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11. Introduction1.1 Problem statement and contextPredicting the structure of macromolecules by theoretical or experimental means isa challenging problem. E�orts to sequence the genomes of organisms [SCH+82, DSC83,SAB+77, SCF+78, DS81, DS83, BBB+84, DPBB92, PBDB93, Oga93, OvAC+92, SDT+92,MAHK91, Joi93, Ols93, OS93, vDF+92, Min93] and organelles [HSW+89, HHD+93, CC93,OYO+92, THSH92, CMDM90, CRR+89, GPD+89, Sut79] have heightened awareness of theessential role of computers in data acquisition, management and analysis. The increasingnumbers of DNA, RNA and protein sequences yielded by these projects [Cou91] provokea growing need for developing new approaches in computational biology such as hiddenMarkov models (HMMs) [LG87, Chu89, Rab89, HKMS93, KBM+94, BCHM93, CS92] andother methods [HSS93]. In addition to the accelerated discovery of sequences related bya natural phylogeny, the generation of \arti�cial" phylogenies by experimental design forproteins (reviewed in Arnold's paper [Arn93]) and RNA (reviewed in an article by Burkeand Berzal-Herranz [BBH93]) serves only to exacerbate the problem of growth in sequencedata. Determining common or consensus patterns among a family of sequences, producing amultiple sequence alignment, discriminating members of the family from non-members anddiscovering new members of the family will continue to be some of the most important andfundamental tasks in mathematical analysis and comparison of macromolecular sequences[DA89, Doo90]. (A multiple alignment of RNA sequences is a list of the sequences with theletters representing nucleotides spaced such that nucleotides considered equivalent have theirletters appearing in the same column, or position, in the list. To enhance the alignmentof some sequences with respect to others, spaces may need to be inserted in particularsequences.)This thesis discusses the application of stochastic context-free grammars (SCFGs) tothe problems of statistical modeling, multiple alignment, discrimination and prediction ofthe secondary structure of small nuclear RNA in the spliceosome. The work describedhere extends previous successful e�orts to model, align and discriminate tRNA sequences[SBU+93, SBM+94, SBH+93, ED94, SBH+94a]. This approach is analogous to previouswork on modeling protein families and domains and DNA with HMMs [HKMS93, KBM+94,KMH93].In ribonucleic acids (RNA), the nucleotides adenine (A), cytosine (C), guanine (G)and uracil (U) interact in speci�c ways to form characteristic secondary-structure motifssuch as helices, loops and bulges [Sae84, WPT89]. Further folding and hydrogen-bondinginteractions between remote regions orient these secondary-structure elements with respectto each other to form the functional system. Higher-order interactions with other proteinsor nucleic acids may also occur. In general, however, the folding of an RNA chain intoa functional molecule is largely governed by the formation of intramolecular A-U and G-CWatson{Crick base pairs1 as well as G-U and, more rarely, G-A base pairs. Such base pairsconstitute the so-called biological palindromes in the genome.21 These are termed base pairs perhaps for historical reasons, not because they are chemically basic;rather, nucleic acids are acidic because of the presence of a negatively charged phosphate backbone, butthey interact with chemically basic molecules [Mia94].2 They are called palindromes although the pairing halves do not reect the identical bases but rather



2 1. IntroductionComparative analyses of two or more protein or nucleic-acid sequences have been usedwidely in detection and evaluation of biological similarities and evolutionary relationships.Several methods for producing these multiple sequence alignments have been developed,most based on dynamic programming techniques (for example, see works by Waterman[Wat89]). However, when RNA sequences are to be aligned, both the primary and secondarystructure need to be considered since generation of a multiple sequence alignment andanalysis of folding are mutually dependent. Elucidation of common folding patterns amongtwo or more sequences may indicate the pertinent regions to be aligned and vice versa[San85].Currently, there are two principal methods for predicting secondary structure of RNA,or which nucleotides are base-paired. Phylogenetic analysis of homologous RNA molecules[FW75, WGGN83] ascertains structural features that are conserved during evolution. Itis based on the premise that functionally equivalent RNA molecules are also structurallyequivalent and relies on alignment and subsequent folding of many sequences into similarsecondary structures (see review papers [JOP89, WGGN83]). Such comparative meth-ods have been used to infer the structure of small nuclear RNAs [GP88], tRNA [Lev69,HAE+65, MEK66, ZDF+66, RSF+66], 5S RNA [FW75], 16S ribosomal RNA (rRNA)[WMG+80, SCZ+80, ZGB81], 23S rRNA [NKW+91, GZB81, BKM+81], group I introns[MW90, MECS90], group II introns [MUO89], ribonuclease P RNA [BHJ+91, TE93], 7SRNA (signal recognition particle RNA) [Zwi89], telomerase RNA [RB91], MRP RNA[SBDC93] and TAR RNA of human and simian immunode�ciency viruses [Ber92]. Theoriginal procedure of Noller and Woese [NW81] detects compensatory base changes in pu-tative helical elements: contiguous antiparallel arrangement of A-U, G-C and G-U pairings.3Positions that co-vary are assumed to be base-paired. This procedure was subsequently for-malized into an explicit computer algorithm [WAG84, Wat88] that stores all \interesting"patterns, a potential problem as the number of patterns increases, where \interesting" isloosely de�ned as potential helical regions where there is evidence of more than one com-pensating base change, implying that the bases may be paired. The algorithm of Sanko�[San85] for simultaneously aligning and folding sequences is generally impractical in termsof time and space for large numbers of long sequences. Given an alignment of homologousRNA sequences, heuristic methods have been proposed to predict a common secondarystructure [HK93, CK91, CZJ91]. However, there remains no reliable or automatic way ofinferring an optimal consensus secondary structure even if the related sequences are alreadyaligned. (A consensus structure for a group of RNA sequences represents the secondarystructure most common to all of those sequences.) Because considerable manual inter-vention is still required to identify potential helices that maintain base complementarity,automation and development of more rigorous comparative analysis protocols are undercontinual development [GPH+92, Lap92, KB93, Wat89, WOW+90].The second technique for predicting RNA secondary structure employs thermodynamicsto compare the free energy changes predicted for formation of possible secondary structureand relies on �nding the structure with the lowest free energy [TUL71, TSF88, Gou]. Suchthe complementary bases. For instance, in the biological palindrome GUAC the �rst two bases GU pair withthe last two bases AC as follows: G with C, U with A.3 Given a set of homologous RNA molecules, this process involves making an initial multiple alignment,marking transitions (a purine [A or G] becoming a pyrimidine [C or U]) and transversions (C becoming U, orG becoming A) between sequences, �xing the positions of \interesting" patterns, then iterating, producing anew multiple alignment and so forth, until helices are deduced [Mia94].



1.1. Problem statement and context 3energy minimization depends on thermodynamic parameters and computer algorithms toevaluate the optimal and suboptimal free-energy folding of an RNA species (see reviewpapers [JTZ90, ZS84]). (These thermodynamic parameters are obtained from actual exper-iments using small model compounds, where free energy changes for the formation of loopsor other structures are measured.) To obtain a common folding pattern for a set of relatedmolecules, Zuker has suggested predicting a folding for each sequence separately using thesealgorithms and then searching for a common structure [Zuk89a]. This method's limitationsstem partially from the uncertainty in the underlying energy model, and the technique maybe overly sensitive to point mutations.4 Some researchers are attempting to combine bothphylogenetic and energetic approaches [LZ91].Using methods di�erent from those described above, several groups have enumeratedschemes or programs to search for patterns in proteins or nucleic acid sequences [Sta90,LWS87, SA90, AWM+84, SM87, GMC90, CAKF86, PC93]. String pattern-matching pro-grams based on the UNIX grep function, developed in unpublished work by S. R. Eddy[STG92] and others [MMCN93], search for secondary structure elements in a sequencedatabase. If there is prior knowledge about sequence and structural aspects of an RNAfamily, this can be employed to create a descriptor (discriminating pattern) for the familywhich can then be used for database searching or generating an alignment for the family.This has been demonstrated clearly for tRNA [FB91, Sta80, Mar86], where approximatestring matching (locating all occurrences of substrings that are within a given similarityneighborhood of an exact match to the pattern) proved to be important.The method of multiple alignment and folding used here di�ers markedly from theconventional techniques because it builds a statistical model during rather than after theprocess of alignment and folding. This approach has been applied to modeling tRNAsequences [SBH+93], and a similar approach has been applied to modeling protein families[HKMS93, KBM+94] and DNA [KMH93] with HMMs.Though in principle HMMs could be used to model RNA, the standard HMM approachtreats all positions in an alignment as having independent distributions and is unable tomodel the interactions between positions. However, if two positions in an alignment arebase-paired, then the bases at these positions will be highly correlated. Since such base-pairing interactions play a dominant role in determining RNA structure and function, anystatistical method for modeling RNA that does not consider these interactions will encounterinsurmountable problems.This thesis uses formal language theory to describe a means to generalize HMMs tomodel most of the interactions seen in RNA. As in the elegant work of Searls [Sea92],strings of characters representing pieces of DNA, RNA and protein are viewed as sentencesderived from a formal grammar. In the simplest kind of grammar, a regular grammar,strings are derived from productions (rewriting rules) of the forms S ! aW and S ! a,where S and W are nonterminal symbols, which do not appear in the �nal string, and a is aterminal symbol, which appears as a letter in the �nal string. Searls has shown base pairingin RNA can be described by a context-free grammar (CFG), a more powerful class of formalgrammars than the regular grammar (see Section 2.1). CFGs are often used to de�ne thesyntax of programming languages. A CFG is more powerful than a regular grammar in4 The energetic cost of adding a base pair to an existing helix varies, since each of the 16 possibilities hasa di�erent value. For example, adding G-C on top of A-U will cause the helix to have a di�erent total energythan adding G-U. Since these e�ects accumulate, small changes can greatly a�ect a helix's overall energy[Mia94].



4 1. Introductionthat it permits a greater variety of productions, such as those of the forms S ! WY andS ! aWb (capital letters represent nonterminals; lowercase letters represent terminals). Asdescribed by Searls, precisely these additional types of productions are needed to modelthe base-pairing structure in RNA.5 In particular, productions of the forms S ! A W U,S ! U W A, S ! G W C and S ! C W G describe the structure in RNA due to Watson{Crick base pairing. Using productions of this type, a CFG can specify the language ofbiological palindromes.Searls' original work [Sea92] argues the bene�ts of using CFGs as models for RNAfolding, but does not discuss stochastic grammars or methods for creating the grammarfrom training sequences. Sakakibara et al. have provided an e�ective method for buildinga stochastic context-free grammar (SCFG) to model a family of RNA sequences [SBH+93];exactly this method is applied in this thesis to model spliceosomal small nuclear RNAsequences. (These are called small because their lengths are short relative to other formsof RNA|though they are on average two to three times as long as tRNA sequences,on which the SCFG method described here was tested previously [SBU+93, SBM+94,SBH+93]|and nuclear because they appear in cell nuclei.) Some analogues of stochasticgrammars and training methods do appear in Searls' most recent work in the form ofcosts and other trainable parameters used during parsing [Sea93a, Sea93b, SD93]. butthe integrated probabilistic framework discussed here, wherein probabilities are assigned togrammar productions which capture the possible base-pairing interactions, may prove tobe simpler and more e�ective [SBH+93, SBM+94]. This method is closely related to the\covariance models" (CMs) of Eddy and Durbin [ED94]. CMs are equivalent to SCFGsbut the algorithms for training and producing multiple alignments di�er. An in-depthcomparison of the two methods is given elsewhere [SBH+94a].This thesis describes the algorithm developed by Sakakibara et al. which was used totrain SCFGs to model tRNA [SBH+93, SBM+94]. The algorithm, Tree-Grammar EM,deduces an SCFG's probabilities (parameters) automatically from a set of unaligned primarysequences with a novel generalization of the forward-backward algorithm commonly used totrain HMMs. Tree-Grammar EM is based on tree grammars and is more e�cient than theinside-outside algorithm [LY90], a computationally expensive generalization of the forward-backward algorithm developed to train SCFGs [Bak79]. Here, Tree-Grammar EM is usedto derive, from small training sets of snRNA sequences (16 to 25 sequences per trainingset), three trained grammars . The training and testing sequences were taken from a 1993database of aligned spliceosomal snRNAs [GP88, GRM93] maintained by Christine Guthrieet al. The alignments in this compilation are referred to as trusted alignments. Sequencesin the three data sets ranged 53{170 bases in length.6Specifying a probability for each production in a grammar yields a stochastic grammar.A stochastic grammar assigns a probability to each string it derives. Stochastic regular5 Although CFGs can not describe all RNA structure, they can account for enough to make usefulmodels (e.g., for tRNA [SBH+93]). CFGs cannot account for pseudoknots, structures generated when asingle-stranded loop region base pairs with a complementary sequence outside the loop [tPD92, WPT89,Ple90]. Similarly, base triples involving three positions, as well as interactions in parallel (versus the moreusual anti-parallel), are not currently modeled.6 The U2 and U4 sets were not modeled because their sequences were too long (96{194 and 120{162 basesin length, respectively) and their grammars were too large (2356 and 2221 productions, respectively); thelocal implementation of the Tree-Grammar EM parsing step required more core memory than was availablein local computers.



1.1. Problem statement and context 5grammars are exactly equivalent to HMMs and suggest an interesting generalization fromHMMs to stochastic context-free grammars [Bak79].This thesis discusses stochastic models for spliceosomal small nuclear RNAs developedusing SCFGs as in previous work by Sakakibara et al. [SBH+93]. These models resemble theprotein HMMs of Krogh et al. [KBM+94] but they incorporate base-pairing information.The process used here for building an SCFG that forms a statistical model of a subset ofspliceosomal small nuclear RNA sequences is similar to the process employed by Krogh etal. to construct an HMM representing a statistical model of a protein family. Each modelis used to discriminate its set from other RNAs of similar length, and to obtain a multiplealignment for each sequence set (training plus test) in the same manner as for proteins.Also, each model is employed to determine the base pairing that de�nes their secondarystructure of snRNAs for which only the primary sequence is known.This thesis focuses on the ribonucleic acid (RNA) portions of the spliceosome. Thespliceosome includes three major RNA{protein subunits, the so-called U1, U2 and U4/U6.U5small nuclear ribonucleoprotein (snRNP) particles, as well as an additional group of non-snRNP protein splicing factors. Each of the snRNP spliceosomal subunits contains one ormore small nuclear RNAs (snRNAs) and a set of snRNP proteins. This thesis examinesonly the U1, U5 and U6 snRNA sequences in these subunits. U6 is the most highly conservedof the spliceosomal snRNAs. As implied by the clustered name \U4/U6.U5" for one of thethree major subunits, U4 and U6 are usually involved in intermolecular base pairing (thatis, regions of U4 base pair with regions of U6).To understand the role of the spliceosome, it is useful to summarize protein synthesis,the process of mapping from a DNA sequence to a folded protein: Part of a DNA strand,a gene, is transcribed to a messenger RNA (mRNA) strand, which is then translated toprotein. DNA and RNA have four-letter alphabets, one for each ribonucleic acid, whileproteins have a 20-letter alphabet, one for each amino acid. Speci�c subsequences of threeletters in mRNA, called codons , specify single amino acids. Each RNA letter represents anucleotide or base, which consists of three types of molecules bound together (a sugar, aphosphate and a purine [A or G] or pyrimidine [C or U]).Although not involved directly in protein synthesis, the spliceosome provides a requiredfunction, pre-mRNA splicing, which enables protein synthesis to take place and which isalso important for gene expression and biological regulatory mechanisms. In eucaryotes,the spliceosome catalyzes the removal of introns from pre-mRNA. That is, it splices introns(intervening regions in genes) out of mRNA in the nucleus of a eukaryotic cell and conjoinsthe remaining exons (expressed regions) to produce a so-called mature mRNA. In thecontext of protein synthesis, the spliceosome needs to have done this before the maturemRNA can leave the cell nucleus to bind to a ribosome in the cytoplasm, where it istranslated into a protein [Hun92]. As Guthrie and Patterson note, \Presumably the lowinformation content within pre-mRNA introns is compensated by the participation of thesnRNPs, which impart the appropriate structure for catalysis" [GP88].An RNA sequence has a distinct orientation determined by its chemical backbone, astring of alternating sugar and phosphate molecules. This orientation is indicated by alabel on each end: 50 indicates the phosphate-terminated end of the sequence (phosphateattaches to the 50 carbon of a ribose sugar), while 30 indicates the sugar-terminated end[Cur79]. Some nucleotides may be modi�ed by the addition of small chemical groups, but inthis work, as in other computer approaches for modeling biological sequences, the modi�ednucleotides are converted to their unmodi�ed forms.



6 1. IntroductionUsing stochastic context-free grammars, I hope to elucidate secondary structures forsnRNA sequences, both for those with trusted alignments available and for those withunknown alignments. These new secondary structures may help biologists to determine andto better understand these molecules' functions. Concomitantly, I desire to demonstratethe usefulness of SCFGs for folding and aligning RNA molecules that are longer and morecomplex than the transfer RNA (tRNA) molecules previously used to test this method.Results show that after having been trained on as few as about 20 snRNA sequences,each of the three models can discern snRNA sequences from similar-length RNA sequencesof other kinds, can �nd secondary structure of new snRNA sequences and can producemultiple alignments of snRNA sequences.1.2 Thesis structureChapter 2 presents the methods and training experiments. Chapter 3 describes theexperimental results. Chapter 4 discusses possible future tasks.



72. MethodsThe Tree-Grammar EM algorithm is used to produce three stochastic context-freegrammars, one for each of the three snRNA training sets. This chapter explains how thesegrammars are created and used, and how the Tree-Grammar EM algorithm works.2.1 Context-free grammars for RNAA grammar is principally a set of productions (rewrite rules) that is used to generate aset of strings, a language. The productions are applied iteratively to generate a string, aprocess called derivation. For example, application of the productions in Figure 2.1 couldgenerate the RNA sequence CAUCAGGGAAGAUCUCUUG by the following derivation:Beginning with the start symbol S0, any production with S0 left of the arrow canbe chosen to replace S0. If the production S0 ! S1 is selected (in this case, this isthe only production available), then the symbol S1 replaces S0. This derivation step iswritten S0 ) S1, where the double arrow signi�es application of a production. Next, ifthe production S1 ! C S2 G is selected, the derivation step is S1 ) C S2 G. Continuingwith similar derivation steps, each time choosing a nonterminal symbol and replacing itwith the right-hand side of an appropriate production, the following derivation is obtained,terminating with the desired sequence:S0 ) S1 ) CS2G ) CAS3UG ) CAS4S9UG) CAUS5AS9UG ) CAUCS6GAS9UG) CAUCAS7GAS9UG ) CAUCAGS8GAS9UG) CAUCAGGGAS9UG ) CAUCAGGGAAS10UUG) CAUCAGGGAAGS11CUUG) CAUCAGGGAAGAS12UCUUG) CAUCAGGGAAGAUS13UCUUG) CAUCAGGGAAGAUCUCUUG:P = f S0 ! S1; S7 ! G S8;S1 ! C S2 G; S8 ! G;S1 ! A S2 U; S8 ! U;S2 ! A S3 U; S9 ! A S10 U;S3 ! S4 S9; S10 ! C S10 G;S4 ! U S5 A; S10 ! G S11 C;S5 ! C S6 G; S11 ! A S12 U;S6 ! A S7; S12 ! U S13;S7 ! U S7; S13 ! C gFigure 2.1: This set of productions P generates RNA sequences with a certainrestricted structure. S0; S1; : : : ; S13 are nonterminals; A, U, G and C are terminalsrepresenting the four nucleotides.



8 2. MethodsA derivation can be arranged in a tree structure called a parse tree (Figure 2.2, left).A parse tree represents the syntactic structure of a sequence produced by a grammar. Foran RNA sequence, this syntactic structure corresponds to a possible physical secondarystructure (Figure 2.2, right). In general, multiple derivations (parse trees) are possible for asingle sequence, providing several candidates for the secondary structure of that sequence.Recent work in modeling RNA [SBU+93, SBH+93] uses context-free grammars havingproductions of the following forms: S ! WY , S ! aWb, S ! aW , S ! aS, S ! Wand S ! a, where S, W and Y are nonterminals and a and b are terminals. S ! aWbproductions describe the base pairings in RNA. S ! aW and S ! aS describe unpairedbases (loops). S ! WY describe branched secondary structures. S ! W are used toinsert spaces in sequences to produce a multiple alignment. Since the snRNA SCFGs inthis work generalize the protein HMMs used in previous work at UC Santa Cruz [HKMS93,KBM+94], the three main types of snRNA SCFG nonterminals correspond to each of theprimary states in a protein HMM: match, insert and skip. The match nonterminals in agrammar|the nonterminals on the left side of S ! a, S ! aWb and S ! aW types ofproductions|correspond to \important" positions in an RNA molecule (or columns in amultiple alignment). Insert nonterminals|the nonterminals on the left side of S ! aStypes of productions|also generate nucleotides but with di�erent distributions. These areused to model loops by inserting nucleotides between important (match) positions. Skipnonterminals|nonterminals on the right of S ! W productions|are used to skip a matchnonterminal in a sequence derivation, so that no nucleotide appears at the correspondingposition in a multiple alignment. In an SCFG modeling RNA, use of a skip production inparsing a sequence is equivalent to choice of a delete state in aligning a protein sequence toan HMM.Formally, a context-free grammar G consists of a set of nonterminal symbols N , aterminals alphabet �, a set of productions P , and the start symbol S0. For a nonemptyset of symbols X , let X� denote the set of all �nite strings of symbols in X . Every CFGproduction has the form S ! � where S 2 N and � 2 (N [ �)�, thus the left-handside consists of one nonterminal and there is no restriction on the number or placementof nonterminals and terminals on the right-hand side. The production S ! � means thatthe nonterminal S can be replaced by the string �. If S ! � is a production in P , thenfor any strings  and � in (N [ �)�, the notation S� ) �� is used to indicate thatS� directly derives �� in G. The string � can be derived from �, denoted � �) �, ifthere exists a sequence of direct derivations �0 ) �1, �1 ) �2; : : : ; �n�1 ) �n such that�0 = �, �n = �, �i 2 (N [ �)�, and n � 0. Such a sequence is called a derivation. Thus, aderivation corresponds to an order of productions applied to generate a string. A particularderivation d of the sequence s using productions from the grammar G is denoted S0 d) s.The grammar generates the language fw 2 �� j S0 �) wg, the set of all terminal strings wthat can be derived from the grammar.2.2 Stochastic context-free grammarsIn an SCFG, every production for a nonterminal S has an associated probability valuesuch that a probability distribution exists over the set of productions for S. (Any productionwith the nonterminal S on the left side is called \a production for S.") Here the associatedprobability for a production S ! � in G is denoted by P(S ! � j G) or Prob(S ! � j G).
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Figure 2.2: For the RNA sequence CAUCAGGGAAGAUCUCUUG, the grammar whoseproductions are given in Figure 2.1 yields this parse tree (left), which reects aspeci�c secondary structure (right).Similarly, the probability for a derivation step �i ) �j given G is denoted by Prob(�i )�j j G).A stochastic context-free grammar G generates sequences and assigns a probabilityto each generated sequence, and hence de�nes a probability distribution on the set ofsequences. The probability of a derivation (parse tree) can be calculated as the productof the probabilities of the production instances applied to produce the derivation. Theprobability of a sequence s is the sum of probabilities over all possible derivations that Gcould use to generate s:Prob(s j G) = Xall derivations(parse trees) d Prob(S0 d) s j G)= X�1; :::;�nProb(S0 ) �1 j G) Prob(�1 ) �2 j G) � � � � Prob(�n ) s j G)where terms �i 2 (N[�)�. For clarity, this work uses leftmost-�rst derivations, consistentlyreplacing only the leftmost nonterminals to perform the derivation. If a sequence s can beproduced in multiple ways (that is, several derivations S0 d) s exist), then the probabilitiesof those various ways must be summed.E�ciently computing Prob(s j G) presents a problem because the number of possibleparse trees for s is exponential in the length of the sequence. However, a dynamic program-ming technique analogous to the Cocke{Younger{Kasami or Early parsing methods [AU72]for non-stochastic CFGs can complete this task in polynomial time (speci�cally, in timeproportional to the square of the number of nonterminals in the grammar G times the aver-age length of a typical sequence s, which in this work is on the order of jsj3). The negativelogarithm of the probability of a sequence given by the grammar G, � log(Prob(s j G)), isde�ned as the negative log likelihood (NLL) score of the sequence. The NLL score quan-ti�es how well the sequence s �ts the grammar|the likelihood that the grammar with itsproduction probabilities could produce the sequence s.CFGs have a drawback in that a sequence can sometimes be derived by a CFG in multipleways. Since alternative parse trees reect alternative secondary structures (foldings), a



10 2. Methodsgrammar may give several possible secondary structures for a single RNA sequence. AnSCFG has the advantage that it can provide the most likely parse tree from this set ofpossibilities. If the productions are chosen carefully and the probabilities are estimatedaccurately, a parsing algorithm, when given grammar G and an RNA sequence s, willproduce a most likely parse tree for s that corresponds to the correct secondary structure fors. The parser used in this work produces the single parse tree with the highest probability.It is possible that several parse trees may give one particular structure, and the sum of thesetrees' probabilities may be larger than the single most likely parse tree which gives anotherstructure, but in this case the \correct" parse tree is taken to be the single latter parse tree.Indeed, for many of the snRNA sequences tested in this work, the most likely parse treesgiven by the corresponding snRNA-trained grammar match closely the accepted secondarystructures, due to constraints inherent in the initial grammars and in the Tree-GrammarEM training procedure. The alternative parse trees may also be of interest because thesame RNA sequence can adopt di�erent structures (for example, some snRNA sequences),but these alternates are not considered in this work.The most likely parse tree can be computed e�ciently using a variant of the aboveprocedure for calculating Prob(s j G). The most likely parse tree for the sequence s can beobtained by calculating maxparse trees dProb(S0 d) s j G):The dynamic-programming procedure to do this resembles the Viterbi algorithm for HMMs[Rab89] and takes time proportional to the square of the length of a typical sequencetimes the number of nonterminals in the grammar G. This procedure is also used toobtain multiple alignments: The parser aligns each sequence by �nding the most likelyparse tree given by the grammar, yielding an alignment of all nucleotides that correspondto the match nonterminals for each sequence, after which the mutual alignment of thesequences among themselves is determined. (Insertions of varying lengths can exist betweenmatch nonterminals, but by inserting enough spaces in each sequence to accommodate thelongest insertion, an alignment of all the sequences is obtained.) This is equivalent tomultiple alignment in a protein HMM, where the single most likely path for each sequenceis computed.2.3 Estimating SCFGs from sequences using Tree-Grammar EMBoth an SCFG's production probabilities and the productions themselves can in prin-ciple be chosen through examining an existing alignment of RNA sequences. Results usingthis approach to derive an SCFG to model tRNA were reported in previous work [SBU+93].At the other extreme, researchers recently have developed alternate methods for deter-mining nearly all aspects of a grammar solely from training sequences [ED94]. To deducea covariance model's structure (essentially, to choose an SCFG's productions), Durbin andEddy use the standard Nussinov{Zuker dynamic-programming algorithm for RNA folding[NPGK78, Zuk89b], but with a non-standard cost function. Once a model structure exists,they train the model's parameters (production probabilities) using the Viterbi approxima-tion of the expectation maximization (EM) algorithm.In contrast, this thesis takes an intermediate approach. Prior information about snRNAstructure is used to design appropriate initial grammars, but then training sequences areused to re�ne the estimates of the production probabilities in those grammars.



2.3. Estimating SCFGs from sequences using Tree-Grammar EM 111. Start with an initial grammar G0.2. Use grammar G0 and the jsj3 CYK-like parsing algorithm to parse the raw inputsequences, producing a tree representation for each sequence indicating which nucleotidesare base-paired. This set of initial trees is denoted T0. Set Told = ; and Tnew = T0.3. While Tnew 6= Told do the following: f3a. Set Told = Tnew .3b. Use Told trees as input to the TG Reestimator algorithm, which iterativelyre-estimates the grammar parameters until they stabilize. The grammar withthe �nal stabilized probability values is called new grammar Gnew .3c. Use grammar Gnew and the jsj3 CYK-like parsing algorithm to parse theinput sequences, producing a new set of trees Tnew.g Figure 2.3: The Tree-Grammar EM training algorithm, shown in pseudocodehere, performs the TG Reestimator and CYK-like parsing algorithms as substeps.In Step 3b, the probability values are considered \stabilized" when the di�erencebetween consecutive NLL scores for the sequences, computed using the currentand the previous grammar parameters, has become smaller than a pre-chosenvalue called the stopping criterion. The smaller the stopping criterion, the largerthe number of iterations within Step 3b. In this and previous tRNA work, thestopping criterion was set to 1.0 the �rst time through Step 3, then decreased to0.1 subsequently, leading to, on average, about six iterations in Step 3b.To estimate the SCFG parameters from unaligned training tRNA sequences, Sakakibaraet al. introduced Tree-Grammar EM (Figure 2.3), a new method for training SCFGsthat uses a generalization of the forward-backward algorithm commonly used to trainHMMs. This generalization, called TG Reestimator, is more e�cient than the inside-outsidealgorithm, which was previously proposed to train SCFGs.The inside-outside algorithm [LY90, Bak79] is an expectation maximization (EM) al-gorithm that calculates maximum likelihood estimates of an SCFG's parameters based ontraining data. (Expectation refers to the calculation of an auxiliary function that depends onthe current and the reestimated model, while maximization refers to maximization over thereestimated model [Rab89].) However, it requires the grammar to be in Chomsky normalform, which is possible but inconvenient for modeling RNA (and requires more nontermi-nals). Further, it takes time at least proportional to jsj3 per training sequence s, whereasthe forward-backward procedure for HMMs takes time proportional to jsj per training se-quence, where jsj is the length of sequence s. In addition, the inside-outside algorithm isprone to settling in local minima; this presents a problem when the initial grammar is nothighly constrained.To avoid these problems, Sakakibara et al. developed the iterative algorithm TG Rees-timator (Step 3b in Figure 2.3). While the running times of both Tree-Grammar EM andthe inside-outside algorithm are asymptotically equivalent due to the use of the jsj3 CYK-like algorithm (Step 3c of Figure 2.3), in practice Tree-Grammar EM is more e�cient. InTree-Grammar EM, the inner loop (Step 3b) takes time proportional to jsj per sequenceper iteration (the grammar size is constant), while in the inside-outside algorithm, theanalogous step takes time proportional to jsj3 per sequence per iteration. The di�erence is



12 2. Methodsthat the inside-outside algorithm computes values for all possible parses for all possible treestructures for the sequence s, whereas the Tree-Grammar EM method computes all possibleparses for only the current tree structure provided for the sequence s. Since the number ofiterations in Step 3b is typically on the order of 10, while the number of iterations of Step3 is typically four or �ve, Tree-Grammar EM is more practical for longer RNA sequences.TG Reestimator requires folded RNA sequences as training examples, rather than un-folded ones. Thus, some tentative \base pairs" in each training sequence have to be identi-�ed before TG Reestimator can begin. The procedure to do this involves designing a roughinitial grammar (see Section 2.5) that may represent only a portion of the base-pairinginteractions (Step 1) and parsing the unfolded RNA training sequences to obtain a set ofpartially folded RNA sequences (Step 2). Then a new SCFG can be estimated using thepartially folded sequences and TG Reestimator (Step 3b). Further productions might beadded to the grammar at this step, though this thesis does not explore this approach. Theparameter re-estimation is then repeated. In this way, TG Reestimator can be used evenwhen precise knowledge of the base pairing is not available. TG Reestimator constitutesone part of the entire training procedure, Tree-Grammar EM.The Tree-Grammar EM procedure is based on the theory of stochastic tree grammars[TW68, Fu82, Sak92]. Tree grammars are used to derive labeled trees instead of strings.Labeled trees can be used to represent the secondary structure of RNA easily [Sha88, SZ90](see Figure 2.2). A tree grammar for RNA denotes both the primary sequence and thesecondary structure of each molecule. Since these are given explicitly in each trainingmolecule, the TG Reestimator algorithm does not have to (implicitly) sum over all possibleinterpretations of the secondary structure of the training examples when re-estimating thegrammar parameters, as the inside-outside method must do. The TG Reestimator algorithmiteratively �nds the best parse for each molecule in the training set and then readjusts theproduction probabilities to maximize the probability of these parses. The new algorithmalso tends to converge faster because each training example is more informative [SBU+93].
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2.3. Estimating SCFGs from sequences using Tree-Grammar EM 13by one of four nucleotides fA; U; G; Cg. Every internal node is labeled by a nonterminal. Thesequence of nucleotides labeled at leaf nodes traced from left to right exactly constitutesthe RNA sequence s, and the structure of the tree represents its folding structure.Figure 2.4 shows a tree representation of the folded RNA sequence (AA(GUC)U), wheredollar signs $ act as a placeholders for the nonterminals labeling the internal nodes. Theparsing step of Tree-Grammar EM uses the current grammar to choose which actual non-terminals should label these internal nodes.Assume all internal nodes in t are numbered from 1 to T (the number of internal nodes) insome order. Then, in standard tree-grammar notation, for an internal node n (1 � n � T ),t=n denotes the subtree of t with root n (Figure 2.4, center) and tnn denotes the treeobtained by removing a subtree t=n from t (Figure 2.4, right).The probability of any folded sequence t given by an SCFG G = (N;�; P; S0) iscalculated e�ciently using a dynamic-programming technique, as is done with the forwardalgorithm in HMMs. A labeled tree t representing a folded RNA sequence has the shape ofa parse tree, so to parse the folded RNA, the grammar G needs only to label each internalnode with an appropriate nonterminal according to the productions. For all nonterminalsS and all nodes n such that 1 � n � T , let inn(S) be the probability that the subtree t=ncan be derived given that the nonterminal S is assigned to node n and given grammar G.Then inn(S) can be calculated inductively as follows:1. Initialization: inn(a) = ( 1 if a is the nucleotide appearing at leaf node n,0 otherwise,for all leaf nodes n and terminals a (nucleotides). This extension of inn(S) is for theconvenience of the inductive calculation of inn(S).2. Induction:inm(S) = XY1; : : : ; Yk2 (N[�) inn1(Y1) � � � innk(Yk) � P(S ! Y1 � � � Yk);for all nonterminals S, all internal nodes m and all m's children nodes n1; : : : ; nk.3. Termination: For the root node n and the start symbol S0,Prob(t j G) = inn(S0): (2:1)Intuitively, if s0 represents the substring of s found at the leaves of the subtree rootedat the internal node n inside the full parse tree t, then inn(S) represents the probabilitythat the nonterminal S can derive that substring s0 when a production for S is applied ina derivation step at node n. For example, in the tree t shown in Figure 2.4, if s0 = GUCand if nonterminal S is assigned to the third node such that n = 3, then in3(S) representsthe probability that the nonterminal S can derive the substring GUC via application of aproduction for S in a derivation step at node 3. Thus, inn(S0), where n is t's root node, isexactly the probability that the start nonterminal can derive the string s.One more quantity is needed: outn(S) de�nes the probability of tnn given that thenonterminal S is assigned to node n and given grammar G. That is, outn(S) is theprobability of tnn, which is the tree t excluding the subtree rooted at node n. This quantityis obtained similarly.



14 2. Methods1. Initialization: For the root node n,outn(S) = ( 1 for S = S0 (start symbol),0 otherwise.2. Induction:outm(S) = XY1; : : : ; Yk2 (N [�);S0 2 N inn1(Y1) � � � innk(Yk) � P(S 0 ! Y1 � � � S � � � Yk) � outl(S 0);for all nonterminals S, all internal nodes l and m such that l is m's parent and allnodes n1; : : : ; nk are m's siblings. Incorporated in this calculation are the probabilitiesof all productions for all nonterminals S 0 that can derive the nonterminal S|namely, theproductions S 0 ! Y1 � � � S � � � Yk . There is no termination step given in this case becausethe calculation of Prob(t j G) is given in the termination step for inn(S).Intuitively, outn(S) is the probability that the start nonterminal S0 can generate �S�,with nonterminal S labeling node n, where subsequences � and � result from excising thesubsequence rooted at node n from the full sequence s. Continuing the example from Figure2.4, out3(S) is the probability of the partial derivation from the start symbol S0 to the stringAA S G with nonterminal S labeling node 3.To determine how well a grammar �ts a set of folded training sequences t(1); : : : ; t(n), theprobability that the grammar generates them needs to be calculated. \How well a grammar�ts a set of folded sequences" means how likely it is that the grammar would predict exactlythose foldings when presented with those sequences unfolded . This probability is simply aproduct of terms Prob(t(j) j G) as given by Equation 2.1, i.e.,Prob(sequences j G) = nYj=1Prob(t(j) j G): (2:2)The goal is to obtain a high value for this probability, called the likelihood of the grammar.The maximum likelihood method of model estimation �nds the model that maximizes thelikelihood in Equation 2.2. There is no known way to directly and e�ciently calculate thebest model (the one that maximizes the likelihood) and avoid getting caught in suboptimalsolutions during the search. However, the general EM method, given an arbitrary startingpoint, �nds a local maximum by iteratively re-estimating the model such that the likelihoodincreases in each iteration, and often produces a solution that is acceptable, if perhaps notoptimal. This method is often used in statistics.Thus in Step 1 of Tree-Grammar EM (Figure 2.3), an initial grammar G0 is createdby assigning values to the production probabilities P(S ! Y1 � � � Yk) for all S and allY1; : : : ; Yk, where S is a nonterminal and Yi (1 � i � k) is a nonterminal or terminal. Ifsome constraints or features present in the sequences' multiple alignment are known, theseare encoded in the initial grammar (see Section 2.5). The current grammar is set to thisinitial grammar.In Step 3b of Tree-Grammar EM, using the current grammar, the values inn(S) andoutn(S) for each nonterminal S and each node n for each folded training sequence arecalculated in order to get a new estimate of each production probability, P̂(S ! Y1 � � � Yk)=



2.4. Over�tting and regularization 15Xall t Xall m outm(S) � P(S ! Y1 � � �Yk) � inn1(Y1) � � � innk (Yk)=Prob(t j G)!norm ;which is a double sum over all sequences t and all nodes m, where G is the old grammar and\norm" is the appropriate normalizing constant such that PY1;:::;Yk P̂(S ! Y1 � � � Yk) = 1.A new current grammar Gnew is created by replacing all P(S ! Y1 � � �Yk) with the re-estimated probabilities P̂(S ! Y1 � � �Yk).2.4 Over�tting and regularizationAttempts to estimate a grammar with too many free parameters from a small set oftraining sequences will encounter the over�tting problem|that is, the grammar �ts thetraining sequences well, but poorly �ts other, related (test) sequences. One solution is touse regularization to control the e�ective number of free parameters. Following the methodused in recent SCFG modeling of tRNA [SBU+93, SBM+94, SBH+93, SBH+94a], this workregularizes the grammars taking a Bayesian approach to the parameter estimation problem,similar to a previous approach taken with protein HMMs [KBM+94, BHK+93].Before the grammars are trained, a prior probability density is constructed for eachof their \important" parameter sets: S ! aWb productions and S ! aW productions,where S and W are nonterminals and terminal symbols a; b are drawn from the set of fournucleotides fA; C; G; Ug. This prior probability density takes the form of a single-componentDirichlet distribution [SD89].The S ! aWb productions, which generate base pairs, come in groups of 16, correspond-ing to all possible pairs of terminal symbols. The S ! aW productions, which generatenucleotides in loop regions, come in groups of four. For the base-pairing productions, theDirichlet prior information about which productions are most likely is employed. For in-stance, Watson{Crick pairs are more frequently observed than other base pairs. Usingthe large alignment of 16S rRNA sequences [LOM+93], the method described by Brownet al. [BHK+93] was used to obtain the 16 parameters of a Dirichlet density over possiblebase-paired position distributions. These probabilities were used to calculate precise priorinformation about base-pair probabilities. Similarly the 16S rRNA alignment was used tocalculate a four-parameter Dirichlet prior for nucleotide distributions in loop match posi-tions. Further details, with references to protein HMMs, are presented in the paper byBrown et al. [BHK+93].These parameters constitute the regularizer (Figure 2.5). The small parameter valuesimply that the 16S rRNA data set from which they were computed is highly variable. Thevalues do not sum to one because they are not probabilities; normalizing the Dirichlet pa-rameters will, however, yield the average distribution that the Dirichlet prior speci�es. Theparameters are added as \pseudocounts" during each re-estimation step of Tree-GrammarEM (step 3b in Figure 2.3). Thus, at each iteration, TG Reestimator computes meanposterior estimates of the model parameters rather than maximum likelihood estimates.Regularization is performed in a similar manner for probability distributions for otherproduction types, including chain rules S ! W , branch productions S ! WY and insertproductions S ! aS. Insert productions (for loops) are regularized with very large uniformpseudocounts over the four possible nucleotides so that their probability distributions willbe �xed at uniform values rather than estimated from the training data. This is equivalent



16 2. Methods30S ! aWb C G U AC 0.134879 3.403940 0.162931 0.17653250 G 1.718997 0.246768 0.533199 0.219045U 0.152039 0.784135 0.249152 2.615720A 0.135167 0.192695 1.590683 0.160097S ! aW C G U A0.21 0.18 0.20 0.26Figure 2.5: Helix (top) and loop (bottom) pseudocounts are added to actualobserved frequencies to reect prior information. These counts are based uponestimated Dirichlet distributions for helix regions and loop regions. The matrix isasymmetric because the distributions di�er with the base ordering in a base pair(ex., 50 C paired with 30 G has higher probability than 50 G paired with 30 C).Grammar Number of Productions Number of NonterminalsU1 2021 462U5 1498 367U6 1761 498Figure 2.6: Shown are the total number of productions and nonterminals for thegrammars that model the three snRNA sets.to the regularization used previously for the insert states of protein HMMs [KBM+94]. Thisfurther reduces the number of parameters to be estimated, helping to avoid over�tting.2.5 The initial grammarsThe initial grammars were based on snRNA structures previously described [GP88].The lengths of helices and loops were approximated via empirical examination of theprovided trusted alignments. Speci�cally, the most common substructure lengths wereincorporated directly as the number of match nonterminals to appear in the actual grammarfor those substructures. Though the number of match nonterminals was determined thisway, insertion and skip productions for the same nonterminals are included to accommodatelonger loops, or shorter loops or helices.The grammars were formulated as meta-grammars which were translated into actualgrammars with appropriate productions, nonterminals and terminals. (The actual gram-mars vary in size, as tabulated in Figure 2.6. The U5 grammar was the smallest, andthus took the least time to train.) Each meta-grammar has meta-nonterminals suchas trunkHelix and loop3 corresponding to snRNA structures. Each of these meta-nonterminals has a set of actual productions associated with it (not shown here). Sakak-ibara et al. wrote a program that automatically generates actual productions given onlythe meta-grammar. To further simplify grammar speci�cation, recently Leslie Grate wrotea graphical program called scfgedit, which allows users to de�ne meta-grammars easily.



2.5. The initial grammars 17The three types of meta-nonterminals are branch, loop and helix. Each loop orhelix meta-nonterminal has an associated length, given by a numeric parameter. For ameta-nonterminal loop(`), the grammar generating program creates a subgrammar thatis equivalent to an HMM model with ` match states as described in previous work onproteins [KBM+94], except that the four-letter nucleic-acids alphabet replaces the twenty-letter amino-acids alphabet. Distributions of the nucleotides in such a loop are de�ned bythe probabilities of the productions for ` match nonterminals. Longer or shorter loops canbe derived using special nonterminals and productions that allow position-speci�c insertionsand deletions. For a meta-nonterminal helix(`), the grammar generating program creates asubgrammar consisting of ` nonterminals. Each nonterminal has 16 productions that derivepossible base pairs for its position in the helix. Each nonterminal has its own probabilitydistribution over these 16 possible productions. These probability distributions, like thosefor match nonterminals in loops, are initially de�ned using Dirichlet priors (Section 2.4).Other nonterminals and productions are added to allow deletions of base pairs, enablinghelix length variations.To form the complete actual grammar, all the subgrammars for the various structuresare combined according to the high-level speci�cation. Special treatment of nonterminalsinvolved in branch productions of the form S ! SS can also be included. In particular, thesnRNA grammars were speci�ed such that certain branch productions may also, with someprobability, omit one of the nonterminals on the right-hand side. This allows the grammarto derive snRNAs that are missing certain substructures, such as arms or loops. In general,any substructure in the grammar can be speci�ed to be absent with some probability.These probability values are initialized to default prior values and then re-estimated duringtraining on actual sequences, as are all the production probabilities in the grammar.Represented in three forms (XRNA, scfgedit and text) in Figures 2.8, 2.9 and 2.10are the three initial grammars designed for the snRNA experiments. The �rst of the threeforms is a graphical rendering generated using XRNA, an X Windows-based program forediting and displaying RNA primary, secondary and tertiary structure [WGN93]. Usingsimple �lters, a secondary structure predicted by a grammar can be transformed into XRNAformat. The scfgedit program outputs an XRNA representation of the grammar's matchproductions, with a single G-C placeholder representing each set of 16 actual base-pairingproductions for a single helix-match nonterminal and a single A placeholder representing eachset of four actual productions for a single loop-match nonterminal. Thus, all nucleotidesin the XRNA grammar pictures are merely placeholders, showing only secondary structure(match positions) but not a true consensus structure. A black circle indicates the 50 end ofeach structure. The second format shown in the �gures is scfgedit form, with the startmeta-nonterminal S circled. Squares represent helices, circles represent loops, and trianglesrepresent branch points. The third format is the text output from scfgedit describing themeta-grammar.Lengths chosen for each helix and loop appear in the upper left corner of each square ortriangle in the scfgedit representations. These were selected to equal the most commonlengths evident in the input data alignment for each data set. For example, if there are 10sequences in a particular data set and they each have a helix that appears in the trustedalignment as follows, ...start-helix.loop.-end-helix-......-GCC-------.AAAG.-------GGC-......-GC--------.AAA-.--------GC-......-GC--------.AAA-.--------GC-...



18 2. MethodsGrammar Helix Current Length Better LengthU1 stem2 16 18U5 trunkBottom 4 6trunkTop 8 9lastHelix 7 10U6 5'stem 8 12Figure 2.7: These length changes would be required to make each grammar\perfectly �t" the sequence set they are intended to model, such that predictedalignments would be able to perfectly match the trusted alignments. Withoutthese changes, the predicted alignments of helices are strictly length-limited butthe grammars are smaller and thus easier to train....-CC--------.AAAG.--------GG-......-CCGGCCCGGG.-AAC.CCCGGGCCGG-......-GC--------.-AAG.--------GC-......-G---------.AAAG.---------C-......-GC--------.-AAG.--------GC-......-CC--------.AAAC.--------GG-......-GC--------.AAA-.--------GC-...then the length of the helix is set to two, the most common length of that helix. The lengthof the loop in this example is set to three. The sequences in which that helix is shorter thantwo bases are accounted for in the production probabilities for the delete productions forthe match nonterminals de�ning the helix.Sequences having that helix longer than two bases, such as the �fth sequence in theabove example, are not modeled perfectly by the grammar because, for simplicity, the initialgrammars do not include insert productions for helix-match nonterminals. Speci�cally, loopshave both insert and delete nonterminals in addition to match nonterminals, such that apredicted loop alignment can be either longer or shorter than the number of loop matchnonterminals, while helices have only delete nonterminals in addition to match nonterminals,such that a predicted helix alignment can be only as long as the number of helix-matchnonterminals. This holds true also in previous tRNA work [SBU+93, SBM+94, SBH+93,SBH+94a].A \perfectly �tting" model can be obtained if the helix lengths are set to be the longestobserved length in the trusted alignment (10, in the above helix example) rather thanthe most common observed length, but this makes the grammar larger and thus increasescomputation time for training and parsing. Using an imperfect model can restrict the abilityof the predicted alignment to match the trusted when a helix's length varies widely fromsequence to sequence in the modeled set, as is the case with the snRNAs; sequences havinga longer length for that helix in the trusted alignment are not represented in the predictedalignment (\extra" bases are placed as part of a loop on one side or the other of the helix).If the grammars of this work were altered to perfectly �t the sequence set they areintended to model, then helices would need to be lengthened as indicated in Figure 2.7.Making the helices longer in the grammar would not a�ect the alignment of sequences inwhich those helices are shorter than the maximum length, because the skip productionswould allow insertion of spaces in the \extra" base-pairing match positions. However,making the helices longer would increase the grammar's numbers of nonterminals and



2.5. The initial grammars 19productions, which would in turn enlarge the required time for grammar training andsequence parsing.Currently the grammar-generating program does not generate special insert productionsto allow for bulges (extra nucleotides inserted between two bases on one side of a helix) as inthe grammars of Durbin and Eddy [ED94], though it is straightforward to add this ability.It would involve adding insert productions of the form S ! aS and S ! Sa for helix matchnonterminals, such that a single nucleotide could be inserted between any two positions onone side of a helix. Thus, a sequence whose most likely parse uses these productions wouldhave a bulge in its predicted alignment. Implementing this method would result in a morecomplicated grammar.An attempt was made to model some of the bulges by translating a single helix containinga bulge indicated in a trusted alignment into two helices in series joined by a single strand.For example, Stem I in the U1 grammar is divided into stem1 of length 5 followed byrestStem1 of length 5, with the single strand bulge1 connecting them. This does capturesome structure, but at the expense of restricting the possible positioning of bulges inmultiple alignments as well as making the grammars more complex. The grammars mightbe more e�cient and exible if bulges were modeled by introducing new productions intothe grammar as mentioned in the previous paragraph.
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S 2BranchRNec 5'end rest1 stem3 Helix 3 forBulge25'end Loop 10 forBulge2 2BranchRNec restS3 bulge2rest1 2BranchRNec trunkHelix rest3 restS3 Helix 6 loop3trunkHelix Helix 6 rest2 loop3 Loop 7rest2 2BranchRNec stem1 top&Right bulge2 Loop 1stem1 Helix 5 forBulge1 rest3 2BranchRNec SmSite rest4forBulge1 2BranchRNec bulge1 restStem1 SmSite Loop 14bulge1 Loop 1 rest4 2BranchRNec stem4 OHendrestStem1 Helix 5 loop1 stem4 Helix 5 forBulge3loop1 Loop 10 forBulge3 2BranchRNec bulge3 restS4top&Right 2BranchRNec stem2 stem3 bulge3 Loop 1stem2 Helix 16 loop2 restS4 Helix 6 loop4loop2 Loop 10 loop4 Loop 4OHend Loop 2Figure 2.8: Represented in XRNA format (top), scfgedit format (middle) andtext format (bottom) is the initial grammar for the U1 set.
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22 2. Methods
A A A C

C
C
C
C
C
C
C
A

A A
A
G
G
G
G
G
G
G
GA A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A

S 2BranchRNec 5'end rest15'end Loop 3rest1 2BranchRNec 5'stem toOHend5'stem Helix 8 5'loop5'loop Loop 4toOHend Loop 88Figure 2.10: Represented in XRNA format (top), scfgedit format (middle) andtext format (bottom) is the initial grammar for the U6 set.



233. Experimental ResultsThis chapter delineates in detail the application of Tree-Grammar EM, described in theprevious chapter, to deduce three trained grammars from three distinct training sets ofunfolded and unaligned snRNA sequences (Figure 3.3). The procedure follows that donefor tRNA previously [SBU+93, SBM+94, SBH+94a].Average Time to Average Time to Average Time to Length ofGrammar Train (Step 3b) Parse An snRNA Parse A Non-snRNA SequencesU1 5.1 hrs 0.5 min 0.4 min 156U5 1.0 hrs 0.4 min 0.3 min 113U6 13.2 hrs 0.7 min 0.6 min 100Figure 3.1: A Decstation 5000/240 with 128 Mbytes memory required these CPUtimes to perform Step 3b of Tree-Grammar EM in Figure 2.3 and to run the jsj3CYK-like parsing algorithm. Column 1 shows the time taken for the grammarparameters to stabilize in TG Reestimator. Columns 2 and 3 show times taken toparse two equal-length sequences using the trained grammars: an snRNA sequencefrom the modeled set, and a non-snRNA sequence of the same length.Using initial grammars designed as discussed in Section 2.5, Tree-Grammar EM pro-duced three trained grammars, one for each set. The initial grammars' production proba-bilities were established using only the Dirichlet pseudocount information. Tree-GrammarEM was used to re�ne these initial grammars with varying numbers of training sequences(Figure 3.3). Table 3.1 indicates the run times taken to train each grammar and parse rawsequences given the grammar on a Decstation 5000/240 with 128 Mbytes memory. Duringthe training process, only the probabilities of the productions were reestimated and no non-terminals or productions were added or deleted, unlike \model surgery" in previous HMMwork [KBM+94].3.1 DataThe experiments for generating and testing the trained grammars used data from threesources:1. The three snRNA training sets are from Christine Guthrie and Saira Mian [GRM93].Some interpretation was performed to obtain a trusted multiple alignment for each set, asnone of the helices was labeled, except for those in the U5 set. This involved my examiningthe aligned sequences and comparing aligned substrings with substructures in the publishedconsensus structures [GP88] to determine a probable labeling. (See Section 2.5.) Theselabelings were then con�rmed to be correct by Saira Mian. The provided aligned sequences,along with their inferred labelings, are referred to as the trusted alignments.The trusted alignments constitute the current best estimates of foldings that biologistshave devised or deduced for the snRNA sets, but these can change over time as newsequences or correlations are discovered. These alignments in particular were produced bycomparing each sequence to that of a single organism, the yeast Saccharomyces cerevisiae,and searching for motif structures in each sequence that are observed in that yeast sequence.



24 3. Experimental ResultsOriginal Number Number Sequences Removed Number NumberData Set of Sequences Extra-long Containing N Remaining IncompleteU1 54 3 2 49 6U5 34 2 1 31 2U6 49 2 3 44 2Totals 137 7 6 124 10Figure 3.2: As shown, 7 extra-long snRNA sequences [GP88, GRM93] and 6 se-quences containing the N character were omitted before sequences were partitionedinto training and test sets, and 10 of the remaining sequences were then placedinto the test sets because they were incomplete.Number of Sequences in Set Range of LengthsData Set Training Test Total (number of bases)U1 25 24 49 121{170U5 16 15 31 78{138U6 22 22 44 53{116Totals 63 61 124 53{170Figure 3.3: The raw snRNA sequences [GP88, GRM93] were organized intotraining and test sets. Each group was approximately halved into two subsets; onehalf was used to train and the other half to test the group's grammar.It should be noted that some sequences may contain structure not present in the referentyeast sequence, which would be undocumented in these trusted multiple alignments. Ingeneral it is di�cult to know a priori which aspects of the secondary structure are important(for example, which base pairs or bulges or individual nucleotides are more important thanothers in a long helix, such as Stem II of U1).To produce raw data sets, the aligned sequences were stripped of the inserted charactersthat aligned them with respect to each other, leaving strings composed only of the fournucleotides fA, G, C, Ug. Before the raw sequences were separated into training andtest sets, 7 extra-long sequences were omitted (see Figure 3.2) because locally availablecomputers lacked the core memory to parse sequences more than about 175 bases longusing these rather complex grammars, which have about 2000 productions and about 500nonterminals.1 Then 6 sequences containing N characters were removed from the sets, asN indicates a nucleotide whose exact nature is unknown. Next, 10 incomplete sequences(fragments or substrings of full sequences, when the full sequence is unknown) were placedin the test sets for each set. Although their presence in a training set likely would degradethe quality of the corresponding trained grammar, these incomplete sequences were kept inthe test set so the corresponding trained grammar's ability to discriminate and fold themcould be assessed. The remaining 114 snRNA sequences, ranging 96{170 bases in length,were divided at random with equal probability into training and test sets (adjusting for1 The tRNA grammars developed in previous SCFG work at UC Santa Cruz [SBU+93, SBM+94, SBH+93]had only 1028 productions and 256 nonterminals and modeled sequences only 71{90 bases long.



3.2. Multiple alignments and secondary structure 25the number of incomplete sequences already present in each test set) for each grammar(Figure 3.3). This thesis refers to the snRNA sequences by abbreviations of their Latinnames, such as saccer for Saccharomyces cerevisiae.2. A total of 1450 non-snRNA sequences were generated from the National Center forBiotechnology Information's GenBank database (version 75.0+, dated 18 February 1993).This was done by cutting non-snRNA features|including CDS, tRNA, rRNA, mRNA,LTR, D-loop, introns, exons, transposons, miscellaneous features and repeat regions|intosnRNA-sized lengths. Speci�cally, 10 non-snRNA sequences were created for each sequencelength between 30 and 174 bases, resulting in a set of 1450 non-snRNA sequences. Anyunusual characters (i.e., not A, G, C, T, or U) appearing in the non-snRNA features wereskipped. (Of the total 17,079 RNA lines in the source GenBank �le, 81 contained Ncharacters and 1 contained a single Y character.) Any thymine base (T) appearing in aDNA feature was translated to the RNA equivalent, uracil (U), in the resulting non-snRNAsequence.For each grammar, this basic non-snRNA sequence set was augmented with 10 othersequences to form an augmented non-snRNA set . The other sequences consist of �vecomplete sequences chosen at random with equal probability from each of the unmodeledsets. For example, for the U5 grammar, the augmented non-snRNA set consists of the 1450feature fragments plus �ve sequences from each of the U1 and U6 data sets. These completesequences were included to enrich the set of fragment sequences to better demonstrate thegrammars' ability to discriminate false from true examples.Providing a grammar with a larger set of non-snRNA sequences might enable it todiscriminate them better from the snRNA set it was trained to model, as the discriminationcriterion relies on obtaining reliable average-NLL scores for a large range of sequence lengths(large enough that the lengths of the modeled set lie within the range). However, largersets of non-snRNA sequences require more parsing computation time. As a compromise,the set of 1450 non-snRNAs was used. (Section 3.3 includes plots for average-NLL scoresfor each augmented non-snRNA set as computed by each trained grammar.)3. A total of 32 new unfolded snRNA sequences were retrieved from the latest updatesto the aforementioned GenBank database: versions 82.0+, dated 26 May 1994, and 82.0,dated 8 April 1994. This set contains unique sequences|none appear in the training or testsets for any of the grammars|for which only the primary structures are known. The trainedgrammars were used to determine the base pairing that de�nes the secondary structure ofthese snRNA sequences and to discriminate these sequences from an augmented non-snRNAset. These sequences are referred to as the new sequences.3.2 Multiple alignments and secondary structureFrom a grammar it is possible to obtain a multiple alignment of all sequences. Thegrammar can produce the most likely parse tree for each of the sequences to be aligned,yielding an alignment of all the nucleotides that align to the match nonterminals in thegrammar. Between match nonterminals there can be insertions of varying lengths, butby inserting enough spaces in all the sequences to accommodate the longest insertion, analignment can be obtained. Because only the number of loop nucleotides varies, whilethe helix lengths (maximum number of helix-match nonterminals) are �xed, producinga multiple alignment involves merely padding particular sequences with space characters



26 3. Experimental ResultsInitial Trunk Stem I Stem II Stem III Stem IVBoth sides 42 ( 86%) 37 (76%) 3 ( 6%) 46 ( 94%) 15 (31%)One side 45 ( 92%) 44 (90%) 21 ( 43%) 48 ( 98%) 37 (76%)Some overlap 49 (100%) 47 (96%) 49 (100%) 49 (100%) 46 (94%)Trained Trunk Stem I Stem II Stem III Stem IVBoth sides 44 (90%) 45 (92%) 0 ( 0%) 44 ( 90%) 11 (22%)One side 47 (96%) 48 (98%) 20 ( 41%) 49 (100%) 28 (57%)Some overlap 48 (98%) 48 (98%) 49 (100%) 49 (100%) 46 (94%)Figure 3.4: Each column corresponds to one of the �ve U1 helices. The �rst rowshows the number of sequences of the total 49, training plus test, for which the U1grammar predicted exactly the same helix boundaries as the trusted alignment; thesecond, the number of sequences for which the grammar predicted exactly the sameboundaries for at least one side of a helix; and the third, the number of sequencesfor which there is some overlap between predicted and trusted alignments for thathelix side, although the boundaries for both sides may di�er. For comparison, thebottom table lists the same quantities for the initial grammar, trained on zerosequences.such that nucleotides produced by the same helix-match nonterminals appear in the samecolumn.For each trained grammar, a multiple alignment was produced for its corresponding testand training sets. As the following subsections describe in detail, the trusted alignmentsagree substantially with the trained grammars' predicted alignments. Boundaries for thehelices and loops are similar between the predicted and trusted alignments for each set, evenfor the previously unseen test sequences. (Appendix A shows the three multiple alignmentsin their entirety.) Figures 3.5, 3.6, 3.10 and 3.14 show in XRNA format predicted foldingsfor some representative sequences.3.2.1 U1 predicted alignmentThe table in Figure 3.4 tabulates, for each helix in the full U1 data set, the numberof sequences for which there is some agreement between the trained grammar's predictedalignment and the trusted alignment for that helix. See Section A.1 for the complete U1multiple alignment. From top to bottom, the rows in the table correspond to decreasingstrictness of agreement between the two alignments. A separate table lists the samequantities for the initial grammar for comparison.Disagreements are focused locally in Stems I, II and IV rather than dispersed globally.Because bulges were modeled between two �xed helix-match positions in the grammar (seeSection 2.5), if the trusted alignment places a bulge in Stem I or Stem IV in an uncommonlocation, often the grammar is unable to capture that shift in bulge position. Also, to makethe grammar smaller and easier to train, the Stem II bulge was not incorporated at all inthe initial grammar, though the trusted alignment has a bulge of length at least one basefor that stem for many sequences (28 of the 49 sequences). Better modeling of bulges mightyield alignments that more closely match the trusted alignments.
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3.2. Multiple alignments and secondary structure 29Stem II Stem II Stem IV Stem IV(((((((((((((((( )))))))))))))))) ((((( (((((( )))))))))))lycesc15 ...GCC.UAGGUUGGUGACUUUC.A...UG.GAGGGGUGCCCGCCUA....GA.GGGGG.C.-AUGCG.UUCG.CGCAG-CCCCU.GC-<<<<<<<<<<<<<<<< > > >>>>>>>>>>>>>> <<<<< < <<<< >>>>> >>>>>pissat1C ...GGC.UAGGCAAGUGACUUCC.A...AG.GAGGGGUGCUUGCCUA....GU.GGGGG.C.-CUGCG.UUCG.CGCGG-CCCUC.UU-<<<<<<<<<<<<<<<< > > >>>>>>>>>>>>>> <<<<< < <<<<< >>>>> >>>>> >phavul ...GCC.UAGGGAAGUGACCUUC.A...AG.AAGGGGUGCUACUCUA....GU.GGGGG.C.-CUGCG.UUCG.CGCGG-CCCCU.UA-<<<<<<<<<<<<<<<< > > >>>>>>>>>>>>>> <<<<< < <<<<< >>>>> >>>>> >Figure 3.7: Only the di�ering sections of the predicted and trusted U1 alignmentsare shown for these three U1 sample sequences. Periods indicate elisions, whilehyphens mark insertions. The predicted alignment is indicated with parenthesesover all basepairing columns, while the trusted alignment for each sequence is indi-cated by triangle braces below its basepairing positions. The predicted alignmentplaces more Watson{Crick base pairs in Stem II for lycesc15 and in Stem IV forpissat1C and phavul than does the trusted alignment.while the initial grammar has exact matches in 143 helices over all sequences.3.2.2 U5 predicted alignmentDisagreements between the predicted and trusted U5 alignments are not globally dis-persed, but rather focused in Stems Ia and II. (See the top table in Figure 3.8.) Forsequences having more than four nucleotides aligned in Stem Ia in the trusted alignment,the predicted alignment generally (for 10 of the 12 such sequences) managed to align someof the nucleotides within at least one side of the helix to match the trusted alignment. Thus,although the grammar has a limitation in that the number of helix-match nonterminals is�xed, and the grammar was designed with the built-in restriction that no more than fourmatch nonterminals are allowed to model Stem Ia (see Section 2.5), the grammar managedto place some of the nucleotides in the generally correct location. The same can be said forthe sequences having more than seven nucleotides aligned in Stem II in the trusted align-ment: The predicted alignment generally (for 19 of the 20 such sequences) managed to alignsome of the nucleotides within at least one side of the helix to match the trusted alignment.Although the U5 grammar models bulges only between �xed helix-match positions, it didmanage to align some of the nucleotides within at least one side of helices containing bulgesto match the trusted alignment (for all 7 of the sequences containing bulges). Thus, itseems likely that a grammar tailored to more \perfectly �t" this set (see Section 2.5) mightbe trained to more closely match the trusted multiple alignment. See Section A.2 for thecomplete U5 multiple alignment.The U5 predicted alignment provides several plausible alternative structures. For twosequences, crycoh and tetthe51, the U5 grammar's predicted alignment contains moreWatson{Crick base pairs in Stem II than the trusted alignment does. For crycoh, thepredicted alignment places some of a U-rich strand in the helix instead of in the adjacentloop. The two foldings for this sequence are depicted side by side in graphical XRNA formin Figure 3.9.For tetthe51, the predicted alignment has an additional A-U pair, making the helix aslong as the most common length. For the other sequences in which the Stem II predictedalignment di�ered from the trusted, in two cases the predicted adds an A-C pair, in oneit adds a U-G pair, and in the others it either adds U-U or G-G which are not base pairs,or, if the trusted alignment of Stem II contains more than seven base pairs, slides any



30 3. Experimental ResultsInitial Stem Ia Stem Ib Stem Ic Stem IIBoth sides 19 (61%) 22 ( 71%) 24 (77%) 7 ( 23%)One side 19 (61%) 23 ( 74%) 25 (81%) 7 ( 23%)Some overlap 30 (97%) 31 (100%) 30 (97%) 31 (100%)Trained Stem Ia Stem Ib Stem Ic Stem IIBoth sides 19 (61%) 28 (90%) 24 (77%) 8 (26%)One side 19 (61%) 29 (94%) 30 (97%) 8 (26%)Some overlap 30 (97%) 30 (97%) 30 (97%) 30 (97%)Figure 3.8: Each column corresponds to one of the four U5 helices. The �rst rowshows the number of sequences of the total 31, training plus test, for which the U5grammar predicted exactly the same helix boundaries as the trusted alignment; thesecond, the number of sequences for which the grammar predicted exactly the sameboundaries for at least one side of a helix; and the third, the number of sequencesfor which there is some overlap between predicted and trusted alignments for thathelix side, although the boundaries for both sides may di�er. For comparison,the top table lists the same quantities for the initial grammar, trained on zerosequences.
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U AFigure 3.10: This folding was predicted by the trained U5 grammar for the xenlaesequence. It matches the trusted folding of this sequence exactly.Ia Stem Ib Stem Ib Ia II II(((( ((((((((((( ))))))))))) )))) (((( ))))schpom ...UCCGUCAAAG-CACUUUGCAAAAGC...CCGUUUGUAAGGUGUGCUAAUUUGACU...GAAUCUU----UUUC----UUGAAA<<<<<< <<<<<<<<<< >>>>>>>>>>> >>>>>> << << >>>>aratha ...ACGCAGCCAUGUGGUGAGUACAAAG...CCGUGUGCUCUCGACGCUAAGUGCAUA...GAGGGCUCCAC...UGUGGAACCCAA<<<<< <<<<<<<<<<< >>>>>>>>>> >>>>> <<<<<<<<< >>>>>>>>>homsap5d* AUACUCUGGUUUCUCUUCAAAU...CCGUGGAGAGAAACCGUUUUGAGUUUC...UGA--AG-----------CCC--U<<<< <<<<<<<<<<< >>>>>>>>>>> >>>> < <<< <Figure 3.11: Only the di�ering sections of the predicted and trusted U5 alignmentsare shown for these three U5 sample sequences. Periods indicate elisions, whilehyphens mark insertions. The predicted alignment is indicated with parenthesesover all basepairing columns, while the trusted alignment for each sequence isindicated by by triangle braces below its basepairing positions. (The trustedalignment places the last �ve bases of homsap5d* all on the left side of Stem II.)\extra" bases into the adjacent Loop II. Sample predicted and trusted alignments for threeU5 sequences are shown in Figure 3.11. For each of the two sequences for which the StemIb alignments di�er (schpom and aratha), the predicted alignment contains one more basepair than the trusted. Finally, although the predicted alignment bounds Stem Ia di�erentlyfor 12 sequences, its Stem Ia alignment has the same number of Watson{Crick base pairsas the trusted for 26 of the total 31 sequences, among them eight of those 12 sequences.The initial grammar, trained with only Dirichlet pseudocounts, predicts a fairly similaralignment. (See the bottom table in Figure 3.8.) Interestingly, for the incomplete sequencecaimos*, the initial grammar manages to align some of the same bases in Stems Ib andII that appear in the trusted alignment, whereas the trained grammar matches none ofthe trusted alignment's helix positions for caimos*. (The trained grammar misclassi�es



32 3. Experimental ResultsInitial TrainedBoth sides 0 ( 0%) 0 ( 0%)One side 0 ( 0%) 0 ( 0%)Some overlap 34 (77%) 39 (87%)Figure 3.12: The �rst column corresponds to the initial grammar (for compari-son), and the second to the trained U6 grammar. The �rst row shows the numberof U6 sequences of the total 44, training plus test, for which the grammar predictedexactly the same helix boundaries as the trusted alignment; the second, the num-ber of sequences for which the grammar predicted exactly the same boundaries forat least one side of the helix; and the third, the number of sequences for whichthere is some overlap between predicted and trusted alignments for that helix side,although the boundaries for both sides may di�er.this sequence, as well, in discrimination experiments.) However, for 6 sequences, the initialgrammar places the boundaries of Stems Ib and Ic one match position o� (with respectto the trusted alignment), whereas the trained grammar's predicted alignment matches thetrusted exactly for those sequences. The number of base pairs is equal in either case, though.Also, for the incomplete sequence homsap5d* the trained grammar manages to place someof the same bases on one side of Stem II that the trusted places there, whereas the initialgrammar fails to place any of those same bases in the helix.Of the two incomplete sequences included in the test set, only the dramatically shorterof the two, caimos*, was completely misaligned by the trained grammar. The other,homsap5d*, was aligned correctly for all but Stem II|indeed, it was deemed an incompletesequence because it lacks both Loop II and one side of Stem II in the trusted alignment.3.2.3 U6 predicted alignmentThe U6 predicted alignment places boundaries for the single U6 helix and loop in di�erentpositions, compared to the trusted alignment, for every one of the 44 U6 sequences, trainingplus test. However, the grammar manages to align some of the nucleotides within at leastone side of the helix to match the trusted alignment for many sequences (39 of the 44). (Seethe table in Figure 3.12.)Further, for all sequences, the grammar does locate a stem-loop structure near the 50 end,reecting the fact that some features in the data encourage the base-pairing productionsto become more likely than the skip productions during re-estimation of the productionprobabilities. As mentioned in Section 3.1, more structure may be present in the sequencesthan is captured in the trusted alignments because the sequences were not examined forindividual motifs. See Section A.3 for the complete U6 multiple alignment.Several of the sequences (34 of the 44) have bulges of varying lengths in the helix in thetrusted alignment, but for computational ease of training the grammar was not designed tomodel bulges at all. Also the helix length chosen for the U6 grammar was limited to eightmatch positions (see Section 2.5), whereas the trusted alignment places more than eightnucleotides on one or both sides of some sequences (13 of the 44). The limited similarityof the U6 predicted alignment to the trusted alignment stems from these restrictions onthe initial grammar. (See Figure 3.13 for the predicted and trusted alignments of threerepresentative sequences.)



3.2. Multiple alignments and secondary structure 33(((((((( ))))))))saccer CUUCCCGGAUUAACGUCCGUGGAACA...<<<<<<<<<< >>>>>>>>>>zeamay GUCUCUUCGGA-GACA-UCCGAUAAAAU...<<<<< >> >>>vicfab C--UUCGGG-GACA-UCCGAU--AAA...< >> >>>Figure 3.13: Only the di�ering sections of the predicted and trusted alignmentsare shown for these three sample sequences. Periods indicate elisions, while hy-phens mark insertions. The predicted alignment is indicated with parentheses overall basepairing columns, while the trusted alignment for each sequence is indicatedby by triangle braces below its basepairing positions. In the two bottom sequences,the predicted alignment contains an equal or greater number of Watson{Crick basepairs relative to the trusted alignment.
. . .G A G C

C
U
U
C
G
U

G
U

C C
A
A

G
C
G
A
A
G
G A C A U C C A C A A U

. . .
G

A
G

C
C
U
U
C
G
U

G
U

C C
A
A

G
C
G
A
A
G
G

A

C
A U C C A C A A UFigure 3.14: The left folding was predicted by the trained U6 grammar for theincomplete trycru* sequence's helix. In contrast, the trusted folding (right) addsa bulge at the 24th nucleotide A to �t in an additional G-C pair.For the incomplete sequence trycru*, the trained grammar did predict a folding thatis fairly similar to its trusted folding. (See Figure 3.14.) For the other incomplete sequenceleicol*, however, the predicted and trusted foldings di�er substantially (the similar-lengthhelix was shifted by more than three positions).The U6 predicted alignment also provides several plausible alternative structures. For14 of the 44 sequences, the predicted alignment makes the helix contain as many or moreWatson{Crick base pairs than are present in the trusted alignment for those same sequences,even when the trusted alignment includes bulges. Despite the di�erence between predictedand trusted multiple alignments for the U6 sequence set, the trained grammar is able todiscriminate all complete U6 sequences from non-snRNA sequences of similar length, whereasthe initial grammar is unable to discriminate any of them. (See Section 3.3.) For example,Figure 3.15 shows in XRNA format the predicted and trusted alignments for the saccapsequence. This suggests that, in discrimination of U6 sequences, representation of a stem-loop structure may be more important than its exact nature or precise location.The initial U6 grammar's predicted alignment is similar to the trained grammar's align-ment. Even with no training, it folds 13 sequences to contain more Watson{Crick basepairs than in the trusted alignment of those sequences. The initial grammar's alignmentof trybru more closely resembles the trusted alignment than the trained grammar's align-
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G A C A UFigure 3.15: The predicted folding (left) for the U6 helix for saccap contains moreWatson{Crick base pairs than the trusted folding (right) for that same portion ofthe same sequence, although the trusted folding contains G-U and A-G pairs.ment, but in general the trained grammar's alignment more closely matches the trusted (seeFigure 3.12). However, it is unable to discriminate any of the 44 sequences from non-snRNAsequences.Training on the 22 training sequences allowed the grammar to align sequences with moreWatson{Crick base pairs than before it was trained. The trained grammar's predicted align-ments for 13 sequences contain more Watson{Crick base pairs than the initial grammar'spredicted alignments for them, while the initial grammar's predicted alignments for only7 sequences contain more Watson{Crick base pairs than the trained grammar's alignmentsfor them.3.2.4 Folding new sequencesAll trained grammars were used to predict foldings for their test sets (see previoussubsections), but a trained grammar can also predict foldings for sequences for which onlythe primary sequences are known. As an additional test, the grammars were used to fold 32sequences drawn from the latest GenBank updates (82.0+, dated 26 May 1994, and 82.0,dated 8 April 1994) for which only primary sequences are known. These are referred to asnew sequences.Figures 3.16, 3.17 and 3.18 show multiple alignments for the 12 new U1 sequences, 6 newU5 sequences and 14 new U6 sequences, respectively, as predicted by the three correspondingtrained grammars. Parentheses over the base-pairing columns locate the helices. Periodsdenote ends of helices and sometimes insertions. Hyphens represent insertions. Lowercaseletters in the U5 and U6 alignments indicate applications of insert productions; the loopsare not aligned in the U1 alignment.The U1 sequence ratnor seems oddly to have been aligned too far to the left relative tothe other new sequences' predicted alignments, such that it appears to have an unusuallylong lead loop on its 50 end and it appears to end prematurely with no Stem IV or LoopIV. This may be an artifact from its designation in the GenBank database. It is notdiscriminated either.The U5 sequences caeele2 and musmus, both appear to have slightly unusual alignments,with gaps inserted in some helices. These two may be incomplete sequences (fragments),they may just have unusual structure, or they may have been mislabeled in the GenBankdatabase.The three mycoplas sequences listed in the U6 alignment are not actual U6 sequences,but rather sequences that biologists have agged as resembling U6. The trained U6 grammaraligns portions of those sequences to the helix such that their alignments closely resemble



3.2. Multiple alignments and secondary structure 35Trunk Stem I w/Bulge Stem I(((((( ((((( ((((( ))))))))))asclum1 --------------------------------AAACUAACCU.GGCUGG.GGGGC.AU.CUCGC.GAUCAUGAAG.GCGGGACCUC.asclum2 --------------------------------AGACUUAUUU.GGUUGG.GAGGA.U-.UUCGU.AAUCAGAAG-.GCGGGACCUC.asclum3 --------------------------------AAACUUACCU.GGCUGG.GAGGC.U-.UUCGU.GAUCAUGAAG.GCGGAACCUC.caeele --------------------------------AAACUUACCU.GGCUGG.GGGUU.AU.UUCGC.GAUCACAAAG.GCGGAAUCCC.lycesc1 --------------------------------AUACUUACCU.GGACGG.GGUCA.A-.UGGGC.GAUCAUGAAC.ACCCAUGGCC.lycesc2 ---------------------------------UACUUACCU.GGACGG.GGUCA.A-.UGGGC.GAUCAUUAAG.ACCCAUGGCC.musmus --------------------------------AUACUUACCU.GGCAGG.GGAGA.U-.ACCAU.GAUCACGAAG.GUGGUUUUCC.ratnor CAGGGGAGAGCGCGAACGCAGUCCCCCACUACCACAAAUUAU.GCAGUC.GAGU-.U-.-UCCC.GCAUUUG---.GGGA-AAUCG.schman1 --------------------------------AAACUUACCU.GGCGCC.GGGUU.C-.AGGGU.GAUCAGGAAU.GCUCUGACCC.schman2 --------------------------------AAACUUACCU.GGCGCC.GGGUU.C-.AGGGU.GAUCAGGAAU.GCUCUGACCC.tetthe1 -----------------------------------AUUACAA.UGUUGU.AGUUA.G-.CUAUA.UAUCAAAAAA.UAUAGCAACU.tetthe2 ----------------------------------ACUUACCU.GGCUGG.AGUUA.G-.CUAUC.GAUCAUGAAG.GGUAGCGGCU.Stem II Stem II Stem III Stem IIIw/Blg(((((((((((((((( )))))))))))))))) ((((((((( )))))) )))asclum1 CAUGGUGAGGUCUGGU.CAUUGCACUUCCG-.ACCAGGCUGACCUGUG.UGGCAGUCC.CGAGUUG-----.GGAUUG.G-.CCA.asclum2 CAUGGCGAGGCUUGGU.CAUUGCACUUUCG-.ACCAGGCUGACCAGUG.UGGCAGACC.CGAGUUG-----.GGAUUG.G-.CCA.asclum3 CAUGGUGAGGCUUGGU.CAUUGCACUUUCG-.ACCAGGCUGACCCGUG.UGGCAGUCC.CGAGUUG-----.GGAUUG.G-.CCA.caeele CAUGGUUAGGCCUACC.CAUUGCACUUUUGG.UGCGGGCUGACCUGUG.UGGCAGUCU.CGAGUUG-----.AGAUUC.G-.CCA.lycesc1 UAGGUUGGUGACCAUC.AUUGCACUUUG---.AAGGGGUGCCCGCCUA.AGGUCGGCC.CAAGU-------.GGUCGA.G-.CCU.lycesc2 UAGGCUUGUGACCUCC.AUUGCACUUUG---.GAGGGGUGCCUGCCUA.AGGUUGGCC.CAAGU-------.GGUCGA.G-.CCU.musmus CAGGGCGAGGUGUAUC.CAUUGCAUCCG---.GAUGUGCUGACCACUG.CGAUUUCCC.CAAAUGC-----.GGGAAA.C-.UCG.ratnor CAGGGGUCAGCACAUC.CGGAGUGCAAUG--.GAUAAGCCUCGCCCUG.GGAAAACCA.CCUUCGUGAUCA.UGGUAU.C-.UCC.schman1 CGGGUGGAGGCUCAC-.CAUUGCACUUCG--.-GUGGGUUGAAACUUG.CGACGAACC.CUAAUUG-----.GGUGCG.C-.UCG.schman2 CGGGUGGAGGCUCAC-.CAUUGCACUUCG--.-GUGGGUUGAAACUCG.CGACGAACC.CUAAUUG-----.GGCUCG.C-.UCG.tetthe1 AAGGUGGAGCAAGUC-.AUUGUACUAAAGA-.-UGUUUGUAAUACCUU.GAUGUUCCC.GCU---------.GGGAGC.A-.AUA.tetthe2 UAGGGUGGAGCAGGUC.AUUGCACAAAAGA-.UGUCUGUAAUACCUUA.UUGUUCCCC.GUGC--------.GGGGAA.CC.GAA.Trunk Stem IVw/Bulge Stem IV)))))) ((((( (((((( )))))))))))asclum1 AGAGCA.UAAUUUUUGCGU---------.UUGGG.G.ACAGCG.UUCG.CGCUUCCCCGC.CCasclum2 ACAGCA.UAAUUUUUGCGU---------.UUGGG.G.ACAGCG.UUCG.CGCUUCCCCGC.GUasclum3 ACAGCA.UAAUUUUUGCGU---------.UUGGG.G.ACAGCG.UUCG.CGCUUCCCCGC.CCcaeele ACAGCU.UAAUUUUUGCGU---------.AUCGG.G.GCUGCG.UGCG.CGCGGCCCUGA.Alycesc1 ACGUCA.UAAUUUGUUGCUGA-------.GGGGG.C.CUGCG-.UUCG.-CGCGGCCCCU.GClycesc2 ACGUCA.UAAUUUGUUGCUG--------.UGGGG.G.CCUGCG.UACG.CGCAGCCCCUG.CCmusmus ACUGCA.UAAUUUGUGGUAGU-------.GGGG-.G.ACUGCG.UUUG.UGCUCU-CCCC.UUratnor -CCUGC.CAGGUAAGUAUschman1 GACGCG.UAGUUUUUGUCAG--------.UGG--.G.GAGGUC.UUCG.--GAUCAUCCC.UUschman2 GACGCG.UAGUUUUUGUCAG--------.UGG--.G.GAGGUC.UUCG.--GAUCAUCCC.UUtetthe1 ACAACA.AAAUUUCUGAUUGGAAAUAGU.CAUUA.A.ACUAAC.UG--.GCUAUUUCCUC.Utetthe2 ACAGCA.CAAUUUCUGCUAGG-------.GGAGA.C.GUGCAC.UUA-.GUGCUGUCUCC.GCUFigure 3.16: The trained U1 grammar predicted these foldings for 12 new se-quences taken from the updated GenBank database. (Loops are not aligned.)the aligned portions of other actual U6 sequences, such as soltub and stropur. However,it does not discriminate these sequences as being U6 sequences.XRNA representations for predicted foldings of sample sequences from the set of newsequences are shown in Figures 3.19, 3.20 and 3.21. The U1 �gure shows a sequence fromthe organism Tetrahymena thermophila. The U5 �gure shows a sequence from each of thetwo eucaryote worm organisms Ascaris lumbricoides and Caenorhabditis elegans. The U6�gure shows the helix portions of six sequences including the three pseudo-U6 sequencesfrom the Mycoplasma genus.An empirical examination of the predicted foldings reveals that they do resemble thetrusted foldings of other sequences from the same set. Most sequences are also aligned ina manner similar to the sequences appearing in the trusted alignments for the same set.These predicted foldings may be viable secondary structures for the new sequences.



36 3. Experimental ResultsIa Stem Ib Stem Ic Stem Ic Stem Ib(((( ((((((((((( (((((((( )))))))) )))))))))))asclum ...AG.-CUC.U..G.GUUCCUCUGCA.UccAC...CGAGA.AAUUCUUU.CGCCUUUUACU.AAAGAUUU.CCG.UGCAGAGGAAC.caeele1 ...-A.ACUC.U..G.GUUCCUCUGCA.U..UUaacCGUGA.AAAUCUUU.CGCCUUUUACU.AAAGAUUU.CCG.UGCAAAGGAGC.caeele2 gaaAA.UCUU.U..U.GCCUUUUACUG.A..AU...-AUUU.--------.----------u.--------.CCU.UGCAAAGGAGC.musmus cucUU.ACUG.UccG.GAAUC-CAGUG.G..UC...CUUAG.UGGGCGGG.-----UUUACU.CUGGCAGA.--G.UUUCU-GUUUG.tetthe1 ...AU.CACA.-..G.AACUCAGCUCA.U..UA...CGCUU.UAAUUUUU.CGCCUUUUACU.AAAGAUUA.CCG.UGGGCUGGGUU.tetthe2 ...AU.CACA.-..G.AACUCAGCUCA.U..UA...CGAUU.UAAUUUUU.CGCCUUUUACU.AAAGAUUA.CCG.UGAGCUGGGUU.Ia Stem II Stem II)))) ((((((( )))))))asclum G.UUU.A.U.GAG-.UAUA.CGCCAAUUUUUGGaG.UCCCAGC...UUC...G.GCUAGGG.acaAcaeele1 A.UUUaC.U.GAGU.AUUAcAUACAAUUUUUGG.A.GACUCCU...UGAgaaA.GCGGGUC....Acaeele2 AuACA.U.U.GAGU.AUUAuAUACAAUUUUUGG.A.GUCC-CC...UUG...A.GA-AAGC.g..Gmusmus A.AAU.AgU.UGGU.AUUA.AG----UU-----.G.AUUCUGU.cgCUG...U.UCGGAAU....Atetthe1 U.ACC.A.A.UGUG.AAUU.AUUAAAAUUUUUG.C.AGGAUUC...UUU...U.GAAUCCU.c..Utetthe2 U.UUC.A.A.UGUG.AAUU.AUUAAAAUUUUUG.C.AGGAUUC...UUU...U.GAAUCCU.c..UFigure 3.17: The trained U5 grammar predicted these foldings for 6 new sequencestaken from the updated GenBank database.(((((((( ))))))))asclum .....A.UAUAAAUA.U....CUUGUAUA.UUUAUAAUAUUGGC...homsap .....U.UUUGUAUC.ACA..UAUACUAA.AAUGGCGCUAGCGA...lycesc ...CCG.UACUCGCU.U....CGGCGGUA.CAUAUACUAAAAUU...mycoplas1 ...GUC.CCUUCGGG.GACA.UCCGAUAA.AAUUGGAACGAUAC...mycoplas2 .....G.UGUUAGCU.U....CGGCAACA.CAUCUAUUAAAAUU...mycoplas3 .....A.UAUAAAUA.U....CUUGUAUA.UUUAUAAUAUUGGC...phypol .....C.CCGAAAGG.GUCC.UCCGUUAA.AAUUGGAACGAUAC...schman AGAGCC.CGAAAGGG.CA...UCUGUUAA.AAUUGGAACGAUAC...soltub .GGAGC.CCUUCGGG.GACA.UCCACAAA.CUGGAAAUUCAACA...stropur UGGAGC.CCUUCGGG.GACA.UCCACAAA.CUGGAAAUUCAACA...tetthe* .....C.CCGAAAGG.GUCC.UCCGUUAA.AAUUGGAACGAUAC...tetthe AGAGCC.CGAAAGGG.CA...UCUGUUAA.AAUUGGAACGAUAC...trybru .GGAGC.CCUUCGGG.GACA.UCCACAAA.CUGGAAAUUCAACA...trybru2 UGGAGC.CCUUCGGG.GACA.UCCACAAA.CUGGAAAUUCAACA...Figure 3.18: The trained U6 grammar predicted these foldings for 14 new se-quences taken from the updated GenBank database. Only the helix and portionsof the adjacent (unaligned) loops are shown.3.3 Discriminating snRNA from non-snRNA sequencesAs described in Section 2.2, a NLL score is calculated for each test sequence and isthen used to measure how well the sequence �ts the corresponding grammar. This rawNLL score depends too much on the test sequence's length to be used directly to decidewhether a sequence belongs to the set modeled by the grammar. Thus the raw scoresare normalized by calculating the di�erence between the NLL score of a sequence andthe average NLL score of a typical non-snRNA sequence of the same length, measuredin standard deviations. This number is called the Z score for the sequence [KBM+94].By choosing a Z-scores cuto�, one can classify sequences with Z scores above the cuto�as being snRNA sequences. While I cannot prove that these normalized scores actuallyexhibit Gaussian tails for non-snRNAs, this kind of Gaussian approximation has workedwell previously [KBM+94, SBU+93, SBM+94, SBH+94b].To test the ability of the trained grammars to discriminate their snRNA from otherRNA sequences of similar length, for each of the trained grammars, calculations were madeto obtain the Z score of every sequence in the corresponding snRNA database and every
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3.3. Discriminating snRNA from non-snRNA sequences 39Matching Subunit Set Augmented Non-snRNA Set� 5 > 5 Low Zs BPB Name Null BPB High Zs BPB Name Null BPBU1 0 49 5.466 2.097 schpom 2.049 3.997 2.405 U5 2.05910.944 1.645 chlsac 2.167 3.344 2.422 misc. 2.053U5 1 30 3.858 2.247 caimos* 2.081 4.034 2.167 misc. 2.0637.454 1.854 schpom 2.058 3.349 2.269 tRNA 2.039U6 2 42 2.620 3.060 leicol* 2.108 3.482 2.472 repeat 2.0572.843 2.790 trycru* 2.096 3.257 2.569 CDS 2.0457.887 1.991 trybru 2.067 3.027 2.553 CDS 2.050Total 3 121Figure 3.22: The table shows how each trained grammar partitions the sequenceset it was intended to model based on their Z scores (124 snRNA sequences total).The \� 5" column tabulates the number of sequences whose Z scores were nogreater than 5 standard deviations, while the \> 5" column shows the numberof sequences whose Z scores were greater than 5 standard deviations. The rowsshow sequences closest to the Z-scores boundary (the highest-scoring non-snRNAand lowest-scoring snRNA sequences). The third and seventh columns show thesesequences' Z scores; the fourth and eighth columns show their NLL scores in base2 divided by sequence length, or bits per base (bpb). The �fth and ninth columnslabel the sequences. The sixth and tenth columns represent the BPB that a nullmodel would give for a sequence of that length. The incomplete * sequences wereneither aligned nor discriminated by the trained grammars.of the trained grammars, there were no false positives. There was one false positive forthe U6 initial grammar, though. False positives are non-snRNAs misclassi�ed as snRNAs,while false negatives are snRNAs misclassi�ed as non-snRNAs. The �gure shows actual Zscores for sequences closest to the Z-scores cuto�. For generality, it also shows an alternateformulation called bits per base (BPB) for those sequences.The BPB measure is useful for assessing a model's utility from a data-compression pointof view. The bits per base for a sequence is the sequence's NLL score in logarithm base2 divided by the sequence's length. (NLL in base 2 is obtained by dividing the raw NLLscore, which is in base e, by the natural logarithm of 2.) This gives the likelihood in base2 for an \average" nucleotide in an RNA sequence, which approximates how many bits ofcomputer memory the grammar would require to represent a nucleotide in that sequence.For comparison, Figure 3.22 also shows the BPB scores that a null grammar would provide,where the null grammar is de�ned as the simplest model representing the sequences. Thenull grammar reects the information content of the primary sequences, assuming nothingis known about their secondary structure. The null BPB values are calculated by addingto 2 (the number of bits required to specify one of four nucleotides) the logarithm base 2of the sequence length (the number of bits required to encode the sequence length) dividedby the length.All three trained grammars produce BPB scores much less than 2 for all snRNA se-quences except those closest to the Z-scores boundary, indicating that these trained gram-mars would require less space to represent the sequences they model than would a nullgrammar. Conversely, the BPB scores for the augmented non-snRNA sets are higher than2, usually around 3, indicating that the trained grammars would require more memory torepresent sequences that they do not model than would a null grammar. This result �ts



40 3. Experimental ResultsNumber of SequencesGrammar BPB � 1:0 1:0 < BPB < 2:0 BPB � 2:0 TotalU1 35 13 1 49U5 15 15 1 31U6 36 6 2 44Totals 86 34 4 124Figure 3.23: This table partitions sequences by their BPB scores as calculatedby the grammar trained to represent them. The three middle columns show thenumber of sequences falling into three ranges of bits-per-base scores. A low BPBscore indicates that the corresponding grammar requires little computer memoryto represent that sequence.the fundamental theorem in coding theory, which says the optimal representation of a setof strings takes � log(P (string)) to represent a string; the only way a model can express aset of strings in fewer bits is to express other strings in more bits.Figure 3.23 partitions the sequences by their BPB scores, while Figures 3.26, 3.29 and3.32 are histograms of the BPB scores calculated by each trained grammar for its modeledset and the corresponding augmented non-snRNA set. Because of the skew in average-NLL score mentioned previously, the BPB scores for non-snRNA sequences about 30{45nucleotides in length are arti�cially high, which leads to an overly long non-snRNAs tail ineach of the BPB plots in Figures 3.26, 3.29 and 3.32.3.3.1 U1 discriminationThe U1 grammar distinguishes the augmented non-snRNA set from the U1 set perfectly.There are no false negatives or false positives. Even the six incomplete sequences werediscriminated, with Z scores ranging from 12.984 to 16.989, ranking them 4th through 8th,and 12th in the full set of 49 U1 sequences. The grammar was able to predict alignmentsfor these six sequences that closely match the trusted, as well.In contrast, the U1 initial grammar misclassi�es 36 of the 49 sequences, despite itsapparent ability to predict alignments that match the trusted alignments as well as thosepredicted by the trained grammar. As can be observed in Figure 3.25, the snRNA sequences'Z scores clearly overlap those of the non-snRNA sequences, and the snRNA Z scores aremuch lower in general than those given by the trained U1 grammar. Compare the histogramsof Figures 3.25 and 3.24 to see the e�ect of grammar training on the grammar's ability todiscriminate.3.3.2 U5 discriminationThe U5 grammar distinguishes the augmented non-snRNA set from the U5 set nearlyperfectly. The sole false negative is the incomplete sequence caimos*, 78 bases long, withthe unusually low Z score of 3.858. The grammar could not align this sequence, either.However, the other incomplete sequence homsap5d* (102 bases long) scored 15.300, rankingit near the median (13th out of the 31 sequences), and its alignment matched the trusted inall helices but Stem II. The next lowest-scoring U5 was the training sequence schpom, 118
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Figure 3.24: The U1 grammar was trained on 25 sequences drawn at random withequal probability from the full U1 set (Section 3.1). Though it was not trained onthe test set, the trained grammar can discriminate perfectly between the entireset of U1 sequences, training plus test, and non-snRNAs (of lengths between 30and 174) and 10 non-U1 snRNA sequences (see histogram, left). The highest-scoring augmented non-snRNA sequence is a U5 sequence 116 bases long with aZ score of 3.997, while the lowest-scoring U1 snRNA sequence has a Z score of5.466 and is 148 bases long, leaving a margin between them about 1.5 standarddeviations wide inside which a Z-scores cuto� can be chosen. NLL scores for eachaugmented non-snRNA sequence are also plotted (right), with the average NLLcurve superimposed.bases long, with the Z score 7.454. Thus, omitting caimos*, a Z-scores cuto� may be chosenat around 5 standard deviations. Then it is true that the U5 grammar discriminates perfectlybetween complete U5 sequences and similar-length non-snRNA fragments and other snRNAsequences.The U5 initial grammar misclassi�es 11 of the 31 U5 sequences as non-snRNAs|thatis, 11 U5 sequences have Z scores below 5. As can be observed in Figure 3.28, the snRNAsequences' Z scores clearly overlap those of the non-snRNA sequences, and the snRNA Zscores are much lower in general than those given by the trained U5 grammar. Compare thehistograms of Figures 3.28 and 3.27 to see the e�ect of grammar training on the grammar'sability to discriminate.3.3.3 U6 discriminationThe trained U6 grammar discriminates complete U6 sequences from the augmented non-snRNA sequences perfectly (see Figure 3.30). However, it misclassi�es both incompletesequences, giving false negatives for leicol* and trycru*. The trained grammar's pre-dicted alignments for these sequences deviate from the trusted alignment as well, thoughthis is true for all 44 sequences.
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Figure 3.25: The initial U1 grammar was not trained on sequences and embodiesonly the Dirichlet pseudocounts. Though none of the non-snRNAs of lengthsbetween 30 and 174 and the 10 non-U1 snRNA sequences has a Z score higherthan 5, fully 36 of the 49 U1 sequences, training plus test, had Z scores lowerthan 5 and the highest-scoring snRNA sequence has a Z score of only 5.935. Thehighest-scoring augmented non-snRNA sequence is 145 bases long with a Z scoreof 3.865, while the lowest-scoring U1 snRNA sequence has a Z score of �0:837 andis 143 bases long.As for the other trained grammars, there are no false positives. All augmented non-snRNA sequences have Z scores well below 5 standard deviations.The U6 initial grammar misclassi�es seven U6 sequences as non-snRNAs|that is, sevenU5 sequences have Z scores below 5. As can be observed in Figure 3.31, the snRNAsequences' Z scores clearly overlap those of the non-snRNA sequences, and the snRNA Zscores are much lower in general than those given by the trained U6 grammar. Compare thehistograms of Figures 3.31 and 3.30 to see the e�ect of grammar training on the grammar'sability to discriminate.3.3.4 Discriminating new sequencesThe grammars were used to discriminate the 32 new sequences drawn from the latestGenBank updates (82.0+, 26 May 1994, and 82.0, 8 April 1994), using the same Z-scorescriterion as in previous sections: sequences scoring higher than 5 are classi�ed as snRNAsequences. Figure 3.33 shows Z scores and BPB scores for these new sequences.The U1 grammar succesfully discriminates 10 of the 12 new U1 snRNA sequences. Themisclassi�ed sequence ratnor, with a Z score of �0:392, seems oddly to have been alignedtoo far to the left relative to the other new sequences' predicted alignments, such that itappears to have an unusually long lead loop on its 50 end and it appears to end prematurelywith no Stem IV or Loop IV. This may be an artifact from its designation in the GenBankdatabase. The other misclassi�ed snRNA sequence is tetthe1, with a Z score of 4.769.
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Figure 3.26: The U1 grammar was trained on 25 sequences drawn at random withequal probability from the full U1 set (Section 3.1). Shown here are the bits-per-base (BPB) scores for all 49 U1 sequences, as well as those for the 1460 augmentednon-snRNA sequences. All BPB scores higher than 4 correspond to sequencesshorter than 40 nucleotides in length.The U5 grammar successfully discriminates four of the 6 new U5 snRNA sequences.The undiscriminated sequences, caeele2 and musmus, both appear to have slightly unusualalignments, with gaps inserted in some helices. These two may be incomplete sequences(fragments), they may just have unusual structure, or they may have been mislabeled inthe GenBank database.The U6 grammar successfully discriminates 10 of the 14 new U6 snRNA sequences.It misclassi�es the three pseudo-U6 sequences mycoplas1, mycolplas2 and mycoplas3,ranking them lowest (1st, 3rd and 4th) in the new set. The trained U6 grammar doesalign these Mycoplasma sequences, which resemble U6 sequences, such that the alignmentslook similar to those of the actual U6 sequences, but it does not classify them as U6sequences. This has interesting rami�cations, as the Mycoplasma sequences come fromanother biological domain than the snRNAs. (See Section 4.)
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Figure 3.27: The U5 grammar was trained on 16 complete sequences drawn atrandom with equal probability from the full U5 set (Section 3.1). This histogram(left) shows discrimination between the 1460 augmented non-snRNA sequencesand the entire set of U5 sequences, training plus test. A single U5 test sequence,the incomplete sequence caimos* (only 78 bases long), was misclassi�ed as a non-snRNA sequence with a Z score of 3.858. The highest-scoring non-snRNA sequencehas a Z score of 4.034 and is 106 bases long, while the next-lowest U5 is schpom(118 bases long) with a Z score of 7.454, leaving a margin between them aboutthree standard deviations wide inside which a Z-scores cuto� can be chosen. NLLscores for each augmented non-snRNA sequence are also plotted (right), with theaverage NLL curve superimposed.
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Figure 3.28: The initial U5 grammar was not trained on sequences and embodiesonly the Dirichlet pseudocounts. This histogram shows its discrimination betweenthe 1460 augmented non-snRNA sequences and the entire set of U5 sequences,training plus test. Of the 31 total U5 sequences, 11 were misclassi�ed; noneof the augmented non-snRNA sequences was misclassi�ed. The misclassi�ed U5snRNA sequences, with Z scores ranging from �0:333 to 4.869, include six pissatsequences, the incomplete sequence caimos* and the �ve complete sequencesaratha, caeele, schpom, crycoh and dromel. The highest-scoring non-snRNAsequence has a Z score of 3.639 and is 105 bases long.
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Figure 3.29: The U5 grammar was trained on 16 sequences drawn at random withequal probability from the full U5 set (Section 3.1). Shown here are the bits-per-base (BPB) scores for all 31 U5 sequences, as well as those for the 1460 augmentednon-snRNA sequences. All BPB scores higher than 4 correspond to sequencesshorter than 40 nucleotides in length. The outlier sequence with BPB score 2.247is the fragment caimos*.
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Figure 3.30: The U6 grammar was trained on 22 complete sequences drawn atrandom with equal probability from the full U6 set (Section 3.1). It discriminatesnearly perfectly between the 1460 augmented non-snRNA sequences and the entireset of U6 sequences, training plus test, though it was not trained on the test set(see histogram, left). Two U6 test sequences, both incomplete, were misclassi�ed asnon-snRNA sequences: the lowest-scoring U6 snRNA sequence, trycru*, 62 baseslong, has a Z score of 2.843, while the next lowest-scoring U6 sequence, leicol*, 53bases long, has a Z score of 2.620. Ignoring these, a Z-scores cuto� can be chosenin the margin between the third lowest-scoring U6 sequence, which is complete, 99bases long, and has a Z score of 7.887, and the highest-scoring augmented non-snRNA sequence, 122 long, which has a Z score of 3.482. This margin is over 4standard deviations wide. NLL scores for each augmented non-snRNA sequenceare also plotted (right), with the average NLL curve superimposed.
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Figure 3.31: The initial U6 grammar was not trained on sequences and embodiesonly the Dirichlet pseudocounts. It incorrectly embeds all 44 sequences in theU6 set within the peak for the 1460 augmented non-snRNA sequences. The Zscores for the snRNA sequences range from �1:900 to 4.858, while those for theaugmented non-snRNA sequences range from �2:628 to 5.279. There is one falsepositive, a non-snRNA sequence of length 111.
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Figure 3.32: The U6 grammar was trained on 22 sequences drawn at random withequal probability from the full U6 set (Section 3.1). Shown here are the bits-per-base (BPB) scores for all 44 U6 sequences, as well as those for the 1460 augmentednon-snRNA sequences. All BPB scores higher than 4 correspond to sequencesshorter than 40 nucleotides in length.



50 3. Experimental Results
Grammar � 5 > 5 Low Zs BPB Name Null BPBU1 2 10 �0:392 2.646 ratnor 2.0454.769 2.194 tetthe1 2.04212.454 1.510 tetthe2 2.043U5 2 4 �0:260 2.540 musmus 2.0641.599 2.443 caeele2 2.07211.381 1.512 caeele1 2.057U6 4 10 �1:011 2.979 mycoplas2 2.0710.051 2.834 phypol 2.0671.355 2.660 mycoplas3 2.0551.955 2.605 mycoplas1 2.0647.474 2.035 trybru2 2.0677.505 2.025 trybru1 2.06714.287 1.295 tetthe 2.064Totals 8 24Figure 3.33: The 32 new snRNA sequences drawn from the latest GenBankupdates were discriminated from the augmented non-snRNA set by each of thethree corresponding trained grammars as shown. Most snRNA sequences hadZ scores below 5. Those with Z scores above 5 also had alignments deviatingsubstantially from those of the other new sequences in the set. BPB values arecalculated as in Figure 3.22. Z scores and BPB score are shown for those sequencesclosest to the Z-scores cuto�.



514. DiscussionThe SCFG method applied here represents a signi�cant new direction in computationalbiosequence analysis. The results shown in this thesis, combined with recent results applyingthis method to modeling tRNA [SBU+93, SBM+94, SBH+93, ED94], lend support to theanalytical utility of using SCFGs to model RNA.The aims of this work were to devise models that could provide multiple alignments, todiscriminate sequences from the modeled set from sequences from other sets and to predictfoldings for new sequences. This section discusses how well these goals were accomplished,compares SCFGs to other methods invented for achieving these goals and suggests possiblefuture work to expand on the results of this thesis.4.1 Assessment of resultsThe multiple alignments matched the trusted alignments somewhat. The results inFigures 3.7, 3.11 and 3.13 show that the trained grammars' predicted alignments do notmatch the trusted alignments much more closely than the initial untrained grammars, whichseems to imply that training does not improve the alignment.At least two factors may account for this. First, the snRNA sequences vary widelyin their primary sequence and structure conservation, unlike the tRNA sequences uponwhich this method was tested previously [SBU+93, SBM+94, SBH+93]; for instance, thehelices do not have well-de�ned lengths. This variation, in combination with the absenceof exible bulge modeling in the grammars, may contribute to the limited precision ofthe alignments. Second, the �gure's base-pairing match percentages were measured withrespect to trusted alignments produced in reference to sequences from a single organism,the yeast Saccharomyces cerevisiae; snRNA sequences from other organisms were examinedfor motifs such as base pairs or helices that were also present in saccer, but cases wherehelices were shorter or had the possibility for a bulge were not recorded in the trustedalignments. It is possible that the trained grammars create structures custom-designed foreach sequence from its modeled set on an individual basis, whereas the trusted alignmentsgenerate a generic structure, so neither predicted nor trusted alignment is truly incorrect;rather, their results may be complementary [Mia94]. It would be interesting to see whethermodeling bulges such that they may appear between any helix-match nonterminals wouldgreatly improve the grammars' abilities to predict alignments that closely match the trustedalignments. Many predicted snRNA sequence alignments in this work could have matchedtheir trusted alignments exactly if a bulge position could have been moved.Each grammar can clearly discern sequences it was intended to model from those it wasnot. It was shown that training on as few as about 20 sequences improves a grammar'sability to discriminate. This indicates that the grammars are limited in utility if theirprobabilities are derived solely from the Dirichlet prior density based on 16S rRNA.The grammars' predicted foldings for new sequences resulted in structures closely resem-bling the trusted foldings in the same set. As mentioned previously, more useful grammarsmight result if bulges were modeled more exibly.The U6 grammar folds and aligns the non-U6 Mycoplasma sequences as if they were U6sequences, though it does not discriminate them as U6 sequences. The genus Mycoplasmais bacterial while snRNAs are eucaryotic. Because, according to biologists, there appear



52 4. Discussionto be three domains in life|bacteria, archaea and eucarya|the discovery of a structureor sequence that appears in two or more of these domains has important implications forunderstanding the evolutionary origins of domains in biological molecules. Thus a grammarthat can �nd such structures or sequences in an RNA database would be useful to biologists.It would be interesting to experiment with grammars that model bulges more exibly to seehow they classify the Mycoplasma sequences and to see whether they restrict or enlarge theset of recognized sequences (those classi�ed as a particular type of snRNA) in discrimination.SCFGs and their equivalents covariance models [ED94] appear to be the sole methodscurrently for obtaining a single uni�ed model that can provide RNA multiple alignments,secondary-structure predictions and sequence discrimination. Some approaches, such asthermodynamics methods, do exist for predicting helices in individual sequences, but thereremains the problem of combining the results to obtain an overall picture. As yet, the focusremains on analyzing single sequences rather than families. The phylogenetic method doesexamine all sequences and predict a common structure, but it ignores variations in individualsequences. As mentioned in Chapter 1, HMMs are expected not to model RNA as well asSCFGs, due to the presence of base pairs in the data. It would be interesting to attempt tomodel snRNAs with HMMs to see what kind of discrimination and alignment results canbe obtained. It is anticipated that such HMMs would lack the ability to generalize to alignor discriminate new sequences.4.2 Possible future tasksSCFGs provide a exible and highly e�ective statistical method for solving RNA se-quence analysis problems including discrimination, multiple alignment and prediction ofsecondary structures. In addition, the grammar itself may be a valuable tool for represent-ing an RNA family or domain. The present work demonstrates the usefulness of SCFGswith snRNA sequences and could prove useful in maintaining, updating and revising com-pilations of their alignments. Further classes of RNA sequences potentially appropriateto model using this method include group I introns [MW90, MECS90], group II introns[MUO89], ribonuclease P RNA [BHJ+91, TE93] and 7S RNA (signal recognition particleRNA) [Zwi89]. Combining these models might prove useful for higher-level sequence pro-cessing. For example, a DNA database could be searched using an intron model, then thediscerned intron regions could be excised and another grammar (for an snRNA set, forexample) could then be used to parse the remaining regions to �nd new RNA sequences.The main di�culties in applying this work to other families of RNA are developingappropriate initial grammars and decreasing the computation time required to parse longersequences. Even for these relatively short snRNA sequences (53{170 bases in length) andgrammars with 1498{2021 productions and 367{498 nonterminals, the required memorymakes parsing nearly intractable on current architectures. The latter problem can besolved only by the development of fundamentally di�erent parsing methods, perhaps relyingmore on branch-and-bound methods (a form of best-�rst search) [LS94] or heuristics. It iscurrently not clear which approach will be best. The former problem might be solved by thedevelopment of e�ective methods for learning the grammar itself from training sequences.The work of Eddy and Durbin is an important step in this direction [ED94]. Their methodrelies on correlations between columns in a multiple alignment [GPH+92, Lap92, KB93,Wat89, WOW+90, San85, Wat88] to discover the essential base-pairing structure in anRNA family. Another approach would be to use a method like that proposed by Waterman



4.2. Possible future tasks 53[Wat89] to �nd helices in a rough initial multiple alignment, use these helices to designa simple initial grammar in a semi-automated fashion using the high-level RNA grammarspeci�cation language discussed in Section 2.5, then use the grammar to obtain a bettermultiple alignment, and iterate this process until a suitable result is obtained. Recently someresearchers have used Gibbs sampling strategies [GG84] for producing multiple alignmentsand deducing locations of helices from raw sequences [GHH+94, LAW+94, LAB+93, BL93].The algorithm of Lawrence et al. [LAW+94, LAB+93] for proteins produces local multiplealignments by �nding blocks of residues conserved across sequences. The algorithm of Grateet al. [GHH+94] extends the Lawrence approach to produce local multiple alignments ofRNA. Because RNA secondary structure must be taken into account to produce these, theGrate approach �nds conserved based pairs (i.e., helices). Another approach that mightreduce computation time would be to use much simpler grammars that do not rely on having�xed maximum helix lengths. By including recursive productions of the form S ! aSb, ahelix of any length could be modeled in principle. Such a grammar might model secondarystructure better but model primary structure worse. This tack would decrease the number ofproductions and thus the amount of memory required, but might complicate the alignmentalgorithm.Because shorter sequences require less time to parse, and because biologists often workwith fragments rather than complete sequences, a related goal would be to devise schemesfor modeling sequence fragments. These snRNA grammars failed to align or discriminatesequences that were only 50{70% the length of the average sequence length in the corre-sponding set, while length deviations of up to 40% from the average length seemed to beaccommodated. It might be useful to characterize how short a fragment can become beforea grammar begins to misclassify it, but the results would depend on the other sequencespresent in the set.Another important direction for further research is the development of stochastic gram-mars for snRNA and other RNA families that can be used to search databases for thesestructures at the DNA level. In order to do this, the grammar must be modi�ed to allow forthe possibility of introns in the sequence, and the parsing method must be modi�ed so thatit can e�ciently search for RNAs that are embedded within larger sequences. Durbin andEddy have done the latter modi�cations in their tRNA experiments and report good re-sults in searching the GenBank structural RNA database and 2.2 Mb of C. elegans genomicsequence for tRNAs, even without using special intron models. Earlier work [SBM+94]reported some very preliminary results on modifying tRNA grammars to accommodate in-trons. Though it should be straightforward to develop e�ective stochastic grammar-basedsearch methods, the main practical problem will be dealing with the long computation timerequired by the present methods.Finally, there is the question of what further generalizations of hidden Markov models,beyond SCFGs, might be useful. The key advantage of the SCFG method over the HMMmethod is that it allows explicit treatment of the secondary structure of the RNA sequence.By extending stochastic models of strings to stochastic models of trees, the base-pairinginteractions of the molecule, which determine its secondary structure, can be modeled. Thisprogression is similar to the path taken by the late King Sun Fu and colleagues in theirdevelopment of the �eld of syntactic pattern recognition [Fu82]. Modeling pseudoknotsand higher-order structure would require still more general methods. One possibility wouldbe to consider stochastic graph grammars (see the introductory survey by Engelfriet andRozenberg [ER91]) in hopes of obtaining a more general model of the interactions present in



54 4. Discussionthe molecule beyond the primary structure. If a stochastic graph grammar framework couldbe developed that included both an e�cient method of �nding the most probable folding ofthe molecule given the grammar and an e�cient EM method for estimating the grammar'sparameters from folded examples, then extensions of this approach to more challengingproblems, including RNA tertiary structure determination and protein folding, would bepossible. This is perhaps the most interesting direction for future research encouraged bythe results of this thesis.



55Appendix A. Predicted Multiple AlignmentsEach section in this appendix shows the complete multiple alignment of an snRNA set(training plus test sequences) as predicted by the corresponding trained grammar. Theyagree to varying degrees with the trusted alignments for these same sequences (see Sections3.2.1, 3.2.2 and 3.2.3).Periods demark helix boundaries and also indicate application of skip productions. Inthe U5 and U6 multiple alignments, the lowercase letters denote application of an insertproduction. In the U1 alignment, the loops are not aligned. Bulges were modeled as a loopbetween two short helices for Stems I, III and IV in U1 and for Stem I (broken into StemsIa, Ib and Ic) in U5.The snRNA sequences come from a variety of organisms, including yeast (saccer), pea(pissat), human (homsap), fruit y (dromel), rat (ratnor), mouse (musmus), slime mold(phypol), and chicken (galgal). Sequences whose names are appended with an asterisk *are incomplete.A.1 Full U1 predicted alignmentTrunk Stem I w/Bulge Stem I Stem II(((((( ((((( ((((( )))))))))) ((((((((((((((((schpom ----ACUUACCU.GGCAUG.AGUUU.CUG.CAGCA.---CAAGAAU.UGUGGAGACU.CAGUUAUUUGUCUUGG.--CAUUGCAC-UGchlsac --AUACUUACCU.GUCCGG.CCUGC.-G-.ACCUC.GAGCAAGAAG.GGGGUCUAGG.UAGUGCUUGUACCUC-.GCCUUG-UAC-UAglymax1A --AUACUUACCU.GGACGG.GGUCA.-A-.UGGAU.GAUCAAGAAG.GUCCAUGGCC.UAGGGAAGUAACCUCC.AUUGCACUGAG--glymax1B --AUACUUACCU.GGACGG.GGUCA.-A-.UGGAU.GAUCAAUAAG.GUCCAUGGCC.UAGGGAAGUAACCUCC.AUUGCACUUAG--lycesc --AUACUUACCU.GGACGG.GGUCA.-A-.UGGGC.GAUCAAUAAG.ACCCAUGGCC.UAGGCUUGUGACCUCC.AUUGCACUUUG--lycesc12 --AUACUUACCU.GGACGG.GGUCA.-U-.UGGGC.GAUCAAUAAG.ACCCAUGGCC.UAGGCUUGUGACCUCC.AUUGCACUUCG--lycesc13 --AUACUUACCU.GGACGG.GGUCA.-A-.UAGGC.GAUCAAUAAG.ACCCAUGGCC.UAGGUUGGUGACCUCC.AUUGCACUUUG--lycesc14 --UUACUUACCU.GGACGG.GGUCA.-A-.UUGGC.GAUCAUGAAG.GUCCAUGGCC.UAGGUUGGUAACCUCC.AUUGCACUUAG--lycesc15 --AUACUUACCU.GGACGG.GGUCU.-A-.UGGGC.GAUCAUGUAG.GUCCAUGGCC.UAGGUUGGUGACUUUC.AUUGCACUUUG--lycesc16 --AUACUUACCU.GGACGG.GGUCA.-A-.UGGGU.AAUCAAGAAG.UUCCAUGGCC.UAGGUUGGUGACCUCC.AUUGCACUAAG--lycesc17 --AUACUUACCU.GGACGG.GGUCA.-A-.UGGGC.GAUCAUUAAG.ACCCAUGGCC.UAGGCUUGUGACCUCC.AUUGCACUUUG--lycesc18 --AUACUUACCU.GGACGG.GGUCA.-A-.UGGGC.GAUCAUGAAC.ACCCAUGGCC.UAGGUUGGUGACCAUC.AUUGCACUUUG--pissat1A --AUACUUACCU.GGAUGG.GGUC-.-GA.UGGGU.GAUCAUGAAG.GCCCA-UGGC.UAGGAUUGUGACCUCC.AUUGCACUUAG--pissat1B --AUACUUACCU.GGAUGG.GGUC-.-AA.UGGGU.GAUCAAGAAG.GCCCA-UGGC.UAGGCAAGUGACCUCC.AUUGCACUUAG--pissat1C --AUACUUACCU.GGAUGG.GGU-C.-AA.UGGGU.GAUCAUGAAG.GCCCA-UGGC.UAGGCAAGUGACUUCC.AUUGCACUUAG--phavul --AUACUUACCU.GGACGG.GGUCA.-A-.UGGAU.GAUCUAUAAG.GUCCAUGGCC.UAGGGAAGUGACCUUC.AUUGCACUCAG--triaes11 --AUACUUACCU.GGACGG.GGU-C.-GA.CGGGC.GAUCAAGAAG.GCCCG-UGGC.UGGGUCAAUGGCUCAC.AUUGCACUUGG--triaes12 ----ACUUACCU.GGACGG.GGUCG.-A-.CGGCC.GAUCAAGAAG.GGUCGUGGCC.UAGAUCAAUGGUCACA.-UUGCACCUGG--triaes13* ------UUACCU.GGACGG.GGUCG.-A-.CGAGC.GAUCAAGAAG.GCUCGUGGCC.UAGGUUAGUGGCCCAC.AUUGCACUUGG--triaes14* --AUACUUACCU.GGACGG.GGUCG.-A-.CGAGC.GAUCAAGAAG.GCUCGUGGCC.UAGGUUAGUGGCCCAC.AUUGCACUUGG--triaes15* --AUACUUACCU.GGACGG.GGUCG.-A-.CGAGC.GAUCAAGAAG.GCUCGUGGCC.UGGGUCAGUGGUCCAC.AUUGCACUU-G--triaes16* ----ACUUACCU.GGACGG.GGU-C.-GA.CGGGC.GAUCAAGAAG.GCCCG-UGGC.UGGGUCGAUGGCCCAC.AUUGCACUUGG--tetthe ----ACUUACCU.GGCUGG.AGUUU.-G-.CUAUC.GAUCAUGAAG.GGUAGCGGCU.UAGGGUGGAGCAGGUC.AUUGCACAAAAGAlytvar1G --AUACUUACCU.GGCGCA.GGGGU.-C-.GCAUU.GAUCAAGAAG.GAUGCACCCC.CAGGGCGAGGCUU-GC.CAUUGCACUCCG-lytvar2G --AUACUUACCU.GGCGCA.GGGGU.-C-.GCAUU.GAUCAAGAAG.GAUGCACCCC.CAGGGCGAGGCUU-GC.CAUUGCACUCCG-stropur1G --AUACUUACCU.GGCGCA.GGGGU.-C-.GCAUU.GAUCAAGAAG.GAUGCACCCC.CAGGGCGAGGCUU-GC.CAUUGCACUCCG-echmul --AAACUUACCU.GGCGCC.GGGUU.-C-.AGGGU.GAUCAGCAAG.GCUCCGACCC.CAGGUGGAGGCUCAG-.CAUUGCACUCCG-caeele1 AUAAACUUACCU.GGCUGG.GGGUU.-AU.UUCGC.GAUCACAAAG.GCGGAAUCCC.CAUGGUUAGGCCUACC.CAUUGCACUUUUGdromel19523 --AUACUUACCU.GGCGUA.GAGGU.-UA.ACCGU.GAUCACGAAG.GCGGUUCCUC.CGGAGUGAGGCUUGGC.CAUUGCACCUCG-dromelG1A --AUACUUACCU.GGCGUA.GAGGU.-UA.ACCGU.GAUCACGAAG.GCGGUUCCUC.CGGAGUGAGGCUUGGC.CAUUGCACCUCG-ambmex --AUACUUACCU.GGCAGG.GGAGC.-A-.UCUGU.GAUCAGCAAG.GCAGAGCUCC.CAGGGUGAGGCUCAUC.CAUUGCACAUCG-xenlae15 --AUACUUACCU.GGCAGG.GGAGA.-U-.ACCAU.GAUCAUGAAG.GUGGUUCUCC.CAGGGCGAGGCUCAGC.CAUUGCACUCCG-xenlae1ABG --AUACUUACCU.GGCAGG.CGAGA.-U-.ACCAU.GAUCACGAAG.GUGGUUCUCC.CAGGGCGAGGCUCAGC.CAUUGCACUCCG-xenlaeABG --AUACUUACCU.GGCAGG.GGAGA.-U-.ACCAU.GAUCACGAAG.GUGGUUCUCC.CAGGGCGAGGCUCAGC.CAUUGCACUCCG-xenlae1D1* --------ACCA.UGAUCA.CGA--.-A-.GGU--.G--------G.--UUC--UCC.CAGGGCGAGGCUCAGC.CAUUGCACUCCG-xenlae1D2* -----------U.----CC.-----.---.-----.----------.----------.CAGGGCGAGGCUCAGC.CAUUGCACUCCG-galgal1R --AUACUUACCU.GGCAGG.GGAGA.-C-.ACCAU.GAUCAGGCAG.GUGGUUUUCC.CAGGGCGAGGCUCAUC.CCCUGCACUCCG-ratnor4 ----ACUUACCU.GGCAGG.GGAGA.-U-.ACCAU.GAUCACGAAG.GUGGUUUUCC.CAGGGCGAGGCUUAUC.CAUUGCACUCCG-ratnor1183A --AUACUUACCU.GGCAGG.GGAGA.-U-.ACCAU.GAUCACGAAG.GUGGUUUUCC.CAGGGCGAGGCUUAUC.CAUUGCACUCCG-



56 Appendix A. Predicted Multiple AlignmentsTrunk Stem I w/Bulge Stem I Stem II(((((( ((((( ((((( )))))))))) ((((((((((((((((ratnor1183B --AUACUUACCU.GGCAGG.GGAGA.-U-.ACCGU.GAUCACGAAG.GUGGUUUUCC.CAGGGCGAGGCUUAUC.CAUUGUACUCCG-musmus1B2 --AUACUUACCU.GGCA-G.GGGAG.-AU.ACCAU.GAUCAUGAAG.GUGGUUUUCC.CAGGGCGAGGCUCACC.CAUUUGCACUGUUmusmus1B2A --AUACUUACCU.GGCAGG.GGAGA.-U-.ACCAU.GAUCAUGAAG.GUGGUUUUCC.CAGGGCGAGGCUCACC.CAUUGCACUUUGGmusmusG1A --AUACUUACCU.GGCAGG.GGAGA.-U-.ACCAU.GAUCACGAAG.GUGGUUUUCC.CAGGGCGAGGUGUAUC.CAUUGCA--UCCGmusmusR1A --AUACUUACCU.GGCAGG.GGAGA.-U-.ACCAU.GAUCACGAAG.GUGGUUUUCC.CAGGGCGAGGCUUAUC.CAUUGCACUCCG-musmus1B6 --AUACUUACCU.GGCAGG.GGAGA.-U-.ACCAU.GAUCACGAAG.GUGGUUUUCC.CAGGGCGAGGCUCACC.CAUUGCACUUUGGbostau --AUACUUACCU.GGCAGG.GGAGA.-U-.ACCAU.GAUCACGAAG.GUGGUUUUCC.CAGGGCGAGGCUUAUC.CAUUGCACUCCG-homsap1A --AUACUUACCU.GGCAGG.GGAGA.-U-.ACCAU.GAUCACGAAG.GUGGUUUUCC.CAGGGCGA-GGCUUAU.CCAUUGCACUCCGhomsap1C --AUACUUACCU.GGCAGG.GGAGA.-U-.ACCAU.GAUCACGAAG.GUGGUUUUCC.CAGGGCGAGGCUUAUC.CAUUGCACUCCG-Stem II Stem III StemIII w/Blg Trunk StemIV B)))))))))))))))) ((((((((( )))))) ))) )))))) (((((schpom AG.CCCUGACGAAUAACUG.UGGACUGGC.-UAA-G-.GUCAGC.U-.CCG.GAUGCA.U---------C---A-U-----.-UUUU.Gchlsac UG.-CUUGGGGUAGCGCUG.UGUGCGGGG.-CAA-GU.CCUCGU.U-.ACA.ACGGAA.UAAUUUCUGGC---AGG-----.CCGUU.Gglymax1A --.GAGGGGUGCCUUUCUA.AGGUCUGUC.-CAA-GU.GACAGA.G-.CCU.ACGUCA.UAAUUUGUGGUA----G-----.UGGGG.Gglymax1B --.GAGGGGUGCUUUCCUA.AGGUCUGCC.-CAA-GU.GGCAGA.G-.CCU.ACGUCA.UAAUUUGUGGUAGU--------.GGGGG.Clycesc --.GAGGGGUGCCUGCCUA.AGGUCGGCU.-CAA-GU.AGUCGA.G-.CCU.ACGUCA.UAAUUUGUUGCAGA--------.GGGGG.Clycesc12 --.GAGGGGUGCUUGUCUA.AGGUCGGCU.-CAA-GC.AGUCGA.G-.CCU.ACGUCA.UAAUUUGUUGCA-G--------.UGGGG.Glycesc13 --.GAGGGGUGCCAAUCUA.AGGUCGGCC.-CAA-GU.GGUCGA.G-.CCU.ACGUCA.UAAUUUGUUGCUGU--------.GAGGG.Clycesc14 --.GAGAGGUGCCUACCUA.AGAUCGGCC.-CAA-GU.GGCCGA.A-.UCU.ACGUCA.UAAUUUGUUGCUGA--------.GGGGG.Clycesc15 --.GAGGGGUGCCCGCCUA.AGAUCAGCC.-CAA-GA.GGUUGA.G-.UCU.ACAUCA.UAAUUUGUUGCUGA--------.GGGGG.Clycesc16 --.GAGGGGUGCUUGCCUA.AGGUCGACC.-CAA-GU.GGUUGA.G-.CCU.ACGUCA.UAAUUUGUUGUUGCAGA-----.GGGGG.Clycesc17 --.GAGGGGUGCCUGCCUA.AGGUUGGCC.-CAA-GU.GGUCGA.G-.CCU.ACGUCA.UAAUUUGUUGCUGU--------.GGGGG.Clycesc18 --.AAGGGGUGCCCGCCUA.AGGUCGGCC.-CAA-GU.GGUCGA.G-.CCU.ACGUCA.UAAUUUGUUGCUGA--------.GGGGG.Cpissat1A --.GAGGGGUGCUUUCCUA.AGGUCUACC.-CAA-GU.GGUGGA.G-.CCU.ACAUCA.UAAUUUGUUGCCUG--------.AGGGG.Gpissat1B --.GAGGGGUGCUAGCCUA.AGGUCUACC.-CAA-GU.GGUGGA.G-.CCU.ACAUCA.UAAUUUGUUGCUGU--------.GGGG-.Gpissat1C --.GAGGGGUGCUUGCCUA.AGGUCUACC.-CAA-GU.GGUGGA.A-.CCU.ACAUCA.UAAUUUGUUGCUGU--------.GGGGG.Cphavul --.AAGGGGUGCUACUCUA.AGGUCUGUC.-CAA-GU.GAUGGA.G-.CCU.ACGUCA.UAAUUUGUGGUAGU--------.GGGGG.Ctriaes11 --.UGGGUGCGUUGGCCCA.CCAUCUCCC.-CAA-GU.GGGAGA.G-.UGG.ACGUCA.UAAUUUGUGCUA-G--------.AGGGG.Gtriaes12 --.UGAGCGCGUUGGCCUA.CCAUCUCCC.-CAA-GU.GGGAGA.G-.UGG.ACGUCG.UAAUUUGUGGUA-G--------.AGGGG.Gtriaes13* --.UGGGUGCGCUGGCCUA.UCAUCUCCC.-CAA-GU.GGGAGA.G-.UGA.ACGUCA.UAAUUUGUGGUA-G--------.AGGGG.Gtriaes14* --.UGGGUGCGCUGGCCUA.UCtriaes15* --.GUGGAUGCCUGGCCCA.CCAUCUCCC.-CAA-GU.GGGAGA.G-.UGG.AUGUCA.UAAUUUGUGGUAGAGGGGGUACtriaes16* --.UGGGUGCGUCGGCCCA.UCAtetthe --.UGUCUGUAAUACCUUA.UUGUUCCCC.---GUGC.GGGGAA.CC.GAA.ACAGCA.CAAUUUCUGCUAGG--------.GGAGA.Clytvar1G --.GC-UUGCUGAACCUUG.CGAUUCCCC.CAAACGU.GGGGAA.C-.UCG.GGCGUA.CAAUUUAUGAUAGC--------.GGAGA.Ulytvar2G --.GC-UUGCUGAACCUUG.CGAUUCCCC.CAAACGU.GGGGAA.C-.UCG.GGCGUA.CAAUUUAUGGUAGC--------.GGAGA.Ustropur1G --.GC-UUGCUGAACCUUG.CGAUUCCCC.CAAACGU.GGGGAA.C-.UCG.GGCGUA.UUAUUUAUGGUAGC--------.GGAGA.Uechmul --.-CUGUGUUGAAGCCUG.CGACGGACU.CUAAUCG.GGUUCG.C-.UCG.GGUGCA.UAGUUUUUGC---C--------.AGUGG.Gcaeele1 GG.UGCGGGCUGACCUGUG.UGGCAGUCU.CGAGUUG.AGAUUC.G-.CCA.ACAGCU.UAAUUUUUGCGUA-U-------.CGGG-.Gdromel19523 --.GCUGAGUUGACCUCUG.CGAUUAUUC.CUAAUGU.GAAUAA.C-.UCG.UGCGCG.UAAUUUUUGGUAGC--------.CGGG-.AdromelG1A --.GCUGAGUUGACCUCUG.CGAUUAUUC.CUAAUGU.GAAUAA.C-.UCG.UGCGUG.UAAUUUUUGGUAGC--------.CGGG-.Aambmex --.GAUUUGCUGACCCCUG.CGAUGUCCC.CAAAUGC.GGGAUU.C-.UCG.ACUGUA.UUAUUUCUGGUAGU--------.GGGG-.Gxenlae15 --.GUUGUGCUGACCCCUG.CGAUUUCCC.CAAAUGC.GGGAAA.C-.UCG.ACUGCA.UAAUUUCUGGUAGU--------.GGGG-.Gxenlae1ABG --.GCUGUGCUGACCCCUG.CGAUUUCCC.CAAAUGC.GGGAAA.C-.UCG.ACUGCA.UAAUUUCUGGUAGU--------.GGGG-.GxenlaeABG --.GCCGUGCUGACCCCUG.CGAUUUCCC.CAAAUGC.GGGAAA.G-.UCG.ACUGCA.UAAUUUCUGGUA-G--------.UGGGG.Gxenlae1D1* --.GCCGUGCUGACCCCUG.CGAUUUCCC.CAAAUGC.GGGAAA.G-.UCG.ACUGCA.UAAUUUCUGGUA-G--------.UGGGG.Gxenlae1D2* --.GCUGUGCUGACCCCUG.CGAUUUCCC.CAAAUGU.GGGAAA.C-.UCG.AC----.UGCAUAAUUUGUGGUA-G----.UGGGG.Ggalgal1R --.GGUGUGCUGACCCCUG.CGAUUUCCC.CAAAUGC.GGGAAA.C-.UCG.ACUGCA.UAAUUUGUGGUA-G--------.UGGGG.Gratnor4 --.GAUGUGCUGACCCCUG.CGAUUUCCC.CAAAUGC.GGGAAA.C-.UCG.ACUGCA.UAAUUUGUGGUAGU--------.GGGG-.Gratnor1183A --.GAUGUGCUGACCCCUG.CGAUUUCCC.CAAAUGC.GGGAAA.C-.UCG.ACUGCA.UAAUUUGUGGUA-G--------.UGGGG.Gratnor1183B --.GAUGUGCUGACCCCUG.CGAUUUCCC.CAAAUGC.GGGAAA.C-.UCG.ACUGCA.UAAUUUGUGGUA-G--------.UGGGG.Gmusmus1B2 -G.GGUGUGCUGACCCCUG.CGAUUUCCC.CAAAUGC.GGGAAA.C-.UCG.A-UGCA.-AAUUUGUGGUA-G--------.UGGGG.Gmusmus1B2A --.GGUGUGCUGACCCCUG.CGAUUUCCC.CAAAUGC.GGGAAA.C-.UCG.ACUGCA.UAAUUUGUGGUA-G--------.UGGGG.GmusmusG1A --.GAUGUGCUGACCACUG.CGAUUUCCC.CAAAUGC.GGGAAA.C-.UCG.ACUGCA.UAAUUUGUGGUA-G--------.UGGGG.GmusmusR1A --.GAUGUGCUGACCCCUG.CGAUUUCCC.CAAAUGC.GGGAAA.C-.UCG.ACUGCA.UAAUUUGUGGUAGU--------.GGGG-.Gmusmus1B6 --.GGUGUGCUGACCCCUG.CGAUUUCCC.-AAAUGC.GGGAAA.C-.UCG.ACUGCA.UAAUUUGUGGUAGU--------.GGGGG.Abostau --.GAUGUGCUGACCCCUG.CGAUUUCCC.CAAAUGU.GGGAAA.C-.UCG.ACUGCA.UAAUUUGUGGUAGU--------.GGGGG.Ahomsap1A --.GAUGUGC-UGCCCCUG.CGAUUUCCC.CAAAUGU.GGGAAA.C-.UCG.ACUGCA.UAAUUUGUGGUA-G--------.UGGGG.Ghomsap1C --.GAUGUGCUGACCCCUG.CGAUUUCCC.CAAAUGU.GGGAAA.C-.UCG.ACUGCA.UAAUUUGUGGUA-G--------.UGGGG.G



A.2. Full U5 multiple alignment 57StemIV Stem IV(((((( )))))))))))schpom AGUUCG.UCCC.UCAUUUGGGG-.-CA-chlsac CACGCG.CUUG.CGCGUCCUCGG.cAA-glymax1A CCUGCG.UUCG.CGCGGCCCCUU.-UC-glymax1B -UUGCG.UUCG.CGCAG-CCCCU.-UC-lycesc -CUGCG.UUCG.CGCAG-CCCCU.--A-lycesc12 CCUGCG.UUCG.CGCAGCCCCUA.-UC-lycesc13 -CUGUG.UUCG.CGCGG-CCCCU.-GC-lycesc14 -CUGCG.UUCG.CGCGG-CCCCU.-GC-lycesc15 -AUGCG.UUCG.CGCAG-CCCCU.-GC-lycesc16 -CUGUG.UUCG.CGCAG-CCCCU.-AC-lycesc17 -CUGCG.UACG.CGCAG-CCCCU.-GC-lycesc18 -CUGCG.UUCG.CGCGG-CCCCU.--G-pissat1A CCUGCG.UUCG.CGCGGCCCCCA.-CC-pissat1B CCUGUG.UUCG.CGCGG-CCCCC.-UC-pissat1C -CUGCG.UUCG.CGCGG-CCCUC.-UU-phavul -CUGCG.UUCG.CGCGG-CCCCU.-UA-triaes11 UACGCG.UUCG.CGCGGCCCCUG.-CU-triaes12 UACGCG.UUCG.CGCGGCCCCUA.-CU-triaes13* UACGCG.UUCG.CGCGGCCCCUG.-CU-tetthe GUGCAC.UU-A.GUGCUGUCUCC.GCUClytvar1G C-UGCG.UUCG.CGCU-AUCUCC.-UA-lytvar2G C-UGCG.UUCG.CGCU-AUCUCC.-UA-stropur1G C-UGCG.UUCG.CGCU-AUCUCC.-UA-echmul GA-GCC.UUCG.GGC-GUCCCUU.-UC-caeele1 -CUGCG.UGCG.CGCGG--CCCU.-GA-dromel19523 AUGGCG.UUCG.CGCCGU-CCCG.--A-dromelG1A AUGGCG.UUCG.CGCCGU-CCCG.--A-ambmex ACUGCG.UUCG.CGCUUU-CCCC.-UG-xenlae15 ACUGCG.UUCG.CGCUUU-CCCC.-UG-xenlae1ABG ACUGCG.UUCG.CGCUUU-CCCC.-UG-xenlaeABG ACUGCG.UUCG.CGCUUUCCCCU.-GA-xenlae1D1* ACUGCG.UUCG.CGCUUUCCCCU.-GU-xenlae1D2* ACUGCG.UUCG.CGCUUUCCCCU.-GA-galgal1R ACUGCG.UUCG.CGCUCUCCCCU.-GA-ratnor4 ACUGCG.UUCG.CGCUCU-CCCC.-UG-ratnor1183A ACUGCG.UUCG.CGCUCUCCCCU.-GA-ratnor1183B ACUGCG.UUCG.CGCUCUCCCCU.-GG-musmus1B2 ACUGCG.UUCG.CGCUCUCCCCU.-GA-musmus1B2A ACUGCG.UUCG.CGCUCUCCCCU.-GA-musmusG1A ACUGCG.UUUG.UGCUCUCCCCU.-UU-musmusR1A ACUGCG.UUCG.CGCUCU-CCCC.-UG-musmus1B6 GCUGCG.UUCG.CGCGCCCCCCU.-GUAbostau ACUGCG.UUCG.CGCUUU-CCCC.-UG-homsap1A ACUGCG.UUCG.CGCUUUCCCCU.-GA-homsap1C ACUGCG.UUCG.CGCUUUCCCCU.-GA-A.2 Full U5 multiple alignment Ia Stem Ib Stem Ic(((( ((((((((((( ((((((((schpom ...Auaauccg................................U.CAAA.-G.CACUUUGCAAA.AgcuA.A...CGUAU.CUGUUUCUaratha ...Gggaguaaaaaucacgc.......................A.GCCA.UG.UGGUGAGUACA.A...A.G...CGAAC.UAUUUCUUpissat5a1 gg.A.......................................G.CCGU.-G.UGAUGAUGACA.U...A.G...CGAAC.UAUUCUUUpissat5b1 gg.A.......................................G.CCAU.-G.UGAUAAGUACA.A...A.G...CGAAC.UAUUCUUUpissat5a2 gg.A.......................................G.CCGU.-G.UGAUGAUGACA.U...A.G...CGAAC.UAUCUUUCpissat5b2 ...G.......................................G.AGCCgUG.UGAUGAACACA.A...A.G...CGAAC.UAUCUUUCpissat5c gg.A.......................................G.CCGU.-G.UGAUGAUGACA.U...A.G...CGAAC.UAUCUUUCpissat5e gggA.......................................G.CCAU.-G.UGAUAAGUGCA.A...A.G...CGAAC.UAUCUUUCpissat5f gggA.......................................G.CCAU.-G.UGAUAAGUGCA.A...A.G...CGAAC.UAUCUUUCcrycoh ...G.......................................A.UCAC.AG.UGUUCACUUCA.-...A.C...CGAAU.CAAUCUUUtetpyr5a ...A.......................................U.CACA.-G.AACUCAGCUCA.A...U.A...CGCUU.UAAUUUUUtetthe51 ...A.......................................U.CACA.-G.AACUCAGCUCA.U...U.A...CGCUU.UAAUUUUUcaeele ...Aauc....................................A.ACUC.UG.GUUCCUCUGCA.U...U.UaacCGUGA.AAAUCUUUdromel ...A.......................................U.ACUC.UG.GUUUCUCUUCA.A...UgU...CGAAU.AAAUCUUU



58 Appendix A. Predicted Multiple AlignmentsIa Stem Ib Stem Ic(((( ((((((((((( ((((((((xenlae ...A.......................................U.ACUC.UG.GUUUCUCUUCA.A...AuU...CGAAU.AAAUCUUUgalgal5arn ...A.......................................U.ACUC.UG.GUUUCUCUUCA.G...A.U...CGUAU.AAAUCUUUgalgal5a ...A.......................................U.ACUC.UG.GUUUCUCUUCA.G...A.U...CGUAU.AAAUCUUUgalgal5b ...A.......................................U.ACUC.UG.GUUUCUCUUCA.G...A.U...CGUAU.AAAUCUUUcaimos* ...CcuuuuacuaaagauuuccguggagaggaacaaccacgagU.----GUC.GUGG.A.AU...UUUUUGAGGCUCCGC........Umusmus5 g..A.......................................U.ACUC.UG.GUUUCUCUUCA.G...A.U...CGUAU.AAAUCUUUratnor5a1 ...A.......................................U.ACUC.UG.GUUUCUCUUCA.G...A.U...CGUAU.AAAUCUUUratnor5a2 g..A.......................................U.ACUC.UG.GUUUCUCUUCA.G...A.U...CGUAU.AAAUCUUUratnor5ax ...A.......................................U.ACUC.UG.GUUUCUCUUCA.G...A.U...CGUAU.AAAUCUUUhomsap5b ...A.......................................U.ACUC.UG.GUUUCUCUUCA.G...A.U...CGUAU.AAAUCUUUhomsap5a1 ...A.......................................U.ACUC.UG.GUUUCUCUUCA.G...A.U...CGCAU.AAAUCUUUhomsap5a2 ...A.......................................U.ACUC.UG.GUUUCUCUUCA.G...A.U...CGCAU.AAAUCUUUhomsap5b1 ...A.......................................U.ACUC.UG.GUUUCUCUUCA.G...A.U...CGCAU.AAAUCUUUhomsap5b1s ...A.......................................U.ACUC.UG.GUUUCUCUUCA.G...A.U...CGUAU.AAAUCUUUhomsap5d* ...A.......................................U.GCUC.UG.GUUUCUCUUCA.A...A.U...CGUAU.AAAUCUUUhomsap5e ...A.......................................U.ACUC.UG.GUUUCUCUUCA.A...A.U...CGUAU.AAAUCUUUhomsap5f ...A.......................................A.UCUC.UG.GUUUCUCUUCA.U...A.A...CGAAU.AAAUCUUUStem Ic Stem Ib Ia Stem II)))))))) ))))))))))) )))) (((((((schpom .UGCCUUUUACC.AGAAACAG.CCG.UUUGUAAGGUG.U.G.CU.AA.UUUG.ACUGUA-.U.AG..UUUUUGAA.UCUU---......aratha uCGCCUUUUACU.AAAGAAUA.CCG.UGUGCUCUCGA.C.G.CU.AA.GUGC.AUACGCC.U.AU..UUUUGGAG.GGCUCCA.cuuc.pissat5a1 .CGCCUUUUACU.AAAGAAUA.CCG.UGUCAGCGUCA.C.A.AU.UA.GCGG.CAUACGC.U.AG..UUUUUGGA.AGAGUUC.ucaaupissat5b1 .CGCCUUUUACU.AAAGAAUA.CCG.UGUACUUUUCA.C.U.AA.CA.GUGG.CAUACGA.U.AA..UUUUUGAA.UGAGCUC.ucaugpissat5a2 .-GCCUUUUACU.AAAGAAUA.CUG.UGUCAGCGUCA.C.A.AU.UA.GCGG.CAUACGC.U.AG..UUUUUGGA.AGAGUUC.ucaagpissat5b2 .-GCCUUUUACU.AAAGAAUA.CUG.UGUGUGCGUCA.C.U.AA.AA.GGCG.CAUACGC.CuAA..UUUUUGAA.AGAGUUC.ucuu.pissat5c .-GCCUUUUACU.AAAGAAUA.CUG.UGUCAGCGUCA.C.A.AU.UA.GCGG.CAUACGC.U.AG..UUUUUGGG.AGAGUCC.ucuucpissat5e .-GCCUUUUACU.AAAGAAUA.CUG.UGUACGUGUCA.C.A.AG.CG.GUGG.CAUACGAgU.AA..UUUUUGAA.UGAGUUC......pissat5f .-GCCUUUUACU.AAAGAAUA.CUG.UGUACGUGUCA.C.A.AG.CG.GUGG.CAUACGAgU.AA..UUUUUGAA.UGAGUUC......crycoh .CGCCUUUUACU.AAAGGUUG.CCG.UGAAUGGGACA.C.AuCA.AU.GUGA.AUCUCUC.A.AU..UU-----U.UGAG-GG......tetpyr5a .CGCCUUUUACU.AAAGAUUA.CCG.UGGGCUGGGUU.C.U.AC.AA.UGUG.AAUUAUU.A.AA..AUUUUUGA.GGAUUGU......tetthe51 .CGCCUUUUACU.AAAGAUUA.CCG.UGGGCUGGGUU.U.A.CC.AA.UGUG.AAUUAUU.A.AA..AUUUUUGC.AGGAUUC......caeele .CGCCUUUUACU.AAAGAUUU.CCG.UGCAAAGGAGC.A.U.UUaCU.GAGU.AUUACAU.A.CA..AUUUUUGG.AGACUCC......dromel .CGCCUUUUACU.AAAGAUUU.CCG.UGGAGAGGAAC.AcU.CU.AA.GAGU.CUAAAAC.U.AA..UUUUUUAG.UCAGUCU......xenlae .CGCCUUUUACU.AAAGAUUU.CCG.UGGAGAGGAAC.G.A.CC.AU.GAGU.UUCGUUC.A.AU..UUUUUGAA.GCCUGGU......galgal5arn .CGCCUUUCAUC.AAAGAUUU.CCG.UGGAGAGGAAC.A.A.CU.CU.GAGU.CUUAAAC.C.AA..UUUUUUGA.GCCUUGU......galgal5a .CGCCUUUUACU.AAAGAUUU.CCG.UGGAGAGGAAC.A.A.CC.AC.GAGU.GUCGUGG.A.AU..UUUUUGAG.GCUCCGC......galgal5b .CGCCUUUUACU.AAAGAUUU.CCG.UGGAGAGGAAC.A.A.CC.AC.GAGU.GUCGUGG.A.AU..UUUUUGAG.GCUCCGC......caimos* UC......GACG.GAGC.....U--.--musmus5 .CGCCUUUUACU.AAAGAUUU.CCG.UGGAGAGGAAC.A.A.CU.CU.GAGU.CUUAAAC.C.AA..UUUUUUGA.GGCCUUG.uc...ratnor5a1 .CGCCUUUCAUC.AAAGAUUU.CCG.UGGAGAGGAAC.A.A.CU.CU.GAGU.CUUAAAC.C.AA..UUUUUUGA.GCCUUGU......ratnor5a2 .CGCCUUUUAUC.AAAGAUUU.CCG.UGGAGAGGAAC.A.A.CU.CU.GAGU.CUUAAAC.C.AA..UUUUUUGA.GGCCUUG.uc...ratnor5ax .CGCCUUUUACU.AAAGAUUU.CCG.UGGAGAGGAAC.A.A.CU.CU.GAGU.CUUAAAC.C.AA..UUUUUUGA.GCCUUGU......homsap5b .CGCCUUUCAUC.AAAGAUUU.CCG.UGGAGAGGAAU.A.A.CU.CU.GAGU.CUUAAGC.U.AA..UUUUUUGA.GCCUUGC......homsap5a1 .CGCCUUUCAUC.AAAGAUUU.CCG.UGGAGAGGAAC.A.A.CU.CU.GAGU.CUUAACC.C.AA..UUUUUUGA.GCCUUGC......homsap5a2 .CGCCUUUUACU.AAAGAUUU.CCG.UGGAGAGGAAC.A.A.CU.CU.GAGU.CUUAACC.C.AA..UUUUUUGA.GCCUUGC......homsap5b1 .CGCCUUUUACU.AAAGAUUU.CCG.UGGAGAGGAAC.A.A.CU.CU.GAGU.CUUAACC.C.AA..UUUUUUGA.GCCUUGC......homsap5b1s .CGCCUUUUACU.AAAGAUUU.CCG.UGGAGAGGAAU.A.A.CU.CU.GAGU.CUUAAGC.U.AA..UUUUUUGA.GCCUUGC......homsap5d* .CGCCUUUUACU.AAAGAUUU.CCG.UGGAGAGAAAC.C.G.UU.UU.GAGU.UUCUAGC.U.AA..UUUUUUGA.--AG---......homsap5e .CGCCUUUUACU.AAAGAUUU.CCG.UGGAGAGAAAC.G.A.GU.GU.GAGU.CUGAAAC.C.AA..UUUUUUGA.GGCCUUG.ccuuuhomsap5f .CGCCUUUUACU.AAAGAUUU.CCG.UGGAGAGAAAC.A.A.CU.AU.GAGU.UUAUGGU.U.AAauUUUUUGAA.GUCUUGC......Stem II)))))))schpom ..UUU......C.---UUGA.a...Aaratha ..UCU......G.UGGAACC.ca..Apissat5a1 u.UUG......A.GGGCUCU.....Gpissat5b1 u.UUG......A.GAGCUCU.....Gpissat5a2 uuUUG......A.GGGCUCU.....Gpissat5b2 ..UUG......A.GAGCUCU.g...Gpissat5c a.UUG......A.GGGCUCU.....Gpissat5e ..UCUuguuagA.GAACUCU.....Gpissat5f ..UCUuguuagA.GAGCUCU.....Acrycoh ..CUC......U.GC-CCCA.....Ctetpyr5a ..---......G.UGAAUCC.u...A
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60 Appendix A. Predicted Multiple Alignments(((((((( ))))))))xentro ..-.-....G.UGCUUGCU...--.......-........U.CGGCAGCA.....CAUAUAC.UAAAAUUGGAAC.GAU...ACmusmus ..-.-....G.UGCUCGCU...--.......-........U.CGGCAGCA.....CAUAUAC.UAAAAUUGGAAC.GAU...ACmusmus6A ..-.-....G.UGCUUGCU...--.......-........U.CGGCAGCA.....CAUAUAC.UAAAAUUGGAAC.GAU...AChomsap ..-.-....G.UGCUCGCU...--.......-........U.CGGCAGCA.....CAUAUAC.UAAAAUUGGAAC.GAU...ACsaccer AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU..UUAUUU...CG.UUUUsacdai AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU..UUAUUC...GU.UU-Usacexi AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU..UUAUUU...CG.UUUUsacklu AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU..UUACUU...CA.UUUUsacser AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU..UUAUAC...AU.UU-Usactel AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU..UUACACgu.UU.UUUUsacbay AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU..UUAUUUc..GU.UUUUsaccas AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU..UUAUUC...GU.UUUUsacuni AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU..UUAUAC...AU.UUUUklulac AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU..UUA--A...GA.UUUUpiccan AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU..UUACUUa..UU.UUUUpicgui AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU..UUACUA...--.UUUUpichee AGAGAAGAUUAGCAUGGCCCCUGCAUAAGGAUGACAC.G...CU.UU.ACAAAGAGAUc.UUACUC...AAcUUUUpicmis AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UG.UU.ACAAAGAGAU..UUACAA...--.UUUUpactan AGAGAAGAUUAGCAUGGCCCCUGCAUAAGGAUGACAC.G...CU.UU.ACAAAGAGAU..UAAACC...AU.UUUUsaccap AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU..UAAUUC...AU.UUUUsacfib AGAGAAGAUUAGCAUGGCCCCUGCAUAAGGAUGACAC.G...CU.UU.ACAAAGAGAU..UUAACC...GU.UUUUyarlip AGAGAAGAUUAGCAUGGCCCCUGCAUAAGGAUGACAC.G...CU.UU.ACAAAGAGAU..UUAAACc..GU.UUUUnadful AGAGAAGAUUAGCAUGGCCCCUGCAUAAGGAUGACAC.G...CU.UU.ACAAAGAGAU..UUACAA...GU.UUUUsaclud AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU..UUUAAU...AU.UUUUzygflo AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU..UUACACg..UU.UUUUzygrou AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU..UAAUUCau.UU.UUUUtordel AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU..UUAUUG...AU.UUUUambmon AGAGAAGAUUAGCAUGGCCCCUGCAUAAGGAUGACAC.G...CU.UU.ACAAAGAGAUcuUUAUUAcu.UU.UUUUlipsta GAGAAGAUUAGCAUGGCCCCUGCAUAAGGAUGACAC.G...CU.UUgAUAAAGAGAG..UAUGAU...GU.UUUUissori AGAGAAGAUUAGCAUGGCCCCUGCAUAAGGAUGACAC.G...CU.UU.ACAAAGAGAUc.UUACUC...AAcUUUUschpom AGAGAAGAUUAGCAUGGCCCCUGCACAAGGAUGACACuG...CG.AC.AUUGAGAGA-..-AAACC...CA.UUUUaratha61 AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G...CAuAA.AUCGAGAAAU..GGUCCAaauUU.UUUUaratha626 AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G...CAuAA.AUCGAGAAAU..GGUCCAaauUU.UUUUaratha629 AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G...CAuAA.AUCGAGAAAU..GGUCCAaauUU.UUUUzeamay AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G...CAcAA.AUCGAGAAAU..GGUCCAaauUU.UUUUvicfab AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G...CAcAA.AUCGAGAAAU..GGUCCA...AA.UUUUlycesc AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G...CAcAA.AUCGAGAAAU..GGUCCAaaaUU.UUUUtrybru AGAGAAGAUUAGCACUCUCCCUGCGCAAGGCUGA---.-uguCA.AUcUUCGAGAGAU..AUAGC-...--.UUUUtrycru* AGAGAAGAUUAGCA-----------------------.-...--.--.----------..------...--.---Cleicol* AGAGAAGAUUAGCA-----------------------.-...--.--.----------..------...--.---Ccaeele AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G...CA.AA.UUCGUGAAGC..GUUCCAa..AU.UUUUdromel1 AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G...CA.AA.AUCGUGAAGC..GUUCCAc..AU.UUUUdromel2 AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G...CA.AA.AUCGUGAAGC..GUUCCAc..AU.UUUUdromel3 AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G...CA.AA.AUCGUGAAGC..GUUCCA...CA.UUUUxentro AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G...CA.AA.UUCGUGAAGC..GUUCCAu..AU.UUUUmusmus AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G...CA.AA.UUCGUGAAGC..GUUCCA...UA.UUUUmusmus6A AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G...CA.AA.UUCGUGAAGC..GUUCCA...UA.UUUUhomsap AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G...CA.AA.UUCGUGAAGC..GUUCCA...UA.UUUU
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