Using Markov Models and Hidden

Markov Models to Find Repetitive

Extragenic Palindromic Sequences
in Fscherichia coli

Kevin Karplus

UCSC-CRL-94-24
26 July 1994

Board of Studies in Computer Engineering
University of California, Santa Cruz
Santa Cruz, CA 95064

karplus@cse.ucsc.edu

ABSTRACT

This paper presents a technique for using simple Markov models and hidden Markov models
(HMMs) to search for interesting sequences in a database of DNA sequences. The models are used
to create a cost map for each sequence in the database. These cost maps can be searched rapidly
for subsequences that have significantly lower costs than a null model. Milosavljevié’s algorithmic
stgnificance test s used to determine when a subsequence is significantly found. The sequences
reported are trimmed to mazimize the signal-to-noise ratio (cost savings / /length).

Methods are given for automatically constructing simple Markov models and hidden Markov
models from small training sets.

The techniques are illustrated by searching a database of E. coli genomic DNA, FcoSeq6, for
clusters of Repetitive Extragenic Palindromic sequences (REPs). Of the known REPs, 91% are
found with simple Markov models starting with a single REP cluster as a seed, and 95% are found
by a hidden Markov model built from the results of the simple Markov model search. There are no
false positives from the simple Markov models, and the few extra sequences found by the HMMs may
be genuinely related sequences.

1. Using compression models to find significant sequences 1

This paper describes a technique for using models suitable for data compression as a tool for
finding interesting sequences in a database. The technique does not require that the structure or
consensus sequence for the target sequences be known in advance—only that an example sequence
be provided.

The paper presents an efficient algorithm for the search, methods for constructing the models
automatically, and results of finding clusters of Repetitive Extragenic Palindromic sequences (REPs)
in the E. coli genome database, EcoSeq6 [12]. It compares the set of REPs found with previous
lists [7, 2, 13]. The new search techniques do as well as the best of previous techniques (self-BLAST),
finding about 95% of the known REPs. Furthermore, the hidden Markov model produced for the
search provides a good, human-readable description of the structure of the REP family, clearly
distinguishing the two main REP sequences and the REPv variant.

Although the technique could be used for sequences over any alphabet, the software has only
been implemented for DNA or RNA sequences so far.

1 Using compression models to find significant sequences

The problem of finding interesting sequences can be broken into several subproblems: defining
what sequences are interesting, devising an algorithm to find them efficiently, and determining
whether the sequences found are statistically significant or just chance variations.

The approach used here is to define the interesting sequences by using a model m that assigns
probabilities to sequences (Pp,(s)). The probabilities are assigned so that all the probabilities for
sequences of a given length sum to 1—the length of the sequence is not predicted by the model.
A sequence is interesting if the probability assigned by the model is significantly higher than the
probability of the sequence using a null model. Normally we use the negative log probability of the
sequence as a cost measure, since the probabilities become extremely small for longer sequences.
Using base-2 logarithms gives us the encoding cost in bits of sequence s using model m:

costm (s) = —logy Pm(s) .

Section 2 will talk about two ways that models can be constructed automatically, but first let’s
discuss how they are used for searching efficiently.

1.1 Efficient search using a cost map

The simplest algorithm for finding sequences using a model would be to enumerate all possible
sequences and compute the cost of each. Unfortunately, this crude algorithm is too expensive. In
a database of d characters, up to d? different sequences may be found. If computing the cost of
a sequence takes time proportional to the length of the sequence, then the entire search algorithm
would be order d®. Furthermore, if several overlapping sequences have a low cost, we would like the
algorithm to pick out the best of them—deferring for the moment exactly what we mean by “best”.

Therefore, we need a search technique whose execution time 1s linear in d and which returns only
disjoint sequences. First, let’s assume that the model used to compute the probabilities provides
not just an overall cost for a sequence, but assigns a cost to each position of the sequence. Second,
let’s assume that the cost of any given sequence is the sum of the costs for each of the characters
of the sequence. Section 2.4 discusses the ways in which the models actually used violate these
assumptions and why the violations are not serious in this context.

With the above assumptions, we can compute the costs for each character of the database once
and save the costs in an array, called a cost map. From the cost map we can compute the cost for
any subsequence of the database by taking the sum of costs in the array starting at the beginning
of the subsequence and stopping at the end. Hence, given a cost map, finding interesting sequences
becomes independent of the model used to create the cost map. This separation of the model from
the search technique is one of the main advantages of the techniques described in this paper.

2 1. Using compression models to find significant sequences

Our problem then is to find non-overlapping subsequences of a cost map whose cost 1s significantly
lower than what we would expect from random strings of characters. Furthermore, we would like to
do this in time proportional to the number of positions in the cost map.

1.2 When is a subsequence significant?

A sequence 1s considered interesting when the model gives it a significantly lower cost than we
would expect. Formally, we look for sequences where the cost of the sequence using the model
(costy,) is significantly less than the cost with a null model (costy).

There are many ways to determine when the cost is significantly lower. The current program uses
Milosavljevié’s Algorithmic Significance Method [8], which has a simple threshold test to determine
if a sequence s is significant:

costy(s) — costy(s) > T,

where the threshold 7' is computed from N, the number of sequences checked for significance:
T = loga(N/significance level) .

If we want a probability of 0.01 or less of getting a sequence returned due to chance matching,
then the threshold is computed as 7" = log,(N/.01) = 6.64 + log, N. In the searching technique
described in Section 1.3, one sequence is checked for each position in the database, so N is the length
of the database d. For EcoSeq6, with 1,875,932 bases, finding a sequence requires that its cost under
the model be 27.483 bits less than the null model cost.

This simple threshold technique is easy to implement, but the database i1s not really drawn
randomly from the distribution implied by the null model. So even if we can refute the null model
with high confidence, we have not necessarily found a good match to our model. For example, a
hidden Markov model may assign cost slightly less than 2 bits/base to G and C in the junk loop that
matches the uninteresting parts of the database. If the null model assigns 2 bits/base, then almost
any sufficiently large GC-rich region would have significant savings.

On the other hand, a short REP cluster with only 24 bases would need to be encodable in only
48 — 27.479 = 20.521 bits (0.855 bits/base) in order to be found. This stringent condition is difficult
to meet with the simple models described in Section 2. Luckily, the regions around the REP clusters
are fairly similar, and so the model can usually find a significant, slightly larger region around a
REP.

In general, using this threshold yields too many long sequences and not enough short ones. The
current program has some methods for suppressing the bogus long sequences, but does not find short
sequences unless they compress very well. Since the standard deviation of the cost of a sequence of
length n grows with /n, the threshold should probably have the form T' = a + b\/r, rather than
being a simple constant, but it is unclear how to set @ and b to get a given significance level for a
database.

Suppressing the incorrectly found long sequences is done by adding the extra condition that the
model must save at least 0.1 bits/base and by artificially replacing the 2 bits/base of the null model
by a smaller estimate of the true entropy of the database (say, 1.99 bits/base). A better technique
would be to use a better null model than the very crude 2 bit/base model—perhaps a second- or
third-order Markov model. Note that although using a better null model or estimating the entropy
at less than 2 bits/base helps to eliminate the incorrectly found long sequences; it becomes more
difficult to find the correct short ones.

1.3 Scanning algorithm for finding the best subsequences

Given the definition of significantly found sequences in Section 1.2, it is easy to scan a cost map
to find significant subsequences. We simply start at the left end of the map and add up the savings in
each position (37, costy(i) — cost, (7)), keeping track of the greatest cumulative savings encountered.
When the cumulative savings becomes negative, we have just scanned an uninteresting sequence,

2. Markov Models as compression models of interesting sequences 3

and so we reset the savings and greatest savings to zero, and continue the scan with the left endpoint
in the current position.

A significant sequence is present when the greatest savings seen is greater than 7', but the scan
is continued until either we reach the end of the cost map or the savings per position drops to less
than half the savings per position at the point of greatest savings. The significant sequence runs
from the start of the scan to the location of the greatest savings.

This method finds sequences that are significant, but the endpoints may not be optimally chosen.
If we just picked the maximal segment (as in [4]), we would have extraneous characters on the ends
of the segments. If the model for the interesting sequences provides estimates for uninteresting
positions that are as good as the null models, then the savings for a junk character is zero or slightly
positive (violating the requirements of a scoring system used with a maximal-segment method). In
fact, early versions of the program reported the maximal segments and picked up long strings of
junk.

Maximizing the savings for a sequence is too greedy, reporting uninteresting sequences. One
way to correct the problem would be to trim the significant sequences to maximize the savings per
position. This approach, however, is too conservative, throwing away parts of the sequence that
remain interesting.

Instead, the program tries to maximize the signal-to-noise ratio (SNR). The noise (the standard
deviation of the savings for an uninteresting sequence) grows with y/n for junk sequences of length
n, SO Maximizing
(costy(s) — costm(s))

SNR = 7

should give us the best signal-to-noise ratio.

We can move the endpoints inward one position at a time, keeping track of the position that gives
the maximum SNR. To make sure we do not lose any significant sequences;, we stop the trimming
before the remaining savings would be less than max(7), greatest savings — 7'/2).

After finding a sequence, we can restart the scan at the right endpoint of the reported sequence.
Restarting here will scan some bases repeatedly, which may seem like a violation of the assumption
used for determining the significance threshold, but the only way to find a sequence containing one
of these rescanned positions is for the position to be part of a sequence that saves at least twice the
threshold. This savings is great enough that it would be significant even if all (g) subsequences had
been examined.

2 Markov Models as compression models of interesting sequences

2.1 Simple Markov models

A simple Markov model of order k estimates the probabilities for letters in a given position based
only on the characters in the preceding k positions. The model is trained by giving it a seed (a set
of sequences that are interesting) and counting the number of times each word of length &+ 1 occurs
in the seed. The words that start with the same & characters constitute a context, and their counts
can be converted to estimates of the probability of the characters in the final position of the word.

The strengths of a simple Markov model are that it allows very fast searching (the cost of each
position can be computed in constant time), it has fairly small memory demands (4*+! words for
an alphabet of four letters), and the model can be built quickly from a fairly small seed.

The weaknesses are that the models are not human-readable and are not directly useful for
aligning sequences. Furthermore, any extraneous junk that is in the set of seed sequences is also
searched for—mnot just the interesting part of the seed.

Some previous work with Markov models has concentrated on using them to predict the fre-
quencies of short words [10, 1, 14]. These studies have generally found that fairly low-order models
(k = 2 to k = 4) trained on the entire database work best for that application. In contrast, for
searching we use fairly high-order Markov models (k = 6 to ¥ = 10) and small seeds (as low as

4 2. Markov Models as compression models of interesting sequences

30 characters). Even with a large seed of 12,000 characters (essentially all the REPs), the average
value of a count for the 4° words of an order-8 model is only 0.046. With such small seeds and large
models, almost all contexts have zero counts for all four characters, making the way zero counts are
handled particularly important.

Zero-offset

The simplest way to handle zero counts is to add a zero-offset z to all counts, so that the
estimated probability of character b in a given context C'is (z 4 counte(b))/(4z+ 5", counte(x)). If
all the counts in a context are zero (the usual case in uninteresting sequences), this method assigns
a probability of 0.25 (a cost of 2 bits) to all four possible characters, independent of the choice of z.
The second most common situation is to have a count of one for one character and zero for the other
characters in the context. This method assigns a probability of (1 4+ z)/(1 + 4z) to the character
that was seen, and z/(1 + 4z) to the other characters.

If the seed is large enough to contain multiple instances of interesting sequences, we can also
choose z to minimize the encoding cost of doing adaptive compression on the seed using the model.
The minimization is currently done by using Newton’s method to set the derivative of the encoding
cost to zero, but almost any standard optimization technique should work.

Neighbor blurring

When doing searches, we are usually interested not only in sequences identical to the seed, but
in sequences that have only a few characters different from the seed. Unfortunately, even a single
mutation can change a k-long context into one that has zero counts of all four words beginning with
that context. To compensate somewhat for this limitation of high-order models, we can blur the
word counts by adding a weighted sum of all neighboring word counts:

newcount(w) = count(w) + n Z count(z) ,
z€N(w)

where N(w) is the set of all words that differ from w in exactly one position, and n is the blurring
weight for neighbor blurring.

The program uses a slightly more sophisticated model, with three blurring parameters ny, ns,
and nz. The ny weight is used for words whose difference is (A—G) or (C<T). The na weight is
used for words whose difference is (A—C) or (G—T), and nz is used for (A=T) or (G—C).

The neighbor weights are best chosen by optimizing the adaptive compression of a related set of
sequences, using a simple optimization technique, such as gradient descent, on the four parameters
z, n1, na, and nz. The optimal value of z is much smaller when neighbor blurring is used, since the
neighbor blurring eliminates many of the zero counts, and provides a more accurate estimate of the
probabilities than the simple zero-offset.

One problem with neighbor blurring is that we do not treat the predicted position of the word
differently from the part that establishes the context. When the counts get large in a given context,
blurring them may produce a worse estimate of the probabilities than the raw counts. Since we use
the blurring only for models with extremely small counts, where blurring in the predicted position
generally produces better predictions, this problem has been ignored.

Complement blurring

In many cases, we want to look for sequences on either strand of the DNA. We can achieve this
by complement blurring of the word counts:

newcount(w) = count(w) + ¢ count(w’) |

where w' is the dyadic complement of w and ¢ is the complement blurring weight.

2. Markov Models as compression models of interesting sequences 5

O
=
jol
@
—

ny no ns z ¢ bits bits/base

2 | -0.00001 0.00001 0.00002 3.02665 1 | 22335.607 1.8494
3| 0.00117 0.00002 0.00000 1.51871 1 | 20017.514 1.6575
4 | 0.00635 0.00014 0.00156 0.80799 1 | 18410.264 1.5244
51 0.02657 0.00716 0.00341 0.44887 1 | 16486.609 1.3651
6 | 0.03536 0.00894 0.00725 0.19349 1 | 15384.983 1.2739
71 0.03964 0.01233 0.01248 0.06928 1 | 14445.732 1.1961
8 | 0.03546 0.01435 0.01448 0.02557 1 | 13604.666 1.1265
9| 0.03742 0.01477 0.01463 0.01345 1 | 13629.369 1.1285
10 | 0.03753 0.01664 0.01566 0.00777 1 | 13899.144 1.1509

Table 1: Optimal blurring parameters for adaptive compression of the 109 sequences of
REP99-gxn (12077 bases) with the complement parameter fixed at ¢ = 1.

Generally, ¢ is set to either 0 or 1, depending on the application. Choosing ¢ by optimizing
adaptive compression does not seem to work well, as gradient descent methods do not converge
when optimizing with ¢, z, and the neighbor blurring parameters simultaneously.

Table 1 gives a table of the parameter setting for the best adaptive compression of the 109
sequences (12077 bases) of REP99-gxn (with ¢ = 1). The number of counts for an order-k model is
12077 — 109%, since the first £ bases of a sequence do not generate counts.

Note that the order-2 and order-3 models use the zero-offset in preference to neighbor blurring,
but as the order gets larger (and the counts per context smaller), the neighbor blurring becomes
much more important. If we look at the ratio of z to the expected count (12077 — 109k)/4%+1), we
see 1t increasing from .0163 for order-2 models to 2.97 for order-10, even though the value of z itself
is decreasing rapidly.

If we assume that all contexts contain a single count of 1 and three counts of zero, we can
approximate the single-point mutation frequencies for each of the three types of substitution as

. n; + z
Cl+ntnetns+4dz

m;

We can improve this estimate somewhat by scaling down the z value in the formula by the
expected count for non-zero contexts. We can estimate the number of non-zero contexts as roughly
4%(1 — (1 —47%)"), where z is the total number of counts made. The expected count for a non-zero

context 1s thus x

(- (1—4F)r) -

The estimated mutation frequencies using this method are given in Table 2—since the assumptions of

the method are more reasonable for higher-order models; the mutation rates estimates are probably
most accurate for the highest order model. The very high predicted rate of substitution for k = 5
and k = 6 probably results from merging together contexts from the two parts of the REP, which
are similar but not identical. Higher-order models can identify the separate parts of the REP more
reliably, and so the predicted substitution rates are more likely to be reasonable.

Unfortunately, I have no way to check these predicted substitution rates against other methods
for estimating substitutions rates (such as character counts in a multiple alignment), as T do not
have a multiple alignment for all the REP sequences.

2.2 Hidden Markov Models

A hidden Markov model® (HMM) consists of a set of states connected by directed edges. Each
state assigns probabilities to the characters of the alphabet used in the sequence and to the edges

1Rabiner has written a nice tutorial on HMMs for those who want a more detailed treatment than this paper can
provide [11].

6 2. Markov Models as compression models of interesting sequences

order my mo ms m
2 | 0.0040 0.0040 0.0040 0.0121
3| 0.0091 0.0080 0.0080 0.0251
41 0.0224 0.0166 0.0179 0.0569
51 0.0555 0.0393 0.0362 0.1310
6 | 0.0766 0.0564 0.0552 0.1882
71 0.0709 0.0493 0.0494 0.1697
8 | 0.0509 0.0327 0.0328 0.1164
9 1 0.0452 0.0250 0.0248 0.0950
10 | 0.0411 0.0221 0.0212 0.0845

Table 2: Estimated substitution frequencies for the three types of substitutions (and
combined mutation frequency) in REP99-gxn based on the optimal neighbor blurring
parameters from Table 1.

leaving the state. There is usually a designated start state and a designated stop state (though some
HMMs allow starting or stopping in any state).

A path in an HMM is a sequence of states such that there is an edge from each state in the path
to the next state in the path. The length of a path is the number of states in the sequence, and the
probability of a path is the product of the probabilities of the edges traversed.

Each path through the HMM gives a probability distribution for each position in a string of the
same length, based on the probabilities for the characters in the corresponding states. The proba-
bility of the sequence given a particular path is the product of the probabilities of the characters.

The probability of any sequence of characters is the sum, over all paths whose length is the same
as the sequence, of the probability of the path times the probability of the sequence given the path:

Pomm(w) = > P(a)P(wlx) .

path x

If the HMM has designated start and stop states, then the sum is limited to those paths that start
and end in the correct states. The above equation has omitted the renormalization needed to get
the “probabilities” to sum to 1.

For computational reasons, it is often better to look not at all paths, but only at the path
that maximizes the probability of the given sequence. It is also convenient to switch from path
probabilities to encoding cost, by taking the negative log likelihood (ecost(z) = —log, P(z)). The
Viterbi cost of a sequence, given an HMM, is the cost of the minimum-cost path through through the
HMM.

costpmm (W) = p{g%ﬂxcost(x)—l—cost(wM)

= min E cost(e)
path x
edges e € ©

+ Z costsl(wi))

states s; €

This encoding cost for the best path (which is easily found with the Viterbi algorithm) can be
assigned to individual positions in a cost map by assigning the cost of the edge into a state of the
path and the cost of the character in that state to the corresponding position in the cost map.

2. Markov Models as compression models of interesting sequences 7

2.3 Strengths and weaknesses of hidden Markov models

Hidden Markov models offer many advantages over simple Markov models for modeling biological
sequences:
o A well-tuned HMM generally provides better compression than a simple Markov model, allowing
more sequences to be significantly found.

e The models are fairly readable (at least when drawn rather than just listed). A high-quality
model for REPs (compressing previously unseen REPs to about 1.25 bits/base) may have
around 200 states and 300 edges, rather than the 4° counts of the order-8 simple Markov
model. The low ratio of edges to states means that large parts of the model are simple
straight-line sequences, which are easy to draw and to understand.

e The HMMs can be used for generating alignments, with each state of the machine corresponding
to one column in the alignment. The best path found by the Viterbi algorithm identifies a
state for each position, and that in turn can specify the column. HMMs are a bit more powerful
than alignments, since the same state can be used repeatedly in a path, but each column can
only be used once in an alignment. This results in ambiguous alignments if a column alignment
model is used, but can be quite convenient for describing phenomena like random numbers of
repeats of a short subsequence.

HwmMs also allow variant structures to be modeled directly, not just as inserts and deletes to
a consensus sequence. For example, the REPv variant of the REP sequence, often found next
to THF binding sites [9], is modeled very clearly by REP99-gxn.hmm400m—in fact the THF
binding site itself occurs frequently enough next to REPs to have been included in the model.

e Separate HMMs built for recognizing particular structures can be merged to create HMMs that
recognize sequences of structures [5]. Unfortunately, doing this cleanly requires a slightly
different version of HMMs which allows null states—states that don’t match any characters in
the input sequence. The current version of my HMM code cannot handle HMMs with null states,
but the extension is planned and should be straightforward.

HwmwMs do have some weaknesses:

e The Viterbi algorithm is expensive, both in terms of memory and compute time. For a sequence
of length n, the dynamic programming for finding the best path through a model with s states
and e edges takes memory proportional to sn and time proportional to en. For the REP
searches, doing a search with a hidden Markov model is about 10 times slower than using a
simple Markov model—for larger EMMs (needed for longer target sequences) the penalty would
grow.

Other algorithms for hidden Markov models, such as the forward-backward algorithm, are even
more expensive.

e The HMM needs to be trained on a set of seed sequences and generally requires a larger seed than
the simple Markov models. The training involves repeated iterations of the Viterbi algorithm
(see Section 2.7), which can be quite slow.

e For a given set of seed sequences, there are many possible HMMs, and choosing one can be
difficult. Smaller models are easier to understand, but larger models can fit the data better.
Figure 1 shows the compression efficiency (in bits per base) for a number of different HMMs
compressing the same set of REP sequences. Note that the compression continues to improve
with larger models, and so deciding which model to use is somewhat arbitrary. Section 2.7
describes how models were chosen for this paper.

2.4 Violations of assumption needed for cost maps

In Section 1.1, I mentioned the main assumption that the costmap-based search relied on: the
cost of any subsequence can be computed as the sum of costs of individual positions. Although the
Viterbi algorithm gives us a way to assign costs to individual positions, the true cost of a subsequence
may not be the same as the sum of the costs on the best path for the whole sequence.

8 2. Markov Models as compression models of interesting sequences

T T T T
2 —
o<><§><<>> <><> <
1.8 o o % -
& <&
O 5 ©C 0
1.6 | @@ RS 4
cost (bits/base) 0&§ O N o ©
9
14 - < & <&
&
1.2 ®© -
&
€ @ o
1 - —
! ! ! ® @l 8

0 200 400 edges 600 800 1000

Figure 1: Information content of a set of seed sequences is plotted against the size of the
hidden Markov model used for encoding them (expressed as the number of edges in the
model). The points in the upper curve are from models that have not been trained—in the
lower curve, from models that have been trained and had useless edges and states removed.

There is also a difference between the true compression cost of a subsequence and the cost from
the map for simple Markov models, but in those models, the only difference in cost is in the first &
positions, since there is no compression for the first £ positions of a sequence. In the simple Markov
model, we can compensate for the startup error by extending the beginnings of the subsequences
found by k positions.

For hidden Markov models, a change anywhere in the sequence can change which path is the
best one, and so change the cost for positions arbitrarily far away. It is not difficult to construct
pathological examples in which this would completely invalidate the use of cost maps.

By limiting the types of HMMs considered, I have managed to use them quite successfully with
costmap search. First, all my models contain a junk loop, which models the uninteresting sequences
that occur between the interesting ones. The paths in the HMM for the interesting sequences begin
and end at the junk loop. If there are multiple interesting sequences within a contiguous part of
the database, then the best path should use the junk loop for the uninteresting parts and paths
through the rest of the HMM for the interesting parts. The costs in the junk loop are very close
to the null-model costs, and the costs in the rest of the model are very much lower, so the basic
assumption of the cost map—that interesting positions, and only interesting positions, have much
lower costs than the null model costs—is still satisfied.

2.5 Building a hidden Markov model from a simple Markov model

Although hand-crafted hidden Markov models may be useful for searches where a consensus
sequence is already known, I am primarily interested in HMMs that are generated automatically
from a set of seed sequences.

We need a way to control the size of the HMM, and ensure that the most useful, shared information
in the seed sequences is reflected in the HMM. We already have a mechanism for pooling information
from a set of seed sequences: the counts of simple Markov models. The construction process used
for the results in Section 3.1 starts by building an order-k simple Markov model for a set of seed
sequences, constructing an HMM from the counts of £+ 1-words in a simple Markov model of the seed,
then training the model on the sequences, using the cross-training technique described in Section 2.7.

2. Markov Models as compression models of interesting sequences 9

The construction technique creates states and maps words to them. First, a junk-loop state is
created, and all words that aren’t explicitly mapped to another state will map to the junk state.
Then words are examined in decreasing order of frequency, creating a state for each one that isn’t
already mapped. The state will be used to match the character in the middle position of the word,
so all words that differ only in that position will map to the same state. The count for each character
in a state is initialized to the count for the word that has that character in the middle position.

There is a natural shift relationship between two words of the same length. This relationship is
exploited to create the edges of the HMM, and to ensure some connection between the various states.
Definition 1: A (k+ 1)-word wy is a left-shift of (k + 1)-word wa if the last k characters of wy are
identical to the first k letters of wa (wsq is also called a right-shift of wy).

Note that the middle character position for the right-shift of w corresponds to the position one
to the right of the middle in w.

We will provide an edge from state s to state ¢ if some right-shift of one of the words mapping
to s maps to ¢ or if some left-shift of one of the words mapping to ¢ maps to s. The count for the
edge is the minimum of the counts for the corresponding words.

To ensure some connectivity in the Markov model, we don’t just map the high-frequency words
to states, but map their most probable predecessors and successors as well. When a new state is
created for a word w, we examine the four right-shifts of the word and choose the one with the
largest count wpyax. If this is above some threshold, then we create a state for wy,,x and repeat until
either the maximum count drops below the threshold or all four right-shifts of the word already map
to states. We do the same with the four left-shifts of w.

For example, if two seeds aaaaaatgggggge and aaaaaacgggggg were used with an order-3 Markov
model, the words that map to states would be aAa, aAt, aAc, aCg and aTg, tGg, cGg, and gGg.
The aMM will have only one state for aCg and aTg (perhaps best named aYg, to indicate what
letters it has low costs for), but the right-shifted words (tGg and ¢Gg) map to different states, even
though they match the same character (G). Similarly the left-shifted words aAt and aAc map to
different states, though both match A.

As a slight added complexity, we also create the states corresponding to the dyadic complements
of the words, and tie the complementary states together with a variable-weight tie. The tie has no
effect on the model when we are determining the probability of a sequence, but when the probability
estimates for a state are updated, a weighted multiple of the counts for the complementary characters
in the tied state is added to the counts. This trick helps the model learn palindromic sequences and
sequences that can occur on either strand.

2.6 Direct construction of HMM from a sequence

Hw™Ms can be constructed directly from a single sequence, by adding one state for each character
in the sequence and connecting them in a single path. The model can be made to match sequences
of any length by adding a self-loop edge to the first and last states. Such a model is not very useful
in itself| since it will only match sequences which are nearly identical, but it can serve as a starting
point for the model modification techniques described in Section 2.8.

From a seed with multiple sequences one could also construct parallel paths from the start state
to the stop state, one per sequence. Unfortunately, such a model would offer no advantages over far
more efficient string search techniques, and would be much too large for seeds of reasonable size.

2.7 Training a hidden Markov model
Tuning and pruning

The basic mechanism for training an HMM to a set of sequences is to repeatedly run the following
tuning algorithm. First, run the Viterbi algorithm to determine the best path through the model
for each sequence, and count the number of times each edge is used and the number of times each
character occurs in each state. More sophisticated training algorithms, such as the Baum-Welch
method [11], could be used to get expected counts, but this simple method works fairly well.

10 2. Markov Models as compression models of interesting sequences

After all the sequences in the training set have been counted, the counts can be converted to
probabilities for each set of characters in a state and for each set of edges out of a state. As with the
counts in the simple Markov model, some care has to be taken with zero counts. Since the counts in
the HMM tend to be much larger than in the simple Markov models, the handling does not have to
be as careful, and the program just adds the old probability estimate plus a small fixed zero-offset
to all the counts.

After the probabilities have been recomputed and converted to costs, the whole tuning step is
repeated, either for a fixed number of iterations or until the change in cost per character is less than
a user-specified threshold. Generally four iterations are enough to get convergence to better than
0.01 bits/base.

After tuning an HMM, some edges or states may never have been used. A simple pruning step
after tuning removes these unused states and edges from the HMM.

Useless states and edges occur fairly commonly on the automatically constructed HMMs because
parallel sequences are often constructed. For example, in Section 2.5 the states for tGg and cGg
matched exactly the same characters. In training, one of the two states will get a higher count
(hence lower cost) and the other will become unused.

The smaller models in Table 3 on page 16 (hmm125, small, and cross) were constructed from
simple Markov models by the methods of Section 2.5 and tuned on the seed sequences (REP99-gxn).
Unused edges and states were removed, and the models were made slightly more general by flattening
the probabilities—re-estimating the probabilities from the counts using a larger zero-offset than used
in the tuning. (These models were flattened with a zero-offset of 0.1.)

Cross-training

Because both the computational cost of a model and the amount of compression obtainable from
an HMM vary with the size, determining the best size to use for a model can be difficult. Usually,
we want the best compression we can get for the interesting sequences that aren’t already in the
training set.

To estimate this, we use a cross-training procedure. In cross-training, the initial set of seed
sequences is split into two parts: the training set and the cross-training set. We build and tune
models based on just the training set, then check them on the cross-training set, choosing the model
that does best on the cross-training set. Note that this differs from cross-validation, where a check
is made after all decisions have been made. If cross-validation is desired in addition, then the set of
initial seeds must be divided into three sets.

Figure 2 shows a typical plot of cross-training cost versus the size of the model. Note that
increasing the size of the model, which nearly always decreases the cost for the training set, eventually
starts overtraining and modeling those aspects of the training set that are not shared with the cross-
training set. Since we want the smallest model that will get nearly optimal compression, we are
usually interested in a model near the knee of the curve—say the one that maximizes the savings (in
bits per base) relative to the null model for the cross-training set divided by the log,, of the number
of edges (Figure 3).

After choosing the model using cross-training, it can be improved slightly by retuning on the
entire initial set of seeds and flattening the probabilities. This preserves the structure of the model,
but includes all the data in the tuning.

2.8 Modifying an HMM for better matches to a seed

The methods of Section 2.7 discuss ways to change the parameters of an HMM without changing
the structure of the model (other than deleting edges or states that are not used). In this section,
I’ll discuss a few techniques for modifying the model structure, either to improve the match between
the model and the seed sequences or to decrease the size of the model.

After any operation that changes the structure of the model, the probability distributions for the
states and edges involved in the change need to be recomputed, so that they continue to sum to 1.

2. Markov Models as compression models of interesting sequences

2 %‘% :
<><<>><> o
1.8 OV © o o _
0 ° o
o
1.6 o & % —
R
cost (bits/base) %@ o
O KR
14 F 5 ® o _
& 8 °co°
12 F & % © &9 -
% ® % @ &8
1 - —
| | | |
0 200 400 edges 600 800 1000

Figure 2: Scatter diagram of information content (in bits/base) of cross-training set (54
sequences) versus model size, for HMMs built from the 109 sequences of REP99-gxn (Sec-

tion 3.1).
0.1 T T T T
0.09 | & 8 % § S o -
@@ 8 § S & B & > &
0.08 |- ® & 7
0.07 - @@&}8 _
’ <& & o <& &
0.06 |- < o i
&
¢ ¢ o o
0.05 F o i
savings/lg(edges) o <& o
0.04 <& _
1% & <&
0.03 - _
ISP & o
0.02 [© <<>> o © i
0.01 &:j © n
0 @ <> | | | |
0 200 400 edges 600 800 1000

Figure 3: Scatter diagram of the savings relative to a 2-bit/base null model (in bits/base) of
cross-training set (54 sequences) versus model size, for HMMs built from the 109 sequences

of REP99-gxn (Section 3.1).

12 2. Markov Models as compression models of interesting sequences

Two operations reduce the size of the model: RemoveUseless and MergeStates. Four operations

increase the size of the model: AddUseful, AddSkipEdges, UnrollSelfLoops, and Split VagueStates.

RemoveUseless

The simplest version of the RemovelUseless operation was described in Section 2.7—any edges
or states whose counts are zero after training are removed. Models can be pruned more aggressively
by removing any states or edges whose counts are less than some constant. Pruning off edges that
have only been used once results in fairly mild pruning that usually does not change the average
cost for the seed sequences much, especially if retraining is done to tune the new path through the
model now used by the sequence that previously used the deleted edge. More aggressive pruning
can make much larger changes in costs.

MergeStates

When constructing an HMM from a high-order simple Markov model, there are often several states
created that really represent the same position in the family of sequences, but which look different
in the simple Markov model because of some slight variation in a nearby position. In some cases, the
tuning of the model will favor one of the states sufficiently that simple pruning with Remove Useless
will remove the other states corresponding to the same position, but in other cases parallel paths
with slight differences will remain in the model.

To reduce the size of the model, and increase its generality, it is helpful to try to identify such
parallel paths and merge them together. The MergeStates operation looks for two states that have a
common neighbor on the same side (that is, either both have out-edges to the neighbor, or both have
in-edges from the neighbor). If the two states predict similar enough distributions for the characters,
then merging the states into a single state will not increase the cost of sequences by much.

The current version of the program only considers merges between states whose connection to
the neighbor is a major one (the edge count a high enough percentage of the edge counts on this
side of the state), and only accepts merges for which the estimated increase in total cost for the seed
sequences is less than a specified threshold (generally a few bits).

All states are checked to see what they can merge with, and merges that are sufficiently good
are done. After a merge, the neighbors of the merged state are rechecked, so that nearly parallel
paths can be “zipped” together from a common endpoint.

AddUseful

The AddUseful operations adds edges and states to the HMM by considering one sequence at a
time, and adding one useful edge and one useful state (with a pair of edges) to the HMM for that
sequence.

Dynamic programming is used to find the cost of the lowest cost path from the start state to
each state for each position in a sequence (let’s call the cost Fy(%) for the path to state s in position
i). A similar dynamic programming algorithm finds the lowest-cost path from each state to the stop
state (let’s call it B,(4)). Note that the lowest cost path from the start state to the stop state for
the sequence w as a whole is min, (Fs(7) + B;(7)), independent of .

When looking for a new edge to add, consider the state a; that minimizes Fy (i) and the state
bi+1 that minimizes B, (i + 1) + cost;(w;41). If we added an edge from a; to b; 41 with cost ¢, then
there would be a path through the model with total cost

Faz(i) +ec+ COStbz+1 (wi-l'l) + Bbz+1 (Z + 1) :

If this cost is lower than the current best path, then adding the edge would lower the cost.
Unfortunately, we can’t freely add edges with arbitrary costs, since the cost is a negative log
likelihood, and adding an edge must “steal” probability from the other out-edges of state ;.

2. Markov Models as compression models of interesting sequences 13

To minimize the error in estimating how much a new edge will save, and to make the most useful
change to the model, the program looks for the position i that minimizes

Faz(i) + Bbz+1 (Z + 1) + COStbz+1 (wi-l-l))

for which there isn’t already an edge from a; to b;41. An edge is added with a cost that is as large
as possible while still offering some savings over the current best path. More accurately, an edge
is added only if this maximum cost exceeds some user-supplied threshold, generally around 5 or 10
bits.

States are added in a similar way, by considering a; and b;42, and choosing the position that
minimizes

Fo (i) + By, (i 4+ 2) + costy,, (wiya) .
If there is no state with an edge from a; and an edge to b;;2, then we can add a new state s with
costs(wir1) = 0, an edge from a; with cost ¢ and an edge to b; 2 with cost 0. States are added only
if the max cost we can use for ¢ and still have a lower cost path is above a user-specified threshold,
generally around 10 bits.

The AddUseful operation is particularly valuable when modifying models constructed from a
single sequence, but often adds edges or states which are idiosyncratic (useful only for a single
sequence). The scripts that use AddUseful generally follow it by retuning the model and pruning
out edges and states that are used infrequently.

AddSkipEdges

The HMM implementation used for these experiments does not include null states, which have
been used by other researchers for modeling deletions. To approximate the effect of null states, we
can add skip edges around each state. That is, for each path of three states (a — b — ¢) in the
HMM, we can add a new edge around the middle state (¢ — ¢).

In some models, one state will have many in- and out-edges, and the number of skip edges around
that state would be enormous. Since such nodes are usually junk loops, skip edges around them
generally will not save many bits. To avoid the potential quadratic expansion of the number of
edges, skip edges around a state are not added for states which would produce too many skip edges.
The threshold is currently set at about one fifth the number of states.

The skip edges need to be given a fairly high cost, to avoid stealing too much probability from
the other out-edges of a. For example, the hmm700b script described in Section 3.1 adds skip edges
with a cost of 6 bits (probability approximately 0.016) at the end of the script.

UnrollSelfLoops

The automatically constructed models often contain self-loops (edges for a state back to itself).
These self-loops represent a subsequence of one or more characters drawn from the distribution in
the state—the length of the subsequence being modeled as an exponential distribution. In many
cases, the subsequence can be better modeled by using two states. One of the two loop-unrolling
transformations shown in Figure 4 is applied to all self-loops (except the start and stop states).
These transformations do not change the cost for any sequences, but retraining the HMM can capture
more detailed information about the first or last character of the subsequence or match the length
distribution for the subsequence a little better.

SplitVagueStates

The HMMs occasionally merge paths that should be separate. One hint that this is happening
is a state that matches multiple characters well. The SplitVagueStates operation replicates such
states, duplicating the in- and out-edges, and modifies the probabilities in the states so that each
only matches one character well.

14 3. Looking for REPs in EcoSeqf

Pq

pr =

(Pl ~t

Figure 4: Two possible transformations for unrolling self-loops. Transforming the self-loop
in the middle to the pair of states on the left allows the last character of the subsequence
modeled by the self-loop to be better modeled, and transforming to the pair on the right
allows the first character to be better modeled.

A related operation (SplitStates) attempts to separate two paths, splitting any state that has
two high-probability out-edges (or two likely in-edges). This operation is essentially the reverse of
what MergeStates does. SplitStates was not used in any of the scripts for the HMMs of Table 4.

3 Looking for REPs in EcoSeq6

As an example of the techniques described in the preceding sections, the cost map method was
used to find clusters of repetitive extragenic palindromic sequences (REPs) in the 1875932 bases
of the EcoSeq6 database [12]. The sequences found were compared with a list maintained by Ken
Rudd [13]. The three search techniques used for building this comparison list were described and
referenced in Table T of [2]. The best of the techniques mentioned there (self-BLAST) found 106 of
112 REP clusters in EcoSeqb, or about 95%.

One goal 1s to do at least as well as the self-BLAST search in finding the already known REPs,
and, hopefully, to provide a better characterization of the structure of the REPs than current
consensus sequences.

The current consensus sequence for a REP [2] is

5’GCCKGATG-CGRCGY—-—--RCGYCTTATCMGGCCTAC3’
where KisGor T,RisGor A, MisCor A, and Yis C or T.

A variant on the REPs, named REPv, has also been identified, and given the following consensus
sequence [13]:

GCCTGATCGCGCTACGCTTATCAGGCCTAC.

3.1 Looking for REPs using a seed

Using simple Markov models

One of the two largest REP clusters (REP99 or REP106) was chosen as a seed sequence and an
order-8 simple Markov model was constructed from it. Since we are looking for the sequences on
either strand of the DNA and a large part of what we are looking for is palindromic, the complement
blurring parameter was set to 1.

3. Looking for REPs in EcoSeqf 15

The zero offset and neighbor blurring parameters were chosen arbitrarily, but near values that
had given optimal adaptive compression for sets of similar sequences. The zero-offset was set to
0.1, and the neighbor blurring parameters were 0.05 (for A—G and C—T) and 0.01 for the other
substitutions.

The entire EcoSeq6 database was searched for sequences whose cost using the models was
significantly better than 1.99 bits/base. This ezpand step was repeated using the result as a seed for
a new model until the number of sequences found no longer increased (5 expansions at 36 seconds
each on a SparcStation 10). The final results were called REP99-gxn and REP106-gxn. These
both did an excellent job of finding REPs, with 90-91% of the previously identified REP sequences
found [13]. All of the sequences overlapped with a known REP sequence, and only 18-20 REP
clusters were missed, all of them short clusters with a single REP in them.

A smaller seed was also tried—a single copy of the REPv consensus. Growing by repeated
expansion from this seed found essentially the same set of REPs. The statistics for all three searches
are listed in the first three lines of Table 3 on page 16.

To check the sensitivity to the model parameters, the repeated expansion from REP99 was
done with three more sets of parameters, chosen to give optimal adaptive coding of the REP99-gxn
sequences for order-6, order-8, and order-10 Markov models (lines REP99-gx6, REP99-gx8, and
REP99-gx10 in Table 3 on page 16). The “extra” sequences found by the order-8 model are just
regions of unknown bases in EcoSeq6. Since the program converts these unknowns arbitrarily to
sequences of As, once a piece of one of them gets into the seed, the entire region of unknowns will
compress very well. The order-10 model does poorly, probably because any base substitution will
disrupt the compression for 11 bases, not just 7 or 9 as with the smaller models. The neighbor
blurring can compensate somewhat for single errors in the 11-word, but not for two errors.

An experiment was also done using a significance threshold that varied with the square-root of
sequence length, rather than being fixed, as described in Section 1.2. The standard deviation of
the encoding cost per base was computed for the entire EcoSeq6 database, and the threshold set
arbitrarily at five standard deviations plus three bits (the extra three bits was to prevent too many
very short sequences from being falsely reported). Line REP99-gxa in Table 3 reports the results
of repeatedly growing the set of sequences with this criterion. Over 30 iterations were required
before the process converged, as the standard deviation was recomputed for each iteration, and the
sequences found varied slightly as the threshold changed. The huge number of false negatives were
almost all from the regions of unknown characters, and weeding these out produced a fairly clean set
of REPs (REP99-gxawa). Using this set as a seed for the standard repeated expansion search (using
a threshold of 27.483 bits) produced REP99-gxawa-gxn, which finds one more REP than REP99-
gxn. Of the three “false +” sequences, one is also found by most of the hidden Markov models, and
is probably a genuinely related sequence not on Rudd’s list (3660932 3660963 uspAeco+846).

Using hidden Markov models

Hidden Markov models were constructed using the REP99-gxn set as a seed. Cross-training was
done using a randomly chosen half of the sequences for training and the rest for cross-training. The
model that minimized cross-training cost divided by the log of the number of edges was chosen. The
HMM chosen, REP99-gxn-cross, has 202 states and 282 edges and compresses the REP99-gxn set
to 1.24 bits/base, with almost equal compression of the two halves. A similar script that did not
consider larger models came up with the same model, but retuned it on the entire set of sequences,
reducing the cost to 1.20 bits/base (REP99-gxn-small). Searching EcoSeq6 with these models takes
about 300 seconds on a SparcStation 10, compared to about 32 seconds for searching with a simple
Markov model.

A smaller model was also built from the same seed: REP99-gxn-hmm125 built a model with 120
states and 169 edges, getting 1.367 bits/base.

I also tried some more complex scripts that attempted to merge states, remove unneeded states
and edges, and do other model manipulation. Table 4 summarizes the sizes and cost/base of all the
HMMs tried, and the Appendix lists the scripts used.

16 3. Looking for REPs in EcoSeqf

reported 244 REP sequences | 128 REP clusters
search name sequences bases | false — false + | false — false 4+
simple Markov models:
REP99-gxn 109 12077 23 0 18 0
REP106-gxn 108 11940 25 0 20 0
REPv-gxn 107 12030 25 0 20 0
REP99-gx6 107 12010 29 0 21 0
REP99-gx8 114 23991 25 6 19 6
REP99-gx10 101 11595 34 0 27 0
REP99-gxa 606 21521 71 493 27 494
REP99-gxawa 121 8097 71 8 27
REP99-gxawa-gxn 114 12633 22 3 17 3
no seed:
EcoSeq6c 371 62827 136 320 82 322
EcoSeq6c-gxn 162 105003 46 61 33 60
hidden Markov models:
REP99-gxn-hmm125 144 9408 32 2 18 6
REP99-gxn-small 155 10099 20 7 13 10
REP99-gxn-cross 153 10037 21 6 14 9
REP99-gxn-hmm400m 123 11668 18 4 14 4
REP99-gxn-hmm400p 127 11921 13 5 9 6
REP99-gxn-hmm700b 124 12290 14 5 10 5
REP99-gxn-fromseq14 138 20893 34 8 21 10
REP99-gxn-fromseql5 125 22621 25 8 17 7
REP99-gxn-fromseq16 150 21332 26 8 16 10
HMM -+ expand:
REP99-gxn-hmm125xn 120 11911 20 0 16 0
REP99-gxn-smallxn 117 12072 21 1 16 1
REP99-gxn-crossxn 116 11980 22 1 17 1
REP99-gxn-hmm400mxn 117 12205 19 2 15 2
REP99-gxn-hmm400pxn 118 12274 17 2 13 2
REP99-gxn-hmm700bxn 120 12804 14 3 10 3
REP99-gxn-fromseql4xn 120 23233 26 6 19 6
REP99-gxn-fromseql5xn 118 23694 23 6 18 6
REP99-gxn-fromseql6xn 122 23505 21 6 16 6

Table 3: Summary of using various models to search for REP clusters in EcoSeq6. The results
of the search were compared with a list of 244 known sequences grouped into 128 clusters [13].
The table reports the number of sequences (or clusters) on the list that do not overlap with any
sequence found (false —), and the number of sequences found that do not overlap with any on the

list (false +).

The largest model (REP99-gxn-hmm?700b) has over half its edges as “skip edges” to allow for
skipping a base in the sequence. These extra edges increase the cost for the seed set from 0.94
bits/base to 0.96 bits/base, but even this HMM cannot find REP60, which skips three normally
crucial bases in the consensus sequence. An HMM that allowed null states (as Krogh’s do [5]) might
be able to recognize REP60, but Krogh’s simple left-to-right models cannot be used for searching
for repeated occurrences of a REP in a sequence, and my code has not been rewritten yet to handle
null states.

The “fromseq” scripts use direct construction of an HMM from the first sequence in the seed
(see Section 2.6), then add useful states and edges for the remaining sequences. These models are
somewhat smaller than the models constructed from simple Markov models, but do not do quite as
well on the searches.

The results of searching with all these models (looking for sequences that had 27.483 bits better
than 1.97 bits/base) were expanded once with a simple Markov model (27.483 bits better than 1.99

3. Looking for REPs in EcoSeqf 17

name states edges | cost (bits) cost (bits/base)
REP99-gxn-hmm125 120 169 16506 1.36673
REP99-gxn-small 202 282 14587 1.20784
REP99-gxn-cross 202 282 14973 1.23983
REP99-gxn-hmm400m 227 293 13297 1.10098
REP99-gxn-hmm400p 272 422 12540 1.03831
REP99-gxn-hmm700b 437 1358 11553 0.95660
REP99-gxn-fromseql4 134 190 15378 1.27331
REP99-gxn-fromseqlb 133 249 14461 1.19742
REP99-gxn-fromseq16 103 146 15251 1.26282

Table 4: Sizes and encoding cost of REP99-gxn for the hidden Markov models built from
the sequences of REP99-gxn.

model REP99- start stop where in EcoSeq6
gxn-small,gxn-cross 367257 367298 codBecoM+6609
gxn-hmm125 367259 367298 codBecoM+6611
gxn-hmm400p, gxn-hmm700b 872107 872123 ECOCHLEN-c+119
gxn-hmm?700b 2313595 2313636 ECOECOA-c+13
gxn-hmm400p 2313601 2313630 ECOECOA-c+19
gxn-small 2313614 2313632 ECOECOA-c+32
gxn-hmm700bxn 3660917 3660985 uspAeco+831
gxawa-gxn, gxn-crossxn, gxn-hmm400mxn | 3660932 3660963 uspAeco+846
gxn-smallxn 3660932 3660965 uspAeco+846
gxn-hmm?700b 3660932 3660985 uspAeco+846
gxawa 3660934 3660963 uspAeco+848
gxn-hmm400m 3660940 3660963 uspAeco+854
gxn-small,gxn-cross 3660941 3660963 uspAeco+855
gxn-hmm400p 3660943 3660963 uspAeco+857
gxn-hmm400mxn, gxn-hmm400pxn 3909571 3909601 gyrBecoM+10390
gxn-hmm400p 3909572 3909600 gyrBecoM+10391
gxn-hmm400m 3909573 3909601 gyrBecoM+10392
gxn-small 3909574 3909601 gyrBecoM+10393

Table 5: Table of sequences found by distinctly different searches, but not on the list of known
REPs [13]. The codBecoM sequence is adjacent to REPv9, and the ECOECOA-c sequence is adjacent
to REP117. But the ECOCHLEN-c, uspAeco, and gyrBecoM sequences do not seem to be near any
of the known REPs.

start stop | sequence
872107 872123 | cgegtettatcaggect
3660917 3660985 | tggegegecttgttacctgatcagegtaaacaccttatctggectacggtetgegtacgcaatcaaaat
3909571 3909601 | ttttcgtagggeggataagcaccgegeatee

Table 6: The new possible REP sequences or fragments reported in Table 5 are listed here,
using the earliest start and latest stop position for any of the searches.

bits/base). Table 3 summarizes the results for the HMMs directly and for the expanded sets (with
an “xn” at the end of the name).

Some of the “false positives” may represent previously unrecognized REP sequences, and others
may be conserved regions adjacent to REPs. Table 5 lists the sequences that were found repeatedly
by distinctly different searches—all of these look like they are closely related to REP or REPv
sequences. The three sequences that are not adjacent to an already known sequence are shown in

Table 6.
Let’s look at alignments of the three new potential REP sequences to the REP consensus. The

18 3. Looking for REPs in EcoSeqf

first one is clearly the second half of a REP sequence.
cgegtcttatcaggect
Hokok ok kok ok ok Kok K

-RCGYCTTATCMGGCCTAC3’
Looking back a little bit extends the fragment to almost a REP, though the gap in the middle is

longer than usual:
aaattg-ctgatg--acgtggcggagtgecgegtcttatcaggectggagg
* kkokkkk kdokk Fokokkokkokkkokokkk kK

5’GCCKGATGCGRCGY——————————— RCGYCTTATCMGGCCTAC3’

The second seems to contain a REP in the middle:
tggecgegecttgttacctgat-cagegtaaacaccttatctggectacggtctgegtacgcaatcaaaat

kkkkkk k kkkk kk kkkkkkkkkkkkkkk

5’GCCKGATGCGRCGY--RCGYCTTATCMGGCCTAC3’
The third seems to contain a somewhat corrupt REPv-:
ttttcgtagggecggataagecaccgege—atce
RkkEkk K kkkAkkE kkkk ok

GTAGGCCTGATAAGCGTAGCGCGATCAGGC
My HMMs seem to indicate a different consensus sequence for REPv:
YGCCKGATGCGCTACGCTTATCAGGCCTACR without the C after the second T. The found sequence is an

even better match to the complement of this sequence:
ttttcgtagggecggataagecaccgegecatcccgacac
kkkkkk k kkdkokkkk kRdkkkkkk ok Kk

YGTAGGCCTGATAAGCGTAGCGCATCM-GGCR

3.2 Looking for repeated elements without a seed

Since REPs are so common (REP clusters make up about 0.6% of the E. coli genome), it should
be possible to find them without using a seed—just from looking at the database itself and trying
to find repeated patterns.

An attempt was made to concentrate the EcoSeq6 database, by building a simple order-8 Markov
model (with zero-offset and complement blurring both set to 1 and no neighbor blurring) from
the entire database, then using the model to search the database for sequences that compressed
significantly better than average. (See the EcoSeq6c line in Table 3.)

The resulting model found about 45% of the REP sequences, but only about 5.6% of the bases
found were in a REP cluster. Growing the set of sequences by repeated expansion increased the
number of REP clusters found to about 79% (EcoSeq6c-gxn in Table 3), but still only about 7.4% of
the bases were in REP clusters. The problem is that there are some much larger repeated sequences,
particularly the numerous IS sequences, and the repeated expansion process is looking simultaneously
for REPs and IS sequences.

If each of the sequences in the “concentrated” file EcoSeq6c is individually used as a seed that is
grown by repeated expansion, we get many different sets of sequences. Most of the sets of sequences
are clearly identifiable (REPs, 152, IS5, ...). If we look just at the sets in which one or more REPs
are found, we find very similar coverage of the REPs (21-27 REPs missed), no matter which seed is
used (see Table 7). Although REP99 and REP106 were originally chosen as seeds for Table 3 because
they were the biggest known REP clusters, it does not seem necessary to start with them—almost
any REP cluster found by concentrating the database works about as well.

3.3 Hard-to-find REPs

Some of the known REPs did not come up in any of the searches, and others rarely appeared.
Table 8 on page 20 lists the REP sequences that were rarely found. Most of the missed sequences are
fairly far from the consensus sequence, but three of the misses are rather surprising: REP39- (which
is found only by REP99-gx6), REP60 (which is found only by REP99-gxn-fromseql4, REP99-gxn-
fromseql5, and REP99-gxn-fromseql16), and REP83 (which is found by most of the HMMs, but not
by the simple Markov models).

3. Looking for REPs in EcoSeqf

reported 244 REP sequences | 128 REP clusters
search name sequences bases | false — false + | false — false +
FcoSeq6c-359-gxn 109 12374 21 0 18 0
FcoSeq6c-367-gxn 109 12016 22 0 18 0
FcoSeq6c-292-gxn 110 12055 22 0 18 0
FcoSeq6c-366-gxn 109 12171 22 0 18 0
FcoSeq6c-287-gxn 109 12213 22 0 18 0
FcoSeq6c-110-gxn 109 12216 22 0 18 0
FcoSeq6c-272-gxn 109 12232 22 0 18 0
FcoSeq6c-3-gxn 109 12255 22 0 18 0
FcoSeq6c-2-gxn 116 23671 22 6 18 6
FcoSeq6c-275-gxn 115 24390 22 6 18 6
FcoSeq6c-283-gxn 108 12202 22 0 19 0
FcoSeq6c-370-gxn 109 12010 23 0 18 0
FcoSeq6c-290-gxn 109 12188 23 0 18 0
FcoSeq6c-132-gxn 109 12235 23 0 18 0
FcoSeq6c-281-gxn 109 12240 23 0 18 0
FcoSeq6c-1-gxn 109 12270 23 0 18 0
FcoSeq6c-293-gxn 109 12427 23 0 18 0
FcoSeq6c-6-gxn 114 12868 23 5 18 5
FcoSeq6c-371-gxn 116 24726 23 6 18 6
FcoSeq6c-125-gxn 108 12072 23 0 19 0
FcoSeq6c-278-gxn 108 12204 23 0 19 0
FcoSeq6c-126-gxn 108 12289 23 0 19 0
FcoSeq6c-284-gxn 108 12559 23 0 19 0
FcoSeq6c-4-gxn 109 12049 24 0 19 0
FcoSeq6c-271-gxn 109 12110 24 0 19 0
FcoSeq6c-270-gxn 108 12132 24 0 19 0
FcoSeq6c-279-gxn 108 12201 24 0 19 0
FcoSeq6c-294-gxn 108 12236 24 0 19 0
FcoSeq6c-124-gxn 108 12651 24 0 19 0
FcoSeq6c-368-gxn 108 12135 24 0 20 0
FcoSeq6c-131-gxn 107 12624 24 0 20 0
FcoSeq6c-273-gxn 114 25173 24 6 20 6
FcoSeq6c-108-gxn 109 12018 25 0 19 0
FcoSeq6c-18-gxn 108 12058 25 0 19 0
FcoSeq6c-289-gxn 114 24525 25 6 19 6
FcoSeq6c-107-gxn 108 11629 25 0 20 0
FcoSeq6c-16-gxn 109 11649 25 0 20 0
FcoSeq6c-T-gxn 108 11673 25 0 20 0
FcoSeq6c-129-gxn 108 11731 25 0 20 0
FcoSeq6c-15-gxn 107 11967 25 0 20 0
FcoSeq6c-364-gxn 107 12007 25 0 20 0
FcoSeq6c-282-gxn 108 12234 25 0 20 0
FcoSeq6c-5-gxn 108 12271 25 0 20 0
FcoSeq6c-19-gxn 107 12319 25 0 20 0
FcoSeq6c-365-gxn 107 12572 25 0 20 0
FcoSeq6c-285-gxn 108 12128 26 0 20 0
FcoSeq6c-276-gxn 107 12300 26 0 20 0
FcoSeq6c-17-gxn 107 11707 26 0 21 0
FcoSeq6c-274-gxn 107 11771 26 0 21 0
FcoSeq6c-291-gxn 106 11790 27 0 22 0
FcoSeq6c-149-gxn 106 12112 27 0 22 0

Table 7: Search results starting with each sequence from the “concentrated” file EcoSeq6c
as a seed for repeated expansion. Only those searches that found at least on REP are
reported here. The results are sorted by the number of known REPs that they missed.

20 4. Conclusions and future work

missed start stop | name
81 | 4160148 4160172 | REP95a (> 6)
81 | 4071267 4071294 | REP123 (6)
81 | 3575796 3575821 | REP72 (> 6)
81 | 2966594 2966627 | REP61 (> 6)
81 | 2727203 2727228 | REP55 (> 6)
81 | 2014124 2014151 | REP40a (> 6)

80 | 698308 698337 | REP115- (5)
80 | 4294808 4294836 | REP102b (> 6)
80 | 1977449 1977480 | REP39- (2)
79 | 2538240 2538265 | REP50 (> 6)
78 | 3803080 3803108 | REPS0- (6)
78 | 2948389 2948418 | REP60 (3)

77 | 4618233 4618264 | REP110 (> 6)
77 | 2457214 2457245 | REP119 (5)
77 | 1177270 1177299 | REP30 (5)

73 | 990645 990675 | REP26b (> 6)
73 | 4160213 4160242 | REP95b- (4)
73 | 3936184 3936214 | REP83 (3)

72 | 4143645 4143674 | REP93 (5)

72 | 2362130 2362161 | REP118 (4)
64 | 368000 368027 | REP10- (5)
58 | 4084547 4084578 | REP90-

Table 8: REP sequences that were not found by most searches. The first column lists
the number of searches (out of 81) that failed to find the REP. The name is from the list
compiled by Rudd [13].

4 Conclusions and future work

I have shown how cost maps can be used effectively to search for interesting DNA sequences
using two different types of models: simple Markov models and hidden Markov models. The HMMSs
provide a more sensitive search technique, but both types of model are quite effective at finding
REPs in the E. coli genome—as effective as the best previously known techniques [2, Table T].

Several improvements are planned including better techniques for building HMMs (perhaps using
simple Markov models to define states, but actual sequences to get the connectivity between states),
better handling of ambiguity characters in the database and in the seed sequences, interfacing the
HMMs to a multiple-alignment program, using a non-constant null model, including null states in
the HMMSs, allowing the user to specify that only sequences that use particular states of the HMM
are interesting, chaning the definition of blurring to blur only in the “context” positions and not the
predicted position, and modifying the code to handle protein sequences.

There are interesting repeated sequences that are not found by concentrating EcoSeq6. For
example, the sequences found by Kunisawa and Nakamura [6] are not in the concentrated file nor in
the sets of sequences found by the REP models. Growing their set of five examples finds a total of
eight examples in EcoSeq6. Perhaps the threshold for significance could be changed to find repeated
elements that are either not quite as common or not as long as the REP and IS sequences.

I’'m also interested in studying the HMMs that are produced and using them to characterize
and classify the REP sequences. Omne previous study identified some interesting REP clusters
as containing binding sites for integration host factor (IHF), calling them repetitive THF-binding
palindromic elements (RIPs) [9]. As a preliminary step, I examined the HMMs to see if they modeled
the THF binding site of the RIPs. The site has also been referred to as sequence L of a BIME [3]).

In REP99-gxn.hmm400m, there is a sequence of states matching CAATATATTG (Figure 5,
upper-left side), which matches 48 times, while Oppenheim et al. reported only 33 possible binding
sites in EcoSeqb, 28 as part of “RIP” elements and 5 as parts of “near-RIPs” [9]. The HMM missed
one of the RIP sites (in REP102—only part of REP102 was found by the HMM) and one of the

4. Conclusions and future work 21

@
()
(gd)
J A
,@}Q‘ ca (®) (123
LTIE°€ C & C T @ O] © O
g3 O)
o [
O) G
afg
eﬁﬂc (a3 (EEHCaUCES e e QO]
() (@ (o
0 (c) O cf
O @ ©
O] ey |2 OO (&)
® ()) (HDEBED
(a) e (U
@ ct Q)
ct (2 (U
(c) @ 0
@ gV Nc @ O]
OO &)
© @ ©
6%)] (g)
6 G @ 0| 0
E_ORNORNO) © © Q)
2€eee e o 0, G, Q)
© 9 &3
() (@e® OO ()
@ @ E) dtg © g
O 2 E®) ﬁ
ag \ @)
@
}a}?y@@ 6 ORNENd
®
©

Figure 5: Automatically produced drawing of the AHMM REP99-gxn-hmm400m, which is
the most easily understood HMM of the ones listed in Table 4. The thickness of the edges is
proportional to the square root of the number of times the edge was used. All edges that
seem to connect to or from blank space are actually connections to the junk loop on the
middle of the left side of the picture. The two main REP sequences and the REPv variant
can be seen in both the forward direction (on the right) and the reverse direction (on the

left).

22 References

near-RIPs (REP95 was not found at all). The seventeen locations for possible THF binding sites
newly found by the HMM are in REPs 18 (twice), 36, 44, 45, 46, 64 (twice), 89, 107, 112, 113 (twice),
121, 126, 127. Also, there are two locations in REP34, only one of which is listed as a RIP by
Oppenheimer et al. [9, Fig. 4].

Since the IHF binding sequence is palindromic for the middle 10 bases, the 9-words of the simple
Markov model can’t determine the direction in the middle, and so the paths for the two directions
share the middle two states when built directly from the simple Markov models. State merging
results in blurring the two directions still more.

References

[1] J. Arnold, A. J. Cuticchia, D. A. Newsome, W. W. Jenning 111, and R. Ivarie. Mono- through hexanu-
cleotide composition of the sense strand of yeast DNA: a Markov chain analysis. Nucleic Acids Research,
16(14):7145-7158, 1988.

[2] G. P. Dimri, K. E. Rudd, M. K. Morgan, H. Bayat, and G. F.-L.. Ames. Physical mapping of repetitive
extragenic palindromic sequences in Fscherichia coli and phylogenetic distribution among Fscherichia
coli strains and other enteric bacteria. Journal of Bacteriology, 174(14):4583-4593, July 1992.

[3] E. Gilson, W. Saurin, D. Perrin, S. Bacheullier, and M. Hofnung. Palindromic units are part of a new
bacterial interspersed mosaic element (BIME). Nucleic Acids Research, 19(7):1375-1383, 1991.

[4] S.Karlin and S. F. Altshul. Methods for assessing the statistical significance of molecular sequence features
by using general scoring schemes. Proceedings of the National Academy of Sciences, USA, 87:2264-2268,
Mar. 1990.

[5] A.Krogh,I.S. Mian, and D. Haussler. A hidden Markov model that finds genesin E. coli DNA. Technical
Report UCSC-CRL-93-33, University of California at Santa Cruz, Computer Science, UC Santa Cruz,
CA 95064, 1993. In preparation.

[6] T. Kunisawa and M. Nakamura. Identification of regulatory building blocks in Escherichia coli genome.
Protein Sequences and Data Analysis, 4:43-47, 1991.

[7] M.-Y. Leung, B. E. Blaisdell, C. Burge, and S. Karlin. An efficient algorithm for identifying matches
with errors in multiple long molecular sequences. Journal of Molecular Biology, 221:1367-1378, 1991.

[8] A. Milosavljevi¢. Discovering sequence similarity by the algorithmic significance method. In Proceedings,
1st International Conference on Intelligent Systems for Molecular Biology, pages 284291, Menlo Park,
1993.

[9] A.B. Oppenheim, K. E. Rudd, I. Mendelson, and D. Teff. Integration host factor binds to unique class of
complex repetitive extragenic DNA sequences in Escherichia coli. Molecular Microbiology, 10(1):113-122,
1993.

[10] G. J. Phillips, J. Arnold, and R. Ivarie. Mono- through hexanucleotide composition of the Escherichia
coli genome: a Markov chain analysis. Nucleic Acids Research, 15(6):2611-2626, 1987.

[11] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE, T7(2):257-286, Feb. 1989.

[12] K. E. Rudd. Maps, genes, sequences, and computers: An FEscherichia coli case study. ASM News,
59:335-341, 1993.

[13] K. E. Rudd, 1994. Personal communication.

[14] E. E. Stickle, C. Emmrich, U. Grob, and P. J. Nielsen. Statistical anlysis of nucleotide sequences. Nucleic
Acids Research, 18(22):6641-6647, 1990.

A. Script for hmm125

A Script for hmm125

// build a model with at most 125 states, tune it and flatten it

BuildHMM 125 1 1 999
Tune 5 .001
RemoveUseless 20 .99
Flatten 1. .1
ReorderStates

Print

B Script for hmm400m

// Build a 400-state hmm, tune, merge and add useful
// Models tried with start=stop=loop

SplitSeq .5 0 50% for cross training

BuildHMM 400 1 1 999
Tune 5 .001
RemoveUseless 20 .99
Flatten 1 .1

Tune 1 .001
MergeStates 1 1.2

Tune 5 .001
RemoveUseless 20 .99
Flatten 1 .1

Tune 1 .001
MergeStates 2 1.4

Tune 5 .001
RemoveUseless 20 .99
Flatten 1 .1

Tune 1 .001
MergeStates 4 1.6

Tune 5 .001
RemoveUseless 20 1.99
Flatten 1 .1
AddUseful 10 15

Tune 5 .001
RemoveUseless 20 .99
Flatten 1 .1

Tune 1 .001
MergeStates 2 1.4

Tune 5 .001
RemoveUseless 20 .99
Flatten 1 .1

Tune 1 .001
MergeStates 4 1.6

Tune 5 .001
RemoveUseless 20 1.99
Flatten 1 .1

23

24 C. Script for hmm400p

RestoreBest

SplitSeq 0 O // tune on whole set
Tune 5 .001

RemoveUseless 20 .99

Flatten 1 .1

ReorderStates
Print

C Script for hmm400p

// Build a 400-state hmm, tune, merge and add useful
// Models tried with start=stop=loop
SplitSeq 0.3 0 30% for cross training
BuildHMM 400 1 1 999

TieMult .4

Tune 5 0.001

RemoveUseless 20 0.99

Flatten 1 0.1

MergeStates 1 1.2

Tune 5 0.001

RemoveUseless 20 0.99

AddUseful 5 10

Tune 5 0.001

RemoveUseless 20 0.99

Flatten 1 0.1

MergeStates 1 1.2

Tune 5 0.001

RemoveUseless 20 0.99

AddUseful 5 10

Tune 5 0.001

RemoveUseless 20 0.99

Flatten 1 0.1

MergeStates 1 1.2

Tune 5 0.001

RemoveUseless 20 0.99

Flatten 1 0.1

MergeStates 2 1.4

Tune 5 .001

RemoveUseless 20 0.99

Flatten 1 0.1

RestoreBest

SplitSeq 0 O // tune on whole set
Tune 5 0.001

RemoveUseless 20 0.99

Flatten 1 0.1

ReorderStates

Print

D Script for hmm700b

//build model with single loop state
BuildHMM 700 1 1 999
TieMult 0.0 // turn off complement ties

Tune 3 .001
RemoveUseless 20 .9 // remove useless

E. Script for fromseqg14

MergeStates 4 1.6 // merge aggressively
Tune 3 .001
RemoveUseless 20 2.99 // prune strongly

// add edges with potential gain>=4, states with gain>=5b
AddUsefulIncr 4 &

Tune 5 .001

RemoveUseless 20 1.99 // prune mildly

// add edges with potential gain>=4, states with gain>=5b
AddUsefullIncr 4 5

Tune 5 .001

RemoveUseless 20 .99 // remove useless

Flatten 1. .4 // flatten fairly strongly
AddSkipEdges 6.

ReorderStates
Print

E Script for fromseql4
BuildFromSeq 0 // build a model from the first sequence

AddUsefulIncr 5. 10.
Tune 4 .001
RemoveUseless 20 4.9
Tune 4 .001

SplitVagueStates 1.5
Tune 4 .001
RemoveUseless 20 1.9

AddUsefulIncr 5. 10.
Tune 4 .001
RemoveUseless 20 2.9
Tune 4 .001

SplitVagueStates 1.5
Tune 4 .001
RemoveUseless 20 1.9

AddUsefulIncr 5. 10.
Tune 4 .001
RemoveUseless 20 0.9

RestoreBest
Flatten 1 0.1

ReorderStates
Print

F Script for fromseql5
BuildFromSeq 0 // build a model from the first sequence

AddUsefulIncr 5. 10.
Tune 4 .001

26

RemoveUseless 20 4.9
Tune 1 .001

MergeStates 4 1.6
Tune 3 .001
RemoveUseless 20 1.9

AddUsefulIncr 5. 10.
Tune 4 .001
RemoveUseless 20 2.9
Tune 4 .001

SplitVagueStates 1.5
Tune 4 .001
RemoveUseless 20 1.9

AddUsefulIncr 5. 10.
Tune 4 .001
RemoveUseless 20 0.9

MergeStates 4 1.6
Tune 3 .001
RemoveUseless 20 0.9

RestoreBest
Flatten 1 0.1
ReorderStates
Print

G Script for fromseql6
BuildFromSeq 0 // build a model from the first sequence

SplitSeq .3 0 // 30% for cross training

AddUsefulIncr 2. 5.
Tune 4 .001
RemoveUseless 20 4.9
Tune 2 .001

Flatten 1 0.5

MergeStates 6 1.8
Tune 3 .001
RemoveUseless 20 1.9

AddUsefulIncr 2. 5.
Tune 4 .001
RemoveUseless 20 3.9
Tune 2 .001

Flatten 1 0.5

UnrollSelfLoops
Tune 4 .001
Flatten 1 0.5

SplitVagueStates 1.5
Tune 4 .001
Flatten 1 0.5

G. Script for fromseql6

G. Script for fromseql6

AddUsefullIncr
Tune 4 .001

RemoveUseless
Flatten 1 0.5

MergeStates 4
Tune 3 .001

RemoveUseless
Flatten 1 0.5

RestoreBest
SplitSeq 0 0
Tune 4 .001
RemoveUseless
Tune 4 .001
RemoveUseless
Flatten 1 0.5

ReorderStates
Print

2. b.

20 1.9

1.6

20 0.9

20 1.9

20 1.9

27

