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1. PROJECT SUMMARY 11 PROJECT SUMMARYArti�cial Intelligence research is in need of a unifying paradigm for general problemsolving that is practical, theoretically sound, and intellectually sensible. In particular, thisparadigm should unify the strengths and methods of currently factionalized schools in AI.To be of most use to the �eld, the paradigm should be implemented in publicly availablesoftware and placed in rigorous competition, theoretically and experimentally, with existingmethods on a wide class of search and planning problems.This project involves the exploration of such a paradigm through the development ofa universal problem-solving module known as a Universal Agent. The Universal Agent isbuilt up from �rst principles for e�ective information storage, retrieval, machine learningand heuristic search. In pursuing this unifying framework, a generalization of single-agent and multi-agent state-space search domains as special cases of a \Game of AbstractMathematical Relations" has been developed.The Universal Agent di�ers markedly from other universal problem solvers such asSoar, in that it does not divide domains into \problems" and \methods" and require a\toolkit" of human supplied heuristics and algorithms. The Universal Agent is a morefundamental approach in which each domain is viewed as a variation of the Game ofAbstract Mathematical Relations and relies on mathematical and statistical techniques fordiscovering and exploiting the inherent structure of these domains. As far as possible, humanintervention has been limited to a simple mathematical description of a given domain.The Universal Agent falls directly within the hierarchical reinforcement learning paradigmthat has been gaining popularity in the last few years, but goes beyond: in this learningmodel, the system is responsible for abstracting its own features and patterns, developingits own learning modules, and employing transformations on the representations used. Inessence the system is learning neurally (through weight propagation), genetically (throughpattern evolution) and symbolically (through its own abstractions). Still, the system main-tains uniformity, in that each module at any level of the hierarchy is an instantiation of thesame learning strategy.The Universal Agent is a generalization of the Adaptive-Predictive Search model em-ployed by the Morph Chess system in the previous project period. In this period theprimary objective is to demonstrate the power of the Universal Agent (also called MorphII)by reaching Chess Master strength given just the rules of chess and by achieving reasonablestrength, after training, across a whole class of state-space search problems.The previous Morph system, starting with little domain knowledge, is able to defeathuman novices while searching just 1-ply. Because of a large number of optimizationbreakthroughs achieved in the previous funding period, the pattern-matching and gamemonitoring facilities now allow MorphII to search nearly as deep as existing software-basedchess programs. Now that the system is up to comparable speed (without losing generality)the fundamental hypothesis that pattern-matching, representational change and experiencecan e�ectively replace and enhance brute-force and selective search can be veri�ed anddemonstrated.The increased speed is one signi�cant improvement in MorphII, equally signi�cant arethe following improvements to the learning system:� The system is domain-independent.� All domains are viewed in terms of mathematical relations and transformations overmathematical structures.



2 2. Results of Prior Project Stages� A pattern or feature language is no longer supplied but is instead derived from the rulesand evolved using a small set of domain-independent mathematical representationsand transformations known by the system.� No limit to the complexity of patterns and analogies formed by the system. Patternsthat have been discovered may be used as abstractions in higher order patterns.� The weight combination function for state evaluation is no longer supplied but isinstead derived by the system.� Learning system is parameterless. No constants or learning rate parameters aresupplied. All such constants used by the system are dynamically adjusted basedon experience.� Because of the speed enhancement, traditional search strategies may be exploredas well as cognitively inspired and decision-theoretic models that exploit patterns,probabilities and learning.The project is designed to explore the Universal Agent along three main lines of inquiry:Inquiry 1 studies the extension of Morph to be fully domain-independent based on a viewof chess as an instance of the \Game of Abstract Mathematical Relations" and graphpatterns as special cases of relations. Inquiry 2 involves the development of a \rule analysis"mechanism that attempts to exploit the graph theoretic structure of a given domain todevelop an heuristic problem-solving strategy for that domain. Inquiry 3 involves viewingthe MorphII learning mechanism as an algorithm for general function learning.2 Results of Prior Project StagesThe �rst project explored Adaptive-Predictive Search (APS). This is a method bywhich search systems can improve through experience. In APS, knowledge is stored aspattern-weight pairs (pws), where patterns, represented by conceptual graphs, are booleanpredicates over states and weights are estimates of the expected distance of states satisfyingthe pattern from a goal state. Starting from a virtually empty database, pws are learnedfrom search experiences using a combination of learning techniques: temporal-di�erencelearning, weight updating, and pattern creation/deletion. Patterns are stored in a partially-ordered hierarchy by more-general-than to facilitate e�cient associative recall. Each state'sevaluation is formed as a function of the weights of the most speci�c stored patterns thatapply to that state. Ideally, an APS system should converge to a database such thatsimply by moving from the current state to the most promising unexplored adjacent stategood solutions can be obtained (without further lookahead). In practice, APS systemscouple with a \guided" search based on previous experience. In addition to weights, otherstatistics such as \number of uses" or variance may be stored with patterns to be used indetermining their importance and whether they should be maintained by the system. APSsystems are similar to genetic classi�er systems, except that structural patterns are used,no �tness function is available (beyond the outcome of a given search), and the patternrepresentation and creation mechanisms exploit domain-dependent symbolic knowledge.Morph, currently under study, is an adaptive pattern-oriented chess system based onthe APS model. It has been identi�ed as an integrated learning system that builds onrecent machine learning developments in neural networks, genetic algorithms, and pattern-based learning. The integration of these diverse methods is one of this project's importantresearch contributions. We have constrained Morph in various ways (e.g., a limit to 1-plysearch) to build a system that is more consistent with cognitive models of human chess



2. Results of Prior Project Stages 3performance. We have obtained a set of games from a young chessmaster that is helping usto further understand human chess performance and development. Morph's syntactic formof computation is substantially di�erent from other AI \knowledge- oriented" approachesthat have been applied to chess and other domains. Di�erences include:� use of a uniform representation of search knowledge,� rejection of learning-by-example for a cognitively-inspired experiential framework,� responsibility for feature discovery given to the system, and� low reliance on search.Additionally, APS can be viewed as the learning of a \semantic distance function"where the semantics are due to the reinforcement the system receives and are expressedin terms of pattern-weight invariance classes. Given our consistent progress on all frontswe are con�dent that Morph will meet or exceed our objective of its development into anabove-average tournament player by the end of the 3-year funding period.The APS model is an integrated framework and project model used in teaching conceptsof search, learning, and representation in our undergraduate and graduate level Arti�cialIntelligence and Knowledge Engineering courses at UC-Santa Cruz. Students are askedto build APS systems for a state-space search problem of their choice; numerous gamedomains have been implemented. Nearly all students �nd this to be a worthwhile experience,especially with regard to learning the trade-o�s between representational complexity andsearch. The paper \Adaptive-Predictive Game-Playing Programs" is a tangible result ofthese e�orts [27]. Recently, students have been required to write programs for \uninformedMetaGame," a universe in which the system has no a priori knowledge of the rules orobjective of the game.Three exciting and unforeseen developments took place in the �rst year or so of thesecond project. First was the development of strongly optimized methods for the associa-tive retrieval of semantic networks (SNs). These methods (signi�cant extensions to earlierwork [23]) were published in the paper \Pattern Associativity and the Retrieval of Se-mantic Networks" [24], and have been enhanced and veri�ed since. These methods allowAPS-like associative pattern retrieval to require graph matching on only a small fractionof the database. This is achieved through exploitation of redundancy and bit encodingschemes for partially-ordered data and it not dependent on a graph-oriented view of thedata. Second is the founding of a worldwide collaborative e�ort of more than 80 researchersto develop \PEIRCE: A Conceptual Graphs Workbench" founded on John Sowa's Con-ceptual Graph Theory [7, 9]. The associative pattern retrieval schemes and APS learningmechanisms are to be at the core of this architecture. Subgroups exist for natural languageprocessing, systems modeling, vision, medicine, computer graphics, hardware, database,and learning. Third is the joining of this AI work with the MISC hardware developmentin our Computer Engineering department. MISC can support in hardware the semanticnetwork operations required by PEIRCE and the pattern-matching operations required bythe associative database. Both APS and PEIRCE are expected to be widely applicableacross AI applications.In the second year, the project went through a conceptual reorganization, resulting in animplemented software system known as MORPH II. Encouraged by Morph I's defeating ofhuman chess novices, we felt our primary hypothesis that experience plus sensitivity tograph-isomorphism can replace search given the proper sensors and abstractionshad been veri�ed to a signi�cant degree. To prepare the way for what we hope will bea signi�cant advance (compared to many previous AI e�orts) we developed a view of chess



4 3. Summary of Present and Future Plansand search problems as games of transformations of abstract mathematical relations. Nowwith �rm mathematical foundations (in group theory, abstract algebra and graph theory)we are directly confronting the structure of the \problems themselves" in the developmentof a domain-independent reinforcement learning mechanism that exploits knowledge of agraph-theoretic de�nition of a domain and resulting abstractions in the learning process.We are also working on complementary projects that attempt to construct heuristics fromthe mathematics of the operator de�nitions and their interactions and also \blind learning"systems that learn without knowledge of the rules (as in Metagame) - but which attemptto exploit as far as possible an \assumption of regularity". The MorphI software has beenpublicly available at our ftp site throughout the life of our project. The MorphII softwarewill be made publicly available as part of the PEIRCE conceptual graphs workbench andcan support general research in heuristic search, neural networks and machine learning inaddition to incorporating our methods.In the third year we have enhanced MorphII by designing an algorithm that compilesthe rules of any search problem into a RETE-like network that allows the problem to bemonitored and patterns to be matched incrementally (as opposed to starting fresh with eachposition). This is followed by a conversion of relational tables to bit matrices that allow thesystem to exploit the logical instruction set of the machine and also provide the potentialof viewing state-space search in terms of linear algebra and similar mathematical models.With processing times 10-100 times faster than before, we feel that we are now in an idealposition to demonstrate the computational viability of our pattern-matching approach tothe goals of AI and robotics.Many publications have been completed since the beginning of the project on the topicsmentioned above: hierarchical pattern retrieval [8, 31, 24, 28], PEIRCE [7, 9, 37, 46], pws[35, 26], APS [27, 14, 32, 15], games and mathematical abstraction[10, 34, 25, 31, 56], andexperience and creativity [29, 33, 60].3 Summary of Present and Future Plans3.1 MotivationsThirty years ago, GPS was proposed as a model for \General Problem Solving". Thepromise of the syntactic approach espoused soon met with the hard realities of combinato-rially explosive search spaces. Since that time it has been believed that the main techniqueused, \means-ends analysis" (and similar problem-solving algorithms) must be coupled withlarge amounts of domain-speci�c knowledge and heuristics. We di�er with this assessmentand the in
uence it has had on AI: First, the supplying of domain-speci�c knowledge byhumans, while certainly practical, does not directly confront a number of critical scienti�cissues in achieving intelligence in computation. Second, two other methods for acquir-ing domain knowledge are possible: a. Experiential/reinforcement learning. Suchan approach has been popular in recent years [59]. b. Heuristic construction throughanalysis of the structure of the problem domain itself. This method has been largelyignored. In fact, many of the e�orts in AI can be viewed as consciously or unconsciouslyavoiding consideration of the mathematics of the problem domain.Webster de�nes mathematics as follows:math.e.mat.ics _math-*-'mat-iks n pl but sing in constr 1: thescience of numbers and their operations, interrelations, combinations,



3. Summary of Present and Future Plans 5generalizations, and abstractions and of space con�gurations and theirstructure, measurement, transformations, and generalizationsIs this not the ideal tool to apply to the study of problem spaces? Further, what we callmachine learning should move to a model where mathematics can operate directly on math-ematics. That is, we propose that the secret to unlocking the power of computation is toget mathematics to develop and operate on itself. Lenat's AM \automated mathemati-cian" [21] can be viewed as a serious and exciting attempt to get the machine to behaveas a mathematician by supplying heuristics, constructs and discovery algorithms similarto those employed by mathematicians. It was, however, admitted that much of AM andEurisko's [20] success was dependent on the applicability of Lisp-like representation to thedomain under study [22]. A similar complaint could be made of the original Morph sys-tem: its human-supplied graph representation is ideally suited for chess. With MorphII weare going deeper than this. We are attempting to get at the root of the development ofmathematical structures s so that the machine, by producing and discovering mathematicalconstructions through a universally applicable algorithm, can evolve the representationsessential to succeed in a given domain.3.2 Work PlanSpeci�cally, in this project we are extending our previous work on adaptive pattern-oriented search in three main directions, each designed to give the machine more of thepower of mathematics: Inquiry 1 involves extending the Morph chess system to be fullydomain-independent by viewing chess as an instance of a \Game of Abstract MathematicalRelations" and graph patterns as special cases of relations. Inquiry 2 involves the develop-ment of a \rule analysis" mechanism that attempts to exploit the graph theoretic structureof a given domain to develop an heuristic problem-solving strategy for that domain. Inquiry3 involves viewing the APS mechanism as an algorithm for general function learning basedon the progressive discovery of relations and analogies. This progressive development isbased on an \Assumption of Regular Mathematical Structure" akin to Occam's Razor orthe minimum description length principle but allowing for higher level constructs in therepresentation. By taking this view we are trying to address the representational trans-formation problems that plague most machine learning algorithms. Each inquiry will bepursued through a balance of theoretical analysis and empirical studies.3.3 Performance Objectives for MorphIIWe have met or will soon meet our early performance objectives stated in the Theseobjectives included the following and similar variants:� That the system learns to play good fundamental chess (Class B or C) throughtraining, starting from only a small amount of supplied chess knowledge.� That the system is able, by playing an opponent that is better than it to develop toa point in which it can defeat that opponent.Now we are in position to set our goals much higher and aim for a demonstration thatwill make obvious the practical consequences of employing this new technology. Thus, weset the following performance objective which we feel is well within reach: Objective 1:MorphII when applied to the domain of chess will achieve Master strength (2200 UCSF orhigher).



6 3. Summary of Present and Future PlansMorphII is fully domain-independent and except for making use of a natural encoding ofthe rules of a given domain is given no assistance by humans. It is also a general learningmechanism that can be applied to general function learning and classi�cation problems inaddition to state-space search. MorphII is designed to compile a domain de�nition into anetwork for e�ciently monitoring and performing in that domain.Given the domain independence, we are adding the following as an important objectiveto be achieved in the next funding period: Objective 2: MorphII will also achieve signi�cant(expert-level or higher) performance in a domain other than chess. Possible domains includecheckers, backgammon and Othello in which computers already excel or more di�cultproblem domains such as GO or organic chemical synthesis which conform naturally to ourrelation-based state-space search model but where progress has been slower. Collaborationsare also now being developed to do whale identi�cation (via images of their tails) and�ngerprint identi�cation through adaptive image recognition. Finally, to demonstraterobustness we set our third objective as follows: Objective 3: Morph II will exhibit reasonablestrength (determined experimentally and in competition), after training, across a large classof state-space search problems - including new ones to be developed.3.4 ImprovementsMany signi�cant improvements to the original Morph model have been developed overthe last three years and are incorporated into MorphII. These include:� A domain-independent learning mechanism based on understanding theGame of Abstract Mathematical Relations. The game of abstract mathematicalrelations views a state-space search problem as a collection of objects, static relations(relationships that never change, such as those denoting board topology), dynamicrelations (relationships that change from state to state, such as which piece is onwhich square in board games), operators (as preconditions, adds and deletes de�nedusing static and dynamic relations), initial conditions and terminal conditions.� Patterns developed directly from relationships speci�ed in the rules andthrough rule analysis. See below.� Fully-recursive analogical pattern creation and matching. In a recent article[39] Eduardo Morales points out limitations of the old Morph system:Learning from recorded games is a natural way to learn chess. Morphalready claims to do so, using a �xed set of relations between the pieces[30].Morph, however, is limited to learning patterns that express attacking/defensiverelations. Thus, for instance, it is unable to learn whether two rooks arediagonally related or whether a rook is out an edge. Once a pattern hasbeen learned by Morph, it is no longer available for the construction of otherpatterns.These remarks, although not quite completely accurate with respect to the old Morphsystem, have been made completely obsolete by MorphII. The previous Morph wasrestricted to a human supplied pattern-representation language. Morph's \graph"patterns have been subsumed by the more general mathematical form \relation"which is used in Morph II. At the same time we are attempting to restrict Morph'spattern language to a small set of mathematical primitives from which all complexpatterns can be derived. These primitives include cardinality, and, or, not, join,modulus, factorability, permutation, periodicity and cycle. MorphII has access to



3. Summary of Present and Future Plans 7all relations (static and dynamic) used to de�ne the rules of a given domain. Theserelations may then be augmented using the mathematical constructions above andthemselves used as elements in higher-level abstract patterns. Our investigationis to study the best means of applying the mathematical transformations withoutyielding to the combinatorial explosion of brute force or genetic algorithms or thearbitrariness of supplying a set of \methods" [19] - but based on developing thesystem's understanding of how patterns are leading to misevaluations in a givendomain and deliberately constructing new pattern types to alleviate those di�culties.As each pattern type creates a new \relational table" and has its own combiningfunction, the machine generation of pattern types is equivalent to the addition of anew module in the reinforcement hierarchy.� Machine derivation of combining function for weights. In the original Morph,the function that combined the weights of patterns (for state evaluation) was human-engineered. MorphII uses linear regression, gradient descent and other functionlearning methods to derive its own combining function.� Optimized incremental pattern-matching. The pattern-matcher is now 10 to100 times faster than previous when matching similar sets of patterns. Further,storage requirements have been reduced 25-fold. These improvements are achievedby a general domain-independent procedure that compiles the variable-based ruledeclaration of a given domain into a RETE-like network for monitoring the gameincrementally. Speci�cally, the game is compiled into a partially-ordered hierarchy ofrelation tables (sets of tuples) each representing the dynamic relations in the domain.Operators act directly on the lowest level or primitive dynamic relations of a domainby adding or deleting tuples from these. The static relations are compiled away since,by de�nition, the tuples that satisfy them are always true. Patterns to be learned,simply become relations (usually made up of smaller relations) that are inserted intothe hierarchy. Thus, pattern-matching can proceed as a natural part of the legal movegeneration mechanism - and incrementally. This incrementality may be the criticallink to understanding how humans play chess so \e�ciently". Also, the structureof the network allows one to recognize which useful patterns are \almost matched"- perhaps providing a basis for a subgoal-driven planning mechanism, also akin tohumans. We look forward to exploring this mode.� Bit-level processing. The storage and retrieval scheme above is described in theUDS paper. Since the time of its writing, we have taken things one step deeper. Bycompiling the relational tables into multi-dimensional bit-arrays, we are exploiting theword-level logic operations of the CPU. Thus, we are now able to process an individualdomain at an e�ciency level comparable to domain-engineered chess programs andshould be able to compete on an equal footing.� Machine tuning of parameters by using \prediction error" as a domain-independent feedback mechanism. As part of our research philosophy, outside ofthe rules, we are not allowed to provide domain-dependent information or heuristicsor to \tune" the system's parameters. This leads to the important question of how amachine may �nd out whether it is improving given just \win-loss" feedback. We havediscovered that the machine, by studying its relative prediction error in its evaluationsfrom game to game, can successfully monitor itself. The learning model for MorphII is\parameterless", requiring no external tuning and settings such as a \learning rate" or\momentum coe�cient". All \constants" used by the system are given initial neutral



8 3. Summary of Present and Future Planssettings and dynamically-adjusted based on performance. Building on the work ofothers[5, 58] we are developing learning rules for neural networks that require noexternally supplied constants.� Incorporation of search. Current results with Morph have been achieved usingjust 1-ply of search. Given that pattern-matching time has been greatly reduced, incompetition we will be able to incorporate a multi-ply selective search, perhaps usinga subgoal mechanism as outlined above. Researchers in the past have suggested tous that our pattern-matching approach when combined with search might be mostpromising: we intend to �nd out!3.5 Heuristic construction through rule analysisEric Baum recently pointed out [1] the inherent potential in exploiting the information(mathematical structure) inherent in a declaration of the rules of a given domain:The computer science approach [] has since Shannon basically regarded agame as de�ned by its game tree. But what makes a game interesting is thatit has a low complexity, algorithmically e�cient de�nition apart from the gametree... Any procedure which only accesses the underlying simplicity of a gamein the form of an evaluation function is inherently doing the wrong thing...The main open question is how to go beyond the evaluation function picture ofgames.We agree strongly with this insight and wish to pursue it as deeply as we can. We feelthat viewing a particular game as an instantiation of the Game of Abstract MathematicalRelations is the right direction to pursue. We intend to study the relationship between therules declarations and the heuristics, features and values that determine strong play in thatdomain. By viewing things at the mathematical (domain-independent) level we hope touncover the principles that guide intelligent search.A number of planning and hierarchical planning algorithms originating conceptually inMeans-Ends-Analysis [11], Abstrips[47] and TWEAK[3] require prioritizing the operatorsand conditions (or subgoals) in the domain. Such evaluation normally requires humanapplication of domain-dependent knowledge. We argue that: If a heuristic is a goodone, the reason why it is good ought to be explainable within the mathematicalstructure of the state space under study. For example, many chessplayers are toldthat controlling the center is important. In our paper, Distance: Towards the Uni�cation ofChess Knowledge, we explain how this and a number of other traditional chess heuristics canbe explained in terms of increasing or decreasing the \safe shortest path distance betweenthe pieces". We believe that similar mathematical constructions can be applied to all searchproblems that can be stated as games of abstract mathematical relations.In support of this line of research, Callan and Utgo� [2] have shown how useful featurescan be derived directly from the declarative de�nition of the rules of a given domain. BarneyPell goes further in a recent paper [42] by demonstrating how entire heuristics (features andvalues) can be developed from rule analysis.3.6 General Function LearningMorphII can be viewed as a general algorithm for function learning if one ignoresthe di�culty of assigning weights to individual states in a game (the role of temporal-



3. Summary of Present and Future Plans 9di�erence learning) by assuming state classi�cations are correct and the algorithm is givenno knowledge of the rules of the game.Given this function learning model we will be able to compare MorphII to more tradi-tional function learning methods such as linear regression, perceptrons, nearest neighbor,and neural nets. We believe that MorphII should be able to outperform these methods inthat there is no e�ective limit to its application of analogical reasoning and representationaltransformations.It is well-known, for example, that in the NxN tile puzzles half the states are not solvable,namely those that involve an odd number of tile interchanges from the goal position. Buthow easy is it for a learning algorithm to produce this abstract mathematical concept givensimply example states and their classi�cation as \solvable" or \unsolvable" with no referenceto speci�c operators or a goal state? The di�culty arises since under the standard tile-puzzlestate representation as vectors or matrices, solvable states are equally syntactically close tosolvable and unsolvable states, and no polynomial-sized (for the NxN case) set of partialstate descriptions in themselves can prove solvability.In particular, one must re
ect on the reasoning behind the \odd number of interchanges"concept. Each tile state in an NxN puzzle represents a permutation (a mapping from 0,1,2..Nto 0,1,2..N where 0 is the blank). A permutation can be uniquely described as a certainnumber of cycles, where a tile's successor is the tile that is currently sitting in its originalhome. Each interchange either breaks a cycle (if the two tiles were in the same cycle) orcreates a new cycle out of two smaller ones (if the two tiles were in di�erent cycles). Thuseach interchange changes the cycle parity from odd to even or even to odd. Each tile puzzlemove involves an interchange (namely a tile with a blank). Thus, half the states will haveeven parity and half odd.What is required,then, is a system that can learn a concept of cycles, cardinalities andtheir parity and apply similar mathematical transformations to reduce the complexity ofother problems. In two of the enclosed papers, we show how traditional search domains canbe viewed as transformations over nested-directed hypergraphs { thus lending themselvesto graph-theoretic and other discrete mathematical approaches.3.7 Potential ImpactState-space search has remained through the years a central problem and challenge forAI researchers and other computer scientists. Recently, many domain-speci�c, knowledge-intensive, and \tool kit" methods have been proposed. We are striving to bring the scope ofits study back to more fundamental levels by the application of mathematically well-foundedtools to a su�ciently abstract representation of the problem. Our e�ort is supported bydomain-independent software and learning algorithms that we have developed and re�ned asa result of our previously funded projects. Through public domain sharing and competitionwe are able and willing to place our algorithms in direct comparison with other algorithmsacross the full spectrum of search and learning problems, thus insuring the integrity of ourwork as well as providing a means of demonstrating their practical utility.Both automatic programming and automatic theorem proving remain as critical prob-lems in the evolution of computers. Although advances are being made, we feel that a



10 3. Summary of Present and Future Plansfundamental breakthrough is required. We believe that we are helping enable this break-through by providing a complete, well-founded, integrated framework in which represen-tation, search, learning, inference and retrieval may be studied. The patterns and repre-sentations MorphII discovers in chess have their counterparts in the abstractions (such aslemmas and procedures) used in theorem-proving and programming.Likewise, the areas of robotics, machine vision, and natural language understandingneed a model of systems that can \think" for themselves by developing and evaluating theirown abstractions and invoking representational transformations when appropriate. This
exibility, that has largely been relegated to humans in the past, will become a part ofmachines once they are allowed to exploit the rich mathematical structure in the world aswe are allowing MorphII.Finally, we are proposing a comprehensive learning model that shows how symbolicand subsymbolic processes may be practically combined to achieve AI's purposes. Bothsymbolic and subsymbolic AI have been characterized by a large number of \solutions"that consistently prove inadequate over large classes of di�cult problems { and a lack ofsu�cient understanding of how and why the methods behave as they do. The methodproposed here is based on developing a �rm understanding of the mathematics of problem-domains and allowing the system itself to exploit that mathematics. The system, beingparameterless and domain-independent, requires that the method itself re
ectactual computational power and robustness rather than the tuning, diligenceor creative ability of the programmer.In summary, AI can make a tremendous advance in both practice and theory by allowingthe computer (computation) to exploit the mathematics out of which itself was built. TheUniversal Agent is a serious step in that direction that in addition to integrating andimproving on previous research e�orts [18, 55, 12, 45, 36, 40, 41, 51, 44, 38, 6, 43, 52, 53,50, 54, 48, 49, 57, 13, 16, 4, 17]1 could well have many important practical consequences.
1Citations here are a representative, but far from complete, sample of the research that has in
uencedus.
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