmodel is a mixture of normal distributions. Diaconis and Friedman [DF84] have shown that, in somesense, most \well-behaved" distributions generate a marginal distribution that is close to normal whenprojected on a randomly chosen direction. In particular, the uniform distribution on the 2n binary vectorsin f�1;+1gn generates, with very high probability, a marginal distribution that is close to the normaldistribution, when the projection direction is chosen uniformly at random from the n dimensional sphere,and n is large. In Appendix A, we show that this is also true for Bernoulli product distributions, if thedistributions of the individual coordinates are not too biased. Thus, under reasonable assumptions, themarginal distribution that is generated by the binary valued combination model is also mixture of normaldistributions.In addition, if the weight vectors, ~wi, are short, then the mixture coe�cients and the means of themixture components of the two models are close, which implies that the projections of the distributionsde�ned by the real-valued model and the binary valued model with the same parameters are very close toeach other. We use this correspondence in our analysis of the projection pursuit learning methods, whichare based on properties of projections of the data.

14 3. Learning the model from examples3. Learning the model from examples3.0.1 Learning by gradient ascent on the log-likelihoodWe now suppose that we are given a sample consisting of a set S of vectors in f�1gn drawn indepen-dently at random from some unknown distribution. Our goal is to use the sample S to �nd a good modelfor this unknown distribution using a combination model with m hidden units, if possible. The methodwe investigate here is the method of maximum likelihood estimation using gradient ascent. The goal oflearning is reduced to �nding the set of parameters for the combination model that maximizes the (log ofthe) probability of the set of examples S. In fact, this gives the standard learning algorithm for generalBoltzmann machines [AHS85]. For a general Boltzmann machine this would require stochastic estimationof the parameters. As stochastic estimation is very time-consuming, the result is that learning is very slow.In this section we show that stochastic estimation need not be used for the combination model.From Equation (2.4), the log of the likelihood of a sample of input vectorsS = f~x(1); ~x(2); : : : ; ~x(N)g, given a particular setting �B = f(~!(1); �(1)); : : : ; (~!(m); �(m))g of the parame-ters of the model is:log-likelihood(�B) = X~x2S ln Pr(~xj�B) = mXi=10@X~x2S ln(1 + e~!(i)�~x+�(i))1A�N lnZB : (3:1)Taking the gradient of the log-likelihood results in the following formulas. For the bias parameters weget: @@�(i) log-likelihood(�B) = X~x2S 11 + e�(~!(i)�~x+�(i)) �N X~x2f�1gn Pr(~xj�B) 11 + e�(~!(i) �~x+�(i)) (3:2)and for the jth component of ~!(i)@@!(i)j log-likelihood(�B) = X~x2S xj 11 + e�(~!(i)�~x+�(i)) �N X~x2f�1gn Pr(~xj�B)xj 11 + e�(~!(i) �~x+�(i)) (3:3)The purpose of the clamped and unclamped phases (also called action and sleep phases) in theBoltzmann machine learning algorithm is to approximate these two expressions. The �rst term in eachexpression corresponds to the clamped phase, and the second one to the unclamped, or sleep phase. Ingeneral Boltzmann Machines, this estimation is performed using stochastic methods. However, here theclamped term is easy to calculate, it requires summing a logistic type function over all training examples.The same term is obtained by making the mean �eld approximation for the clamped phase in the generalalgorithm [PA87], which is exact in this case. It is more di�cult to compute the sleep phase term, as itis an explicit sum over the entire input space, and within each term of this sum there is an implicit sumover the entire space of states of hidden units in the factor Pr(~xj�B). However, again taking advantageof the special structure of the combination model, we can reduce this sleep phase gradient term to a sumonly over the states of the hidden units. Recall Equation (2.2):ZB = 2n X~h2f0;1gm24exp(mXi=1 hi�(i)) nYj=1 cosh(~!(~h)j)35 :

15A similar derivation gives thatPr(~hj�B) = exp(Pmi=1 hi�(i))Qnj=1 cosh(~!(~h)j)P~h02f0;1gm hexp(Pmi=1 h0i�(i))Qnj=1 cosh(~w(~h0)j)i (3:4)The second term of the derivative w.r.t. �(i) is @=@�(i) lnZB = (@=@�(i)ZB)=ZB. As �(i) appears only oncein ZB, we get that:@@�(i) log-likelihood(�B) = X~x2S 11 + e�(~!(i)�~x+�(i)) �N X~h2f0;1gmPr(~hj�B)hi : (3:5)Similarly, for each component of ~wi, we use the fact that d cosh(t)=dt = tanh(t), to get that@@!(i)j log-likelihood(�B) = X~x2S xj 11 + e�(~!(i) �~x+�(i)) �N X~h2f0;1gmPr(~hj�B)hi tanh(~!(~h)j) (3:6)The formulas for the gradients of the log likelihood for the real-valued model are very similar. Aderivation similar to the one used to derive Equation (3.4), gives us that, for the real-valued modelPr(~hj�R) = exp(Pmi=1 hi�(i) + 12 jj~!(~h)jj22)P~h02f0;1gm hexp(Pmi=1 h0i�(i) + 12 jj~!(~h)jj22)i : (3:7)Using this equation we get that@@�(i) log-likelihood(�R) = X~x2S 11 + e�(~!(i) �~x+�(i)) �N X~h2f0;1gmPr(~hj�R)hi (3:8)and for each j @@!(i)j log-likelihood(�R) = X~x2S xj 11 + e�(~!(i) �~x+�(i)) �N X~h2f0;1gmPr(~hj�R)hi~!(~h)j (3:9)Equations (3.5-3.4) are very similar to Equations (3.8-3.7). The di�erences are in the partial derivativeof the normalization factors, ZB and ZR, with respect to the weight vectors. Note that the equations forthe real-valued model are simpler. As was discussed in Section (2.6), the normalization factors for thereal and binary models are very close to each other when the weight vectors ~wi have small l2 norm. Thusalthough the equations for the maximal likelihood solutions di�er, the solution of the real-valued modelare approximate solutions for the binary model and vice versa.The time required to compute Equations (3.5) and (3.6), (or Equations (3.8) and (3.9) is O(jSjn+2m).Thus, if m is small compared with the size of the sample S, then the computation time is linear in thenumber of training example and in the size of the input vector, which is reasonable. However, for largem it might not be possible to compute all 2m terms. There is a way to avoid this exponential explosionif we can assume that a small number of terms dominate the sums. If, for instance, we assume that theprobability that more than k hidden units are active (+1) at the same time is negligibly small we can geta good approximation by computing only O(mk) terms. In the extreme case where we assume that onlyone hidden unit is active at a time (i.e. k = 1), the combination model essentially reduces to the standardmixture model as discussed is Section 2.3. For larger k, this type of assumption provides a middle groundbetween the generality of the combination model and the simplicity of the mixture model. In the nextsection we show how the gradient of the real-valued model can be approximated when m is large.

16 3. Learning the model from examples3.1 Approximating the gradientOne possible approach to estimating the gradient when m is large is to search for the larger terms inEquations (3.8,3.9) and ignore the smaller ones. We now show that in the case of the real-valued model theproblem of locating the large terms is equivalent to a simple geometric problem. Although this problem isNP-hard in the general case it might typically be easy in the cases that we encounter in real life problems.Recall Equation (3.7)Pr(~hj�R) = exp(Pmi=1 hi�(i) + 12 jjPmi=1 hi ~wijj22)P~h02f0;1gm hexp(Pmi=1 h0i�(i) + 12 jjPmi=1 h0i ~wijj22)iWe would like to estimate which of the vectors ~h correspond large terms. i.e. we would like to �nd all ~hsuch that g(~h) =Pmi=1 hi�(i) + 12 jjPmi=1 hi ~wijj22 is large. De�ne the following matrix notation. We use ~x todenote a column vector and ~xT to denote its transpose, i.e. a row vector. We de�ne
 = 0BBBBB@ (~w1)T(~w2)T...(~wm)T 1CCCCCA~� = (�1; �2; : : : ; �m)TUsing this notation we de�ne g(~h) as g(~h) = ~h � ~� + 12 jj~hT
jj22 ;and rewrite Equation (3.7) as Pr(~hj�R) = exp(g(~h))P~h02f0;1gm exp(g(~h0)) :Rearranging g(~h) we get g(~h) = 12 jj~hT
+ ~�T (

T)�1
jj22� 12~�T (

T)�1~� ;assuming that

T is not singular.The second term is a constant and is eliminated by the normalization. We can therefore ignore it. The�rst term corresponds to the distance between a sum of a subset of the weight vectors and the �xed vector~�T (

T)�1
. The problem of �nding the settings of ~h for which g(~h) is largest translates to the problemof �nding a subset of a given set of vectors which is furthest away (in the regular Euclidean distance) froma given �xed vector.It is not clear how hard this computation problem is in the general case. If the vectors are orthogonalthen the problem is easy. In this case the set of all 2m vector combinations de�nes the corners of arectangular box. If the dot product, ~x � ~wi, is equal to jj~wijj2=2 for all i, then ~x is in the center of the box.Any deviation from equality for a particular index i determines whether the vector corresponding vector,

3.2. Projection Pursuit methods 17~wi, is in the subset whose sum is furthest from ~x. In general, one of the closest subset-sums is equal to~hT
, where each coordinate of ~h is de�ned by:hi = (1 if ~wi � ~x � 12 jj~wijj20 otherwiseA promising direction for further research is to �nd methods that can solve this problem e�ciently inthe general case. Such methods would compute an approximation to the gradient by computing only thelargest terms in the sum that de�nes it.3.2 Projection Pursuit methodsA statistical method that has a close relationship with the combination model is the Projection Pursuit(PP) technique [Hub85, FWS84, Fri87]. In this section we give a short overview of the technique, showhow it relates to the combination model, and present a learning algorithm for the combination model basedon Projection Pursuit methods. This algorithm is a greedy algorithm that generates the hidden units oneby one. It avoids the exponential blowup of the standard gradient ascent technique, and also has thatadvantage that the number m of hidden units is estimated from the sample as well, rather than beingspeci�ed in advance.3.3 Overview of Projection PursuitMany methods for analyzing high dimensional data study the �rst and second order statistics of thedata, which are the mean vector and the covariance matrix. Principal components analysis is an exampleof such a method. Such methods necessarily ignore the structure of the distribution that is not re
ectedin the �rst and second order statistics, which may be an important part. Projection Pursuit methods cansometimes �nd this important high-order structure.The distribution model overRn with the largest entropy for a given average and covariance is a Gaussiandistribution. Thus one natural de�nition of the information ignored by the second order analysis is thedeviation of the empirical distribution from the Gaussian distribution. Low order linear projections havebeen traditionally used by researchers in their e�orts to understand high dimensional distributions. As allprojections of a Gaussian distribution produce a Normal marginal distribution. Thus, if a projection ofa distribution generates a marginal distribution that is very di�erent from the normal distribution, thisis an indication that the projection contains information about the distribution that does not exist inits covariance matrix. Such a projection may be called an \interesting" projection. There are various\projection indices" de�ned in the PP literature to measure how interesting a particular projection is,and many of these indices relate directly to the deviation of the marginal distribution from a Normaldistribution. Projection Pursuit methods locate the low dimensional projections in which the projectionindex is largest, i.e. those projections that are most interesting.Originally, PP was used to suggest projection directions as an aid for the manual exploration of highdimensional data via two or three dimensional projections. Later PP became a complete method for

18 3. Learning the model from examplesstatistical data analysis, using repeated search for interesting projections to generate n-dimensional densityestimations. The search for a description of the distribution of a sample in terms of its projections canbe formalized in the context of maximal likelihood density estimation in the following way [Fri87]. De�nep0(~x) to be the initial estimate of the density over Rn, i.e. the Gaussian density with appropriate mean andcovariance. De�ne G to be a family of functions from R to R and A to be the set of vectors of length 1,i.e. A = f~� 2 Rnj jj~�jj2 = 1g. Using these we de�ne the nth order projection estimates to be the followingset of densitiesPPm = (1Zp0(~x) mYi=1 gi(~�(i) � ~x) ���� ~�(i) 2 A; gi 2 G; Z = ZRn p0(~x) mYi=1 gi(~�(i) � ~x)d~x) (3:10)The log-likelihood of a speci�c density p 2 PPm with respect to a sampleS = f~x(1); ~x(2); : : : ; ~x(N)g, where ~x(i) 2 Rn is de�ned, in the standard way, to beLL(pjS) = X~x2S ln p(~x) :The goal of Projection Pursuit is to �nd a series of approximations:p1 2 PP1, p2 2 PP2; : : :pm 2 PPm that have maximally increasing log-likelihood. The �rst approxima-tion, p0, is the Gaussian density itself, and the (i + 1)-st approximation is generated by adding a factorgi(~�(i)) � ~x) to the ith approximation. The vector ~�(i) is called the ith projection of the data.The projection index is a function of ~�(i) that is a heuristic measure of the anticipated contribution ofa factor involving the projection ~�(i) to the likelihood of the model. Given a choice of ~�(i), the optimalchoice of the function gi(�) in terms of maximizing the likelihood is the following [FWS84]. De�ne p~�(i)i (t)to be the marginal density on R generated by projecting the density pi on the direction ~�(i). Similarlyde�ne p̂~�(i)(t) to be an approximation to the marginal density generated by projecting the true density onthe direction ~�(i), estimated empirically using the sample S.1 Then the optimal choice for gi(�), in termsof maximizing the likelihood of the model, isgi(t) = p̂~�(i)(t)p~�(i�1)i (t) (3:11)As the optimal choice of gi(�), for a given choice of ~�(i) is simple to calculate. The main problem ofdesigning a projection pursuit method is �nding a good projection index whose calculation can be performede�ciently. Various projection indices have been discussed in the literature [Hub85, Fri87]. Selection of adirection that has a high projection index is usually performed using gradient following methods. After alocal maximum of the projection index has been found, the index function is altered to prevent the searchfrom �nding the same direction again, and a search for a direction with a high projection index is startedfrom a di�erent starting point.1Note that the marginal density is a one dimensional function, thus the number of samples needed for estimating itis relatively small. In this way projection pursuit avoids, to some degree, the infamous \curse of dimensionality" in theestimation of the distribution of high dimensional data.

3.4. Projection Pursuit and the combination model 19The search for new projection directions can be simpli�ed if instead of altering the projection indexfunction, the sample is altered in a way that previously found interesting projections (~�(1); ~�(2); : : : ; ~�(i�1))are made to appear uninteresting, i.e. Normally distributed. So called \structure removal" methods havebeen devised towards this goal [Hub85, Fri87]. These methods alter the sample in such a way that a speci�csingle projection that has been interesting is made uninteresting while all orthogonal projections are leftunchanged. Put in another way, suppose that some density p 2 PPm has high likelihood with respect to agiven sample, and that one of the factors in p is g1(~�(1) � ~x). Then removing the structure correspondingto g1(~�(1) � ~x) means transforming the sample into a sample for which p(~x)=g1(~�(1) � ~x), which is a modelin PPm�1, has high likelihood.To summarize, most iterative projection pursuit methods share the following common structure:� InitializationSet S0 to be the input sample.Set p0 to be the initial density (Gaussian).� IterationRepeat the following steps for i = 1; 2 : : : until all projections of Si are almost Normal.1. Find a direction ~�(i) for which the projection index of the projection of Si�1 is maximized.2. Approximate the actual marginal density in the direction ~�(i) by �nding a close �t to the densityof the projection of the sample Si�1. Set gi(�) to be the ratio between this approximation andthe marginal density produced on ~�(i) by pi�1, using Equation (3.11).3. Set Si to be Si�1 with the structure de�ned by the factor gi(~�(i) � ~x) removed. This makes theprojection of Si on ~�(i) uninteresting, and all of the orthogonal projections remain equal to thatof Si�1.4. Set pi(~x) to be pi�1(~x)gi(~�(i) � ~x).Notice that in this method the functions gi are chosen in such a way that the product Qmi=1 gi(~�(i) � ~x)is normalized for each m and there is no need for an additional normalization term Z, as appears in thede�nition of PPm in Equation (3.10).Projection Pursuit has proved itself successful in some experiments [Fri87]. However, the search forbest density is performed in a greedy manner and might not succeed in �nding the optimal density inPPm. While there is quite a large body of research on the representational power of projection pursuitmodels, little is theoretically known about reliability of the associated learning algorithms, such as the onepresented above.3.4 Projection Pursuit and the combination modelRecall Equation (2.6), which describes the density generated by the real-valued combination model:p(~x) = e� 12 jj~xjj22 1ZR mYi=1�1 + e�i+~wi�~x� :

20 3. Learning the model from examplesUsing the following de�nitions we see that this class of models is a special case of the class of modelspresented in Equation (3.10). p0(~x) = (2�)�n=2e� 12 jj~xjj22 = N (0; 1)~�(i) = ~wijj~wijj2G = �g : R! R j g(t) = 1Z �1 + e�i+tjj~wijj2� ;Z 2 R�It is clear that, under these de�nitions, p(~x) is a function in PPm. In the next section we present a greedyalgorithm for learning the combination model that is based on this relation.A similar relationship holds for the binary model. However, we have not managed to �nd a goodstructure removal procedure for the binary-valued model. We thus present an algorithm for learning thereal-valued model and, based on the relations given in Section 2.6, we claim that the solutions that we �ndfor the real-valued model are approximate solutions for the binary-valued model.There are two main di�erences between our work and previous work on using exploratory projectionpursuit algorithms for estimating distributions. The �rst di�erence is that while our model de�nes adistribution on all Rn, our data-points are taken from f�1;+1gn. However, as discussed at the end ofSection 2.6, the projections of the binary vectors generate marginal distributions that are close to Normal,similarly to the distributions we expect from real-valued data.The second di�erence is that the family of functions G from which the gis are taken is a very restrictedset of functions. This is unlike standard PP techniques, in which the functions gi are chosen from somevery broad family, such as some family of spline functions. This means that, in our case, any singlefunction g 2 G might be far from adequate for describing the marginal distribution on some direction~�(i) and several factors with the same ~� might be needed. This, in turn, has the e�ect that eliminatingthe structure generated by a single factor does not amount to transforming the marginal distribution onthe corresponding projection so that it becomes completely uninteresting. As most structure eliminationtechniques do exactly that, they are un�t in the context of learning the combination model.3.5 PP algorithm for learning the combination modelIn this section we present a variant of PP that is a learning algorithm for the combination model.Our algorithm combines the search for an interesting projection direction, ~�, with the search for thecorresponding projection function, g(�). The algorithm searches for the optimal factor by maximizing thelikelihood of a single factor model with respect to the (possibly altered) sample. After such a factor is found,the algorithm alters the examples in such a way that the structure encoded in the factor is eliminated, andsubsequent searches will �nd di�erent factors.The algorithm is thus based on two elements. The �rst element is a method for �nding a maximallikelihood combination model with a single hidden unit. This method serves both for �nding a projectiondirection, and for �nding the function gi(�) associated with this direction. The second element is a structureremoval procedure. We shall describe the two elements in turn.

3.5. PP algorithm for learning the combination model 21We have previously described how gradient ascent can be used for �nding model with highest log-likelihood. However, for the special case where there is only a single hidden unit in the model, a muchfaster method can be used. This method is an Expectation-Maximization (EM) method [DLR77]. EMis a general method for estimating the parameters of distribution models that have both observable andunobservable random variables. This method achieves extremely fast convergence when used for estimatinga mixture of product distributions.2The Expectation Maximization method is based on iterative improvement of the estimates of themaximal likelihood values of the model parameters. It starts with some initial guess of the parameters�init, and proceeds by iterating the following two steps. It can be shown [DLR77], that each of theseiterations improves the likelihood of the parameters.1. Using the old setting of the parameters, �old, as if they were the actual parameters, some statisticsof the joint distribution of the hidden and the observable variables are calculated.2. The old setting of the parameters, �old, is replaced with a new setting of the parameters �new,which is the most likely setting of the parameters given the values of the statistics calculated in step1. These new parameters are used as the old parameters in the following iteration.To see how this method is implemented for the problem of estimating the parameters of a real-valued combination model with a single hidden unit let us calculate the maximal likelihood setting ofthe parameters assuming that we are given a sample S 0, of size N , in which each element describes thevalue of both the observable random variables, ~x, and the unobservable random variable h. The loglikelihood is LL(�; ~!jS 0) = X(h;~x)2S0 ln P (~x; hj�; ~!) = X(h;~x)2S0 ln exp (h(� + ~! � ~x))ZR= X(h;~x)2S0 h(� + ~! � ~x)�N(2�)n=2 ln�1 + exp�� + 12 jj~!jj22��Taking the derivative of the log-likelihood with respect to the parameters and equating to zero to �nd theoptimal setting of the parameters, we get the following equations. From the derivative w.r.t. � we get thatX(h;~x)2S h = N logistic��opt + 12 jj~!optjj22� ; (3:12)and from the gradient w.r.t. ~! we get thatX(h;~x)2S h~x = ~!optN logistic��opt + 12 jj~!optjj22� (3:13)Notice that if we divide the sums on the left hand side of Equations (3.12) and (3.13) by N , we get thede�nition of the empirical estimates of E(h) and of E(h~x), which we shall denote by Ê(h) and Ê(h~x).Solving Equations (3.12) and (3.13) for the values of the optimal parameters, we get that:~!opt = Ê(h~x)Ê(h) ; (3:14)2It is not easy to implement EM directly on the complete combination model, because although this distribution can beexpressed as a mixture of product distributions, the parameters that de�ne the mixture components are coupled.

22 3. Learning the model from examplesand �opt = � ln 1� Ê(h)Ê(h) � 12 jj~!optjj22 : (3:15)We thus see that the statistics that we need to estimate in the �rst step of the EM iteration are Ê(h) andÊ(h). These statistics can be directly calculated from the sample S 0, as this sample includes both ~x andh. However, given a setting of the parameters, we can compute the distribution of h for any setting of ~x,and thus calculate the desired statistics.The implementation of the EM method for the combination model with a single hidden unit is thusas follows. We start with an initial setting of the parameters: (~!init ; �init) and proceeds by iterating thefollowing two steps on the given sample S = h~x1; ~x2; : : : ; ~xNi1. In the Expectation calculation step the current parameters (~!old; �old) are used as if they describethe correct input distribution. Given this description and a particular setting of the input units, ~x,we can compute probability that each hidden unit is 0 or 1 given any setting of the observable vector~x: Pr(hi = 1j~x; ~!old; �old) = logistic(~!old � ~x+ �old)~x :Using this equation and the sample S, it is possible to compute the following estimates:Ê(h~x) = 1N X~x2S logistic(~!old � ~x+ �old)~xÊ(h = 1) = 1N X~x2S logistic(~!old � ~x+ �old)2. In the Maximization step, new parameters (~!new; �new) are calculated using Equations (3.14)and (3.15). The new parameters (~!new; �new) are used as the old parameters (~!old; �old) in thefollowing iteration.3. The iteration terminates when the di�erence between (~!new; �new) and (~!old; �old) becomes in-signi�cant.We now present the structure removal procedure. In the analysis of the real-valued model in Sec-tion (2.3) we have shown that the addition of a hidden variable has the e�ect of replacing the previousdistribution by a mixture of two distributions, the �rst of which is equivalent to the previous, and the sec-ond is a shifted copy of the previous distribution, shifted by the weight vector ~wi that corresponds to thehidden unit. The shifted copy corresponds to the case in which hi = 1 while the unshifted one correspondto the case where hi = 0. For each data point we compute the probability, p, that hi = 1. We then
ip arandom coin whose bias is p and, according to the outcome of the coin
ip, either keep the example as itis or subtract ~wi from it. This has the e�ect of shifting the shifted copy, which corresponds to hi = 1 tocoincide with the unshifted copy, which corresponds to hi = 0. In this way the structure encoded by the

3.5. PP algorithm for learning the combination model 23hidden unit is eliminated from the empirical distribution. Details are described below.� InitializationSet S0 to be the input sample.Set p0 to be the initial distribution (Gaussian).� IterationRepeat the following steps for i = 1; 2 : : :until no single-variable combination model has a signi�cantlyhigher likelihood than the Gaussian distribution with respect to Si.1. Perform an EM procedure to maximize the log-likelihood of a single hidden variable model onthe sample Si�1. Denote by �i and ~wi the parameters found by this procedure, and create anew hidden unit with associated binary random variable hi with these weights and bias.2. Transform Si�1 into Si using the following structure removal procedure.For each example ~x 2 Si�1 compute the probability that the hidden variable hi found in thelast step is 1 on this input: P (hi = 1) = �1 + e�(�i+~wi�~x)��1Flip a coin that has probability of \head" equal to P (hi = 1). If the coin turns out \head" thenadd ~x� ~wi to Si else add ~x to Si.3. Set pi(~x) to be pi�1(~x)Z�1i �1 + e�i+~wi�~x�, where Zi =P~x pi�1(~x) �1 + e�i+~wi�~x�.

24 4. Experimental work4. Experimental workWe have carried out several experiments to test the performance of unsupervised learning using thecombination model. The goals of these experiments is to show that the combination model is a useful oneand to compare the performance of the di�erent learning algorithm that we have developed.The �rst set of experiments compares the two learning methods for the combination model presentedin this paper. The �rst is the gradient ascent method, and the second is the projection pursuit method.The experiments in this set were performed on synthetically generated data. The input consisted of 4,000binary vectors of 64 bits that represent 8 � 8 binary images. The binary vectors are synthesized usinga combination model with 10 hidden units whose weights were set as in Figure (4.1,a). Each square inthis image denotes a single real valued parameter,1 the matrix corresponds to the weight vector, and therectangle above the matrix corresponds to the bias parameter �. We shall refer to each random binaryvector as an instance.The ultimate goal of the learning algorithms was to retrieve the model that generated the instances,which we call the \target" model. However, this goal is generally not achievable. The �rst reason is thatthe optimal model is not unique, i.e. there usually are other combination models that generate the exactsame distribution as the target model, or a distribution that is very close to it. For example, a permutationof the hidden units does not change the distribution de�ned by the model. As we have found out in theexperiments, other simple transformations of the target model produce models that are almost as good asthe target model. Another reason that we cannot retrieve the exact target is that the parameter vector ofthe target is real valued, and thus cannot be exactly identi�ed by a �nite number of instances. The thirdreason is that our algorithms are not guaranteed to �nd the optimal model for the given data. The gradientascent algorithm is only guaranteed to locate a local maximum of the likelihood, and the Projection Pursuitalgorithm is only guaranteed to increase the likelihood of the model with each additional hidden unit.While the di�erence between the parameter vectors of the learned model and of the target model isusually large, their performance as models of the random instances is similar. We measure this performanceusing three di�erent error measures. Each error measure de�nes a way of computing the error of acombination model with respect to a set of instances. We have measured these errors for the targetmodel and for each of the learned models. Each measurement was taken both with respect to the instancesthat were used for learning (the \training" instances) and with respect to an independent test set of 4000instances.We now describe each of the three measures of error that we have used:� Average log-lossEach learned distribution model de�nes a probability distribution, P , on the space of images. Apopular measure of the distance between P and the actual distribution Q is the cross entropy, whichis de�ned as �Px(Q(x) logP (x)). The cross entropy is minimized when P = Q, and is then equalto the entropy of Q. The cross entropy can be estimated by taking the average value of minus log1The results are given using Hinton diagrams [RM86], i.e. positive values are displayed as full rectangles, negative valuesas empty rectangles, and the area of the rectangle is proportional to the absolute value.

25of the probability that the model assigns to each instance in the sample. This measure of error isalso called the log-loss error. We scale the error so that the uniform distribution model, that assignsequal probability to all instances, has an expected error of 1. The log-loss error is hard to computefor large combination models, which is why we use it only in the experiments on synthetic data inwhich we use only 10 hidden units in the models.� Single bit completionWe estimate the average number of mistakes made by the model when it is used to predict the valueof single bits of the instances. More precisely, the mistakes it makes when used to predict the valueof each single bit in each of the instances in the sample, when given the values of all the other bits ofthat instance. The combination model de�nes a probability for any possible instance. The predictionis de�ned as the value of the bit that corresponds to the more probable instance. We estimate thisaverage number by choosing at random 5 bit locations for each instance in the sample.� Input reconstructionWe estimate the quality of the combination model as an input representation scheme. For eachinstance (x1; : : : ; xn) we compute the most probable state of the hidden units. This state can be seenas an encoding of the instance. One way of de�ning the quality of this encoding scheme is to measurehow much additional information is required to reconstruct the instance from the state of the hiddenunits alone. Each state of the hidden units de�ned a Bernoulli product distribution over the images.The additional information that is required to encode a particular instance is the log of one over theprobability assigned to the instance. As the distribution is a Bernoulli product, this can be writtenas the following sum: H(~xj~h) = 12 nXi=1 [(1 + xi) log2 pi + (1� xi) log2(1� pi)] ;where pi is the independent probability of the ith input bit to be +1 given the hidden state, whichis equal to pi = logistic0@ mXj=1!(j)i hj1AThis measure of error is scaled so that it measures the additional information that is required perinput bit.All experiments used a test set and a separate training set, each containing 4000 examples. Thegradient ascent method is based on the binary distribution model. It typically needed about 1000 epochsto stabilize.2 In the projection pursuit algorithm, 4 iterations of EM per hidden unit proved su�cient to�nd a stable solution. The results are summarized in the following table and in Figure (4.1).32The algorithm used a standard momentum term (see [HKP91], page 123) to accelerate the convergence.3The di�erence between the measurements of the quality of the true model on the test set and on the training set are dueto the random
uctuations between the two sets of examples. These di�erences provide an indication of the accuracy of ourmeasurements.

26 4. Experimental worklog-loss single bit prediction input reconstructiontrain test train test train testgradient ascent for 1000 epochs 0.399 0.425 0.098 0.100 0.311 0.338projection pursuit 0.893 0.993 0.119 0.114 0.475 0.480Projection pursuit followed bygradient ascent for 100 epochs 0.411 0.430 0.091 0.089 0.315 0.334Projection pursuit followed bygradient ascent for 1000 epochs 0.377 0.405 0.071 0.082 0.261 0.287true model 0.401 0.396 0.077 0.071 0.286 0.283(a)(b)(c)(d)Figure 4.1: The weight vectors of the models in the synthetic data experiments. Each matrixrepresents the 64 weights of one hidden unit. The range of the weights is [�6;+6] with the largewhite squares representing the value 6. The square above the matrix represents the units bias.positive weights are displayed as full squares and negative weights as empty squares, the area ofthe square is proportional to the absolute value of the weight. (a) The weights in the model usedfor generating the data. (b) The weights in the model found by gradient ascent alone. (c) Theweights in the model found by projection pursuit alone. (d) The weights in the model found byprojection pursuit followed by gradient ascent. For this last model we also show the histograms ofthe projection of the examples on the directions de�ned by those weight vectors; the bimodalityexpected from projection pursuit analysis is evident.The best learning result was achieved by starting with the projection pursuit algorithm then using theparameter vector that was learned as a starting point for the gradient ascent algorithm. The �nal resultof this combination is presented in Figure 4.1(d), together with the corresponding projections of the data

27along the directions de�ned by the weight vectors. We can see that there is a close correspondence betweenthe weight vectors in the learned model and the vectors in the target model described in Figure 4.1(a).Counting from left to right, the weight vectors of units 1,2,8,9, and 10 in the learned model are almostidentical to the weight vectors of units 1,4,6,7,and 5 in the target model. Units 3 and 7 in the learned modelare close to the negation of units 8 and 3 in the target model, and units 4 and 5 in the learned model arecombinations of units (10,2) and (9,2) of the target model respectively. There is no exact correspondence ofthe biases. As we see from the table, the performance of the learned model is almost as good as that of thetarget model according to all three measures. We thus conclude that reversing the sign of weight vectorsand combining them can sometimes create a di�erent combination model whose corresponding distributionis very similar.When the gradient ascent model is used to learn by itself (Figure 4.1(b)),it tends to get stuck in localminima, as can be seen in the table. It is also a very slow method, both because of the large number ofiterations that is required and because each iteration requires complex calculations. The fact that the localsearch process is stuck in a sub-optimal solution can be seen in the weight vectors of the learned model inthat four of the weight vectors (those of units 1,2,6,10, counting from the left) have no clear correspondenceto any of the weight vectors in the target model.The Projection Pursuit method is very fast, but its results are weaker than those of the gradient ascentmethod by itself. It tends to �nd a model whose weight vectors correspond to various combinations ofthe weight vectors of the target model and their negations. The performance of the results of projectionpursuit are similar to those of the gradient method in the single bit prediction measure and in the inputreconstruction measure. On the other hand, the performance of the Projection pursuit model in termsof the likelihood of the model that it generates is very poor. The reason is that the data that we use isgenerated by a binary valued combination model, while the projection pursuit model is based on a realvalued combination model. The di�erence between these two models is large, because the weights that areused in the target model are in the range [�6;+6]. As we have shown in Section 2.6, the binary modeland the real valued model are approximately equal when the weights are small. To show that this isindeed the source of the error, we repeated the previous experiments using a target model with the weightvectors divided by a factor of 7, so that now all the weights are in the range [�6=7;+6=7]. The results aresummarized in the following table log-loss single bit prediction input reconstructiontrain test train test train testTrue Model 0.939 0.941 0.36 0.36 0.86 0.87gradient ascent for 400 epochs 0.937 0.944 0.36 0.37 0.86 0.87projection pursuit 0.964 0.966 0.38 0.39 0.92 0.92Projection pursuit followed bygradient ascent for 400 epochs 0.935 0.943 0.36 0.37 0.86 0.87We see that in this case, the likelihood of the model found by the projection pursuit algorithm is similar

28 4. Experimental workto that of the other models. Because in this case the weights are so small, the di�erence between thedistribution de�ned by the model and the uniform distribution is small, as is re
ected in the measures ofaccuracy. However, the di�erence from the uniform distribution is statistically signi�cant. The combinationof the two learning algorithms was able to retrieve the weights of the target model almost as well as in theprevious experiment (see Figure 4.2).(a)(b)(c)Figure 4.2: The weight vectors of the models in the synthetic data experiments. The target targetis the same as in the previous experiment but the range of the weights is divided by a factor of 7,so that the largest white squares represent the value of 6=7. (a) The weights in the model foundby gradient ascent alone. (b) The weights in the model found by projection pursuit alone. (c)The weights in the model found by projection pursuit followed by gradient ascent.In the second set of experiments we compare the performance of the combination model to that of themixture model. The comparison uses real world data extracted from the NIST handwritten data base.4Examples are 16� 16 binary images (see Figure (4.3)). There are 500 examples in the training set and 500in the test set. We use 45 hidden units to model the distribution in both of the models. Because of thelarge number of hidden units we cannot use gradient ascent learning and instead use projection pursuit.For the same reason it was not possible to compute the likelihood of the combination model and only theother two measures of error were used. Each test was run several times to estimate the accuracy of ourmeasurements.For learning a mixture model we use an incremental version of EM. We start with a model with a singleBernoulli product distribution and run EM until the method converges. We then take a mixture of twoBernoulli product distributions, each of which is initialized to be a slight random perturbation of the singleBernoulli product. We then let EM run on this model until it converges, and then we split each componentinto two in a similar way. Continuing in this fashion we repeatedly double the size of the model.5The �nal errors of many runs of these algorithms, starting from di�erent initial weights, are summarizedin the table below. The errors of two representative runs are given in Figures 4.6 and 4.7. A sample of the�nal weight vectors of the learned combination model and mixture model are given in Figures 4.4 and 4.54NIST Special Database 1, HWDB Rel1-1.1, May 1990.5When 32 units are to be split, only the �rst 13 of them are split, to give the �nal number of 45 mixture components.

29respectively. A complete list of all of the 45 weight vectors for each model are given in Figures 4.8 and4.9. single bit prediction input reconstructiontrain test train testProduct distribution 0.29 � 0.01 0.30 � 0.01 0.78 � 0.01 0.80 � 0.01Mixture model 0.19 � 0.01 0.26 � 0.01 0.55 � 0.01 0.70 � 0.01combination model 0.19 � 0.01 0.20 � 0.01 0.60 � 0.01 0.64 � 0.01The �rst line in this table, named \Product distribution" summarizes the performance of a simple dis-tribution model that assumes that the pixels are distributed according to a Bernoulli product distribution.The reconstruction of the input, in this case, is simply the �xed reconstruction in which each bit is set toits more probable value. The performance of this model provides a baseline with respect to which we cancompare the performance of the other distribution models whose goal is to capture dependencies betweenthe pixels. We see that the performance of the combination model is signi�cantly better than that of themixture model on the test set. The di�erence is especially signi�cant when compared to the baseline ofthe Product distribution model. Also, we see that the di�erence between the performance on the test setand on the training set, i.e. the over-�tting, is much smaller for the combination model.A qualitative comparison between the weight vectors found by the two models con�rms the expectedadvantage of the combination model in describing combinations of correlations. While the typical weightvectors of the mixture model (see Figure (4.5)), which is a sample out of Figure (4.8)) look very much likean average prototype of a speci�c digit, the weight vectors of the combination model relate to more localfeatures, such as lines and curves (see Figure (4.4)), which is a sample out of Figure (4.9)). This relates tofact that the mixture model relates each example with the single weight vector that is most similar to it,while the combination model relates each example with a combination of its weights.Figure 4.3: A few examples from the handwritten digits sample.As the experiments on synthetic data have shown that PP does not reach optimal solutions by itselfwe expect the advantage of the combination model over the mixture model to increase further by usingimproved learning methods. Of course, the combination model is a very general distribution model and isnot speci�cally tuned to the domain of handwritten digit images, thus it cannot be compared to modelsspeci�cally developed to capture structures in this domain. However, the experimental results support ourclaim that the combination model is a simple and tractable mathematical model for describing distributionsin which several correlation patterns combine to generate each instance.

30 4. Experimental work
Figure 4.4: Typical weight vectors found by the combination model

Figure 4.5: Typical weight vectors found by the mixture model

31

Figure 4.6: A comparison of the input reconstruction error on 16 � 16 pixel digit images. Thiserror measures the average amount of additional information that is required for reconstructingthe input from the state of the hidden units. The information is measured in bits per pixel. Thehigher and lower curves in each graph describe the error on the test set and on the training setrespectively. The graph on the left describes the error of the mixture model as a function of thenumber of training iterations (epochs). The number of mixture components is doubled every 20iterations. There is a spike in the error immediately following the doubling, as a result of theadded randomization. The graph on the right describes the error of the combination model as afunction of the number of iterations. (The spike in the graph around iteration 230 is a side e�ectof a \back�tting" stage that has not proven to be useful.)

32 4. Experimental work

Figure 4.7: A comparison of the single bit completion error on 16 � 16 pixel digit images. Theerror measures the probability of a mistake in predicting a random single missing bit in the image,using the distribution model and the values of all the rest of the pixels. The higher and lowercurves in each graph describe the error on the test set and on the training set respectively. Thegraph on the left describes the error of the mixture model as a function of the number of trainingiterations (epochs). The number of mixture components is doubled every 20 iterations. Thegraph on the right describes the error of the combination model as a function of the number ofiterations. (The peak in the graph around iteration 230 is a side e�ect of a \back�tting" stagethat has not proven to be useful.)

33

Figure 4.8: The weight vector, or image templates, found by the the mixture model

34 4. Experimental work

Figure 4.9: The weight vector, or image templates, found by the the mixture model

References 35References[AHS85] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for Boltzmann machines.Cognitive Science, 9:147{169, 1985.[CS89] D. R. Cox and E. J. Snell. Analysis of binary data. Chapman and Hall, 1989.[DF84] P. Diaconis and D. Freedman. Asymptotics of graphical projection pursuit. Annals of Statistics,12:793{815, 1984.[DH73] R. O. Duda and P. E. Hart. Pattern Classi�cation and Scene Analysis. Wiley, 1973.[DLR77] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via theEM algorithm. Roy. Statist. Soc. B, 39:1{38, 1977.[EH81] B.S. Everitt and D.J. Hand. Finite mixture distributions. Chapman and Hall, 1981.[Fre87] D. H. Freeman. Applied Catagorical Data Analysis. Marcel Dekker, 1987.[Fri87] J. H. Friedman. Exploratory projection pursuit. J. Amer. Stat.Assoc., 82(397):599{608, March1987.[FWS84] J. H. Friedman, W.Stuetzle, and A. Schroeder. Projection pursuit density estimation. J. Amer.Stat.Assoc., 79:599{608, 1984.[Gem86] Stuart Geman. Stochastic relaxation methods for image restoration and expert systems. InD.B. Cooper, R.L.Launer, and D.E. McClure, editors, Automated Image Analysis: Theory andExperiments. Academic Press, 1986.[GG84] S Geman and D Geman. Stochastic relaxations, Gibbs distributions and the Bayesian restorationof images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 6:721{742, 1984.[GP87] HectorGefner and Judea Pearl. On the probabilistic semantics of connectionist networks. TechnicalReport CSD-870033, UCLA Computer Science Department, July 1987.[HKP91] John Hertz, Anders Krogh, and Richard G. Palmer. Introduction To The Theory Of NeuralComputation. Addison Wesley, 1991.[Hop82] J.J. Hop�eld. Neural networks and physical systems with emergent collective computationalabilities. Proc. Natl. Acad Sci. USA, 79:2554{2558, April 1982.[Hub85] P.J. Huber. Projection pursuit (with discussion). Ann. Stat., 13:435{525, 1985.[Jol86] I.T. Jolli�e. Principle Component Analysis. New York: Springer-Verlag, 1986.[Nea90] Radford M. Neal. Learning stochastic feedforward networks. Technical report, Department ofComputer Science, University of Toronto, November 1990.[Now90] S. Nowlan. Maximum likelihood competitive learning. In D. Touretsky, editor, Advances in NeuralInformation Processing Systems, volume 2, pages 574{582. Morgan Kaufmann, 1990.[Oja89] E. Oja. Neural networks, principle components, and subspaces. Int. J. Neural Systems, 1(1):61{68,1989.[PA87] Carsten Peterson and James R. Anderson. A mean �eld theory learning algorithm for neuralnetworks. Complex Systems, 1:995{1019, 1987.

36 References[Pea88] Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.[RM86] D. E. Rumelhart and J. L. McClelland. Parallel Distributed Processing: Explorations in theMicrostructure of Cognition. Volume 1: Foundations. MIT Press, Cambridge, Mass., 1986.[San89] T.D. Sanger. Optimal unsupervised learning in a single-layer linear feedforward neural network.Neural Networks, 2:459{473, 1989.[Ser80] R. J. Ser
ing. Approximation Theorems of Mathematical Statistics. John Wiley & Sons, 1980.

37Appendix A. Projection distributions of the binary combinationmodel.In this section we use results from [DF84] to show that the projections of the binary combinationmodel are very similar to those of the real-valued combination model model when the weight vectors aresmall. As has been discussed in Section (2.3), the binary combination model distribution can be viewedas a mixture of 2m generalized binomial distributions. We call these binomial distributions binoms. Eachbinom corresponds to a particular setting of the hidden vector ~h and to a single Gaussian component inthe real-valued model. We shall show that although the distribution of the binoms are very di�erent fromthe corresponding Gaussians, their projections onto almost any direction are very similar. This impliesthat the projections of the binary-valued combination model are very similar to those of the real-valuedcombination model. Because Projection pursuit methods depend only on properties of the projectionsof the distribution, it is a valid approximation to use the real-valued combination model for learningdistributions generated by a binary-valued combination model.The mixture coe�cients of the binoms are Pr(~hj�) as de�ned in Equation (3.4). The mean of thebinom corresponding to ~h is �(~hi) = tanh(Pmi=1 hi!(i)) where by tanh(~x) we denote the application of tanhto each component of ~x. If the weight vectors !(i) are all small then tanh(Pmi=1 hi!(i)) �Pmi=1 hi!(i), andwe get that the means of the binoms are very close to the means of the corresponding Gaussians. Next weshow that under mild assumptions, the projection of each binom is very close to a Gaussian.Diaconis and Freedman [DF84] discuss conditions under which most projections of high-dimensionaldata sets are close to Gaussian. Their analysis considers large sets of points taken from high dimensionalspaces. These points are not assumed to be generated by a distribution. Instead, the conditions forGaussianity of the projection are given as geometric relations among the points. These relations must holdin the limit where both the dimension of the space and the size of the sets tends to in�nity. We shallshow that if the weight vectors of the combination model are generated by some distribution then, withhigh probability, samples generated by each binom have the required geometric properties and thus mostof their projections are close to Gaussians.We follow most of the notation used in [DF84]. Let ~x1; ~x2; : : : ; ~xN be vectors in Rn, this is the dataset. Suppose that n;N and the data set all depend on some common index �, and that as � tends toin�nity, so do n and N . Let Sn�1 be the unit sphere in Rn and let
 be chosen uniformly at random fromSn�1. Theorem 1.1 in [DF84] states that if the following conditions hold, then the empirical distributionof
 � ~xi converges weakly to the normal distribution N (0; �2) in probability, as � ! 1. Where \weakconvergence" is convergence as a measure on R and \in probability" is w.r.t. the uniform distributions onSn�1.The required conditions follow. There must exist some �nite and positive �2 such that for any positive�, the following limits hold as � tends to in�nity,��� f1 � j � N : jk~xjk22 � �2nj > �ng��� =N ! 0 (A:1)j f1 � j; k � N : j~xj � ~xk j > �ngj =N2 ! 0 (A:2)

38 Appendix A. Projection distributions of the binary combination model.Where # denotes the cardinality of a set. The �rst condition intuitively means that vectors are almost allof almost the same length. The second condition means that most pairs of vectors are close to orthogonal.We are interested in projections of samples generated by the combination model, as these arerandom samples, we would like to show that the geometric conditions hold with probability one.Suppose we have a sequence of binomial distributions over binary cubes of increasing dimension:f�1;+1g; f�1;+1g2; : : : ; f�1;+1gn; : : :. Each distribution is fully speci�ed by its mean vector:~�1 2 [�1;+1]; ~�2 2 [�1;+1]2; : : : ; ~�n 2 [�1;+1]n; : : :. Suppose that we have a sample from each distribu-tion and that the sample size increases with the dimension n of the space: h~x11i; h~x21; ~x22i; � � � ; h~xn1 ; : : : ; ~xnni; � � �.We would like to show that random projections of these samples produce empirical marginal distributionsthat are very close to Gaussian distributions with a probability that goes to 1 as n ! 1. However,it is not hard to construct sequences of mean vectors such that this will not happen. For instance,if ~� = f0;+1; : : : ;+1g, then the distribution is concentrated in the two points f�1;+1; : : : ;+1g, andf+1;+1; : : : ;+1g, and all projections of this distribution will also be concentrated on two points.We prove that the desired asymptotic conditions hold with probability 1 if the mean vectors ~�n areselected in the following way. Assume there is some distribution �P on [�1;+1] and that each componentof each ~�n is drawn independently at random from this distribution. For this to hold for the mixturecomponents of the combination model it is enough to assume that the components of the weight vectorsin the model underlying the data are chosen independently at random.Theorem A.0.1: Suppose that a sequence of vectors of increasing dimension:~�1 2 [�1;+1];~�2 2 [�1;+1]2; : : : ; ~�n 2 [�1;+1]n; : : :is randomly drawn by selecting each component of each vector according to some distribution �P over[�1;+1].Each vector ~�n de�nes a distribution over f�1;+1gn in which the components are independent and theexpected value is ~�n. Suppose that for each n we draw n vectors from this distribution, and that from eachrandom vector we subtract the mean, ~�n.Suppose that for each n we draw a vector ~w uniformly at random from the n dimensional unit sphere,project the n random vectors on the direction de�ned by ~w and assign each of the points in the projectiona probability mass of 1=n. In this way we create, for each n, a discrete distribution over the reals.With probability one, over all the random choices that create the sequence of distributions, there exists� � 0 such that the sequence of distributions converges weakly to the normal distribution N (0; �2).1Proof: We prove the theorem by showing that the conditions of Theorem 1.1 in [DF84] hold withprobability one.The proof of the condition A.1 is a simple application of the Markov bound. We wish to show that forsome � and for any �; � > 0:limn!1P (#f1 � j � n : jk~xjk22 � �2nj > �ng > �n) = 01Weak convergence means that for any measurable set A, the probability assigned to A by the sequence of distributionsconverges to the probability of the limit distribution.

39The n examples are independent, thus as n increases the fraction of the vectors that obey the conditionbecomes very close to the probability of obeying the condition. Thus it su�ces to show that for a randomlychosen example ~x limn!1P (k~xk22 � �2nj > �n) = 0the squared length of a vector is a sum of the squares of its components. As the components are chosenindependently at random according to the mean vector ~�n and as the components of ~�n are chosenindependently at random according to �P we get that the average length of ~x is n(1 � R+1�1 x2d �P (x)).The variance of each term is at most 1. Thus de�ning �2 to be 1� R+1�1 x2d �P (x) and using Markov boundswe get that P (k~xk22 � �2nj > �n) � n(�n)2 = 1n�2 :and as n increases the probability decreases to zero as desired.The proof of condition (A.2) is a bit more involved, because in this case the n2 pairs that are checkedfor the condition are not independent. However, using the theory of U-statistics [Ser80][Chap. 5] theirbehavior can be related to that of independently drawn pairs. We wish to show that for any �; � > 0:limn!1 P (#f1 � j; k � N : j~xj � ~xk j > �ng > �n2) = 0�rst observe that when j = k the condition will most often not hold, as we have just proved that thesquared length of a vector is concentrated around �2n. However we can ignore this set as it is a vanishingfraction of the n2 pairs. It is thus su�cient to prove thatlimn!1P (#f1 � j; k � n; j 6= k : j~xj � ~xkj > �ng > �n(n � 1)) = 0Using the notation of [Ser80] we de�neh(~x; ~y) = (1 if j~x � ~yj > �n0 otherwiseand observe the corresponding U-statistic, that is a random variable de�ned over samples of size n:U(~x1; : : : ; ~xn) = 2n(n� 1) X1�i<j�n h(~xi; ~xj)This random variable is exactly the cardinality of the set of pairs that have a dot product larger than �ndivided by n(n � 1). Our goal is thus reduced to proving that the probability of a sample for which U istoo large is small. We do that by using Markov inequality. The fact that U is an unbiased statistic meansthat the average of U is equal to the average of h(~x; ~y) when ~x and ~y are chosen independently at random.In other words it is equal to the probability that two randomly chosen vectors have a dot product largerthan �n. We shall denote that probability by t. The variance of U can be related to the variance of h(~x; ~y)by using Lemma A. from page 183 of [Ser80].V ar(U(~x1; : : : ; ~xn)) � 2n(n � 1)[2(n� 2)�1 + �2] � 4n�2

40 Appendix A. Projection distributions of the binary combination model.Where �2 is simply the variance of h(~x; ~y) when ~x and ~y are chosen independently at random. As h(~x; ~y)is either 0 or 1, its variance is t(1� t). Putting the bound on the variance into the Markov bound we get:P [n(n � 1)U(~x1; : : : ; ~xn) > �(n(n� 1))] � P [jU(~x1; : : : ; ~xn)� tj > � � t] � 4n t(1� t)(� � t)2It is easy to see that t = P (j~x � ~yj > �n) � 4�2nthus limn!1 t = 0 and we get that the desired probability goes to zero, which completes the proof.

