
Using Markov Models and HiddenMarkov Models to Find RepetitiveExtragenic Palindromic Sequencesin Escherichia coliKevin KarplusUCSC-CRL-94-2426 July 1994Board of Studies in Computer EngineeringUniversity of California, Santa CruzSanta Cruz, CA 95064karplus@cse.ucsc.eduabstractThis paper presents a technique for using simple Markov models and hidden Markov models(hmms) to search for interesting sequences in a database of DNA sequences. The models are usedto create a cost map for each sequence in the database. These cost maps can be searched rapidlyfor subsequences that have signi�cantly lower costs than a null model. Milosavljevi�c's algorithmicsigni�cance test is used to determine when a subsequence is signi�cantly found. The sequencesreported are trimmed to maximize the signal-to-noise ratio (cost savings / plength).Methods are given for automatically constructing simple Markov models and hidden Markovmodels from small training sets.The techniques are illustrated by searching a database of E. coli genomic DNA, EcoSeq6, forclusters of Repetitive Extragenic Palindromic sequences (REPs). Of the known REPs, 91% arefound with simple Markov models starting with a single REP cluster as a seed, and 95% are foundby a hidden Markov model built from the results of the simple Markov model search. There are nofalse positives from the simple Markov models, and the few extra sequences found by the hmms maybe genuinely related sequences.

1. Using compression models to �nd signi�cant sequences 1This paper describes a technique for using models suitable for data compression as a tool for�nding interesting sequences in a database. The technique does not require that the structure orconsensus sequence for the target sequences be known in advance|only that an example sequencebe provided.The paper presents an e�cient algorithm for the search, methods for constructing the modelsautomatically, and results of �nding clusters of Repetitive Extragenic Palindromic sequences (REPs)in the E. coli genome database, EcoSeq6 [12]. It compares the set of REPs found with previouslists [7, 2, 13]. The new search techniques do as well as the best of previous techniques (self-BLAST),�nding about 95% of the known REPs. Furthermore, the hidden Markov model produced for thesearch provides a good, human-readable description of the structure of the REP family, clearlydistinguishing the two main REP sequences and the REPv variant.Although the technique could be used for sequences over any alphabet, the software has onlybeen implemented for DNA or RNA sequences so far.1 Using compression models to �nd signi�cant sequencesThe problem of �nding interesting sequences can be broken into several subproblems: de�ningwhat sequences are interesting, devising an algorithm to �nd them e�ciently, and determiningwhether the sequences found are statistically signi�cant or just chance variations.The approach used here is to de�ne the interesting sequences by using a model m that assignsprobabilities to sequences (Pm(s)). The probabilities are assigned so that all the probabilities forsequences of a given length sum to 1|the length of the sequence is not predicted by the model.A sequence is interesting if the probability assigned by the model is signi�cantly higher than theprobability of the sequence using a null model. Normally we use the negative log probability of thesequence as a cost measure, since the probabilities become extremely small for longer sequences.Using base-2 logarithms gives us the encoding cost in bits of sequence s using model m:costm(s) = � log2 Pm(s) :Section 2 will talk about two ways that models can be constructed automatically, but �rst let'sdiscuss how they are used for searching e�ciently.1.1 E�cient search using a cost mapThe simplest algorithm for �nding sequences using a model would be to enumerate all possiblesequences and compute the cost of each. Unfortunately, this crude algorithm is too expensive. Ina database of d characters, up to d2 di�erent sequences may be found. If computing the cost ofa sequence takes time proportional to the length of the sequence, then the entire search algorithmwould be order d3. Furthermore, if several overlapping sequences have a low cost, we would like thealgorithm to pick out the best of them|deferring for the moment exactly what we mean by \best".Therefore, we need a search technique whose execution time is linear in d and which returns onlydisjoint sequences. First, let's assume that the model used to compute the probabilities providesnot just an overall cost for a sequence, but assigns a cost to each position of the sequence. Second,let's assume that the cost of any given sequence is the sum of the costs for each of the charactersof the sequence. Section 2.4 discusses the ways in which the models actually used violate theseassumptions and why the violations are not serious in this context.With the above assumptions, we can compute the costs for each character of the database onceand save the costs in an array, called a cost map. From the cost map we can compute the cost forany subsequence of the database by taking the sum of costs in the array starting at the beginningof the subsequence and stopping at the end. Hence, given a cost map, �nding interesting sequencesbecomes independent of the model used to create the cost map. This separation of the model fromthe search technique is one of the main advantages of the techniques described in this paper.

2 1. Using compression models to �nd signi�cant sequencesOur problem then is to �nd non-overlapping subsequences of a cost mapwhose cost is signi�cantlylower than what we would expect from random strings of characters. Furthermore, we would like todo this in time proportional to the number of positions in the cost map.1.2 When is a subsequence signi�cant?A sequence is considered interesting when the model gives it a signi�cantly lower cost than wewould expect. Formally, we look for sequences where the cost of the sequence using the model(costm) is signi�cantly less than the cost with a null model (cost0).There are many ways to determine when the cost is signi�cantly lower. The current program usesMilosavljevi�c's Algorithmic Signi�cance Method [8], which has a simple threshold test to determineif a sequence s is signi�cant: cost0(s) � costm(s) > T ;where the threshold T is computed from N , the number of sequences checked for signi�cance:T = log2(N=signi�cance level) :If we want a probability of 0.01 or less of getting a sequence returned due to chance matching,then the threshold is computed as T = log2(N=:01) = 6:64 + log2N . In the searching techniquedescribed in Section 1.3, one sequence is checked for each position in the database, so N is the lengthof the database d. For EcoSeq6, with 1,875,932 bases, �nding a sequence requires that its cost underthe model be 27.483 bits less than the null model cost.This simple threshold technique is easy to implement, but the database is not really drawnrandomly from the distribution implied by the null model. So even if we can refute the null modelwith high con�dence, we have not necessarily found a good match to our model. For example, ahidden Markov model may assign cost slightly less than 2 bits/base to G and C in the junk loop thatmatches the uninteresting parts of the database. If the null model assigns 2 bits/base, then almostany su�ciently large GC-rich region would have signi�cant savings.On the other hand, a short REP cluster with only 24 bases would need to be encodable in only48�27:479 = 20:521 bits (0.855 bits/base) in order to be found. This stringent condition is di�cultto meet with the simple models described in Section 2. Luckily, the regions around the REP clustersare fairly similar, and so the model can usually �nd a signi�cant, slightly larger region around aREP.In general, using this threshold yields too many long sequences and not enough short ones. Thecurrent program has some methods for suppressing the bogus long sequences, but does not �nd shortsequences unless they compress very well. Since the standard deviation of the cost of a sequence oflength n grows with pn, the threshold should probably have the form T = a + bpn, rather thanbeing a simple constant, but it is unclear how to set a and b to get a given signi�cance level for adatabase.Suppressing the incorrectly found long sequences is done by adding the extra condition that themodel must save at least 0.1 bits/base and by arti�cially replacing the 2 bits/base of the null modelby a smaller estimate of the true entropy of the database (say, 1.99 bits/base). A better techniquewould be to use a better null model than the very crude 2 bit/base model|perhaps a second- orthird-order Markov model. Note that although using a better null model or estimating the entropyat less than 2 bits/base helps to eliminate the incorrectly found long sequences, it becomes moredi�cult to �nd the correct short ones.1.3 Scanning algorithm for �nding the best subsequencesGiven the de�nition of signi�cantly found sequences in Section 1.2, it is easy to scan a cost mapto �nd signi�cant subsequences. We simply start at the left end of the map and add up the savings ineach position (Pi cost0(i)� costm(i)), keeping track of the greatest cumulative savings encountered.When the cumulative savings becomes negative, we have just scanned an uninteresting sequence,

2. Markov Models as compression models of interesting sequences 3and so we reset the savings and greatest savings to zero, and continue the scan with the left endpointin the current position.A signi�cant sequence is present when the greatest savings seen is greater than T , but the scanis continued until either we reach the end of the cost map or the savings per position drops to lessthan half the savings per position at the point of greatest savings. The signi�cant sequence runsfrom the start of the scan to the location of the greatest savings.This method �nds sequences that are signi�cant, but the endpoints may not be optimally chosen.If we just picked the maximal segment (as in [4]), we would have extraneous characters on the endsof the segments. If the model for the interesting sequences provides estimates for uninterestingpositions that are as good as the null models, then the savings for a junk character is zero or slightlypositive (violating the requirements of a scoring system used with a maximal-segment method). Infact, early versions of the program reported the maximal segments and picked up long strings ofjunk.Maximizing the savings for a sequence is too greedy, reporting uninteresting sequences. Oneway to correct the problem would be to trim the signi�cant sequences to maximize the savings perposition. This approach, however, is too conservative, throwing away parts of the sequence thatremain interesting.Instead, the program tries to maximize the signal-to-noise ratio (SNR). The noise (the standarddeviation of the savings for an uninteresting sequence) grows with pn for junk sequences of lengthn, so maximizing SNR = (cost0(s) � costm(s))pnshould give us the best signal-to-noise ratio.We can move the endpoints inward one position at a time, keeping track of the position that givesthe maximum SNR. To make sure we do not lose any signi�cant sequences, we stop the trimmingbefore the remaining savings would be less than max(T; greatest savings� T=2).After �nding a sequence, we can restart the scan at the right endpoint of the reported sequence.Restarting here will scan some bases repeatedly, which may seem like a violation of the assumptionused for determining the signi�cance threshold, but the only way to �nd a sequence containing oneof these rescanned positions is for the position to be part of a sequence that saves at least twice thethreshold. This savings is great enough that it would be signi�cant even if all �d2� subsequences hadbeen examined.2 Markov Models as compression models of interesting sequences2.1 Simple Markov modelsA simple Markov model of order k estimates the probabilities for letters in a given position basedonly on the characters in the preceding k positions. The model is trained by giving it a seed (a setof sequences that are interesting) and counting the number of times each word of length k+1 occursin the seed. The words that start with the same k characters constitute a context, and their countscan be converted to estimates of the probability of the characters in the �nal position of the word.The strengths of a simple Markov model are that it allows very fast searching (the cost of eachposition can be computed in constant time), it has fairly small memory demands (4k+1 words foran alphabet of four letters), and the model can be built quickly from a fairly small seed.The weaknesses are that the models are not human-readable and are not directly useful foraligning sequences. Furthermore, any extraneous junk that is in the set of seed sequences is alsosearched for|not just the interesting part of the seed.Some previous work with Markov models has concentrated on using them to predict the fre-quencies of short words [10, 1, 14]. These studies have generally found that fairly low-order models(k = 2 to k = 4) trained on the entire database work best for that application. In contrast, forsearching we use fairly high-order Markov models (k = 6 to k = 10) and small seeds (as low as

4 2. Markov Models as compression models of interesting sequences30 characters). Even with a large seed of 12,000 characters (essentially all the REPs), the averagevalue of a count for the 49 words of an order-8 model is only 0.046. With such small seeds and largemodels, almost all contexts have zero counts for all four characters, making the way zero counts arehandled particularly important.Zero-o�setThe simplest way to handle zero counts is to add a zero-o�set z to all counts, so that theestimated probability of character b in a given context C is (z+countC(b))=(4z+Px countC(x)). Ifall the counts in a context are zero (the usual case in uninteresting sequences), this method assignsa probability of 0.25 (a cost of 2 bits) to all four possible characters, independent of the choice of z.The second most common situation is to have a count of one for one character and zero for the othercharacters in the context. This method assigns a probability of (1 + z)=(1 + 4z) to the characterthat was seen, and z=(1 + 4z) to the other characters.If the seed is large enough to contain multiple instances of interesting sequences, we can alsochoose z to minimize the encoding cost of doing adaptive compression on the seed using the model.The minimization is currently done by using Newton's method to set the derivative of the encodingcost to zero, but almost any standard optimization technique should work.Neighbor blurringWhen doing searches, we are usually interested not only in sequences identical to the seed, butin sequences that have only a few characters di�erent from the seed. Unfortunately, even a singlemutation can change a k-long context into one that has zero counts of all four words beginning withthat context. To compensate somewhat for this limitation of high-order models, we can blur theword counts by adding a weighted sum of all neighboring word counts:newcount(w) = count(w) + n Xx2N(w) count(x) ;where N (w) is the set of all words that di�er from w in exactly one position, and n is the blurringweight for neighbor blurring.The program uses a slightly more sophisticated model, with three blurring parameters n1, n2,and n3. The n1 weight is used for words whose di�erence is (A$G) or (C$T). The n2 weight isused for words whose di�erence is (A$C) or (G$T), and n3 is used for (A$T) or (G$C).The neighbor weights are best chosen by optimizing the adaptive compression of a related set ofsequences, using a simple optimization technique, such as gradient descent, on the four parametersz, n1, n2, and n3. The optimal value of z is much smaller when neighbor blurring is used, since theneighbor blurring eliminates many of the zero counts, and provides a more accurate estimate of theprobabilities than the simple zero-o�set.One problem with neighbor blurring is that we do not treat the predicted position of the worddi�erently from the part that establishes the context. When the counts get large in a given context,blurring them may produce a worse estimate of the probabilities than the raw counts. Since we usethe blurring only for models with extremely small counts, where blurring in the predicted positiongenerally produces better predictions, this problem has been ignored.Complement blurringIn many cases, we want to look for sequences on either strand of the DNA. We can achieve thisby complement blurring of the word counts:newcount(w) = count(w) + c count(w0) ;where w0 is the dyadic complement of w and c is the complement blurring weight.

2. Markov Models as compression models of interesting sequences 5order n1 n2 n3 z c bits bits/base2 -0.00001 0.00001 0.00002 3.02665 1 22335.607 1.84943 0.00117 0.00002 0.00000 1.51871 1 20017.514 1.65754 0.00635 0.00014 0.00156 0.80799 1 18410.264 1.52445 0.02657 0.00716 0.00341 0.44887 1 16486.609 1.36516 0.03536 0.00894 0.00725 0.19349 1 15384.983 1.27397 0.03964 0.01233 0.01248 0.06928 1 14445.732 1.19618 0.03546 0.01435 0.01448 0.02557 1 13604.666 1.12659 0.03742 0.01477 0.01463 0.01345 1 13629.369 1.128510 0.03753 0.01664 0.01566 0.00777 1 13899.144 1.1509Table 1: Optimal blurring parameters for adaptive compression of the 109 sequences ofREP99-gxn (12077 bases) with the complement parameter �xed at c = 1.Generally, c is set to either 0 or 1, depending on the application. Choosing c by optimizingadaptive compression does not seem to work well, as gradient descent methods do not convergewhen optimizing with c, z, and the neighbor blurring parameters simultaneously.Table 1 gives a table of the parameter setting for the best adaptive compression of the 109sequences (12077 bases) of REP99-gxn (with c = 1). The number of counts for an order-k model is12077� 109k, since the �rst k bases of a sequence do not generate counts.Note that the order-2 and order-3 models use the zero-o�set in preference to neighbor blurring,but as the order gets larger (and the counts per context smaller), the neighbor blurring becomesmuch more important. If we look at the ratio of z to the expected count (12077� 109k)=4k+1), wesee it increasing from .0163 for order-2 models to 2.97 for order-10, even though the value of z itselfis decreasing rapidly.If we assume that all contexts contain a single count of 1 and three counts of zero, we canapproximate the single-point mutation frequencies for each of the three types of substitution asmi = ni + z1 + n1 + n2 + n3 + 4z :We can improve this estimate somewhat by scaling down the z value in the formula by theexpected count for non-zero contexts. We can estimate the number of non-zero contexts as roughly4k(1� (1� 4�k)x), where x is the total number of counts made. The expected count for a non-zerocontext is thus x4k(1� (1� 4�k)x) :The estimated mutation frequencies using this method are given in Table 2|since the assumptions ofthe method are more reasonable for higher-order models, the mutation rates estimates are probablymost accurate for the highest order model. The very high predicted rate of substitution for k = 5and k = 6 probably results from merging together contexts from the two parts of the REP, whichare similar but not identical. Higher-order models can identify the separate parts of the REP morereliably, and so the predicted substitution rates are more likely to be reasonable.Unfortunately, I have no way to check these predicted substitution rates against other methodsfor estimating substitutions rates (such as character counts in a multiple alignment), as I do nothave a multiple alignment for all the REP sequences.2.2 Hidden Markov ModelsA hidden Markov model1 (hmm) consists of a set of states connected by directed edges. Eachstate assigns probabilities to the characters of the alphabet used in the sequence and to the edges1Rabiner has written a nice tutorial on hmms for those who want a more detailed treatment than this paper canprovide [11].

6 2. Markov Models as compression models of interesting sequencesorder m1 m2 m3 m2 0.0040 0.0040 0.0040 0.01213 0.0091 0.0080 0.0080 0.02514 0.0224 0.0166 0.0179 0.05695 0.0555 0.0393 0.0362 0.13106 0.0766 0.0564 0.0552 0.18827 0.0709 0.0493 0.0494 0.16978 0.0509 0.0327 0.0328 0.11649 0.0452 0.0250 0.0248 0.095010 0.0411 0.0221 0.0212 0.0845Table 2: Estimated substitution frequencies for the three types of substitutions (andcombined mutation frequency) in REP99-gxn based on the optimal neighbor blurringparameters from Table 1.leaving the state. There is usually a designated start state and a designated stop state (though somehmms allow starting or stopping in any state).A path in an hmm is a sequence of states such that there is an edge from each state in the pathto the next state in the path. The length of a path is the number of states in the sequence, and theprobability of a path is the product of the probabilities of the edges traversed.Each path through the hmm gives a probability distribution for each position in a string of thesame length, based on the probabilities for the characters in the corresponding states. The proba-bility of the sequence given a particular path is the product of the probabilities of the characters.The probability of any sequence of characters is the sum, over all paths whose length is the sameas the sequence, of the probability of the path times the probability of the sequence given the path:Phmm(w) = Xpath xP (x)P (wjx) :If the hmm has designated start and stop states, then the sum is limited to those paths that startand end in the correct states. The above equation has omitted the renormalization needed to getthe \probabilities" to sum to 1.For computational reasons, it is often better to look not at all paths, but only at the paththat maximizes the probability of the given sequence. It is also convenient to switch from pathprobabilities to encoding cost, by taking the negative log likelihood (cost(x) = � log2 P (x)). TheViterbi cost of a sequence, given an hmm, is the cost of the minimum-cost path through through thehmm. costhmm(w) = minpath x cost(x) + cost(wjx)= minpath x0@ Xedges e 2 x cost(e)+ Xstates si 2 x costsi(wi)! :This encoding cost for the best path (which is easily found with the Viterbi algorithm) can beassigned to individual positions in a cost map by assigning the cost of the edge into a state of thepath and the cost of the character in that state to the corresponding position in the cost map.

2. Markov Models as compression models of interesting sequences 72.3 Strengths and weaknesses of hidden Markov modelsHidden Markov models o�er many advantages over simple Markov models for modeling biologicalsequences:� A well-tuned hmm generally provides better compression than a simpleMarkov model, allowingmore sequences to be signi�cantly found.� The models are fairly readable (at least when drawn rather than just listed). A high-qualitymodel for REPs (compressing previously unseen REPs to about 1.25 bits/base) may havearound 200 states and 300 edges, rather than the 49 counts of the order-8 simple Markovmodel. The low ratio of edges to states means that large parts of the model are simplestraight-line sequences, which are easy to draw and to understand.� The hmms can be used for generating alignments, with each state of the machine correspondingto one column in the alignment. The best path found by the Viterbi algorithm identi�es astate for each position, and that in turn can specify the column. Hmms are a bit more powerfulthan alignments, since the same state can be used repeatedly in a path, but each column canonly be used once in an alignment. This results in ambiguous alignments if a column alignmentmodel is used, but can be quite convenient for describing phenomena like random numbers ofrepeats of a short subsequence.Hmms also allow variant structures to be modeled directly, not just as inserts and deletes toa consensus sequence. For example, the REPv variant of the REP sequence, often found nextto IHF binding sites [9], is modeled very clearly by REP99-gxn.hmm400m|in fact the IHFbinding site itself occurs frequently enough next to REPs to have been included in the model.� Separate hmms built for recognizing particular structures can be merged to create hmms thatrecognize sequences of structures [5]. Unfortunately, doing this cleanly requires a slightlydi�erent version of hmms which allows null states|states that don't match any characters inthe input sequence. The current version of my hmm code cannot handle hmms with null states,but the extension is planned and should be straightforward.Hmms do have some weaknesses:� The Viterbi algorithm is expensive, both in terms of memory and compute time. For a sequenceof length n, the dynamic programming for �nding the best path through a model with s statesand e edges takes memory proportional to sn and time proportional to en. For the REPsearches, doing a search with a hidden Markov model is about 10 times slower than using asimple Markov model|for larger hmms (needed for longer target sequences) the penalty wouldgrow.Other algorithms for hidden Markov models, such as the forward-backward algorithm, are evenmore expensive.� The hmm needs to be trained on a set of seed sequences and generally requires a larger seed thanthe simple Markov models. The training involves repeated iterations of the Viterbi algorithm(see Section 2.7), which can be quite slow.� For a given set of seed sequences, there are many possible hmms, and choosing one can bedi�cult. Smaller models are easier to understand, but larger models can �t the data better.Figure 1 shows the compression e�ciency (in bits per base) for a number of di�erent hmmscompressing the same set of REP sequences. Note that the compression continues to improvewith larger models, and so deciding which model to use is somewhat arbitrary. Section 2.7describes how models were chosen for this paper.2.4 Violations of assumption needed for cost mapsIn Section 1.1, I mentioned the main assumption that the costmap-based search relied on: thecost of any subsequence can be computed as the sum of costs of individual positions. Although theViterbi algorithm gives us a way to assign costs to individual positions, the true cost of a subsequencemay not be the same as the sum of the costs on the best path for the whole sequence.

8 2. Markov Models as compression models of interesting sequences
11.21.41.6

1.82
0 200 400 600 800 1000edgescost (bits/base) 33 33 3 333 3333 33333 333 33 33 33 333 3 33333 33 333 3 3 3333 3 33 333 333 3333 333 333333 333333 3333 333 33 3333 33 333 333333 333333333 333 3333333 333 33 333 3 3 333 33 333 3 3333 33 33 33 3333333333333333

Figure 1: Information content of a set of seed sequences is plotted against the size of thehidden Markov model used for encoding them (expressed as the number of edges in themodel). The points in the upper curve are from models that have not been trained|in thelower curve, from models that have been trained and had useless edges and states removed.There is also a di�erence between the true compression cost of a subsequence and the cost fromthe map for simple Markov models, but in those models, the only di�erence in cost is in the �rst kpositions, since there is no compression for the �rst k positions of a sequence. In the simple Markovmodel, we can compensate for the startup error by extending the beginnings of the subsequencesfound by k positions.For hidden Markov models, a change anywhere in the sequence can change which path is thebest one, and so change the cost for positions arbitrarily far away. It is not di�cult to constructpathological examples in which this would completely invalidate the use of cost maps.By limiting the types of hmms considered, I have managed to use them quite successfully withcostmap search. First, all my models contain a junk loop, which models the uninteresting sequencesthat occur between the interesting ones. The paths in the hmm for the interesting sequences beginand end at the junk loop. If there are multiple interesting sequences within a contiguous part ofthe database, then the best path should use the junk loop for the uninteresting parts and pathsthrough the rest of the hmm for the interesting parts. The costs in the junk loop are very closeto the null-model costs, and the costs in the rest of the model are very much lower, so the basicassumption of the cost map|that interesting positions, and only interesting positions, have muchlower costs than the null model costs|is still satis�ed.2.5 Building a hidden Markov model from a simple Markov modelAlthough hand-crafted hidden Markov models may be useful for searches where a consensussequence is already known, I am primarily interested in hmms that are generated automaticallyfrom a set of seed sequences.We need a way to control the size of the hmm, and ensure that the most useful, shared informationin the seed sequences is re
ected in the hmm. We already have a mechanism for pooling informationfrom a set of seed sequences: the counts of simple Markov models. The construction process usedfor the results in Section 3.1 starts by building an order-k simple Markov model for a set of seedsequences, constructing an hmm from the counts of k+1-words in a simple Markov model of the seed,then training the model on the sequences, using the cross-training technique described in Section 2.7.

2. Markov Models as compression models of interesting sequences 9The construction technique creates states and maps words to them. First, a junk-loop state iscreated, and all words that aren't explicitly mapped to another state will map to the junk state.Then words are examined in decreasing order of frequency, creating a state for each one that isn'talready mapped. The state will be used to match the character in the middle position of the word,so all words that di�er only in that position will map to the same state. The count for each characterin a state is initialized to the count for the word that has that character in the middle position.There is a natural shift relationship between two words of the same length. This relationship isexploited to create the edges of the hmm, and to ensure some connection between the various states.De�nition 1: A (k+1)-word w1 is a left-shift of (k+ 1)-word w2 if the last k characters of w1 areidentical to the �rst k letters of w2 (w2 is also called a right-shift of w1).Note that the middle character position for the right-shift of w corresponds to the position oneto the right of the middle in w.We will provide an edge from state s to state t if some right-shift of one of the words mappingto s maps to t or if some left-shift of one of the words mapping to t maps to s. The count for theedge is the minimum of the counts for the corresponding words.To ensure some connectivity in the Markov model, we don't just map the high-frequency wordsto states, but map their most probable predecessors and successors as well. When a new state iscreated for a word w, we examine the four right-shifts of the word and choose the one with thelargest count wmax. If this is above some threshold, then we create a state for wmax and repeat untileither the maximumcount drops below the threshold or all four right-shifts of the word already mapto states. We do the same with the four left-shifts of w.For example, if two seeds aaaaaatggggggg and aaaaaacgggggg were used with an order-3 Markovmodel, the words that map to states would be aAa, aAt, aAc, aCg and aTg, tGg, cGg, and gGg.The hmm will have only one state for aCg and aTg (perhaps best named aYg, to indicate whatletters it has low costs for), but the right-shifted words (tGg and cGg) map to di�erent states, eventhough they match the same character (G). Similarly the left-shifted words aAt and aAc map todi�erent states, though both match A.As a slight added complexity, we also create the states corresponding to the dyadic complementsof the words, and tie the complementary states together with a variable-weight tie. The tie has noe�ect on the model when we are determining the probability of a sequence, but when the probabilityestimates for a state are updated, a weighted multiple of the counts for the complementary charactersin the tied state is added to the counts. This trick helps the model learn palindromic sequences andsequences that can occur on either strand.2.6 Direct construction of hmm from a sequenceHmms can be constructed directly from a single sequence, by adding one state for each characterin the sequence and connecting them in a single path. The model can be made to match sequencesof any length by adding a self-loop edge to the �rst and last states. Such a model is not very usefulin itself, since it will only match sequences which are nearly identical, but it can serve as a startingpoint for the model modi�cation techniques described in Section 2.8.From a seed with multiple sequences one could also construct parallel paths from the start stateto the stop state, one per sequence. Unfortunately, such a model would o�er no advantages over farmore e�cient string search techniques, and would be much too large for seeds of reasonable size.2.7 Training a hidden Markov modelTuning and pruningThe basic mechanism for training an hmm to a set of sequences is to repeatedly run the followingtuning algorithm. First, run the Viterbi algorithm to determine the best path through the modelfor each sequence, and count the number of times each edge is used and the number of times eachcharacter occurs in each state. More sophisticated training algorithms, such as the Baum-Welchmethod [11], could be used to get expected counts, but this simple method works fairly well.

10 2. Markov Models as compression models of interesting sequencesAfter all the sequences in the training set have been counted, the counts can be converted toprobabilities for each set of characters in a state and for each set of edges out of a state. As with thecounts in the simple Markov model, some care has to be taken with zero counts. Since the counts inthe hmm tend to be much larger than in the simple Markov models, the handling does not have tobe as careful, and the program just adds the old probability estimate plus a small �xed zero-o�setto all the counts.After the probabilities have been recomputed and converted to costs, the whole tuning step isrepeated, either for a �xed number of iterations or until the change in cost per character is less thana user-speci�ed threshold. Generally four iterations are enough to get convergence to better than0.01 bits/base.After tuning an hmm, some edges or states may never have been used. A simple pruning stepafter tuning removes these unused states and edges from the hmm.Useless states and edges occur fairly commonly on the automatically constructed hmms becauseparallel sequences are often constructed. For example, in Section 2.5 the states for tGg and cGgmatched exactly the same characters. In training, one of the two states will get a higher count(hence lower cost) and the other will become unused.The smaller models in Table 3 on page 16 (hmm125, small, and cross) were constructed fromsimple Markov models by the methods of Section 2.5 and tuned on the seed sequences (REP99-gxn).Unused edges and states were removed, and the models were made slightly more general by
atteningthe probabilities|re-estimating the probabilities from the counts using a larger zero-o�set than usedin the tuning. (These models were
attened with a zero-o�set of 0.1.)Cross-trainingBecause both the computational cost of a model and the amount of compression obtainable froman hmm vary with the size, determining the best size to use for a model can be di�cult. Usually,we want the best compression we can get for the interesting sequences that aren't already in thetraining set.To estimate this, we use a cross-training procedure. In cross-training, the initial set of seedsequences is split into two parts: the training set and the cross-training set. We build and tunemodels based on just the training set, then check them on the cross-training set, choosing the modelthat does best on the cross-training set. Note that this di�ers from cross-validation, where a checkis made after all decisions have been made. If cross-validation is desired in addition, then the set ofinitial seeds must be divided into three sets.Figure 2 shows a typical plot of cross-training cost versus the size of the model. Note thatincreasing the size of the model, which nearly always decreases the cost for the training set, eventuallystarts overtraining and modeling those aspects of the training set that are not shared with the cross-training set. Since we want the smallest model that will get nearly optimal compression, we areusually interested in a model near the knee of the curve|say the one that maximizes the savings (inbits per base) relative to the null model for the cross-training set divided by the log2 of the numberof edges (Figure 3).After choosing the model using cross-training, it can be improved slightly by retuning on theentire initial set of seeds and
attening the probabilities. This preserves the structure of the model,but includes all the data in the tuning.2.8 Modifying an hmm for better matches to a seedThe methods of Section 2.7 discuss ways to change the parameters of an hmm without changingthe structure of the model (other than deleting edges or states that are not used). In this section,I'll discuss a few techniques for modifying the model structure, either to improve the match betweenthe model and the seed sequences or to decrease the size of the model.After any operation that changes the structure of the model, the probability distributions for thestates and edges involved in the change need to be recomputed, so that they continue to sum to 1.

2. Markov Models as compression models of interesting sequences 11
11.21.41.6

1.82
0 200 400 600 800 1000edgescost (bits/base) 33 33 3 333 3333 33333 333 33 33 33 333 3 33333 33 333 3 3 3333 3 33 333 333 3333 333 333333 333333 3333 333 33 3333 33 333 333333 333333333 333 3333333 333 33 333 3 3 333 33 333 3 3333 33 33 33 3333333333333333

Figure 2: Scatter diagram of information content (in bits/base) of cross-training set (54sequences) versus model size, for hmms built from the 109 sequences of REP99-gxn (Sec-tion 3.1).
00.010.020.030.040.050.060.070.080.090.1
0 200 400 600 800 1000edgessavings/lg(edges) 33 33 3 333 3333 33333 333 33 33 33 333 3 33333 33 333 3 3 3333 3 33 333 333 3333 333 333333 333333 3333 333 33 3333 33 333 333333 333333333 333 3333333 333 33 333 3 3 333 33 333 3 3333 33 33 33 33333333333333Figure 3: Scatter diagram of the savings relative to a 2-bit/base null model (in bits/base) ofcross-training set (54 sequences) versus model size, for hmms built from the 109 sequencesof REP99-gxn (Section 3.1).

12 2. Markov Models as compression models of interesting sequencesTwo operations reduce the size of the model: RemoveUseless and MergeStates. Four operationsincrease the size of the model: AddUseful, AddSkipEdges, UnrollSelfLoops, and SplitVagueStates.RemoveUselessThe simplest version of the RemoveUseless operation was described in Section 2.7|any edgesor states whose counts are zero after training are removed. Models can be pruned more aggressivelyby removing any states or edges whose counts are less than some constant. Pruning o� edges thathave only been used once results in fairly mild pruning that usually does not change the averagecost for the seed sequences much, especially if retraining is done to tune the new path through themodel now used by the sequence that previously used the deleted edge. More aggressive pruningcan make much larger changes in costs.MergeStatesWhen constructing an hmm from a high-order simple Markov model, there are often several statescreated that really represent the same position in the family of sequences, but which look di�erentin the simple Markov model because of some slight variation in a nearby position. In some cases, thetuning of the model will favor one of the states su�ciently that simple pruning with RemoveUselesswill remove the other states corresponding to the same position, but in other cases parallel pathswith slight di�erences will remain in the model.To reduce the size of the model, and increase its generality, it is helpful to try to identify suchparallel paths and merge them together. The MergeStates operation looks for two states that have acommon neighbor on the same side (that is, either both have out-edges to the neighbor, or both havein-edges from the neighbor). If the two states predict similar enough distributions for the characters,then merging the states into a single state will not increase the cost of sequences by much.The current version of the program only considers merges between states whose connection tothe neighbor is a major one (the edge count a high enough percentage of the edge counts on thisside of the state), and only accepts merges for which the estimated increase in total cost for the seedsequences is less than a speci�ed threshold (generally a few bits).All states are checked to see what they can merge with, and merges that are su�ciently goodare done. After a merge, the neighbors of the merged state are rechecked, so that nearly parallelpaths can be \zipped" together from a common endpoint.AddUsefulThe AddUseful operations adds edges and states to the hmm by considering one sequence at atime, and adding one useful edge and one useful state (with a pair of edges) to the hmm for thatsequence.Dynamic programming is used to �nd the cost of the lowest cost path from the start state toeach state for each position in a sequence (let's call the cost Fs(i) for the path to state s in positioni). A similar dynamic programming algorithm �nds the lowest-cost path from each state to the stopstate (let's call it Bs(i)). Note that the lowest cost path from the start state to the stop state forthe sequence w as a whole is mins(Fs(i) + Bs(i)), independent of i.When looking for a new edge to add, consider the state ai that minimizes Fs(i) and the statebi+1 that minimizes Bs(i + 1) + costs(wi+1). If we added an edge from ai to bi+1 with cost c, thenthere would be a path through the model with total costFai(i) + c + costbi+1(wi+1) + Bbi+1(i + 1) :If this cost is lower than the current best path, then adding the edge would lower the cost.Unfortunately, we can't freely add edges with arbitrary costs, since the cost is a negative loglikelihood, and adding an edge must \steal" probability from the other out-edges of state ai.

2. Markov Models as compression models of interesting sequences 13To minimize the error in estimating how much a new edge will save, and to make the most usefulchange to the model, the program looks for the position i that minimizesFai(i) +Bbi+1 (i + 1) + costbi+1 (wi+1) ;for which there isn't already an edge from ai to bi+1. An edge is added with a cost that is as largeas possible while still o�ering some savings over the current best path. More accurately, an edgeis added only if this maximum cost exceeds some user-supplied threshold, generally around 5 or 10bits.States are added in a similar way, by considering ai and bi+2, and choosing the position thatminimizes Fai(i) +Bbi+2 (i + 2) + costbi+2 (wi+2) :If there is no state with an edge from ai and an edge to bi+2, then we can add a new state s withcosts(wi+1) = 0, an edge from ai with cost c and an edge to bi+2 with cost 0. States are added onlyif the max cost we can use for c and still have a lower cost path is above a user-speci�ed threshold,generally around 10 bits.The AddUseful operation is particularly valuable when modifying models constructed from asingle sequence, but often adds edges or states which are idiosyncratic (useful only for a singlesequence). The scripts that use AddUseful generally follow it by retuning the model and pruningout edges and states that are used infrequently.AddSkipEdgesThe hmm implementation used for these experiments does not include null states, which havebeen used by other researchers for modeling deletions. To approximate the e�ect of null states, wecan add skip edges around each state. That is, for each path of three states (a ! b ! c) in thehmm, we can add a new edge around the middle state (a! c).In some models, one state will have many in- and out-edges, and the number of skip edges aroundthat state would be enormous. Since such nodes are usually junk loops, skip edges around themgenerally will not save many bits. To avoid the potential quadratic expansion of the number ofedges, skip edges around a state are not added for states which would produce too many skip edges.The threshold is currently set at about one �fth the number of states.The skip edges need to be given a fairly high cost, to avoid stealing too much probability fromthe other out-edges of a. For example, the hmm700b script described in Section 3.1 adds skip edgeswith a cost of 6 bits (probability approximately 0.016) at the end of the script.UnrollSelfLoopsThe automatically constructed models often contain self-loops (edges for a state back to itself).These self-loops represent a subsequence of one or more characters drawn from the distribution inthe state|the length of the subsequence being modeled as an exponential distribution. In manycases, the subsequence can be better modeled by using two states. One of the two loop-unrollingtransformations shown in Figure 4 is applied to all self-loops (except the start and stop states).These transformations do not change the cost for any sequences, but retraining the hmm can capturemore detailed information about the �rst or last character of the subsequence or match the lengthdistribution for the subsequence a little better.SplitVagueStatesThe hmms occasionally merge paths that should be separate. One hint that this is happeningis a state that matches multiple characters well. The SplitVagueStates operation replicates suchstates, duplicating the in- and out-edges, and modi�es the probabilities in the states so that eachonly matches one character well.

14 3. Looking for REPs in EcoSeq6p pqr st qr stp p st
pqpr(1-p)q stp(1-p)rFigure 4: Two possible transformations for unrolling self-loops. Transforming the self-loopin the middle to the pair of states on the left allows the last character of the subsequencemodeled by the self-loop to be better modeled, and transforming to the pair on the rightallows the �rst character to be better modeled.A related operation (SplitStates) attempts to separate two paths, splitting any state that hastwo high-probability out-edges (or two likely in-edges). This operation is essentially the reverse ofwhat MergeStates does. SplitStates was not used in any of the scripts for the hmms of Table 4.3 Looking for REPs in EcoSeq6As an example of the techniques described in the preceding sections, the cost map method wasused to �nd clusters of repetitive extragenic palindromic sequences (REPs) in the 1875932 basesof the EcoSeq6 database [12]. The sequences found were compared with a list maintained by KenRudd [13]. The three search techniques used for building this comparison list were described andreferenced in Table I of [2]. The best of the techniques mentioned there (self-BLAST) found 106 of112 REP clusters in EcoSeq5, or about 95%.One goal is to do at least as well as the self-BLAST search in �nding the already known REPs,and, hopefully, to provide a better characterization of the structure of the REPs than currentconsensus sequences.The current consensus sequence for a REP [2] is5'GCCKGATG-CGRCGY---RCGYCTTATCMGGCCTAC3'where K is G or T, R is G or A, M is C or A, and Y is C or T.A variant on the REPs, named REPv, has also been identi�ed, and given the following consensussequence [13]: GCCTGATCGCGCTACGCTTATCAGGCCTAC.3.1 Looking for REPs using a seedUsing simple Markov modelsOne of the two largest REP clusters (REP99 or REP106) was chosen as a seed sequence and anorder-8 simple Markov model was constructed from it. Since we are looking for the sequences oneither strand of the DNA and a large part of what we are looking for is palindromic, the complementblurring parameter was set to 1.

3. Looking for REPs in EcoSeq6 15The zero o�set and neighbor blurring parameters were chosen arbitrarily, but near values thathad given optimal adaptive compression for sets of similar sequences. The zero-o�set was set to0.1, and the neighbor blurring parameters were 0.05 (for A$G and C$T) and 0.01 for the othersubstitutions.The entire EcoSeq6 database was searched for sequences whose cost using the models wassigni�cantly better than 1.99 bits/base. This expand step was repeated using the result as a seed fora new model until the number of sequences found no longer increased (5 expansions at 36 secondseach on a SparcStation 10). The �nal results were called REP99-gxn and REP106-gxn. Theseboth did an excellent job of �nding REPs, with 90{91% of the previously identi�ed REP sequencesfound [13]. All of the sequences overlapped with a known REP sequence, and only 18{20 REPclusters were missed, all of them short clusters with a single REP in them.A smaller seed was also tried|a single copy of the REPv consensus. Growing by repeatedexpansion from this seed found essentially the same set of REPs. The statistics for all three searchesare listed in the �rst three lines of Table 3 on page 16.To check the sensitivity to the model parameters, the repeated expansion from REP99 wasdone with three more sets of parameters, chosen to give optimal adaptive coding of the REP99-gxnsequences for order-6, order-8, and order-10 Markov models (lines REP99-gx6, REP99-gx8, andREP99-gx10 in Table 3 on page 16). The \extra" sequences found by the order-8 model are justregions of unknown bases in EcoSeq6. Since the program converts these unknowns arbitrarily tosequences of As, once a piece of one of them gets into the seed, the entire region of unknowns willcompress very well. The order-10 model does poorly, probably because any base substitution willdisrupt the compression for 11 bases, not just 7 or 9 as with the smaller models. The neighborblurring can compensate somewhat for single errors in the 11-word, but not for two errors.An experiment was also done using a signi�cance threshold that varied with the square-root ofsequence length, rather than being �xed, as described in Section 1.2. The standard deviation ofthe encoding cost per base was computed for the entire EcoSeq6 database, and the threshold setarbitrarily at �ve standard deviations plus three bits (the extra three bits was to prevent too manyvery short sequences from being falsely reported). Line REP99-gxa in Table 3 reports the resultsof repeatedly growing the set of sequences with this criterion. Over 30 iterations were requiredbefore the process converged, as the standard deviation was recomputed for each iteration, and thesequences found varied slightly as the threshold changed. The huge number of false negatives werealmost all from the regions of unknown characters, and weeding these out produced a fairly clean setof REPs (REP99-gxawa). Using this set as a seed for the standard repeated expansion search (usinga threshold of 27.483 bits) produced REP99-gxawa-gxn, which �nds one more REP than REP99-gxn. Of the three \false +" sequences, one is also found by most of the hidden Markov models, andis probably a genuinely related sequence not on Rudd's list (3660932 3660963 uspAeco+846).Using hidden Markov modelsHidden Markov models were constructed using the REP99-gxn set as a seed. Cross-training wasdone using a randomly chosen half of the sequences for training and the rest for cross-training. Themodel that minimized cross-training cost divided by the log of the number of edges was chosen. Thehmm chosen, REP99-gxn-cross, has 202 states and 282 edges and compresses the REP99-gxn setto 1.24 bits/base, with almost equal compression of the two halves. A similar script that did notconsider larger models came up with the same model, but retuned it on the entire set of sequences,reducing the cost to 1.20 bits/base (REP99-gxn-small). Searching EcoSeq6 with these models takesabout 300 seconds on a SparcStation 10, compared to about 32 seconds for searching with a simpleMarkov model.A smaller model was also built from the same seed: REP99-gxn-hmm125 built a model with 120states and 169 edges, getting 1.367 bits/base.I also tried some more complex scripts that attempted to merge states, remove unneeded statesand edges, and do other model manipulation. Table 4 summarizes the sizes and cost/base of all thehmms tried, and the Appendix lists the scripts used.

16 3. Looking for REPs in EcoSeq6reported 244 REP sequences 128 REP clusterssearch name sequences bases false � false + false � false +simple Markov models:REP99-gxn 109 12077 23 0 18 0REP106-gxn 108 11940 25 0 20 0REPv-gxn 107 12030 25 0 20 0REP99-gx6 107 12010 29 0 21 0REP99-gx8 114 23991 25 6 19 6REP99-gx10 101 11595 34 0 27 0REP99-gxa 606 21521 71 493 27 494REP99-gxawa 121 8097 71 8 27 9REP99-gxawa-gxn 114 12633 22 3 17 3no seed:EcoSeq6c 371 62827 136 320 82 322EcoSeq6c-gxn 162 105003 46 61 33 60hidden Markov models:REP99-gxn-hmm125 144 9408 32 2 18 6REP99-gxn-small 155 10099 20 7 13 10REP99-gxn-cross 153 10037 21 6 14 9REP99-gxn-hmm400m 123 11668 18 4 14 4REP99-gxn-hmm400p 127 11921 13 5 9 6REP99-gxn-hmm700b 124 12290 14 5 10 5REP99-gxn-fromseq14 138 20893 34 8 21 10REP99-gxn-fromseq15 125 22621 25 8 17 7REP99-gxn-fromseq16 150 21332 26 8 16 10hmm + expand:REP99-gxn-hmm125xn 120 11911 20 0 16 0REP99-gxn-smallxn 117 12072 21 1 16 1REP99-gxn-crossxn 116 11980 22 1 17 1REP99-gxn-hmm400mxn 117 12205 19 2 15 2REP99-gxn-hmm400pxn 118 12274 17 2 13 2REP99-gxn-hmm700bxn 120 12804 14 3 10 3REP99-gxn-fromseq14xn 120 23233 26 6 19 6REP99-gxn-fromseq15xn 118 23694 23 6 18 6REP99-gxn-fromseq16xn 122 23505 21 6 16 6Table 3: Summary of using various models to search for REP clusters in EcoSeq6. The resultsof the search were compared with a list of 244 known sequences grouped into 128 clusters [13].The table reports the number of sequences (or clusters) on the list that do not overlap with anysequence found (false �), and the number of sequences found that do not overlap with any on thelist (false +).The largest model (REP99-gxn-hmm700b) has over half its edges as \skip edges" to allow forskipping a base in the sequence. These extra edges increase the cost for the seed set from 0.94bits/base to 0.96 bits/base, but even this hmm cannot �nd REP60, which skips three normallycrucial bases in the consensus sequence. An hmm that allowed null states (as Krogh's do [5]) mightbe able to recognize REP60, but Krogh's simple left-to-right models cannot be used for searchingfor repeated occurrences of a REP in a sequence, and my code has not been rewritten yet to handlenull states.The \fromseq" scripts use direct construction of an hmm from the �rst sequence in the seed(see Section 2.6), then add useful states and edges for the remaining sequences. These models aresomewhat smaller than the models constructed from simple Markov models, but do not do quite aswell on the searches.The results of searching with all these models (looking for sequences that had 27.483 bits betterthan 1.97 bits/base) were expanded once with a simple Markov model (27.483 bits better than 1.99

3. Looking for REPs in EcoSeq6 17name states edges cost (bits) cost (bits/base)REP99-gxn-hmm125 120 169 16506 1.36673REP99-gxn-small 202 282 14587 1.20784REP99-gxn-cross 202 282 14973 1.23983REP99-gxn-hmm400m 227 293 13297 1.10098REP99-gxn-hmm400p 272 422 12540 1.03831REP99-gxn-hmm700b 437 1358 11553 0.95660REP99-gxn-fromseq14 134 190 15378 1.27331REP99-gxn-fromseq15 133 249 14461 1.19742REP99-gxn-fromseq16 103 146 15251 1.26282Table 4: Sizes and encoding cost of REP99-gxn for the hidden Markov models built fromthe sequences of REP99-gxn.model REP99- start stop where in EcoSeq6gxn-small,gxn-cross 367257 367298 codBecoM+6609gxn-hmm125 367259 367298 codBecoM+6611gxn-hmm400p, gxn-hmm700b 872107 872123 ECOCHLEN-c+119gxn-hmm700b 2313595 2313636 ECOECOA-c+13gxn-hmm400p 2313601 2313630 ECOECOA-c+19gxn-small 2313614 2313632 ECOECOA-c+32gxn-hmm700bxn 3660917 3660985 uspAeco+831gxawa-gxn, gxn-crossxn, gxn-hmm400mxn 3660932 3660963 uspAeco+846gxn-smallxn 3660932 3660965 uspAeco+846gxn-hmm700b 3660932 3660985 uspAeco+846gxawa 3660934 3660963 uspAeco+848gxn-hmm400m 3660940 3660963 uspAeco+854gxn-small,gxn-cross 3660941 3660963 uspAeco+855gxn-hmm400p 3660943 3660963 uspAeco+857gxn-hmm400mxn, gxn-hmm400pxn 3909571 3909601 gyrBecoM+10390gxn-hmm400p 3909572 3909600 gyrBecoM+10391gxn-hmm400m 3909573 3909601 gyrBecoM+10392gxn-small 3909574 3909601 gyrBecoM+10393Table 5: Table of sequences found by distinctly di�erent searches, but not on the list of knownREPs [13]. The codBecoM sequence is adjacent to REPv9, and the ecoecoa-c sequence is adjacentto REP117. But the ecochlen-c, uspAeco, and gyrBecoM sequences do not seem to be near anyof the known REPs.start stop sequence872107 872123 cgcgtcttatcaggcct3660917 3660985 tggcgcgccttgttacctgatcagcgtaaacaccttatctggcctacggtctgcgtacgcaatcaaaat3909571 3909601 ttttcgtagggcggataagcaccgcgcatccTable 6: The new possible REP sequences or fragments reported in Table 5 are listed here,using the earliest start and latest stop position for any of the searches.bits/base). Table 3 summarizes the results for the hmms directly and for the expanded sets (withan \xn" at the end of the name).Some of the \false positives" may represent previously unrecognized REP sequences, and othersmay be conserved regions adjacent to REPs. Table 5 lists the sequences that were found repeatedlyby distinctly di�erent searches|all of these look like they are closely related to REP or REPvsequences. The three sequences that are not adjacent to an already known sequence are shown inTable 6.Let's look at alignments of the three new potential REP sequences to the REP consensus. The

18 3. Looking for REPs in EcoSeq6�rst one is clearly the second half of a REP sequence.cgcgtcttatcaggcct****************-RCGYCTTATCMGGCCTAC3'Looking back a little bit extends the fragment to almost a REP, though the gap in the middle islonger than usual:aaattg-ctgatg--acgtggcggagtgccgcgtcttatcaggcctggagg* ****** **** ****************5'GCCKGATGCGRCGY-----------RCGYCTTATCMGGCCTAC3'The second seems to contain a REP in the middle:tggcgcgccttgttacctgat-cagcgtaaacaccttatctggcctacggtctgcgtacgcaatcaaaat****** * **** ** ***************5'GCCKGATGCGRCGY--RCGYCTTATCMGGCCTAC3'The third seems to contain a somewhat corrupt REPv-:ttttcgtagggcggataagcaccgcgc-atcc***** * ******* **** ***GTAGGCCTGATAAGCGTAGCGCGATCAGGCMy hmms seem to indicate a di�erent consensus sequence for REPv:YGCCKGATGCGCTACGCTTATCAGGCCTACR without the C after the second T. The found sequence is aneven better match to the complement of this sequence:ttttcgtagggcggataagcaccgcgcatcccgacac****** * ******* ******** * **YGTAGGCCTGATAAGCGTAGCGCATCM-GGCR3.2 Looking for repeated elements without a seedSince REPs are so common (REP clusters make up about 0.6% of the E. coli genome), it shouldbe possible to �nd them without using a seed|just from looking at the database itself and tryingto �nd repeated patterns.An attempt was made to concentrate the EcoSeq6 database, by building a simple order-8 Markovmodel (with zero-o�set and complement blurring both set to 1 and no neighbor blurring) fromthe entire database, then using the model to search the database for sequences that compressedsigni�cantly better than average. (See the EcoSeq6c line in Table 3.)The resulting model found about 45% of the REP sequences, but only about 5.6% of the basesfound were in a REP cluster. Growing the set of sequences by repeated expansion increased thenumber of REP clusters found to about 79% (EcoSeq6c-gxn in Table 3), but still only about 7.4% ofthe bases were in REP clusters. The problem is that there are some much larger repeated sequences,particularly the numerous IS sequences, and the repeated expansion process is looking simultaneouslyfor REPs and IS sequences.If each of the sequences in the \concentrated" �le EcoSeq6c is individually used as a seed that isgrown by repeated expansion, we get many di�erent sets of sequences. Most of the sets of sequencesare clearly identi�able (REPs, IS2, IS5, : : :). If we look just at the sets in which one or more REPsare found, we �nd very similar coverage of the REPs (21{27 REPs missed), no matter which seed isused (see Table 7). Although REP99 and REP106 were originally chosen as seeds for Table 3 becausethey were the biggest known REP clusters, it does not seem necessary to start with them|almostany REP cluster found by concentrating the database works about as well.3.3 Hard-to-�nd REPsSome of the known REPs did not come up in any of the searches, and others rarely appeared.Table 8 on page 20 lists the REP sequences that were rarely found. Most of the missed sequences arefairly far from the consensus sequence, but three of the misses are rather surprising: REP39- (whichis found only by REP99-gx6), REP60 (which is found only by REP99-gxn-fromseq14, REP99-gxn-fromseq15, and REP99-gxn-fromseq16), and REP83 (which is found by most of the hmms, but notby the simple Markov models).

3. Looking for REPs in EcoSeq6 19reported 244 REP sequences 128 REP clusterssearch name sequences bases false � false + false � false +EcoSeq6c-359-gxn 109 12374 21 0 18 0EcoSeq6c-367-gxn 109 12016 22 0 18 0EcoSeq6c-292-gxn 110 12055 22 0 18 0EcoSeq6c-366-gxn 109 12171 22 0 18 0EcoSeq6c-287-gxn 109 12213 22 0 18 0EcoSeq6c-110-gxn 109 12216 22 0 18 0EcoSeq6c-272-gxn 109 12232 22 0 18 0EcoSeq6c-3-gxn 109 12255 22 0 18 0EcoSeq6c-2-gxn 116 23671 22 6 18 6EcoSeq6c-275-gxn 115 24390 22 6 18 6EcoSeq6c-283-gxn 108 12202 22 0 19 0EcoSeq6c-370-gxn 109 12010 23 0 18 0EcoSeq6c-290-gxn 109 12188 23 0 18 0EcoSeq6c-132-gxn 109 12235 23 0 18 0EcoSeq6c-281-gxn 109 12240 23 0 18 0EcoSeq6c-1-gxn 109 12270 23 0 18 0EcoSeq6c-293-gxn 109 12427 23 0 18 0EcoSeq6c-6-gxn 114 12868 23 5 18 5EcoSeq6c-371-gxn 116 24726 23 6 18 6EcoSeq6c-125-gxn 108 12072 23 0 19 0EcoSeq6c-278-gxn 108 12204 23 0 19 0EcoSeq6c-126-gxn 108 12289 23 0 19 0EcoSeq6c-284-gxn 108 12559 23 0 19 0EcoSeq6c-4-gxn 109 12049 24 0 19 0EcoSeq6c-271-gxn 109 12110 24 0 19 0EcoSeq6c-270-gxn 108 12132 24 0 19 0EcoSeq6c-279-gxn 108 12201 24 0 19 0EcoSeq6c-294-gxn 108 12236 24 0 19 0EcoSeq6c-124-gxn 108 12651 24 0 19 0EcoSeq6c-368-gxn 108 12135 24 0 20 0EcoSeq6c-131-gxn 107 12624 24 0 20 0EcoSeq6c-273-gxn 114 25173 24 6 20 6EcoSeq6c-108-gxn 109 12018 25 0 19 0EcoSeq6c-18-gxn 108 12058 25 0 19 0EcoSeq6c-289-gxn 114 24525 25 6 19 6EcoSeq6c-107-gxn 108 11629 25 0 20 0EcoSeq6c-16-gxn 109 11649 25 0 20 0EcoSeq6c-7-gxn 108 11673 25 0 20 0EcoSeq6c-129-gxn 108 11731 25 0 20 0EcoSeq6c-15-gxn 107 11967 25 0 20 0EcoSeq6c-364-gxn 107 12007 25 0 20 0EcoSeq6c-282-gxn 108 12234 25 0 20 0EcoSeq6c-5-gxn 108 12271 25 0 20 0EcoSeq6c-19-gxn 107 12319 25 0 20 0EcoSeq6c-365-gxn 107 12572 25 0 20 0EcoSeq6c-285-gxn 108 12128 26 0 20 0EcoSeq6c-276-gxn 107 12300 26 0 20 0EcoSeq6c-17-gxn 107 11707 26 0 21 0EcoSeq6c-274-gxn 107 11771 26 0 21 0EcoSeq6c-291-gxn 106 11790 27 0 22 0EcoSeq6c-149-gxn 106 12112 27 0 22 0Table 7: Search results starting with each sequence from the \concentrated" �le EcoSeq6cas a seed for repeated expansion. Only those searches that found at least on REP arereported here. The results are sorted by the number of known REPs that they missed.

20 4. Conclusions and future workmissed start stop name81 4160148 4160172 REP95a (> 6)81 4071267 4071294 REP123 (6)81 3575796 3575821 REP72 (> 6)81 2966594 2966627 REP61 (> 6)81 2727203 2727228 REP55 (> 6)81 2014124 2014151 REP40a (> 6)80 698308 698337 REP115- (5)80 4294808 4294836 REP102b (> 6)80 1977449 1977480 REP39- (2)79 2538240 2538265 REP50 (> 6)78 3803080 3803108 REP80- (6)78 2948389 2948418 REP60 (3)77 4618233 4618264 REP110 (> 6)77 2457214 2457245 REP119 (5)77 1177270 1177299 REP30 (5)73 990645 990675 REP26b (> 6)73 4160213 4160242 REP95b- (4)73 3936184 3936214 REP83 (3)72 4143645 4143674 REP93 (5)72 2362130 2362161 REP118 (4)64 368000 368027 REP10- (5)58 4084547 4084578 REP90-Table 8: REP sequences that were not found by most searches. The �rst column liststhe number of searches (out of 81) that failed to �nd the REP. The name is from the listcompiled by Rudd [13].4 Conclusions and future workI have shown how cost maps can be used e�ectively to search for interesting DNA sequencesusing two di�erent types of models: simple Markov models and hidden Markov models. The hmmsprovide a more sensitive search technique, but both types of model are quite e�ective at �ndingREPs in the E. coli genome|as e�ective as the best previously known techniques [2, Table I].Several improvements are planned including better techniques for building hmms (perhaps usingsimple Markov models to de�ne states, but actual sequences to get the connectivity between states),better handling of ambiguity characters in the database and in the seed sequences, interfacing thehmms to a multiple-alignment program, using a non-constant null model, including null states inthe hmms, allowing the user to specify that only sequences that use particular states of the hmmare interesting, chaning the de�nition of blurring to blur only in the \context" positions and not thepredicted position, and modifying the code to handle protein sequences.There are interesting repeated sequences that are not found by concentrating EcoSeq6. Forexample, the sequences found by Kunisawa and Nakamura [6] are not in the concentrated �le nor inthe sets of sequences found by the REP models. Growing their set of �ve examples �nds a total ofeight examples in EcoSeq6. Perhaps the threshold for signi�cance could be changed to �nd repeatedelements that are either not quite as common or not as long as the REP and IS sequences.I'm also interested in studying the hmms that are produced and using them to characterizeand classify the REP sequences. One previous study identi�ed some interesting REP clustersas containing binding sites for integration host factor (IHF), calling them repetitive IHF-bindingpalindromic elements (RIPs) [9]. As a preliminary step, I examined the hmms to see if they modeledthe IHF binding site of the RIPs. The site has also been referred to as sequence L of a BIME [3]).In REP99-gxn.hmm400m, there is a sequence of states matching CAATATATTG (Figure 5,upper-left side), which matches 48 times, while Oppenheim et al. reported only 33 possible bindingsites in EcoSeq5, 28 as part of \RIP" elements and 5 as parts of \near-RIPs" [9]. The hmm missedone of the RIP sites (in REP102|only part of REP102 was found by the hmm) and one of the

4. Conclusions and future work 21
tgac

a tca ct

ga

t

g

c

a ag a t

t

cg tg

c t

tg

t

g a a

ac ac ct

ct

ca ct

ca cag

ag

atg

t

at gc c gca tc

gtctgac g c ag c at

tca atc cta tc g

c a a tc at tac ag t t ga

c

a ga atgagt

t t g a

at

t

t

t

g

c ag tca gaacgt t

gtcacatgctaggca

agcatcg tc

tac tc

g t

a

g

g

c

a

c

gt g a t a a g

g c

g

t

t

ct a

ct

g

c

c

g

tac a g

a ct g

c

g

act ct

ca

a

g

c

ga t

c

gt

g

a

t

g

c

g

a

ct

g

c

t

gt

ga

c

g

c

g

t

gt gt cat ct gc

c

t

at

ct

g

c

t t a t c

ct

g

c

ga

ta

ga

a

a

c

g

c

c

t

t

a

t

c

ca

g

g

g

atg

c

c

t a

c ag agt

ag

tacg

gtc

cg

tgac

gctcagt

ct a ac cga gt cg

ta tg ta

at

ag

a gt

g

c

a

t

c

ca

g

ga

c

a

Figure 5: Automatically produced drawing of the hmm REP99-gxn-hmm400m, which isthe most easily understood hmm of the ones listed in Table 4. The thickness of the edges isproportional to the square root of the number of times the edge was used. All edges thatseem to connect to or from blank space are actually connections to the junk loop on themiddle of the left side of the picture. The two main REP sequences and the REPv variantcan be seen in both the forward direction (on the right) and the reverse direction (on theleft).

22 Referencesnear-RIPs (REP95 was not found at all). The seventeen locations for possible IHF binding sitesnewly found by the hmm are in REPs 18 (twice), 36, 44, 45, 46, 64 (twice), 89, 107, 112, 113 (twice),121, 126, 127. Also, there are two locations in REP34, only one of which is listed as a RIP byOppenheimer et al. [9, Fig. 4].Since the IHF binding sequence is palindromic for the middle 10 bases, the 9-words of the simpleMarkov model can't determine the direction in the middle, and so the paths for the two directionsshare the middle two states when built directly from the simple Markov models. State mergingresults in blurring the two directions still more.References[1] J. Arnold, A. J. Cuticchia, D. A. Newsome, W. W. Jenning III, and R. Ivarie. Mono- through hexanu-cleotide composition of the sense strand of yeast DNA: a Markov chain analysis. Nucleic Acids Research,16(14):7145{7158, 1988.[2] G. P. Dimri, K. E. Rudd, M. K. Morgan, H. Bayat, and G. F.-L. Ames. Physical mapping of repetitiveextragenic palindromic sequences in Escherichia coli and phylogenetic distribution among Escherichiacoli strains and other enteric bacteria. Journal of Bacteriology, 174(14):4583{4593, July 1992.[3] E. Gilson, W. Saurin, D. Perrin, S. Bacheullier, and M. Hofnung. Palindromic units are part of a newbacterial interspersed mosaic element (BIME). Nucleic Acids Research, 19(7):1375{1383, 1991.[4] S. Karlin and S. F.Altshul. Methods for assessing the statistical signi�cance ofmolecular sequence featuresby using general scoring schemes. Proceedings of the National Academy of Sciences, USA, 87:2264{2268,Mar. 1990.[5] A. Krogh, I. S. Mian, and D.Haussler. A hidden Markov model that �nds genes in E. coli DNA. TechnicalReport UCSC-CRL-93-33, University of California at Santa Cruz, Computer Science, UC Santa Cruz,CA 95064, 1993. In preparation.[6] T. Kunisawa and M. Nakamura. Identi�cation of regulatory building blocks in Escherichia coli genome.Protein Sequences and Data Analysis, 4:43{47, 1991.[7] M.-Y. Leung, B. E. Blaisdell, C. Burge, and S. Karlin. An e�cient algorithm for identifying matcheswith errors in multiple long molecular sequences. Journal of Molecular Biology, 221:1367{1378, 1991.[8] A. Milosavljevi�c. Discovering sequence similarity by the algorithmic signi�cance method. In Proceedings,1st International Conference on Intelligent Systems for Molecular Biology, pages 284{291, Menlo Park,1993.[9] A. B. Oppenheim, K. E. Rudd, I. Mendelson, and D. Te�. Integration host factor binds to unique class ofcomplex repetitive extragenic DNA sequences in Escherichiacoli . MolecularMicrobiology, 10(1):113{122,1993.[10] G. J. Phillips, J. Arnold, and R. Ivarie. Mono- through hexanucleotide composition of the Escherichiacoli genome: a Markov chain analysis. Nucleic Acids Research, 15(6):2611{2626, 1987.[11] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition.Proceedings of the IEEE, 77(2):257{286, Feb. 1989.[12] K. E. Rudd. Maps, genes, sequences, and computers: An Escherichia coli case study. ASM News,59:335{341, 1993.[13] K. E. Rudd, 1994. Personal communication.[14] E. E. St�uckle, C. Emmrich, U. Grob, and P. J. Nielsen. Statistical anlysis of nucleotide sequences. NucleicAcids Research, 18(22):6641{6647, 1990.

A. Script for hmm125 23A Script for hmm125// build a model with at most 125 states, tune it and flatten itBuildHMM 125 1 1 999Tune 5 .001RemoveUseless 20 .99Flatten 1. .1ReorderStatesPrintB Script for hmm400m// Build a 400-state hmm, tune, merge and add useful// Models tried with start=stop=loopSplitSeq .5 0 50% for cross trainingBuildHMM 400 1 1 999Tune 5 .001RemoveUseless 20 .99Flatten 1 .1Tune 1 .001MergeStates 1 1.2Tune 5 .001RemoveUseless 20 .99Flatten 1 .1Tune 1 .001MergeStates 2 1.4Tune 5 .001RemoveUseless 20 .99Flatten 1 .1Tune 1 .001MergeStates 4 1.6Tune 5 .001RemoveUseless 20 1.99Flatten 1 .1AddUseful 10 15Tune 5 .001RemoveUseless 20 .99Flatten 1 .1Tune 1 .001MergeStates 2 1.4Tune 5 .001RemoveUseless 20 .99Flatten 1 .1Tune 1 .001MergeStates 4 1.6Tune 5 .001RemoveUseless 20 1.99Flatten 1 .1

24 C. Script for hmm400pRestoreBestSplitSeq 0 0 // tune on whole setTune 5 .001RemoveUseless 20 .99Flatten 1 .1ReorderStatesPrintC Script for hmm400p// Build a 400-state hmm, tune, merge and add useful// Models tried with start=stop=loopSplitSeq 0.3 0 30% for cross trainingBuildHMM 400 1 1 999TieMult .4Tune 5 0.001RemoveUseless 20 0.99Flatten 1 0.1MergeStates 1 1.2Tune 5 0.001RemoveUseless 20 0.99AddUseful 5 10Tune 5 0.001RemoveUseless 20 0.99Flatten 1 0.1MergeStates 1 1.2Tune 5 0.001RemoveUseless 20 0.99AddUseful 5 10Tune 5 0.001RemoveUseless 20 0.99Flatten 1 0.1MergeStates 1 1.2Tune 5 0.001RemoveUseless 20 0.99Flatten 1 0.1MergeStates 2 1.4Tune 5 .001RemoveUseless 20 0.99Flatten 1 0.1RestoreBestSplitSeq 0 0 // tune on whole setTune 5 0.001RemoveUseless 20 0.99Flatten 1 0.1ReorderStatesPrintD Script for hmm700b//build model with single loop stateBuildHMM 700 1 1 999TieMult 0.0 // turn off complement tiesTune 3 .001RemoveUseless 20 .9 // remove useless

E. Script for fromseq14 25MergeStates 4 1.6 // merge aggressivelyTune 3 .001RemoveUseless 20 2.99 // prune strongly// add edges with potential gain>=4, states with gain>=5AddUsefulIncr 4 5Tune 5 .001RemoveUseless 20 1.99 // prune mildly// add edges with potential gain>=4, states with gain>=5AddUsefulIncr 4 5Tune 5 .001RemoveUseless 20 .99 // remove uselessFlatten 1. .4 // flatten fairly stronglyAddSkipEdges 6.ReorderStatesPrintE Script for fromseq14BuildFromSeq 0 // build a model from the first sequenceAddUsefulIncr 5. 10.Tune 4 .001RemoveUseless 20 4.9Tune 4 .001SplitVagueStates 1.5Tune 4 .001RemoveUseless 20 1.9AddUsefulIncr 5. 10.Tune 4 .001RemoveUseless 20 2.9Tune 4 .001SplitVagueStates 1.5Tune 4 .001RemoveUseless 20 1.9AddUsefulIncr 5. 10.Tune 4 .001RemoveUseless 20 0.9RestoreBestFlatten 1 0.1ReorderStatesPrintF Script for fromseq15BuildFromSeq 0 // build a model from the first sequenceAddUsefulIncr 5. 10.Tune 4 .001

26 G. Script for fromseq16RemoveUseless 20 4.9Tune 1 .001MergeStates 4 1.6Tune 3 .001RemoveUseless 20 1.9AddUsefulIncr 5. 10.Tune 4 .001RemoveUseless 20 2.9Tune 4 .001SplitVagueStates 1.5Tune 4 .001RemoveUseless 20 1.9AddUsefulIncr 5. 10.Tune 4 .001RemoveUseless 20 0.9MergeStates 4 1.6Tune 3 .001RemoveUseless 20 0.9RestoreBestFlatten 1 0.1ReorderStatesPrintG Script for fromseq16BuildFromSeq 0 // build a model from the first sequenceSplitSeq .3 0 // 30% for cross trainingAddUsefulIncr 2. 5.Tune 4 .001RemoveUseless 20 4.9Tune 2 .001Flatten 1 0.5MergeStates 6 1.8Tune 3 .001RemoveUseless 20 1.9AddUsefulIncr 2. 5.Tune 4 .001RemoveUseless 20 3.9Tune 2 .001Flatten 1 0.5UnrollSelfLoopsTune 4 .001Flatten 1 0.5SplitVagueStates 1.5Tune 4 .001Flatten 1 0.5

G. Script for fromseq16 27AddUsefulIncr 2. 5.Tune 4 .001RemoveUseless 20 1.9Flatten 1 0.5MergeStates 4 1.6Tune 3 .001RemoveUseless 20 0.9Flatten 1 0.5RestoreBestSplitSeq 0 0Tune 4 .001RemoveUseless 20 1.9Tune 4 .001RemoveUseless 20 1.9Flatten 1 0.5ReorderStatesPrint

