
Direct Volume Rendering via 3D TexturesOrion Wilson, Allen Van Gelder, Jane WilhelmsComputer and Information SciencesUniversity of California, Santa CruzUCSC-CRL-94-19Baskin Center for Computer Engineering and Information SciencesUniversity of California, Santa Cruz 95064moria@cs.ucsc.edu avg@cs.ucsc.edu wilhelms@cs.ucsc.eduJune 29, 1994AbstractThe advent of very fast texture mapping hardware in modern graphics workstations has warrantedresearch into rendering techniques that use texture mapping to full advantage. We have developed a newand easy to implement method for direct volume rendering that produces high-quality images at speedsapproaching two orders of magnitude faster than existing techniques, on workstations with hardwaresupport for three-dimensional texture maps. A rectilinear data set is converted into a three-dimensionaltexture map containing color and opacity information. In the rendering phase, the texture map is thenapplied to a stack of parallel planes, which e�ectively cut the texture into many slices. The slices arecomposited to form an image of the original data set. This paper describes the theory and implementationof this technique.Keywords: Computer Graphics, Scienti�c Visualization, 3D Texture Mapping, Direct Volume Rendering.
1

1 OverviewRendering speed has always been a major problem in direct volume rendering, because all regions ofthe volume may contribute to the image, and because new orientations generally require considerablere-computation. A spectrum of methods o�ering di�erent combinations of rendering speed versus imagequality have been presented [DCH88, Sab88, UK88, Lev88, Kru90, Lev90, MHC90, Wes90, LH91, Lev92].Some methods use hardware-assisted Gouraud-shading capabilities to speed rendering, by calculating theprojections of volume regions and treating them as polygons [ST90, LH91, WVG91, Wil92, VGW93].In this paper, we present a new method that takes advantage of a more sophisticated capability ofsome new graphics computers: hardware-assisted 3D texture mapping. We have found this method to besigni�cantly faster than the hardware-assisted Gouraud-shading method (which we call coherent projection),easier to implement, and producing images of comparable or better quality. We have found its mainlimitations to be restriction to rectilinear volumes, and the small size of 3D texture maps allowed by presenthardware. The former limitation may be inherent in the method, but the latter can be dealt with asdescribed below. Akeley mentions the possibility of using a 3D texture map for volume rendering in hisreport on the design of the Silicon Graphics Reality Engine [Ake93]. Independently from the work presentedhere, three other papers have been written describing use of 3D texture mapping hardware for direct volumerendering. Cullip and Neumann sketch two approaches, which they call object space and image space, andapply them to CT data [CN93]. Guan and Lipes discuss hardware issues [GL94]. Cabral, Cam and Forandescribe how to use texture mapping hardware to accelerate numerical Radon transforms [CCF94]. All ofthe methods described require substantial programming to \hand compute" transformations, clipping, andthe like, details of which are omitted. This paper describes how most of this programming can be eliminatedby use of graphics library procedures to perform texture space transformations and set clipping planes.In our new method, we �rst convert the data volume to a 3D texture map, using a one-time pass througha transfer function that maps scalar data values to appropriate color (red, green, and blue) and opacity.Color and opacity are modi�ed to account for depth integration (taking into account the desired number ofplanar slices) and stored in a 3D texture map. This texture map is then applied to many parallel planes,which make slices through the texture. Each plane is rendered as a square, so texture coordinates need bespeci�ed only at its four corners.In 3D texture mapping, each polygon vertex is given a point in the texture space, and the graphics systemmaps values from the texture map onto the polygon surface by interpolating texture coordinates. This isvery similar to Gouraud-shading except texture coordinates are being interpolated instead of colors. Thecrucial di�erence is that texture coordinates outside of the range [0; 1:0] are still interpolated, whereas suchcolors would be clamped. The corners of the squares have out-of-range texture coordinates, but interpolationcreates in-range values precisely when the pixel is within the volume.The squares are parallel to the projection plane in screen space, while the 3D texture map can be orientedas the user desires. More squares at thinner spacing, up to a point, give better image quality, while fewergive greater speed.The major advantage of this method is that after the original data is converted into a 3D texture map, theReality Engine's specialized texture hardware can perform the slice rendering and compositing very quickly.For example, as shown in Table 1 rendering is 14 to 140 times faster than coherent projection, which is itselfconsidered a fast method [WVG91]. The conversion into the texture map need only be done once, and thenthe volume can be rendered arbitrarily scaled, translated, and rotated.Resulting images have de�nition and clarity comparable to other rendering methods. While few graphicsworkstations o�er 3D texture mapping in hardware at present, we believe it will become more common,providing a quick and simple direct volume rendering method for rectilinear data.2

2 Detailed Description of MethodThe two major steps in this method are: �rst, create the texture map; and second, render the slices.2.1 Creating the Texture MapWe interpret each plane to be rendered as being at the center of a slice (with thickness) through the data,like a slice of bread. This means that each plane must contribute the color intensity and opacity due to onesuch slice. The thickness of every slice, �, is just the total distance covered by the stack of planes dividedby the number of planes. Knowing �, the color emission per unit distance E, and opacity per unit distanceA1 assigned to the data at each point by the transfer function, we compute the color C and opacity A thatmust go into the texture map. For a detailed explanation of this computation, see [WVG91, VGW93], butbriey the formulas are: � = ln� 11� A1�C = E�1� e����� �A = 1� e���where E and C have three components, Red, Green and Blue. Note that C is well-de�ned as � approaches0, by taking a power series expansion.This equation expresses the integration of color and opacity through the thickness of the slice. Theresulting color intensities are real numbers in the range [0; 1:0] where 0 is black and 1.0 is full color. Theseoating point values must be converted to integers in an appropriate range for storage in the texture map.After each voxel in the data has been assigned a color C and an opacity A, an eight- or twelve-bit texturemap entry, called a texel, is generated and stored. This process needs to be repeated whenever the transferfunction is changed or the number of slices is changed, but does not need to be repeated for di�erent viewingtransformations such as rotation or scaling.2.1.1 Rounding ErrorsIn creating the texture map, it is possible to encounter signi�cant rounding error problems when using aneight-bit rather than a twelve-bit texture map. However, rendering with an eight-bit texture map is abouttwice as fast as with a twelve-bit map, the memory requirement is half as much, and the problem only occursunder certain conditions. Consequently, it is sometimes desirable to use an eight-bit map.For example, if the color contribution to a plane is small, rounding error can make it appear zero. Thiscan be seen as blank areas in the �nal image when the number of slices is large enough so that the colorcontributions of many single pixels in each plane are rounded to zero. If the texture map has eight bits percolor channel, then rounding errors are up to one half of 1=256. In this case, rounding-error may becomedetrimental if several hundred slices are used. The problem is exacerbated if the data set in question islargely homogeneous, because in a region of constant value, the pixels are all rounded in the same directionand the error accumulates. In non-homogeneous data rounding-errors tend to cancel each other out.The problem becomes negligible (for hardware texture maps of a size available now) when the texture mapis given more bits per channel, simply reducing the magnitude of the errors. Twelve-bit textures (supportedin the Reality Engine) let rounding-error be only one half of 1=4096. This is quite su�cient to make anacceptable texture map for distributing the data even over several thousand slices. An accurate �nal imagerarely requires more slices than 3.5 (2�p3) times the maximum resolution in the volume.3

Figure 1: Slices through the volume in original orientation (left), and rotated (right). The viewer's line ofsight is orthogonal to the slices. In both orientations, texture coordinates are assigned to corners of thesquare slices in such a way that they interpolate into the range [0; 1:0] exactly when they are within thevolume.Besides rounding-errors in the storage of the texture, we were also concerned that errors would accumulateduring the blending and compositing stage of rendering, but this has not been noticed.2.2 Rendering SlicesOnce the 3D texture is created, we render the volume by applying the texture to parallel planes (representedas squares in screen-space) and, thus, build up a stack of slices through the texture, like a sliced loaf ofbread (see Figure 1). The squares are drawn from back to front. The orientation of the squares must remain�xed in screen space, parallel to the projection plane, with their normals towards the viewer. Otherwise,if the squares were viewed obliquely, their separation along the line of sight would not be �, and the colorand opacity obtained from the texture map would not be correct. Because color and opacity are nonlinearfunctions of �, it would be impossible to adjust for this discrepancy.2.2.1 Texture Coordinates for Original OrientationConsider a world space (x; y; z) coordinate frame in which the center of the volume is the origin. Texturecoordinates (s; t; r) will become proxies for spatial (x; y; z). Essentially, we construct a bounding cubecentered on the origin that is large enough to contain any rotation of the volume. The side of the boundingcube needs to be the length of the diagonal through the volume, which we shall denote by d. The squaresto be rendered (see Figure 1) comprise a series of slices through the bounding cube, parallel to the cube'sxy faces.Now suppose the volume has resolution (nx; ny; nz) and spacing (�x;�y;�z). We view this as a setof voxels, so the volume has sides of lengths nx�x, ny�y, and nz�z. In its initial orientation, we wantthe texture coordinates of the point (�nx�x=2;�ny�y=2;�nz�z=2) to be (0; 0; 0). Similarly we wantthe texture coordinates of (nx�x=2;�ny�y=2;�nz�z=2) to be (1; 0; 0), and so on for other corners of thevolume. Since the corners of the bounding cube are (�d=2;�d=2;�d=2), it follows that we want to assigntexture coordinates to these corners as follows: 4

� The s texture coordinate for lower-in-x corners is given bys(�d=2) = 12 �1� dnx�x�� The s texture coordinate for upper-in-x corners is given bys(d=2) = 12 �1 + dnx�x�(See Figure 2 for an illustration of the geometry.)� The same pattern is followed for the t texture coordinate, using ny�y, and distinguishing betweenlower-in-y and upper-in-y.� The same pattern is followed for the r texture coordinate, using nz�z, and distinguishing betweenlower-in-z and upper-in-z.If we could choose a texture map of resolution (nx; ny; nz) we would be done, but the existing systemessentially requires the texture map resolutions to be powers of two.Let Nx, Ny and Nz be the least powers of two that are at least as great, respectively, as nx, ny and nz.We also de�ne Lx = Nx�x; Ly = Ny�y; Lz = Nz�z:We now require the upper-in-x face of the volume to have texture coordinate s = nx=Nx (instead of 1). Theupper-in-y and upper-in-z faces are similarly modi�ed for t and r. The required equation for s(x) becomess(x) = x+ 12nx�xNx�xin that this function evaluates to 0 and nx=Nx, respectively, at the corners of the embedded volume, whichare located at x = �12nx�x. Equations for t and r are similar, replacing x by y and z, respectively.We can represent the required 3D transformation from (x; y; z) to (s; t; r) as a combination of scalesand translation. Let matrix D denote the uniform scale by d, let matrix S denote the nonuniform scaleby (d=Lx; d=Ly; d=Lz) (the reason for two scales will become evident later), and let matrix T denote thetranslation by (nx=2Nx; ny=2Ny; nz=2Nz). Then(s; t; r) = T S D�1(x; y; z) (1)The texture map has resolution (Nx; Ny; Nz).Once the texture coordinates for the corners of the bounding cube have been found, those for the squaresthat slice up the cube are found easily by interpolation in z; only the r coordinates are a�ected.Example 2.1: Assume the volume has resolution (3; 4; 4) and spacing (�x;�y;�z) = (1; 3; 1). Thediagonal is d = 13. Then (Nx; Ny; Nz) = (4; 4; 4). We gets(�d=2) = �1:25s(d=2) = 2:00t(�d=2) = �0:041667t(d=2) = 1:041667r(�d=2) = �1:125r(d=2) = 2:1255

d

Lx

d

s(−d/2) s(d/2)

Figure 2: Geometry of Texture Coordinates. This illustrates an orthographic projection down on a 3-Dvolume of size (Lx; Ly; Lz) and the geometry squares which contain the texture-mapped image of the volume.Sides Ly and Lz are not labeled, and the long diagonal through the volume is length d = (L2x + L2y + L2z) 12 .2.2.2 Arbitrary Viewing AnglesFrom the description in Section 2.2.1, the volume can be correctly rendered if it is being viewed \from head-on", in its original orientation. (Observe that nz ordinary 2D textures could be used to do this.) However,to view the volume from an arbitrary angle requires a 3D texture map, to correctly calculate the intersectionof the rendered squares with the 3D volume. To render the volume from a rotated viewpoint, we keep thebounding cube stationary in screen space and instead rotate the texture-space coordinates of the corners ofthe squares that slice up the bounding cube (see right half of Figure 1).This can be done in program code using standard matrix multiplication techniques. Alternatively onecan use the texture matrix, which is part of the graphics system. This matrix is just like a viewing matrix:it transforms texture coordinates before they actually are used. In this way the programmer gives the sametexture coordinates at geometry vertices no matter what the orientation and the texture matrix does therotation. In either method, the CPU overhead is small.The required texture-space transformation is obtained simply by inserting the inverse of the client'srotation matrix R into the transformation of Equation 1, as follows:(s; t; r) = T S D�1R�1 (x; y; z) = T S R�1D�1 (x; y; z) (2)using the fact that uniform scaling commutes with rotation. Evaluating (s; t; r) at the corners of the boundingcube (i.e., (�12d; �12d; �12d)) can be accomplished by applying the texture-space transformation T S R�1 to(�12 ; �12 ; �12). The graphics library calls, while in texture mode, are therefore the given translate T ,nonuniform scale S, as de�ned before Equation 1, following by negated, reversed order, rotation calls asspeci�ed by the client.The mapping from world space to texture space is linear, therefore any rotation of it is also linear.Trilinear interpolation (done in hardware, in our case) of linear functions commutes with rotation. Thereforethe image of the volume is not deformed. Care must be taken however with regards to the order in whichscaling and rotation operations are performed on the texture coordinates. If a volume does not have thesame �0s in each dimension, the equations for s, t, and r above result in a non-uniform scaling of the texturecoordinates; they are stretched in one dimension more than another. In this situation, performing rotationand scaling in the wrong order leads to shearing distortion. When transforming the texture coordinates,the correct order of operations is rotation, then scaling. This seems counter-intuitive to the way object6

0,0

0,1

1,0

1,1

.75,.750,.75

.75,0

Translate

.5,0

Rotate

= 3 , 6

= 4 , 1

= 12 , 6

= 4 , 8

= 13.416

= 63.58°

= 0.839 , 1.677

= 0.375 , 0.375

0, −.5

−.5,0

−.5, −.5 .5, −.5

.5,0

The Geometry Square
.375,−.375

Scale

.447,−.224

 Data Resolution

 Data Deltas

 Data Side Lengths

Texture Map Resolution

 Data Diagonal

 Rotate

 Scale

 Translate

Data in the Texture Map

The Texture Map

R
esulting Im

age of the D
ata,

w
ith texture coordinates via interpolation.

after Scaling.
Coordinates

after Rotation.
Coordinates

Coordinates
which get
used in the
texture map.Figure 3: 2-D Example of Texture Coordinate transformations. Coordinates are speci�ed at the corners ofthe Geometry Square, then by a series of matrix transformations are mapped to the texture map.transformations are usually done, but the trick is that we are transforming the points which sample thetexture map, not the texture map itself.Example 2.2: This 2-D example works thru a texture-matrix calculation to show that the pre-matrixtexture coordinates for a given corner of the data rectangle get transformed to the correct �nal texturecoordinates. (See Figure 3.)Assume the data has resolution (nx; ny) = (3; 6) and spacing (�x;�y) = (4; 1). Then the diagonalis d = 13:42, and the texture map resolution (Nx; Ny; Nz) = (4; 8). Assume the viewer has rotated thevolume �z = �63:58�. (In case of multiple rotations by the viewer, their order must be reversed here). Theparameters of the texture matrices are:Rotate = (��z; 0z0) = (63:58�):Scale = � dLx ; dLy� = �13:424 ; 13:428 � = (:839; 1:677):Translate = � nx2Nx ; ny2Ny� = �38 ; 38� = (:375; :375):We choose the pre-matrix texture coordinates at the corners of the planes to be (�:5;�:5);: : :; (:5; :5), asexplained in connection with Equation 2.For example, the interpolated \raw" texture coordinates of the lower right corner of the rotated data setare (0;�:5). These are transformed in hardware by the texture matrices, as follows:Original Coordinates = (0;�:5)7

After Rotation = (:447;�:224)After Scaling = (:375; �:375)After Translation = (:75; 0)which agrees with the corresponding texel in the texture map, whose coordinates are:�34 ; 08� = (:75; 0):2.2.3 Planar Regions outside the Data VolumeOne complexity is how to deal with rendering regions of the planes that lie outside the volume. Recallthat the planes always remain parallel to the projection plane, but the image of the volume within themrotates. The solution we chose uses clipping planes. Because the texture-rendered volume lines up withworld-coordinates, we can position six programmable world-space clipping planes (available, in the SiliconGraphics line, on VGX graphics systems and up) to geometrically clip out any parts of the squares that lieoutside the volume. In our case, this involves a small \gotcha". To orient the geometry planes parallel tothe projection plane, we perform the inverse of the current world rotation before drawing them. Since theclip planes use whichever transformation matrix was active when they were de�ned, we need to de�ne theclip planes before this inverse rotation. This way, the clip planes are de�ned in world space, line up withthe rendered image of the volume, and properly clip away parts of the geometry planes which lie outside thevolume. Clipping planes have two related advantages. First, rendering speed increases by about 5.6 timesbecause texture coordinates are not calculated for invalid pixels. The expected speedup from this techniqueis 3p3 = 5.20.The speedup varies because data sets of di�erent sizes take advantage of clipping more or less thanothers. For example, a thin, column-shaped volume will clip more than a cube-shaped one. The secondadvantage is that the region enclosed by the clipping planes may be shrunk so that only a desired subregionof the volume is rendered. Another solution is to clip the planes to the volume yourself and then send theresulting polygons to the graphics system for rendering. Since the clipping planes are so e�cient and easyto implement, we chose to use them.2.2.4 Picking Number of PlanesThe default number of planes is chosen so that when viewed straight on, each data point is sampled by oneplane. Since the world-space distance covered from the �rst to last plane equals d, the length of the diagonalthrough the volume, the default number of planes is thus d=�z. For example a 643 volume with �z = 1would get 110 planes. The rendered images look better as more planes are used. If only a few planes areused relative to the resolution of the data set, some of the sample points may not contribute to the �nalimage at all.Also, with few planes, artifacts are noticeable wherever a clipped edge within a rendered square is visible.(Clipping planes are rotated from world space to screen space by the same rotation as was applied to texturecoordinates.) This is because the transition from inside the clipping region where color is being contributedto the image to outside the plane is abrupt, and the edge shows up. These problems are avoided by increasingthe number of slices. 8

Data Method Slices Bits Interpolation Setup Rendering cp/voltx TotalHipip 643 Voltx 220 12 Trilinear 5.0 sec 1.11 sec 20 6.6 secVoltx 220 12 Point 5.0 sec 0.71 sec 31 5.7 secVoltx 220 8 Point 4.5 sec 0.38 sec 58 4.9 secVoltx 110 8 Point 4.5 sec 0.20 sec 112 4.7 secVoltx 55 8 Point 4.5 sec 0.12 sec 192 4.6 secCP na 22.10 sec 22.1 secTable 1: Times for volume rendering options. (Times are elapsed seconds on a 150 MHz Reality Engine 2,Rendered images are 600x600 pixels, double-bu�ered.)For autorotation, something in the neighborhood of 50 planes allows a fairly smooth realtime animationof textures sized 643, with images covering about 500� 500 pixels. We obtained rendering speeds of about�ve frames per second. Having more planes, of course, slows down rendering.2.2.5 Hardware Texture Map IssuesThe Reality Engine can be set to sample the texture map either using a nearest neighbor method (so-called point interpolation) or a trilinear interpolation. The trilinear method is about 50% slower than pointinterpolation, but gives smoother-appearing images.A �nal hardware consideration is that the texture memory is limited. Our machine allows a maximumsize 3D texture map of two megabytes. This permits a 643 texture map with four channels and 12-bit texels.Larger volumes must be rendered by subdividing them into appropriately sized subvolumes and using thismethod on each of them in back-to-front order. The speed overhead incurred is about one tenth of a secondper texture map to copy the texture from regular memory into texture memory.3 Experimental ResultsWe compared 3D texture-mapped direct volume rendering using our program voltx under di�erent user-settings, and also compared to coherent projection direct volume rendering [WVG91], a relatively fast directvolume rendering method for rectilinear volumes. The user-settings include number of slices (which canalternatively be set by specifying desired distance between planes), 8-bit or 12-bit texture maps, and pointor trilinear interpolation.Table 1 shows our results on the 643 Hipip data set1. As can be seen from the table, trilinear interpolationis about 50% slower than point interpolation, 8-bit textures are about twice as fast as 12-bit textures, anddecreasing the number of slices by half about doubles the rendering speed. However, compared to coherentprojection, any of the volume textured methods examined are admirably fast.An equation approximating the time to render n planes isseconds = n � :001455 � (1 + 1:06 � TwelveBit) � (1 + :63 � Trilinear)where TwelveBit and Trilinear are booleans indicating that 12-bit textures are being used instead of 8-bit,and that Trilinear interpolation is being used instead of nearest neighbor.1Hipip (High Potential Iron Protein) is from Louis Noodleman and David Case, Scripps Clinic, La Jolla, California.9

The best quality image created in the table used enough slices to sample at least twice between eachdata point, with 12-bit textures and trilinear interpolation. Once the texture map was created and loaded,rendering was about 15 times faster than coherent projection. Guaranteeing one slice for each sample pointencountered along any line of sight gives approximately a 100 times speed-up over coherent projection, usingthe faster 8-bit textures and point interpolation. Image quality shows very minimal deterioration. Evenif the texture map must be recreated, because of a change in the transfer function mapping from data tocolors, or a desire for faster or better quality images, the method is several times faster than regeneratingcoherent projection.4 Discussion and ConclusionsVolume texturing is a fast and simple method for direct volume rendering of rectilinear volumes available tothose with appropriate hardware. Images have very good quality. While our implementation presently useseither orthogonal or perspective projection, and stereo viewing can be added easily.AcknowledgementsFunds for the support of this study have been allocated by a cooperative agreement with NASA-AmesResearch Center, Mo�ett Field, California, under Interchange No. NCA2-430, and by the National ScienceFoundation, Grant Number ASC-9102497, and Grant Number CDA-9115268.References[Ake93] Kurt Akeley. RealityEngine graphics. Computer Graphics (ACM SIGGRAPH Proceedings),27:109{116, August 1993.[CCF94] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated volume rendering and tomographicreconstruction using texture mapping hardware. 1994. (submitted for publication).[CN93] T. J. Cullip and U. Newman. Accelerating volume reconstruction with 3d texture hardware.Technical Report TR93-027, University of North Carolina, Chapel Hill, N. C., 1993.[DCH88] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering. Computer Graphics,22(4):65{74, July 1988.[GL94] S. Guan and R. G. Lipes. Innovative volume rendering using 3d texture mapping. In SPIE:Medical Imaging 1994: Images Captures, Formatting and Display. SPIE 2164, 1994.[Kru90] Wolfgang Krueger. Volume rendering and data feature enhancement. Computer Graphics(Proceedings of the San Diego Workshop on Volume Visualization), 24(5):21 { 26, 1990.[Lev88] Marc Levoy. Display of surfaces from volume data. IEEE Computer Graphics and Applications,8(3):29{37, March 1988.[Lev90] Marc Levoy. E�cient ray tracing of volume data. ACM Transactions on Graphics, 9(3):245{261,July 1990. 10

[Lev92] Marc Levoy. Volume rendering using the fourier projection-slice theorem. In Proceedings ofGraphics Interface '92, Vancouver, B.C., 1992. Also Stanford University Technical Report CSL-TR-92-521.[LH91] David Laur and Pat Hanrahan. Hierarchical splatting: A progressive re�nement algorithm forvolume rendering. Computer Graphics (ACM Siggraph Proceedings), 25(4):285{288, July 1991.[MHC90] Nelson Max, Pat Hanrahan, and Roger Craw�s. Area and volume coherence for e�cient visual-ization of 3d scalar functions. Computer Graphics (ACM Workshop on Volume Visualization),24(5):27{33, December 1990.[Sab88] Paolo Sabella. A rendering algorithm for visualizing 3D scalar �elds. Computer Graphics,22(4):51{58, July 1988.[ST90] Peter Shirley and Allan Tuchman. A polygonal approximation to direct scalar volume rendering.Computer Graphics, 24(5):63{70, December 1990.[UK88] Craig Upson and Michael Keeler. The v-bu�er: Visible volume rendering. Computer Graphics,22(4):59{64, July 1988.[VGW93] Allen Van Gelder and Jane Wilhelms. Rapid exploration of curvilinear grids using direct volumerendering. In Visualization 93 Conference, San Jose, CA, October 1993. IEEE. (extendedabstract) Also, University of California technical report UCSC-CRL-93-02.[Wes90] Lee Westover. Footprint evaluation for volume rendering. Computer Graphics, 24(4):367{76,August 1990.[Wil92] Peter Williams. Interactive splatting of nonrectilinear volumes. In Visualization '92, pages 37{44.IEEE, October 1992.[WVG91] Jane Wilhelms and Allen Van Gelder. A coherent projection approach for direct volume rendering.Computer Graphics (Proceedings ACM Siggraph), 25(4):275{284, 1991.
11

