
A Field-ProgrammablePrototyping Board: XC4000 BORGUser's GuidePak K. Chan�UCSC-CRL-94-18April 1994Board of Studies in Computer EngineeringUniversity of California, Santa CruzSanta Cruz, CA 95064abstractThe XC4000 BORG board is a PC-based prototyping board with two\user" FPGAs, two \routing" FPGAs, and a �fth FPGA which implementsthe glue logic for the PC bus. The BORG board is a reusable educationaltool intended for a variety of classes; the BORG board, its toolset, and thereprogrammability of the FPGAs further reduce the time/cost of constructingprototypes using FPGAs. This report documents the design, implementation,and the use of BORG: A Field-Programmable Prototyping Board.�Development of the XC4000 prototyping board is supported in part by National Science Foun-dation Grant MIP-9111607 and Xilinx Inc.



CONTENTS 1Contents1. Introduction 41.1 Field-Programmable Prototyping Boards : : : : : : : : : : : : : : : : : 41.2 What BORG Is? : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41.3 Xilinx XC4000 FPGA parts : : : : : : : : : : : : : : : : : : : : : : : : 71.4 Limits on the number of connections between the FPGAs : : : : : : : 81.5 About this User's Guide : : : : : : : : : : : : : : : : : : : : : : : : : : 82. Installation 92.1 What Do You Need? : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92.2 Software Retrieval and Installation : : : : : : : : : : : : : : : : : : : : 92.3 Hardware Installation : : : : : : : : : : : : : : : : : : : : : : : : : : : 102.4 Testing the BORG Board : : : : : : : : : : : : : : : : : : : : : : : : : 133. Simple Demonstrations 163.1 A Tetris Machine : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 163.2 A Maze Solver Machine : : : : : : : : : : : : : : : : : : : : : : : : : : 174. Principle of Operation 204.1 Status indicators : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 204.2 Stand-alone BORG board : : : : : : : : : : : : : : : : : : : : : : : : : 204.3 BORG board as a Peripheral Device of the PC/XT : : : : : : : : : : : 214.4 Put the BORG Board Inside or Outside the PC? : : : : : : : : : : : : 214.5 I/O Address Mapping : : : : : : : : : : : : : : : : : : : : : : : : : : : 214.6 Memory Mapping : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 244.7 Hardware Interrupt Channel : : : : : : : : : : : : : : : : : : : : : : : : 254.8 DMA Channel : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 264.9 Con�guring the controller X0 FPGA : : : : : : : : : : : : : : : : : : : 264.10 Programming the R1, X1, R2 and X2 FPGAs : : : : : : : : : : : : : : 274.11 Global Reset : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 294.12 Readback : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 294.13 JTAG Boundary Scan : : : : : : : : : : : : : : : : : : : : : : : : : : : 294.14 System Clock and Single Step : : : : : : : : : : : : : : : : : : : : : : : 294.15 On-board SRAM and arbitration : : : : : : : : : : : : : : : : : : : : : 314.15.1 8K�8 SRAM : : : : : : : : : : : : : : : : : : : : : : : : : : : : 314.15.2 Dual-port SRAM arbitration : : : : : : : : : : : : : : : : : : : 324.16 Limits on the Number of Connections Between the FPGAs : : : : : : 33



2 CONTENTS5. Software 355.1 Memory related programs mtest and inspect : : : : : : : : : : : : : : 355.2 Board Wiring test program Scan : : : : : : : : : : : : : : : : : : : : : 365.3 Pin assignment program assign : : : : : : : : : : : : : : : : : : : : : 365.3.1 Projects, Demos and their MCS �les : : : : : : : : : : : : : : : 366. Design ow 386.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 386.2 Details : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 387. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyp-ing Board 457.1 Preface to earlier versions : : : : : : : : : : : : : : : : : : : : : : : : : 457.2 Assign as a Pin Assignment Program : : : : : : : : : : : : : : : : : : : 457.2.1 Place in the design process : : : : : : : : : : : : : : : : : : : : 457.2.2 Command Line Arguments : : : : : : : : : : : : : : : : : : : : 477.2.3 An Environment Variable : : : : : : : : : : : : : : : : : : : : : 487.2.4 Alias Files : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 487.2.5 Rx.info : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 507.2.6 Examples of using assign : : : : : : : : : : : : : : : : : : : : : 537.2.7 Xilinx XC3000 Series Design : : : : : : : : : : : : : : : : : : : 537.2.8 XC4000 Series Design : : : : : : : : : : : : : : : : : : : : : : : 537.3 I/O Speci�cation File : : : : : : : : : : : : : : : : : : : : : : : : : : : 537.4 BORG Wiring File : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 557.5 Theory of ASSIGN : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 557.6 Problem Description : : : : : : : : : : : : : : : : : : : : : : : : : : : : 557.7 Graph Reduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 567.8 Augmentation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 577.9 Main Program Loop : : : : : : : : : : : : : : : : : : : : : : : : : : : : 587.10 Performance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 597.11 BORG wiring connections : : : : : : : : : : : : : : : : : : : : : : : : : 627.11.1 XC3000-series BORG wiring connections : : : : : : : : : : : : 627.11.2 XC4000-series BORG wiring connections : : : : : : : : : : : : 678. Using the Protoboard and Schematic Drawings 718.1 Proto-area, Common Anode LEDs : : : : : : : : : : : : : : : : : : : : 71



CONTENTS 39. Guide to Some Laboratory Experiments 769.1 Creating user I/O ports in R1 : : : : : : : : : : : : : : : : : : : : : : : 769.2 Hardware Interrupt and Interrupt Service Routine : : : : : : : : : : : 809.3 Synchronization Problem : : : : : : : : : : : : : : : : : : : : : : : : : 859.4 Music Lab : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 889.5 DMA Lab : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 949.6 Boundary Scan Lab : : : : : : : : : : : : : : : : : : : : : : : : : : : : 949.7 Possible Term Project Description : : : : : : : : : : : : : : : : : : : : 949.8 Project : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 959.9 Design of a Dr. Mario player : : : : : : : : : : : : : : : : : : : : : : : 979.10 The game environment : : : : : : : : : : : : : : : : : : : : : : : : : : : 979.11 What will be �nalized later? : : : : : : : : : : : : : : : : : : : : : : : : 989.12 Evaluation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 999.13 Your responsibilities : : : : : : : : : : : : : : : : : : : : : : : : : : : : 999.14 Suggestion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 999.15 Initialization of the Bottle : : : : : : : : : : : : : : : : : : : : : : : : : 1009.15.1 Pill encodings : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1009.16 Initialization of the Dr. Mario Machine : : : : : : : : : : : : : : : : : 1019.17 Handshake and Timing : : : : : : : : : : : : : : : : : : : : : : : : : : 10110.Troubleshooting 10211.Acknowledgements 104



4 1. Introduction1. Introduction1.1 Field-Programmable Prototyping BoardsField-Programmable Gate Arrays (FPGAs) provide a medium to accelerate theprocess of prototyping digital designs. For designs incorporating multiple FPGAs,the bottleneck is now the process of wire-wrapping, bread-boarding, constructing aprinted circuit board, or constructing a multi-chip module. In addition to being timeconsuming, these processes cannot be carried out until all FPGA designs have beencompleted (placed and routed), since locking or preassigning I/O pins often preventFPGA place-and-routers from completing the routing.To circumvent this bottleneck, FPGAs can be used as re-programmable intercon-nection chips. The BORG, as shown in Fig. 1.1, is a PC-based prototyping boardthat contains two user FPGAs, two routing FPGAs; a �fth FPGA implements theglue logic to the PC bus.1 To facilitate the design process using the BORG board,algorithms and tools have been developed to aid in the con�guration of the routingFPGAs.The BORG board, its toolset, and the reprogrammability of the FPGAs furtherreduce the time/cost of constructing prototypes using FPGAs. There are two versionsof the BORG boards. Twenty �ve XC3000 BORG boards were built in 1992, and theXC4000 boards were manufactured in March 1994. This document describes theXC4000 BORG board. It documents the design, implementation, and the use ofBORG: A Field-Programmable Prototyping Board.1.2 What BORG Is?The BORG board is a reusable PC-based educational tool intended for classessuch as logic design, advanced logic design, processor design, and introduction toASIC design. The BORG board uses the XC4000 family Field-Programmable GateArrays (FPGAs). The XC4000 FPGAs are reprogrammable, so one BORG board canbe shared by more than one group at the same time. With one XC4002A FPGA onthe board, the BORG board can support a 1,000 gate-count design. When it is pop-ulated with four XC4010D FPGAs, it can accommodate a 40,000 gate-count design.However, the BORG board is not a supercomputer nor a high-performance \generic"processor. Production of 100 BORG boards in March 1994 is generously supportedby Xilinx Inc. Half of the boards produced have been (or will be) distributed for free.2 1P. K. Chan, M. Schlag, and M. Martin, \BORG: A recon�gurable prototyping board using Field-Programmable Gate Arrays," in Proceedings of the 1st International ACM/SIGDA Workshop onField-Programmable Gate Arrays, (Berkeley, California, USA), pp. 47{51, Feb. 1992.2The manufacturing cost of a populated XC4000 BORG board is US$250.00 as of March 1994.Contact dlam@xilinx.com for details.



1.2. What BORG Is? 5You can install the BORG board internally to a PC with XT/ISA bus; it willoccupy one 8-bit XT expansion slot. This is not the most convenient way to use theBORG board. With the help of the protozone adapter card3 which extends the XTbus signal to a 50-pin ribbon cable, the BORG board can be used externally to a PC.The BORG board has 5 programmable FPGAs, and all of them can be pro-grammed by a user. There are two user FPGAs, two routing FPGAs, and a �fthFPGA (X0) that implements the glue logic to the PC bus as illustrated in Fig. 1.2.The glue logic FPGA (X0) is programmed by a serial PROM on power-up. Withthe appropriate setting of one jumper and dip switches on the BORG board, youcan also program X0 with the Xilinx xchecker. The rest of the FPGAs can beprogrammed directly from the PC or by the xchecker hardware and software (seeSection 4.2 of Chapter 4).The PC and the FPGAs can communicate using port I/O, interrupts, the sharedmemory on the BORG, or DMA transfers. Port I/O is the simplest and fastest, whileDMA is the most complicated and surprisingly slow. Just as any other I/O expansioncard (disk controller, parallel port, serial port), you need to map the BORG boardI/O ports, interrupt channels, DMA channels into the PC's valid I/O space, memoryspace, or channel numbers. Section 9.1 of Chapter 4 describes the procedure forconstructing your own I/O ports in the FPGAs, and Section 4.7 illustrates the basicinterrupt structure.There is a built-in dual-ported 8K �8 SRAM on the BORG board. The SRAM isshared between the FPGAs and the PC. Naturally, it is mapped into the PC's memoryaddress space. Access to the SRAM by the PC and user FPGAs is arbitrated by X0.The arbitration can be performed under program control as detailed in Chapter 4.Di�erent designs run at di�erent speeds. With the XC4000-6 speed grade part onthe board, a typical design runs at 8MHz. A 8 MHz TTL clock is supplied on theboard as the system clock. This clock can be further divided down to accommodatelower speed designs, refer to Chapter 4 for details.With multiple-FPGA designs, connecting the signals between the FPGAs is anadditional task that must be incorporated into the design ow. User FPGAs are placedand routed individually, and the I/O (pin) assignments of the individual FPGAs donot ordinarily match the constraints on the board. You can use the tool assign tomatch up the pin assignments so that the signals between the FPGAs are correctlyconnected. Assign is described in Chapter 7, and multiple-chip design ow is inChapter 6.You will have design projects that need components which are not on the BORGboard. For example, you will need operational ampli�ers and a digital-to-analogconverter in conjunction with an FPGA to build a frequency analyzer; or you willneed a piezoelectric buzzer and some transistors to build a digital music synthesizer.A protoarea on the left-hand side of the prototyping board is there to accommodateany extra components.3Developed by Stanford University, Professor Abbas El Gamal's group. Available from |Proto Tools, 3500 Granada Avenue #156, Santa Clara, CA 95051, Attn: Kalon Goodrich. email:kalon@cup.portal.com



6 1. Introduction

Figure 1.1: A portrait of the XC4000 BORG board.



1.3. Xilinx XC4000 FPGA parts 7
X2
R1

R2
X1 X0SRAM

PC BusXC4003APG1208K x 8bitXC40??PC84 XC40??PC84
XC40??PC84XC40??PC84

Figure 1.2: Connections between the user FPGAs, X0 and the PCSome simple laboratory experiments are presented in Chapter 9 to illustrates someuses of the BORG board. Projects which have used the BORG board in the pastinclude Tetris machine, Dr. Mario machine, and a mazer runner.1.3 Xilinx XC4000 FPGA partsThe XC4000 BORG board can be populated with 2 user Xilinx XC4000 familyFPGAs X1 and X2 and 2 routing FPGAs R1 and R2. R1 and R2 connect thetwo user FPGAs together electronically and also provide connections to the 8K�8dual-port SRAM, the PC bus (via X0), and other devices. Figure 1.2 illustrates thebasic concept. We shall refer to R1, X1, R2, X2 collectively as the ASICs.The ASICs can be any one of the XC4000 FPGAs in a 84-pin PLCC package, forexample, XC4002PC84, XC4002APC84, XC4003PC84, XC4003APC84, XC4004PC84,XC4005PC84, and XC4010DPC84 with either �5 or �6 speed grade parts. ThesePLCC packages are pin-to-pin compatible.For introductory-level classes, you may not need all the ASICs. The ASICs canbe extracted from the BORG board using a PLCC-chip extraction tool.



8 1. Introduction1.4 Limits on the number of connections between the FPGAsSome of the I/O pads on R1 and R2 are used to support the dual-ported SRAMand port I/O communications with the PC. Thus although the number of user padsavailable on a 84-pin PLCC package is 54, the maximum number of connectionsbetween X1 and X2 which can be realized with R1 and R2 is 38 , with the plasticjumpers of J11-J23 on the left side.With the plastic jumpers of J11-J23 on the right side, the maximum numberof connections between X1 and X2 which can be realized with R1 and R2 is 32 .Section 4.16 elaborates this limitation further.The BORG board has been tested with a 8MHz PC bus; it has not been testedwith a 33MHz PC bus.1.5 About this User's GuideThis user's guide consists of the following chapters:Chapter 2 describes how to install the software and hardware for the �rst time users,and a 4-step procedure to test the BORG board.Chapter 3 demonstrates two multiple-FPGA designs: a Tetris machine and a mazesolver machine.Chapter 4 describes the detailed operation of the BORG board and its controllerinterface with the PC.Chapter 5 describes some utility programs.Chapter 6 describes the complete design ow using multiple FPGAs, and the soft-ware tools that you will need to use the BORG board with multiple FPGAs.Chapter 7 details the pin asssignment program assign that is essential for designingmultiple FPGAs.Chapter 8 describes the bits and pieces that are needed to use the BORG boardfrom a \hardware" perspective.Chapter 9 suggests a range of projects of varying degree of di�culties.



92. InstallationThis chapter describes how to install the BORG board inside or outside a PC/XT.The hardware and software you will need is listed in Section 2.1 Sections 2.2 and 2.3guide you step-by-step through the installation (and retrieval) of the software, andinstallation of the BORG board, respectively. After the installation, in Section 2.4you will test the functionality of the BORG board. Although the BORG boards weretested by the manufacturer (BAT PC Technology of Milpitas, CA) before shipment,you may want to test your BORG board one more time just to be sure.2.1 What Do You Need?In addition to a PC/XT, you will need internet access to retrieve the softwarepackage and this user's guide(!). You need the following hardware and software touse the BORG board:1. Xilinx XC4000 FPGA core implementation tools.2. An xchecker cable.3. An IBM compatible Personal Computer (PC/XT), with 1 Mbyte of availablestorage space, and an available 8-bit expansion slot.This machine will be used as a prototyping machine.4. Some vacant I/O port addresses on the PC/XT.The default address is 0x30X (0x300 to 0x30F). See Fig. 2.6 for other options.5. Some vacant 8K-byte memory addresses on the PC/XT.The default base address is 0xd0000h. See Fig. 2.6 for other options.Only items #3-5 are required to test the BORG board.2.2 Software Retrieval and InstallationYou need to have internet ftp access. All the software are available by ftp to theinternet depository ftp@cse.ucsc.edu(128.114.134.19). Login as anonymous and useyourname@your.host.name as the password (for our records).% ftp ftp@cse.ucsc.eduftp > user anonymousConnected to ftp.220 ftp FTP server (Version wu-2.1c(13) Fri Feb 18 10:49:37 PST 1994) ready.ftp> Name: anonymousftp> Password: yourname@your.host.nameftp> cd pubftp> cd borgftp> binaryftp> get borg.zipftp> get pkunzip.exeftp> quit



10 2. InstallationAt this point you have obtained the BORG distribution borg.zip in zip format, anda public domain program pkzip to unpackage the distribution. Transfer both �les toyour PC. Now assuming the �les you ftp'ed are on drive A:, on your PC doC:> mkdir borgC:> cd borgC:> copy a:pkzip.exeC:> copy a:borg.zipC:> set borg=0x300C:> pkunzip -d borg.zipDon't forget the \-d" option. Compare the result of the directory listing below.C:> dir/wwith the following �les and directory[.] [..] BD.EXE SCAN.EXE ASSIGN.EXEMTEST.EXE TESTME.BAT INSPECT.EXE CLOCK.EXE MAZE.EXEARBIT.EXE SETASSIG.BAT [DESIGN] #README PORTEST.EXE[EMPTY] BSCAN.EXE [MCS] ISR.COM INTPC.EXECLEAR.EXE [ASSIGN] [SRC] DEFAULT.EXE TETRIS.EXE25 file(s) ?????? bytesCongratulations, you have successfully installed the package if there are no discrep-ancies.2.3 Hardware InstallationFigure 2.1 illustrates the location and function of the BORG board components.For this installation, you need to locate jumpers J3, J11-J23 and J24, and the red dipswitches SW1 and SW2.If you DO NOT have a protozone adapter card, then you will install the BORG boardin add-in mode as follows:1. Turn the PC power o� .2. Set the dip switches SW1 and SW2 on the BORG board according to Fig. 2.5.3. Place the plastic jumpers at locations J11-J23 and J24 on the two left pins (thetwo pins closest to the proto-area) as in Fig. 2.5.4. Plug the BORG board card into a PC expansion slot as shown in Fig. 2.4.5. Turn the PC power on .6. Go to Section 2.4.



2.3. Hardware Installation 11PROMSW1f pge ba cd f pge ba cd J10DoneLEDFPGAs
J11-J23 select connection between R2 and other FPGAs(plastic jumpers on LEFT: FPGAs)or from R2 to dual-port SRAM(plastic jumpers on RIGHT: to memory)

� SW2J45
protoarea a bcef gd R1X2 X1R2 50-pin connector to protozone card

user FPGAs R1, X1, R2, X2XC4000 series PLCC84 package (divided by X0)8MHz system clock
GCLOCKpower onLEDxchecker downloadfor X0X0DoneLEDfor other

8K � 8 SRAMaccessible by PC and R2 74245 TTL bu�ers
xchecker download forR1, X1, R2, X2 FPGAscommon anodeLEDs PROM to program X0 (default)Jumper to control X0programming modesingle step(move jumperof J10 to left) SW5J24RESET Power ONfuse2AX0

Figure 2.1: BORG board and some of its features.If you DO have a protozone adapter card, then you can install the BORG board inhost mode as follows:1. Turn the PC power o� .2. Set the dip switches SW1 and SW2 on the BORG board according to Fig. 2.3.3. Place the plastic jumpers at locations J11-J23 and J24 on the two left pins (thetwo pins closest to the proto-area) as in Fig. 2.3.4. Plug the protozone adapter card into a PC expansion slot.5. Connect the protozone adapter card to jumper J3 of the BORG board usingthe 50-pin at ribbon cable accompanying the protozone card as illustrated inFig. 2.2.6. Turn the PC power on .7. Go to Section 2.4.



12 2. InstallationBORGBoard IBM compatiblepersonal computer
50-wire ribbon cable

expansion slot in a personal computer
protozone adapter card

Figure 2.2: Using the BORG board in host mode.
J11J23 Put plastic jumperson the left side of J11 to J23

ON SW5
Host mode: BORG board externalto the PC

J24Put plastic jumperson the left side of J24OPEN1 2 3 4 5 6 7 8OPEN1 2 3 4 5 6 7 8SW1 SW2downup OPENNote: two di�erent switch positionsCLOSED

Figure 2.3: Setting for testing BORG board (host mode) with port address0x30X and memory based address 0xd0000h.



2.4. Testing the BORG Board 132.4 Testing the BORG BoardThese tests require:� I/O port addresses: 0x30X (0x300 to 0x30F) must be vacant. These are thedefault I/O port addresses. See Fig. 2.6 for other options.� Memory address: Also the 8K-byte memory addresses with base address0xd0000h must be vacant. See Fig. 2.6 for other options.Now, take the following steps:1. Slide SW5 to ON to supply power to BORG board2. LED1 & LED2 of BORG board should turn ON, and LED3 should be OFF. Ifnot, proceed to the diagnostics in Chapter 10 after checking that the jumperJ24 is correctly positioned.3. Run the bd program as shown below:C:> bd mcs\scan.mcsWait for LED3 to turn ON (this will take a few seconds and all three LEDsLED1, LED2, and LED3 will be ON). If not, proceed to the diagnostics inChapter 10.4. Run the scan program as shown below:C:> scanIt should report:Board scan test done.Datain -> 0Board test passed. Accept BORG board.If not, proceed to the diagnostics in Chapter 10.5. Run the memory test program as shown below:C:> mtestIt should report:Finished 8192 bytes. Total errors 0.If program does not report 0 errors, then proceed to the diagnostics in Chap-ter 10 after checking that jumpers J11-23 are correctly positioned.The tests which you have just completed exercise all of the connections between theFPGAs and most (but not all) of the components on the BORG.



14 2. Installation
IBM compatiblepersonal computer

BORGBoard expansion slot in a personal computer
Figure 2.4: Using the BORG board in add-in mode.

J11J23 Put plastic jumperson the left side of J11 to J23
ON SW5J24Put plastic jumperson the left side of J24OPEN1 2 3 4 5 6 7 8OPEN1 2 3 4 5 6 7 8SW1 SW2downup OPENNote: two di�erent switch positionsCLOSED

Add-in mode: BORG boardinside the PCFigure 2.5: Setting for testing BORG board (add-in mode) with port address0x30X and memory based address 0xd0000h.



2.4. Testing the BORG Board 15
switch positionsNote: two di�erentdownup OPENCLOSED

1 2
3 4PC has exclusiveaccess to dual-portSRAMof R1 FPGAcontrols M0, M1default isperipheral mode 3 I/O mappingport addressaddress 0x30Xuse protozonehost card

change it toslave mode forxcheckerdownload
X0 notpowerdown 2 3 4

PROMSW1f pge ba c d f pge ba cd J10
4PC slotdirectlyboardinto aBORGplug power-down7X0 8 1change it toslave modedownloadfor xcheckeraddress0x31Xaddress0x20Xaddress0x21X65 65 65

5 6 7 8
5 6 7 80xa0000h2 3 4A18 A17A162 3 4A18 A17A160xb0000h2 3 4A18 A17A160xc0000h
interruptdisabledOPENSW1 1 2 OPENdefaults: 5 6

options: access can also bedetermined underprogram controlFPGA hasaccess todual-portSRAM
7

blocking PCaccess base address0xd0000hmemory mappingSRAM18
� SW2J45protoarea a bcef gd R1X2 X1R2 GCLOCK X0 SW5J24
controls M0, M1of X0 FPGAmaster serialmode

SW2
interruptenabled(selecte.g. IRQ5etc one only)Figure 2.6: Defaults and Options of the BORG board.



16 3. Simple Demonstrations3. Simple Demonstrations3.1 A Tetris MachineIn this demonstration we shall download a Tetris machine which is a multiple-chipdesign. It uses the X1 and X2 FPGAs for logic, R1 and R2 FPGA for routing. ThisTetris machine is realized with approximately 150 XC4000 CLBs. A program runningon the PC displays the Tetris bucket (Fig. 3.1) and communicates with the Tetrismachine running in the ASICs using port I/O. The program randomly draws a tiletype and presents it to the Tetris machine. The Tetris machine determines how torotate and move the tile before the tile drops. The Tetris machine uses the XC4000\on-chip" RAM for keeping track of the Tetris bucket; it is not using the dual-portedSRAM on the BORG board.For this demonstration, the BORG board can be either installed in the add-in mode or host-mode with the default settings as given in Fig. 2.4 or Fig. 2.2,respectively. If the required settings are not as prescribed for your installation mode,please set them as described in Section 2.3 now. This demonstration requires I/Oport addresses 0x30X (0x300 to 0x30F) to be vacant. These are the default I/O portaddresses. See Fig. 2.6 for options to change the I/O port mapping.Next tile
Figure 3.1: A Tetris bucket and some of its tiles.Important: This Tetris demo requires that your PC is preloaded with theansi.sys device driver. If this is not the case, the problem can be corrected byincluding this line in your config.sys �le, and rebooting your machine.DEVICE=C:\DOS\ANSI.SYS



3.2. A Maze Solver Machine 171. Download the mcs �le of the Tetris machine, by typingC:> bd mcs\martine.mcsObserve that the DONE indicator LED3 should turn o� and then ON again,indicating all ASICs are programmed.2. Exercise the Tetris machine by typingC:> tetrisTerminate the program with ^C and clean up the screen by using the suppliedprogram clear. If your screen is all messed up now, this means that your PCwas not running the ansi.sys device driver.3.2 A Maze Solver MachineThe mazer machine is a multiple-chip design which solves a maze. The machineuses the R1 and R2 FPGAs for logic, and X1 and X2 FPGAs for routing (not amistake). This maze machine is realized with approximately 120 XC4000 CLBs. Ituses 2K bytes of the on-board (dual-ported SRAM) SRAM for keeping track of themaze.For this demonstration, the BORG board can be installed either in add-in modeor host-mode with the required settings as given in Fig. 3.2 or Fig. 3.3, respectively.If the required settings are not as prescribed in these �gures, please set them this waynow. Note that jumpers J11-J23 are set to the right which is not the default settingthat was given in Section 2.3. This demonstration requires I/O port addresses 0x30X(0x300 to 0x30F) to be vacant. These are the default I/O port addresses. See Fig. 2.6for options to change the I/O port mapping.Important: This mazer demonstration requires that your PC is preloaded withthe ansi.sys device driver. If this is not the case, the problem can be corrected byincluding the following line in your config.sys �le, and rebooting your machine.DEVICE=C:\DOS\ANSI.SYSImportant: You need to block the PC's access to the dual-ported SRAM byusing the programC:> arbit xilinxThis gives the R2 FPGA exclusive access to the dual-ported SRAM.



18 3. Simple DemonstrationsJ24ON SW5downup OPENNote: two di�erent switch positionsCLOSED
J11 Host mode: BORG boardexternal to the PCJ23 OPEN1 2 3 4 5 6 7 8OPEN1 2 3 4 5 6 7 8SW1 SW2 on the left side of J24Put plastic jumpersPut plastic jumpersof Jumpers J11 to J23on the RIGHT sideJ22Figure 3.2: Setting for running Maze machine with the BORG board in hostmode, with port address 0x30X and memory based address 0xd0000h. ON SW5J24OPEN1 2 3 4 5 6 7 8OPEN1 2 3 4 5 6 7 8SW1 SW2Add-in mode: BORG boardinside the PC

on the left side of J24Put plastic jumpersdownOPENNote: two di�erent switch positionsupCLOSED
Put plastic jumperson the RIGHT side ofjumpers J11 to J23J23J11J22Figure 3.3: Setting for running Maze machine with the BORG board in add-in mode, using port address 0x30X and memory based address 0xd0000h.



3.2. A Maze Solver Machine 19Please follow the given steps:1. Download the mcs �le of the maze machine, by typingC:> bd mcs\maze.mcsObserve that the DONE indicator LED3 should turn o� and then ON again,indicating all FPGAs are programmed.2. You can exercise the maze machine by typingC:> mazeThis program displays a randomly generated maze with one exit (character %).Starting from a randomly chosen location (the origin), the mazer (@) runs themaze in two passes. In the �rst pass, the mazer traverses and explores the maze.When the mazer reaches the exit, it is teleported back to the origin. On thesecond run the mazer tries to reach the exit in record time.---------------------| | ^- | | --- ----- --- -----| | | | | | | || |.| | | --- | --- ----- ||%.@| | | | |--------------------- ----Level 2 maze. Total moves 108You may terminate the program with ^C and clean up the screen by using thesupplied program clear. If your screen is all messed up now, this means thatyour PC was not running the ansi.sys device driver.



20 4. Principle of Operation4. Principle of Operation4.1 Status indicatorsThere are three LEDs on the BORG board which indicate the status of the FPGAsand the board.POWER This LED (LED1 rightmost LED on the top) indicates that the BORGboard has power.X0 This LED (LED2) indicates that the PC/XT bus controller FPGA X0 is con�g-ured.DONE The DONE pins of the user FPGAs R1, X1, R2, X2 are tied together tothe DONE LED (LED3) to indicate that the four user FPGAs (ASICS) arecon�gured.There are also two common-anode seven segment displays and two common-anodefour-bar LEDS in the proto-area that can be used to monitor additional signals.4.2 Stand-alone BORG boardYou can use the BORG board in the same way as the Xilinx XC4000 demo board.This is the simplest but not the best way to use the BORG board. In this mode,you can use the four user XC4000 FPGAs. To use the BORG board as a stand-aloneboard, you must1. set position pdwdwn of the BORG board to open, this disables (power downs)the X0 controller.2. connect an xchecker cable to jumper J8,3. set position m0r1 of DIP switch SW1 to open,4. set position m1r1 of DIP switch SW1 to open, and5. supply power (+5V) to the board via jumper J5.Steps 3 and 4 have just put R1 into slave mode. For programming the FPGAs,use the xchecker program and cable. The FPGAs are daisy-chained in the followingorder: R1 -> X1 -> R2 -> X2This means the Dout (Data out program pin) of the �rst FPGA R1 is connectedto the Din of the second FPGA X1 and so forth so on. Their DONE pins are tiedtogether. LED3 turns to red if the four FPGAs are successfully programmed.If you need only one FPGA, you must use the R1 FPGA. You can either extractthe rest of the FPGAs with a PLCC extractor tool made by a company called AUGAT,or download the rest of the FPGAs with \empty" bit streams. You can �nd null bitstreams for the individual FPGA types in the distribution package under the directoryempty : em4002a.bit em4003a.bitImportant: You need to \concatenate" the bit streams of the individual FPGAsfor download, by using the Xilinx makeprom program.



4.3. BORG board as a Peripheral Device of the PC/XT 21makeprom -o design.mcs -u 0 myr1.bit em4003a em4002a em4003aThis example assumes that your design bit stream is in the bit �le myr1.bit.4.3 BORG board as a Peripheral Device of the PC/XTThe BORG board is just like any other PC/XT peripheral cards; it interfaces withthe PC/XT via port I/O, memory map, interrupt, and DMA. The next few sectionswill guide you to map the BORG board into the PC vacant and valid I/O addressspace and memory address space, interrupt and DMA channels.Also, the BORG board draws its power from the PC's power supply. You don'thave to worry, because most PCs have 150 Watt to 250 Watt power supply. TheBORG board consumes approximately 5W of power. There is also a 3-Ampere fuseon the BORG board, just in case.For now, you should study Fig. 2.6 to identify the locations of jumpers, switchesand reference designators on the BORG board.4.4 Put the BORG Board Inside or Outside the PC?The BORG board has two modes of installation. You can install the BORG boardinside or outside a PC; we refer the �rst option as add-in mode and the latter as hostmode.Add-in mode The BORG can be plugged into a PC/XT expansion slot, as illus-trated in Fig. 2.4. This has the disadvantage that the FPGAs' signals areinaccessible. But you can use a PC/XT signal extension card to accommodatethe BORG card. The extender card is recommended since it allows easier accessto signals on the BORG board.Host mode Alternatively, with the Protozone 1 host card in an PC/XT expansionslot and a 50-wire at ribbon cable from the protozone host card plugged intoconnector J3, the BORG board can be used outside the PC, as illustrated inFig. 2.2.4.5 I/O Address MappingMinimally, the BORG board must be mapped into some vacant locations in thePC/XT's I/O address space. The BORG board's controller X0 has four prede�nedI/O ports for maintaining the vital communication with the PC to support download-ing bitstreams. We call these I/O ports X0ports .You can build additional I/O ports to support your design in the R1 FPGA. Ina \typical" PC con�guration, you will �nd that the I/O addresses from 0x300 to0x30F are vacant. Examples of occupied I/O address locations are 0x378 and 0x2F8which are the printer port LPT1 and serial port COM2, respectively. There are1A. El Gamal, \Protozone: The PC-Based ASIC Design Frame, User's Guide," Tech. Rep.SISL90-???, Stanford Information Systems Laboratory, Stanford University, Aug. 1990.



22
4.PrincipleofOperationBD0

WPORTD

ADDRESS_PAD
ADDRPAD

RAMSEL
A6
A5
A4
A3
A2
A1
A0

BSCAN

BSCAN

COMPARE4

EQU

B3
B2
B1
B0

A5
A4

A3
A2
A1
A0

memory

mapping

DMA>

IBUF
PAD

PAD

TC

DACK

OR2

C

D Q

FD

OBUF+5

VCC

IBUF

DACK>

TC>

PULLDOWN

PWRDWN>

PAD

OBUF PAD

IBUFclock

CLKGEN

CLKSW1

CLK

CK

CLKSW0

divider

M

CMUX

TDO_PC
RAMSEL

RAM7
RAM6
RAM5
RAM4
RAM3
RAM2
RAM1
RAM0

R1
R0 O7

O6
O5
O4
O3
O2
O1
O0

DIR

D7
D6
D5
D4
D3
D2
D1
D0

bidirectional

U

X

RAM
data

PAD

RAMPADS

OE
BP7
BP6
BP5
BP4
BP3
BP2
BP1
BP0

BD7
BD6
BD5
BD4
BD3
BD2
BD1
BD0

after configuration: INTPC
during configuration: RDY

shared pin

RDY>

IBUF

PULLDOWN

PADA = B ?

I/O Mapping
COMPARE8

B7
B6
B5
B4
B3
B2
B1
B0
A7
A6
A5
A4
A3
A2
A1
A0

EQUAL

BD2

default
control by
PC has
control
SRAM
dual-port

OBUF
FAST

PAD

S
E
T
_
C
L
K

P
R
O
G

A
R
B
I
T

S
E
T
_
A
R
B

C
L
K
S
W
0

C
L
K
S
W
1

B
S
C
A
N

I
N
I
T

BD4

CLKSW1

C

CE

D Q

SD

FDSD

CLKSW0

IBUF BD7
BD7>

BD6

INIT=S

C

CE

D Q

SD

FDSD

C

D Q

FD

C

D Q

FDAND2

OBUF

AND2

OR2B1
AND2

GSR

GTS

CLK

Q2

Q3

Q1Q4

DONEIN

STARTUP

OR2

IBUF

PORTDEC

PORTA
BIOR

BA3

BA0
EQUAL

PORTB
PORTC
PORTDBA1

BA2

BIOW

DECODE

XW

XR

WRITE

READ

EQUAL EQ

DECODE

XW

XR

WRITE

READ

EQUAL EQ

FAST

PAD

PAD

OBUFT

OBUFT

TDO>

OBUFT FAST

PADBMEMW

SEL

BMEMR

BIOW
IBUF

BIOR

RAMSEL
XMEMR

XMEMW

OR2

IBUF

PB

PAD

OBUFNAND2

PULLUP

IBUF

CONFI
OBUFT

BIOW

INT INTPC>

PORTC

PORTC
PROG
WS

PROG>

PAD

PORTB

BD1
BIOW PAD

INIT

WS>

BIOR
BIOW
BA3
BA2
BA1
BA0
EQUAL

FAST

PAD

RAMSEL2>

OBUFT

OBUFT

OBUFT

OBUFT

OBUFT

OBUFT

OBUFT

BD0>

OBUFT

BAEN

AND2

PULLUP

IBUF

IBUF

FAST

PAD

BMEMW>

IBUF

FAST

PAD

FAST

PAD

BMEMR>

BD1

BD2

TDO

BD3

OBUF

PORTIO

MEMACCESS

DIR>

IBUF

B2>

B1>

B3>

B4>

B5>

B6>

B7>

PULLUP

PULLUP

PULLUP

PULLUP

PULLUP

PULLUP

B0>

BD2

GND

BD1

PAD

RESET>

PAD

OBUF

RESET

AND2

IBUF

BA6>

BA8>

BA7>

BA8IBUF

BA7

BA6

BA4

BA0

BUF

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

BIOR

IOA0

IOA1

BA0

IBUF

BA0>

BA1

IBUF

BA1>

BA2

IBUF BA3

IBUF BA4BA4>

IBUF

BA16

IBUF BA17

IBUF

BA17>

BA18

IBUF

DONE>
B7

DONE
DONE

IBUF

BORG
UC SANTA CRUZ

I

DRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4

Pak K. Chan

I

XIOW

BIOW

INIT

IBUF

BP0

RAMD7
RAMD6
RAMD5
RAMD4
RAMD3
RAMD2
RAMD1
RAMD0

RAMD0

RAMD7
BD6
BD5
BD4
BD3
BD2

BD0

B0

BA18>

BA16>

OBUF
EQUAL

IBUF

BD1
BP1

BD1>

B2

IBUF

XIOR>

PAD

PAD

BA2>

BD0
B0

B1
BD1

BD3
B3

IBUF

BD4
B4

BD5
B5

IBUF

BD6
B6

BD7
B7

IBUF
BP7

BD6
BP6

BD6>
IBUF

BD5
BP5

BD5>
IBUF

BD4
BD4>

IBUF

BD3
BP3

BD3>
IBUF

BD2
BP2

BD2>

BP4

BA5>

BA19>

SW16>

SW17>

SW18>

IBUF

BA5

IBUF

IBUF

BA19

Top-Level Diagram

BIOR>

BP0
BP1
BP2
BP3
BP4
BP5
BP6
BP7

B1
B2
B3
B4
B5
B6

BA3>

RAMD5

RAMD1
RAMD2
RAMD3
RAMD4

RAMD6

BIOR

CLKOUT>

XIOW>

XIOR

PORTIO
BIOW>

OR2

Sheet 1/8PART=4003APG120-6

BORG II 4K BOARD CONTROLLERX0

RDY-INT

IOA1

IOA0

BA5
BA4

BA9
BA8
BA7
BA6

HOST

BUFGP

CLK_PAD>

IOA1>

IOA0>

IBUF

IBUF

IBUF

I
/
O
 
P
a
d
s
 
T
o
/
F
r
o
m
 
R
A
M

BMEMW

BIOW

BA9>

BAEN>

IBUF

SW18

SW19

PAD

BAEN

BA9

OBUFT

IBUF

PAD

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

FAST

PAD

CONFI

XMEMR

RAMSEL

From Xilinx R1

IBUF

IBUF

OBUFT

FAST

PAD

OBUFT

FAST

PAD

OBUFT

FAST

PAD

OBUFT

FAST

PAD

OBUFT

FAST

PAD

FAST

PAD

IBUF

OBUFT

FAST

PAD

IBUF

PULLUP

OBUFT

FAST

PAD

PULLUP

EN245>

OBUF

AND2

BD7
XMEMW

PAD

ASIC>

BIOW
BIOR
BA19
BA18
BA17
BA16
SW19
SW18
SW17
SW16

OR2B1HOST

HIGH_EQU
SEL

EQUAL

TDO of others
access thru PORTC

RDY

PAD

PAD

TDO_PC>

TDO_PC

OBUFT

PB>

PAD

MEMACCESS
RAM_CS>

PAD

TDO

OBUFT

TCK

TCK>

TMS>

TMS

FAST

PAD

RAMSEL2

IBUF

INV

RDY-INT

C

CE

D Q

SD

FDSD

C

CE

D Q

SD

FDSD

BD5

WPORTA

BSCAN
INIT

BD7

WS
PROGPORTB

PORTA

CONF
BIOW
BD1

CONFIG

BD6
PORTD

PORTD

BD7

WPORTA

INV

BD3

ASIC

AND2

INV

From PC ISA Bus

BD0

CLK

IBUF

PAD

BA2
BA3

BA1

BA6
RAMSEL

BA5

the same pin
are sharing
RDY and INTPCD6D5D4D3D2D1D0

WPORTA
BIOW

OR2

Peripheral Mode

D7

April 17, 1993

AUG 28, 1993 REV1

PAD

HOST>

IBUF

HOST

PORTA

RAMSEL2

SW17

SW16

FAST

PAD

PADneed to change

this part for DMA

PORTA

BORG (4/26/94)

Figure4.1:X0Top-levelschematicdrawingoftheX0controlleroftheBORG
board.



4.5. I/O Address Mapping 23provisions to modify the I/O mapping to suit your needs. Referring to Fig. 4.1 for thetop-level schematic of the X0 controller. You will �nd that the module compare8decodes address A4-A9 and the settings of the DIP switch SW2 positions IOA0 andIOA1 to determine the I/O mapping. The XT bus active-low signal baen is used onlyin add-in mode (host=1), as illustrated in Fig. 4.2.compare ---> 1 IOA0 0 0 0 IOA1 0 0 X X X Xwith | | | | | | | |I/O ---> BA9 BA8 BA7 BA6 BA5 BA4 0 (host & baen) BA3 BA2 BA1 BA0addresses Figure 4.2: I/O Address Decoding in X0.So the the comparator's output is asserted when address lines BA8 and BA4 matchthe setting of positions IOA0 and IOA1 of DIP switch SW2. The least signi�cant fouraddress lines BA0-BA3 are decoded in X0, but only the lower 4 I/O locations aretaken by X0 controller. The I/O mapping is listed in Table 4.1. Also, the addresslines BA0-BA3 are provided as inputs in R1, and must be fully or partially decoded inR1 to avoid conict with the ports in the X0 controller. You should consult Section 9.1for further information on building your own I/O ports in the R1 FPGA.IOA0 IOA1 addresses0 0 0x20X0 1 0x21X1 0 0x30X1 1 0x31XTable 4.1: I/O mappings of BORG board (note: IOA=0 means switch isclosed, IOA=1 means switch is open, and X is a don't-care).Important: Referring to Fig. 4.1, the BORG board's controller X0 has four pre-de�ned I/O ports de�ned in the module portdec for maintaining the vital communi-cation with the PC to facilitate downloading bitstreams. We call them X0ports . Sodepending on the settings of positions IOA0 and IOA1 of DIP switch SW1, X0ports'port addresses in X0 are given in Table 4.2. The functions of the X0ports are givenin Table 4.3. I/O Ports IOA0 IOA1 addressesPORTA,B,C,D 0 0 0x200 to 0x203PORTA,B,C,D 0 1 0x210 to 0x213PORTA,B,C,D 1 0 0x300 to 0x303PORTA,B,C,D 1 1 0x310 to 0x313Table 4.2: Occupied I/O addresses in X0.



24 4. Principle of OperationX0port FunctionPORTA set control functions of other portsand SRAM arbitrationPORTB download bit streamsPORTC read port (contains a zero)PORTD boundary scan and global resetTable 4.3: Functions of I/O ports (X0ports) in X0.As shown in Table 4.4, the I/O signals - IOR, IOW, A0, A1, A2, A3, D0-D7 areavailable to the R1 FPGA. Port I/O is the simplest way for the BORG board tocommunicate with the PC. The C library functionsinportb(port)outportb(port, byte)can be used for reading and writing the ports, respectively.The I/O read and write signals: XIOR and XIOW have already been decoded byX0 to ensure that the I/O signals IOR and IOW are directed towards the BORGBoard. (The decoding is controlled by switch positions IOA0 and IOA1 of the DIPswitch SW1.) Four of the 16 available ports are used by X0 as described. This leaves12 port addresses available for the R1 FPGA to communicate with the PC.Signal Pin # of R1 FPGAINTERRUPT 70A0 83A1 81A2 82A3 80XIOR 51XIOW 50D0 71D1 69D2 67D3 65D4 61D5 59D6 58D7 56Global Clock 13Global RESET 10Table 4.4: System signals available to R1.4.6 Memory MappingThe dual-ported SRAM (U2) can be accessed by your PC/XT if the SRAM isproperly mapped into the PC/XT's vacant memory address space.In the host mode, the mapping is determined by the setting dip switch SW2 ofyour protozone adapter card, please consult your Protozone adapter card user's guide.



4.7. Hardware Interrupt Channel 25In the add-in mode, you can control the mapping with switch positions A18, A17,and A16 of DIP switch SW2 (on the BORG board) which set the equality comparisonwith the PC address lines A19, A18, A17, A16. In either case, for dual-port access,the 8K dual-port SRAM 6116 (U2) must be mapped into a block of locations in yourPC upper memory area (UMA). UMA are higher than 640K and less than 1024K inthe memory address space.Finding vacant locations is tricky. Typically, this can be either locations with basememory address 0xd0000 or 0xe0000. Table 4.5 shows a typical high memory mapin DOS. A19,A18,A17,A16 Typical usageF System BIOS (ROM)E probably not used ?D probably not used ?C Network Adapter, Video ROM, HD controllerB Video RAMA Video RAMTable 4.5: Typical UMA address map in a PC computer.If your PC is using DOS 5.0 or higher, there may also be a problem if thememory manager is using some of the upper memory area to accommodate your devicedrivers (e.g., mouse, ansi.sys etc). You can avoid memory conicts by commenting\DOS=HIGH" out from your config.sys, and also avoiding the use of \loadhi"commands. At any rate, do the following in DOS 5.0 (or higher) to display a memorymap and �nd an area that is vacant to accommodate the 8K dual-port RAM.C:> mem /por C:> mem /cYou should consult Section 4.15 for further information on arbitrating the dual-port SRAM.4.7 Hardware Interrupt ChannelPin 70 of the R1 FPGA is connected to hardware interrupt channel of your PC/XT.The IBM PC AT and PC/XT computers have di�erent channel assignments, so becareful. Table 4.6 shows a typical hardware interrupt channel in a PC AT computer.You can enable an interrupt channel by the DIP switch SW2 on the BORG board.If you are in add-in mode, you can select either IRQ3, or IRQ5, or IRQ7, or IRQ9 bythe DIP switch SW2 to enable interrupt; or none to disable an interrupt. Make surethat the channel you chose is not in conict with other devices in your system, forexample, a serial mouse uses IRQ4; and IRQ5 may be used by a printer in LPT2.



26 4. Principle of OperationHardware Interrupt Vector DescriptionIRQ0 0x08 System TimerIRQ1 0x09 Keyboard InterruptIRQ2 0x0A unused connect to another 8259A chipIRQ3 0x0B serial port COM2IRQ4 0x0C serial port COM1IRQ5 0x0D parallel port LPT2 in PC/AT (hard disk in PC/XT !)IRQ6 0x0E oppy disk controllerIRQ7 0x0F parallel port LPT1IRQ8 0x70 real time clockIRQ9 0x71 (0x0A) rerouted to IRQ 2IRQ10-IRQ15 PC/AT onlyTable 4.6: Typical hardware interrupt channel in a PC AT computer.If you are in host mode, you need to select the interrupt channel in the protozoneadapter card. You can use a lab given later in Section 9.2 as a guide to write interruptservice routine, and the use the hardware interrupt feature.4.8 DMA ChannelYou need to change the default design of the controller X0 to practice DMAtransfer using the BORG board, and you must use the protozone adapter card inorder to use DMA. The protozone adapter card's DMA channel is designed for anPC/AT computer. Also, you need to select the proper DMA channel in the protozoneadapter card.Three DMA related signals: terminal count expire (TC), DMA request (DMA),DMA acknowledge (DACK) are availble in X0 for you to build your own DMAcontroller.You can follow a lab given later in Chapter 9 as a guide to use the DMA feature.4.9 Con�guring the controller X0 FPGAMaster serial mode : By default, the controller X0 (U1) is programmed by asmall serial PROM xc1765D (in U3) using the master serial mode. To set X0 to thismode:1. shunt J24 on the left side with a plastic jumper,2. set position m0x0 of dip switch SW1 to closed, and3. set position m1x0 of dip switch SW2 to closed.Slave mode : Alternatively, customize your own controller by programming X0in the slave mode using the Xilinx xchecker cable via J9. To set X0 to this mode:1. shunt jumper J24 on the right side with a plastic jumper,2. set position m0x0 of dip switch SW1 to open, and3. set position m1x0 of dip switch SW2 to open.



4.10. Programming the R1, X1, R2 and X2 FPGAs 27In either case, the light emitting diode LED2 turns to green when X0 is successfullyprogrammed.4.10 Programming the R1, X1, R2 and X2 FPGAsFor programming purpose, the FPGAs R1, X1, R2, and X2 are daisy-chained,which means the Dout of the �rst FPGA R1 is connected to the Din of the secondFPGA X1 and so forth so on. Their DONE pins are tied together.The R1 FPGA can be programmed either in peripheral mode or slave mode; theother three X1, X2, R2 FPGAs are always con�gured in the slave serial mode. Since,the mode pins M0, M1 and M2 pins of X1, R2, and X2 are tied to vcc, this putsthem into daisy chained slave programming mode with the R1 FPGA as the master.Remember: R1 -> X1 -> R2 -> X2This means the Dout of the �rst FPGA R1 is connected to the Din of the secondFPGA X1 and so forth so on. Their DONE pins are tied together.Important : You need to \concatenate" the bit streams of the individual FPGAsfor download. You do so by using the Xilinx makeprom program, see the next twoparagraphs.If you need only one FPGA, you must use the R1 FPGA. You can either extractthe rest of the FPGAs with a PLCC extractor tool made by a company called AUGAT,or �ll the rest of the FPGAs with \empty" bit streams. You can �nd null bit streamsfor each of the individual FPGA types in the distribution package under the directoryempty : em4002a.bit em4003a.bitUse them to generate a single mcs �le of your design along with the bit stream ofyour design in the R1 FPGA (say: myr1.bit) using the Xilinx makeprom utility:makebits myr1makeprom -o design.mcs -u 0 myr1.bit em4003a em4002a em4003aTo use the R1 FPGA in the peripheral mode, you set both positions m0r1 andm1r1 of DIP switch SW1 to open and closed, respectively. The bit streams tocon�gure the FPGAs are downloaded via the 8-bit PC databus sent by the supplieddownload program bd. LED3 (DONE) turns to red if the FPGAs are successfullyprogrammed.c:> bd design.mcsTo use the R1 FPGA in the standalone mode, refer to Section 4.2.



28 4. Principle of Operation
35 36 37 38 39 40 44 45 46 47 48 49 50 51 5657585960616265666768

6972717010 9 8 7 6 5 4 3 84 83 82 81 80 79 78 77 75DOUTDINRESET14161718192023242526282927
13 CLK15 TDITCK TDOTMS

35 36 37 38 39 40 44 45 46 47 48 49 50 51 5657585960616265666768
6972717010 9 8 7 6 5 4 3 84 83 82 81 80 79 78 77 75DOUTDINRESET14161718192023242526282927

13 CLK15 TDITCK TDOTMS 35 36 37 38 39 40 44 45 46 47 48 49 50 51 5657585960616265666768
6972717010 9 8 7 6 5 4 3 84 83 82 81 80 79 78 77 75DOUTDINRESET14161718192023242526282927

13 CLK15 TDITCK TDOTMS

35 36 37 38 39 40 44 45 46 47 48 49 50 51 5657585960616265666768
6972717010 9 8 7 6 5 4 3 84 83 82 81 80 79 78 77 75DOUTDINRESET14161718192023242526282927

13 CLK15 TDITCK TDOTMS
a3a0 a2 a1 d0 d1d2d3d4d5d6 d7X XW RI IO O

INTFrom X0

TO PC

R1 FPGA X1 FPGA
X2 FPGA R2 FPGA

Figure 4.3: User FPGAs and Global Signals.



4.11. Global Reset 294.11 Global ResetYou can reset the R1, X1, R2 and X2 FPGAs manually by depressing the pushbutton SW4. This global reset can be also initiated under (port I/O) program control.It is connected to Pin 10 of all user FPGAs, as illustrated in Fig. 4.3. As mentionedearlier in Section 4.5, the BORG board's controller X0 has four prede�ned I/O ports.Bit 0 of PORTD is used for global reset.4.12 ReadbackOnly the R1 and X0 FPGAs are available for readback using the xchecker programand cable. The mode pins of the other FPGAs are tied to vcc, so readback is notpossible.4.13 JTAG Boundary ScanYou can only use R1, X1, R2 and X2 FPGAs for boundary scan. X0 is thecontroller of the boundary scan chain. As mentioned, the BORG board's controllerX0 has four prede�ned I/O ports. The three JTAG boundary scan pins: TMS, TCK,TDI of the R1, X1, R2 and X2 FPGAs are connected to bit 1 to bit 3 of PORTD ofX0 to boundary scan the user FPGAs under port I/O program control. X0 reads theTDO from the user FPGAs via the TDO PC pin.Warning: Since bit 0 of PORTD is reserved for global reset (active low), don'twrite a zero to bit 0 of this port unless you really mean to.4.14 System Clock and Single StepYou may �nd the on-board (default 8 MHz) TTL-crystal clock generator useful.Place the plastic jumper on the right side of J10 to use the crystal clock. It is dividedinternally by a counter in the X0 controller (if X0 is not powered down). The clockdivisor can be selected by the clock program. For example, you usec:> clock turbofor a divided by 1 clock (default 8 MHz), andc:> clock slowfor a divided by 8 clock.The clock utility loads 2 bits to select the desired divisor that resides in bits 4and 5 of PORTA of X0port inside X0 (see Section 4.5).You can toggle the system manually by placing the plastic jumper on the left sideof J10 and use the push buttom for single stepping. The global clock is broadcast toPin 13 of all user FPGAs, as illustrated in Fig. 4.3.A listing of the clock utility is given on the next page.



30 4. Principle of Operation#include<stdio.h>#include<dos.h>#include<stdlib.h>main(int argc, char *argv[]) /* clock speed selection */{ unsigned int PortA;char * portenv;setcbrk(1);printf("\nCLOCK Ver. #1.0\n");printf("UC SANTA CRUZ, COMPUTER ENGINEERING, August 1993\n");printf("(c) Copyright 1993 UC Regents. All rights reserved\n\n");if(argc==1) {printf(" Function: Set BORG Protoboard global CLOCK speed\n");printf(" Usage: clock [ slow | quick | fast | turbo ]\n\n");printf(" /8 /4 /2 /1\n\n");exit(1);}portenv = getenv("BORG");/* Control Port in X0 */if(!strcmp(portenv,"0x300"))PortA = 0x300;else if(!strcmp(portenv,"0x200"))PortA = 0x200;else if(!strcmp(portenv,"0x210"))PortA = 0x210;else if(!strcmp(portenv,"0x310"))PortA = 0x310;else { printf(" Wrong PORT address\n");printf(" Please specify PORT address\n e.g. set BORG=0x300%s\n");exit(1);}printf(" >BORG PORT address is %s\n",portenv);if(argc==2){switch(argv[1][0]){case 's': outportb(PortA, 0xce);printf(" >Global clock is now slow \n");break;case 'q': outportb(PortA, 0xde);printf(" >Global clock is now quick \n");break;case 'f': outportb(PortA, 0xee);printf(" >Global clock is now fast \n");break;case 't': outportb(PortA, 0xfe);printf(" >Global clock is now turbo \n");break;default: printf(" Error: flag not recognize '%s'\n", argv[1]);printf(" Usage: clock [ slow | quick | fast | turbo ]\n\n");}exit(0);}}



4.15. On-board SRAM and arbitration 31pin of SRAM pin of R2 PC84 package FPGAD0 R2.46D1 R2.45D2 R2.44D3 R2.40D4 R2.39D5 R2.38D6 R2.37D7 R2.36A0 R2.47A1 R2.48A2 R2.49A3 R2.50A4 R2.51A5 R2.56A6 R2.57A7 R2.58A8 R2.61A9 R2.62A10 R2.67A11 R2.66A12 R2.59CS R2.30OE R2.65WE R2.60Table 4.7: Memory signals from R2 to dual port SRAM; the connectionsto memory addresses A0-A12 depend on jumpers J11-J23. To use the pinassignment tool assign you need to use the appropriate wiring �le andag (see assign command option in Chapter 7) to reect the status of thejumpers.4.15 On-board SRAM and arbitration4.15.1 8K�8 SRAMIf your design requires only a wide but shallow amount of memory, it is muchbetter to use the XC4000 on-chip RAM. If you need deep but narrow memory, theon-board 8K�8 SRAM can be useful.As indicated on the BORG board, pin 2 of jumpers J11-J23 are the (A0-A12)address lines to the SRAM coming out from the R2 FPGA. You can move the plasticjumpers of J11-J23 to the right side to use all the on-board 8K�8 SRAM. In thiscase, you have less connections available between X1 and X2 FPGAs, as illustratedin Fig. 4.4.In Fig. 4.4, you will �nd that the SRAM is connected to the R2 FPGA, the pinassignment of R2 FPGA is given in Table 4.7. All the memory access signals (8-bitdata lines, 13-bit address lines, R/W, OE-, and CS-) of the user FPGAs have to gothrough R2 before reaching the SRAM (see also Figure 1.2). In particular, pin 30 ofR2 is the chip select (CS-). This signal is tri-stated and is in wire-and con�gurationwith the RAMSEL signal of X0. This active-low signal is normally pulled high by a4.7K resistor.On the other hand, if you need more connections between the user FPGAs X1 andX2, you may move the plastic jumpers of J11-J23 to the left side (this is the default



32 4. Principle of Operation
X2R1 R2X1 SRAM

XC40??PC84
XC40??PC84 XC40??PC84

XC40??PC84 PC BusAddress Lines A0-A3Data Lines D0-D7IOR,IOWINTPC (interrupt PC) XC4003APG120X0 AddressDataControlDataI/O PORTs
8K x 8bitRAMSEL2bu�erJ11-J23address lines data linescontrol linesFigure 4.4: SRAM and the rest of the FPGAs.con�guration, see Fig. 2.6); and the on-board 8K�8 SRAM is inaccessible.4.15.2 Dual-port SRAM arbitrationThe 8K dual-port SRAM can be accessed either by the PC or the R2 FPGA. TheX0 controller provides some simple arbitration logic. There are three mechanisms forarbitration.First, you can control the default dual-port SRAM access by setting position 3of DIP switch SW1 (DURAM). If this switch position is open, the PC has exclusiveaccess to the SRAM. By the same token, you can make the SRAM inaccessible to thePC by closing this switch.Second, you can arbitrate the dual-port SRAM access under program control,overwriting the default set by DIP switch SW1 (DURAM). Bit 2 and bit 3 of PortAof X0port arbitrates the memory access, as illustrated by the arbit utility on thenext page.Third, jumper J1 is connected to the ASIC pin of the X0 controller. This active-low signal can be used to block the PC access to the dual-port SRAM by tristatingthe data and address bu�ers surrounding the dual-port SRAM on the PC side. Thestatic RAM 6264 is of 70ns speed grade. We have tested the BORG board using



4.16. Limits on the Number of Connections Between the FPGAs 33
R2X2

R1 X119
1216 20 211 SRAM8K x 8bitJ11-J23Figure 4.5: Pin Distribution between the FPGAs.150ns RAM without problems. We use the 70ns speed grade because it is availableand cheap.4.16 Limits on the Number of Connections Between the FPGAsSome of the I/O pads on R1 and R2 are used to support the dual-ported SRAMand port I/O communications with the PC. Thus, although the number of user padsavailable on a 84-pin PLCC package is 54, the maximum number of connectionsbetween X1 and X2 which can be realized with R1 and R2 is 38 , with the plasticjumpers of J11-J23 on the left side.With the plastic jumpers of J11-J23 on the right side, the maximum number ofconnections between X1 and X2 which can be realized with R1 and R2 is 32 . Fig-ure 4.5 shows the pin distribution between the FPGAs. There are some unconnectedpin in the X1 and X2 FPGAs are indicated with a small circle on their pins in Fig. 4.3.They can be used for probing/debugging purposes.



34 4. Principle of Operation/* program arbitdual-port SRAM arbitration */#include<stdio.h>#include<dos.h>#include<stdlib.h>main(int argc, char *argv[]){ unsigned int PortA;char * portenv;setcbrk(1);printf("\nRAM ARBITER Ver. #1.0\n");printf("UC SANTA CRUZ, COMPUTER ENGINEERING, August 1993\n");printf("(c) Copyright 1993 UC Regents. All rights reserved\n\n");if(argc==1) {printf(" Function: Arbitrate BORG II Protoboard's RAM\n");printf(" Usage: arbit [ xilinx | pc ]\n\n");exit(1);}portenv = getenv("BORG");/* Control Port in X0 */if(!strcmp(portenv,"0x300"))PortA = 0x300;else if(!strcmp(portenv,"0x200"))PortA = 0x200;else if(!strcmp(portenv,"0x210"))PortA = 0x210;else if(!strcmp(portenv,"0x310"))PortA = 0x310;else { printf(" Wrong PORT address\n");printf(" Please specify PORT address\n e.g. set BORG=0x300%s\n");exit(1);}printf(" >BORG PORT address is %s\n",portenv);if(argc==1) {printf(" Function: Arbitrate BORG II Protoboard's RAM\n");printf(" Usage: arbit [ xilinx | pc ]\n\n");exit(1);}if(argc==2){switch(argv[1][0]){case 'x': outportb(PortA, 0xf3);printf(" >BORG Xilinx's has exclusive access to the RAM\n");break;case 'p': outportb(PortA, 0xf7);printf(" >PC has exclusive access to the RAM\n");break;default: printf(" Error: unknow flag '%s'\n", argv[1]);printf(" Usage: arbit [ xilinx | pc ]\n\n");exit(1);}printf("\n Warning: RAM access can be hardwired by a\n");printf(" : switch position 3 (DURAM) of DIP SW#1\n");printf(" : Open: PC access closed: FPGA access\n");exit(0);}}



355. SoftwareThe software programs and subdirectories in the distribution package Ver 1.0 aredescribed in Table 5.1.�le name descriptionarbit arbitrates dual-port SRAM accessassign pin assignment program to connect multiple FPGAs (need a 386)bscan boundary scan program (unsupported!)bd downloads an mcs �le to the BORG board (runs on XT compatible)clear clear a messy screenclock program to change the system clock ratedefault print out the default DIP switch settingsinspect list content of dual-port SRAMisr.com interrupt service routine for interrupt labintpc interrupt generator for the interrupt labmaze maze runner driver project examplemtest checks (by writing after reading) the8k dual-port SRAM 6264 on the BORG Boardportest lab example to show building I/O ports in R1setassig.bat example bat �le to set an environment variablefor the program assignscan scan test to check all the I/O on BORG boardtetris driver for the Tetris project (runs on XT compatible)srcn subdirectory containing the source codedesignsn subdirectory with the LCA �les for the project examplesmcsn subdirectory with the mcs �les for the design examplesemptyn subdirectory with null bit-streams for XC4003a and XC4002a 84PLCC packagesX0n subdirectory viewdraw schematic of the X0 controllerassignn subdirectory supporting �lesTable 5.1: Contents of Software Distribution.5.1 Memory related programs mtest and inspectThe memory test mtest program checks whether the dual-port SRAM is accessiblefrom the PC. The inspect program displays the entire contents of the 8K dual-portSRAM.Before running these programs, you need to disable any access to the dual-portSRAM from the user FPGAs, by closing position 3 DURAM of SW1. You needto download a \null" bit stream into R2. You can use the supplied bit streamportest.mcs or scan.mcs that are in this distribution. Both of these mcs �les havethe necessary bit stream to tristate the I/O pins of R2). You should make sure thatthe PC has exclusive access to the memory, doc:> arbit pc



36 5. Softwarebefore running either programs.5.2 Board Wiring test program ScanThe design �le scan.mcs contains bit streams that chain up most of the I/O padsof the user FPGAs to be a shift register. The program scan shifts a zero into thechain and checks whether the zero successfully arrives after certain number of clockcycles.5.3 Pin assignment program assignAssign is a C++ program which assigns pads on the routing FPGAs to connectthe two user FPGAs. You must run assign on 32-bit 386/486 machines. Both itssource code and executables are included. Assign has been compiled with the g++(DJ) public domain compiler. You should read the section on the options availablewith assign in Chapter 7.5.3.1 Projects, Demos and their MCS �lesThe directory designsn contains the projects and their LCA �les. Their mcs �lesare in the mcsn directory.tetris4 - Martine Schlag's Tetris project in Aug 1991, the original design used oneXC3020 and one XC3042. I have converted the XC3000 design to XC4000 forthe purpose of this distribution.x1tet4f.lca - the controller of the Tetris machine designx2tet4f.lca - the datapath of the Tetris machine designR1tet4f.lca - the 1st routing FPGA designR2tet4f.lca - the 2nd routing FPGA designtetris4.mcs the bit stream of the complete designamazer - Jason Y. Zien and David Van Brink's maze runner project in Fall 1992(CMPE 225 UC Santa Cruz). I have converted the XC3000 design to XC4000for the purpose of this distribution. This maze runner machine used the XC3000Borg board for development of the project.R1newg.lca - the 1st FPGA designR2newg.lca - the 2nd FPGA designamazerg.lca - the 3rd FPGA designamazer4.mcs - the bit stream of the complete designportest - testing parallel I/O ports con�gured in R1 FPGAsch schematic drawing of the design in viewdrawportest.lca - 4 I/O ports in R1portest.mcs the bit stream of the designintpc - hardware interrupt demo using the R1 FPGAsch schematic drawing of the demo in viewdraw



5.3. Pin assignment program assign 37intpc.lca - one I/O port in R1 by generating hardware interruptintpc.mcs - the bit stream of the designintpc.exe - a driver to trigger the generation of an interruptisr.com - a interrupt service routine for the demoasylab - synchronization failure lab demo using the R1 FPGAsch schematic drawing of the demo in viewdrawasylab.mcs - the bit stream of the designasylab.exe - the driver to demonstrate synchronization failuremusic - frequency synthesizer demo using theR1 FPGA, you need a digital-to-analogconverter and a small transistor ampli�er to \listen" to this labsch schematic drawing of the demo in viewdrawmusic.mcs - the bit stream of the designmusic.exe - a driver to use the keyboard to control the frequency of sine wavegenerated by the FPGA



38 6. Design ow6. Design ow6.1 IntroductionThe essence of the design process using the BORG board for a multiple FPGAdesign can be summarized in the following steps.1. Place and route X1 and X2 (the 2 user FPGAs), letting the plaement androuting program ppr (or apr) choose the pad assignments.2. Re-arrange the pad assignments of X1 and X2 with the assign utility toconform to the hardwired constraint of the BORG printed circuit board.3. Place and route the X1 and X2 again using the incremental place-and-routeags of ppr (or apr).4. Place and route R1 and R2 (the routing FPGAs).5. Generate the bit streams of R1, X1, R2, and X2 using makebits and concate-nate them using makeprom.Note: in principle, you can also treat X1 and X2 as the routing chips, and use R1and R2 for logic; or even use all four FPGAs for logic. Assign is able to handle thesesituation, but you have to read Chapter 7.6.2 DetailsIn greater details, suppose that you have two cooperating XC4003a LCA designs,the following steps illustrate the process of using the tool set to connect the two LCAdesigns electronically on the BORG board. 11. Hand partition your design into two XC4003aPC84 FPGAs.2. Place and route the FPGA designs without imposing any constraints on thepad assignments. You should let ppr determine the pad assignments of yourLCA designs. Say, the two (routed) LCA design �les are called X1a.LCA andX2a.LCA; and their XNF �les are called X1a.XNF and X2a.XNF, respectively.C:> ppr X1aC:> ppr X2a3. Run \assign" with an \alias.file" to obtain an interconnection map Rx.info.C:> assign -1 X1a.LCA -2 X2a.LCA -a alias.file-x1 X1a.cst -x2 X2a.cst -r1 R1.cst -r2 R2.cst -i1You may use an XC4002, XC4003, XC4004, XC4005, or XC4010D in place of any user FPGAscurrently on your BORG board. This distribution provides two XC4003a as the user FPGAs, andtwo XC4002a as the routing FPGAs.



6.2. Details 39

pprppr ppr pprmakebits X1 makebits R2 makebits X2makebits R1
regularXilinxDesignFlowviewdrawwir2xnfppr viewdrawwir2xnfppr

X1
Pin Assignment for BORG boardassign -1 X1a.LCA -2 X2a.LCA -a alias.ali -i-x1 X1a.cst -x2 X2a.cst -r1 R1.cst -r2 R2.cstR2 X2X1R1 rerun pprwith incrementaloptionmakeprom -o des.mcs -u 0 R1 X1 R2 X2bd des.mcs bit streams intoa single mcs �ledownload to BORGboard

Hand Partition designs into

(available in XACT 5.0)R1.LCA X1.LCA R2.LCA X2.LCA

two chips X1 and X2(Prepare schematic drawingsof routing chips R1 and R2,after running assign)
X2a.LCAX1a.LCA

viewdrawwir2xnfviewdrawwir2xnfR1.XNF generate constraint �lesthat conform withBORG boardR2.XNF
X2

concatenateFigure 6.1: Using Assign to augment the Xilinx Design Flow for multiple-chip design. Draw the schematics of R1 and R2 after using assign, notbefore.



40 6. Design owThe alias.file is used to match nets which are to be connected between X1and X2 which (may) have di�erent names. Ideally, you created designs for X1and X2 in which all nets that are to be interconnected have the same name.However, if for some reason, you gave di�erent names to the signals, for example\Select" on X1 and \select data" on X2, an alias in the alias.file will causethese signals to be matched. This is particularly useful if you want to use thememory chip or PC-bus. You MUST alias those signals to the names givenin the wiring �le (refer to Chapter 7 for details). Some of these special signalnames are:PC Bus Data Lines:&&BusData_0, &&BusData_1, &BusData_2, &&BusData_3,&&BusData_4, &&BusData_5, &&BusData_6, &&BusData_7PC Bus Address Lines:&&BusAddress_0, &&BusAddress_1, &&BusAddress_2, &&BusAddress_3PC Bus Control Lines:&&BusControl_0, &&BusControl_1Memory Data Lines:&&MData_0, &&MData_1, &&MData_2, &&MData_3&&MData_4, &&MData_5, &&MData_6, &&MData_7Memory Address Lines:&&MAddress_0, &&MAddress_1, &&MAddress_2, &&MAddress_3,&&MAddress_4, &&MAddress_5, &&MAddress_6, &&MAddress_7Memory Control Lines:&&M_WE, &&M_OE, &&M_CSForced Nets:&&R1, &&R2The alias �le itself contains pairs of net names that are to be matched. Oneexample is:;; a sample alias file; comments started with a semicolon;memaddr0 &&MAddress_0memaddr1 &&MAddress_1memaddr2 &&MAddress_2memaddr3 &&MAddress_3start Start_Machinewhich illustrates forcing some nets to be used as memory address signals.Another example is:Prot<1> &&R1Prot<2> &&R1PLateral<1> &&R1PLateral<2> &&R1



6.2. Details 41PLateral<3> &&R1PMoveready &&R1IOB1 &&R1PYourmove &&R1Pnewtile<1> &&R1Pnewtile<2> &&R1Pnewtile<3> &&R1PSavcol<1> &&R1PSavcol<2> &&R1PSavcol<3> &&R1- Pclkwhich illustrates forcing some nets that must go to the R1 FPGA.The interconnection map Rx.info suggests a consistent way of connecting theuser FPGAs X1 and X2 using the routing FPGAs R1 and R2, hopefully.2 Asample interconnection map is given below:NET NAME NET ALIAS COST SRC DEST-------- --------- ---- --- ----PSavcol<3> &&R1 [0] X1.38 -> R1.48 O_PADPSavcol<3> &&R1 [0] X0 -> R1Pcol<3> Pcol<3> [0] X1.37 -> R2.5 I_PADPcol<3> Pcol<3> [0] X2.6 -> R2.28 O_PADPc<13> Pc<13> [0] X1.4 -> R2.4 I_PADPc<16> Pc<16> [0] X1.26 -> R1.60 I_PADPc<16> Pc<16> [0] X2.79 -> R1.49 O_PADPcond<2> Pcond<2> [0] X1.40 -> R1.44 O_PADPnewtile<2> &&R1 [0] X2.81 -> R1.47 O_PADPc<9> Pc<9> [0] X1.23 -> R2.9 I_PADPc<9> Pc<9> [0] X2.27 -> R2.47 O_PADProt<1> &&R1 [0] X0 -> R1Prot<1> &&R1 [0] X2.7 -> R1.37 I_PADPcond<7> Pcond<7> [0] X2.70 -> R2.62 I_PADPc<17> Pc<17> [0] X1.36 -> R1.36 I_PADPc<17> Pc<17> [0] X2.14 -> R1.35 O_PADPYourmove &&R1 [0] X1.59 -> R1.24 O_PADPYourmove &&R1 [0] X0 -> R1PMoveready &&R1 [0] X1.28 -> R1.57 I_PADPMoveready &&R1 [0] X0 -> R1Pc<3> Pc<3> [0] X1.5 -> R1.79 I_PADPc<3> Pc<3> [0] X2.26 -> R1.26 O_PADPcond<4> Pcond<4> [0] X1.19 -> R2.8 O_PADPcond<4> Pcond<4> [0] X2.23 -> R2.68 I_PADPc<20> Pc<20> [0] X1.68 -> R2.69 I_PADPc<20> Pc<20> [0] X2.68 -> R2.18 O_PADThe �rst column is the PAD (net) name, the second is the PAD's alias name,the third column is the cost, and the fourth column is the source FPGA's padnumber, and the last column is the destination FPGA's pad number and areconnections that need to be made inside R1 and R2.2There may not be a consistent assignment and this problem is NP-complete.



42 6. Design owAssign will also generate two constraints �les X1a.cst and X2a.cst. Use thesetwo �les to route X1a.LCA and X2a.LCA with ppr again. You should use theincremental option of (apr -g for the XC3000 designs ) ppr (available in XACT5.0 in May 1994) to guide the new placement and routing processes using theold designs, and the new constraints �les X1a.cst and X2a.cst. For example,C:> ppr X1a outfile=X1C:> ppr X2a outfile=X2Now, you have two new LCA �les X1.LCA and X2.LCA with the pad assignmentsdetermined by assign.4. With the I/O map generated by assign, draw a schematic diagram for eachof the routing chips, R1 and R2, using viewdraw. The constraint �les for therouting chips have also been generated by assign.Figure 6.2 illustrates a rather typical schematic drawing of the R1 routing chip.Notice that there is actually some logic in the \routing chips." Please generatethe routed LCA �les of the routing chips using the Xilinx ADI software wir2xnfand ppr (or xmake, if you like).C:> wir2xnf r1C:> wir2xnf r2C:> ppr r1C:> ppr r2Now you have two routed LCA �les: R1.LCA and R2.LCA.5. You generate the bit �les for all the LCA �les:C:> makebits X1C:> makebits X2C:> makebits R1C:> makebits R2Now you put these bit �les together into a single mcs �le. Use makeprom, and setthe promsize to 64K, set the �le format to Intel mcs, and load the bit �les in theupward direction starting from location 0. Gather the bit �les and concatenatethem into a single mcs �le, say design.mcs, by loading the bit �les in thefollowing ordermakeprom -o design.mcs -u 0 R1.bit X1.bit R2.bit X2.bitThe order is important since it corresponds to the order in which the FPGAsare daisy-chained on the BORG board.6. Download the mcs �le using the program bd.C:> bd design.mcs



6.2.Details
43

SYSRESET

INVIBUF

GSR

GTS

CLK

Q2

Q3

Q1Q4

DONEIN

STARTUP

GCLOCKNET
LOC=P13
PAD

BUFGP

PAD

PAD

PAD

BIT7

BIT3

BIT5

BIT6

BIT7

BIT4

BIT0

BIT1

BIT2

BIT1

BIT2

BIT3

BIT4

BIT5

BIT6

BIT0

BIT6

BIT5

BIT4

BIT3

BIT2

BIT1

BIT0

BIT7

BIT[7:0]

PORTK

PORTJ

X1_PMOVEREADYL_OUT

X1_PMOVED0_OUT

X1_PMOVED1_OUT

X1_PTELEPORTL_OUT

PART=4002APC84

Jan 26, 1994

IBUF

BIT4B

IBUF

IBUF

BIT1B

IBUF

IBUF

PAD

OBUF

PAD

OBUF

South

East

West

NORTH

PORTS

Q7

Q6

Q5

Q4

Q3

Q2

Q1

Q0

D7

D6

D5

D4

D3

D2

D1

D0

CLK

A3P

A1P

XIOW-P

PAD

BIT3B

BIT2B

PAD

SQ7

SQ5

X1_PPCE_IN

X1_PPCW_IN

SQ2

X1_PPCN_IN

SQ0
PAD

X1_PYOURMOVEL_IN

X1_PATFINISHL_IN

OBUFT

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

LOC=P58

PAD

A3

A2

A1

A0

XIOW-

XIOR-

IBUF

IBUF

IBUF

OBUFT

OBUFT

OBUFT

OBUFT

OBUFT

Pak K. Chan

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

R1 in BORG Maze

OBUFT

IBUF

IBUF

IBUF

IBUF

A1

OBUFT

IBUF

IBUF

IBUF

IBUF

IBUF

PAD

PAD

IBUF

PAD

IBUF

PAD

XIOR-P

A2P

XIOR-

IBUF

IBUF

PAD

PAD

PAD

PAD

X1_PPCS_IN

PAD

PAD

XIOW-

A2

A3

OR3B1

N0

N1

N2

N3

N4

N5

N6

N7

Modified by Jason Zien & David VanBrink

12-7-92

PORTJ
C=1
L=1

LOC=P56

PAD

A0

A1

ENB

O0B

O1B

O2B

O3B

X74-139
A0

PORTK

IBUF

A0P

LOC=P83

PAD

LOC=P50

PAD

LOC=P51

PAD

LOC=P80

PAD

LOC=P82

PAD

LOC=P81

PAD

BIT0BLOC=P71

PAD

LOC=P69

PAD

LOC=P67

PAD

LOC=P65

PAD

LOC=P61

PAD

LOC=P59

PAD

BIT5B

BIT6B

BIT7B

PORTS

Q7

Q6

Q5

Q4

Q3

Q2

Q1

Q0

D7

D6

D5

D4

D3

D2

D1

D0

CLK

LOC=P10

PAD

GCLOCKNET

Figure6.2:Mazerunners'top-levelschematicdrawingofanR1routingchip
usingtheBORGboard.



44 6. Design ow



457. ASSIGN (Ver 3.0) A Pin Assignment Program forBORG Prototyping Board7.1 Preface to earlier versions1 Assign 3.0 may not necessarily be compatible with earlier versions of assign.This new version generates pin assignment for connections involving one or twouser FPGAs (earlier versions are restricted to connection between two user FPGAs).Although the algorithms used are deterministic, they are dependent upon the orderingof the pads read in from the LCA �les. The ordering of the pads is randomly changedafter each iteration, that is why multiple iterations of the algorithm can be run.Therefore, minor changes to the LCA �les may yield very di�erent output from assign.Assign 3.0 has been tested with Xilinx apr 3.2, apr 3.3 (with incremental placeand route version), and ppr 1.31 (without incremental place and route). Incrementalplacement and routing is necessary for the e�cient use of assign. Assign supportsXILINX XC3020, XC3030, XC3042, XC3064, XC3090, XC4002, XC4003, XC4004,and XC4005 PC84-package FPGAs used in the BORG I and II prototyping board.The X1 and X2 user FPGAs are assumed to be of the same type.7.2 Assign as a Pin Assignment ProgramLocking (constraining) I/O pins down during placement and routing is known tobe harmful. Not only that it increases the time taken to place and route a design, butlocking down I/O pins also reduces your chances of having a successful placed androuted designs. Assign is a pin (I/O pad) assignment program which will increase thechance of successful placement and routing runs even under the given BORG boardlevel constraint.Assign does so in two steps. First, use the placement and routing program (ppror apr) to place and route your designs without constraints. In other words, let ppror apr choose the initial pin assignments freely. Next, assign will then perturb theinitial pin assignments to satisfy the board level constraint. The designs are reroutedusing the incremental placement and routing option.7.2.1 Place in the design processAssign is a program that produces consistent pin assignments for the BORG pro-totyping board. Assign takes two user LCA �les which are intended to be downloadedto BORG, and produces two corresponding constraint �les which can then be usedby apr or ppr to generate a valid pin assignment.BORG is a rapid prototyping board for PC-based machines. It contains two user-programmable XILINX FPGAs (X1 and X2) and two dedicated routing FPGAs (R1and R2) as shown earlier in Fig. 1.2. Wires going from each user chip to each routing1Assign is written by Jason Y. Zien



46 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Boardchip follow roughly an alternating pattern (wire i of X1 goes to R1, wire i+1 of X1 goesto R2, wire i+3 of X1 goes to R1, ...). Since BORG contains hardwired connectionsbetween the user FPGAs and routing FPGAs, the initial pin assignments generatedby the XILINX tools (which have no knowledge of these board-level pin assignmentconstraints), must be rearranged to produce a correct, usable circuit. The advantageof having hardwired connections is the elimination of wire-wrapping a circuit, whichcan be extremely time consuming and tedious.The typical design process for BORG has several steps. Assign �ts in the middleof that process. The major steps in the design process are:1. Draw schematics for X1 and X2 FPGAs.2. Draw schematics for R1 and R2 FPGAs.3. Create the unconstrained LCA �les using apr or ppr.4. Create the alias �le for assign to match up nets with di�erent names or to forcenets to go to a speci�c routing chip.5. Run assign on the X1 and X2 LCA �les.6. Edit the R1 and R2 schematics so that nets which pass through these chips areconnected. These net names must match the incoming X1 or R1 net name, withthe X1 or X2 pre�x attached, depending on the source of the net.7. Rerun apr or ppr on each LCA �le using the incremental placement and routingoption. For apr, use the `-c [file.cst]' option so that the constraint �legenerated by assign will lock the pads to the proper places. If running ppr[file.xnf], it will automatically read in a constraint �le named [file.cst].8. Use makebits to create the bit �les.9. Use makeprom to group together the bit �les into one .mcs �le for downloading.IMPORTANT : The constraint �les generated for R1 and R2 prepend eitherX1 or X2 to a net name depending on the source of the net. This is necessary becauseif matched nets in X1 and X2 have the same name, that would cause a name clash onthe routing chip through which the net pass. Example: suppose nets neta on X1 andbnet on X2 are to be forced through R1. The net adjacent to the pad in which netaenters/leaves must be named X1 neta while the net adjacent to the pad in which bnetleaves/enters must be named X2 bnet. This only applies if one uses the constraint�les generated by assign. Of course, one may choose to not use these net names, anddirectly set the pad locations in the schematic based on the information in Rx.info.IMPORTANT : The user must exercise extreme care in making sure that netswhich are NOT to be matched have di�erent names. In particular, one needs to becareful of such things as CLOCK nets. assign may inadvertently match the clocksignals on both user chips. See Section 7.2.4.



7.2. Assign as a Pin Assignment Program 477.2.2 Command Line Argumentsassign takes a number of command line arguments. Its usage is as follows:assign [options ...]Options (and their descriptions, which follow the ';' symbol) include:-1 x1file.lca ; x1file.lca=name of the X1 lca file-2 x2file.lca ; x2file.lca=name of the X2 lca file-a aliasfile ; aliasfile= file that gives aliases to nets for matching-u ; flag, use memory connections-s num ; num=starting window size-e num ; num=ending window size-m num ; num=maximum solutions allowed outside the window-x1 x1file.cst ; x1file.cst=name of the constraint file for chip X1-x2 x2file.cst ; x2file.cst=name of the constraint file for chip X2-r1 r1file.cst ; r1file.cst=name of the constraint file for chip R1-r2 r2file.cst ; r2file.cst=name of the constraint file for chip R2-i ; run single and pairwise swap improvement phase-g ; run greedy graph reduction-c ; Output a CLB Locking constraint file (for apr ver 3.3)If none of the constraint �le output options (-x1 -x2 -r1 -r2) are speci�ed,then by default, the program writes out constraint �les x1.cst, x2.cst, r1.cst,and r2.cst. The constraint �le output format is chip-speci�c. That is, the constraint�les for Xilinx XC3000 series FPGAs di�er from XC4000 series FPGAs. It is assumedthat XC3000 series designs will be placed and routed using apr while XC4000 seriesdesigns will be placed and routed using ppr. The output constraint �les are generatedto be compatible with the corresponding place and route program.The -u option allows assign to use special lines from R2 to the on-board memory.Because of pin limitations of the FPGA packages used, and due to the large numberof memory address lines, these lines are selectively activated or not activated by someswitches on the BORG board. If the memory lines are not used, then extra connectionsbetween the routing chips and user chips are available for general use. However, if thememory lines are used, then these connections are unavailable for general-purpose use.This option a�ects the use of all memory address lines for the 4K borg, but only theupper address lines (bits 8-10) of the 3K BORG. *** BE SURE THAT THE BORGDIP SWITCHES which a�ect the memory lines are set properly, or your design mightnot work!!!! *****Due to a change in the way apr ver 3.3 handles the locking of blocks, the `-c'option of assign should be used to speed up the placement phase of apr. When`-c' is used, two �les, x1clb.cst and x2clb.cst are created and the line `Includex1clb.cst;' is included at the end of x1.cst and `Include x2clb.cst;' is includedat the end of x2.cst. The �les x1clb.cst and x2clb.cst lock all of the CLBs whichwere found in the input LCA �les.



48 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping BoardPreviously, the recommended usage of constraint �les generated by assign was:% assign -1 x1.lca -2 x2.lca -a file.ali% apr -l -c x1.cst x1.lca x1new.lca% apr -l -c x2.cst x2.lca x2new.lcaThe -c option does not do anything when the chips are Xilinx XC4000 series FPGAs.Now, for apr ver 3.3 (and later versions) we recommend:% assign -1 x1.lca -2 x2.lca -a file.ali -c% apr -q -c x1.cst x1.lca x1new.lca% apr -q -c x2.cst x2.lca x2new.lcaBy default, assign uses the augmentation algorithm. It has been experimentallynoted that using the default mode tends to produce better results for very large, denseI/O designs, while the greedy graph reduction heuristic (-g option) tends to producebetter results for small, sparse designs.In order to run assign, the user �rst needs to have at least one LCA �le whichhe/she intends to download to X1 and X2 of the BORG prototyping board. Also,an alias �le may be created so that nets having di�erent names in the two LCA �lescan be matched (or prohibited from being matched). These net names MUST BEadjacent to I/O pads. Assign can not match nets which are not adjacent to I/O pads.Assign is NOT case sensitive with respect to net names, however, the special aliasnames which will be described below are case-sensitive.7.2.3 An Environment VariableYou need to set an environment variable before assign can be run. In the UNIXenvironment, the following line must be placed in the user's .cshrc �le.setenv BORG_ASSIGN <Directory_Where_Assign_Resides>/In the MS-DOS environment, the following lines must be added to the autoexec.bat�le:set BORG_ASSIGN=<Directory_Where_Assign_Resides>/where <Directory Where Assign Resides> is the full path to the directory in whichthe assign program has been installed and which also contains the three data �les:xc3020.io, xc3042.io, alt3042.wir. Also, the directory contains several pin map-ping �les used internally, which are: 3020.map, 3030.map, 3042.map, 3064.map,3090.map, 4002.map, 4003.map, 4004.map, and 4005.map.7.2.4 Alias FilesBy default, assign matches ALL nets in X1 and X2 which have the same name(insensitive to case). An alias �le is used to match nets which are to be connectedbetween two user FPGA chips which have di�erent names. In the ideal case, the userhas created their design for the two user FPGAs X1 and X2 such that all nets whichare to be interconnected have the same name.



7.2. Assign as a Pin Assignment Program 49The alias �le itself contains pairs of net names that are to be matched. The �rstcolumn should be the X1 net name. The second column can contain the X2 net name,or one of the special reserved names given above. If the �rst and second column areX1 and X2 nets respectively, then the third column may contain one of the specialreserved names to force both other nets to go through a particular routing chip.A special name is the - symbol. If the - symbol is the �rst name, then the nextstring name signi�es a net that is not to be matched by assign. This may be usefulfor example, when a net such as the CLOCK net appears in both user chips, but havealready been given �xed locations which should not be modi�ed by assign.Another situation which requires the use of aliases is if for some reason, the usergave di�erent names to the signals, for example Select on X1 and select data on X2,an alias in the alias �le will still allow the signals to be matched. This is particularlyuseful if the user wants to use the memory chip or PC-bus. The user MUST aliasthose signals to the names given in the wiring �le. Those special signal names aregiven below.Forced Nets (nets forced to either R1 or R2):&&R1, &&R2PC Bus Data Lines:&&BusData_0, &&BusData_1, &BusData_2, &&BusData_3,&&BusData_4, &&BusData_5, &&BusData_6, &&BusData_7PC Bus Address Lines:&&BusAddress_0, &&BusAddress_1, &&BusAddress_2, &&BusAddress_3PC Bus Control Lines:&&BusControl_0, &&BusControl_1Memory Data Lines:&&MData_0, &&MData_1, &&MData_2, &&MData_3 &&MData_4,&&MData_5, &&MData_6, &&MData_7Memory Address Lines:&&MAddress_0, &&MAddress_1, &&MAddress_2, &&MAddress_3,&&MAddress_4, &&MAddress_5, &&MAddress_6, &&MAddress_7Memory Control Lines:&&M_WE, &&M_OE, &&M_CSIn practice, it is su�cient to force nets using just &&R1 and &&R2. The otheraliases are included for backward compatibility with previous versions of assign. Forexample, using &&M WE is equivalent to &&R2. An example of an alias �le is givenbelow.



50 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board; some single forced netsDir0 &&BusData_0Dir1 &&BusData_1Dir2 &&BusData_2ROTS &&BusData_3finish &&BusData_4Startin &&BusData_5tile_0 &&BusAddress_0tile_1 &&BusAddress_1tile_2 &&BusAddress_2; some alias matching plus forced netsCEO clken0 &&R1CE1 clken1 &&R1CE2 clken2 &&R1CE3 clken3 &&R1CE4 clken4 &&R1CE5 clken5 &&R1CLK_in CLKin &&R2FIT Fit_in &&R2; some matching aliasesROT_IN ROTST0 CS0T1 CS1T2 CS2T3 CS3T4 CS4T5 CS5clken0 CE0; some nets with same name that SHOULD NOT be matched by assign- GlobalClock- GlobalReset7.2.5 Rx.infoThe Rx.info �le contains information necessary to generate the routing chips LCA�les for downloading (see Fig. 7.1). The �rst column is the pad (net) name, the secondis the pad (net) alias name, the third column is the cost (distance in usable pads fromits original pad position), the fourth column is the source chip and pin, and the lastcolumn is the destination chip and pin.



7.2. Assign as a Pin Assignment Program 51NET NAME NET ALIAS COST SRC DEST-------- --------- ---- --- ----Fit_in &&R2 [1] X1.84 -> R2.2 ?_PADFit_in &&R2 [1] X0 -> R2CE5 &&R1 [0] X0 -> R1CE5 &&R1 [0] X2.84 -> R1.84 O_PADCS4 T4 [0] X1.9 -> R2.8 I_PADCS4 T4 [0] X2.37 -> R2.51CS0 T0 [1] X1.83 -> R1.2 I_PADCS0 T0 [1] X2.45 -> R1.40ROT_IN &&BusData_3 [1] X1.47 -> R1.42 O_PADROT_IN &&BusData_3 [1] X0 -> R1Col COL [1] X1.70 -> R2.82 O_PADCol COL [1] X2.48 -> R2.59 I_PADclken1 &&R1 [3] X1.71 -> R1.77 I_PADclken1 &&R1 [3] X0 -> R1clken5 &&R1 [2] X1.72 -> R1.73 I_PADclken5 &&R1 [2] X0 -> R1tile_1 &&BusAddress_1 [0] X1.63 -> R1.63 O_PADtile_1 &&BusAddress_1 [0] X0 -> R1Clkin &&R2 [3] X1.3 -> R2.4 O_PADClkin &&R2 [3] X0 -> R2CE3 &&R1 [0] X0 -> R1CE3 &&R1 [0] X2.3 -> R1.3 O_PADCS2 T2 [2] X1.81 -> R1.83 I_PADCS2 T2 [2] X2.20 -> R1.18CE2 &&R1 [0] X0 -> R1CE2 &&R1 [0] X2.82 -> R1.82 O_PADdecall DECALL [1] X1.16 -> R2.10 I_PADdecall DECALL [1] X2.63 -> R2.68 O_PADCS1 T1 [0] X1.77 -> R2.84 I_PADCS1 T1 [0] X2.66 -> R2.70FIT &&R2 [0] X2.83 -> R2.83 I_PADCE1 &&R1 [0] X0 -> R1CE1 &&R1 [0] X2.78 -> R1.78 O_PADclken2 &&R1 [0] X1.66 -> R1.68 I_PADclken2 &&R1 [0] X0 -> R1Figure 7.1: A sample Rx.info �le.There may be some extraneous rows generated in Rx.info. These are output forinformative purposes and the user need not use the information in any way.Assign infers the pad type based on the file1.lca and file2.lca pads. Cur-rently, it only supports I PAD and O PAD types, and all other pads output in theRx.info �le are marked ? PAD. The user must determine the pad type in those cases.



52 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping BoardPlace Block clken4 P63;Place Block Clkin P16;Place Block Dir1 P2;Place Block CS1 P17;Place Block CS4 P3;Place Block finish P71;Place Block ROTS P39;Place Block zero P44;Place Block Dir0 P4;Place Block CS2 P15;Place Block clken5 P72;Place Block Startin P21;Place Block ROT_IN P30;Place Block decall P60;Place Block clken0 P56;Place Block Dir2 P19;Place Block Fit_in P84;Place Block CS5 P77;Place Block clken2 P66;Place Block clken3 P61;Place Block CS0 P9;Place Block tile_2 P26;Place Block CS3 P8;Place Block tile_0 P28;Place Block Col P18;Place Block clken1 P68;Place Block tile_1 P24;;; Comment out next line if CLB locking is not desiredInclude x1clb.cst;Figure 7.2: A Sample XC3000-series Constraint File.all: chip.ali eval2.lca brains2.lcabrains2.cst, eval2.cst: brains2.xnf eval2.xnf chip.ali# run apr once without constraints to generate lca files for assign# - the next 2 lines may be unnecessary in subsequent design runsapr brains2.lcaapr eval2.lcaassign -1 brains2.lca -2 eval2.lca -a chip.ali \\-x1 brains2.cst -x2 eval2.cst -r1 r1.cst -r2 r2.cst -i -gbrains.lca: brains2.cstapr -q -c brains2.cst brains2.lca brains.lcamakebits brains2eval.lca: eval2.cstapr -q -c eval2.cst eval2.lca eval.lcamakebits eval2Figure 7.3: A Sample Make�le for XC3000 Series FPGAs.



7.3. I/O Speci�cation File 537.2.6 Examples of using assignAssign tries to generate a consistent pad assignment that matches all pads of thesame name between the two LCA �les. Assign produces up to �ve output �les, (four.cst constraint �les { one per chip) and a summary �le, Rx.info (on DOS machinesRx.inf). The constraint �les are then used by apr (for XC3000 series FPGAs) orppr (for XC4000 series FPGAs) to force the pin assignments of the appropriate nets.First, let us assume that the user already has generated the XNF �les for his/herdesign. In order to complete the design, the user must create unconstrained LCA �les,run assign and then create constrained LCA �les.7.2.7 Xilinx XC3000 Series DesignThe Makefile in Fig. 7.3 shows the process of generating a XC3000 series designand Fig. 7.2 shows an example of a constraint �le. The constraint �le consists of twoparts. The �rst part locks all the IOBs, and the second part locks the CLBs, if the-c option was used. In the rare event that apr can't complete the routing process,unlocking the CLBs by commenting out the last lineInclude x1clb.cst;of the constraint �le should help. Note that you must also create the routing chipsand place and route them before the �nal design can be downloaded.7.2.8 XC4000 Series DesignThe design ow for XC4000 parts is very much like that of XC3000-series parts,except you use ppr instead of apr; except that the current version (April 1994) of pprhas no incremental placement and routing option. We shall update assign as soonas the incremental place and route option is available with ppr.The constraint �les generated thus conform to the syntax expected by ppr, and alsohave the same pre-extension name as the XNF �le to be placed and routed. Figure 7.5shows a Makefile for running assign. In Fig. 7.4, we have shown the constraint �legenerated for a routing chip. Notice that there are X1 and X2 pre�xes to the normalnet names, indicating which user chip the nets come from. The same pre�xes are usedin XC3000-series routing chip constraint �les.7.3 I/O Speci�cation FileThere are two special �les used by assign. These are xc3020.io and xc3042.io.These �les contain information about the physical pin locations on the chip (which is84 pin PLCC package) and the usable pins. You should not change these �les. Thecommands contained in the �les include:; a semicolon in the first column of a line denotes a comment MAP<pin# start: pin# end> -> ( start_x:start_y, end_x:end_y) IO<startpin:endpin> <startpin:endpin> .... CIO <startpin:endpin><startpin:endpin> ...



54 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping BoardPlace instance X1_PSavcol<3>: P48;Place instance X2_PLateral<2>: P46;Place instance X2_Pnewtile<3>: P39;Place instance X1_Pc<12>: P62;Place instance X2_Pc<12>: P14;Place instance X2_Pnewtile<2>: P47;Place instance X2_Prot<1>: P37;Place instance X1_Pc<17>: P36;Place instance X2_Pc<17>: P35;Place instance X1_PYourmove: P24;Place instance X1_PMoveready: P57;Place instance X1_Pc<3>: P79;Place instance X2_Pc<3>: P26;Place instance X1_PSavcol<2>: P18;Place instance X2_Prot<2>: P29;Place instance X2_Pnewtile<1>: P28;Place instance X2_PLateral<1>: P4;Place instance X1_Pcond<1>: P72;Place instance X2_Pcond<1>: P25;Figure 7.4: A Sample XC4000 Series Constraint File.all: amazerg.lca r2newg.lca r1newg.lcamakeprom -o amazer4 -u 0 r1newg amazerg r2newg e4003aamazerx.cst: amazerx.ali amazerx.xnf# run ppr once without constraints to generate amazerg.lca# - the next line may be unnecessary in subsequent design runsppr amazerx.xnf outfile=amazergassign -1 amazerg.lca -a amazerx.ali -s 1 -x1 amazerx.cst\\-r1 r1.cst -r2 r2.cst -i -uamazerg.lca: amazerx.cstppr amazerx outfile=amazerg logfile=amazergmakebits amazergr2newg.lca: amazerx.cstppr r2 outfile=r2newg logfile=r2newgmakebits r2newgr1newg.lca: amazerx.cstppr r1 outfile=r1newg logfile=r1newgmakebits r1newgFigure 7.5: A Sample Make�le for XC4000 series FPGAs (non-incrementalplace and route version).



7.4. BORG Wiring File 55Use MAP to specify the relation between the actual pin number and the logicalcoordinate of the pin, taking the upper left corner of the chip to be (x=0, y=0) andthe lower right to be (x=22,y=22).IO speci�es the list of usable pins on the particular chip. Finally, CIO speci�esthe list of possibly usable pins (pins which are used in con�guration mode, but maybe used later).7.4 BORG Wiring FileThe alt3042.wir �le contains a net list of physical wires on the XC3000 BORGboard. The 4k.wir �le contains a net list of physical wires on the XC4000 BORGboard. The �le speci�es how your X1 and X2 FPGAs are connected to the routing(R1, R2) chips. The BORG wiring con�guration is hardwired, so this �le should NOTbe changed by the user.The connections are speci�ed by:<source>.<pin#> -> <dest>.<pin#> [&&alias_name]where source � X1, X2, X0, M1 and dest � R1, R2. A comment is denoted by a ';'semicolon at the start of a line. The X0 chip is an on-board chip of BORG whichcontains logic to interface to the PC bus. The M1 chip is the memory chip. Theoptional [&&alias_name]parameter is ONLY used with X0 and M1 mapping in order to specify the alias namefor these forced nets. The actual wiring con�guration is listed in Section 7.11.7.5 Theory of ASSIGNThe pin assignment problem is formulated as a graph problem, which we call thetwo-color assignment problem. The goal of the two-color assignment problem is to�nd a consistent, minimum weight node assignment. I describe my solution to theproblem, which uses two methods, called graph reduction and augmentation 2.7.6 Problem DescriptionThe problem is formally de�ned as follows: Graph G(V, E) consists of three setsof vertices, P, Q, and N, which are connected by a set of edges such that every edgehas one endpoint in P [ Q, and the other endpoint in N. The N vertices representthe nets which need to be matched on the user-programmable chips. The P verticesrepresent the X1 pads to which the nets may be assigned, and the Q vertices representthe X2 pads to which the nets may be assigned.2The augmentation algorithm was created and implemented �rst by Professor Martine Schlag



56 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board(P [ Q, N) is a bipartition of G. Each vertex v � P [ Q, has a color, c(v)=red orgreen. These colors correspond to choosing a routing path through a routing chip R1or R2, so the color of the vertex in P and the color of the vertex in Q of a matchedpair must be the same. It is because of these colors that a standard graph matchingalgorithm cannot be used. A valid assignment consists of two one to one functions,fp and fq, which map a vertex from N to either P or Q.fp: N ! P, fq: N ! QThe weight of an assignment is the sum of all of the edge weights in the assignment.Ideally, one would like to �nd the graph assignment of minimum weight. Edge weightsin the graph represent the distance of the chosen pad from the original pad assigned byapr. It is bene�cial to perturb the pad positions as little as possible so that apr maybe able to re-route the design WITHOUT re-placing the design, saving a substantialamount of time.In general, j N j � j P j and j N j � j Q j . There is one further constraint wherecertain nets (such as those which go to the memory or PC bus) must be assigned toa speci�c color (routing chip). These nets are called forced nets. The correspondingpads associated with these forced nets are called forced-net-pads.7.7 Graph ReductionThe �rst method for generating consistent pin assignments is called graph reduc-tion. The graph reduction heuristic works as follows:1. Remove edges from the graph that are impossible to match.These are the pads of some color c in set P which have no corresponding padsof the same color in set Q, or vice versa. Repeat this step until there are nomore impossible edges to remove.2. Find and remove forced pads.A forced pad is one which some net MUST choose because it has no otherunmarked pads to choose from. These forced pads are NOT ONLY forced-net-pads (de�ned above), but also pads which are forced due to vertex removal donein the next step. The pad is marked as part of the solution set. Repeat thisstep until no more forced pads remain.3. Remove one vertex from the graph.The edge removed depends on the current operating mode of the algorithm.In GLOBALLY GREEDY mode, the edge chosen for removal is the largestweight edge remaining in the graph. In LOCALLY GREEDY mode, the vertexremoved is the largest weight edge of the net at the head of the queue containingunassigned nets. In RANDOM mode, the vertex removed is the vertex beingconsidered when a random number exceeds a threshold value (varied from 50%to 90%). Vertices are considered based on their order in the list of verticesconnected to a particular net in N.4. While there are still edges in G, loop back to the �rst step.



7.8. Augmentation 57This algorithm is fairly fast (polynomial time), and, if it �nds a solution, it islikely to be very close to the ideal solution since high weight edges are removed. Themain problem with this heuristic is that incomplete solutions may be generated sincea greedy vertex removal might cause some nets to become unassignable. Thus, afterthe entire algorithm has completed, two more solution-searching phases are used:Find Last, and Augment2() (described in the next section).The Find Last phase looks at every unassigned net and searches for any vertex(pad) which is unused and which the net can use. These are vertices that may havebeen discarded in the greedy graph reduction. If one is found, the assignment is made.7.8 AugmentationThere are two augmentation algorithms used: Augment1() and Augment2(). Bothalgorithms search for alternating paths in the N, P and N, Q subgraphs. A breadth�rst search is done on the graph starting with an incompletely assigned net vertex.The algorithm recursively searches for a net which can choose some other pad for itssolution. In the Augment1() algorithm, the net looks only at pads of the same coloras its current solution for possible swapping. This is a standard augmenting pathalgorithm consisting of only N and pads in P of the same color. In the Augment2()algorithm the net also checks to see if a net can swap its solution with pads of theopposite color.The simplest way to describe the algorithm is with an example. Figure 7.6illustrates how the Augment1() procedure works. In the �gure, the dashed linesshow pads which a net may choose, provided that no other net has chosen to use thatpad. Solid lines represent a pad that a net has chosen as part of its matching. TheO's inside the vertices represent routing chip R1, the X's represent routing chip R2.Net a is currently incompletely assigned. So, net a looks at all of the other nets whichhave a solution that it can use. In this case, net b is the only one. Now, net b checksto see if it can pick some other pad so that it can give its solution to net a. It cannot,so it looks at all nets which have a solution that it could possibly use. In this case, itlooks at net c. Net c cannot choose any other pads for its solution, so we recur onceagain, and check if net d can choose some other pad for its solution. It can. So, netd takes the unassigned pad, and then returns the pad it gave up, so net c can takethat pad and return its previous solution to net b, which �nally gives up its previoussolution to net a.The Augment2() procedure is nearly the same as that of Augment1(). In fact,Augment1() is called as a subroutine from Augment2(), and if no solution is foundby Augment1(), then the algorithm searches for pads of the opposite color which anet can take as its solution. Note that forced nets cannot be considered because theycan not change colors (routing chips). Figure 7.7 illustrates how the Augment2()procedure works. Starting at net a, we consider all nets that have a solution neta could use. Nets b and d are the only ones. Net b cannot pick solutions of theopposite color, so we recursively check all nets which could give up its solution to netb. Net c is such a net. Now, net c can pick a solution pair of the opposite color, so itdoes. Net b can then pick a pair of solutions of the opposite color. Finally, net a can



58 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Boarddcbadcba Unassigned
AFTERBEFORENetsPads Pad

Figure 7.6: Example of the Augment1() AlgorithmPadUnassigned edcbaedcba PadUnassignedPadsNets BEFORE AFTERFigure 7.7: Example of the Augment2() Algorithmbe assigned a new solution pair. The algorithm is then executed from the beginningagain, starting at net e, since it does not have a complete assignment, and a solutionis eventually found for it.The pseudocode for each of the two algorithms is nearly identical, so we shall onlyprovide the code for Augment2() in Fig. 7.8. Many of the details of the algorithmhave been left out so that the general idea of the algorithm would not be overwhelmedby the particular implementation details.7.9 Main Program LoopThe augmentation and graph reduction algorithms are the major components ofassign, but it is also useful to see how they are used in the overall scheme of the



7.10. Performance 59Augment2(NetNodes,SOLUTION DESIRED) f=* Recursive Breadth�First�Search *=for each unassigned node 'cnn' fmark cnn;=* check if net cnn can pick a pad of opposite color forits solution which some other net wants *=pad = swap if available2(cnn,SOLUTION DESIRED);if (!pad) pad = Augment1(NetNodes,SOLUTION DESIRED);if (pad) return(pad);for each unmarked pad 'p' connected to cnn ffor each unmarked node 'nn' connected to p fif ('nn' has a solution that cnn is looking for using pad p) fmark p;put nn onto NextQ;gggg== recursive callpad = Augment2(NextQ,SOLUTION DESIRED);if (pad) f�nd the node 'cnn' which wants to use pad for its solution;rpad = swap(pad, cnn);return(rpad);gg Figure 7.8: The Augment2() Algorithm.program. Figure 7.9 shows the pseudocode for the main program loop, and for theSolve() procedure called by the main loop.7.10 PerformanceLet n be the number of nets to be pairwise assigned, p be the maximum numberof pads each net can be assigned to, and w be the number of window sizes spanned.The default Augment2() algorithm runs in O(n2p2) time. This is because of theparticular implementation of the breadth �rst search algorithm, which looks at everynode, and every pad connected to every node. One would expect that the algorithm



60 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping BoardSolve(mode, parameter) f=* ���������������������������������������������������� *==* �rst run graph reduction if the command line switch was set *==* ���������������������������������������������������� *=if (switch option '-g') fgraph reduction(mode,parameter);g=* ���������������������������������������������������� *==* run improvement step, if the command line switch was set *==* ���������������������������������������������������� *=if (switch option '-i') fSingular Improvements();Pair Wise Swap Improvements();g=* ���������������������������������������������������� *==* Run the Augment2() and Find Last() procedures *==* ���������������������������������������������������� *=do ffoundsolution=0;for each remaining unmatched net ffoundsolution += Find Last();founsolution += Augment2();gg while (foundsolution);=* ���������������������������������������������������� *==* run improvement step, if the command line switch was set *==* ���������������������������������������������������� *=if (switch option '-i') fSingular Improvements();Pair Wise Swap Improvements();gSave Solution If Better();gmain() f=* try as many window sizes as is necessary *=for (windowsize=start; windowsize<=end; windowsize++) fif (the option '-g' was used) fSolve(option,GLOBALLY GREEDY,NULL);Solve(option,LOCALLY GREEDY,NULL);for (i=50; i<=90; i+=10) fSolve(option,RANDOM,i);gg=* check for exit condition *=if (Complete And Consistent Solution Found) exit and output solution;gg Figure 7.9: The Main Program of Assign.



7.10. Performance 61Design Blocks Nets Pads Assigned Switch Options Total Weight RuntimeRb 71+125 77+92 29+19 | 18 7.2sRb 71+125 77+92 29+19 -i 17 13.9sRb 71+125 77+92 29+19 -g 25 13.1sRb 71+125 77+92 29+19 -g -i 25 18.3sMcl 71+132 72+118 26+21 | 21 7.2sMcl 71+132 72+118 26+21 -i 21 12.9sMcl 71+132 72+118 26+21 -g 23 12.1sMcl 71+132 72+118 26+21 -g -i 21 18.2sMtn 205+99 230+107 51+39 | 175 93.6sMtn 205+99 230+107 51+39 -i 158 282.7sMtn 205+99 230+107 51+39 -g 245 546.2sMtn 205+99 230+107 51+39 -g -i 185 933.6sTable 7.1: Assign Performance
takes O(np) time, but because of the call to Augment1() within Augment2(), the totalexecution time is O(n2p2).The greedy reduction algorithm runs in O(np2) time. This comes from the factthat at most p edges must be removed before the algorithm terminates, and for everyedge removed, it takes O(np) to �nd all of the forced pads and all of the pads whichare unmatchable.Running the improvement phase takes O(n2) time. So, the overall programperformance is O(wn2e2).Table 7.1 shows the actual performance of the program on three designs. All testswere run with an initial window size of one, and were executed on a Sun Sparcstation1+.



62 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board7.11 BORG wiring connections7.11.1 XC3000-series BORG wiring connections; Jan 29, 1992 (Pak K. Chan);; X1;X1.83 -> R1.2X1.84 -> R2.2X1.2 -> R1.4X1.3 -> R2.4X1.4 -> R1.8X1.5 -> R2.6; X1.6 -> R1.6; X1.7 -> R2.6X1.8 -> R1.10X1.9 -> R2.8; X1.10 -> R1.10; X1.11 -> R2.8; pin 13 is for GCLK input; X1.14 -> R1.14 R1.14 is connected to X0X1.15 -> R1.15X1.16 -> R2.10X1.17 -> R1.17X1.18 -> R2.36X1.19 -> R1.19X1.20 -> R2.41X1.21 -> R1.21X1.23 -> R2.18X1.24 -> R1.24X1.25 -> R2.20X1.26 -> R1.26X1.27 -> R2.48X1.28 -> R1.28X1.29 -> R2.50X1.30 -> R1.30; pin 33 is M2;X1.37 -> R2.52X1.39 -> R1.34X1.40 -> R2.56X1.42 -> R1.36X1.44 -> R2.58;;X1.38 -> R1.41;X1.45 -> R1.39X1 46 -> R2.60; X1.41 -> R1.41X1.47 -> R1.42X1.48 -> R2.62X1.49 -> R1.45



7.11. BORG wiring connections 63X1.52 -> R2.65X1.53 -> R1.47X1.56 -> R2.67X1.57 -> R1.49; X1.50 ->; X1.51 -> R2.50X1.58 -> R2.69X1.59 -> R1.53X1.60 -> R2.71X1.61 -> R1.59X1.62 -> R2.76X1.63 -> R1.63X1.65 -> R2.78X1.66 -> R1.68X1.67 -> R2.80X1.68 -> R1.75X1.70 -> R2.82X1.71 -> R1.77X1.72 -> R1.73; X1.72 and X1.73 can also be used as user I/O pins; X1.73 -> R2.72;X1.77 -> R2.84;; end of 25 pins; extra pinsX1.78 -> R1.81X1.81 -> R1.83; X1 extra pins for XC3030s;;X1.38 -> R1.38;X1.41 -> R1.41;X1.50 -> R1.50;X1.51 -> R1.51; one X2 pin for XC3030s;X2.6 -> R2.7;X2.71 -> R2.79;; X2; X2 north east face;X2.2 -> R2.3X2.4 -> R2.5;X2.8 -> R2.9X2.15 -> R2.11; X2 north west faceX2.83 -> R2.83X2.81 -> R2.81X2.77 -> R2.77X2.75 -> R2.75; west face; special addresses - BORG jumpers affect which lines are usable; *** *REF1* The following 3 nets are not allowed when the memory



64 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board; is used, otherwise, if the -u option is used in assign, then; these lines are unavailable. See *REF2*; X2.68 -> R2.15; X2.70 -> R2.16; X2.17 -> R2.17;;X2.19 -> R2.42X2.24 -> R2.19X2.27 -> R2.21X2.29 -> R2.49; south face of X2X2.37 -> R2.51X2.40 -> R2.53; extra from memory address A_11X2.44 -> R2.14;X2.46 -> R2.57X2.48 -> R2.59; east face of X2X2.57 -> R2.61X2.59 -> R2.63X2.61 -> R2.66X2.63 -> R2.68X2.66 -> R2.70; end of 24 pins;; connection to R1X2.3 -> R1.3X2.5 -> R1.5X2.9 -> R1.9X2.16 -> R1.11; west faceX2.18 -> R1.16X2.20 -> R1.18X2.23 -> R1.23X2.25 -> R1.20X2.26 -> R1.25X2.28 -> R1.27X2.30 -> R1.29; south faceX2.35 -> R1.33X2.39 -> R1.35X2.42 -> R1.37X2.45 -> R1.40X2.47 -> R1.46X2.49 -> R1.44X2.52 -> R1.48; east faceX2.58 -> R1.52X2.60 -> R1.57X2.62 -> R1.61X2.65 -> R1.66X2.67 -> R1.71



7.11. BORG wiring connections 65; east north faceX2.72 -> R2.73X2.76 -> R1.76X2.78 -> R1.78X2.82 -> R1.82X2.84 -> R1.84; end; force nets; R1 force nets; data bitsX0.1 -> R1.72 &&BusData_0X0.1 -> R1.70 &&BusData_1X0.1 -> R1.67 &&BusData_2X0.1 -> R1.65 &&BusData_3X0.1 -> R1.62 &&BusData_4X0.1 -> R1.60 &&BusData_5X0.1 -> R1.58 &&BusData_6X0.1 -> R1.56 &&BusData_7; address bitsX0.8 -> R1.79 &&BusAddress_0X0.9 -> R1.80 &&BusAddress_1X0.10 -> R1.69 &&BusAddress_2X0.11 -> R1.14 &&BusAddress_3; io control bitsX0.12 -> R1.6 &&BusControl_0X0.13 -> R1.7 &&BusControl_1; R2 forced nets; memory data pins D0-D7M1.9 -> R2.23 &&MData_0M1.10 -> R2.24 &&MData_1M1.11 -> R2.25 &&MData_2M1.13 -> R2.26 &&MData_3M1.14 -> R2.27 &&MData_4M1.15 -> R2.28 &&MData_5M1.16 -> R2.29 &&MData_6M1.17 -> R2.30 &&MData_7; memory address pins A0-A7M1.8 -> R2.37 &&MAddress_0M1.7 -> R2.38 &&MAddress_1M1.6 -> R2.39 &&MAddress_2M1.5 -> R2.40 &&MAddress_3M1.4 -> R2.44 &&MAddress_4M1.3 -> R2.45 &&MAddress_5M1.2 -> R2.46 &&MAddress_6M1.1 -> R2.47 &&MAddress_7; special addresses - BORG jumpers affect which lines are usable



66 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board; *** *REF2*; The following 4 nets are usable when the -u option of assign is; used. Otherwise, the *REF1* lines will be allowed.M1.23 -> R2.17 &&MAddress_8M1.22 -> R2.16 &&MAddress_9M1.19 -> R2.15 &&MAddress_10M1.19 -> R2.14 &&MAddress_11; memory control pins WE OE CSM1.21 -> R2.35 &&M_WEM1.20 -> R2.34 &&M_OEM1.18 -> R2.33 &&M_CS; Dummy pins used by assign to generate forced nets for R1 and R2X0.1 -> R1.1 &&R1X0.1 -> R2.1 &&R2; end



7.11. BORG wiring connections 677.11.2 XC4000-series BORG wiring connections;;; Oct 26, 1993 (Pak K. Chan); Jan 20, 1994 (Jason Y. Zien) Added memory address, data, control lines;; BORG II XC4000-PC84 wiring file; wiring file for BORG II;; Dummy pins used by assign to generate forced nets for R1 and R2X0.1 -> R1.1 &&R1X0.1 -> R2.1 &&R2; ---------------------------------------------------; **** Memory lines ***; These are not present in 4knomem.wir; these lines are allowed when the -u command-line option; of assign is used, otherwise, 4knomem.wir is used if the; -u option is not used.; BORG dip-switch settings affect which set is physically active.; mem. address linesM1.1 -> R2.47 &&MAddress_0M1.2 -> R2.48 &&MAddress_1M1.3 -> R2.49 &&MAddress_2M1.4 -> R2.50 &&MAddress_3M1.5 -> R2.51 &&MAddress_4M1.6 -> R2.56 &&MAddress_5M1.7 -> R2.57 &&MAddress_6M1.8 -> R2.58 &&MAddress_7M1.9 -> R2.61 &&MAddress_8M1.10 -> R2.62 &&MAddress_9M1.11 -> R2.67 &&MAddress_10M1.12 -> R2.66 &&MAddress_11; mem. data linesM1.12 -> R2.46 &&MData_0M1.13 -> R2.45 &&MData_1M1.14 -> R2.44 &&MData_2M1.15 -> R2.40 &&MData_3M1.16 -> R2.39 &&MData_4M1.17 -> R2.38 &&MData_5M1.18 -> R2.37 &&MData_6M1.19 -> R2.36 &&MData_7; mem. control linesM1.20 -> R2.65 &&M_OEM1.21 -> R2.60 &&M_WEM1.22 -> R2.30 &&M_CS



68 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board; *** end of Memory lines ***; -------------------------------------------------------------; The following lines are not usable when the memory is used; (not usable when -u option of assign is set).; They are used by default.; BORG dip-switch settings affect which set is physically active.;; A0; X2.27 -> R2.47; A1; X2.35 -> R2.48; A2; X2.39 -> R2.49; A3; X2.40 -> R2.50; A4; X2.45 -> R2.51; A5; X2.50 -> R2.56; A6; X2.51 -> R2.57; A7; X2.47 -> R2.58; A12; X2.46 -> R2.59; A8; X2.37 -> R2.61; A9; X2.70 -> R2.62; A11 and A10; X1.56 -> R2.66; X1.58 -> R2.67; end; ---------------------------;; R1;; R1 force nets to PC;X0.0 -> R1.71 &&BusData_0X0.1 -> R1.69 &&BusData_1X0.2 -> R1.67 &&BusData_2X0.3 -> R1.65 &&BusData_3X0.4 -> R1.61 &&BusData_4X0.5 -> R1.59 &&BusData_5X0.6 -> R1.58 &&BusData_6X0.7 -> R1.56 &&BusData_7; 4 address linesX0.8 -> R1.83 &&BusAddress_0X0.9 -> R1.81 &&BusAddress_1



7.11. BORG wiring connections 69X0.10 -> R1.82 &&BusAddress_2X0.11 -> R1.80 &&BusAddress_3; 3 io control lines; xiorX0.12 -> R1.51 &&BusControl_0; xiowX0.13 -> R1.50 &&BusControl_1; interruptX0.14 -> R1.70 &&BusControl_3;X2.44 -> R1.14X1.67 -> R1.18X1.65 -> R1.19X1.61 -> R1.20X2.38 -> R1.23X1.59 -> R1.24X2.36 -> R1.25X2.26 -> R1.26X2.24 -> R1.27X2.20 -> R1.28X2.18 -> R1.29X1.81 -> R1.3X2.14 -> R1.35X1.36 -> R1.36X2.7 -> R1.37X2.69 -> R1.4X1.46 -> R1.40X1.40 -> R1.44X2.3 -> R1.45X2.83 -> R1.46X2.81 -> R1.47X2.79 -> R1.49X2.67 -> R1.5X1.28 -> R1.57X2.65 -> R1.6X1.26 -> R1.60X1.20 -> R1.66X1.18 -> R1.68X2.61 -> R1.7X1.71 -> R1.72X1.5 -> R1.79X2.59 -> R1.8X1.83 -> R1.84X2.48 -> R1.9;; TDO;R1.75 -> X1.15X1.24 -> R1.62X1.3 -> R1.78X1.38 -> R1.48;X1.48 -> R1.38



70 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping BoardX2.5 -> R1.39;; R2;X1.27 -> R2.14; X1.75 is TDO; R2.15 -> X1.75X2.68 -> R2.18X2.66 -> R2.20X2.62 -> R2.24X1.14 -> R2.7X1.62 -> R2.70X2.84 -> R2.25X2.4 -> R2.26X2.60 -> R2.27X2.25 -> R2.29X2.49 -> R2.35X2.41 -> R2.41X1.72 -> R2.71X2.71 -> R2.72X1.60 -> R2.77;X2.19 -> R2.79X1.80 -> R2.80X1.19 -> R2.8X1.23 -> R2.9X1.37 -> R2.5X1.39 -> R2.3X1.4 -> R2.4X1.45 -> R2.83X1.47 -> R2.81X1.6 -> R2.6X1.66 -> R2.78X1.68 -> R2.69X1.82 -> R2.82X1.84 -> R2.84;R2.75 -> X2.15 TDO cannot be used okay ???X2.6 -> R2.28X2.80 -> R2.19X2.82 -> R2.23;X2.23 -> R2.68



718. Using the Protoboard and Schematic Drawings8.1 Proto-area, Common Anode LEDsThe proto-area is on the left-hand-side of the protoboard. Each I/O pad of theXC4000 FPGAs can only supply 3 mA of current, which is not su�cient to drivemost LEDs. The author is certainly aware of the availability of the miniature HP2 mA LEDs, unfortunately, they are not available as 7-segment displays. Therefore,the 7-segment LEDs are common ANODE LEDs, with headers J48 and J49 providingthe access to the segments.None of the LEDs are connected to the FPGAs, so you need to use jumpers/wires(with sockets on both end) to display your signals. Each segment (in general eachLED in the proto-area) can source roughly 4mA to a maximum of 10mA. Header J45provides the connections to the 4-bar LED4 and LED5 which are also common anodeLEDs. SW6 and SW7 are connected to header J46 and J47 respectively; each positionis pulled high with a 10K resistor. The header supplies a `1' when the switch is open,and a `0' otherwise.
TDI

TCK

TMS

D7

D6

D5

CS0

D4

52 5351504948474645444342414039383736353433

58

59

28

27

77 76 75

15

16

17

18

19

20

21

22

23

24

25

26

78798081828384

14

13

12
9 8 7 6 5 4 3 2 11011

72

73

74

71

70

69

68

67

66

65

64

63

62

61

60

29

30

31

32

57

56

55

54

D3

RS

D2

D1

D0, DIN

VCC

VCC

GND

LDC

M1

M0

DONE

GNDHDC

GND

VCC

M2

SGCK2

PGCK2

VCC

GND

VCC

GND

PGCK3

ERR, INIT

PROG

SGCK3

RCLK-BUSY/RDY

XC4003A-PC84

VCC

PGCK1

GND

CCLK

SGCK4, DOUT

CS1VCCVCC

SGCK1 GND

TD0

PGCK4 GND

WS

Figure 8.1: XC400?A-PC84 package footprint.



72 8. Using the Protoboard and Schematic Drawings
54 5556586062646668
707274

54565860626466
70746872123456789101112 1314 1516 1718 19202224 2526 2728 2930 3132 33 35 38 3940 4142 4344 4546 4748 4950 5152

212334 36 37 53555759616365
676971737576777879808182838410 8 6 4 84 82 80 78 7629 7 5 3 1 81 7711 83 75791213 1415 1617 1819 2021 2223 2425 2627 2829 3031 32 57596163656769

7173
3334 3536 3738 3940 4142 4344 4546 4748 4950 5152 53

TOP VIEWSideComponent
Figure 8.2: 84-pin PLCC Package Footprint and headers, Component Side.For debugging purposes all the user FPGA pins are connected to the headers foreasy signal access. Figures 8.1 and 8.2 provide the 84-pin PLCC footprints and itsheaders for the \component" side. The assembly drawing of the BORG board withall the reference designators are given in Fig. 8.3. Finally, two sheets of the schematicdrawings (drawn with PADs LOGIC) of the BORG board are given in Fig. 8.4 and8.5 for documentation and debugging purposes.



8.1. Proto-area, Common Anode LEDs 73

Figure 8.3: The BORG board's assembly drawing with reference designators.



74 8. Using the Protoboard and Schematic Drawings

Figure 8.4: Schematic Drawing of the BORG Board (Sheet 1/2).



8.1. Proto-area, Common Anode LEDs 75

Figure 8.5: Schematic Drawing of the BORG Board (Sheet 2/2).



76 9. Guide to Some Laboratory Experiments9. Guide to Some Laboratory ExperimentsThis chapter serves as a simple guide to use the BORG board. Suggestions forsome possible digital design experiments are provided but not elaborated.9.1 Creating user I/O ports in R1Two sheets of schematic drawings portest given in Fig. 9.1 and 9.2 provide thebasic idea of implementing I/O ports in R1 to communicate with the PC. We arecreating four user I/O ports. We use a 74139-like part from the Xilinx library for portaddress decoding. Notice that the outputs of the decoder are active LOW, and theselected output is used to clock the 74374-like (positive edge-triggered) octal registers.The outputs of the octal registers share an 8-bit bus which is tri-stated. The signalXIOR is used to control the direction of data on the bus. Note that the I/O padassignments are provided directly in the schematic in Fig. 9.1.A simple program portest.c which writes and then reads from the I/O portscreated in R1 FPGA is given on the next page.Given that the schematic drawing's �le name is portasy, you can download thisport test demo by taking the following steps:c:> wir2xnf portasyc:> ppr portasyc:> makebits portasyc:> makeprom -o portest.mcs -u 0 portasy.bit em4003a em4002a em4003ac:> bd portest.mcsc:> portest



9.1.CreatinguserI/OportsinR1
77sheet 1 of 2

BORG
UC SANTA CRUZ

I

DRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4

Pak K. Chan

I

tristate-374

XIOR

PORTD
PORTC
PORTB
PORTA DATAOUT

DATAIN

I/O Ports Realizers by 374s

DIN6

XIORXIOR

DIN1

A0

EN139

A1

DIN0

D4>

OBUFT IBUF

IBUFOBUFT

D5>

LOC=P59

PAD

LOC=P56

PAD
D7>

OBUFT IBUF

IBUFOBUFT

D6>

LOC=P58

PAD

LOC=P67

PAD
D2>

OBUFT IBUF

IBUFOBUFT

LOC=P65

PAD

LOC=P69

PAD
D1>

OBUFT IBUF

IBUFOBUFT

AND2

NAND2B1

IBUF

XIOR>

IBUF

A3>

IBUF

A2>

IBUF

IBUF

IBUF

UC Santa Cruz/Computer Engineering

Port I/O Test

A0>

A1>

A2

A3

XIOR

XIOW NAND2B2

D0>

LOC=P71

PAD

LOC=P81

PAD

LOC=P82

PAD

LOC=P80

PAD

LOC=P83

PAD

LOC=P51

XIOW>

LOC=P50

PAD

D3>

LOC=P61

PAD

DOUT4

DOUT5

DOUT6

DOUT7 DIN7

DIN6

DIN5

DIN4
DOUT0

DOUT1

DOUT2

DOUT3

DIN1

DIN2

DIN3

XIOR
XIOR

PORT7
PORT6
PORT5
PORT4

DOUT3

DIN3

XIOR

PORT7
PORT6
PORT5
PORT4

DOUT2

DIN2

PORT7
PORT6
PORT5
PORT4

DOUT1

DIN0

DOUT0
PORT4
PORT5
PORT6
PORT7

XIOR

PORT4
PORT5
PORT6
PORT7

A0

A1

ENB

O0B

O1B

O2B

O3B

X74-139

XIOR

PORT7
PORT6
PORT5
PORT4

DOUT4

DIN4

DOUT5
PORT4
PORT5
PORT6
PORT7

DOUT6
PORT4
PORT5
PORT6
PORT7

XIOR

DIN7

DOUT7
PORT4
PORT5
PORT6
PORT7

XIOR

DIN5

tristate-374

XIOR

PORTD
PORTC
PORTB
PORTA DATAOUT

DATAIN

tristate-374

XIOR

PORTD
PORTC
PORTB
PORTA DATAOUT

DATAIN

tristate-374

XIOR

PORTD
PORTC
PORTB
PORTA DATAOUT

DATAIN
tristate-374

XIOR

PORTD
PORTC
PORTB
PORTA DATAOUT

DATAIN

tristate-374

XIOR

PORTD
PORTC
PORTB
PORTA DATAOUT

DATAIN

tristate-374

XIOR

PORTD
PORTC
PORTB
PORTA DATAOUT

DATAIN

Asynchronous I/O

PORT DECODER

0  1  X  X
A3 A2 A1 A0

MAP to addresses

Four 8-bit read/write ports

PAD

tristate-374

XIOR

PORTD
PORTC
PORTB
PORTA DATAOUT

DATAIN

PART=4002APC84-6

Figure9.1:BuildingI/OportsintheR1FPGA.



78
9.GuidetoSomeLaboratoryExperimentsPORTEST sheet 2

sheet 2 of 2

Drawn By: Pak K. Chan

Tri-State 74374

XIOR

NAND2B2

XIOR

NAND2B2

XIOR

NAND2B2

PORTA

C

D Q

FD
I O

T

TBUF

I O

T

TBUF

C

D Q

FD
I O

T

TBUF

NAND2B2

I O

T

TBUFC

D Q

FD

DATAIN
XIOR

C

D Q

FD

DATAOUT

PORTB

PORTC

PORTD

PORTD

PORTA

PORTB

PORTC

A

B

C

D

A

B

C

D

BORG
UC SANTA CRUZ

I

DRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4

Pak K. Chan

I

Figure9.2:Tristate74374-likedeviceinthePORTESTschematic.



9.1. Creating user I/O ports in R1 79/* portest: write and then read four PORTs in R1*/#include <stdio.h>#include <dos.h>#include <stdlib.h>main (){unsigned int PORT1, PORT2, PORT3, PORT4;unsigned int PortA;int i, j;float error;unsigned char x;char * portenv;error=0;setcbrk(1);portenv=getenv("BORG");/* Control Port in X0 */if(!strcmp(portenv,"0x300"))PortA = 0x300;else if(!strcmp(portenv,"0x200"))PortA = 0x200;else if(!strcmp(portenv,"0x210"))PortA = 0x210;else if(!strcmp(portenv,"0x310"))PortA = 0x310;else { printf(" \n Wrong PORT address\n");printf(" Please specify PORT address\n e.g. set BORG=0x300%s\n");exit(1);}printf(" BORG PORT address is %s\n",portenv);PORT1=PortA+4;PORT2=PortA+5;PORT3=PortA+6;PORT4=PortA+7;for (i =0; i < 15; i++){outportb (PORT1,i);outportb (PORT2,i+1);outportb (PORT3,i+2);outportb (PORT4,i+3);printf ("Sent to port Data Read Data\n");printf (" PORT1: %d %d \n",i,inportb (PORT1));printf (" PORT2: %d %d \n",i+1,inportb (PORT2));printf (" PORT3: %d %d \n",i+2,inportb (PORT3));printf (" PORT4: %d %d \n",i+3,inportb (PORT4));printf ("(hit return to continue ..)");getchar ();}printf ("Starting automatic check (read after write)....\n");printf ("This will take a minute or so ....\n");for (j =0; j < 10000; j++)for (i =0; i < 127; i++){outportb (PORT1,i);x=inportb (PORT1);if( x != i ) ++error;outportb (PORT2,i+1);x=inportb (PORT2);if( x != i+1 ) ++error;



80 9. Guide to Some Laboratory Experimentsoutportb (PORT3,i+2);x=inportb (PORT3);if( x != i+2 ) ++error;outportb (PORT4,i+3);x=inportb (PORT4);if( x != i+3 ) ++error;}printf ("Total errors %6.0f\n",error);}9.2 Hardware Interrupt and Interrupt Service RoutineThis experiment will illustrate the hardware interrupt feature supported by theBORG board.The interrupt service routine is called isr.c. It indicates that it is serving ahardware interrupt by beeping the PC's speaker. This interrupt service routine countsthe number of times that it has been interrupted. It services 10 interrupts and thenremoves itself. This interrupt service routine is loaded as a memory-resident program,as documented in the code.The schematic drawing that generates the hardware interrupt (from the BORGboard) is intpc.1, which is essentially an I/O address decoder connected to a toggleip-op. The ip-op toggles the interrupt request line every time that a prede�nedI/O address is selected. Now, enable IRQ9 on your board for this demo.To load the interrupt generator intpc, you do:c:> wir2xnf intpcc:> ppr intpcc:> makebits intpcc:> makeprom -o intpc.mcs -u 0 intpc.bit em4003a em4002a em4003ac:> bd intpc.mcsc:> isrWe use a small program intpc.c which activates the toggle ip-op to demon-strate the hardware interrupt generation and service processes.c:> intpcBORG PORT address is 0x300Make sure that you load ISR isr.com first.Board Board interrupts PC.ISR will ring the speaker 10 times.1 (hit return to continue ..)2 (hit return to continue ..)3 (hit return to continue ..)



9.2. Hardware Interrupt and Interrupt Service Routine 81#include <stdio.h>#include <dos.h>#include <stdlib.h>main () /* Interrupt PC demo requires schematic drawing INTPC */{unsigned int PORT1, PortA;int i, j;unsigned char x;char * portenv;setcbrk(1);portenv=getenv("BORG");/* Control Port in X0 */if(!strcmp(portenv,"0x300"))PortA = 0x300;else if(!strcmp(portenv,"0x200"))PortA = 0x200;else if(!strcmp(portenv,"0x210"))PortA = 0x210;else if(!strcmp(portenv,"0x310"))PortA = 0x310;else { printf(" \n Wrong PORT address\n");printf(" Please specify PORT address\n e.g. set BORG=0x300%s\n");exit(1);}printf(" BORG PORT address is %s\n",portenv);PORT1=PortA+4;printf ("\n Make sure that you load ISR isr.com first.\n");printf ("\n Board Board interrupts PC.\n ISR will ring the speaker 10 times.\n");for (i = 1; i < 15; i++){outportb (PORT1,i); /* toggle the flip-flop inside R1 */delay(1);outportb (PORT1,i);printf (" %2d (hit return to continue ..)", i);getchar ();}}



82 9. Guide to Some Laboratory Experiments/* Interrupt Service Routine isr.cModified from and credit to the Protozone User's manualA simple interrupt handler example using C without assembly language.Code in Borland C.This program assumes IRQ9 is used and shows how to handlethe slave and master Programmable Interrupt Controllers 8259As (PICs)We need to take care of both the PICs because IRQ9 is cascaded thru IRQ2.The interrupt vector for IRQ2 is 0x0A as defined by the PCNote: You need to pull IRQ9 low inorder to run this program properly*//*Compile and execute isr.com withtcc -mt -M isr.cexe2bin isr.exe isr.com*/#include <dos.h>#include <conio.h>#include <stdio.h>#define PIC_master 0x20 /* Programmable Interrupt Controller PIC master */#define PIC_slave 0xA0 /* Programmable Interrupt Controller PIC slave */#define EOI 0x20 /* end of interrupt code to send to PICs */#define IRQ2_mask 0xFB /* interrupt mask to enable interrupt request 2bit 2 is reset */#define IRQ9_mask 0xFD /* interrupt mask to enable interrupt request 9bit `9' is reset */#define IRQ9 0x0A /* interrupt number */#define TIMES 10void IntRemove();void interrupt (*oldVector)();unsigned char oldMask1, oldMask2;void Install();void interrupt mybeep(unsigned bp, unsigned di, unsigned si,unsigned ds, unsigned es, unsigned dx,unsigned cx, unsigned bx, unsigned ax){ int i,j;static count=0;char originalbits, bits;unsigned char bcount;/* get the current control port of the PIC setting */disable();/* port for speaker */bits = originalbits = inportb(0x61);bcount=500;for(i=0;i<=bcount; i++){outportb(0x61, bits & 0xfc);for(j=0;j<=300; j++);outportb(0x61, bits | 2);for(j=0;j<=200; j++);}outportb(0x61, originalbits);outport(PIC_master, EOI);



9.2. Hardware Interrupt and Interrupt Service Routine 83outport(PIC_slave, EOI);if((++count) >= TIMES) IntRemove();enable();}void Install(faddr, inum)void interrupt (* faddr)();int inum;{disable();oldVector = getvect(inum);setvect(inum, faddr);oldMask1 = inportb(PIC_master +1);oldMask2 = inportb(PIC_slave +1);outportb(PIC_master+1, IRQ2_mask & oldMask1);outportb(PIC_slave +1, IRQ9_mask & oldMask2);printf("Interrupt Handler installed.\n\n");printf("This interrupt handler intercepts 10 interrupts\nand then remove itself.\n");enable();}void IntRemove(){disable();setvect(IRQ9, oldVector);outportb(PIC_master+1, oldMask1);outportb(PIC_slave +1, oldMask2);enable();oldVector();}main(){ char ch;Install(mybeep,IRQ9);/* check with isr.mapwhen compile withtcc -mt -M isr.cto generate a memory mapStart Stop Length Name Class00000H 01594H 01595H _TEXT CODE015A0H 019BBH 0041CH _DATA DATA019BCH 019BFH 00004H _EMUSEG DATA019C0H 019C1H 00002H _CRTSEG DATA019C2H 019C3H 00002H _CVTSEG DATA019C4H 019C9H 00006H _SCNSEG DATA019CAH 01A15H 0004CH _BSS BSS01A16H 01A16H 00000H _BSSEND STACK*/keep(0, 0x01C0); /* make the interrupt handler resident */}



84
9.GuidetoSomeLaboratoryExperiments

Interrupt PC Demo

LOC=P70

PAD

EN139

INTPC>
A0>

LOC=P82

PAD

A3>

PART=4002APC84-6

BORG
UC SANTA CRUZ

I

DRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4

Pak K. Chan

I

A0

A1

AND2

NAND2B1

IBUF

IBUF

IBUF

A2>

IBUF

IBUF

IBUF

UC Santa Cruz/Computer Engineering

Port I/O Test

A1>

A2

A3

XIOR

XIOW

NAND2B2

LOC=P81

PAD

LOC=P80

PAD

LOC=P51

PAD

XIOW>

LOC=P50

PAD

A0

A1

ENB

O0B

O1B

O2B

O3B

X74-139

OBUF

activate INTPC every time
PORT4 is selected

LOC=P83

PAD

XIOR>

C

D Q

FD

INV

Also need interrupt service routine and driver

Figure9.3:HardwareInterruptDemo.InterruptGeneratedbylogicinthe
R1FPGA.



9.3. Synchronization Problem 859.3 Synchronization ProblemThe PC and the BORG board are driven by di�erent clocks. You need to syn-chronize any information transfer between them to avoid any timing problems. Par-ticularly when you have sequential logic (such as a �nite state machine) inside the R1FPGA, the data transfer from the PC to your sequential logic must be synchronizedby synchronization registers using the (not the PC) system clock.Lab: The schematic drawing as shown in Fig. 9.4 has an I/O port located ataddress PORT4. The output of this port feeds two D ip-ops, ffone and fftwo.These two D ip-ops are clocked by the system clock, and these D ip-ops areconstrained to be mapped into di�erent CLBs (just to exaggerate the failure rate,you can put them together in the same CLB if you want). The counter registers thenumber of times that the output of the ip-ops are di�erent.Questions : What causes the outputs of the D ip-ops to be di�erent? Howwould you �x the problem?To load this lab asylab, you do:c:> wir2xnf asylabc:> ppr asylabc:> makebits asylabc:> makeprom -o asylab.mcs -u 0 asylab.bit em4003a em4002a em4003ac:> bd asylab.mcsc:> asylabA sample driver for this lab is included on the next page.



86 9. Guide to Some Laboratory Experiments/***********************************************************//* asylab v1.0 April 5,1994*//***********************************************************/#include<stdio.h>#include<dos.h>#include<stdlib.h>int main(int argc,char *argv[]){ unsigned char loc, oldloc;int wait;char * portenv;unsigned int PORTRESET, PORT4;unsigned PortA;setcbrk(1);portenv = getenv("BORG");/* Control Port in X0 */if(!strcmp(portenv,"0x300"))PortA = 0x300;else if(!strcmp(portenv,"0x200"))PortA = 0x200;else if(!strcmp(portenv,"0x210"))PortA = 0x210;else if(!strcmp(portenv,"0x310"))PortA = 0x310;else { printf(" Wrong PORT address\n");printf(" Please specify PORT address\n e.g. set BORG=0x300%s\n");exit(1);}PORTRESET = PortA + 3;PORT4 = PortA + 4;/* reset the machine */outportb(PORTRESET, 0x00);outportb(PORTRESET, 0x01);delay(1);/* read Port 4 until all zeroes */wait = 10;while((loc=inportb(PORT4)) != 0 && wait !=0){wait--; delay(1);printf("Waiting for counter to reset.\n"); }/* stop reading */if(loc!=0) {printf("Counter in R1 never reset.\n");}else{printf("Counter in R1 set to 0.\n"); oldloc = -1;while(1){outportb(PORT4, 0x01);delay(1);loc=inportb(PORT4);if(loc != oldloc) {printf("Counter --> %d \n",loc); oldloc=loc;}outportb(PORT4, 0x00);delay(1);loc=inportb(PORT4);if(loc != oldloc) {printf("Counter --> %d \n",loc); oldloc=loc;}}}}



9.3.SynchronizationProblem
87

counter
PORT4

DIFFERENT

PART=4002PC84-6

LOC=P10

PAD

IBUF INV

RESETRESET>
GSR

GTS

CLK

Q2

Q3

Q1Q4

DONEIN

STARTUP

XIOR

XIOW

DOUT0

DOUT5

A0

A1

ENB

O0B

O1B

O2B

O3B

X74-139

DOUT1

DOUT2

DOUT3

DOUT4

DOUT6

BUF

BUF

BUF

BUF

BUF

BUF

BUF

BUF

D[7:0]

D[7]

D[6]

D[5]

D[4]

D[3]

D[2]

D[1]

D[0]

GND

NAND2B2

DIN0

LOC=P50

PAD

DIN3

DIN2

DIN1

DOUT3

DOUT2

DOUT1

DOUT0
DIN4

DIN5

DIN6

DIN7DOUT7

DOUT6

DOUT5

DOUT4
LOC=P61

PAD

D3>

XIOW>
LOC=P51

PAD

LOC=P83

PAD

LOC=P80

PAD

LOC=P82

PAD

LOC=P81

PAD

LOC=P71

PAD
D0>

XIOW

XIOR

A3

A2

A1>

A0>

UC Santa Cruz/Computer Engineering

IBUF

IBUF

IBUF

A2>

IBUF

A3>

IBUF

XIOR>

IBUF

NAND2B1

AND2

OBUFT IBUF

IBUFOBUFT

D1>

LOC=P69

PAD

LOC=P65

PAD

OBUFT IBUF

IBUFOBUFT

D2>

LOC=P67

PAD

LOC=P58

PAD
D6>

OBUFT IBUF

IBUFOBUFT

D7>

LOC=P56

PAD

LOC=P59

PAD
D5>

OBUFT IBUF

IBUFOBUFT

D4>

A1

EN139

A0

BORG
UC SANTA CRUZ

I

DRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4

Pak K. Chan

I

LOC=P13

PAD

BUFGS

XOR2

AND2

DOUT7

LOC=CLB_R1C1

C

D Q

FD

LOC=CLB_R8C8

C

D Q

FD

PORT4

CLK

PORT4
FFTWO

FFONE

C

D Q

FD

Synchronization failure lab

C

CE

Q[7:0]

R TC

C256BCR

Figure9.4:Synchronizationfailurelab.DesigninR1FPGA.



88 9. Guide to Some Laboratory Experiments9.4 Music LabThis frequency synthesizer lab demonstrates the use of XC4000 CLBs as Read-Only-Memories (ROMs). You will also need the following additional components toappreciate this lab.11. one digital-to-analog converter part # TI TLC5602CN2. one 2N2219A NPN transistor, one 2N2222 NPN transistor3. some resistors4. three 10�F capacitors5. one potentiometer6. an 8 
 speakerThe DAC yields only one volt dynamic range, so we use some discrete componentsto build a simple two-stage transistor ampli�er with a voltage gain of 2, as shown inFig. 9.5. You can replace this part with a higher qualify ampli�er.TLC5602CNDACFrom R1 FPGAVrefNC 10uF 8201K 2N2219A8 OhmSpeaker10uF472.2K 2N222210uF
471K

Stage 1 Stage 2+5VD0D1D2D3D4D5D6D7 CLKVoltage Gain =2 Voltage Gain =1+5V
adjust Vref to approx. 3.96VpotentiometerFigure 9.5: Digital-to-Analog Converter and a two-stage transistor ampli�erfor the \music" lab.As illustrated in Fig. 9.5, the DAC is used to convert the digital output of theR1 FPGA to an analog (sine-wave like) signal. The transistors and the rest of thediscrete components form a simple two-stage ampli�er to drive a small 8
 speaker.1Credit to Tom W. Geocaris.



9.4. Music Lab 89Referring to the schematic drawings as shown in Figs. 9.6 and 9.7, the modulerom64w stores a (low �delity) discretized \sine" wave. The content of the module isinitialized by using the Xilinx memgen utility on the data �le rom64w.mem.; ==========================================================; rom64w.mem: A 64-word deep by 8-bit wide ROM memory.; ==========================================================;TYPE ROM ; The memory is a ROMDEPTH 64 ; The memory is 64 words deepWIDTH 8 ; Each memory word is 8 bits wideSYMBOL VIEWLOGIC PINS ; Build a VIEWLOGIC symbol with pin inputsDATA 10#128#,10#140#,10#153#,10#165#,10#177#,10#188#,10#199#,10#209#,10#218#,10#226#,10#234#,10#240#,10#245#,10#250#,10#253#,10#254#,10#255#,10#254#,10#253#,10#250#,10#245#,10#240#,10#234#,10#226#,10#218#,10#209#,10#199#,10#188#,10#177#,10#165#,10#153#,10#140#,10#128#,10#116#,10#103#,10#91#,10#79#,10#68#,10#57#,10#47#,10#38#,10#30#,10#22#,10#16#,10#11#,



90 9. Guide to Some Laboratory Experiments10#6#,10#3#,10#2#,10#1#,10#2#,10#3#,10#6#,10#11#,10#16#,10#22#,10#30#,10#38#,10#47#,10#57#,10#68#,10#79#,10#91#,10#103#,10#116#A 16-bit binary counter cnt16 is used to scan the rom64w module at di�erentrates to produce sine waves of di�erent frequencies. The scan rate is loadable fromthe PC's keyboard via two I/O ports located at the R1 FPGA.To load this lab synth, you do:c:> wir2xnf synthc:> xnfmerge synth musicc:> ppr musicc:> makebits musicc:> makeprom -o music.mcs -u 0 music.bit em4003a em4002a em4003ac:> bd music.mcsc:> musicUse the PC's keyboard to change the frequency of the sound! A very primitivedriver is included for the purpose of illustration.#include <stdio.h>#include <math.h>#define PORT1 0x304#define PORT2 0x305#define CLK 8000000#define BUF_SIZE 64#define CTRL_C 0x3main( int argc, char **argv ){ unsigned int n;int i;char buf[128];while ( 1 ) {switch ( getch() ){



9.4. Music Lab 91case 'q':i = 0;break;case 'w':i = 1;break;case 'e':i = 2;break;case 'r':i = 3;break;case 't':i = 4;break;case 'y':i = 5;break;case 'u':i = 6;break;case 'i':i = 7;break;case 'o':i = 8;break;case 'p':i = 9;break;case '[':i = 10;break;case ']':i = 11;break;case CTRL_C:exit(1);default:continue;}n=floor(CLK/BUF_SIZE/(440.0*pow(1.0594631,i))+0.5);outportb( PORT1, n & 0xff );outportb( PORT2, (n & 0xff00) >> 8 );}}



92
9.GuidetoSomeLaboratoryExperiments

A frequency is generated by writing a

16bit integer to the frequency register.

The following equation is used to determine

the desired frequency. (N = Frequency register)

freq = clk/(buffer_size*N) = 8Mhz/(64*N)

ROM 64B

O7
O6
O5
O4
O3
O2
O1
O0

A5
A4
A3
A2
A1
A0

DIN[7:0]

DIN7

DIN6

DIN5

DIN4

DIN2

DIN3

DIN1

DIN0

RESET

UC Santa Cruz/Computer Engineering

PART=4002APC84-6

Synthesizer Lab

+5

VCC

+5

VCC

C

CE

Q0

Q1

Q2

Q3

Q4

Q5

RD
TC

UD

C64BUDRD

CLK

CTN[15:0]

XIOR

A0

LOC=P56

PAD

OBUF

OBUF

OBUF

OBUF

OBUF

PORT4

NAND2B2

A0

A1

ENB

O0B

O1B

O2B

O3B

X74-139

LOC=P50

PAD

DOUT3

DOUT2

DOUT1

DOUT0

DOUT7

DOUT6

DOUT5

DOUT4
LOC=P61

PAD

D3>

XIOW>
LOC=P51

PAD

LOC=P83

PAD

LOC=P80

PAD

LOC=P82

PAD

LOC=P81

PAD

LOC=P71

PAD
D0>

XIOW

XIOR

A2

A1>

A0>

IBUF

IBUF

IBUF

A2>

IBUF

A3>

IBUF

XIOR>

IBUF

NAND2B1

AND2

OBUFT IBUF

IBUFOBUFT

D1>

LOC=P69

PAD

LOC=P65

PAD

OBUFT IBUF

IBUFOBUFT

D2>

LOC=P67

PAD

LOC=P58

PAD
D6>

OBUFT IBUF

IBUFOBUFT

D7>

LOC=P59

PAD
D5>

OBUFT IBUF

IBUFOBUFT

D4>

A1

EN139

GSR

GTS

CLK

Q2

Q3

Q1Q4

DONEIN

STARTUP

INV

OBUF

OBUF

DAC0>

DAC1>

DAC2>

DAC3>

DAC4>

DAC5>

DAC6>

OBUF

DAC7>

LOC=P19

PAD

LOC=P23

PAD

LOC=P24

PAD

LOC=P25

PAD

LOC=P26

PAD

LOC=P27

PAD

LOC=P18

PAD

LOC=P20

PAD

PORT5

A3

BUS=A[15:0];B[15:0]

EQ

COMP16H

B[15:0]

A[15:0]

FREQREG[15:0]

DACCLK>

OBUF LOC=P28

PAD

CLK

UC SANTA CRUZ

IBORG I

DRAWN BY:

B
A

B
A

1 2 3 4 5

1 2 3 4 5

Tom Geocaris

LOC=P10

PAD

RESET>

IBUF

XIOW

+
5

V
C
C

PORT5
NAND2B2

C

CE

D[7:0]

Q[7:0]

RD

RD8
DIN[7:0]

+
5

V
C
C

NAND2B2

PORT4

XIOW

C

CE

D[7:0]

Q[7:0]

RD

RD8

FREQREG[7:0]
DIN[7:0]

FREQREG[15:8]

FREQUENCY REGISTER - PORT 2 (HIGH BYTE)

FREQUENCY REGISTER - PORT 1 (LOW BYTE)

LOC=P13

PAD

BUFGS

CLK

WAVE BUFFER

R

C

CE

CNT16

TC

Q[15:0]

Figure9.6:FrequencySynthesizerLab.DesigninR1FPGA(Sheet1/2).



9.4.MusicLab
93UC Santa Cruz / Computer Engineering

Tom Geocaris

C

CE

Q[7:0]

R TC

C256BCR

R

CE

C

L2

L1

L[7:0]

L0

L3

L4

L5

L6

L7

BUF

BUF

BUF

BUF

TC

C

BUF

BUF

BUF

BUF

BUF

BUF

BUF

BUF

BUF

BUF

BUF

BUF

H5

H0

H[7:0]

H1

H2

H3

H4

H6

H7

C

CE

Q[7:0]

R TC

C256BCR

Q9

Q8

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q10

Q11

Q12

Q13

Q14

Q15

Q[15:0]

I

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

I
UC SANTA CRUZ

BORG

16 Bit Counter

Figure9.7:FrequencySynthesizerLab.DesigninR1FPGA(Sheet2/2).



94 9. Guide to Some Laboratory Experiments9.5 DMA LabI'll �ll in this part in the second revision of this user's guide.9.6 Boundary Scan LabI'll �ll in this part in the second revision of this user's guide.9.7 Possible Term Project DescriptionA little bit of history, I have given this Dr. Mario design as a term project inAdvanced Logic Design in Spring 1993. Four out of six groups (two per group) ofstudents �nished their projects using the older XC3000 BORG board. A projectdescription is given on the next page.



9.8. Project 95University of California, Santa Cruz, Spring `93 CMPE 126 P.K.Chan, April, 1993Project Description Part ICMPE 126: Advanced Logic DesignDRX. MARIO 2 Digital Machine (due May 4, 1993)This is part one of the project description. There will be two more handouts whichwill specify the interface and hardware in more detail.
Figure 9.8: DRX.MARIO (8 � 16) bottle.9.8 ProjectYou will devise a strategy to play DRX. MARIO and implement your strategywith two Xilinx XC-3020-PC84s, and a 2K-byte SRAM. Your design will interfacewith a \host" computer that will be responsible for keeping track of the Dr. Marioscreen and your machine's score. The only information provided by the host will bethe next pill.DRX. MARIO is a 2-dimensional color matching game in which the doctor(player) must consume the pills (and possibly viruses) before the pills destroy thepatient. Figure 9.8 shows the DRX. MARIO \pill bottle". There are nine di�erentpills, as shown in Figure 9.9, which are presented one at a time at the top of thebottle. The two halves of the capsules are colored Scarlet,Aquamarine, or Lemon.32DRX. MARIO is a trademark of Nintendo of America Inc.3To avoid poisoning color-blind patients the pills are also labeled with S's,A's and L's.



96 9. Guide to Some Laboratory ExperimentsAA LL S SLSS LSALA ASALFigure 9.9: DRX. MARIO pills.
LSALSL
AS

LSSS SAAAALAALS SLALSSSLASLSLASL SLLAFigure 9.10: A typical game state in DRX. MARIO .(Actually, there are only six di�erent pills but we are counting the mirror images ofthe multi-colored pills as di�erent pills.) The doctor must choose how to place thepill within the rectangular 8�16 bottle. The pill can be rotated in units of 90 degreesand the pill can be moved left or right to the desired position. The pill then dropsto the bottom of the bottle or until it is stopped by other pills already in the bottle.Figure 9.10 shows the bottle after several pills have been placed and the next pill atthe top of the bottle is A S .If the doctor succeeds in placing the pill so that there is a rectangular grid regionof size 1� n where n � 4 of the same color, then this region vanishes. Note that thismay cause the other remaining halves of the pills to fall further down in the bottle,and when they fall, other regions may vanish, and so on. The game continues untilno more pills can be placed because the two grid squares in the center columns andthe top row are occupied.Figure 9.11 illustrates and example. Suppose the doctor decides to place theA S pill in the sixth column (from the left) after rotating it so that the A is atthe bottom. The two regions which vanish are the one in row 8 �lles with S's andthe one in column 6 �lled with A's. But causes the L S pill in row 9 to fall down



9.9. Design of a Dr. Mario player 97
LSALSLLSSS AAALAALS ALSSSLASLSL ASL SLLASAAS SL LSALSLLS AAALSSSLASLSLASL SLLS AL SLLA SL AAALSLASLSL ASL SLLAALA SSSSS SL SL AAALASLSLA SLLAALALSL SLFigure 9.11: A typical game state in DRX. MARIOone row creating a vertical region �lled with L's in column 3. After removing these 4L's, their other halves fall down in columns 2 and 4 as illustrated in the third bottle.Nothing interesting happens in column 2, but in column 4 there is now a verticalregion of S's. There is also a horizontal region of S's in row 2. This brings out thepoint that one side of a capsule may create both horizontal and vertical regions. Afterremoving these two regions we end up with the fourth bottle in Figure 9.11.One last detail that need to be mentioned is that the bottle might not be emptyto begin with. There may be some viruses clinging arround at di�erent points. Theseviral beats look exactly like half-pills and will vanish in the same manner as the pills.9.9 Design of a Dr. Mario playerAs your term project in cmpe126, design and debug a digital-DRX. MARIO -player machine using two Xilinx XC3020-PC84 and a 2K-byte RAM.To know and understand the game, a copy of the game is in the Athena cmpe126directory called Mario. The program is called bugs and all the source codes are there.The controls are: h for left, l for right, s for clockwise rotate, a for counter-clockwiserotate, j for dropping the pill down, and q for quitting the game.9.10 The game environmentYour machine will interface to a host PC that present the pills one at a time. Ishall write (provide) the host PC driver. You are also allowed to a 2K-byte RAM aspart of your machine. The host maintains the screen, informs the player on the nextpill type, processes the player's decision, keeps track of the state of the bucket andthe game score.



98 9. Guide to Some Laboratory Experiments

Move ready'Your move'
CLOCKHost PC Dr.Mario Machine 3MhzPill LateralPill Rotation RESET'

Pill TypePill RotationPill Lateral
Think Time (5ms)
Pill TypeYour move'
Move ready'

Figure 9.12: Host/DRX.MARIO Machine Handshake, after initialization9.11 What will be �nalized later?I reserve the right to modify:Viruses: whether or not there will be viruses and how they will be given.Scoring: how the player will be scored.Interface: protocol with the host PC.System clock rate: of your machine. The host and your machine may be driven byseparate clocks.



9.12. Evaluation 99I'll be responsible for building the host. When the host is completed in the sixth orseventh week, all the above items will be �nalized.9.12 EvaluationThere will be a (single elimination?) tournament on June 11, 1993 in AS 240 (timeto be speci�ed later). Also, the quality of your design will be evaluated based ona. the number of xc3020 LCAs used, and the number of CLBs and IOBs used.b. the propagation delay along the critical path(s), in other words, the maximumclock rate of your design.c. your machine's scores for di�erent clock rates.d. the documentation of your design.9.13 Your responsibilitiesa. Devise and test your basic strategy with a high-level simulation. To exam-ine how good your strategy is: code your strategy in C and integrated into theDRX.MARIO source code that is supplied to you. DUE BY MAY 4, 1993 .Be prepared to present your strategy(ies) to the class.There is always the danger that the high-level language constructs in C are toopowerful and may not be implemented e�ciently or directly in hardware. Justkeep in mind that your strategy has to be realized in Xilinx FGPA, eventually.Estimate the number of CLBs that is required by your strategy(ies).b. Work in groups of two. Your group MUST have a complete hardware prototypeof the project by JUNE 11, 1993.c. Submit a good quality �nal report documenting you strategy, design, schematicdiagrams, timing diagrams, test plan, simulation results, the name of your design(.lca) �le on the AT (with a oppy disk), and your .bds �les on Athena. DUEBY JUNE 11, 1993.d. Realize your design either with the borg or protozone prototyping board.9.14 SuggestionWhen devising your strategy to solve this problem, keep the implementation con-straints in mind. Students have a tendency to come up with \interesting" strategieswhich are not easily implementable in hardware. Please start with a VERY simplestrategy �rst, and estimate the hardware resources needed to realize it. You canimprove the game strategy later on when you have time.A successful project requires good planning, step by step documentation, andinnovation. Procrastination leads to disaster. Start working on it now.



100 9. Guide to Some Laboratory Experiments9.15 Initialization of the BottleLike your midterm, an XT/PC writes 8-bit words one at a time to an outputport at address 0x0304. There is a one-bit RDY ag (the least-signi�cant bit) atthe outport port at address 0x0305. Your FSM in the R1 FPGA captures TWOsuccessive words from the PC.wordB = DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0wordA = DA7 DA6 DA5 DA4 DA3 DA2 DA1 DA0which represent the encoding of 8 initial viruses. Here is the virus encoding:Bit1000 S01 A10 LFor example, an initial bottle status such as:SSAALLSSfrom left to right (column 0 to 7), they will be encoded as:Position 0 1 2 3 4 5 6 7wordB = 0 0 0 0 1 1 0 0wordA = 0 0 1 1 0 0 0 0The PC writes the �rst word wordA and then asserts RDY low, the FSM machinereads the outport port and saves the word in a bank of 8-bit registers. The PC waitsfor roughly 1ms, then deasserts RDY to high. It then sends out the second wordwordB and then asserts RDY low. The PC waits for roughly 1ms, then deassertsRDY to high. The FSM machine reads the outport port and saves the second word inanother bank of 8-bit registers. The RDY signal then becomes the YourMove' signalin the game.9.15.1 Pill encodingsThere are six distinct pills, so their encodings are:Bit Bit Bit2 1 0-------------------AA 0 0 0LL 0 0 1SS 0 1 0AL 0 1 1



9.16. Initialization of the Dr. Mario Machine 101AS 1 0 0LS 1 0 19.16 Initialization of the Dr. Mario MachineThe host (driver) provides a global reset signal that resets all the ip-ops beforeeach round of the game.9.17 Handshake and TimingAfter initialization and sending the viruses to the ports, the PC communicateswith the DRX. MARIO Machine using the following protocol.PS. your machine is required to register the laterals and pill rotation.The port assignments in the R1 FPGA are:I/O Address: 0x300 Function: used by X0I/O Address: 0x301 Function: used by X0I/O Address: 0x302 Function: used by X0I/O Address: 0x303 Function: Global Reset- used by X0I/O Address: 0x304 (from PC to Mario machine)Bit 7 6 5 4 3 2 1 0---------------------------| D7 D6 D5 D4 D3 D2 D1 D0 |---------------------------I/O Address: 0x305 (from PC to Mario machine)Bit 7 6 5 4 3 2 1 0-----------------------------------| Pill Type| RDY/ || Bit | || 2 1 0 | YourMove|-----------------------------------I/O Address: 0x306 (from machine to PC)Bit 7 6 5 4 3 2 1 0-------------------------------------| Rot | Lateral | || ation| | || 1 0 | 2 1 0 | MoveReady|-------------------------------------



102 10. Troubleshooting10. TroubleshootingThis section may help you isolate the problem and as a result, eliminate the needto contact technical support and allow continued productivity (variations from SONYTV guide).Most the problems can be corrected with a better understanding of your com-puter's PC/XT con�guration. Use diagnostic software such as QAPLUS to displayyour PC's con�guration. You need to know the occupied port addresses, occupied IRQchannels, occupied DMA channels, and occupied memory address. Do not con�gurethe BORG board in conict with the occupied resources.Symptom Check these itemsNo LED1 slide switch SW5 to ON,check the conductivity of the fuse with a ohmmeter,an high impedance indicates that the fuse is blown.computer crashed are you using a protozone adapter card?If so, check IC 74HCT04 and connect (solder)a 22K Ohm resistor between pin 1 and pin 7 of the IC.This is a known manufacturing bug in the protozoneadapter card.No LED2 This is an indication that X0 is not con�gured,LED2 is tied to the DONE pin of X0 (xc4003APG120).Check that a PROM is in U3.Check plastic jumper is on the left side of J24shunting positions 1 and 2.check position 8 of SW1 and position 1 of SW2 are open.This con�guration sets X0 in the master serial mode.bd complains This may be an indication that X0 is not con�gured,x0 is dead or the communication between the PC and the BORG boardis broken.Check the TTLs one by one.board fail Check that the plastic jumpers are on the left sidescan test of jumpers J11-J23.If they all are, some of the I/O pins of the user FPGAsare dead.board fail Check that the plastic jumpers are on the left sidescan test of jumpers J11-J23.If they all are, they might not be making verygood contacts with the metal headers,push the plastic jumpers inand see if that improves the situation.Table 10.1: To be Continued.



103board fail Check that position 3 of SW1 is closed. This enablesmemory test the PC to access the dual-ported SRAM exclusively.Check that the memory (base) address mappingof the SRAM are matched on both the BORG board (hardware)and the software mtest.exeConsult Fig. 2.6 for the hardware mapping.No LED3 All the DONE pins of the user FPGAs R1, X1, R2, and X2are tied to LED3.Check that when you make the mcs �le for download,you had all the correct bit stream and the correctpart type for the FPGAs.No LED3 If you are downloading using the bd program,check positions 1 and 2 of SW1 to make sure thatR1 is con�gured to peripheral mode.If you are downloading using the xchecker cable,check positions 1 and 2 of SW1 to make sure thatR1 is con�gured to slave mode.Can't interrupt If you are using the protozone host adapter card,PC check the setting of the IRQ requests.If you are using the BORG board in the add-in mode,check positions 5 to 8 of SW2 to select the IRQchannel.Check that the IRQ channel selected has noconict with other peripheral cards.DMA not You must use the protozone host adapter card for DMA.working Check the correct setting of the DMA channel selection.Some DMA channels are only valid with a PC/XTbut not a PC/AT.The standard X0 has no DMA mechanism built-in,but you can easily build your own.design doesn't Check the maximum clock speed of your design.run properly The default system clock is 8MHz, this may be toofast for some designs. Slow down the system clockby using the CLOCK utility.design can't Check the logic for the arbitration of the dual-ported SRAMaccess SRAM is correct.Check position 3 of SW1 for the favourtism of arbitration.Use the utility arbit to change the default.Table 10.2: Troubleshooting and diagnostics.



104 11. Acknowledgements11. AcknowledgementsThe development of the BORG board is supported in part by an National Sci-ence Foundation Research Initiation Award supplement. The manufacturing of the100 BORG boards is supported entirely by Xilinx, Inc. for educational purposes.Therefore, I am grateful to Xilinx, Inc. for their support of the BORG project, inparticularly to David Lam for his magni�cent coordination of the BORG project, andhis wonderful ability to pull all the resources together to �nish this project. I am alsoindebted to Xilinx engineering and technical sta�: Carol Henley who taught me PCBlayout using PADs, Ed Resler who was willing to share his wisdom in manufacturinghardware, and Eric Wright who had given me his expert advice and read the initialdraft of this users' guide.I can't thank Jason Y. Zien enough for �nding all sorts of way to improve assignand taking the responsibility of coding and supporting two versions of it. I thankProfessor Abbas El Gamal of Stanford University for his pioneering work in FPGAeducation and his inspiration. Finally, special thanks to Martine Schlag for the basicalgorithm of assign and insisting on designing an additional Tetris machine.


