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ABSTRACT

In this thesis, stochastic context-free grammars (SCFGs) are applied to the
problems of folding, aligning and modeling families of homologous RNA sequences—
specifically, the small nuclear RNA sequences of the spliceosome. SCFGs generalize
the hidden Markov models (HMMs) used in related work on protein and DNA
to capture the sequences’ common primary and secondary structure. This thesis
discusses a recently introduced algorithm, Tree-Grammar EM, for deducing SCFG
parameters automatically from unaligned, unfolded training sequences [SBUT93,
SBM'194, SBHT94a] and demonstrates its application to modeling three of the five
prominent trans-acting factors in spliceosomal small nuclear RNA: U1, U5 and U8.
Tree-Grammar EM, a generalization of the HMM forward-backward algorithm, is
based on tree grammars and is faster than the previously proposed inside-outside
SCFG training algorithm. Results show that after having been trained on as few as
about 20 snRNA sequences, each of the three models can discern snRNA sequences
from similar-length RNA sequences of other kinds, can find secondary structure of
new snRNA sequences and can produce multiple alignments of snRNA sequences.

Keywords: Stochastic context-free grammar, small nuclear RNA, multiple align-
ment, database search, folding sequences
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1. Introduction

1.1 Problem statement and context

Predicting the structure of macromolecules by theoretical or experimental means is
a challenging problem. Efforts to sequence the genomes of organisms [SCHT82, DSCS83,
SABT77, SCFT78, DS81, DS83, BBBT84, DPBB92, PBDB93, 0ga93, OvACT92, SDTT92,
MAHK91, Joi93, 01593, 0593, vDF 92, Min93] and organelles [HSW*89, HHD 93, CC93,
0YOT92, THSH92, CMDM90, CRRT89, GPDT89, Sut79] have heightened awareness of the
essential role of computers in data acquisition, management and analysis. The increasing
numbers of DNA, RNA and protein sequences yielded by these projects [Cou91] provoke
a growing need for developing new approaches in computational biology such as hidden
Markov models (HMMs) [LG87, Chu89, Rab89, HKMS93, KBM 94, BCHM93, CS92] and
other methods [HSS93]. In addition to the accelerated discovery of sequences related by
a natural phylogeny, the generation of “artificial” phylogenies by experimental design for
proteins (reviewed in Arnold’s paper [Arn93]) and RNA (reviewed in an article by Burke
and Berzal-Herranz [BBH93]) serves only to exacerbate the problem of growth in sequence
data. Determining common or consensus patterns among a family of sequences, producing a
multiple sequence alignment, discriminating members of the family from non-members and
discovering new members of the family will continue to be some of the most important and
fundamental tasks in mathematical analysis and comparison of macromolecular sequences
[DA89, D0090]. (A multiple alignment of RNA sequences is a list of the sequences with the
letters representing nucleotides spaced such that nucleotides considered equivalent have their
letters appearing in the same column, or position, in the list. To enhance the alignment
of some sequences with respect to others, spaces may need to be inserted in particular
sequences.)

This thesis discusses the application of stochastic context-free grammars (SCFGs) to
the problems of statistical modeling, multiple alignment, discrimination and prediction of
the secondary structure of small nuclear RNA in the spliceosome. The work described
here extends previous successful efforts to model, align and discriminate tRNA sequences
[SBU193, SBM194, SBHT93, ED94, SBH*94a]. This approach is analogous to previous
work on modeling protein families and domains and DNA with HMMs [HKMS93, KBM 194,
KMH93].

In ribonucleic acids (RNA), the nucleotides adenine (&), cytosine (C), guanine (G)
and uracil (U) interact in specific ways to form characteristic secondary-structure motifs
such as helices, loops and bulges [Sae84, WPTR9]. Further folding and hydrogen-bonding
interactions between remote regions orient these secondary-structure elements with respect
to each other to form the functional system. Higher-order interactions with other proteins
or nucleic acids may also occur. In general, however, the folding of an RNA chain into
a functional molecule is largely governed by the formation of intramolecular A-U and G-C
Watson—Crick base pairs' as well as G-U and, more rarely, G-A base pairs. Such base pairs
constitute the so-called biological palindromes in the genome.?

! These are termed base pairs perhaps for historical reasons, not because they are chemically basic;
rather, nucleic acids are acidic because of the presence of a negatively charged phosphate backbone, but
they interact with chemically basic molecules [Mia94].

2 They are called palindromes although the pairing halves do not reflect the identical bases but rather
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Comparative analyses of two or more protein or nucleic-acid sequences have been used
widely in detection and evaluation of biological similarities and evolutionary relationships.
Several methods for producing these multiple sequence alignments have been developed,
most based on dynamic programming techniques (for example, see works by Waterman
[Wat89]). However, when RNA sequences are to be aligned, both the primary and secondary
structure need to be considered since generation of a multiple sequence alignment and
analysis of folding are mutually dependent. Elucidation of common folding patterns among
two or more sequences may indicate the pertinent regions to be aligned and vice versa

[San85].

Currently, there are two principal methods for predicting secondary structure of RNA,
or which nucleotides are base-paired. Phylogenetic analysis of homologous RNA molecules
[FWT75, WGGNS3] ascertains structural features that are conserved during evolution. It
is based on the premise that functionally equivalent RNA molecules are also structurally
equivalent and relies on alignment and subsequent folding of many sequences into similar
secondary structures (see review papers [JOP89, WGGNS83]). Such comparative meth-
ods have been used to infer the structure of small nuclear RNAs [GP88], tRNA [Lev69,
HAEt65, MEK66, ZDF166, RSF1T66], 5S RNA [FW75], 16S ribosomal RNA (rRNA)
[WMGT80, SCZT80, ZGB81], 23S rRNA [NKW191, GZB81, BKM*81], group I introns
[MW90, MECS90], group II introns [MUOS89], ribonuclease P RNA [BHJT91, TE93], 7S
RNA (signal recognition particle RNA) [Zwi89], telomerase RNA [RB91], MRP RNA
[SBDC93] and TAR RNA of human and simian immunodeficiency viruses [Ber92]. The
original procedure of Noller and Woese [NW81] detects compensatory base changes in pu-
tative helical elements: contiguous antiparallel arrangement of A-U, G-C and G-U pairings.®
Positions that co-vary are assumed to be base-paired. This procedure was subsequently for-
malized into an explicit computer algorithm [WAG84, Wat88] that stores all “interesting”
patterns, a potential problem as the number of patterns increases, where “interesting” is
loosely defined as potential helical regions where there is evidence of more than one com-
pensating base change, implying that the bases may be paired. The algorithm of Sankoff
[San85] for simultaneously aligning and folding sequences is generally impractical in terms
of time and space for large numbers of long sequences. Given an alignment of homologous
RNA sequences, heuristic methods have been proposed to predict a common secondary
structure [HK93, CK91, CZJ91]. However, there remains no reliable or automatic way of
inferring an optimal consensus secondary structure even if the related sequences are already
aligned. (A consensus structure for a group of RNA sequences represents the secondary
structure most common to all of those sequences.) Because considerable manual inter-
vention is still required to identify potential helices that maintain base complementarity,

automation and development of more rigorous comparative analysis protocols are under
continual development [GPHT92, Lap92, KB93, Wat89, WOW90].

The second technique for predicting RNA secondary structure employs thermodynamics
to compare the free energy changes predicted for formation of possible secondary structure
and relies on finding the structure with the lowest free energy [TUL71, TSF88, Gou]. Such

the complementary bases. For instance, in the biological palindrome GUAC the first two bases GU pair with
the last two bases AC as follows: G with C, U with A.

? Given a set of homologous RNA molecules, this process involves making an initial multiple alignment,
marking transitions (a purine [A or G] becoming a pyrimidine [C or U]) and transversions (C becoming U, or
G becoming A) between sequences, fixing the positions of “interesting” patterns, then iterating, producing a
new multiple alignment and so forth, until helices are deduced [Mia94].
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energy minimization depends on thermodynamic parameters and computer algorithms to
evaluate the optimal and suboptimal free-energy folding of an RNA species (see review
papers [JT790, 7ZS84]). (These thermodynamic parameters are obtained from actual exper-
iments using small model compounds, where free energy changes for the formation of loops
or other structures are measured.) To obtain a common folding pattern for a set of related
molecules, Zuker has suggested predicting a folding for each sequence separately using these
algorithms and then searching for a common structure [Zuk89a]. This method’s limitations
stem partially from the uncertainty in the underlying energy model, and the technique may
be overly sensitive to point mutations.? Some researchers are attempting to combine both
phylogenetic and energetic approaches [L.Z91].

Using methods different from those described above, several groups have enumerated
schemes or programs to search for patterns in proteins or nucleic acid sequences [Sta90,
LWSS87, SA90, AWM™84, SM87, GMC90, CAKFS86, PC93]. String pattern-matching pro-
grams based on the UNIX grep function, developed in unpublished work by S. R. Eddy
[STGI92] and others [MMCN93], search for secondary structure elements in a sequence
database. If there is prior knowledge about sequence and structural aspects of an RNA
family, this can be employed to create a descriptor (discriminating pattern) for the family
which can then be used for database searching or generating an alignment for the family.
This has been demonstrated clearly for tRNA [FB91, Sta80, Mar86], where approximate
string matching (locating all occurrences of substrings that are within a given similarity
neighborhood of an exact match to the pattern) proved to be important.

The method of multiple alignment and folding used here differs markedly from the
conventional techniques because it builds a statistical model during rather than after the
process of alignment and folding. This approach has been applied to modeling tRNA
sequences [SBHT93], and a similar approach has been applied to modeling protein families

[HKMS93, KBM*94] and DNA [KMH93] with HMMs.

Though in principle HMMs could be used to model RNA, the standard HMM approach
treats all positions in an alignment as having independent distributions and is unable to
model the interactions between positions. However, if two positions in an alignment are
base-paired, then the bases at these positions will be highly correlated. Since such base-
pairing interactions play a dominant role in determining RNA structure and function, any
statistical method for modeling RNA that does not consider these interactions will encounter
insurmountable problems.

This thesis uses formal language theory to describe a means to generalize HMMs to
model most of the interactions seen in RNA. As in the elegant work of Searls [Sea92],
strings of characters representing pieces of DNA, RNA and protein are viewed as sentences
derived from a formal grammar. In the simplest kind of grammar, a regular grammar,
strings are derived from productions (rewriting rules) of the forms § — aW and S — aq,
where S and W are nonterminal symbols, which do not appear in the final string, and « is a
terminal symbol, which appears as a letter in the final string. Searls has shown base pairing
in RNA can be described by a context-free grammar (CFG), a more powerful class of formal
grammars than the regular grammar (see Section 2.1). CFGs are often used to define the
syntax of programming languages. A CFG is more powerful than a regular grammar in

* The energetic cost of adding a base pair to an existing helix varies, since each of the 16 possibilities has
a different value. For example, adding G-C on top of A-U will cause the helix to have a different total energy
than adding G-U. Since these effects accumulate, small changes can greatly affect a helix’s overall energy

[Mia94].
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that it permits a greater variety of productions, such as those of the forms 5 — WY and
S — aWb (capital letters represent nonterminals; lowercase letters represent terminals). As
described by Searls, precisely these additional types of productions are needed to model
the base-pairing structure in RNA.? In particular, productions of the forms § — A W U,
S—=UWA S5 —GW Cand 5 — CW G describe the structure in RNA due to Watson—
Crick base pairing. Using productions of this type, a CFG can specify the language of
biological palindromes.

Searls’ original work [Sea92] argues the benefits of using CFGs as models for RNA
folding, but does not discuss stochastic grammars or methods for creating the grammar
from training sequences. Sakakibara et al. have provided an effective method for building
a stochastic context-free grammar (SCFG) to model a family of RNA sequences [SBHT93];
exactly this method is applied in this thesis to model spliceosomal small nuclear RNA
sequences. (These are called small because their lengths are short relative to other forms
of RNA—though they are on average two to three times as long as tRNA sequences,
on which the SCFG method described here was tested previously [SBU193, SBM*94,
SBH193]—and nuclear because they appear in cell nuclei.) Some analogues of stochastic
grammars and training methods do appear in Searls’” most recent work in the form of
costs and other trainable parameters used during parsing [Sea93a, Sea93b, SD93]. but
the integrated probabilistic framework discussed here, wherein probabilities are assigned to
grammar productions which capture the possible base-pairing interactions, may prove to
be simpler and more effective [SBHT93, SBM*94]. This method is closely related to the
“covariance models” (CMs) of Eddy and Durbin [ED94]. CMs are equivalent to SCFGs
but the algorithms for training and producing multiple alignments differ. An in-depth
comparison of the two methods is given elsewhere [SBHT94a].

This thesis describes the algorithm developed by Sakakibara et al. which was used to
train SCFGs to model tRNA [SBH'93, SBM194]. The algorithm, Tree-Grammar EM,
deduces an SCFG’s probabilities (parameters) automatically from a set of unaligned primary
sequences with a novel generalization of the forward-backward algorithm commonly used to
train HMMs. Tree-Grammar EM is based on tree grammars and is more efficient than the
inside-outside algorithm [LY90], a computationally expensive generalization of the forward-
backward algorithm developed to train SCFGs [Bak79]. Here, Tree-Grammar EM is used
to derive, from small training sets of snRNA sequences (16 to 25 sequences per training
set), three trained grammars. The training and testing sequences were taken from a 1993
database of aligned spliceosomal snRNAs [GP88, GRM93] maintained by Christine Guthrie
et al. The alignments in this compilation are referred to as trusted alignments. Sequences
in the three data sets ranged 53-170 bases in length.®

Specifying a probability for each production in a grammar yields a stochastic grammar.
A stochastic grammar assigns a probability to each string it derives. Stochastic regular

® Although CFGs can not describe all RNA structure, they can account for enough to make useful
models (e.g., for tRNA [SBHT93]). CFGs cannot account for pseudoknots, structures generated when a
single-stranded loop region base pairs with a complementary sequence outside the loop [tPD92, WPT89,
Ple90]. Similarly, base triples involving three positions, as well as interactions in parallel (versus the more
usual anti-parallel), are not currently modeled.

® The U2 and U4 sets were not modeled because their sequences were too long (96-194 and 120-162 bases
in length, respectively) and their grammars were too large (2356 and 2221 productions, respectively); the
local implementation of the Tree-Grammar EM parsing step required more core memory than was available
in local computers.
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grammars are exactly equivalent to HMMs and suggest an interesting generalization from
HMMs to stochastic context-free grammars [Bak79].

This thesis discusses stochastic models for spliceosomal small nuclear RNAs developed
using SCFGs as in previous work by Sakakibara et al. [SBH193]. These models resemble the
protein HMMs of Krogh et al. [KBMT94] but they incorporate base-pairing information.
The process used here for building an SCFG that forms a statistical model of a subset of
spliceosomal small nuclear RNA sequences is similar to the process employed by Krogh et
al. to construct an HMM representing a statistical model of a protein family. Fach model
is used to discriminate its set from other RNAs of similar length, and to obtain a multiple
alignment for each sequence set (training plus test) in the same manner as for proteins.
Also, each model is employed to determine the base pairing that defines their secondary
structure of snRNAs for which only the primary sequence is known.

This thesis focuses on the ribonucleic acid (RNA) portions of the spliceosome. The
spliceosome includes three major RNA—protein subunits, the so-called U1, U2 and U4/U6.U5
small nuclear ribonucleoprotein (snRNP) particles, as well as an additional group of non-
snRNP protein splicing factors. Each of the snRNP spliceosomal subunits contains one or
more small nuclear RNAs (snRNAs) and a set of snRNP proteins. This thesis examines
only the U1, U5 and U6 sn RN A sequences in these subunits. U6 is the most highly conserved
of the spliceosomal snRNAs. As implied by the clustered name “U4/U6.U5” for one of the
three major subunits, U4 and U6 are usually involved in intermolecular base pairing (that
is, regions of U4 base pair with regions of U6).

To understand the role of the spliceosome, it is useful to summarize protein synthesis,
the process of mapping from a DNA sequence to a folded protein: Part of a DNA strand,
a gene, is transcribed to a messenger RNA (mRNA) strand, which is then translated to
protein. DNA and RNA have four-letter alphabets, one for each ribonucleic acid, while
proteins have a 20-letter alphabet, one for each amino acid. Specific subsequences of three
letters in mRNA, called codons, specify single amino acids. Fach RNA letter represents a
nucleotide or base, which consists of three types of molecules bound together (a sugar, a
phosphate and a purine [A or G] or pyrimidine [C or U]).

Although not involved directly in protein synthesis, the spliceosome provides a required
function, pre-mRNA splicing, which enables protein synthesis to take place and which is
also important for gene expression and biological regulatory mechanisms. In eucaryotes,
the spliceosome catalyzes the removal of introns from pre-mRNA. That is, it splices introns
(intervening regions in genes) out of mRNA in the nucleus of a eukaryotic cell and conjoins
the remaining exons (expressed regions) to produce a so-called mature mRNA. In the
context of protein synthesis, the spliceosome needs to have done this before the mature
mRNA can leave the cell nucleus to bind to a ribosome in the cytoplasm, where it is
translated into a protein [Hun92]. As Guthrie and Patterson note, “Presumably the low
information content within pre-mRNA introns is compensated by the participation of the
snRNPs, which impart the appropriate structure for catalysis” [GP88].

An RNA sequence has a distinct orientation determined by its chemical backbone, a
string of alternating sugar and phosphate molecules. This orientation is indicated by a
label on each end: 5" indicates the phosphate-terminated end of the sequence (phosphate
attaches to the 5’ carbon of a ribose sugar), while 3’ indicates the sugar-terminated end
[Cur79]. Some nucleotides may be modified by the addition of small chemical groups, but in
this work, as in other computer approaches for modeling biological sequences, the modified
nucleotides are converted to their unmodified forms.
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Using stochastic context-free grammars, I hope to elucidate secondary structures for
snRNA sequences, both for those with trusted alignments available and for those with
unknown alignments. These new secondary structures may help biologists to determine and
to better understand these molecules’ functions. Concomitantly, I desire to demonstrate
the usefulness of SCFGs for folding and aligning RNA molecules that are longer and more
complex than the transfer RNA (tRNA) molecules previously used to test this method.

Results show that after having been trained on as few as about 20 snRNA sequences,
each of the three models can discern snRNA sequences from similar-length RNA sequences
of other kinds, can find secondary structure of new snRNA sequences and can produce
multiple alignments of snRNA sequences.

1.2 Thesis structure

Chapter 2 presents the methods and training experiments. Chapter 3 describes the
experimental results. Chapter 4 discusses possible future tasks.



2. Methods

The Tree-Grammar EM algorithm is used to produce three stochastic context-free
grammars, one for each of the three snRNA training sets. This chapter explains how these
grammars are created and used, and how the Tree-Grammar EM algorithm works.

2.1 Context-free grammars for RNA

A grammar is principally a set of productions (rewrite rules) that is used to generate a
set of strings, a language. The productions are applied iteratively to generate a string, a
process called derivation. For example, application of the productions in Figure 2.1 could
generate the RNA sequence CAUCAGGGAAGAUCUCUUG by the following derivation:

Beginning with the start symbol Sy, any production with Sy left of the arrow can
be chosen to replace Sy. If the production Sy — 57 is selected (in this case, this is
the only production available), then the symbol 57 replaces So. This derivation step is
written So = 51, where the double arrow signifies application of a production. Next, if
the production 57 — C 53 G is selected, the derivation step is 51 = C 53 G. Continuing
with similar derivation steps, each time choosing a nonterminal symbol and replacing it
with the right-hand side of an appropriate production, the following derivation is obtained,
terminating with the desired sequence:

S = 51 = CYG = CAS3UG = CAS,;59UG
= CAUS5A59UG = CAUCSGAS9UG
= CAUCAS7GASoUG = CAUCAGSgGASUG
= CAUCAGGGAS9UG = CAUCAGGGAASoUUG
= CAUCAGGGAAGS,1CUUG
= CAUCAGGGAAGAS,,UCUUG
= CAUCAGGGAAGAUS,sUCUUG
= CAUCAGGGAAGAUCUCUUG.

PI{ So —>Sl, 57 —>GSS,

S; —C 5% G, Ss — G,

S1 — A S, U, Ss — U,

Sy — A S50, S — A4 S U,

S3 — Sy Sy, S1o — € S0 G,

Sy — U S5 A, S0 — G S11 C,

S5 — C S G, Si1 — 4 S12 U,

Se — A S7, S12 — U Sia,

57 — U 57, 513 — C }

Figure 2.1: This set of productions P generates RNA sequences with a certain
restricted structure. Sq, 51, ..., 513 are nonterminals; A, U, G and C are terminals
representing the four nucleotides.
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A derivation can be arranged in a tree structure called a parse tree (Figure 2.2, left).
A parse tree represents the syntactic structure of a sequence produced by a grammar. For
an RNA sequence, this syntactic structure corresponds to a possible physical secondary
structure (Figure 2.2, right). In general, multiple derivations (parse trees) are possible for a
single sequence, providing several candidates for the secondary structure of that sequence.

Recent work in modeling RNA [SBUT93, SBH*93] uses context-free grammars having
productions of the following forms: S — WY, S — aWb, S — aW, S — a5, 5 — W
and S — a, where S, W and Y are nonterminals and a and b are terminals. S — aWb
productions describe the base pairings in RNA. S — aW and 5 — a5 describe unpaired
bases (loops). S — WY describe branched secondary structures. S — W are used to
insert spaces in sequences to produce a multiple alignment. Since the snRNA SCFGs in
this work generalize the protein HMMs used in previous work at UC Santa Cruz [HKMS93,
KBM194], the three main types of snRNA SCFG nonterminals correspond to each of the
primary states in a protein HMM: match, insert and skip. The match nonterminals in a
grammar—the nonterminals on the left side of § — a, 5 — aWb and § — aW types of
productions—correspond to “important” positions in an RNA molecule (or columns in a
multiple alignment). Insert nonterminals—the nonterminals on the left side of 5 — aS
types of productions—also generate nucleotides but with different distributions. These are
used to model loops by inserting nucleotides between important (match) positions. Skip
nonterminals—nonterminals on the right of S — W productions—are used to skip a match
nonterminal in a sequence derivation, so that no nucleotide appears at the corresponding
position in a multiple alignment. In an SCFG modeling RNA, use of a skip production in
parsing a sequence is equivalent to choice of a delete state in aligning a protein sequence to
an HMM.

Formally, a context-free grammar (' consists of a set of nonterminal symbols N, a
terminals alphabet 3, a set of productions P, and the start symbol Sy. For a nonempty
set of symbols X, let X* denote the set of all finite strings of symbols in X. Every CFG
production has the form S — o where § € N and a € (N U X)*, thus the left-hand
side consists of one nonterminal and there is no restriction on the number or placement
of nonterminals and terminals on the right-hand side. The production S — « means that
the nonterminal S can be replaced by the string a. If § — a is a production in P, then
for any strings v and 6 in (N U X)*, the notation 756 = ~vad is used to indicate that
v 86 directly derives yad in G. The string § can be derived from a, denoted o = 3, if
there exists a sequence of direct derivations ag = a1, a1 = «@9,...,a,_1 = «, such that
agp =, a, = f, a; € (NUX)* and n > 0. Such a sequence is called a derivation. Thus, a
derivation corresponds to an order of productions applied to generate a string. A particular
derivation d of the sequence s using productions from the grammar G is denoted Sg 4 .
The grammar generates the language {w € ¥* | 5o = w}, the set of all terminal strings w
that can be derived from the grammar.

2.2 Stochastic context-free grammars

In an SCFG, every production for a nonterminal S has an associated probability value
such that a probability distribution exists over the set of productions for 5. (Any production
with the nonterminal S on the left side is called “a production for 5.”) Here the associated
probability for a production S — «a in G is denoted by P(S — a | G) or Prob(S — o | G).
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Figure 2.2: For the RNA sequence CAUCAGGGAAGAUCUCUUG, the grammar whose
productions are given in Figure 2.1 yields this parse tree (left), which reflects a
specific secondary structure (right).

Similarly, the probability for a derivation step a; = a; given G is denoted by Prob(a; =
aj | G).

A stochastic context-free grammar G generates sequences and assigns a probability
to each generated sequence, and hence defines a probability distribution on the set of
sequences. The probability of a derivation (parse tree) can be calculated as the product
of the probabilities of the production instances applied to produce the derivation. The
probability of a sequence s is the sum of probabilities over all possible derivations that G
could use to generate s:

Prob(s | G) Prob(Sg 4 g | &)

all derivations
(parse trees) d

>~ Prob(Sy = a1 | G) Prob(ay = a3 | G)- --- Prob(a, = s|G)

1,

cyOip

where terms a; € (NUX)*. For clarity, this work uses leftmost-first derivations, consistently
replacing only the leftmost nonterminals to perform the derivation. If a sequence s can be

produced in multiple ways (that is, several derivations Sp 4 exist), then the probabilities
of those various ways must be summed.

Efficiently computing Prob(s | ) presents a problem because the number of possible
parse trees for s is exponential in the length of the sequence. However, a dynamic program-
ming technique analogous to the Cocke—Younger—Kasami or Early parsing methods [AU72]
for non-stochastic CFGs can complete this task in polynomial time (specifically, in time
proportional to the square of the number of nonterminals in the grammar G times the aver-
age length of a typical sequence s, which in this work is on the order of |s|?). The negative
logarithm of the probability of a sequence given by the grammar G, —log(Prob(s | GG)), is
defined as the negative log likelihood (NLL) score of the sequence. The NLL score quan-
tifies how well the sequence s fits the grammar—the likelihood that the grammar with its
production probabilities could produce the sequence s.

CFGs have a drawback in that a sequence can sometimes be derived by a CFG in multiple
ways. Since alternative parse trees reflect alternative secondary structures (foldings), a
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grammar may give several possible secondary structures for a single RNA sequence. An
SCFG has the advantage that it can provide the most likely parse tree from this set of
possibilities. If the productions are chosen carefully and the probabilities are estimated
accurately, a parsing algorithm, when given grammar G and an RNA sequence s, will
produce a most likely parse tree for s that corresponds to the correct secondary structure for
s. The parser used in this work produces the single parse tree with the highest probability.
It is possible that several parse trees may give one particular structure, and the sum of these
trees’ probabilities may be larger than the single most likely parse tree which gives another
structure, but in this case the “correct” parse tree is taken to be the single latter parse tree.
Indeed, for many of the snRNA sequences tested in this work, the most likely parse trees
given by the corresponding snRNA-trained grammar match closely the accepted secondary
structures, due to constraints inherent in the initial grammars and in the Tree-Grammar
EM training procedure. The alternative parse trees may also be of interest because the
same RNA sequence can adopt different structures (for example, some snRNA sequences),
but these alternates are not considered in this work.

The most likely parse tree can be computed efficiently using a variant of the above
procedure for calculating Prob(s | G). The most likely parse tree for the sequence s can be
obtained by calculating

max  Prob(Sp 4y | G).
parse trees d

The dynamic-programming procedure to do this resembles the Viterbi algorithm for HMMs
[Rab89] and takes time proportional to the square of the length of a typical sequence
times the number of nonterminals in the grammar (. This procedure is also used to
obtain multiple alignments: The parser aligns each sequence by finding the most likely
parse tree given by the grammar, yielding an alignment of all nucleotides that correspond
to the match nonterminals for each sequence, after which the mutual alignment of the
sequences among themselves is determined. (Insertions of varying lengths can exist between
match nonterminals, but by inserting enough spaces in each sequence to accommodate the
longest insertion, an alignment of all the sequences is obtained.) This is equivalent to
multiple alignment in a protein HMM, where the single most likely path for each sequence
is computed.

2.3 Estimating SCFGs from sequences using Tree-Grammar EM

Both an SCFG’s production probabilities and the productions themselves can in prin-
ciple be chosen through examining an existing alignment of RNA sequences. Results using
this approach to derive an SCFG to model tRNA were reported in previous work [SBUT93].

At the other extreme, researchers recently have developed alternate methods for deter-
mining nearly all aspects of a grammar solely from training sequences [ED94]. To deduce
a covariance model’s structure (essentially, to choose an SCFG’s productions), Durbin and
Eddy use the standard Nussinov—Zuker dynamic-programming algorithm for RNA folding
[NPGK78, Zuk89b], but with a non-standard cost function. Once a model structure exists,
they train the model’s parameters (production probabilities) using the Viterbi approxima-
tion of the expectation maximization (EM) algorithm.

In contrast, this thesis takes an intermediate approach. Prior information about snRNA
structure is used to design appropriate initial grammars, but then training sequences are
used to refine the estimates of the production probabilities in those grammars.
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1. Start with an initial grammar Gy.

2. Use grammar G and the |s|> CYK-like parsing algorithm to parse the raw input
sequences, producing a tree representation for each sequence indicating which nucleotides
are base-paired. This set of initial trees is denoted Tg. Set T,y = @ and T),.., = 1.

3. While T),c,, # To1q do the following: {

3a. Set Ty = Thew-

3b. Use T,;4 trees as input to the TG Reestimator algorithm, which iteratively
re-estimates the grammar parameters until they stabilize. The grammar with
the final stabilized probability values is called new grammar G, -

3c. Use grammar (.., and the |s|*> CYK-like parsing algorithm to parse the
input sequences, producing a new set of trees T,,.,,.

Figure 2.3:  The Tree-Grammar EM training algorithm, shown in pseudocode
here, performs the TG Reestimator and CYK-like parsing algorithms as substeps.
In Step 3b, the probability values are considered “stabilized” when the difference
between consecutive NLL scores for the sequences, computed using the current
and the previous grammar parameters, has become smaller than a pre-chosen
value called the stopping criterion. The smaller the stopping criterion, the larger
the number of iterations within Step 3b. In this and previous tRNA work, the
stopping criterion was set to 1.0 the first time through Step 3, then decreased to
0.1 subsequently, leading to, on average, about six iterations in Step 3b.

To estimate the SCFG parameters from unaligned training tRNA sequences, Sakakibara
et al. introduced Tree-Grammar EM (Figure 2.3), a new method for training SCFGs
that uses a generalization of the forward-backward algorithm commonly used to train
HMMs. This generalization, called TG Reestimator, is more efficient than the inside-outside
algorithm, which was previously proposed to train SCFGs.

The inside-outside algorithm [LY90, Bak79] is an exzpectation mazimization (EM) al-
gorithm that calculates maximum likelihood estimates of an SCFG’s parameters based on
training data. (Fzpectation refers to the calculation of an auxiliary function that depends on
the current and the reestimated model, while mazimization refers to maximization over the
reestimated model [Rab89].) However, it requires the grammar to be in Chomsky normal
form, which is possible but inconvenient for modeling RNA (and requires more nontermi-
nals). Further, it takes time at least proportional to |s|® per training sequence s, whereas
the forward-backward procedure for HMMs takes time proportional to |s| per training se-
quence, where |s| is the length of sequence s. In addition, the inside-outside algorithm is
prone to settling in local minima; this presents a problem when the initial grammar is not
highly constrained.

To avoid these problems, Sakakibara et al. developed the iterative algorithm TG Rees-
timator (Step 3b in Figure 2.3). While the running times of both Tree-Grammar EM and
the inside-outside algorithm are asymptotically equivalent due to the use of the |s|> CYK-
like algorithm (Step 3c of Figure 2.3), in practice Tree-Grammar EM is more efficient. In
Tree-Grammar EM, the inner loop (Step 3b) takes time proportional to |s| per sequence
per iteration (the grammar size is constant), while in the inside-outside algorithm, the
analogous step takes time proportional to |s|? per sequence per iteration. The difference is
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that the inside-outside algorithm computes values for all possible parses for all possible tree
structures for the sequence s, whereas the Tree-Grammar EM method computes all possible
parses for only the current tree structure provided for the sequence s. Since the number of
iterations in Step 3b is typically on the order of 10, while the number of iterations of Step
3 is typically four or five, Tree-Grammar EM is more practical for longer RNA sequences.

TG Reestimator requires folded RNA sequences as training examples, rather than un-
folded ones. Thus, some tentative “base pairs” in each training sequence have to be identi-
fied before TG Reestimator can begin. The procedure to do this involves designing a rough
initial grammar (see Section 2.5) that may represent only a portion of the base-pairing
interactions (Step 1) and parsing the unfolded RNA training sequences to obtain a set of
partially folded RNA sequences (Step 2). Then a new SCFG can be estimated using the
partially folded sequences and TG Reestimator (Step 3b). Further productions might be
added to the grammar at this step, though this thesis does not explore this approach. The
parameter re-estimation is then repeated. In this way, TG Reestimator can be used even
when precise knowledge of the base pairing is not available. TG Reestimator constitutes
one part of the entire training procedure, Tree-Grammar EM.

The Tree-Grammar EM procedure is based on the theory of stochastic tree grammars
[TW68, Fu82, Sak92]. Tree grammars are used to derive labeled trees instead of strings.
Labeled trees can be used to represent the secondary structure of RNA easily [Sha88, SZ90]
(see Figure 2.2). A tree grammar for RNA denotes both the primary sequence and the
secondary structure of each molecule. Since these are given explicitly in each training
molecule, the TG Reestimator algorithm does not have to (implicitly) sum over all possible
interpretations of the secondary structure of the training examples when re-estimating the
grammar parameters, as the inside-outside method must do. The TG Reestimator algorithm
iteratively finds the best parse for each molecule in the training set and then readjusts the
production probabilities to maximize the probability of these parses. The new algorithm
also tends to converge faster because each training example is more informative [SBU193].

Figure 2.4: The folded RNA sequence (AA(GUC)U) can be represented as a tree
t (left), which can be broken into two parts such as ¢/3 (middle) and ¢\3 (right).
The $ symbols act as placeholders for nonterminal labels on internal nodes. The
root (node 1) and the third internal node (node 3) represent A-U and G-C base
pairs, respectively, while the other nodes (2 and 4) indicate unpaired nucleotides.

Before the Tree-Grammar EM algorithm can be described, some tree definitions are
needed: A tree is a rooted, directed, connected acyclic finite graph in which the direct
successors of any node are linearly ordered from left to right. The predecessor of a node is
called the parent; the successor, a child; and a child of the parent, a sibling. In this work, a
folded RNA sequence s is represented by a labeled tree t as follows. Each leaf node is labeled
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by one of four nucleotides {4,U, G,C}. Every internal node is labeled by a nonterminal. The
sequence of nucleotides labeled at leaf nodes traced from left to right exactly constitutes
the RNA sequence s, and the structure of the tree represents its folding structure.

Figure 2.4 shows a tree representation of the folded RNA sequence (AA(GUC)U), where
dollar signs $ act as a placeholders for the nonterminals labeling the internal nodes. The
parsing step of Tree-Grammar EM uses the current grammar to choose which actual non-
terminals should label these internal nodes.

Assume all internal nodes in ¢ are numbered from 1 to 7' (the number of internal nodes) in
some order. Then, in standard tree-grammar notation, for an internal node n (1 < n <7T),
t/n denotes the subtree of ¢ with root n (Figure 2.4, center) and t\n denotes the tree
obtained by removing a subtree t/n from ¢ (Figure 2.4, right).

The probability of any folded sequence ¢ given by an SCFG G = (N,X, P, S) is
calculated efficiently using a dynamic-programming technique, as is done with the forward
algorithm in HMMs. A labeled tree t representing a folded RNA sequence has the shape of
a parse tree, so to parse the folded RNA, the grammar G needs only to label each internal
node with an appropriate nonterminal according to the productions. For all nonterminals
S and all nodes n such that 1 <n < T, let in,(5) be the probability that the subtree ¢/n
can be derived given that the nonterminal 5 is assigned to node n and given grammar G
Then in,(5) can be calculated inductively as follows:

1 if @ is the nucleotide appearing at leaf node n,

1. Initialization:  in,(a) = { 0 otherwise
?

for all leaf nodes n and terminals a (nucleotides). This extension of in,(5) is for the
convenience of the inductive calculation of in,(5).

2. Induction:

()= > ing (Y1) o ing, (Ye)- P(S =Yy -+ Vi),
Yi,...,Y,
€ (Nux)

for all nonterminals 5, all internal nodes m and all m’s children nodes nq, ..., ng.

3. Termination: For the root node n and the start symbol S,
Prob(t| G) = iny(S0). (2.1)

Intuitively, if s’ represents the substring of s found at the leaves of the subtree rooted
at the internal node n inside the full parse tree ¢, then in,(.5) represents the probability
that the nonterminal S can derive that substring s’ when a production for $ is applied in
a derivation step at node n. For example, in the tree ¢ shown in Figure 2.4, if s’ = GUC
and if nonterminal ' is assigned to the third node such that n = 3, then in3(.9) represents
the probability that the nonterminal S can derive the substring GUC via application of a
production for S in a derivation step at node 3. Thus, in,(So), where n is t’s root node, is
exactly the probability that the start nonterminal can derive the string s.

One more quantity is needed: out,(5) defines the probability of t\n given that the
nonterminal S is assigned to node n and given grammar . That is, out,(9) is the
probability of t\n, which is the tree t excluding the subtree rooted at node n. This quantity
is obtained similarly.
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1. Initialization:  For the root node n,
1 for § = 5y (start symbol),
out,(5) = o ( )
0 otherwise.
2. Induction:
outy, (9) = Z iy (Y1) oo g, (Vi) P(S"— Y1 -+ 5 -+ Vi)« outy(9),
Yi,.... Y
€ (Nux),

S'eN

for all nonterminals S, all internal nodes [ and m such that [ is m’s parent and all
nodes ny,...,n, are m’s siblings. Incorporated in this calculation are the probabilities
of all productions for all nonterminals 5’ that can derive the nonterminal S—namely, the
productions §" — Y7 --- § ... Y;. There is no termination step given in this case because
the calculation of Prob(¢ | &) is given in the termination step for in, ().

Intuitively, out,(5) is the probability that the start nonterminal Sy can generate a54,
with nonterminal S labeling node n, where subsequences a and g result from excising the
subsequence rooted at node n from the full sequence s. Continuing the example from Figure
2.4, outs(.9) is the probability of the partial derivation from the start symbol Sg to the string
AA S G with nonterminal S labeling node 3.

To determine how well a grammar fits a set of folded training sequences #(1),...,#(n), the
probability that the grammar generates them needs to be calculated. “How well a grammar
fits a set of folded sequences” means how likely it is that the grammar would predict exactly
those foldings when presented with those sequences unfolded. This probability is simply a
product of terms Prob(#(j) | G) as given by Equation 2.1, i.e.,

Prob(sequences | ) = ﬁ Prob(t(j) | G). (2.2)

The goal is to obtain a high value for this probability, called the likelihood of the grammar.
The mazimum likelihood method of model estimation finds the model that maximizes the
likelihood in Equation 2.2. There is no known way to directly and efficiently calculate the
best model (the one that maximizes the likelihood) and avoid getting caught in suboptimal
solutions during the search. However, the general EM method, given an arbitrary starting
point, finds a local maximum by iteratively re-estimating the model such that the likelihood
increases in each iteration, and often produces a solution that is acceptable, if perhaps not
optimal. This method is often used in statistics.

Thus in Step 1 of Tree-Grammar EM (Figure 2.3), an initial grammar G is created
by assigning values to the production probabilities P(S — Y7 --- Y}) for all 5 and all
Y1, ..., Y%, where S is a nonterminal and Y; (1 <4 < k) is a nonterminal or terminal. If
some constraints or features present in the sequences’ multiple alignment are known, these
are encoded in the initial grammar (see Section 2.5). The current grammar is set to this
initial grammar.

In Step 3b of Tree-Grammar EM, using the current grammar, the values in,(.5) and
out,(5) for each nonterminal S and each node n for each folded training sequence are

calculated in order to get a new estimate of each production probability, P(S — Yy --- Yj)=
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> ( > outy,(S) - P(S — Yy Yy) sing, (Y1) -+ ing, (Vi) /Prob(t | G))

all t \all m

norm ’

which is a double sum over all sequences ¢ and all nodes m, where G is the old grammar and
“norm” is the appropriate normalizing constant such that >y, y P(S— Yy -+ V) = 1.
A new current grammar (., is created by replacing all P(S — Yj---Yy) with the re-

estimated probabilities P(S — Y7 ---Y}).

2.4 Overfitting and regularization

Attempts to estimate a grammar with too many free parameters from a small set of
training sequences will encounter the overfitting problem—that is, the grammar fits the
training sequences well, but poorly fits other, related (test) sequences. One solution is to
use regularization to control the effective number of free parameters. Following the method
used in recent SCFG modeling of tRNA [SBU193, SBMT94, SBHT93, SBHT 94a], this work
regularizes the grammars taking a Bayesian approach to the parameter estimation problem,
similar to a previous approach taken with protein HMMs [KBM ™94, BHK'93].

Before the grammars are trained, a prior probability density is constructed for each
of their “important” parameter sets: S — aWb productions and S — aW productions,
where 5 and W are nonterminals and terminal symbols a, b are drawn from the set of four
nucleotides {A,C,G,U}. This prior probability density takes the form of a single-component
Dirichlet distribution [SD89].

The S — aWb productions, which generate base pairs, come in groups of 16, correspond-
ing to all possible pairs of terminal symbols. The 5 — aW productions, which generate
nucleotides in loop regions, come in groups of four. For the base-pairing productions, the
Dirichlet prior information about which productions are most likely is employed. For in-
stance, Watson—Crick pairs are more frequently observed than other base pairs. Using
the large alignment of 16S TRNA sequences [LOM™T93], the method described by Brown
et al. [BHKT93] was used to obtain the 16 parameters of a Dirichlet density over possible
base-paired position distributions. These probabilities were used to calculate precise prior
information about base-pair probabilities. Similarly the 16S rRNA alignment was used to
calculate a four-parameter Dirichlet prior for nucleotide distributions in loop match posi-
tions. Further details, with references to protein HMMs, are presented in the paper by
Brown et al. [BHK193].

These parameters constitute the regularizer (Figure 2.5). The small parameter values
imply that the 16S TRNA data set from which they were computed is highly variable. The
values do not sum to one because they are not probabilities; normalizing the Dirichlet pa-
rameters will, however, yield the average distribution that the Dirichlet prior specifies. The
parameters are added as “pseudocounts” during each re-estimation step of Tree-Grammar
EM (step 3b in Figure 2.3). Thus, at each iteration, TG Reestimator computes mean
posterior estimates of the model parameters rather than maximum likelihood estimates.

Regularization is performed in a similar manner for probability distributions for other
production types, including chain rules § — W, branch productions S — WY and insert
productions S — aS. Insert productions (for loops) are regularized with very large uniform
pseudocounts over the four possible nucleotides so that their probability distributions will
be fixed at uniform values rather than estimated from the training data. This is equivalent
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3/
S — aWb C G U A

0.134879  3.403940 0.162931 0.176532
1.718997 0.246768 0.533199  0.219045
0.152039 0.784135 0.249152 2.615720
0.135167 0.192695 1.590683 0.160097

5/

= a0 Q

S — aW C G U A

0.21 0.18 0.20 0.26

Figure 2.5:  Helix (top) and loop (bottom) pseudocounts are added to actual
observed frequencies to reflect prior information. These counts are based upon
estimated Dirichlet distributions for helix regions and loop regions. The matrix is
asymmetric because the distributions differ with the base ordering in a base pair
(ex., 5" C paired with 3’ G has higher probability than 5" G paired with 3’ C).

Grammar | Number of Productions | Number of Nonterminals

U1 2021 462
Us 1498 367
Ue 1761 498

Figure 2.6: Shown are the total number of productions and nonterminals for the
grammars that model the three snRNA sets.

to the regularization used previously for the insert states of protein HMMs [KBM194]. This
further reduces the number of parameters to be estimated, helping to avoid overfitting.

2.5 The initial grammars

The initial grammars were based on snRNA structures previously described [GP88].
The lengths of helices and loops were approximated via empirical examination of the
provided trusted alignments. Specifically, the most common substructure lengths were
incorporated directly as the number of match nonterminals to appear in the actual grammar
for those substructures. Though the number of match nonterminals was determined this
way, insertion and skip productions for the same nonterminals are included to accommodate
longer loops, or shorter loops or helices.

The grammars were formulated as meta-grammars which were translated into actual
grammars with appropriate productions, nonterminals and terminals. (The actual gram-
mars vary in size, as tabulated in Figure 2.6. The U5 grammar was the smallest, and
thus took the least time to train.) Each meta-grammar has meta-nonterminals such
as trunkHelix and loop3 corresponding to snRNA structures. Fach of these meta-
nonterminals has a set of actual productions associated with it (not shown here). Sakak-
ibara et al. wrote a program that automatically generates actual productions given only
the meta-grammar. To further simplify grammar specification, recently Leslie Grate wrote
a graphical program called scfgedit, which allows users to define meta-grammars easily.
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The three types of meta-nonterminals are BRANCH, LOOP and HELIX. FEach Loop or
HELIX meta-nonterminal has an associated length, given by a numeric parameter. For a
meta-nonterminal LOOP((), the grammar generating program creates a subgrammar that
is equivalent to an HMM model with ¢ match states as described in previous work on
proteins [KBM194], except that the four-letter nucleic-acids alphabet replaces the twenty-
letter amino-acids alphabet. Distributions of the nucleotides in such a loop are defined by
the probabilities of the productions for ¢ match nonterminals. Longer or shorter loops can
be derived using special nonterminals and productions that allow position-specific insertions
and deletions. For a meta-nonterminal HELIX({), the grammar generating program creates a
subgrammar consisting of { nonterminals. Fach nonterminal has 16 productions that derive
possible base pairs for its position in the helix. Each nonterminal has its own probability
distribution over these 16 possible productions. These probability distributions, like those
for match nonterminals in loops, are initially defined using Dirichlet priors (Section 2.4).
Other nonterminals and productions are added to allow deletions of base pairs, enabling
helix length variations.

To form the complete actual grammar, all the subgrammars for the various structures
are combined according to the high-level specification. Special treatment of nonterminals
involved in branch productions of the form 5 — 5.5 can also be included. In particular, the
snRNA grammars were specified such that certain branch productions may also, with some
probability, omit one of the nonterminals on the right-hand side. This allows the grammar
to derive snRNAs that are missing certain substructures, such as arms or loops. In general,
any substructure in the grammar can be specified to be absent with some probability.
These probability values are initialized to default prior values and then re-estimated during
training on actual sequences, as are all the production probabilities in the grammar.

Represented in three forms (XRNA, scfgedit and text) in Figures 2.8, 2.9 and 2.10
are the three initial grammars designed for the snRNA experiments. The first of the three
forms is a graphical rendering generated using XRNA, an X Windows-based program for
editing and displaying RNA primary, secondary and tertiary structure [WGN93]. Using
simple filters, a secondary structure predicted by a grammar can be transformed into XRNA
format. The scfgedit program outputs an XRNA representation of the grammar’s match
productions, with a single G-C placeholder representing each set of 16 actual base-pairing
productions for a single helix-match nonterminal and a single A placeholder representing each
set of four actual productions for a single loop-match nonterminal. Thus, all nucleotides
in the XRNA grammar pictures are merely placeholders, showing only secondary structure
(match positions) but not a true consensus structure. A black circle indicates the 5" end of
each structure. The second format shown in the figures is scfgedit form, with the start
meta-nonterminal 9 circled. Squares represent helices, circles represent loops, and triangles
represent branch points. The third format is the text output from scfgedit describing the
meta-grammar.

Lengths chosen for each helix and loop appear in the upper left corner of each square or
triangle in the scfgedit representations. These were selected to equal the most common
lengths evident in the input data alignment for each data set. For example, if there are 10
sequences in a particular data set and they each have a helix that appears in the trusted
alignment as follows,

..start-helix.loop.-end-helix-...
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Grammar | Helix Current Length | Better Length
U1 stem2 16 18
Us trunkBottom 4 6
trunkTop 8 9
lastHelix 7 10
Ueé 5’stem 8 12

Figure 2.7:  These length changes would be required to make each grammar
“perfectly fit” the sequence set they are intended to model, such that predicted
alignments would be able to perfectly match the trusted alignments. Without
these changes, the predicted alignments of helices are strictly length-limited but
the grammars are smaller and thus easier to train.

-CC--—-=—-- AAAG. ——-—--—- GG-
.. .~CCGGCCCGGG. ~AAC. CCCGAGCCGG-
-GC-——--—-- ~AAG.------—- Gc-
L AAAG. ————-———= c-
-GC-——--—-- -AAG.-—---——- Gc-
-CC--—-=—-- AAAC. ————--—- GG-
-GC-——--—-- AAA- . ———————- Gc-

then the length of the helix is set to two, the most common length of that helix. The length
of the loop in this example is set to three. The sequences in which that helix is shorter than
two bases are accounted for in the production probabilities for the delete productions for
the match nonterminals defining the helix.

Sequences having that helix longer than two bases, such as the fifth sequence in the
above example, are not modeled perfectly by the grammar because, for simplicity, the initial
grammars do not include insert productions for helix-match nonterminals. Specifically, loops
have both insert and delete nonterminals in addition to match nonterminals, such that a
predicted loop alignment can be either longer or shorter than the number of loop match
nonterminals, while helices have only delete nonterminals in addition to match nonterminals,
such that a predicted helix alignment can be only as long as the number of helix-match
nonterminals. This holds true also in previous tRNA work [SBUT93, SBM*t94, SBH93,
SBHT94a].

A “perfectly fitting” model can be obtained if the helix lengths are set to be the longest
observed length in the trusted alignment (10, in the above helix example) rather than
the most common observed length, but this makes the grammar larger and thus increases
computation time for training and parsing. Using an imperfect model can restrict the ability
of the predicted alignment to match the trusted when a helix’s length varies widely from
sequence to sequence in the modeled set, as is the case with the snRNAs; sequences having
a longer length for that helix in the trusted alignment are not represented in the predicted
alignment (“extra” bases are placed as part of a loop on one side or the other of the helix).

If the grammars of this work were altered to perfectly fit the sequence set they are
intended to model, then helices would need to be lengthened as indicated in Figure 2.7.
Making the helices longer in the grammar would not affect the alignment of sequences in
which those helices are shorter than the maximum length, because the skip productions
would allow insertion of spaces in the “extra” base-pairing match positions. However,
making the helices longer would increase the grammar’s numbers of nonterminals and
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productions, which would in turn enlarge the required time for grammar training and
sequence parsing.

Currently the grammar-generating program does not generate special insert productions
to allow for bulges (extra nucleotides inserted between two bases on one side of a helix) as in
the grammars of Durbin and Eddy [ED94], though it is straightforward to add this ability.
It would involve adding insert productions of the form 5 — a5 and S — Sa for helix match
nonterminals, such that a single nucleotide could be inserted between any two positions on
one side of a helix. Thus, a sequence whose most likely parse uses these productions would
have a bulge in its predicted alignment. Implementing this method would result in a more
complicated grammar.

An attempt was made to model some of the bulges by translating a single helix containing
a bulge indicated in a trusted alignment into two helices in series joined by a single strand.
For example, Stem I in the Ul grammar is divided into steml of length 5 followed by
restSteml of length 5, with the single strand bulgel connecting them. This does capture
some structure, but at the expense of restricting the possible positioning of bulges in
multiple alignments as well as making the grammars more complex. The grammars might
be more efficient and flexible if bulges were modeled by introducing new productions into
the grammar as mentioned in the previous paragraph.
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5’end
restl
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{
steml topAndRightArms
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farBulgel ztem?| ztems| forBulge3d
ulgel”  restSteml  logpd forBulge? bulge3”  restStemd
10 E ‘ 1 4
loopd restStem3  bulge? loopd
7
logp3
2BranchRllec  5’end restl stem3 Helix 3 forBulge2
Loop 10 forBulge2 2BranchRllec  rest33  bulge2
2BranchRNec  trunkHelix rest3 restS3 Helix 6 loop3
Helix 6 rest2 loop3 Loop 7
2BranchRllec  steml top&Right | bulge2 Loop 1
Helix 5 forBulgel | rest3 2BranchRNec  SmSite  rest4
2BranchRllec  bulgel restSteml SmSite Loop 14
Loop 1 rest4 2BranchRlec stem4 OHend
Helix 5 loopl stem4 Helix 5 forBulge3
Loop 10 forBulge3  2BranchRllec bulge3 restS4
2BranchRllec  stem2 stem3 bulge3 Loop 1
Helix 16 loop2 restS4 Helix 6 loop4
Loop 10 loop4 Loop 4
OHend Loop 2

2.8: Represented in XRNA format (top), scfgedit format (middle) and
text format (bottom) is the initial grammar for the U1 set.
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c-6
c-6
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cC—G
c-6
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a
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5’end Loop 2 trunkTop Helix 8 topLoop
restl 2BranchRlec trunkBtm rest4 topLoop Loop 11
trunkBtm Helix 4 forBulgel sidelp Loop 3
forBulgel 2BranchRllec  leftBulge rest3 rightBlg Loop 6
leftBulge Loop 2 rest4d 2BranchRllec  forLastHlx  OHend
rest3 2BranchRNec  trunkMid rightBlg forLastHlx  2BranchRNec  connlp lastHlx
trunkMid Helix 11 rest6 connLp Loop 18
rest6 2BranchRlec varLoop restS lastHlx Helix 7 lastLoop
varLoop Loop 8 lastLoop Loop 4
OHend Loop 1
Figure 2.9: Represented in XRNA format (top), scfgedit format (middle) and

text format (bottom) is the initial grammar for the U5 set.
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5" Loop
2BranchRlec 5’end restl
Loop 3
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Helix 8 5’loop
Loop 4
Loop 88

Figure 2.10: Represented in XRNA format (top), scfgedit format (middle) and
text format (bottom) is the initial grammar for the U6 set.
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3. Experimental Results

This chapter delineates in detail the application of Tree-Grammar EM, described in the
previous chapter, to deduce three trained grammars from three distinct training sets of
unfolded and unaligned snRNA sequences (Figure 3.3). The procedure follows that done
for tRNA previously [SBUT93, SBMT94, SBH*94a).

Average Time to  Average Time to Average Time to Length of
Grammar  Train (Step 3b)  Parse An snRNA  Parse A Non-snRNA  Sequences

U1 5.1 hrs 0.5 min 0.4 min 156
Us 1.0 hrs 0.4 min 0.3 min 113
U6 13.2 hrs 0.7 min 0.6 min 100

Figure 3.1: A Decstation 5000/240 with 128 Mbytes memory required these CPU
times to perform Step 3b of Tree-Grammar EM in Figure 2.3 and to run the |s|?
CYK-like parsing algorithm. Column 1 shows the time taken for the grammar
parameters to stabilize in TG Reestimator. Columns 2 and 3 show times taken to
parse two equal-length sequences using the trained grammars: an snRNA sequence
from the modeled set, and a non-snRNA sequence of the same length.

Using initial grammars designed as discussed in Section 2.5, Tree-Grammar EM pro-
duced three trained grammars, one for each set. The initial grammars’ production proba-
bilities were established using only the Dirichlet pseudocount information. Tree-Grammar
EM was used to refine these initial grammars with varying numbers of training sequences
(Figure 3.3). Table 3.1 indicates the run times taken to train each grammar and parse raw
sequences given the grammar on a Decstation 5000/240 with 128 Mbytes memory. During
the training process, only the probabilities of the productions were reestimated and no non-
terminals or productions were added or deleted, unlike “model surgery” in previous HMM
work [KBM*94].

3.1 Data

The experiments for generating and testing the trained grammars used data from three
sources:

1. The three snRNA training sets are from Christine Guthrie and Saira Mian [GRM93].
Some interpretation was performed to obtain a trusted multiple alignment for each set, as
none of the helices was labeled, except for those in the U5 set. This involved my examining
the aligned sequences and comparing aligned substrings with substructures in the published
consensus structures [GP88] to determine a probable labeling. (See Section 2.5.) These
labelings were then confirmed to be correct by Saira Mian. The provided aligned sequences,
along with their inferred labelings, are referred to as the trusted alignments.

The trusted alignments constitute the current best estimates of foldings that biologists
have devised or deduced for the snRNA sets, but these can change over time as new
sequences or correlations are discovered. These alignments in particular were produced by
comparing each sequence to that of a single organism, the yeast Saccharomyces cerevisiae,
and searching for motif structures in each sequence that are observed in that yeast sequence.
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Original Number | Number Sequences Removed Number Number
Data Set of Sequences Extra-long  Containing N | Remaining | Incomplete
U1 54 3 2 49 6
Us 34 2 1 31 2
U6 49 2 3 44 2
Totals 137 7 6 124 10

Figure 3.2:  As shown, 7 extra-long snRNA sequences [GP88, GRM93] and 6 se-
quences containing the N character were omitted before sequences were partitioned
into training and test sets, and 10 of the remaining sequences were then placed
into the test sets because they were incomplete.

Number of Sequences in Set | Range of Lengths
Data Set | Training Test Total (number of bases)

U1 25 24 49 121-170
U5 16 15 31 78-138
U6 22 22 44 53-116
Totals 63 61 124 53-170

Figure 3.3:  The raw snRNA sequences [GP88, GRM93] were organized into
training and test sets. Each group was approximately halved into two subsets; one
half was used to train and the other half to test the group’s grammar.

It should be noted that some sequences may contain structure not present in the referent
yeast sequence, which would be undocumented in these trusted multiple alignments. In
general it is difficult to know a priori which aspects of the secondary structure are important
(for example, which base pairs or bulges or individual nucleotides are more important than
others in a long helix, such as Stem II of U1).

To produce raw data sets, the aligned sequences were stripped of the inserted characters
that aligned them with respect to each other, leaving strings composed only of the four
nucleotides {A, G, C, U}. Before the raw sequences were separated into training and
test sets, 7 extra-long sequences were omitted (see IFigure 3.2) because locally available
computers lacked the core memory to parse sequences more than about 175 bases long
using these rather complex grammars, which have about 2000 productions and about 500
nonterminals.! Then 6 sequences containing N characters were removed from the sets, as
N indicates a nucleotide whose exact nature is unknown. Next, 10 incomplete sequences
(fragments or substrings of full sequences, when the full sequence is unknown) were placed
in the test sets for each set. Although their presence in a training set likely would degrade
the quality of the corresponding trained grammar, these incomplete sequences were kept in
the test set so the corresponding trained grammar’s ability to discriminate and fold them
could be assessed. The remaining 114 snRNA sequences, ranging 96-170 bases in length,
were divided at random with equal probability into training and test sets (adjusting for

! The tRNA grammars developed in previous SCFG work at UC Santa Cruz [SBUT 93, SBM 194, SBH* 93]

had only 1028 productions and 256 nonterminals and modeled sequences only 71-90 bases long.
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the number of incomplete sequences already present in each test set) for each grammar
(Figure 3.3). This thesis refers to the snRNA sequences by abbreviations of their Latin
names, such as saccer for Saccharomyces cerevisiae.

2. A total of 1450 non-snRNA sequences were generated from the National Center for
Biotechnology Information’s GenBank database (version 75.0+, dated 18 February 1993).
This was done by cutting non-snRNA features—including CDS, tRNA, TRNA, mRNA,
LTR, D-loop, introns, exons, transposons, miscellaneous features and repeat regions—into
snRNA-sized lengths. Specifically, 10 non-snRNA sequences were created for each sequence
length between 30 and 174 bases, resulting in a set of 1450 non-snRNA sequences. Any
unusual characters (i.e., not A, G, C, T, or U) appearing in the non-snRNA features were
skipped. (Of the total 17,079 RNA lines in the source GenBank file, 81 contained N
characters and 1 contained a single Y character.) Any thymine base (T) appearing in a
DNA feature was translated to the RNA equivalent, uracil (U), in the resulting non-snRNA
sequence.

For each grammar, this basic non-snRNA sequence set was augmented with 10 other
sequences to form an augmented non-snRNA set. The other sequences consist of five
complete sequences chosen at random with equal probability from each of the unmodeled
sets. For example, for the U5 grammar, the augmented non-sn RNA set consists of the 1450
feature fragments plus five sequences from each of the Ul and U6 data sets. These complete
sequences were included to enrich the set of fragment sequences to better demonstrate the
grammars’ ability to discriminate false from true examples.

Providing a grammar with a larger set of non-snRNA sequences might enable it to
discriminate them better from the snRNA set it was trained to model, as the discrimination
criterion relies on obtaining reliable average-NLL scores for a large range of sequence lengths
(large enough that the lengths of the modeled set lie within the range). However, larger
sets of non-snRNA sequences require more parsing computation time. As a compromise,
the set of 1450 non-snRNAs was used. (Section 3.3 includes plots for average-NLL scores
for each augmented non-snRNA set as computed by each trained grammar.)

3. A total of 32 new unfolded snRNA sequences were retrieved from the latest updates
to the aforementioned GenBank database: versions 82.0+, dated 26 May 1994, and 82.0,
dated 8 April 1994. This set contains unique sequences—none appear in the training or test
sets for any of the grammars—for which only the primary structures are known. The trained
grammars were used to determine the base pairing that defines the secondary structure of
these snRNA sequences and to discriminate these sequences from an augmented non-snRNA
set. These sequences are referred to as the new sequences.

3.2 Multiple alignments and secondary structure

From a grammar it is possible to obtain a multiple alignment of all sequences. The
grammar can produce the most likely parse tree for each of the sequences to be aligned,
yielding an alignment of all the nucleotides that align to the match nonterminals in the
grammar. Between match nonterminals there can be insertions of varying lengths, but
by inserting enough spaces in all the sequences to accommodate the longest insertion, an
alignment can be obtained. Because only the number of loop nucleotides varies, while
the helix lengths (maximum number of helix-match nonterminals) are fixed, producing
a multiple alignment involves merely padding particular sequences with space characters
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Initial ‘ Trunk Stem I Stem II Stem III Stem IV
Both sides 42 ( 86%) 37 (76%) 3( 6%) 46 ( 94%) 15 (31%)
One side 45 ( 92%) 44 (90%) 21 ( 43%) 48 ( 98%) 37 (76%)

Some overlap | 49 (100%) 47 (96%) 49 (100%) 49 (100%) 46 (94%)

Trained ‘ Trunk Stem 1 Stem II Stem III Stem IV
Both sides 44 (90%) 45 (92%) 0( 0%) 44(90%) 11 (22%)
One side 47 (96%) 48 (98%) 20 ( 41%) 49 (100%) 28 (57%)

Some overlap | 48 (98%) 48 (98%) 49 (100%) 49 (100%) 46 (94%)

Figure 3.4: Fach column corresponds to one of the five U1 helices. The first row
shows the number of sequences of the total 49, training plus test, for which the U1
grammar predicted exactly the same helix boundaries as the trusted alignment; the
second, the number of sequences for which the grammar predicted exactly the same
boundaries for at least one side of a helix; and the third, the number of sequences
for which there is some overlap between predicted and trusted alignments for that
helix side, although the boundaries for both sides may differ. For comparison, the
bottom table lists the same quantities for the initial grammar, trained on zero
sequences.

such that nucleotides produced by the same helix-match nonterminals appear in the same
column.

For each trained grammar, a multiple alignment was produced for its corresponding test
and training sets. As the following subsections describe in detail, the trusted alignments
agree substantially with the trained grammars’ predicted alignments. Boundaries for the
helices and loops are similar between the predicted and trusted alignments for each set, even
for the previously unseen test sequences. (Appendix A shows the three multiple alignments
in their entirety.) Figures 3.5, 3.6, 3.10 and 3.14 show in XRNA format predicted foldings
for some representative sequences.

3.2.1 U1l predicted alignment

The table in Figure 3.4 tabulates, for each helix in the full U1 data set, the number
of sequences for which there is some agreement between the trained grammar’s predicted
alignment and the trusted alignment for that helix. See Section A.l for the complete U1
multiple alignment. From top to bottom, the rows in the table correspond to decreasing
strictness of agreement between the two alignments. A separate table lists the same
quantities for the initial grammar for comparison.

Disagreements are focused locally in Stems I, IT and IV rather than dispersed globally.
Because bulges were modeled between two fixed helix-match positions in the grammar (see
Section 2.5), if the trusted alignment places a bulge in Stem I or Stem IV in an uncommon
location, often the grammar is unable to capture that shift in bulge position. Also, to make
the grammar smaller and easier to train, the Stem II bulge was not incorporated at all in
the initial grammar, though the trusted alignment has a bulge of length at least one base
for that stem for many sequences (28 of the 49 sequences). Better modeling of bulges might
yield alignments that more closely match the trusted alignments.
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Figure 3.5:  The trained Ul grammar predicted this folding for the sequence
lycesc14. It differs from the trusted folding only in Stem II, because the grammar
did not model the bulge that the trusted alignment placed on the right side; in
the trusted alignment, the arrowed A comprises the bulge, such that the two G
nucleotides above it form Watson—Crick base pairs with the C nucleotides on the
top left.

The trained grammar’s predicted alignment suggests some plausible alternative base
pairing schemes in Stem IV. Though 38 predicted alignments had Stem IV boundaries
different from those in the trusted alignments, 24 of them contained more Watson—Crick
base pairs than in the trusted. Figure 3.7 shows three sample sequences for which the
predicted alignments contain more Watson—Crick base pairs than their trusted alignments.

Though the predicted sequence alignments differ slightly from the trusted, this trained
grammar can discriminate every one of the Ul sequences, both training and test sequences,
from the augmented non-snRNA sequences (even with the limitation that the Stem II bulge
was not modeled). In contrast, the initial grammar misclassifies 36 of the 49 sequences in
discrimination experiments.

The initial U1 grammar predicts a similar alignment that in general matches about the
same number of helix boundaries with the trusted alignment that the trained Ul grammar
matches. In the trained grammar’s predicted alignment, fewer exact helix boundary matches
occur but these matches are distributed across slightly more sequences, whereas in the
initial grammar’s predicted alignment, particular sequences are more closely aligned with
the trusted but others do not match well at all. For example, the initial grammar succeeds in
aligning both sides of Stem II for three sequences (triaes1.5%, lytvariG, and 1lytvar2G),
whereas the trained grammar fails to align both sides of Stem II exactly the same as in the
trusted alignment for any sequences, but overall the trained grammar’s predicted alignment
matches the trusted alignment exactly for a total of 144 helices over all the Ul sequences,
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Figure 3.6: The trained U1l grammar predicted the top folding for the sequence
caeelel, which is similar to the trusted folding of the same sequence (bottom).
Because bulges were modeled in Stem I only between the fifth and sixth helix-
match positions, the grammar does not capture the trusted alignment’s uncommon
positioning of the Stem I bulge between the helix’s third and fourth bases (the
arrowed U nucleotides comprise the trusted alignment bulge).
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Stem IT Stem IT Stem IV Stem IV
CCCCCCCeaacc( 323333030000 CCCCC e« IDDDDDDIDDY
lycesclbs ...GCC.UAGGUUGGUGACUUUC.A...UG.GAGGGGUGCCCGCCUA. .. .GA.GGGGG.C.-AUGCG.UUCG .CGCAG-CCCCU.GC-
<LLLLLLLLLLLLKLKLKL D 2 DO00555055555> <LK L <LK D35> 555>
pissatlC ...GGC.UAGGCAAGUGACUUCC.A...AG.GAGGGGUGCUUGCCUA. .. .GU.GGGGG .C.-CUGCG .UUCG.CGCGG-CCCUC.UU-
<LLLLLLLLLLLLKLKLKL D 2 DO00555055555> <LLKLKL € KKK D555 555> >
phavul ...GCC.UAGGGAAGUGACCUUC.A. . .AG.AAGGGGUGCUACUCUA. .. .GU.GGGGG.C.-CUGCG .UUCG .CGCGG-CCCCU.UA-
<LLLLLLLLLLLLKLKLKL D 2 DO00555055555> <LLKLKL € KKK D555 555> >

Figure 3.7: Only the differing sections of the predicted and trusted U1 alignments
are shown for these three Ul sample sequences. Periods indicate elisions, while
hyphens mark insertions. The predicted alignment is indicated with parentheses
over all basepairing columns, while the trusted alignment for each sequence is indi-
cated by triangle braces below its basepairing positions. The predicted alignment
places more Watson—Crick base pairs in Stem II for 1ycesc15 and in Stem IV for
pissatiC and phavul than does the trusted alignment.

while the initial grammar has exact matches in 143 helices over all sequences.

3.2.2 U5 predicted alignment

Disagreements between the predicted and trusted U5 alignments are not globally dis-
persed, but rather focused in Stems Ia and II. (See the top table in Figure 3.8.) For
sequences having more than four nucleotides aligned in Stem Ia in the trusted alignment,
the predicted alignment generally (for 10 of the 12 such sequences) managed to align some
of the nucleotides within at least one side of the helix to match the trusted alignment. Thus,
although the grammar has a limitation in that the number of helix-match nonterminals is
fixed, and the grammar was designed with the built-in restriction that no more than four
match nonterminals are allowed to model Stem Ia (see Section 2.5), the grammar managed
to place some of the nucleotides in the generally correct location. The same can be said for
the sequences having more than seven nucleotides aligned in Stem II in the trusted align-
ment: The predicted alignment generally (for 19 of the 20 such sequences) managed to align
some of the nucleotides within at least one side of the helix to match the trusted alignment.
Although the U5 grammar models bulges only between fixed helix-match positions, it did
manage to align some of the nucleotides within at least one side of helices containing bulges
to match the trusted alignment (for all 7 of the sequences containing bulges). Thus, it
seems likely that a grammar tailored to more “perfectly fit” this set (see Section 2.5) might
be trained to more closely match the trusted multiple alignment. See Section A.2 for the
complete U5 multiple alignment.

The U5 predicted alignment provides several plausible alternative structures. For two
sequences, crycoh and tettheb1, the U5 grammar’s predicted alignment contains more
Watson—Crick base pairs in Stem II than the trusted alignment does. For crycoh, the
predicted alignment places some of a U-rich strand in the helix instead of in the adjacent
loop. The two foldings for this sequence are depicted side by side in graphical XRNA form
in Figure 3.9.

For tettheb1, the predicted alignment has an additional A-U pair, making the helix as
long as the most common length. For the other sequences in which the Stem II predicted
alignment differed from the trusted, in two cases the predicted adds an A-C pair, in one
it adds a U-G pair, and in the others it either adds U-U or G-G which are not base pairs,
or, if the trusted alignment of Stem II contains more than seven base pairs, slides any
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Initial ‘ Stem Ia Stem Ib Stem Ic Stem II
Both sides 19 (61%) 22 ( 71%) 24 (77%) 7(23%)
One side 19 (61%) 23 ( 74%) 25 (81%) 7(23%)

Some overlap | 30 (97%) 31 (100%) 30 (97%) 31 (100%)

Trained ‘ Stem Ia Stem Ib Stem Ic Stem II
Both sides 19 (61%) 28 (90%) 24 (77%) 8 (26%)
One side 19 (61%) 29 (94%) 30 (97%) 8 (26%)

Some overlap | 30 (97%) 30 (97%) 30 (97%) 30 (97%)

Figure 3.8: Each column corresponds to one of the four U5 helices. The first row
shows the number of sequences of the total 31, training plus test, for which the U5
grammar predicted exactly the same helix boundaries as the trusted alignment; the
second, the number of sequences for which the grammar predicted exactly the same
boundaries for at least one side of a helix; and the third, the number of sequences
for which there is some overlap between predicted and trusted alignments for that
helix side, although the boundaries for both sides may differ. For comparison,
the top table lists the same quantities for the initial grammar, trained on zero

sequences.
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Figure 3.9: In Stem II for the crycoh sequence, the U5 grammar’s predicted
folding (left) contains four Watson—Crick base pairs whereas the trusted folding
(right) contains only three.
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Figure 3.10: This folding was predicted by the trained U5 grammar for the xenlae
sequence. It matches the trusted folding of this sequence exactly.

Ia Stem Ib Stem Ib Ia IT IT
CCCC CCCaeaec(( )DDDDDDIDDY. »» ((( »»
schpom .. .UCCGUCAAAG-CACUUUGCAAAAGC. . .CCGUUUGUAAGGUGUGCUAAUUUGACU. . .GAAUCUU----UUUC----UUGAAA
<KL <KL LKKK SO55555555> >5555> << << >>>>
aratha .. .ACGCAGCCAUGUGGUGAGUACAAAG . . .CCGUGUGCUCUCGACGCUAAGUGCAUA . . . GAGGGCUCCAC. . .UGUGGAACCCAA
<KL <<LLLLLLLLKL DEE5O05555> >35> <LLLLLLKLK DEE5O555>
homsap5d* AUACUCUGGUUUCUCUUCAAAU. . .CCGUGGAGAGAAACCGUUUUGAGUUUC. . .UGA--AG—————————-—— CcCC--U
<LK <LKLKLKLKKKKLKLKLKL DEOOO5505> >35> < <KL <

Figure 3.11: Only the differing sections of the predicted and trusted U5 alignments
are shown for these three U5 sample sequences. Periods indicate elisions, while
hyphens mark insertions. The predicted alignment is indicated with parentheses
over all basepairing columns, while the trusted alignment for each sequence is
indicated by by triangle braces below its basepairing positions. (The trusted
alignment places the last five bases of homsap5d* all on the left side of Stem II.)

“extra” bases into the adjacent Loop II. Sample predicted and trusted alignments for three
U5 sequences are shown in Figure 3.11. For each of the two sequences for which the Stem
Ib alignments differ (schpom and aratha), the predicted alignment contains one more base
pair than the trusted. Finally, although the predicted alignment bounds Stem la differently
for 12 sequences, its Stem la alignment has the same number of Watson—Crick base pairs
as the trusted for 26 of the total 31 sequences, among them eight of those 12 sequences.
The initial grammar, trained with only Dirichlet pseudocounts, predicts a fairly similar
alignment. (See the bottom table in Figure 3.8.) Interestingly, for the incomplete sequence
caimos*, the initial grammar manages to align some of the same bases in Stems Ib and
IT that appear in the trusted alignment, whereas the trained grammar matches none of
the trusted alignment’s helix positions for caimos*. (The trained grammar misclassifies
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‘ Initial ‘Trained

Both sides 0(0%) | 0(0%)
One side 0(0%) | 0(0%)
Some overlap | 34 (77%) | 39 (87%)

Figure 3.12: The first column corresponds to the initial grammar (for compari-
son), and the second to the trained U6 grammar. The first row shows the number
of U6 sequences of the total 44, training plus test, for which the grammar predicted
exactly the same helix boundaries as the trusted alignment; the second, the num-
ber of sequences for which the grammar predicted exactly the same boundaries for
at least one side of the helix; and the third, the number of sequences for which
there is some overlap between predicted and trusted alignments for that helix side,
although the boundaries for both sides may differ.

this sequence, as well, in discrimination experiments.) However, for 6 sequences, the initial
grammar places the boundaries of Stems Ib and Ic one match position off (with respect
to the trusted alignment), whereas the trained grammar’s predicted alignment matches the
trusted exactly for those sequences. The number of base pairs is equal in either case, though.
Also, for the incomplete sequence homsap5d* the trained grammar manages to place some
of the same bases on one side of Stem II that the trusted places there, whereas the initial
grammar fails to place any of those same bases in the helix.

Of the two incomplete sequences included in the test set, only the dramatically shorter
of the two, caimos*, was completely misaligned by the trained grammar. The other,
homsapbd*, was aligned correctly for all but Stem II—indeed, it was deemed an incomplete
sequence because it lacks both Loop II and one side of Stem II in the trusted alignment.

3.2.3 U6 predicted alignment

The U6 predicted alignment places boundaries for the single U6 helix and loop in different
positions, compared to the trusted alignment, for every one of the 44 U6 sequences, training
plus test. However, the grammar manages to align some of the nucleotides within at least
one side of the helix to match the trusted alignment for many sequences (39 of the 44). (See
the table in Figure 3.12.)

Further, for all sequences, the grammar does locate a stem-loop structure near the 5" end,
reflecting the fact that some features in the data encourage the base-pairing productions
to become more likely than the skip productions during re-estimation of the production
probabilities. As mentioned in Section 3.1, more structure may be present in the sequences
than is captured in the trusted alignments because the sequences were not examined for
individual motifs. See Section A.3 for the complete U6 multiple alignment.

Several of the sequences (34 of the 44) have bulges of varying lengths in the helix in the
trusted alignment, but for computational ease of training the grammar was not designed to
model bulges at all. Also the helix length chosen for the U6 grammar was limited to eight
match positions (see Section 2.5), whereas the trusted alignment places more than eight
nucleotides on one or both sides of some sequences (13 of the 44). The limited similarity
of the U6 predicted alignment to the trusted alignment stems from these restrictions on
the initial grammar. (See Figure 3.13 for the predicted and trusted alignments of three
representative sequences.)



3.2. Multiple alignments and secondary structure 33

4499444 2)))0)))
saccer CUUCCCGGAUUAACGUCCGUGGAACA. . .
<LLLLLLLKLKL DEOO5555>>
zeamay  GUCUCUUCGGA-GACA-UCCGAUAAAAU...
<LLLL >> >>>
vicfab C--UUCGGG-GACA-UCCGAU--AAA. ..
< >> >>>

Figure 3.13: Only the differing sections of the predicted and trusted alignments
are shown for these three sample sequences. Periods indicate elisions, while hy-
phens mark insertions. The predicted alignment is indicated with parentheses over
all basepairing columns, while the trusted alignment for each sequence is indicated
by by triangle braces below its basepairing positions. In the two bottom sequences,
the predicted alignment contains an equal or greater number of Watson—Crick base
pairs relative to the trusted alignment.

cc
U
A
U-aG
cc _
uCCa G—C
G o A c—-G
U—A
U-6G
Uu—A
G—C
c—G
c—G c”e
Uu—A A
U—A
c-¢ AG_CAUCCACAAU"'
GAGC—GACAUCCACAAU - - - G

Figure 3.14: The left folding was predicted by the trained U6 grammar for the
incomplete trycrux sequence’s helix. In contrast, the trusted folding (right) adds
a bulge at the 24** nucleotide & to fit in an additional G-C pair.

For the incomplete sequence trycru*, the trained grammar did predict a folding that
is fairly similar to its trusted folding. (See Figure 3.14.) For the other incomplete sequence
leicolx, however, the predicted and trusted foldings differ substantially (the similar-length
helix was shifted by more than three positions).

The U6 predicted alignment also provides several plausible alternative structures. For
14 of the 44 sequences, the predicted alignment makes the helix contain as many or more
Watson—Crick base pairs than are present in the trusted alignment for those same sequences,
even when the trusted alignment includes bulges. Despite the difference between predicted
and trusted multiple alignments for the U6 sequence set, the trained grammar is able to
discriminate all complete U6 sequences from non-snRNA sequences of similar length, whereas
the initial grammar is unable to discriminate any of them. (See Section 3.3.) For example,
Figure 3.15 shows in XRNA format the predicted and trusted alignments for the saccap
sequence. This suggests that, in discrimination of U6 sequences, representation of a stem-
loop structure may be more important than its exact nature or precise location.

The initial U6 grammar’s predicted alignment is similar to the trained grammar’s align-
ment. Even with no training, it folds 13 sequences to contain more Watson—Crick base
pairs than in the trusted alignment of those sequences. The initial grammar’s alignment
of trybru more closely resembles the trusted alignment than the trained grammar’s align-
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CCc cC¢
A—U A c
G—c¢C G- U
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C ACAU """ .+« C—GACAU""*-

Figure 3.15: The predicted folding (left) for the U6 helix for saccap contains more
Watson—Crick base pairs than the trusted folding (right) for that same portion of
the same sequence, although the trusted folding contains G-U and A-G pairs.

ment, but in general the trained grammar’s alignment more closely matches the trusted (see
Figure 3.12). However, it is unable to discriminate any of the 44 sequences from non-snRNA
sequences.

Training on the 22 training sequences allowed the grammar to align sequences with more
Watson—Crick base pairs than before it was trained. The trained grammar’s predicted align-
ments for 13 sequences contain more Watson—Crick base pairs than the initial grammar’s
predicted alignments for them, while the initial grammar’s predicted alignments for only
7 sequences contain more Watson—Crick base pairs than the trained grammar’s alignments
for them.

3.2.4 Folding new sequences

All trained grammars were used to predict foldings for their test sets (see previous
subsections), but a trained grammar can also predict foldings for sequences for which only
the primary sequences are known. As an additional test, the grammars were used to fold 32
sequences drawn from the latest GenBank updates (82.04, dated 26 May 1994, and 82.0,
dated 8 April 1994) for which only primary sequences are known. These are referred to as
new sequences.

Figures 3.16, 3.17 and 3.18 show multiple alignments for the 12 new Ul sequences, 6 new
U5 sequences and 14 new U6 sequences, respectively, as predicted by the three corresponding
trained grammars. Parentheses over the base-pairing columns locate the helices. Periods
denote ends of helices and sometimes insertions. Hyphens represent insertions. Lowercase
letters in the U5 and U6 alignments indicate applications of insert productions; the loops
are not aligned in the U1l alignment.

The U1 sequence ratnor seems oddly to have been aligned too far to the left relative to
the other new sequences’ predicted alignments, such that it appears to have an unusually
long lead loop on its 5" end and it appears to end prematurely with no Stem IV or Loop
IV. This may be an artifact from its designation in the GenBank database. It is not
discriminated either.

The U5 sequences caeele2 and musmus, both appear to have slightly unusual alignments,
with gaps inserted in some helices. These two may be incomplete sequences (fragments),
they may just have unusual structure, or they may have been mislabeled in the GenBank
database.

The three mycoplas sequences listed in the U6 alignment are not actual U6 sequences,
but rather sequences that biologists have flagged as resembling U6. The trained U6 grammar
aligns portions of those sequences to the helix such that their alignments closely resemble
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Trunk Stem I w/Bulge Stem I
CCCCCC € 14444 DDDDIIIIDD
ascluml -----------—----—--————————————— AAACUAACCU.GGCUGG .GGGGC . AU. CUCGC . GAUCAUGAAG . GCGGGACCUC.
asclum2 ----------------—-———————— - AGACUUAUUU. GGUUGG .GAGGA .U~ .UUCGU . AAUCAGAAG-.GCGGGACCUC.
asclum3 -------------------————————————— AAACUUACCU. GGCUGG .GAGGC .U~ .UUCGU . GAUCAUGAAG . GCGGAACCUC.
caeele —----------m——m————————————————— AAACUUACCU. GGCUGG .GGGUU . AU.UUCGC . GAUCACAAAG . GCGGAAUCCC.
lycescl -———————————----———————————— o AUACUUACCU.GGACGG .GGUCA . A- . UGGGC . GAUCAUGAAC. ACCCAUGGCC.
lycesc2 -——————————----————-———————— oo UACUUACCU.GGACGG .GGUCA . A- . UGGGC . GAUCAUUAAG . ACCCAUGGCC.
MUSmMUS  —— - - - - - - - - -s oo o—————— - AUACUUACCU.GGCAGG .GGAGA .U-.ACCAU.GAUCACGAAG. GUGGUUUUCC.
ratnor CAGGGGAGAGCGCGAACGCAGUCCCCCACUACCACAAAUUAU.GCAGUC.GAGU-.U-.-UCCC.GCAUUUG---.GGGA-AAUCG.
schmanl -----------———————-————————————— AAACUUACCU.GGCGCC.GGGUU .C-. AGGGU . GAUCAGGAAU. GCUCUGACCC.
schman2 -----------———————-————————————— AAACUUACCU.GGCGCC.GGGUU .C-. AGGGU . GAUCAGGAAU. GCUCUGACCC.
tetthel -------------------—m——— AUUACAA .UGUUGU . AGUUA .G-.CUAUA .UAUCAAAAAA . UAUAGCAACU.
tetthe2 -----—----------o—————— ACUUACCU.GGCUGG . AGUUA .G-.CUAUC. GAUCAUGAAG . GGUAGCGGCU.
Stem IT Stem IT Stem IIT Stem IITIw/Blg

1444444 qq9999qqqs 233333333)33)))) (CCCCCC(( 20 )
ascluml CAUGGUGAGGUCUGGU.CAUUGCACUUCCG-.ACCAGGCUGACCUGUG.UGGCAGUCC.CGAGUUG----- .GGAUUG.G-.CCA.
asclum2 CAUGGCGAGGCUUGGU.CAUUGCACUUUCG-.ACCAGGCUGACCAGUG.UGGCAGACC.CGAGUUG----- .GGAUUG.G-.CCA.
asclum3 CAUGGUGAGGCUUGGU.CAUUGCACUUUCG-.ACCAGGCUGACCCGUG.UGGCAGUCC. CGAGUUG----- .GGAUUG.G-.CCA.
caeele CAUGGUUAGGCCUACC . CAUUGCACUUUUGG . UGCGGGCUGACCUGUG . UGGCAGUCU . CGAGUUG----- .AGAUUC.G-.CCA.
lycescl UAGGUUGGUGACCAUC.AUUGCACUUUG---.AAGGGGUGCCCGCCUA . AGGUCGGCC.CAAGU-———--~ .GGUCGA.G-.CCU.
lycesc2 UAGGCUUGUGACCUCC.AUUGCACUUUG---.GAGGGGUGCCUGCCUA . AGGUUGGCC.CAAGU---—--- .GGUCGA.G-.CCU.
musmus CAGGGCGAGGUGUAUC . CAUUGCAUCCG--- . GAUGUGCUGACCACUG . CGAUUUCCC . CAAAUGC----- .GGGAAA.C-.UCG.
ratnor CAGGGGUCAGCACAUC.CGGAGUGCAAUG--.GAUAAGCCUCGCCCUG.GGAAAACCA.CCUUCGUGAUCA .UGGUAU.C-.UCC.
schmanl CGGGUGGAGGCUCAC-.CAUUGCACUUCG--.-GUGGGUUGAAACUUG.CGACGAACC. CUAAUUG----- .GGUGCG.C-.UCG.
schman2 CGGGUGGAGGCUCAC-.CAUUGCACUUCG--.-GUGGGUUGAAACUCG.CGACGAACC. CUAAUUG----- .GGCUCG.C-.UCG.
tetthel AAGGUGGAGCAAGUC-.AUUGUACUAAAGA-.-UGUUUGUAAUACCUU.GAUGUUCCC.GCU--—————--~ .GGGAGC.A-.AUA.
tetthe2 UAGGGUGGAGCAGGUC.AUUGCACAAAAGA-.UGUCUGUAAUACCUUA.UUGUUCCCC.GUGC-—————-~ .GGGGAA.CC.GAA.

Trunk Stem IVw/Bulge Stem IV

20 CCCCC e IDDDIIIDDDY
ascluml AGAGCA.UAAUUUUUGCGU--------- .UUGGG .G . ACAGCG .UUCG . CGCUUCCCCGC .CC
asclum2 ACAGCA.UAAUUUUUGCGU--------- .UUGGG .G . ACAGCG .UUCG . CGCUUCCCCGC . GU
asclum3 ACAGCA.UAAUUUUUGCGU--------- .UUGGG .G . ACAGCG .UUCG . CGCUUCCCCGC .CC
caeele ACAGCU.UAAUUUUUGCGU---——-——~ .AUCGG .G .GCUGCG .UGCG . CGCGGCCCUGA . A
lycescl ACGUCA.UAAUUUGUUGCUGA------- .GGGGG . C. CUGCG- .UUCG . -CGCGGCCCCU .GC
lycesc2 ACGUCA.UAAUUUGUUGCUG-------- .UGGGG . G.CCUGCG .UACG . CGCAGCCCCUG .CC
musmus ACUGCA .UAAUUUGUGGUAGU------- .GGGG- .G . ACUGCG .UUUG . UGCUCU-CCCC . UU
ratnor —-CCUGC.CAGGUAAGUAU
schmanl GACGCG.UAGUUUUUGUCAG--—------ .UGG--.G.GAGGUC .UUCG . -—-GAUCAUCCC .UU
schman2 GACGCG.UAGUUUUUGUCAG--—----- .UGG--.G.GAGGUC .UUCG . -—-GAUCAUCCC .UU
tetthel ACAACA.AAAUUUCUGAUUGGAAAUAGU.CAUUA.A.ACUAAC.UG--.GCUAUUUCCUC.U
tetthe2 ACAGCA.CAAUUUCUGCUAGG------- .GGAGA .C.GUGCAC .UUA- . GUGCUGUCUCC .GCU

Figure 3.16: The trained Ul grammar predicted these foldings for 12 new se-
quences taken from the updated GenBank database. (Loops are not aligned.)

the aligned portions of other actual U6 sequences, such as soltub and stropur. However,
it does not discriminate these sequences as being U6 sequences.

XRNA representations for predicted foldings of sample sequences from the set of new
sequences are shown in Figures 3.19, 3.20 and 3.21. The U1 figure shows a sequence from
the organism Tetrahymena thermophila. The U5 figure shows a sequence from each of the
two eucaryote worm organisms Ascaris lumbricoides and Caenorhabditis elegans. The U6
figure shows the helix portions of six sequences including the three pseudo-U6 sequences
from the Mycoplasma genus.

An empirical examination of the predicted foldings reveals that they do resemble the
trusted foldings of other sequences from the same set. Most sequences are also aligned in
a manner similar to the sequences appearing in the trusted alignments for the same set.
These predicted foldings may be viable secondary structures for the new sequences.
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Ia Stem Ib Stem Ic Stem Ic Stem Ib
((( CCCCCCCC(C CCCCCC(( IDDDIDDY )DDDDDDIBDY.
asclum ...AG.-CUC.U..G.GUUCCUCUGCA.UccAC. . .CGAGA.AAUUCUUU.CGCCUUUUACU . AAAGAUUU.CCG.UGCAGAGGAAC.
caeelel ...~A.ACUC.U..G.GUUCCUCUGCA.U. .UUaacCGUGA.AAAUCUUU.CGCCUUUUACU . ARAGAUUU.CCG.UGCAAAGGAGC.
caeele2 gaaAA.UCUU.U. .U.GCCUUUUACUG.A. .AU. . .-AUUU, -------- LT . -—————== .CCU.UGCAAAGGAGC.
musmus cucUU.ACUG.UccG.GAAUC-CAGUG.G. .UC. . .CUUAG.UGGGCGGG . ————- UUUACU . CUGGCAGA . —-G . UUUCU-GUUUG .
tetthel ...AU.CACA.-..G.AACUCAGCUCA.U..UA...CGCUU.UAAUUUUU.CGCCUUUUACU . AAAGAUUA .CCG.UGGGCUGGGUU .
tetthe2 ...AU.CACA.-..G.AACUCAGCUCA.U..UA...CGAUU.UAAUUUUU.CGCCUUUUACU . AAAGAUUA .CCG.UGAGCUGGGUU .
Ia Stem IT Stem IT
»» CCC(( I
asclum G.UUU.A.U.GAG- .UAUA.CGCCAAUUUUUGGaG .UCCCAGC. . .UUC. . .G.GCUAGGG.acah

caeelel A.UUUaC.U.GAGU . AUUACAUACAAUUUUUGG . A .GACUCCU. . .UGAgaal .GCGGGUC. . . . A
caeele2 AuACA .U.U.GAGU . AUUAuAUACAAUUUUUGG . A .GUCC-CC...UUG.. .A.GA-AAGC.g. .G
musmus A AAU.AgU.UGGU.AUUA.AG----UU----- .G.AUUCUGU.cgCUG. . .U.UCGGAAU. .. A
tetthel U.ACC.A.A.UGUG.AAUU.AUUAAAAUUUUUG.C.AGGAUUC. . .UUU. . .U.GAAUCCU.c..U
tetthe2 U.UUC.A.A.UGUG.AAUU.AUUAAAAUUUUUG.C.AGGAUUC. . .UUU. . .U.GAAUCCU.c..U

Figure 3.17: The trained U5 grammar predicted these foldings for 6 new sequences
taken from the updated GenBank database.

CCCCCCC NN
asclum  ..... A.UAUAAAUA .U. .. .CUUGUAUA .UUUAUAAUAUUGGC. . .
homsap  ..... U.UUUGUAUC .ACA. .UAUACUAA . AAUGGCGCUAGCGA. . .
lycesc ...CCG.UACUCGCU.U. .. .CGGCGGUA .CAUAUACUAAAAUU. ..
mycoplasl ...GUC.CCUUCGGG.GACA.UCCGAUAA.AAUUGGAACGAUAC. ..
mycoplas2 ..... G .UGUUAGCU.U. .. .CGGCAACA .CAUCUAUUAAAAUU. ..
mycoplas3 ..... A.UAUAAAUA .U. .. .CUUGUAUA .UUUAUAAUAUUGGC. . .
phypol  ..... C.CCGAAAGG .GUCC.UCCGUUAA . AAUUGGAACGAUAC. . .
schman AGAGCC.CGAAAGGG.CA .. .UCUGUUAA .AAUUGGAACGAUAC. ..
soltub .GGAGC.CCUUCGGG .GACA .UCCACAAA .CUGGAAAUUCAACA. ..
stropur UGGAGC.CCUUCGGG.GACA .UCCACAAA.CUGGAAAUUCAACA. ..
tetthex ..... C.CCGAAAGG .GUCC.UCCGUUAA . AAUUGGAACGAUAC. . .
tetthe AGAGCC.CGAAAGGG.CA .. .UCUGUUAA .AAUUGGAACGAUAC. ..
trybru .GGAGC.CCUUCGGG .GACA .UCCACAAA .CUGGAAAUUCAACA. ..

trybru2 UGGAGC.CCUUCGGG.GACA.UCCACAAA .CUGGAAAUUCAACA. ..

Figure 3.18: The trained U6 grammar predicted these foldings for 14 new se-
quences taken from the updated GenBank database. Only the helix and portions
of the adjacent (unaligned) loops are shown.

3.3 Discriminating snRNA from non-snRNA sequences

As described in Section 2.2, a NLL score is calculated for each test sequence and is
then used to measure how well the sequence fits the corresponding grammar. This raw
NLL score depends too much on the test sequence’s length to be used directly to decide
whether a sequence belongs to the set modeled by the grammar. Thus the raw scores
are normalized by calculating the difference between the NLL score of a sequence and
the average NLL score of a typical non-snRNA sequence of the same length, measured
in standard deviations. This number is called the Z score for the sequence [KBMT94].
By choosing a Z-scores cutofl, one can classify sequences with 7 scores above the cutoff
as being snRNA sequences. While I cannot prove that these normalized scores actually
exhibit Gaussian tails for non-snRNAs, this kind of Gaussian approximation has worked
well previously [KBMT94, SBUT93, SBM194, SBHT94b].

To test the ability of the trained grammars to discriminate their snRNA from other
RNA sequences of similar length, for each of the trained grammars, calculations were made
to obtain the 7 score of every sequence in the corresponding snRNA database and every
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Figure 3.19: The trained Ul grammar predicted this folding for the sequence

tetthel. Its “true” secondary structure is unknown in that no trusted multi-
ple alignment was available. However, it resembles Ul structures in the trusted

alignment.
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Figure 3.20: The trained U5 grammar predicted these foldings for the sequences
asclum (left) and caeelel (right). Their “true” secondary structures are unknown

in that no trusted multiple alignment was available. However, they resemble U5
structures in the trusted alignment.
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Figure 3.21:  The trained U6 grammar predicted these helix foldings for the
U6 sequences asclum, homsap and lycesc (top) and the pseudo-U6 sequences
mycoplasl, mycoplas2 and mycoplas3 (bottom). Their “true” secondary struc-
tures are unknown in that no trusted multiple alignment was available. However,
they resemble U6 structures in the trusted alignment.

sequence in an augmented set of non-snRNA sequences. Although the highest Z score of
any such non-snRNA is never much greater than 4, an snRNA sequence is not considered
to be successfully discriminated from the augmented non-snRNA sequence set unless its
7 score is greater than 5. The choice of 5 is motivated by the assumption that the non-
snRNAs are drawn from a normal distribution, and for a normal distribution, only about
8 x 10711% of the sequences will have Z scores greater than 5. Thus, if the non-snRNA
sequences truly adhere to a normal distribution, virtually no non-snRNA sequences—about
one in one billion—should have a Z score higher than 5.

Figures 3.24, 3.27, and 3.30 show histograms of the 7 scores for the U1, U5 and U6
grammars, respectively, demonstrating the ability of each to discriminate 1460 augmented
non-snRNA sequences from sequences it was trained to model. Under each histogram is
a plot of the NLL scores for all augmented non-snRNA sequences computed using the
trained grammar’s parameters, versus their lengths (number of bases). Superimposed on
these points is the average-NLL curve used to compute 7 scores. Because the average
NLL curve was computed using a window of about 40 sequences, an artifact appeared: the
average curve appears to diverge from the actual average for sequences shorter than about
30 bases in length, where the window was too small. A perhaps more rigorous tack would
be to perform linear regression on the 7 scores for the non-snRNA sequences, obtaining
an equation to describe the average non-snRNA 7 score as a simple linear function of
the sequence length. This would give a better approximation of a normal distribution of
non-snRNA sequences. Though the divergence does inflate unduly the 7 scores for short
non-snRNA sequences, it does not skew any snRNA 7 scores since no snRNA sequences,
either complete or incomplete, are shorter than 53 bases in length.

For each grammar, Figure 3.22 shows the number of snRNA sequences in each set
that are successfully discriminated from the augmented non-snRNAs using the criterion
that snRNA sequences with 7 scores greater than 5 are correctly discriminated. Since
none of the 1460 augmented non-snRNA sequences had a 7 score higher than 5 for any
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Matching Subunit Set Augmented Non-snRNA Set
<5 >5 LowZs BPB Name Null BPB | High Zs BPB Name Null BPB
U1 0 49 5.466 2.097  schpon 2.049 3.997 2.405 U5 2.059
10.944 1.645 chlsac 2.167 3.344 2.422  misc. 2.053
Ub 1 30 3.858 2.247  caimosx* 2.081 4.034 2.167  misc. 2.063
7.454 1.854  schpom 2.058 3.349 2.269 tRNA 2.039
U6 2 42 2.620 3.060 leicol= 2.108 3.482 2.472  repeat 2.057
2.843 2.790  trycrux 2.096 3.257 2.569 CDS 2.045
7.887 1.991  trybru 2.067 3.027 2.553 CDS 2.050
Total 3 121

Figure 3.22: The table shows how each trained grammar partitions the sequence
set it was intended to model based on their Z scores (124 snRNA sequences total).
The “< 5” column tabulates the number of sequences whose 7 scores were no
greater than 5 standard deviations, while the “> 5”7 column shows the number
of sequences whose 7 scores were greater than 5 standard deviations. The rows
show sequences closest to the Z-scores boundary (the highest-scoring non-snRNA
and lowest-scoring snRNA sequences). The third and seventh columns show these
sequences’ 7 scores; the fourth and eighth columns show their NLL scores in base
2 divided by sequence length, or bits per base (BPB). The fifth and ninth columns
label the sequences. The sixth and tenth columns represent the BPB that a null
model would give for a sequence of that length. The incomplete * sequences were
neither aligned nor discriminated by the trained grammars.

of the trained grammars, there were no false positives. There was one false positive for
the U6 initial grammar, though. False positives are non-snRNAs misclassified as snRNAs,
while false negatives are snRNAs misclassified as non-snRNAs. The figure shows actual 7
scores for sequences closest to the Z-scores cutoff. For generality, it also shows an alternate
formulation called bits per base (BPB) for those sequences.

The BPB measure is useful for assessing a model’s utility from a data-compression point
of view. The bits per base for a sequence is the sequence’s NLL score in logarithm base
2 divided by the sequence’s length. (NLL in base 2 is obtained by dividing the raw NLL
score, which is in base e, by the natural logarithm of 2.) This gives the likelihood in base
2 for an “average” nucleotide in an RNA sequence, which approximates how many bits of
computer memory the grammar would require to represent a nucleotide in that sequence.
For comparison, Figure 3.22 also shows the BPB scores that a null grammar would provide,
where the null grammar is defined as the simplest model representing the sequences. The
null grammar reflects the information content of the primary sequences, assuming nothing
is known about their secondary structure. The null BPB values are calculated by adding
to 2 (the number of bits required to specify one of four nucleotides) the logarithm base 2
of the sequence length (the number of bits required to encode the sequence length) divided
by the length.

All three trained grammars produce BPB scores much less than 2 for all snRNA se-
quences except those closest to the Z-scores boundary, indicating that these trained gram-
mars would require less space to represent the sequences they model than would a null
grammar. Conversely, the BPB scores for the augmented non-snRNA sets are higher than
2, usually around 3, indicating that the trained grammars would require more memory to
represent sequences that they do not model than would a null grammar. This result fits
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Number of Sequences
Grammar | BPB <1.0 1.0< BPB < 2.0 BPB > 2.0 | Total

U1 35 13 1 49
Us 15 15 1 31
U6 36 6 2 44
Totals 86 34 4 124

Figure 3.23: This table partitions sequences by their BPB scores as calculated
by the grammar trained to represent them. The three middle columns show the
number of sequences falling into three ranges of bits-per-base scores. A low BPB
score indicates that the corresponding grammar requires little computer memory
to represent that sequence.

the fundamental theorem in coding theory, which says the optimal representation of a set
of strings takes — log( P(string)) to represent a string; the only way a model can express a
set of strings in fewer bits is to express other strings in more bits.

Figure 3.23 partitions the sequences by their BPB scores, while Figures 3.26, 3.29 and
3.32 are histograms of the BPB scores calculated by each trained grammar for its modeled
set and the corresponding augmented non-snRNA set. Because of the skew in average-
NLL score mentioned previously, the BPB scores for non-snRNA sequences about 30-45
nucleotides in length are artificially high, which leads to an overly long non-snRNAs tail in
each of the BPB plots in Figures 3.26, 3.29 and 3.32.

3.3.1 U1l discrimination

The U1 grammar distinguishes the augmented non-snRNA set from the Ul set perfectly.
There are no false negatives or false positives. Even the six incomplete sequences were
discriminated, with Z scores ranging from 12.984 to 16.989, ranking them 4" through 8,
and 12%" in the full set of 49 U1 sequences. The grammar was able to predict alignments
for these six sequences that closely match the trusted, as well.

In contrast, the U1 initial grammar misclassifies 36 of the 49 sequences, despite its
apparent ability to predict alignments that match the trusted alignments as well as those
predicted by the trained grammar. As can be observed in Figure 3.25, the snRNA sequences’
7 scores clearly overlap those of the non-snRNA sequences, and the snRNA 7 scores are
much lower in general than those given by the trained U1 grammar. Compare the histograms
of Figures 3.25 and 3.24 to see the effect of grammar training on the grammar’s ability to
discriminate.

3.3.2 US discrimination

The U5 grammar distinguishes the augmented non-snRNA set from the U5 set nearly
perfectly. The sole false negative is the incomplete sequence caimos*, 78 bases long, with
the unusually low 7 score of 3.858. The grammar could not align this sequence, either.
However, the other incomplete sequence homsap5d* (102 bases long) scored 15.300, ranking
it near the median (13%* out of the 31 sequences), and its alignment matched the trusted in
all helices but Stem II. The next lowest-scoring U5 was the training sequence schpom, 118
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Figure 3.24: The U1l grammar was trained on 25 sequences drawn at random with
equal probability from the full U1 set (Section 3.1). Though it was not trained on
the test set, the trained grammar can discriminate perfectly between the entire
set of Ul sequences, training plus test, and non-snRNAs (of lengths between 30
and 174) and 10 non-U1l snRNA sequences (see histogram, left). The highest-
scoring augmented non-snRNA sequence is a U5 sequence 116 bases long with a
7, score of 3.997, while the lowest-scoring Ul snRNA sequence has a 7 score of
5.466 and is 148 bases long, leaving a margin between them about 1.5 standard
deviations wide inside which a Z-scores cutoff can be chosen. NLL scores for each
augmented non-snRNA sequence are also plotted (right), with the average NLL
curve superimposed.

bases long, with the Z score 7.454. Thus, omitting caimos*, a Z-scores cutoff may be chosen
at around 5 standard deviations. Then it is true that the U5 grammar discriminates perfectly
between complete U5 sequences and similar-length non-snRNA fragments and other snRNA
sequences.

The U5 initial grammar misclassifies 11 of the 31 U5 sequences as non-snRNAs—that
is, 11 U5 sequences have 7 scores below 5. As can be observed in Figure 3.28, the snRNA
sequences’ 7 scores clearly overlap those of the non-snRNA sequences, and the snRNA 7
scores are much lower in general than those given by the trained U5 grammar. Compare the
histograms of Figures 3.28 and 3.27 to see the effect of grammar training on the grammar’s
ability to discriminate.

3.3.3 U6 discrimination

The trained U6 grammar discriminates complete U6 sequences from the augmented non-
snRNA sequences perfectly (see Figure 3.30). However, it misclassifies both incomplete
sequences, giving false negatives for leicol* and trycrux*. The trained grammar’s pre-
dicted alignments for these sequences deviate from the trusted alignment as well, though
this is true for all 44 sequences.
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Figure 3.25: The initial U1 grammar was not trained on sequences and embodies
only the Dirichlet pseudocounts. Though none of the non-snRNAs of lengths
between 30 and 174 and the 10 non-Ul snRNA sequences has a 7 score higher
than 5, fully 36 of the 49 Ul sequences, training plus test, had 7 scores lower
than 5 and the highest-scoring snRNA sequence has a 7 score of only 5.935. The
highest-scoring augmented non-snRNA sequence is 145 bases long with a Z score
of 3.865, while the lowest-scoring Ul snRNA sequence has a 7 score of —0.837 and
is 143 bases long.

As for the other trained grammars, there are no false positives. All augmented non-
snRNA sequences have 7 scores well below 5 standard deviations.

The U6 initial grammar misclassifies seven U6 sequences as non-snRNAs—that is, seven
U5 sequences have 7 scores below 5. As can be observed in Figure 3.31, the snRNA
sequences’ 7 scores clearly overlap those of the non-snRNA sequences, and the snRNA 7
scores are much lower in general than those given by the trained U6 grammar. Compare the
histograms of Figures 3.31 and 3.30 to see the effect of grammar training on the grammar’s
ability to discriminate.

3.3.4 Discriminating new sequences

The grammars were used to discriminate the 32 new sequences drawn from the latest
GenBank updates (82.0+, 26 May 1994, and 82.0, 8 April 1994), using the same Z-scores
criterion as in previous sections: sequences scoring higher than 5 are classified as snRNA
sequences. Figure 3.33 shows 7 scores and BPB scores for these new sequences.

The U1 grammar succesfully discriminates 10 of the 12 new U1 snRNA sequences. The
misclassified sequence ratnor, with a 7 score of —0.392, seems oddly to have been aligned
too far to the left relative to the other new sequences’ predicted alignments, such that it
appears to have an unusually long lead loop on its 5" end and it appears to end prematurely
with no Stem IV or Loop IV. This may be an artifact from its designation in the GenBank
database. The other misclassified snRNA sequence is tetthel, with a 7 score of 4.769.
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Figure 3.26: The Ul grammar was trained on 25 sequences drawn at random with
equal probability from the full U1l set (Section 3.1). Shown here are the bits-per-
base (BPB) scores for all 49 U1 sequences, as well as those for the 1460 augmented
non-snRNA sequences. All BPB scores higher than 4 correspond to sequences
shorter than 40 nucleotides in length.

The U5 grammar successfully discriminates four of the 6 new U5 snRNA sequences.
The undiscriminated sequences, caeele2 and musmus, both appear to have slightly unusual
alignments, with gaps inserted in some helices. These two may be incomplete sequences
(fragments), they may just have unusual structure, or they may have been mislabeled in
the GenBank database.

The U6 grammar successfully discriminates 10 of the 14 new U6 snRNA sequences.
It misclassifies the three pseudo-U6 sequences mycoplasl, mycolplas2 and mycoplas3,
ranking them lowest (1%, 3" and 4'") in the new set. The trained U6 grammar does
align these Mycoplasma sequences, which resemble U6 sequences, such that the alignments
look similar to those of the actual U6 sequences, but it does not classify them as U6
sequences. This has interesting ramifications, as the Mycoplasma sequences come from
another biological domain than the snRNAs. (See Section 4.)
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Figure 3.27: The U5 grammar was trained on 16 complete sequences drawn at
random with equal probability from the full U5 set (Section 3.1). This histogram
(left) shows discrimination between the 1460 augmented non-snRNA sequences
and the entire set of U5 sequences, training plus test. A single U5 test sequence,
the incomplete sequence caimos* (only 78 bases long), was misclassified as a non-
snRNA sequence with a 7 score of 3.858. The highest-scoring non-snRNA sequence
has a 7 score of 4.034 and is 106 bases long, while the next-lowest U5 is schpom
(118 bases long) with a 7 score of 7.454, leaving a margin between them about
three standard deviations wide inside which a Z-scores cutoff can be chosen. NLL
scores for each augmented non-snRNA sequence are also plotted (right), with the
average NLL curve superimposed.
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Figure 3.28: The initial U5 grammar was not trained on sequences and embodies
only the Dirichlet pseudocounts. This histogram shows its discrimination between
the 1460 augmented non-snRNA sequences and the entire set of U5 sequences,
training plus test. Of the 31 total U5 sequences, 11 were misclassified; none
of the augmented non-snRNA sequences was misclassified. The misclassified U5
snRNA sequences, with Z scores ranging from —0.333 to 4.869, include six pissat
sequences, the incomplete sequence caimos* and the five complete sequences
aratha, caeele, schpom, crycoh and dromel. The highest-scoring non-snRNA
sequence has a 7 score of 3.639 and is 105 bases long.
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Figure 3.29: The U5 grammar was trained on 16 sequences drawn at random with
equal probability from the full U5 set (Section 3.1). Shown here are the bits-per-
base (BPB) scores for all 31 U5 sequences, as well as those for the 1460 augmented
non-snRNA sequences. All BPB scores higher than 4 correspond to sequences
shorter than 40 nucleotides in length. The outlier sequence with BPB score 2.247
is the fragment caimosx*.
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Figure 3.30: The U6 grammar was trained on 22 complete sequences drawn at
random with equal probability from the full U6 set (Section 3.1). It discriminates
nearly perfectly between the 1460 augmented non-snRNA sequences and the entire
set of U6 sequences, training plus test, though it was not trained on the test set
(see histogram, left). Two U6 test sequences, both incomplete, were misclassified as
non-snRNA sequences: the lowest-scoring U6 snRNA sequence, trycru*, 62 bases
long, has a 7 score of 2.843, while the next lowest-scoring U6 sequence, leicol*, 53
bases long, has a Z score of 2.620. Ignoring these, a Z-scores cutoff can be chosen
in the margin between the third lowest-scoring U6 sequence, which is complete, 99
bases long, and has a 7 score of 7.887, and the highest-scoring augmented non-
snRNA sequence, 122 long, which has a 7 score of 3.482. This margin is over 4
standard deviations wide. NLL scores for each augmented non-snRNA sequence
are also plotted (right), with the average NLL curve superimposed.
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Figure 3.31: The initial U6 grammar was not trained on sequences and embodies
only the Dirichlet pseudocounts.
U6 set within the peak for the 1460 augmented non-snRNA sequences. The 7
scores for the snRNA sequences range from —1.900 to 4.858, while those for the
augmented non-snRNA sequences range from —2.628 to 5.279. There is one false
positive, a non-snRNA sequence of length 111.

It incorrectly embeds all 44 sequences in the
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Figure 3.32: The U6 grammar was trained on 22 sequences drawn at random with
equal probability from the full U6 set (Section 3.1). Shown here are the bits-per-
base (BPB) scores for all 44 U6 sequences, as well as those for the 1460 augmented
non-snRNA sequences. All BPB scores higher than 4 correspond to sequences
shorter than 40 nucleotides in length.
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Grammar | <b >5 | LowZs BPB Name Null BPB

U1 2 10 | —0.392 2.646 ratnor 2.045
4.769 2.194 tetthel 2.042

12.454  1.510 tetthe2 2.043

us 2 4 —0.260 2.540 musmus 2.064
1.599 2.443 caeele2 2.072

11.381 1.512 caeelel 2.057

U6 4 10 —1.011 2.979 mycoplas2 2.071
0.061 2.834 phypol 2.067

1.355 2.660 mycoplas3 2.0585

1.955 2.605 mycoplasi 2.064

7.474 2.035 trybru2 2.067

7.505 2.025 trybrul 2.067

14.287 1.295 tetthe 2.064

Totals 8 24

Figure 3.33:  The 32 new snRNA sequences drawn from the latest GenBank
updates were discriminated from the augmented non-snRNA set by each of the

three corresponding trained grammars as shown.

Most snRNA sequences had

7, scores below 5. Those with 7 scores above 5 also had alignments deviating
substantially from those of the other new sequences in the set. BPB values are
calculated as in Figure 3.22. Z scores and BPB score are shown for those sequences
closest to the Z-scores cutoff.
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4. Discussion

The SCFG method applied here represents a significant new direction in computational
biosequence analysis. The results shown in this thesis, combined with recent results applying
this method to modeling tRNA [SBUT93, SBM+94, SBHT93, ED94], lend support to the
analytical utility of using SCFGs to model RNA.

The aims of this work were to devise models that could provide multiple alignments, to
discriminate sequences from the modeled set from sequences from other sets and to predict
foldings for new sequences. This section discusses how well these goals were accomplished,
compares SCFGs to other methods invented for achieving these goals and suggests possible
future work to expand on the results of this thesis.

4.1 Assessment of results

The multiple alignments matched the trusted alignments somewhat. The results in
Figures 3.7, 3.11 and 3.13 show that the trained grammars’ predicted alignments do not
match the trusted alignments much more closely than the initial untrained grammars, which
seems to imply that training does not improve the alignment.

At least two factors may account for this. First, the snRNA sequences vary widely
in their primary sequence and structure conservation, unlike the tRNA sequences upon
which this method was tested previously [SBU193, SBMt94, SBHt93]; for instance, the
helices do not have well-defined lengths. This variation, in combination with the absence
of flexible bulge modeling in the grammars, may contribute to the limited precision of
the alignments. Second, the figure’s base-pairing match percentages were measured with
respect to trusted alignments produced in reference to sequences from a single organism,
the yeast Saccharomyces cerevisiae; snRNA sequences from other organisms were examined
for motifs such as base pairs or helices that were also present in saccer, but cases where
helices were shorter or had the possibility for a bulge were not recorded in the trusted
alignments. It is possible that the trained grammars create structures custom-designed for
each sequence from its modeled set on an individual basis, whereas the trusted alignments
generate a generic structure, so neither predicted nor trusted alignment is truly incorrect;
rather, their results may be complementary [Mia94]. It would be interesting to see whether
modeling bulges such that they may appear between any helix-match nonterminals would
greatly improve the grammars’ abilities to predict alignments that closely match the trusted
alignments. Many predicted snRNA sequence alignments in this work could have matched
their trusted alignments exactly if a bulge position could have been moved.

Each grammar can clearly discern sequences it was intended to model from those it was
not. It was shown that training on as few as about 20 sequences improves a grammar’s
ability to discriminate. This indicates that the grammars are limited in utility if their
probabilities are derived solely from the Dirichlet prior density based on 16S rRNA.

The grammars’ predicted foldings for new sequences resulted in structures closely resem-
bling the trusted foldings in the same set. As mentioned previously, more useful grammars
might result if bulges were modeled more flexibly.

The U6 grammar folds and aligns the non-U6 Mycoplasma sequences as if they were U6
sequences, though it does not discriminate them as U6 sequences. The genus Mycoplasma
is bacterial while snRNAs are eucaryotic. Because, according to biologists, there appear
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to be three domains in life—bacteria, archaea and eucarya—the discovery of a structure
or sequence that appears in two or more of these domains has important implications for
understanding the evolutionary origins of domains in biological molecules. Thus a grammar
that can find such structures or sequences in an RNA database would be useful to biologists.
It would be interesting to experiment with grammars that model bulges more flexibly to see
how they classify the Mycoplasma sequences and to see whether they restrict or enlarge the
set of recognized sequences (those classified as a particular type of snRNA) in discrimination.

SCFGs and their equivalents covariance models [ED94] appear to be the sole methods
currently for obtaining a single unified model that can provide RNA multiple alignments,
secondary-structure predictions and sequence discrimination. Some approaches, such as
thermodynamics methods, do exist for predicting helices in individual sequences, but there
remains the problem of combining the results to obtain an overall picture. As yet, the focus
remains on analyzing single sequences rather than families. The phylogenetic method does
examine all sequences and predict a common structure, but it ignores variations in individual
sequences. As mentioned in Chapter 1, HMMs are expected not to model RNA as well as
SCFGs, due to the presence of base pairs in the data. It would be interesting to attempt to
model snRNAs with HMMs to see what kind of discrimination and alignment results can
be obtained. It is anticipated that such HMMs would lack the ability to generalize to align
or discriminate new sequences.

4.2 Possible future tasks

SCFGs provide a flexible and highly effective statistical method for solving RNA se-
quence analysis problems including discrimination, multiple alignment and prediction of
secondary structures. In addition, the grammar itself may be a valuable tool for represent-
ing an RNA family or domain. The present work demonstrates the usefulness of SCFGs
with snRNA sequences and could prove useful in maintaining, updating and revising com-
pilations of their alignments. Further classes of RNA sequences potentially appropriate
to model using this method include group I introns [MW90, MECS90], group II introns
[MUO89], ribonuclease P RNA [BHJ*91, TE93] and 7S RNA (signal recognition particle
RNA) [Zwi89]. Combining these models might prove useful for higher-level sequence pro-
cessing. For example, a DNA database could be searched using an intron model, then the
discerned intron regions could be excised and another grammar (for an snRNA set, for
example) could then be used to parse the remaining regions to find new RNA sequences.

The main difficulties in applying this work to other families of RNA are developing
appropriate initial grammars and decreasing the computation time required to parse longer
sequences. Even for these relatively short snRNA sequences (53-170 bases in length) and
grammars with 1498-2021 productions and 367-498 nonterminals, the required memory
makes parsing nearly intractable on current architectures. The latter problem can be
solved only by the development of fundamentally different parsing methods, perhaps relying
more on branch-and-bound methods (a form of best-first search) [LS94] or heuristics. It is
currently not clear which approach will be best. The former problem might be solved by the
development of effective methods for learning the grammar itself from training sequences.
The work of Eddy and Durbin is an important step in this direction [ED94]. Their method
relies on correlations between columns in a multiple alignment [GPH'92, Lap92, KB93,
Wat89, WOWT90, San85, Wat88] to discover the essential base-pairing structure in an
RNA family. Another approach would be to use a method like that proposed by Waterman
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[Wat89] to find helices in a rough initial multiple alignment, use these helices to design
a simple initial grammar in a semi-automated fashion using the high-level RNA grammar
specification language discussed in Section 2.5, then use the grammar to obtain a better
multiple alignment, and iterate this process until a suitable result is obtained. Recently some
researchers have used Gibbs sampling strategies [GG84] for producing multiple alignments
and deducing locations of helices from raw sequences [GHHT94, LAW*94, LAB193, BL93].
The algorithm of Lawrence et al. [LAWT94, LABT93] for proteins produces local multiple
alignments by finding blocks of residues conserved across sequences. The algorithm of Grate
et al. [GHHT94] extends the Lawrence approach to produce local multiple alignments of
RNA. Because RNA secondary structure must be taken into account to produce these, the
Grate approach finds conserved based pairs (i.e., helices). Another approach that might
reduce computation time would be to use much simpler grammars that do not rely on having
fixed maximum helix lengths. By including recursive productions of the form 5 — a5b, a
helix of any length could be modeled in principle. Such a grammar might model secondary
structure better but model primary structure worse. This tack would decrease the number of
productions and thus the amount of memory required, but might complicate the alignment
algorithm.

Because shorter sequences require less time to parse, and because biologists often work
with fragments rather than complete sequences, a related goal would be to devise schemes
for modeling sequence fragments. These snRNA grammars failed to align or discriminate
sequences that were only 50-70% the length of the average sequence length in the corre-
sponding set, while length deviations of up to 40% from the average length seemed to be
accommodated. It might be useful to characterize how short a fragment can become before
a grammar begins to misclassify it, but the results would depend on the other sequences
present in the set.

Another important direction for further research is the development of stochastic gram-
mars for snRNA and other RNA families that can be used to search databases for these
structures at the DNA level. In order to do this, the grammar must be modified to allow for
the possibility of introns in the sequence, and the parsing method must be modified so that
it can efficiently search for RNAs that are embedded within larger sequences. Durbin and
Eddy have done the latter modifications in their tRNA experiments and report good re-
sults in searching the GenBank structural RNA database and 2.2 Mb of C. elegans genomic
sequence for tRNAs, even without using special intron models. Earlier work [SBM™94]
reported some very preliminary results on modifying tRNA grammars to accommodate in-
trons. Though it should be straightforward to develop effective stochastic grammar-based
search methods, the main practical problem will be dealing with the long computation time
required by the present methods.

Finally, there is the question of what further generalizations of hidden Markov models,
beyond SCFGs, might be useful. The key advantage of the SCFG method over the HMM
method is that it allows explicit treatment of the secondary structure of the RNA sequence.
By extending stochastic models of strings to stochastic models of trees, the base-pairing
interactions of the molecule, which determine its secondary structure, can be modeled. This
progression is similar to the path taken by the late King Sun Fu and colleagues in their
development of the field of syntactic pattern recognition [Fu82]. Modeling pseudoknots
and higher-order structure would require still more general methods. One possibility would
be to consider stochastic graph grammars (see the introductory survey by Engelfriet and
Rozenberg [ER91]) in hopes of obtaining a more general model of the interactions present in
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the molecule beyond the primary structure. If a stochastic graph grammar framework could
be developed that included both an efficient method of finding the most probable folding of
the molecule given the grammar and an efficient EM method for estimating the grammar’s
parameters from folded examples, then extensions of this approach to more challenging
problems, including RNA tertiary structure determination and protein folding, would be
possible. This is perhaps the most interesting direction for future research encouraged by
the results of this thesis.
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Appendix A. Predicted Multiple Alignments

Each section in this appendix shows the complete multiple alignment of an snRNA set
(training plus test sequences) as predicted by the corresponding trained grammar. They
agree to varying degrees with the trusted alignments for these same sequences (see Sections

3.2.1, 3.2.2 and 3.2.3).

Periods demark helix boundaries and also indicate application of skip productions. In
the U5 and U6 multiple alignments, the lowercase letters denote application of an insert
production. In the U1 alignment, the loops are not aligned. Bulges were modeled as a loop
between two short helices for Stems I, IIT and IV in U1 and for Stem I (broken into Stems
Ia, Ib and Ic) in US.

The snRNA sequences come from a variety of organisms, including yeast (saccer), pea
(pissat), human (homsap), fruit fly (dromel), rat (ratnor),
(phypol), and chicken (galgal). Sequences whose names are
are incomplete.

Trunk

CCCC((
GGCAUG.
GUCCGG .
GGACGG.
GGACGG.
GGACGG.
GGACGG.
GGACGG.
GGACGG.
GGACGG.
GGACGG.
GGACGG.
GGACGG.
GGAUGG .
GGAUGG .
GGAUGG .
GGACGG.
GGACGG.
GGACGG.
GGACGG.
GGACGG.
GGACGG.
GGACGG.
GGCUGG .
GGCGCA.
GGCGCA.
GGCGCA.
GGCGCC.
GGCUGG .
GGCGUA.
GGCGUA.
GGCAGG .
GGCAGG .
GGCAGG .
GGCAGG .

.UGAUCA.

----CC.
GGCAGG.

A.1 Full U1 predicted
schpom ----ACUUACCU.
chlsac --AUACUUACCU.
glymax1A --AUACUUACCU.
glymax1B --AUACUUACCU.
lycesc --AUACUUACCU.
lycescl2 --AUACUUACCU.
lycescl3 --AUACUUACCU.
lycescl4 --UUACUUACCU.
lycesclb --AUACUUACCU.
lycescl6 --AUACUUACCU.
lycescl? --AUACUUACCU.
lycescl8 --AUACUUACCU.
pissatli --AUACUUACCU.
pissatlB --AUACUUACCU.
pissatiC --AUACUUACCU.
phavul --AUACUUACCU.
triaesill --AUACUUACCU.
triaes12 ----ACUUACCU.
triaes13% ------ UUACCU.
triaes14* --AUACUUACCU.
triaes1b* --AUACUUACCU.
triaes16* ----ACUUACCU.
tetthe ----ACUUACCU.
lytvarilG --AUACUUACCU.
lytvar2G --AUACUUACCU.
stropurlG  --AUACUUACCU.
echmul --AAACUUACCU.
caeelel AUAAACUUACCU.
dromel19523 --AUACUUACCU.
dromelG1A  --AUACUUACCU.
ambmex --AUACUUACCU.
xenlaelb --AUACUUACCU.
xenlaelABG --AUACUUACCU.
xenlaeABG  --AUACUUACCU.
xenlaelDl* -—---—----—- ACCA
xenlaelD2* -——--—--—--—= U.
galgalilR --AUACUUACCU.
ratnor4 ----ACUUACCU.

ratnor1183A --AUACUUACCU.

GGCAGG .
GGCAGG .

alignment

Stem I w/Bulge
14444 14444
AGUUU.
CCUGC.
GGUCA.
GGUCA.
GGUCA.
GGUCA.
GGUCA.
GGUCA.
GGUCU.
GGUCA.
GGUCA.
GGUCA.
GGUC-.
GGUC-.
GGU-C.
GGUCA.
GGU-C.
GGUCG .
GGUCG .
GGUCG .
GGUCG .
GGU-C.
AGUUU.
GGGGU.
GGGGU.
GGGGU.
GGGUU.
GGGUU.
GAGGU.
GAGGU.
GGAGC.
GGAGA.
CGAGA.
GGAGA.
CGA--.

CcuG
-G-
-A-
-A-

.ACCUC
.UGGAU
.UGGAU
.UGGGC
.UGGGC
.UAGGC
.UUGGC
.UGGGC
.UGGGU
.UGGGC
.UGGGC
.UGGGU
.UGGGU
.UGGGU
.UGGAU
.CGGGC
.CGGCC
.CGAGC
.CGAGC
.CGAGC
.CGGGC
.CUAUC
.GCAUU
.GCAUU
.GCAUU
.AGGGU
.UucaC
.ACCGU
.ACCGU
.UCuGU
.ACCAU
.ACCAU
.ACCAU

.CAGCA.
.GAGCAAGAAG
.GAUCAAGAAG
.GAUCAAUAAG
.GAUCAAUAAG
.GAUCAAUAAG
.GAUCAAUAAG
.GAUCAUGAAG
.GAUCAUGUAG
.AAUCAAGAAG
.GAUCAUUAAG
.GAUCAUGAAC
.GAUCAUGAAG
.GAUCAAGAAG
.GAUCAUGAAG
.GAUCUAUAAG
.GAUCAAGAAG
.GAUCAAGAAG
.GAUCAAGAAG
.GAUCAAGAAG
.GAUCAAGAAG
.GAUCAAGAAG
.GAUCAUGAAG
.GAUCAAGAAG
.GAUCAAGAAG
.GAUCAAGAAG
.GAUCAGCAAG
.GAUCACAAAG
.GAUCACGAAG
.GAUCACGAAG
.GAUCAGCAAG
.GAUCAUGAAG
.GAUCACGAAG
.GAUCACGAAG
.GGU--.

---CAAGAAU

Stem I
DDDDDDDIDY.

.UGUGGAGACU
.GGGGUCUAGG
.GUCCAUGGCC
.GUCCAUGGCC
.ACCCAUGGCC
.ACCCAUGGCC
.ACCCAUGGCC
.GUCCAUGGCC
.GUCCAUGGCC
.UUCCAUGGCC
.ACCCAUGGCC
.ACCCAUGGCC
.GCCCA-UGGC
.GCCCA-UGGC
.GCCCA-UGGC
.GUCCAUGGCC
.GCCCG-UGGC
.GGUCGUGGCC
.GCUCGUGGCC
.GCUCGUGGCC
.GCUCGUGGCC
.GCCCG-UGGC
.GGUAGCGGCU
.GAUGCACCCC
.GAUGCACCCC
.GAUGCACCCC
.GCUCCGACCC
.GCGGAAUCCC
.GCGGUUCCUC
.GCGGUUCCUC
.GCAGAGCUCC
.GUGGUUCUCC
.GUGGUUCUCC
.GUGGUUCUCC
.==UUC--UCC

GGAGA.
GGAGA.
GGAGA.

.GAUCAGGCAG
.GAUCACGAAG
.GAUCACGAAG

.GUGGUUUUCC
.GUGGUUUUCC
.GUGGUUUUCC

mouse (musmus ), slime mold
appended with an asterisk *

Stem IT
CCCCCCCeaacc(

.CAGUUAUUUGUCUUGG .
.UAGUGCUUGUACCUC-
.UAGGGAAGUAACCUCC
.UAGGGAAGUAACCUCC
.UAGGCUUGUGACCUCC
.UAGGCUUGUGACCUCC
.UAGGUUGGUGACCUCC
.UAGGUUGGUAACCUCC
.UAGGUUGGUGACUUUC
.UAGGUUGGUGACCUCC
.UAGGCUUGUGACCUCC
.UAGGUUGGUGACCAUC
.UAGGAUUGUGACCUCC
.UAGGCAAGUGACCUCC
.UAGGCAAGUGACUUCC
.UAGGGAAGUGACCUUC
.UGGGUCAAUGGCUCAC
.UAGAUCAAUGGUCACA .
.UAGGUUAGUGGCCCAC
.UAGGUUAGUGGCCCAC
.UGGGUCAGUGGUCCAC
.UGGGUCGAUGGCCCAC
.UAGGGUGGAGCAGGUC
.CAGGGCGAGGCUU-GC
.CAGGGCGAGGCUU-GC
.CAGGGCGAGGCUU-GC
.CAGGUGGAGGCUCAG-
.CAUGGUUAGGCCUACC
.CGGAGUGAGGCUUGGC
.CGGAGUGAGGCUUGGC
.CAGGGUGAGGCUCAUC
.CAGGGCGAGGCUCAGC
.CAGGGCGAGGCUCAGC
.CAGGGCGAGGCUCAGC
.CAGGGCGAGGCUCAGC
.CAGGGCGAGGCUCAGC
.CAGGGCGAGGCUCAUC
.CAGGGCGAGGCUUAUC
.CAGGGCGAGGCUUAUC

--CAUUGCAC-UG

.GCCUUG-UAC-UA
.AUUGCACUGAG--
.AUUGCACUUAG--
.AUUGCACUUUG--
.AUUGCACUUCG--
.AUUGCACUUUG--
.AUUGCACUUAG--
.AUUGCACUUUG--
.AUUGCACUAAG--
.AUUGCACUUUG--
.AUUGCACUUUG--
.AUUGCACUUAG--
.AUUGCACUUAG--
.AUUGCACUUAG--
.AUUGCACUCAG--
.AUUGCACUUGG--

-UUGCACCUGG--

.AUUGCACUUGG--
.AUUGCACUUGG--
.AUUGCACUU-G--
.AUUGCACUUGG--
.AUUGCACAAAAGA
.CAUUGCACUCCG-
.CAUUGCACUCCG-
.CAUUGCACUCCG-
.CAUUGCACUCCG-
.CAUUGCACUUUUG
.CAUUGCACCUCG-
.CAUUGCACCUCG-
.CAUUGCACAUCG-
.CAUUGCACUCCG-
.CAUUGCACUCCG-
.CAUUGCACUCCG-
.CAUUGCACUCCG-
.CAUUGCACUCCG-
.CCCUGCACUCCG-
.CAUUGCACUCCG-
.CAUUGCACUCCG-
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Stem I w/Bulge

14444
GGAGA .
GGGAG.
GGAGA .
GGAGA .
GGAGA .
GGAGA .
GGAGA .
GGAGA .
GGAGA .

14444

.ACCGU.
.ACCAU.
.ACCAU.
.ACCAU.
.ACCAU.
.ACCAU.
.ACCAU.
.ACCAU.
.ACCAU.

Appendix A. Predicted Multiple Alignments

GAUCACGAAG.
GAUCAUGAAG.
GAUCAUGAAG.
GAUCACGAAG.
GAUCACGAAG.
GAUCACGAAG.
GAUCACGAAG.
GAUCACGAAG.
GAUCACGAAG.

Trunk

CCCC((

ratnor1183B --AUACUUACCU.GGCAGG .
musmus1B2 --AUACUUACCU.GGCA-G.
musmus1B2A --AUACUUACCU.GGCAGG.
musmusG1lA --AUACUUACCU.GGCAGG .
musmusR1A --AUACUUACCU.GGCAGG .
musmus1B6 --AUACUUACCU.GGCAGG .
bostau --AUACUUACCU.GGCAGG .
homsapli --AUACUUACCU.GGCAGG .
homsaplC --AUACUUACCU.GGCAGG .

Stem IT

323330000 N

schpom AG .CCCUGACGAAUAACUG
chlsac UG . -CUUGGGGUAGCGCUG
glymax1A --.GAGGGGUGCCUUUCUA .
glymax1B --.GAGGGGUGCUUUCCUA .
lycesc --.GAGGGGUGCCUGCCUA .
lycescl2 --.GAGGGGUGCUUGUCUA .
lycescl3 --.GAGGGGUGCCAAUCUA.
lycescl4 --.GAGAGGUGCCUACCUA.
lycesclb --.GAGGGGUGCCCGCCUA .
lycescl6 --.GAGGGGUGCUUGCCUA .
lycescl? --.GAGGGGUGCCUGCCUA .
lycescl8 --.AAGGGGUGCCCGCCUA .
pissatli --.GAGGGGUGCUUUCCUA .
pissatlB --.GAGGGGUGCUAGCCUA.
pissatiC --.GAGGGGUGCUUGCCUA .
phavul --.AAGGGGUGCUACUCUA.
triaesill --.UGGGUGCGUUGGCCCA .
triaes12 --.UGAGCGCGUUGGCCUA .
triaes13* --.UGGGUGCGCUGGCCUA
triaes14* --.UGGGUGCGCUGGCCUA
triaes1b* --.GUGGAUGCCUGGCCCA .
triaes16* --.UGGGUGCGUCGGCCCA
tetthe --.UGUCUGUAAUACCUUA
lytvarilG --.GC-UUGCUGAACCUUG .
lytvar2G --.GC-UUGCUGAACCUUG .
stropurlG --.GC-UUGCUGAACCUUG .
echmul --.-CUGUGUUGAAGCCUG .
caeelel GG . UGCGGGCUGACCUGUG
dromel19523 --.GCUGAGUUGACCUCUG .
dromelG1A --.GCUGAGUUGACCUCUG .
ambmex --.GAUUUGCUGACCCCUG .
xenlaelb --.GUUGUGCUGACCCCUG .
xenlaelABG --.GCUGUGCUGACCCCUG .
xenlaeABG --.GCCGUGCUGACCCCUG .
xenlaelD1* --.GCCGUGCUGACCCCUG .
xenlaelD2* --.GCUGUGCUGACCCCUG .
galgalilR --.GGUGUGCUGACCCCUG .
ratnor4d --.GAUGUGCUGACCCCUG .
ratnor1183A --.GAUGUGCUGACCCCUG .
ratnor1183B --.GAUGUGCUGACCCCUG .
musmus1B2 -G .GGUGUGCUGACCCCUG .
musmus1B2A --.GGUGUGCUGACCCCUG .
musmusG1lA --.GAUGUGCUGACCACUG .
musmusR1A --.GAUGUGCUGACCCCUG .
musmus1B6 --.GGUGUGCUGACCCCUG .
bostau --.GAUGUGCUGACCCCUG .
homsapli --.GAUGUGC-UGCCCCUG .
homsaplC --.GAUGUGCUGACCCCUG .

.UGGACUGGC.
.UGUGCGGGG .

.UCAUCUCCC.
.uc

.UGGCAGUCU.

Stem III
CCCCCC((

AGGUCUGUC.
AGGUCUGCC.
AGGUCGGCU.
AGGUCGGCU.
AGGUCGGCC.
AGAUCGGCC.
AGAUCAGCC.
AGGUCGACC.
AGGUUGGCC.
AGGUCGGCC.
AGGUCUACC.
AGGUCUACC.
AGGUCUACC.
AGGUCUGUC.
CCAUCUCCC.
CCAUCUCCC.

CCAUCUCCC.

.UCA
.guGuUUCCCC.

CGAUUCCCC.
CGAUUCCCC.
CGAUUCCCC.
CGACGGACU.

CGAUUAUUC.
CGAUUAUUC.
CGAUGUCCC.
CGAUUUCCC.
CGAUUUCCC.
CGAUUUCCC.
CGAUUUCCC.
CGAUUUCCC.
CGAUUUCCC.
CGAUUUCCC.
CGAUUUCCC.
CGAUUUCCC.
CGAUUUCCC.
CGAUUUCCC.
CGAUUUCCC.
CGAUUUCCC.
CGAUUUCCC.
CGAUUUCCC.
CGAUUUCCC.
CGAUUUCCC.

-UAA-G-.
-CAA-GU.
-CAA-GU.
-CAA-GU.
-CAA-GU.
-CAA-GC.
-CAA-GU.
-CAA-GU.
-CAA-GA.
-CAA-GU.
-CAA-GU.
-CAA-GU.
-CAA-GU.
-CAA-GU.
-CAA-GU.
-CAA-GU.
-CAA-GU.
-CAA-GU.
-CAA-GU.

-CAA-GU.

---GUGC.
CAAACGU.
CAAACGU.
CAAACGU.
CUAAUCG.
CGAGUUG.
CUAAUGU.
CUAAUGU.
CAAAUGC.
CAAAUGC.
CAAAUGC.
CAAAUGC.
CAAAUGC.
CAAAUGU.
CAAAUGC.
CAAAUGC.
CAAAUGC.
CAAAUGC.
CAAAUGC.
CAAAUGC.
CAAAUGC.
CAAAUGC.
-AAAUGC.
CAAAUGU.
CAAAUGU.
CAAAUGU.

Stem I
DDDDDDDIDY.
GUGGUUUUCC.
GUGGUUUUCC.
GUGGUUUUCC.
GUGGUUUUCC.
GUGGUUUUCC.
GUGGUUUUCC.
GUGGUUUUCC.
GUGGUUUUCC.
GUGGUUUUCC.

StemIII w/Blg Trunk

20
GUCAGC
CCUCGU

GACAGA.
GGCAGA .
AGUCGA .
AGUCGA .
GGUCGA .
GGCCGA .
GGUUGA .
GGUUGA .
GGUCGA .
GGUCGA .
GGUGGA .
GGUGGA .
GGUGGA .
GAUGGA .
GGGAGA .
GGGAGA .
GGGAGA .

GGGAGA .

GGGGAA .
GGGGAA .
GGGGAA .
GGGGAA .
GGUUCG .
AGAUUC.
GAAUAA.
GAAUAA.
GGGAUU.
GGGAAA.
GGGAAA.
GGGAAA.
GGGAAA.
GGGAAA.
GGGAAA.
GGGAAA.
GGGAAA.
GGGAAA.
GGGAAA.
GGGAAA.
GGGAAA.
GGGAAA.
GGGAAA.
GGGAAA.
GGGAAA.
GGGAAA.

.U-.
.U-.
G-.
G-.
G-.
G-.
G-.

A-
G-

G-.
G-.
G-.
G-.
G-.
A-.
G-.

G-
G-
G-

G-

CC.

)

CCG.
ACA.
CCU.
CCU.
CCU.
CCU.
CCU.
.UCU.
.UCU.
CCU.
CCU.
CCU.
CCU.
CCU.
CCU.
CCU.
.UGG.
.UGG.
.UGA.

20
GAUGCA
ACGGAA
ACGUCA
ACGUCA
ACGUCA

ACGUCA
ACAUCA
ACGUCA
ACGUCA
ACGUCA
ACAUCA
ACAUCA
ACAUCA
ACGUCA
ACGUCA
ACGUCG
ACGUCA
.UGG . AUGUCA
GAA.
.UcaG.
.UcaG.
.UcaG.
.UcaG.
.CCA.
.UCG . UGCGCG
.UCG . UGCGUG
.UCG . ACUGUA
.UCG . ACUGCA
.UCG . ACUGCA
.UCG . ACUGCA
.UCG . ACUGCA
.UCG.AC----
.UCG . ACUGCA
.UCG . ACUGCA
.UCG . ACUGCA
.UCG . ACUGCA
.UCG.A-UGCA
.UCG . ACUGCA
.UCG . ACUGCA
.UCG . ACUGCA
.UCG . ACUGCA
.UCG . ACUGCA
.UCG . ACUGCA
.UCG . ACUGCA

GGCGUA
GGUGCA

ACGUCA.
ACGUCA.

ACAGCA.
GGCGUA .
GGCGUA .

ACAGCU.

Stem IT
CCCCCCaaaeaec(
CAGGGCGAGGCUUAUC. CAUUGUACUCCG—
CAGGGCGAGGCUCACC. CAUUUGCACUGUU
CAGGGCGAGGCUCACC. CAUUGCACUUUGG
CAGGGCGAGGUGUAUC. CAUUGCA--UCCG
CAGGGCGAGGCUUAUC. CAUUGCACUCCG—
CAGGGCGAGGCUCACC. CAUUGCACUUUGG
CAGGGCGAGGCUUAUC. CAUUGCACUCCG—
CAGGGCGA-GGCUUAU. CCAUUGCACUCCG
CAGGGCGAGGCUUAUC. CAUUGCACUCCG—
StemIV B
CCC((
U= C-—-A-U----- .-UuuU. G
.UAAUUUCUGGC---AGG———-- .CCGUU .G
.UAAUUUGUGGUA----G-——-—-- .UGGGG .G
.UAAUUUGUGGUAGU---—-—-- .GGGGG.C
.UAAUUUGUUGCAGA---—-—-- .GGGGG.C
UAAUUUGUUGCA-G--—-———-- .UGGGG .G
UAAUUUGUUGCUGU---———-~- .GAGGG.C
.UAAUUUGUUGCUGA---—-—-~- .GGGGG.C
.UAAUUUGUUGCUGA---—-—-~- .GGGGG.C
.UAAUUUGUUGUUGCAGA--—-- .GGGGG.C
.UAAUUUGUUGCUGU--~-—-—-~- .GGGGG.C
.UAAUUUGUUGCUGA---—-—-~- .GGGGG.C
.UAAUUUGUUGCCUG--~-——-—-~— .AGGGG .G
.UAAUUUGUUGCUGU--~-—-—-~- .GGGG- .G
.UAAUUUGUUGCUGU--~-—-—-~- .GGGGG.C
.UAAUUUGUGGUAGU---—-—-- .GGGGG.C
.UAAUUUGUGCUA-G---——-—-- .AGGGG .G
.UAAUUUGUGGUA-G---——-—-- .AGGGG .G
.UAAUUUGUGGUA-G---——-—-- .AGGGG .G
.UAAUUUGUGGUAGAGGGGGUAC
CAAUUUCUGCUAGG-------- .GGAGA.C
CAAUUUAUGAUAGC-------- .GGAGA.U
CAAUUUAUGGUAGC-------- .GGAGA.U
.UUAUUUAUGGUAGC---—-—-- .GGAGA.U
.UAGUUUUUGC---C--—-———-~— .AGUGG .G
UAAUUUUUGCGUA-U------~- .CGGG- .G
.UAAUUUUUGGUAGC---—-—-- .CGGG-.A
.UAAUUUUUGGUAGC---—-—-- .CGGG-.A
.UUAUUUCUGGUAGU---—-—-- .GGGG- .G
.UAAUUUCUGGUAGU---—-—-- .GGGG- .G
.UAAUUUCUGGUAGU---—-—-- .GGGG- .G
.UAAUUUCUGGUA-G---——-—-- .UGGGG .G
.UAAUUUCUGGUA-G---——-—-- .UGGGG .G
.UGCAUAAUUUGUGGUA-G---- .UGGGG .G
.UAAUUUGUGGUA-G---——-—-- .UGGGG .G
.UAAUUUGUGGUAGU---—-—-- .GGGG- .G
.UAAUUUGUGGUA-G---——-—-- .UGGGG .G
.UAAUUUGUGGUA-G---——-—-- .UGGGG .G
.—AAUUUGUGGUA-G---—-—-- .UGGGG .G
.UAAUUUGUGGUA-G---——-—-- .UGGGG .G
.UAAUUUGUGGUA-G---——-—-- .UGGGG .G
.UAAUUUGUGGUAGU---—-—-- .GGGG- .G
.UAAUUUGUGGUAGU---—-—-- .GGGGG . A
.UAAUUUGUGGUAGU---—-—-- .GGGGG . A
.UAAUUUGUGGUA-G---——-—-- .UGGGG .G
.UAAUUUGUGGUA-G---——-—-- .UGGGG .G



A.2. Full U5 multiple alignment 57

StemIV Stem IV

CCCC(( )DDDDDDIBDY.
schpom AGUUCG .UCCC.UCAUUUGGGG- . —~CA-
chlsac CACGCG . CUUG.CGCGUCCUCGG . cAA-
glymax1A CCUGCG . UUCG . CGCGGCCCCUU . -UC-
glymax1B -UUGCG . UUCG . CGCAG-CCCCU . -UC-
lycesc -CUGCG .UUCG . CGCAG-CCCCU. —-A-
lycescl2 CCUGCG . UUCG . CGCAGCCCCUA . -UC-
lycescl3 -CUGUG . UUCG . CGCGG-CCCCU . -GC-
lycescl4 -CUGCG . UUCG . CGCGG-CCCCU . -GC-
lycesclb -AUGCG .UUCG . CGCAG-CCCCU. -GC-
lycescl6 -CUGUG . UUCG . CGCAG-CCCCU . -AC-
lycescl? -CUGCG .UACG . CGCAG-CCCCU. -GC-
lycescl8 -CUGCG . UUCG . CGCGG-CCCCU. —-G~—

pissatli CCUGCG . UUCG . CGCGGCCCCCA . -CC-
pissatlB CCUGUG . UUCG . CGCGG-CCCCC . -UC-
pissatiC -CUGCG . UUCG . CGCGG-CCCUC . -UU-
phavul -CUGCG . UUCG . CGCGG-CCCCU . -UA-
triaesil UACGCG .UUCG . CGCGGCCCCUG . -CU-
triaes12 UACGCG .UUCG . CGCGGCCCCUA . -CU-
triaes13*  UACGCG.UUCG.CGCGGCCCCUG.-CU-
tetthe GUGCAC.UU-A.GUGCUGUCUCC . GCUC
lytvarlG C-UGCG . UUCG . CGCU-AUCUCC . -UA-
lytvar2G C-UGCG . UUCG . CGCU-AUCUCC . -UA-
stropurlG  C-UGCG.UUCG.CGCU-AUCUCC.-UA-
echmul GA-GCC.UUCG.GGC-GUCCCUU. -UC-
caeelel -CUGCG .UGCG . CGCGG--CCCU . -GA-
dromel19523 AUGGCG .UUCG.CGCCGU-CCCG.-—-A-
dromelG1lA  AUGGCG.UUCG.CGCCGU-CCCG.--A-
ambmex ACUGCG .UUCG . CGCUUU-CCCC . -UG-
xenlaelb ACUGCG .UUCG . CGCUUU-CCCC . -UG-
xenlaelABG ACUGCG.UUCG.CGCUUU-CCCC.-UG-
xenlaeABG  ACUGCG.UUCG.CGCUUUCCCCU.-GA-
xenlaelD1* ACUGCG.UUCG.CGCUUUCCCCU.-GU-
xenlaelD2* ACUGCG.UUCG.CGCUUUCCCCU.-GA-
galgallR ACUGCG .UUCG . CGCUCUCCCCU . -GA-
ratnor4d ACUGCG . UUCG . CGCUCU-CCCC . -UG-
ratnor1183A ACUGCG .UUCG.CGCUCUCCCCU.-GA-
ratnor1183B ACUGCG .UUCG.CGCUCUCCCCU . -GG—
musmus1B2  ACUGCG.UUCG.CGCUCUCCCCU.-GA-
musmus1B2A ACUGCG.UUCG.CGCUCUCCCCU.-GA-
musmusG1lA  ACUGCG.UUUG.UGCUCUCCCCU.-UU-
musmusR14  ACUGCG.UUCG.CGCUCU-CCCC. -UG-
musmus1B6  GCUGCG.UUCG.CGCGCCCCCCU.-GUA
bostau ACUGCG .UUCG . CGCUUU-CCCC . -UG-
homsaplA ACUGCG .UUCG . CGCUUUCCCCU . -GA-
homsap1C ACUGCG .UUCG . CGCUUUCCCCU . -GA-

A.2 Full U5 multiple alignment

Ia Stem Ib Stem Ic

€44 14444499944 1€4444qqs
schpom ...Auaauceg. ... U.CAAA .-G .CACUUUGCAAA .AgcuA.A...CGUAU.CUGUUUCU
aratha .. .GggaguaaaaaucacgC. . ... ..ottt A .GCCA.UG.UGGUGAGUACA.A. . .A.G...CGAAC.UAUUUCUU
pissatbal gg.A...... . ... ... G.CCGU.-G.UGAUGAUGACA.U...A.G...CGAAC.UAUUCUUU
pissatbbl gg.A. ... ... ... ... G.CCAU.-G.UGAUAAGUACA.A...A.G...CGAAC.UAUUCUUU
pissatba2 gg.A...... ... ... G.CCGU.-G.UGAUGAUGACA.U...A.G...CGAAC.UAUCUUUC
pissatbb2 .. .G...... ... ... G.AGCCgUG .UGAUGAACACA.A...A.G...CGAAC.UAUCUUUC
pissatbc  gg.A. ... ... ... G.CCGU.-G.UGAUGAUGACA.U...A.G...CGAAC.UAUCUUUC
pissatbe gggh...... . ... ... G.CCAU.-G.UGAUAAGUGCA.A...A.G...CGAAC.UAUCUUUC
pissatbf gggh...... ... ... G.CCAU.-G.UGAUAAGUGCA.A...A.G...CGAAC.UAUCUUUC
crycoh R ¢ A .UCAC.AG.UGUUCACUUCA.-...A.C...CGAAU.CAAUCUUU
tetpyrba R U.CACA.-G.AACUCAGCUCA .A...U.A...CGCUU.UAAUUUUU
tetthebl R U.CACA.-G.AACUCAGCUCA.U...U.A...CGCUU.UAAUUUUU
caeele oddauc. . A .ACUC.UG.GUUCCUCUGCA.U. ..U.UaacCGUGA . AAAUCUUU
dromel R U.ACUC.UG.GUUUCUCUUCA .A. . .UgU...CGAAU.AAAUCUUU
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Ia Stem Ib Stem Ic
(C(( 144444499 qq¢ 444449¢¢

xenlae B U.ACUC.UG.GUUUCUCUUCA.A. . .AuU...CGAAU.AAAUCUUU
galgalbarn ...A. ... ... ... ... s U.ACUC.UG.GUUUCUCUUCA.G. . .A.U...CGUAU.AAAUCUUU
galgalba  ...A... ... ... e U.ACUC.UG.GUUUCUCUUCA.G. . .A.U...CGUAU.AAAUCUUU
galgalbb B U.ACUC.UG.GUUUCUCUUCA.G. . .A.U...CGUAU.AAAUCUUU
caimos* .. .Ccuuunnacuaaagauunuccguggagaggaacaaccacgagl.----GUC.GUGG .A.AU. . .UUUUUGAGGCUCCGC. . ... ... U
musmus5 g A U.ACUC.UG.GUUUCUCUUCA.G. . .A.U...CGUAU.AAAUCUUU
ratnorbal ... A..... ... .. U.ACUC.UG.GUUUCUCUUCA.G. . .A.U...CGUAU.AAAUCUUU
ratnorba2 g..A..... ... U.ACUC.UG.GUUUCUCUUCA.G. . .A.U...CGUAU.AAAUCUUU
ratnorbax ...A. ... ... U.ACUC.UG.GUUUCUCUUCA.G. . .A.U...CGUAU.AAAUCUUU
homsap5b B U.ACUC.UG.GUUUCUCUUCA.G. . .A.U...CGUAU.AAAUCUUU
homsap5al ...A...... ... ... U.ACUC.UG.GUUUCUCUUCA.G. . .A.U...CGCAU.AAAUCUUU
homsap5a2 ...A...... ... ... ... U.ACUC.UG.GUUUCUCUUCA.G. . .A.U...CGCAU.AAAUCUUU
homsap5bl . ..A...... ... .. U.ACUC.UG.GUUUCUCUUCA.G. . .A.U...CGCAU.AAAUCUUU
homsap5Sbls ...A...... ... ... .. U.ACUC.UG.GUUUCUCUUCA.G. . .A.U...CGUAU.AAAUCUUU
homsap5bd* ... A. ... ... .. U.GCUC.UG.GUUUCUCUUCA.A. . .A.U...CGUAU.AAAUCUUU
homsap5e B U.ACUC.UG.GUUUCUCUUCA.A. . .A.U...CGUAU.AAAUCUUU
homsap5f B A.UCUC.UG.GUUUCUCUUCA.U. . .A.A. . .CGAAU. AAAUCUUU

Stem Ic Stem Ib Ia Stem IT

2NN 220N ) 44444¢¢
schpom .UGCCUUUUACC .AGAAACAG .CCG . UUUGUAAGGUG .U.G.CU.AA.UUUG. ACUGUA-.U.AG. .UUUUUGAA.UCUU--~......
aratha uCGCCUUUUACU . AAAGAAUA .CCG . UGUGCUCUCGA .C.G.CU. AA.GUGC. AUACGCC .U . AU. .UUUUGGAG . GGCUCCA . cuuc.
pissat5al .CGCCUUUUACU.AAAGAAUA.CCG.UGUCAGCGUCA.C.A.AU.UA.GCGG.CAUACGC.U.AG. .UUUUUGGA.AGAGUUC.ucaau
pissat5bl .CGCCUUUUACU.AAAGAAUA.CCG.UGUACUUUUCA.C.U.AA.CA.GUGG.CAUACGA.U.AA. . UUUUUGAA.UGAGCUC.ucaug
pissat5a2 .-GCCUUUUACU.AAAGAAUA.CUG.UGUCAGCGUCA.C.A.AU.UA.GCGG.CAUACGC.U.AG. .UUUUUGGA.AGAGUUC.ucaag
pissat5b2 .-GCCUUUUACU.AAAGAAUA.CUG.UGUGUGCGUCA.C.U.AA.AA.GGCG.CAUACGC.CuAd. .UUUUUGAA.AGAGUUC.ucuu.
pissat5bc .~GCCUUUUACU . AAAGAAUA .CUG . UGUCAGCGUCA.C.A.AU.UA.GCGG.CAUACGC.U. AG. .UUUUUGGG . AGAGUCC.ucuuc
pissat5be .~GCCUUUUACU . AAAGAAUA .CUG . UGUACGUGUCA.C.A.AG.CG.GUGG.CAUACGAgU . AA. .UUUUUGAA .UGAGUUC. . .. ..
pissat5f .~GCCUUUUACU . AAAGAAUA .CUG . UGUACGUGUCA.C.A.AG.CG.GUGG.CAUACGAgU . AA. .UUUUUGAA .UGAGUUC. . .. ..
crycoh .CGCCUUUUACU . AAAGGUUG .CCG . UGAAUGGGACA .C. AuCA . AU.GUGA . AUCUCUC . A . AU. .UU----~- U.UGAG-GG......
tetpyrba  .CGCCUUUUACU.AAAGAUUA.CCG.UGGGCUGGGUU.C.U.AC.AA.UGUG.AAUUAUU.A.AA. . AUUUUUGA.GGAUUGU. .....
tetthebl .CGCCUUUUACU . AAAGAUUA .CCG . UGGGCUGGGUU .U.A.CC.AA.UGUG. AAUUAUU . A . AA. . AUUUUUGC. AGGAUUC. . .. ..
caeele .CGCCUUUUACU . AAAGAUUU.CCG . UGCAAAGGAGC.A.U.UUaCU.GAGU . AUUACAU .A.CA. . AUUUUUGG . AGACUCC. . .. ..
dromel .CGCCUUUUACU . AAAGAUUU.CCG . UGGAGAGGAAC.AcU.CU.AA.GAGU.CUAAAAC.U.AA. .UUUUUUAG.UCAGUCU. . .. ..
xenlae .CGCCUUUUACU . AAAGAUUU.CCG . UGGAGAGGAAC.G.A.CC.AU.GAGU.UUCGUUC.A . AU. .UUUUUGAA.GCCUGGU. . .. ..
galgalbarn .CGCCUUUCAUC.AAAGAUUU.CCG.UGGAGAGGAAC.A.A.CU.CU.GAGU.CUUAAAC.C.AA. .UUUUUUGA.GCCUUGU. ... ..
galgalba  .CGCCUUUUACU.AAAGAUUU.CCG.UGGAGAGGAAC.A.A.CC.AC.GAGU.GUCGUGG.A.AU. .UUUUUGAG.GCUCCGC. ... ..
galgalbb .CGCCUUUUACU . AAAGAUUU.CCG . UGGAGAGGAAC.A.A.CC.AC.GAGU.GUCGUGG .A . AU. .UUUUUGAG.GCUCCGC. . .. ..
caimos* uc...... GACG.GAGC. .... U--.--
musmus5 .CGCCUUUUACU . AAAGAUUU.CCG . UGGAGAGGAAC.A.A.CU.CU.GAGU.CUUAAAC.C. AA. .UUUUUUGA . GGCCUUG . uc. . .
ratnorbal .CGCCUUUCAUC.AAAGAUUU.CCG.UGGAGAGGAAC.A.A.CU.CU.GAGU.CUUAAAC.C.AA. . UUUUUUGA.GCCUUGU. ... ..
ratnorb5a2 .CGCCUUUUAUC.AAAGAUUU.CCG.UGGAGAGGAAC.A.A.CU.CU.GAGU.CUUAAAC.C.AA. .UUUUUUGA.GGCCUUG.uc. ..
ratnorbax .CGCCUUUUACU.AAAGAUUU.CCG.UGGAGAGGAAC.A.A.CU.CU.GAGU.CUUAAAC.C.AA. . UUUUUUGA.GCCUUGU. ... ..
homsap5b .CGCCUUUCAUC . AAAGAUUU.CCG . UGGAGAGGAAU.A.A.CU.CU.GAGU.CUUAAGC.U. AA. .UUUUUUGA.GCCUUGC. . .. ..
homsap5al .CGCCUUUCAUC.AAAGAUUU.CCG.UGGAGAGGAAC.A.A.CU.CU.GAGU.CUUAACC.C.AA. .UUUUUUGA.GCCUUGC. ... ..
homsap5a2 .CGCCUUUUACU.AAAGAUUU.CCG.UGGAGAGGAAC.A.A.CU.CU.GAGU.CUUAACC.C.AA. .UUUUUUGA.GCCUUGC. ... ..
homsap5b1l .CGCCUUUUACU.AAAGAUUU.CCG.UGGAGAGGAAC.A.A.CU.CU.GAGU.CUUAACC.C.AA. . UUUUUUGA.GCCUUGC. . .. ..
homsap5bls .CGCCUUUUACU.AAAGAUUU.CCG.UGGAGAGGAAU.A.A.CU.CU.GAGU.CUUAAGC.U. AA. . UUUUUUGA . GCCUUGC. . .. ..
homsap5d* .CGCCUUUUACU.AAAGAUUU.CCG.UGGAGAGAAAC.C.G.UU.UU.GAGU.UUCUAGC.U.AA. . UUUUUUGA.--AG---......
homsap5e .CGCCUUUUACU . AAAGAUUU.CCG . UGGAGAGAAAC.G.A.GU.GU.GAGU.CUGAAAC.C.AA. .UUUUUUGA . GGCCUUG . ccuuu
homsap5f .CGCCUUUUACU . AAAGAUUU.CCG . UGGAGAGAAAC.A.A.CU.AU.GAGU.UUAUGGU .U. AAauUUUUUGAA . GUCUUGC. . .. . .

Stem IT

NN
schpom L.Uuu.. L C.---UUGA.a...A
aratha ..ucu. ... G.UGGAACC.ca..A
pissatbal u.UUG...... A .GGGCUCU. .... G
pissat5bl u.UUG...... A.GAGCUCU..... G
pissatba2 uuUUG...... A .GGGCUCU. .... G
pissat5b2 ..UUG...... A.GAGCUCU.g...G
pissatbc a.UlG...... A .GGGCUCU. .... G
pissatbe . .UCUuguuagh .GAACUCU. .. .. G
pissat5f . .UCUuguuagh .GAGCUCU. .. .. A
crycoh ..CUC...... U.GC-CCCA. .. .. C

tetpyrba LT G.UGAAUCC.u...A



A.3. Full U6 multiple alignment

tettheb1 uuu......
caeele UUGagaaa.
dromel UGUcgc. . .
xenlae UCA......
galgalbarn ..UCC......
galgalba guc......
galgalSb guc......
musmus5 UuG. .. ...
ratnorbal .ucc......
ratnorba2 UuG. .. ...
ratnorbax .ucc......
homsap5b .Ucc......
homsap5al .CUU......
homsap5a2 .CUU......
homsap5b1 ..UCC......
homsap5bls ..UCC......
homsap5d* .
homsapS5e u.UUA......
homsap5f CUA......

Stem IT
I

.ACCAGGU

.ACGGAGC

.CAAGGCU

.CAAGGCU

.—-==CC--
.CAGGGCU

.GAAUCCU.
CGGGUCA .
AGACUGG .

.GCAAGGC.
.GCGGAGC.
.GCAAGGC.
.ACAAGGC.
.ACAAGGC.
.GCAAGGC.
.GCAAGGC.

.ACAAGGC.
.ACAAGGC.

.GCAAGGC.

A.3 Full U6 multiple alignment

saccer
sacdai
sacexi
sacklu
sacser
sactel
sacbay
saccas
sacuni
klulac
piccan
picgui
pichee
picmis
pactan
saccap
sacfib
yarlip
nadful
saclud
zygflo
zygrou
tordel
ambmon
lipsta
issori
schpom
aratha61
aratha626
aratha629
zeamay
vicfab
lycesc
trybru
trycru*
leicolx*
caeele
dromell
dromel2
dromel3

chahbcaaacatcacacacamaacacaaaaa

a

caacaaaamca

aaagaae

1€4444qqs

.GCGAAGUA.. .AC....... Co.ooont c
.CCGGAGUA.. .AC....... Co.ooont c
.GCGAAGUA.. .AC....... Co.ooont c
.CAAGACAU...UU....... Co.ooont G
.UUCCCGGA .uudA....... Co.ooont G
.UUCCCGGA . . .--uuag...C........ G
.GCGAAGUA.. .AC....... Co.ooont c
.CCAAGGCA.. .AC....... Co.ooont c
.CCGGAUUA...-A....... Co.ooont G
.UCCAUAUU.. .AC....... CcuccguggU.
.CUUGUGGA...CA....... U........ U
.CUUGUGGA...CA....... U........ U
.CUCGGGGA...CA....... U........ A
.CUUAUGGA...CA....... U........ U
.CUCG-GGA...CA....... U........ U
.~CGA-GGA...CC....... Co.ooont c
.UUCG-GGA...CA....... U........ U
.UUCG-GGA...CA....... U........ A
.CCAUUCGU...--....... e G
.CGGAGCGU. . .A-....... e A
.GUGGAGUA .. .AC....... Co.ooont c
.GUGGAGUA .. .AC....... Co.ooont c
.CCGAAGUA.. .AC....... Co.ooont c
.UCUUCGGA. . .GG....... Co.ooont A
.UCUUCGGA . . .CAgcgugguC........ A
.AUGA-UCU...--....... U........ c
.CCUUCGGG...GA....... Co.ooont A
.CCUUCGGG...GA....... Co.ooont A
.CCUUCGGG...GA....... Co.ooont A
.UCUUCGGA...GA....... Co.ooont A
.—-UUCGGG...GA....... Co.ooont A
.CCUUCGGG...GA....... Co.ooont A
.CCUUCGGG...GA....... Co.ooont A
.CCUUCGUG. . .UC. ...... Co.ooont A
.CUUCGGGG...GA....... Co.ooont A
.CUUCCGAG...AA....... Co.ooont A
.UUCUUGCU. . .-=....... e U
.UUCUUGCU. . .-=....... e U
.UUCUUGCU. . .-=....... e U

NN

.UUCGUGGA. . ... CAUUUGG .UCAAUUUGAAAC . AAU. . .AC
.UUCGUGGA. . ... CAUUUGG .UCAAUUUGAAAC . AAU. . .AC
.UUCGUGGA. . ... CAUUUGG .UCAAUUUGAAAC . AAU. . .AC
.GUGUUUUG .ga . .CAUUUGG . UCAAUUUGAAAC . AAU. . .AC
.UCCGUGGA .a. ..CAUUUGG.UCAAUUUGAAAC.AAU. . .AC
.UCCGUGGA .a. ..CAUUUGG.UCAAUUUGAAAC.AAU. . .AC
.UUCGUGGA. . ... CAUUUGG .UCAAUUUGAAAC . AAU. . .AC
.CUCGUGGA. . ... CAUUUGG .UCAAUUUGAAAC . AAU. . .AC
.UCCGUGGA .a. ..CAUUUGG.UCAAUUUGAAAC.AAU. . .AC
UUUAUGGA. . ... CAUUUGG .UCAAUUUGAAAC . AAU. . .AC
.UGGUCAAU.....-=-==—-- L= UAGAAAU.AAU. . .AC
UGGUCAAU.....-====== —=——= UAGAAAU.AAU. . .AC
.UGGUCAAA..... Cm=mmm=  mm = GAAAA .AAU.. .AC
.UGGUCAAU.....-=-==—-- L= UAGAAAU.AAU. . .AC
UAG-UCAA.....-—=——-- .———-UUUGAAAC.AAU. . .AC
.UCG-UGG-.a...CAUAUGG.UCAAUUUGAAAC.AAU. . .AC
.UGG-UCAA.....-—————- .———-UUUGUUACaAAU. . .AC
.UGG-UCAA.....-—————- .———-UUUGAAAA .AAU. . .AC
.GGACAUAU.....---—- GG .UCAAUUUGAAAC.GAU. . .AC
.GCUCUGGA. . ... CAUUUGGuUAAAUUUGAAAC . AAU. . .AC
.UUCAUGGA. . ... CAUUUGG .UCAAUUUGAAAC . AAU. . .AC
.UUCAUGGA. . ... CAUUUGG .UCAAUUUGAAAC . AAU. . .AC
.UUCGUGGA. . ... CAUUUGG .UCAAUUUGAAAC . AAU. . .AC
.UUUAGUUA.....-=-==—-- .————-AUCGAAAA .AAU. . .AC
L g.ggaCAUAUGG .UCAAUUUGAAAC.GAU. . .ACA
.AGCGAAGA.....-—————- LT .AAU. . .AC
.GGA-UCAC..... --UUUGG .UCAAAUUGAAAC.GAU. . .AC
.UCCGAUAA.....-—===== —-—- AAUUGGAAC.GAU. . .AC
.UCCGAUAA.....-————-- .———AAUUGGAAC.GAU. . .AC
.UCCGAUAA.....-————-- .———AAUUGGAAC.GAU. . .AC
.UCCGAUAA.....-————-- .———AAUUGGAAC.GAU. . .AC
.UCCGAU-~-..... . -—===——- .—AAAAUUGGAAC.GAC. . .AC
.UCCGAUAA.....-————-- .———AAUUGGAAC.GAU. . .AC
.UCCACAAA.....——————- Rttt CUGGAA-.-AUucaAC
.AGCGAAGG. . ... -ACAUCC.ACAAUCUGGAA-.-AUucalC
.UCCACAAC..... C-===-- L= UGGAAAC.UCA. . .AC
UAUACUAA.....-—==——- .———AAUUGGAAC.AAU. . .AC
.CGGCAGAA..... CAUAUAC.UAAAAUUGGAAC.GAU. . .AC
.CGGCAGAA..... CAUAUAC.UAAAAUUGGAAC.GAU. . .AC
.CGGCAGAA..... CAUAUAC.UAAAAUUGGAAC.GAU. . .AC
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CCCCCCC NN
xentro ...~ ....G.UGCUUGCU. . .-=....... e U.CGGCAGCA. .. .. CAUAUAC.UAAAAUUGGAAC.GAU. . .AC
musmus .=~ ....G.UGCUCGCU. . .- =....... e U.CGGCAGCA. .. .. CAUAUAC.UAAAAUUGGAAC.GAU. . .AC
musmus6A ...~ ....G.UGCUUGCU. . .-=....... e U.CGGCAGCA. .. .. CAUAUAC.UAAAAUUGGAAC.GAU. . .AC
homsap .=~ ....G.UGCUCGCU. . .- =....... e U.CGGCAGCA. .. .. CAUAUAC.UAAAAUUGGAAC.GAU. . .AC
saccer AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU. .UUAUUU. . .CG.UUUU
sacdai AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU. .UUAUUC. . .GU.UU-U
sacexi AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU. .UUAUUU. . .CG.UUUU
sacklu AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU. .UUACUU. . .CA.UUUU
sacser AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU. .UUAUAC. . .AU.UU-U
sactel AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G. . .UU.UU.ACAAAGAGAU. .UUACACgu .UU.UUUU
sacbay AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G. . .UU.UU.ACAAAGAGAU. .UUAUUUc. .GU.UUUU
saccas AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU. .UUAUUC. . .GU.UUUU
sacuni AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU. .UUAUAC. . .AU.UUUU
klulac AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU. .UUA--A. . .GA.UUUU
piccan AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G. . .UU.UU.ACAAAGAGAU. .UUACUUa. .UU.UUUU
picgui AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU. .UUACUA. . .--.UUUU
pichee AGAGAAGAUUAGCAUGGCCCCUGCAUAAGGAUGACAC.G...CU.UU.ACAAAGAGAUCc .UUACUC. . .AAcUUUU
picmis AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UG.UU.ACAAAGAGAU. .UUACAA. . .--.UUUU
pactan AGAGAAGAUUAGCAUGGCCCCUGCAUAAGGAUGACAC.G...CU.UU.ACAAAGAGAU. .UAAACC. . .AU.UUUU
saccap AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU. .UAAUUC. . .AU.UUUU
sacfib AGAGAAGAUUAGCAUGGCCCCUGCAUAAGGAUGACAC.G...CU.UU.ACAAAGAGAU. .UUAACC. . .GU.UUUU
yarlip AGAGAAGAUUAGCAUGGCCCCUGCAUAAGGAUGACAC.G...CU.UU.ACAAAGAGAU. .UUAAACc. .GU.UUUU
nadful AGAGAAGAUUAGCAUGGCCCCUGCAUAAGGAUGACAC.G...CU.UU.ACAAAGAGAU. .UUACAA. . .GU.UUUU
saclud AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU. .UUUAAU. . .AU.UUUU
zygflo AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G. . .UU.UU.ACAAAGAGAU. .UUACACg. .UU.UUUU
zygrou AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G...UU.UU.ACAAAGAGAU. .UAAUUCau.UU.UUUU
tordel AGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC.G. . .UU.UU.ACAAAGAGAU. .UUAUUG. . .AU.UUUU
ambmon AGAGAAGAUUAGCAUGGCCCCUGCAUAAGGAUGACAC.G...CU.UU.ACAAAGAGAUcuUUAUUACu.UU.UUUU
lipsta GAGAAGAUUAGCAUGGCCCCUGCAUAAGGAUGACAC.G. . .CU.UUgAUAAAGAGAG . .UAUGAU. . .GU.UUUU
issori AGAGAAGAUUAGCAUGGCCCCUGCAUAAGGAUGACAC.G...CU.UU.ACAAAGAGAUCc .UUACUC. . .AAcUUUU
schpom AGAGAAGAUUAGCAUGGCCCCUGCACAAGGAUGACACuG. . .CG.AC.AUUGAGAGA-. .-~AAACC. . .CA.UUUU
aratha61 AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G. . .CAuAA.AUCGAGAAAU. .GGUCCAaauUU.UUUU
aratha626 AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G...CAuAA.AUCGAGAAAU. .GGUCCAaauUU.UUUU
aratha629 AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G...CAuAA.AUCGAGAAAU. .GGUCCAaauUU.UUUU
zZeamay AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G. . .CAcAA.AUCGAGAAAU. .GGUCCAaauUU.UUUU
vicfab AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G. . .CAcAA.AUCGAGAAAU. .GGUCCA. . .AA.UUUU
lycesc AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G. . .CAcAA.AUCGAGAAAU. .GGUCCAaaaUU.UUUU
trybru AGAGAAGAUUAGCACUCUCCCUGCGCAAGGCUGA---.-uguCA.AUCUUCGAGAGAU. . AUAGC-. . .--.UUUU
trycrux* AGAGAAGAUUAGCA----———=—=————————————— B e il P b C
leicolx* AGAGAAGAUUAGCA----———=—=————————————— B e il P b C

..CA.AA .UUCGUGAAGC. .GUUCCAa. .AU.UUUU

caeele AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G .

dromell AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G. . .CA.AA.AUCGUGAAGC. .GUUCCAc. .AU.UUUU
dromel2 AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G. . .CA.AA.AUCGUGAAGC. .GUUCCAc. .AU.UUUU
dromel3 AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G. . .CA.AA.AUCGUGAAGC. .GUUCCA. . .CA.UUUU
xentro AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G. . .CA.AA . UUCGUGAAGC. .GUUCCAu. .AU.UUUU
musmus AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G. . .CA.AA . UUCGUGAAGC. .GUUCCA. . .UA.UUUU
musmus64  AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G...CA.AA.UUCGUGAAGC. .GUUCCA. . .UA.UUUU
homsap AGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACAC.G. . .CA.AA . UUCGUGAAGC. .GUUCCA. . .UA.UUUU
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