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ABSTRACT

The XC4000 BORG board is a PC-based prototyping board with two
“user” FPGAs, two “routing” FPGAs, and a fifth FPGA which implements
the glue logic for the PC bus. The BORG board is a reusable educational
tool intended for a variety of classes; the BORG board, its toolset, and the
reprogrammability of the FPGAs further reduce the time/cost of constructing
prototypes using FPGAs. This report documents the design, implementation,
and the use of BORG: A Field-Programmable Prototyping Board.

*Development of the XC4000 prototyping board is supported in part by National Science Foun-
dation Grant MIP-9111607 and Xilinx Inc.



CONTENTS

Contents

1. Introduction

1.1
1.2
1.3
1.4
1.5

Field-Programmable Prototyping Boards . . . . . . .. ... ... ...
What BORG Is? . . . . .. . . . . . e
Xilinx XC4000 FPGA parts . . . . . . . ... o oo
Limits on the number of connections between the FPGAs . . .. . ..

About this User’s Guide . . . . . . . . . . e

2. Installation

2.1
2.2
2.3
2.4

What Do You Need? . . . . . . . . . . . o o
Software Retrieval and Installation . . . . .. .. ... ... ......
Hardware Installation . . . . . . . . . . . . . . .

Testing the BORG Board . . . . . ... ... ... ... .......

3. Simple Demonstrations

3.1
3.2

A Tetris Machine . . . . . . . . e
A Maze Solver Machine . . . . . . . . . . . ..o

4. Principle of Operation

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

4.16

Status indicators . . . . . .. ... e
Stand-alone BORG board . . . . . ... ... oL,
BORG board as a Peripheral Device of the PC/XT . . ... ... ...
Put the BORG Board Inside or Qutside the PC? . . . . .. ... ...
I[/O Address Mapping . . . . . . . .. o o
Memory Mapping . . . . . . . . . . o
Hardware Interrupt Channel . . . . . . . . .o o oo,
DMA Channel . . . .. . .. .. . . . . e
Configuring the controller X0 FPGA . . . ... ... ... .. .....
Programming the R1, X1, R2 and X2 FPGAs . . . . . ... ... ...
Global Reset . . . . . . . . o
Readback . . . . . . .. ...
JTAG Boundary Scan . . . . .. . ... L
System Clock and Single Step . . . . . . . ... o oL,
On-board SRAM and arbitration . . . . ... .. ... ... ... ...
4.15.1 8Kx8 SRAM . . . .. .
4.15.2 Dual-port SRAM arbitration . . ... .. ... ... .. ...,
Limits on the Number of Connections Between the FPGAs . . . . ..

00 00 =1 & B B

10
13

16
16
17



2 CONTENTS

5. Software 35
5.1 Memory related programs mtest and inspect . . . . . . .. . ... .. 35
5.2 Board Wiring test program Scan . . . . . . ... ... Lo 36
5.3 Pin assignment program assign . . .. ... ... .. ... 36

5.3.1 Projects, Demos and their MCS files . . . . .. ... ... ... 36

6. Design flow 38
6.1 Introduction . . . . . . . . ... L 38
6.2 Details . . . . . .o 38

7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyp-

ing Board 45
7.1 Preface to earlier versions . . . .. ... ... .. oL 45
7.2 Assign as a Pin Assignment Program . . . . . .. ... ... oL 45

7.2.1 Place in the design process . . . ... .. ... ... ... .. 45
7.2.2 Command Line Arguments . . . ... ... ... ........ 47
7.2.3  An Environment Variable . . .. . ... ... ... 0L 48
724 Alas Files . . . . . oo oo oL 48
7.2.5 Rxinfo .. ... oo 50
7.2.6 Examplesof using assign . ... ... .. ... ... ... ... 53
7.2.7 Xilinx XC3000 Series Design . . . .. .. ... ... 53
7.2.8 X(C4000 Series Design . . . . .. . ... oL oL 53

7.3 1/O Specification File . . .. ... .. L o oL 53
74 BORG Wiring File . . . . . . . .. o o 55
7.5 Theory of ASSIGN . . . . . . . o 55
7.6 Problem Description . . . . . . ... L o 55
7.7 Graph Reduction . . . . . . . . . 56
7.8 Augmentation . . . . . ... Lo 57
7.9 Main Program Loop . . . . . . .. ... Lo 58
7.10 Performance . . . . . . ... L 59
7.11 BORG wiring connections . . . . . . . . ... .. . oo 62
7.11.1 XC3000-series BORG wiring connections . . . .. ... .... 62
7.11.2 XC4000-series BORG wiring connections . . . .. ... .... 67

8. Using the Protoboard and Schematic Drawings 71

8.1 Proto-area, Common Anode LEDs . . . . .. .. ... ... ... .. 71



CONTENTS

9. Guide to Some Laboratory Experiments

9.1 Creating user [/O portsin R1 . . . ... ... .. ... ... ......
9.2 Hardware Interrupt and Interrupt Service Routine . . . .. ... ...
9.3 Synchronization Problem . . . . ... ... 000 0L,
9.4 Music Lab . . . . . ..
9.5 DMA Lab . . . . . . . e
9.6 Boundary Scan Lab . . . .. ... o oo oo
9.7 Possible Term Project Description . . . . .. .. ... ... ... ...
9.8 Project . . .. e
9.9 Design of a Dr. Mario player . . . . ... ... . 0oL,
9.10 The game environment . . . . . . . . . . .. Lo
9.11 What will be finalized later? . . . . . . . . .. ... . oL,
9.12 Evaluation . . . . . . ... L e
9.13 Your responsibilities . . . .. ... o oo
9.14 Suggestion . . . . . . ... L e
9.15 Initialization of the Bottle . . . . . . . . . .. .. ...

9.15.1 Pill encodings . . . . . .. . ... o

9.16 Initialization of the Dr.
9.17 Handshake and Timing

10.Troubleshooting

11.Acknowledgements

Mario Machine . . . .. ... ... ... ...

76
76
80
85
88
94
94
94
95
97
97
98
99
99
99
100
100
101
101

102

104



4 1. Introduction

1. Introduction

1.1 Field-Programmable Prototyping Boards

Field-Programmable Gate Arrays (FPGAs) provide a medium to accelerate the
process of prototyping digital designs. For designs incorporating multiple FPGAs,
the bottleneck is now the process of wire-wrapping, bread-boarding, constructing a
printed circuit board, or constructing a multi-chip module. In addition to being time
consuming, these processes cannot be carried out until all FPGA designs have been
completed (placed and routed), since locking or preassigning 1/O pins often prevent
FPGA place-and-routers from completing the routing.

To circumvent this bottleneck, FPGAs can be used as re-programmable intercon-
nection chips. The BORG, as shown in Fig. 1.1, is a PC-based prototyping board
that contains two user FPGAs, two routing FPGAs; a fifth FPGA implements the
glue logic to the PC bus.! To facilitate the design process using the BORG board,
algorithms and tools have been developed to aid in the configuration of the routing

FPGAs.

The BORG board, its toolset, and the reprogrammability of the FPGAs further
reduce the time/cost of constructing prototypes using FPGAs. There are two versions
of the BORG boards. Twenty five XC3000 BORG boards were built in 1992, and the
XC4000 boards were manufactured in March 1994. This document describes the
XC4000 BORG board. It documents the design, implementation, and the use of
BORG: A Field-Programmable Prototyping Board.

1.2 What BORG Is?

The BORG board is a reusable PC-based educational tool intended for classes
such as logic design, advanced logic design, processor design, and introduction to
ASIC design. The BORG board uses the XC4000 family Field-Programmable Gate
Arrays (FPGAs). The XC4000 FPGAs are reprogrammable, so one BORG board can
be shared by more than one group at the same time. With one XC4002A FPGA on
the board, the BORG board can support a 1,000 gate-count design. When it is pop-
ulated with four XC4010D FPGAs, it can accommodate a 40,000 gate-count design.
However, the BORG board is not a supercomputer nor a high-performance “generic”
processor. Production of 100 BORG boards in March 1994 is generously supported
by Xilinx Inc. Half of the boards produced have been (or will be) distributed for free.
2

!P. K. Chan, M. Schlag, and M. Martin, “BORG: A reconfigurable prototyping board using Field-
Programmable Gate Arrays,” in Proceedings of the 1*' International ACM/SIGDA Workshop on
Field-Programmable Gate Arrays, (Berkeley, California, USA), pp. 47-51, Feb. 1992.

?The manufacturing cost of a populated XC4000 BORG board is US$250.00 as of March 1994.
Contact dlam@xilinx.com for details.
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You can install the BORG board internally to a PC with XT/ISA bus; it will
occupy one 8-bit XT expansion slot. This is not the most convenient way to use the
BORG board. With the help of the protozone adapter card® which extends the XT
bus signal to a 50-pin ribbon cable, the BORG board can be used ezternally to a PC.

The BORG board has 5 programmable FPGAs, and all of them can be pro-
grammed by a user. There are two user FPGAs, two routing FPGAs, and a fifth
FPGA (X0) that implements the glue logic to the PC bus as illustrated in Fig. 1.2.

The glue logic FPGA (X0) is programmed by a serial PROM on power-up. With
the appropriate setting of one jumper and dip switches on the BORG board, you
can also program X0 with the Xilinx xchecker. The rest of the FPGAs can be
programmed directly from the PC or by the xchecker hardware and software (see
Section 4.2 of Chapter 4).

The PC and the FPGAs can communicate using port I/O, interrupts, the shared
memory on the BORG, or DMA transfers. Port I/0 is the simplest and fastest, while
DMA is the most complicated and surprisingly slow. Just as any other I/O expansion
card (disk controller, parallel port, serial port), you need to map the BORG board
I/0 ports, interrupt channels, DMA channels into the PC’s valid I/O space, memory
space, or channel numbers. Section 9.1 of Chapter 4 describes the procedure for
constructing your own I/O ports in the FPGAs, and Section 4.7 illustrates the basic
interrupt structure.

There is a built-in dual-ported 8K x8 SRAM on the BORG board. The SRAM is
shared between the FPGAs and the PC. Naturally, it is mapped into the PC’s memory
address space. Access to the SRAM by the PC and user FPGAs is arbitrated by X0.
The arbitration can be performed under program control as detailed in Chapter 4.

Different designs run at different speeds. With the XC4000-6 speed grade part on
the board, a typical design runs at 8MHz. A 8 MHz TTL clock is supplied on the
board as the system clock. This clock can be further divided down to accommodate
lower speed designs, refer to Chapter 4 for details.

With multiple-FPGA designs, connecting the signals between the FPGAs is an
additional task that must be incorporated into the design flow. User FPGAs are placed
and routed individually, and the I/O (pin) assignments of the individual FPGAs do
not ordinarily match the constraints on the board. You can use the tool assign to
match up the pin assignments so that the signals between the FPGAs are correctly

connected. Assign is described in Chapter 7, and multiple-chip design flow is in
Chapter 6.

You will have design projects that need components which are not on the BORG
board. For example, you will need operational amplifiers and a digital-to-analog
converter in conjunction with an FPGA to build a frequency analyzer; or you will
need a piezoelectric buzzer and some transistors to build a digital music synthesizer.
A protoarea on the left-hand side of the prototyping board is there to accommodate
any extra components.

*Developed by Stanford University, Professor Abbas El Gamal’s group. Available from —
Proto Tools, 3500 Granada Avenue #156, Santa Clara, CA 95051, Attn: Kalon Goodrich. email:
kalon@cup.portal.com
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Figure 1.1: A portrait of the XC4000 BORG board.
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Figure 1.2: Connections between the user FPGAs, X0 and the PC

Some simple laboratory experiments are presented in Chapter 9 to illustrates some
uses of the BORG board. Projects which have used the BORG board in the past
include Tetris machine, Dr. Mario machine, and a mazer runner.

1.3 Xilinx XC4000 FPGA parts

The XC4000 BORG board can be populated with 2 user Xilinx XC4000 family
FPGAs X1 and X2 and 2 routing FPGAs R1 and R2. R1 and R2 connect the
two user FPGAs together electronically and also provide connections to the 8K x8
dual-port SRAM, the PC bus (via X0), and other devices. Figure 1.2 illustrates the
basic concept. We shall refer to R1, X1, R2, X2 collectively as the ASICs.

The ASICs can be any one of the XC4000 FPGAs in a 84-pin PLCC package, for
example, XC4002PC84, XC4002APC84, XC4003PC84, XC4003APC84, XC4004PC84,
XC4005PC84, and XC4010DPC84 with either —5 or —6 speed grade parts. These
PLCC packages are pin-to-pin compatible.

For introductory-level classes, you may not need all the ASICs. The ASICs can
be extracted from the BORG board using a PLCC-chip extraction tool.
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1.4 Limits on the number of connections between the FPGAs

Some of the I/O pads on R1 and R2 are used to support the dual-ported SRAM
and port I/O communications with the PC. Thus although the number of user pads
available on a 84-pin PLCC package is 54, the maximum number of connections
between X1 and X2 which can be realized with R1 and R2 is , with the plastic
jumpers of J11-J23 on the left side.

With the plastic jumpers of J11-J23 on the right side, the maximum number
of connections between X1 and X2 which can be realized with R1 and R2 is .
Section 4.16 elaborates this limitation further.

The BORG board has been tested with a 8MHz PC bus; it has not been tested
with a 33MHz PC bus.

1.5 About this User’s Guide

This user’s guide consists of the following chapters:

Chapter 2 describes how to install the software and hardware for the first time users,
and a 4-step procedure to test the BORG board.

Chapter 3 demonstrates two multiple-FPGA designs: a Tetris machine and a maze
solver machine.

Chapter 4 describes the detailed operation of the BORG board and its controller
interface with the PC.

Chapter 5 describes some utility programs.

Chapter 6 describes the complete design flow using multiple FPGAs, and the soft-
ware tools that you will need to use the BORG board with multiple FPGAs.

Chapter 7 details the pin asssignment program assign that is essential for designing
multiple FPGAs.

Chapter 8 describes the bits and pieces that are needed to use the BORG board
from a “hardware” perspective.

Chapter 9 suggests a range of projects of varying degree of difficulties.



2. Installation

This chapter describes how to install the BORG board inside or outside a PC/XT.
The hardware and software you will need is listed in Section 2.1 Sections 2.2 and 2.3
guide you step-by-step through the installation (and retrieval) of the software, and
installation of the BORG board, respectively. After the installation, in Section 2.4
you will test the functionality of the BORG board. Although the BORG boards were
tested by the manufacturer (BAT PC Technology of Milpitas, CA) before shipment,
you may want to test your BORG board one more time just to be sure.

2.1 What Do You Need?

In addition to a PC/XT, you will need internet access to retrieve the software
package and this user’s guide(!). You need the following hardware and software to

use the BORG board:
1. Xilinx XC4000 FPGA core implementation tools.
2. An xchecker cable.

3. An IBM compatible Personal Computer (PC/XT), with 1 Mbyte of available
storage space, and an available 8-bit expansion slot.

This machine will be used as a prototyping machine.
4. Some vacant I/O port addresses on the PC/XT.

The default address is 0x30X (0x300 to 0x30F). See Fig. 2.6 for other options.
5. Some vacant 8K-byte memory addresses on the PC/XT.

The default base address is 0xd000Oh. See Fig. 2.6 for other options.
Only items #3-5 are required to test the BORG board.

2.2 Software Retrieval and Installation

You need to have internet £tp access. All the software are available by ftp to the
internet depository ftp@cse.ucsc.edu(128.114.134.19). Login as anonymous and use
yourname@your.host.name as the password (for our records).

% ftp ftp@cse.ucsc.edu

ftp > user anonymous

Connected to ftp.

220 ftp FTP server (Version wu-2.1c(13) Fri Feb 18 10:49:37 PST 1994) ready.
ftp> Name: anonymous

ftp> Password: yourname@your.host.name
ftp> cd pudb

ftp> cd borg

ftp> binary

ftp> get borg.zip

ftp> get pkunzip.exe

ftp> quit
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At this point you have obtained the BORG distribution borg.zip in zip format, and
a public domain program pkzip to unpackage the distribution. Transfer both files to
your PC. Now assuming the files you ftp’ed are on drive A:, on your PC do

mkdir borg

cd borg

copy a:pkzip.exe
copy a:borg.zip

set borg=0x300
pkunzip -d borg.zip

QOO0
vV V.V V V V

Don’t forget the “~-d” option. Compare the result of the directory listing below.

C:> dir/w

with the following files and directory

L.] L..] BD.EXE SCAN.EXE ASSIGHN.EXE

MTEST.EXE TESTME.BAT INSPECT.EXE CLOCK.EXE MAZE.EXE

ARBIT.EXE SETASSIG.BAT [DESIGN] #README PORTEST.EXE

[EMPTY] BSCAN.EXE [ucs] ISR.COM INTPC.EXE

CLEAR.EXE [ASSIGN] [SrcC] DEFAULT.EXE TETRIS.EXE
25 file(s) 777777 bytes

Congratulations, you have successfully installed the package if there are no discrep-
ancies.

2.3 Hardware Installation

Figure 2.1 illustrates the location and function of the BORG board components.
For this installation, you need to locate jumpers J3, J11-J23 and J24, and the red dip
switches SW1 and SW2.

If you DO NOT have a protozone adapter card, then you will install the BORG board
in add-in mode as follows:

1. Turn the PC power .

2. Set the dip switches SW1 and SW2 on the BORG board according to Fig. 2.5.

3. Place the plastic jumpers at locations J11-J23 and J24 on the two left pins (the
two pins closest to the proto-area) as in Fig. 2.5.

4. Plug the BORG board card into a PC expansion slot as shown in Fig. 2.4.

5. Turn the PC power [on ]
6. Go to Section 2.4.
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PROM to program X0 (default)

common anode J t trol X0
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8K X 8 SRAM 74245 TTL buffers

accessible by PC and R2

50-pin connector to protozone card

Figure 2.1: BORG board and some of its features.

If you DO have a protozone adapter card, then you can install the BORG board in
host mode as follows:

1. Turn the PC power .

2. Set the dip switches SW1 and SW2 on the BORG board according to Fig. 2.3.

3. Place the plastic jumpers at locations J11-J23 and J24 on the two left pins (the
two pins closest to the proto-area) as in Fig. 2.3.

4. Plug the protozone adapter card into a PC expansion slot.

5. Connect the protozone adapter card to jumper J3 of the BORG board using
the 50-pin flat ribbon cable accompanying the protozone card as illustrated in
Fig. 2.2.

6. Turn the PC power [on]

7. Go to Section 2.4.
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Figure 2.2: Using the BORG board in host mode

CLOSED Note: two different switch positions
up
UW M| o
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[00|[| J24
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on the left side of J24
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on the left side of J11 to J23

—

Host mode: BORG board external
lglll 1 to the PC

Figure 2.3: Setting for testing BORG board (host mode) with port address
0x30X and memory based address 0xd0000h.
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2.4 Testing the BORG Board

These tests require:
e /O port addresses: 0x30X (0x300 to 0x30F) must be vacant. These are the
default 1/O port addresses. See Fig. 2.6 for other options.

e Memory address: Also the 8K-byte memory addresses with base address
0xd0000h must be vacant. See Fig. 2.6 for other options.

Now, take the following steps:
1. Slide SW5 to ON to supply power to BORG board

2. LED1 & LED2 of BORG board should turn ON, and LED3 should be OFF. If
not, proceed to the diagnostics in Chapter 10 after checking that the jumper
J24 is correctly positioned.

3. Run the bd program as shown below:
C:> bd mcs\scan.mcs

Wait for LED3 to turn ON (this will take a few seconds and all three LEDs
LED1, LED2, and LED3 will be ON). If not, proceed to the diagnostics in
Chapter 10.

4. Run the scan program as shown below:
C:> scan

It should report:
Board scan test done.
Datain -> O
Board test passed. Accept BORG board.

If not, proceed to the diagnostics in Chapter 10.

5. Run the memory test program as shown below:
C:> mtest

It should report:
Finished 8192 bytes. Total errors O.

If program does not report 0 errors, then proceed to the diagnostics in Chap-
ter 10 after checking that jumpers J11-23 are correctly positioned.

The tests which you have just completed exercise all of the connections between the
FPGAs and most (but not all) of the components on the BORG.
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personal computer

Figure 2.4: Using the BORG board in add-in mode.
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Figure 2.5: Setting for testing BORG board (add-in mode) with port address
0x30X and memory based address 0xd0000h
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3. Simple Demonstrations

3.1 A Tetris Machine

In this demonstration we shall download a Tetris machine which is a multiple-chip
design. It uses the X1 and X2 FPGAs for logic, R1 and R2 FPGA for routing. This
Tetris machine is realized with approximately 150 XC4000 CLBs. A program running
on the PC displays the Tetris bucket (Fig. 3.1) and communicates with the Tetris
machine running in the ASICs using port I/O. The program randomly draws a tile
type and presents it to the Tetris machine. The Tetris machine determines how to
rotate and move the tile before the tile drops. The Tetris machine uses the XC4000
“on-chip” RAM for keeping track of the Tetris bucket; it is not using the dual-ported
SRAM on the BORG board.

For this demonstration, the BORG board can be either installed in the add-
in mode or host-mode with the default settings as given in Fig. 2.4 or Fig. 2.2,
respectively. If the required settings are not as prescribed for your installation mode,
please set them as described in Section 2.3 now. This demonstration requires 1/0
port addresses 0x30X (0x300 to 0x30F) to be vacant. These are the default I/O port
addresses. See Fig. 2.6 for options to change the 1/O port mapping.

I"i’ Next tile

Figure 3.1: A Tetris bucket and some of its tiles.

Important:| This Tetris demo requires that your PC is preloaded with the
ans

i.sys device driver. If this is not the case, the problem can be corrected by
including this line in your config.sys file, and rebooting your machine.

DEVICE=C:\DOS\ANSI.SYS
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1. Download the mcs file of the Tetris machine, by typing
C:> bd mcs\martine.mcs

Observe that the DONE indicator LIED3 should turn off and then ON again,
indicating all ASICs are programmed.

2. Exercise the Tetris machine by typing
C:> tetris

Terminate the program with ~C and clean up the screen by using the supplied
program clear. If your screen is all messed up now, this means that your PC
was not running the ansi.sys device driver.

3.2 A Maze Solver Machine

The mazer machine is a multiple-chip design which solves a maze. The machine
uses the R1 and R2 FPGAs for logic, and X1 and X2 FPGAs for routing (not a
mistake). This maze machine is realized with approximately 120 XC4000 CLBs. It
uses 2K bytes of the on-board (dual-ported SRAM) SRAM for keeping track of the

maze.

For this demonstration, the BORG board can be installed either in add-in mode
or host-mode with the required settings as given in Fig. 3.2 or Fig. 3.3, respectively.
If the required settings are not as prescribed in these figures, please set them this way
now. Note that jumpers J11-J23 are set to the right which is not the default setting
that was given in Section 2.3. This demonstration requires I/O port addresses 0x30X
(0x300 to 0x30F) to be vacant. These are the default I/O port addresses. See Fig. 2.6
for options to change the 1/O port mapping.

Important: | This mazer demonstration requires that your PC is preloaded with
the ansi.sys device driver. If this is not the case, the problem can be corrected by
including the following line in your config.sys file, and rebooting your machine.

DEVICE=C:\DOS\ANSI.SYS

‘Important: You need to block the PC’s access to the dual-ported SRAM by
using the program

C:> arbit xilinx

This gives the R2 FPGA exclusive access to the dual-ported SRAM.
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3. Simple Demonstrations

Note: two different switch positions

CLOSED

up
n [ | o
down

OPEN ON

ﬁ ﬁﬂ nlﬁ ﬁﬂﬁ )
OPEN 0 Put plastic jumpers

PEN on the left side of J24
SW1 SW2

Put plastic jumpers
E@] 322 on the RIGHT side
P of Jumpers J11 to J23
°

N

Host mode: BORG board
j11 external to the PC

Figure 3.2: Setting for running Maze machine with the BORG board in host
mode, with port address 0x30X and memory based address 0xd0000Oh

Note: two different switch positions

CLOSED
" UW Cm|

OPEN ON

g 123450678 Eﬂ J24

n nunuuu u Put plastic jumpers
PEN

Q on the left side of J24

p—

SW1 SW2
o -
E@] 399 Put plastic jumpers
on the RIGHT side of
o jumpers J11 to J23

E@] Ji1 Add-in mode: BORG board
inside the PC

Figure 3.3: Setting for running Maze machine with the BORG board in add-
in mode, using port address 0x30X and memory based address 0xd0000h
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Please follow the given steps:

1. Download the mcs file of the maze machine, by typing
C:> bd mcs\maze.mcs

Observe that the DONE indicator LIED3 should turn off and then ON again,
indicating all FPGAs are programmed.

2. You can exercise the maze machine by typing
C:> maze

This program displays a randomly generated maze with one exit (character %).
Starting from a randomly chosen location (the origin), the mazer (@) runs the
magze in two passes. In the first pass, the mazer traverses and explores the maze.
When the mazer reaches the exit, it is teleported back to the origin. On the
second run the mazer tries to reach the exit in record time.

Level 2 maze. Total moves 108

You may terminate the program with ~C and clean up the screen by using the
supplied program clear. If your screen is all messed up now, this means that
your PC was not running the ansi.sys device driver.
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4. Principle of Operation

4.1 Status indicators

There are three LEDs on the BORG board which indicate the status of the FPGAs
and the board.

POWER This LED (LEDI rightmost LED on the top) indicates that the BORG
board has power.

X0 This LED (LED2) indicates that the PC/XT bus controller FPGA X0 is config-
ured.

DONE The DONE pins of the user FPGAs R1, X1, R2, X2 are tied together to
the DONE LED (LED3) to indicate that the four user FPGAs (ASICS) are
configured.

There are also two common-anode seven segment displays and two common-anode
four-bar LEDS in the proto-area that can be used to monitor additional signals.

4.2 Stand-alone BORG board

You can use the BORG board in the same way as the Xilinx XC4000 demo board.
This is the simplest but not the best way to use the BORG board. In this mode,
you can use the four user XC4000 FPGAs. To use the BORG board as a stand-alone
board, you must

1. set position PDWDWN of the BORG board to open, this disables (power downs)
the X0 controller.
connect an xchecker cable to jumper J8,
set position MOR1 of DIP switch SW1 to open,

set position M1R1 of DIP switch SW1 to open, and

Ot = W N

. supply power (+5V) to the board via jumper J5.

Steps 3 and 4 have just put R1 into slave mode. For programming the FPGAs,
use the xchecker program and cable. The FPGAs are daisy-chained in the following
order:

R1 -> X1 -> R2 -> X2
This means the Dout (Data out program pin) of the first FPGA R1 is connected
to the Din of the second FPGA X1 and so forth so on. Their DONE pins are tied
together. LIED3 turns to red if the four FPGAs are successfully programmed.

If you need only one FPGA, you must use the R1 FPGA. You can either extract
the rest of the FPGAs with a PLCC extractor tool made by a company called AUGAT,
or download the rest of the FPGAs with “empty” bit streams. You can find null bit
streams for the individual FPGA types in the distribution package under the directory

[onpry
em4002a.bit em4003a.bit

Important:| You need to “concatenate” the bit streams of the individual FPGAs
for download, by using the Xilinx makeprom program.
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makeprom -o design.mcs -u O myrl.bit em4003a em4002a em4003a

This example assumes that your design bit stream is in the bit file myr1.bit.

4.3 BORG board as a Peripheral Device of the PC/XT

The BORG board is just like any other PC/XT peripheral cards; it interfaces with
the PC/XT via port I/O, memory map, interrupt, and DMA. The next few sections
will guide you to map the BORG board into the PC vacant and valid 1I/O address
space and memory address space, interrupt and DMA channels.

Also, the BORG board draws its power from the PC’s power supply. You don’t
have to worry, because most PCs have 150 Watt to 250 Watt power supply. The
BORG board consumes approximately 5W of power. There is also a 3-Ampere fuse
on the BORG board, just in case.

For now, you should study Fig. 2.6 to identify the locations of jumpers, switches
and reference designators on the BORG board.

4.4 Put the BORG Board Inside or Outside the PC?

The BORG board has two modes of installation. You can install the BORG board
inside or outside a PC; we refer the first option as add-in mode and the latter as host
mode.

Add-in mode The BORG can be plugged into a PC/XT expansion slot, as illus-
trated in Fig. 2.4. This has the disadvantage that the FPGAs’ signals are
inaccessible. But you can use a PC/XT signal extension card to accommodate
the BORG card. The extender card is recommended since it allows easier access

to signals on the BORG board.

Host mode Alternatively, with the Protozone ! host card in an PC/XT expansion
slot and a 50-wire flat ribbon cable from the protozone host card plugged into
connector J3, the BORG board can be used outside the PC, as illustrated in
Fig. 2.2.

4.5 1/0 Address Mapping

Minimally, the BORG board must be mapped into some vacant locations in the
PC/XT’s I/O address space. The BORG board’s controller X0 has four predefined

I/0 ports for maintaining the vital communication with the PC to support download-

ing bitstreams. We call these I/O ports .

You can build additional 1/O ports to support your design in the R1 FPGA. In
a “typical” PC configuration, you will find that the I/O addresses from to

0x30F | are vacant. Examples of occupied 1/0 address locations are 0x378 and 0x2F8
which are the printer port LPT1 and serial port COM2, respectively. There are

YA. El Gamal, “Protozone: The PC-Based ASIC Design Frame, User’s Guide,” Tech. Rep.
SIS1.90-777, Stanford Information Systems Laboratory, Stanford University, Aug. 1990.
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provisions to modify the I/O mapping to suit your needs. Referring to Fig. 4.1 for the
top-level schematic of the X0 controller. You will find that the module CcOMPARES
decodes address A4-A9 and the settings of the DIP switch SW2 positions IOA0 and
IOA1 to determine the I/O mapping. The XT bus active-low signal baen is used only
in add-in mode (host=1), as illustrated in Fig. 4.2.

compare ———> 1 I0AO O 0 0 IOAL O O X X X X
with [ I I I I I

I/0 ---> BA9 BA8 BA7 BA6 BA5 BA4 O (host & baen) BA3 BA2 BA1 BAO
addresses

Figure 4.2: 1/0O Address Decoding in X0.

So the the comparator’s output is asserted when address lines BA8 and BA4 match
the setting of positions IOA0 and IOA1 of DIP switch SW2. The least significant four
address lines BAO-BA3 are decoded in X0, but only the lower 4 1/O locations are
taken by X0 controller. The I/O mapping is listed in Table 4.1. Also, the address
lines BAO-BA3 are provided as inputs in R1, and must be fully or partially decoded in
R1 to avoid conflict with the portsin the X0 controller. You should consult Section 9.1
for further information on building your own I/O ports in the R1 FPGA.

I0OA0 | IOA1 | addresses
0 0 0x20X
0 1 0x21X
1 0 0x30X
1 1 0x31X

Table 4.1: I/O mappings of BORG board (note: I0A=0 means switch is
closed, IOA=1 means switch is open, and X is a don’t-care).

Referring to Fig. 4.1, the BORG board’s controller X0 has four pre-
defined 1/0 ports defined in the module PORTDEC for maintaining the vital communi-
cation with the PC to facilitate downloading bitstreams. We call them . So
depending on the settings of positions IOAQ and IOA1 of DIP switch SW1, X0Oports’
port addresses in X0 are given in Table 4.2. The functions of the XOports are given
in Table 4.3.

I/O Ports IOAO | IOA1 | addresses
PORTA,B.CD | 0 0 | 0x200 to 0x203
PORTA,B,CD | 0 1 | 0x210 to 0x213
PORTA,B,CD | 1 0 | 0x300 to 0x303
PORTA,B,C.D | 1 1 | 0x310 to 0x313

Table 4.2: Occupied I/0O addresses in XO0.
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XOport | Function

PORTA | set control functions of other ports
and SRAM arbitration

PORTB | download bit streams

PORTC | read port (contains a zero)

PORTD | boundary scan and global reset

Table 4.3: Functions of I/O ports (X0Oports) in X0.

As shown in Table 4.4, the 1/0 signals - IOR, IOW, A0, Al, A2, A3, D0O-D7 are
available to the R1 FPGA. Port I/O is the simplest way for the BORG board to
communicate with the PC. The C library functions

inportb(port)
outportb(port, byte)

can be used for reading and writing the ports, respectively.

The I/0 read and write signals: XIOR and XIOW have already been decoded by
X0 to ensure that the I/O signals IOR and IOW are directed towards the BORG
Board. (The decoding is controlled by switch positions IOAQ and I0A1 of the DIP
switch SW1.) Four of the 16 available ports are used by X0 as described. This leaves
12 port addresses available for the R1 FPGA to communicate with the PC.

Signal Pin # of R1 FPGA
INTERRUPT 70
A0 83
Al 81
A2 82
A3 80
XIOR 51
XIOW 50
Do 71
D1 69
D2 67
D3 65
D4 61
D5 59
D6 58
D7 56
Global Clock 13
Global RESET 10

Table 4.4: System signals available to R1.

4.6 Memory Mapping

The dual-ported SRAM (U2) can be accessed by your PC/XT if the SRAM is
properly mapped into the PC/XT’s vacant memory address space.

In the host mode, the mapping is determined by the setting dip switch SW2 of
your protozone adapter card, please consult your Protozone adapter card user’s guide.



4.7. Hardware Interrupt Channel 25

In the add-in mode, you can control the mapping with switch positions A18, A17,
and A16 of DIP switch SW2 (on the BORG board) which set the equality comparison
with the PC address lines A19, A18, A17, A16. In either case, for dual-port access,
the 8K dual-port SRAM 6116 (U2) must be mapped into a block of locations in your
PC upper memory area (UMA). UMA are higher than 640K and less than 1024K in
the memory address space.

Finding vacant locations is tricky. Typically, this can be either locations with base

memory address 0xd0000 or 0xe0000. Table 4.5 shows a typical high memory map
in DOS.

A19,A18,A17,A16 | Typical usage

System BIOS (ROM)

probably not used ?

probably not used ?

Network Adapter, Video ROM, HD controller
Video RAM

Video RAM

FmOgE=

Table 4.5: Typical UMA address map in a PC computer.

If your PC is using DOS 5.0 or higher, there may also be a problem if the
memory manager is using some of the upper memory area to accommodate your device
drivers (e.g., mouse, ansi.sys etc). You can avoid memory conflicts by commenting
“DOS=HIGH” out from your config.sys, and also avoiding the use of “loadhi”
commands. At any rate, do the following in DOS 5.0 (or higher) to display a memory
map and find an area that is vacant to accommodate the 8K dual-port RAM.

C:> mem /p

or

C:> mem /c

You should consult Section 4.15 for further information on arbitrating the dual-

port SRAM.

4.7 Hardware Interrupt Channel

Pin 70 of the R1 FPGA is connected to hardware interrupt channel of your PC/XT.
The IBM PC AT and PC/XT computers have different channel assignments, so be
careful. Table 4.6 shows a typical hardware interrupt channel in a PC AT computer.

You can enable an interrupt channel by the DIP switch SW2 on the BORG board.
If you are in add-in mode, you can select either IRQ3, or IRQ5, or IRQ7, or IRQY by
the DIP switch SW2 to enable interrupt; or none to disable an interrupt. Make sure
that the channel you chose is not in conflict with other devices in your system, for
example, a serial mouse uses IRQ4; and IRQ5 may be used by a printer in LPT2.
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Hardware Interrupt | Vector | Description
TRQO 0x08 | System Timer
TRQ1 0x09 | Keyboard Interrupt
TRQ2 0x0A | unused connect to another 8259A chip
TRQ3 0x0B | serial port COM2
TRQ4 0x0C | serial port COM1
IRQ5 0x0D | parallel port LPT2 in PC/AT (hard disk in PC/XT !)
TRQ6 0x0E | floppy disk controller
TRQ7 0x0F | parallel port LPT1
TRQ8 0x70 real time clock
IRQY 0x71 | (0x0A) rerouted to IRQ 2
IRQ10-IRQ15 PC/AT only

Table 4.6: Typical hardware interrupt channel in a PC AT computer.

If you are in host mode, you need to select the interrupt channel in the protozone
adapter card. You can use a lab given later in Section 9.2 as a guide to write interrupt
service routine, and the use the hardware interrupt feature.

4.8 DMA Channel

You need to change the default design of the controller X0 to practice DMA
transfer using the BORG board, and you must use the protozone adapter card in
order to use DMA. The protozone adapter card’s DMA channel is designed for an
PC/AT computer. Also, you need to select the proper DMA channel in the protozone
adapter card.

Three DMA related signals: terminal count expire (TC), DMA request (DMA),
DMA acknowledge (DACK) are availble in X0 for you to build your own DMA
controller.

You can follow a lab given later in Chapter 9 as a guide to use the DMA feature.

4.9 Configuring the controller X0 FPGA

‘Master serial mode ‘: By default, the controller X0 (U1) is programmed by a
small serial PROM xc1765D (in U3) using the master serial mode. To set X0 to this
mode:

1. shunt J24 on the left side with a plastic jumper,
2. set position M0X0 of dip switch SW1 to closed, and
3. set position M1x0 of dip switch SW2 to closed.

: Alternatively, customize your own controller by programming X0

in the slave mode using the Xilinx xchecker cable via J9. To set X0 to this mode:
1. shunt jumper J24 on the right side with a plastic jumper,
2. set position M0X0 of dip switch SW1 to open, and
3. set position M1X0 of dip switch SW2 to open.
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In either case, the light emitting diode LED2 turns to green when X0 is successfully
programmed.

4.10 Programming the R1, X1, R2 and X2 FPGAs

For programming purpose, the FPGAs R1, X1, R2, and X2 are daisy-chained,
which means the Dout of the first FPGA R1 is connected to the Din of the second
FPGA X1 and so forth so on. Their DONE pins are tied together.

The R1 FPGA can be programmed either in peripheral mode or slave mode; the
other three X1, X2, R2 FPGAs are always configured in the slave serial mode. Since,
the mode pins M0, M1 and M2 pins of X1, R2, and X2 are tied to vcc, this puts
them into daisy chained slave programming mode with the R1 FPGA as the master.
Remember:

R1 -> X1 -> R2 -> X2

This means the Dout of the first FPGA R1 is connected to the Din of the second
FPGA X1 and so forth so on. Their DONE pins are tied together.

Important | You need to “concatenate” the bit streams of the individual FPGAs
for download. You do so by using the Xilinx makeprom program, see the next two
paragraphs.

If you need only one FPGA, you must use the R1 FPGA. You can either extract
the rest of the FPGAs with a PLCC extractor tool made by a company called AUGAT,

or fill the rest of the FPGAs with “empty” bit streams. You can find null bit streams
for each of the individual FPGA types in the distribution package under the directory

nvty ]

em4002a.bit em4003a.bit

Use them to generate a single mcs file of your design along with the bit stream of
your design in the R1 FPGA (say: myrl.bit) using the Xilinx makeprom utility:

makebits myril
makeprom -o design.mcs -u O myrl.bit em4003a em4002a em4003a

To use the R1 FPGA in the peripheral mode, you set both positions MOR1 and
MIR1 of DIP switch SW1 to open and closed, respectively. The bit streams to
configure the FPGAs are downloaded via the 8-bit PC databus sent by the supplied
download program bd. LED3 (DONE) turns to red if the FPGAs are successfully
programmed.

c:> bd design.mcs

To use the R1 FPGA in the standalone mode, refer to Section 4.2.



From X0

28 4. Principle of Operation
RESET TDO RESET ? (? (P ? TDO
I I A ) I N I A | | I I S O B
10 9 8 7 6 5 4 3 8483 82 81 80 79 78 77 75 10 9 8 7 6 5 4 3 8483 82 81 80 79 78 77 75
— 1 13 CLK a0 a2 al a3 DOUT 72 [ 13 CLK DOUT 72
T 14 dODIN 71 ] 14 DIN 71
15 TDI INT 79— 15 TDI 70O
16 TCK 41 €9 16 TCK 6o MO
17 TMS 68— 17 TMS 68
— 18 d2 67 — 18 67
— 10 R1 FPGA o6~ — 19 X1 FPGA 66
— 20 d3 65 - 20 65
— 23 62— — 23 62—
— 24 d4 61 - 24 61
— 25 sol™ S 25 sol™
— 26 ds 59 — 26 59
— 27 a6 58 — 27 58
—{ 28 5% %{ 57— —1 28 57
- 29 \% % 56 S 29 56
35 36 37 38 39 40 44 45 46 47 48 49 50 51 47 35 36 37 38 39 40 44 45 46 47 48 49 50 51
1 T 1T T T T 1T T T T T 1] OT T 1T 17T 1T OT T T T O 00
' I
RESEﬂq“) TDO RESET TD’d
L9 P 1111 PP I T T T A |
10 9 8 7 6 5 4 3 8483 82 81 80 79 78 77 75 10 9 8 7 6 5 4 3 8483 82 81 80 79 78 77 75
—1 13 CLK DOUT 72/ — 13 CLK DOUT 79
- 14 DIN 71 1 14 DIN 71
15 TDI 70 15 TDI 70—
16 TCK 69— 16 TCK 69
17 TMS 6al— ®o— 17 TMS 6
— 18 dl — 18 67
— 19 e6l— — 19 66—
— 2 X2 FPGA o5 - 2 R2 FPGA o
— 23 62— — 23 62—
— 24 61— — 24 61
— 25 6ol — 25 6ol
- 26 59 1 26 59
- 27 53'@ - 27 58
O 28 57O — 28 s
S 29 56'@ 1 29 56
35 36 37 38 39 40 44 45 46 47 48 49 50 51 35 36 37 38 39 40 44 45 46 47 48 49 50 51
1 T T T 1T T 17 T T T T T r 1 T T 1T T T 1T T T 1T 1 11
-
TO PC

Figure 4.3: User FPGAs and Global Signals.
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4.11 Global Reset

You can reset the R1, X1, R2 and X2 FPGAs manually by depressing the push
button SW4. This global reset can be also initiated under (port I/O) program control.
It is connected to Pin 10 of all user FPGAs, as illustrated in Fig. 4.3. As mentioned
earlier in Section 4.5, the BORG board’s controller X0 has four predefined 1/0 ports.
Bit 0 of PORTD is used for global reset.

4.12 Readback

Only the R1 and X0 FPGAs are available for readback using the xchecker program
and cable. The mode pins of the other FPGAs are tied to vce, so readback is not
possible.

4.13 JTAG Boundary Scan

You can only use R1, X1, R2 and X2 FPGAs for boundary scan. X0 is the
controller of the boundary scan chain. As mentioned, the BORG board’s controller
X0 has four predefined 1/0O ports. The three JTAG boundary scan pins: TMS, TCK,
TDI of the R1, X1, R2 and X2 FPGAs are connected to bit 1 to bit 3 of PORTD of
X0 to boundary scan the user FPGAs under port I/O program control. X0 reads the
TDO from the user FPGAs via the TDO_PC pin.

Warning: | Since bit 0 of PORTD is reserved for global reset (active low), don’t
write a zero to bit 0 of this port unless you really mean to.

4.14 System Clock and Single Step

You may find the on-board (default 8 MHz) TTL-crystal clock generator useful.
Place the plastic jumper on the right side of J10 to use the crystal clock. It is divided
internally by a counter in the X0 controller (if X0 is not powered down). The clock
divisor can be selected by the clock program. For example, you use

c:> clock turbo

for a divided by 1 clock (default 8 MHz), and

c:> clock slow

for a divided by 8 clock.

The clock utility loads 2 bits to select the desired divisor that resides in bits 4
and 5 of PORTA of X0port inside X0 (see Section 4.5).

You can toggle the system manually by placing the plastic jumper on the left side
of J10 and use the push buttom for single stepping. The global clock is broadcast to

Pin 13 of all user FPGAs, as illustrated in Fig. 4.3.
A listing of the clock utility is given on the next page.
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#include<stdio.h>
#include<dos.h>
#include<stdlib.h>

main(int argc, char *argv[]) /* clock speed selection */
{

unsigned int Portl;

char * portenv;

setcbrk(1);

printf("\nCLOCK Ver. #1.0\n");
printf("UC SANTA CRUZ, COMPUTER ENGINEERING, August 1993\n");
printf("(c) Copyright 1993 UC Regents. All rights reserved\n\n");

if(arge==1) {
printf(" Function: Set BORG Protoboard global CLOCK speed\n");

printf(" Usage: clock [ slow | quick | fast | turbo ]J\n\n");
printf(" /8 /4 /2 /1\n\n") ;
exit(1);

}

portenv = getenv("BORG");

/* Control Port in X0 */
if(!strcmp(portenv,'0x300"))
PortA = 0x300;
else if(!strcmp(portenv,"0x200"))
PortA = 0x200;
else if(!strcmp(portenv,"0x210"))
PortA = 0x210;
else if(!strcmp(portenv,"0x310"))
PortA = 0x310;
else {
printf(" Wrong PORT address\n");
printf(" Please specify PORT address\n e.g. set BORG=0x300%s\n");
exit(1);

printf(" >BORG PORT address is %s\n",portenv);

if(argc==2){
switch(argv[1]1[0])
{
case ’s’: outportb(PorthA, Oxce);
printf(" >Global clock is now slow \n");
break;
case ’q’: outportb(PortA, Oxde);
printf(" >Global clock is now quick \n");
break;
case ’f?: outportb(PorthA, Oxee);
printf(" >Global clock is now fast \n");
break;
case ’t?: outportb(PorthA, Oxfe);
printf(" >Global clock is now turbo \n");
break;
default: printf(" Error: flag not recognize ’%s’\n", argv[1]);
printf(" Usage: clock [ slow | quick | fast | turbo J\n\n");
}
exit (0);
}
}
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pin of SRAM | pin of R2 PC84 package FPGA
DO R2.46
D1 R2.45
D2 R2.44
D3 R2.40
D4 R2.39
D5 R2.38
D6 R2.37
D7 R2.36
A0 R2.47
Al R2.48
A2 R2.49
A3 R2.50
A4 R2.51
A5 R2.56
A6 R2.57
A7 R2.58
A8 R2.61
A9 R2.62
A10 R2.67
A1l R2.66
A12 R2.59
Cs R2.30
OE R2.65
WE R2.60

Table 4.7: Memory signals from R2 to dual port SRAM; the connections
to memory addresses A0-A12 depend on jumpers J11-J23. To use the pin
assignment tool assign you need to use the appropriate wiring file and
flag (see assign command option in Chapter 7) to reflect the status of the
jumpers.

4.15 On-board SRAM and arbitration

4.15.1 8Kx8 SRAM

If your design requires only a wide but shallow amount of memory, it is much
better to use the XC4000 on-chip RAM. If you need deep but narrow memory, the
on-board 8K x8 SRAM can be useful.

As indicated on the BORG board, pin 2 of jumpers J11-J23 are the (A0-A12)
address lines to the SRAM coming out from the R2 FPGA. You can move the plastic
jumpers of J11-J23 to the right side to use all the on-board 8Kx8 SRAM. In this
case, you have less connections available between X1 and X2 FPGAs, as illustrated
in Fig. 4.4.

In Fig. 4.4, you will find that the SRAM is connected to the R2 FPGA, the pin
assignment of R2 FPGA is given in Table 4.7. All the memory access signals (8-bit
data lines, 13-bit address lines, R/W, OE-, and CS-) of the user FPGAs have to go
through R2 before reaching the SRAM (see also Figure 1.2). In particular, pin 30 of
R2 is the chip select (CS-). This signal is tri-stated and is in wire-AND configuration
with the RAMSEL signal of X0. This active-low signal is normally pulled high by a
4.7K resistor.

On the other hand, if you need more connections between the user FPGAs X1 and
X2, you may move the plastic jumpers of J11-J23 to the left side (this is the default
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Address Lines A0-A3
Data Lines D0-D7
IOR,IOW

INTPC (interrupt PC)

XC4077PC84 PC Bus
X1 X0 Y XC4003APG120

> 27
g ] Data
Yy w Control
.::: RAMSEL2
X2 R2 Soo
add(r)ess lci;li SRAM
XC4077PC84 XC4077PC84 J11-323|8K x 8bit buffer
control lines
ata lines

Figure 4.4: SRAM and the rest of the FPGAs.

configuration, see Fig. 2.6); and the on-board 8Kx8 SRAM is inaccessible.

4.15.2 Dual-port SRAM arbitration

The 8K dual-port SRAM can be accessed either by the PC or the R2 FPGA. The
X0 controller provides some simple arbitration logic. There are three mechanisms for
arbitration.

First, you can control the default dual-port SRAM access by setting position 3
of DIP switch SW1 (DURAM). If this switch position is open, the PC has exclusive
access to the SRAM. By the same token, you can make the SRAM inaccessible to the
PC by closing this switch.

Second, you can arbitrate the dual-port SRAM access under program control,
overwriting the default set by DIP switch SW1 (DURAM). Bit 2 and bit 3 of PortA
of X0Oport arbitrates the memory access, as illustrated by the arbit utility on the
next page.

Third, jumper J1 is connected to the ASIC pin of the X0 controller. This active-
low signal can be used to block the PC access to the dual-port SRAM by tristating
the data and address buffers surrounding the dual-port SRAM on the PC side. The
static RAM 6264 is of 70ns speed grade. We have tested the BORG board using
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| 000—] ,
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Figure 4.5: Pin Distribution between the FPGAs.

150ns RAM without problems. We use the 70ns speed grade because it is available
and cheap.

4.16 Limits on the Number of Connections Between the FPGAs

Some of the I/O pads on R1 and R2 are used to support the dual-ported SRAM
and port I/O communications with the PC. Thus, although the number of user pads
available on a 84-pin PLCC package is 54, the maximum number of connections
between X1 and X2 which can be realized with R1 and R2 is , with the plastic
jumpers of J11-J23 on the left side.

With the plastic jumpers of J11-J23 on the right side, the maximum number of
connections between X1 and X2 which can be realized with R1 and R2 is . Fig-
ure 4.5 shows the pin distribution between the FPGAs. There are some unconnected
pin in the X1 and X2 FPGAs are indicated with a small circle on their pins in Fig. 4.3.
They can be used for probing/debugging purposes.
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/* program arbit
dual-port SRAM arbitration */
#include<stdio.h>
#include<dos.h>
#include<stdlib.h>

main(int argc, char *argv[])
{
unsigned int Portl;
char * portenv;
setcbrk(1);

printf("\nRAM ARBITER Ver. #1.0\n");
printf("UC SANTA CRUZ, COMPUTER ENGINEERING, August 1993\n");
printf("(c) Copyright 1993 UC Regents. All rights reserved\n\n");

if(arge==1) {

printf(" Function: Arbitrate BORG II Protoboard’s RAM\n");
printf(" Usage: arbit [ xilinx | pc ]\n\n");

exit(1);

}

portenv = getenv("BORG");

/* Control Port in X0 */
if(!strcmp(portenv,'0x300"))
PortA = 0x300;
else if(!strcmp(portenv,"0x200"))
PortA = 0x200;
else if(!strcmp(portenv,"0x210"))
PortA = 0x210;
else if(!strcmp(portenv,"0x310"))
PortA = 0x310;
else {
printf(" Wrong PORT address\n");
printf(" Please specify PORT address\n e.g. set BORG=0x300%s\n");
exit(1);
}
printf(" >BORG PORT address is %s\n",portenv);

if(arge==1) {
printf(" Function: Arbitrate BORG II Protoboard’s RAM\n");
printf(" Usage: arbit [ xilinx | pc ]\n\n");
exit(1);
}
if(argc==2){
switch(argv[1]1[0])
{
case ’x’: outportb(PortA, 0xf3);
printf(" >BORG Xilinx’s has exclusive access to the RAM\n");
break;
case ’p’: outportb(Portd, 0x£f7);
printf(" >PC has exclusive access to the RAM\n");

break;
default:
printf(" Error: unknow flag ’%s’\n", argv[1]);
printf(" Usage: arbit [ xilinx | pc ]\n\n");
exit(1);
}
printf("\n Warning: RAM access can be hardwired by a\n");
printf(" : switch position 3 (DURAM) of DIP SW#1\n");
printf(" : Open: PC access closed: FPGA access\n");
exit (0);
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The software programs and subdirectories in the distribution package are
described in Table 5.1.

| file name | description
arbit arbitrates dual-port SRAM access
assign pin assignment program to connect multiple FPGAs (need a 386)
bscan boundary scan program (unsupported!)
bd downloads an mes file to the BORG board (runs on XT compatible)
clear clear a messy screen
clock program to change the system clock rate
default print out the default DIP switch settings
inspect list content of dual-port SRAM
isr.com interrupt service routine for interrupt lab
ntpc interrupt generator for the interrupt lab
maze maze runner driver project example
mtest checks (by writing after reading) the
8k dual-port SRAM 6264 on the BORG Board
portest lab example to show building I/O ports in R1

setassig.bat

example bat file to set an environment variable
for the program assign

scan scan test to check all the I/O on BORG board

tetris driver for the Tetris project (runs on XT compatible)

sre\ subdirectory containing the source code

designs\ subdirectory with the LCA files for the project examples

mes\ subdirectory with the mcs files for the design examples

empty\ subdirectory with null bit-streams for XC4003a and XC4002a 84PLCC packages
X0\ subdirectory viewdraw schematic of the X0 controller

assign\ subdirectory supporting files

Table 5.1: Contents of Software Distribution.

5.1 Memory related programs mtest and inspect

The memory test mtest program checks whether the dual-port SRAM is accessible
from the PC. The inspect program displays the entire contents of the 8K dual-port

SRAM.

Before running these programs, you need to disable any access to the dual-port

SRAM from the user FPGAs, by closing position 3 DURAM of SWI.

to download a “null” bit stream into R2.

You need
You can use the supplied bit stream

portest.mcs or scan.mcs that are in this distribution. Both of these mcs files have
the necessary bit stream to tristate the I/O pins of R2). You should make sure that
the PC has exclusive access to the memory, do

c:> arbit pc
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before running either programs.

5.2 Board Wiring test program Scan

The design file scan.mcs contains bit streams that chain up most of the I/O pads
of the user FPGAs to be a shift register. The program scan shifts a zero into the
chain and checks whether the zero successfully arrives after certain number of clock
cycles.

5.3 Pin assignment program assign

Assign is a C4++ program which assigns pads on the routing FPGAs to connect
the two user FPGAs. | You must run assign on 32-bit 386/486 machines. | Both its
source code and executables are included. Assign has been compiled with the g++
(DJ) public domain compiler. You should read the section on the options available
with assign in Chapter 7.

5.3.1 Projects, Demos and their MCS files

The directory designs)\ contains the projects and their LCA files. Their mcs files
are in the mcs\ directory.
tetris4 - Martine Schlag’s Tetris project in Aug 1991, the original design used one
X(C3020 and one XC3042. I have converted the XC3000 design to XC4000 for
the purpose of this distribution.
x1tetdf.lca - the controller of the Tetris machine design

x2tet4f.lca - the datapath of the Tetris machine design
Rltet4f.lca - the 1st routing FPGA design
R2tet4f.lca - the 2nd routing FPGA design
tetris4.mes the bit stream of the complete design

amazer - Jason Y. Zien and David Van Brink’s maze runner project in Fall 1992
(CMPE 225 UC Santa Cruz). I have converted the XC3000 design to XC4000
for the purpose of this distribution. This maze runner machine used the XC3000
Borg board for development of the project.

Rlnewg.lca - the 1st FPGA design

R2newg.lca - the 2nd FPGA design
amazerg.lca - the 3rd FPGA design
amazerd.mcs - the bit stream of the complete design

portest - testing parallel 1/O ports configured in R1 FPGA
sch schematic drawing of the design in viewdraw

portest.lca - 4 I/O ports in R1
portest.mcs the bit stream of the design

intpc - hardware interrupt demo using the R1 FPGA
sch schematic drawing of the demo in viewdraw
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intpc.lca - one I/O port in R1 by generating hardware interrupt
intpc.mecs - the bit stream of the design

intpc.exe - a driver to trigger the generation of an interrupt
isr.com - a interrupt service routine for the demo

asylab - synchronization failure lab demo using the R1 FPGA
sch schematic drawing of the demo in viewdraw

asylab.mecs - the bit stream of the design
asylab.exe - the driver to demonstrate synchronization failure

music - frequency synthesizer demo using the R1 FPGA, you need a digital-to-analog
converter and a small transistor amplifier to “listen” to this lab
sch schematic drawing of the demo in viewdraw

music.mcs - the bit stream of the design

music.exe - a driver to use the keyboard to control the frequency of sine wave
generated by the FPGA
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6. Design flow

6.1 Introduction

The essence of the design process using the BORG board for a multiple FPGA
design can be summarized in the following steps.
1. Place and route X1 and X2 (the 2 user FPGAs), letting the plaement and
routing program ppr (or apr) choose the pad assignments.

2. Re-arrange the pad assignments of X1 and X2 with the assign utility to
conform to the hardwired constraint of the BORG printed circuit board.

3. Place and route the X1 and X2 again using the incremental place-and-route
flags of ppr (or apr).
4. Place and route R1 and R2 (the routing FPGAs).

5. Generate the bit streams of R1, X1, R2, and X2 using makebits and concate-

nate them using makeprom.
Note: in principle, you can also treat X1 and X2 as the routing chips, and use R1

and R2 for logic; or even use all four FPGAs for logic. Assign is able to handle these
situation, but you have to read Chapter 7.

6.2 Details

In greater details, suppose that you have two cooperating XC4003a LCA designs,
the following steps illustrate the process of using the tool set to connect the two LCA
designs electronically on the BORG board. !

1. Hand partition your design into two XC4003aPC84 FPGAs.

2. Place and route the FPGA designs without imposing any constraints on the
pad assignments. You should let ppr determine the pad assignments of your
LCA designs. Say, the two (routed) LCA design files are called X1a.LCA and
X2a.LCA; and their XNF files are called X1a.XNF and X2a.XNF, respectively.

C:> ppr Xla
C:> ppr X2a
3. Run “assign” with an “alias.file” to obtain an interconnection map Rx.info.

C:> assign -1 Xla.LCA -2 X2a.LCA -a alias.file
-x1 Xla.cst -x2 X2a.cst -rl1 Rl.cst -r2 R2.cst -i

'You may use an XC4002, XC4003, XC4004, XC4005, or XC4010D in place of any user FPGAs
currently on your BORG board. This distribution provides two XC4003a as the user FPGAs, and
two XC4002a as the routing FPGAs.
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Hand Partition designs into
two chips X1 and X2

(Prepare schematic drawings
of routing chips R1 and R2,
after running assign)

X1 X2
| | |
viewdraw viewdraw viewdraw viewdraw
‘ | Y Y
regular
wir2xnf wir2xnf wir2xnf wir2xnf Xilinx
Design
Flow
R1.XNF
ppr ppr
R2.XNF
Xla.LCA | X2a.LCA
Pin Assignment for BORG board generate constraint files
that conform with
assign -1 X1a.LCA -2 X2a.LLCA -a alias.ali -1 BORG board
-x1 Xla.cst -x2 X2a.cst -r1 Rl.cst -r2 R2.csf]
R1 X1 R2 X2 rerun ppr
with incremental

ppr ppr ppr PP option

(available in XACT 5.0)

R1.LCA X1.LCA R2.LCA X2.LCA

makebits R1||makebits X1||makebits R2| |makebits X2

makeprom -o des.mcs -u 0 R1 X1 R2 X2 concatenate

bit streams into
a single mcs file

| bd des.mcs | download to BORG
board

Figure 6.1: Using Assign to augment the Xilinx Design Flow for multiple-
chip design. Draw the schematics of R1 and R2 after using assign, not
before.
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The alias.file is used to match nets which are to be connected between X1
and X2 which (may) have different names. Ideally, you created designs for X1
and X2 in which all nets that are to be interconnected have the same name.
However, if for some reason, you gave different names to the signals, for example
“Select” on X1 and “select_data” on X2, an alias in the alias.file will cause
these signals to be matched. This is particularly useful if you want to use the
memory chip or PC-bus. You MUST alias those signals to the names given
in the wiring file (refer to Chapter 7 for details). Some of these special signal
names are:

PC Bus Data Lines:
&&BusData_0, &&BusData_1, &BusData_2, &&BusData_3,
&&BusData_4, &&BusData_5, &&BusData_6, &&BusData_7
PC Bus Address Lines:
&&BusAddress_0, &&BusAddress_1, &&BusAddress_2, &&BusAddress_3
PC Bus Control Lines:
&&BusControl_0, &&BusControl_1
Memory Data Lines:
&&MData_0, &&MData_1, &&MData_2, &&MData_3
&&MData_4, &&MData_5, &&MData_6, &&MData_7
Memory Address Lines:
&&MAddress_0O, &&MAddress_1, &&MAddress_2, &&MAddress_3,
&&MAddress_4, &&MAddress_5, &&MAddress_6, &&MAddress_7
Memory Control Lines:
&&M_WE, &&M_OE, &&M_CS
Forced Nets:
&&R1, &&R2

The alias file itself contains pairs of net names that are to be matched. One
example is:

; a sample alias file

; comments started with a semicolon

memaddr0 &&MAddress_0O

memaddrl &&MAddress_1

memaddr2 &&MAddress_2

memaddr3 &&MAddress_3

start Start_Machine
which illustrates forcing some nets to be used as memory address signals.

Another example is:
Prot<i1> &&R1
Prot<2> &&R1
PLateral<1> &&R1
PLateral<2> &&R1
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PlLateral<3> &&R1

PMoveready &&R1

I0B1 &&R1

PYourmove  &&R1

Pnewtile<1> &&R1

Pnewtile<2> &&R1

Pnewtile<3> &&R1

PSavcol<1> &&R1

PSavcol<2> &&R1

PSavcol<3> &&R1

- Pclk
which illustrates forcing some nets that must go to the R1 FPGA.
The interconnection map Rx.info suggests a consistent way of connecting the

user FPGAs X1 and X2 using the routing FPGAs R1 and R2, hopefully.? A
sample interconnection map is given below:

NET NAME NET ALTIAS COST SRC DEST
PSavcol<3> &&R1 [0] X1.38 -> R1.48 O0_PAD
PSavcol<3> &&R1 [0] X0 -> R1

Pcol<3> Pcol<3> [0] X1.37 -> R2.5 I_PAD
Pcol<3> Pcol<3> [0] X2.6 -> R2.28 O0_PAD
Pc<13> Pc<13> [0] X1.4 -> R2.4 I_PAD
Pc<16> Pc<i16> [0] X1.26 -> R1.60 TI_PAD
Pc<16> Pc<i16> [0] X2.79 -> R1.49 O0_PAD
Pcond<2> Pcond<2> [0] X1.40 -> R1.44 O0_PAD
Pnewtile<2> &&R1 [0] X2.81 -> R1.47 O0O_PAD
Pc<9> Pc<9> [0] X1.23 -> R2.9 I_PAD
Pc<9> Pc<9> [0] X2.27 -> R2.47 O0_PAD
Prot<i1> %&R1 [0] X0 -> R1
Prot<i1> &&R1 [0] X2.7 -> R1.37 I_PAD
Pcond<7> Pcond<7> [0] X2.70 -> R2.62 TI_PAD
Pc<17> Pc<17> [0] X1.36 -> R1.36 I_PAD
Pc<17> Pc<17> [0] X2.14 -> R1.35 O0_PAD
PYourmove &&R1 [0] X1.59 -> R1.24 O0_PAD
PYourmove &&R1 [0] X0 -> R1
PMoveready &&R1 [0] X1.28 -> R1.57 TI_PAD
PMoveready &&R1 [0] X0 -> R1
Pc<3> Pc<3> [0] X1.5 -> R1.79 I_PAD
Pc<3> Pc<3> [0] X2.26 -> R1.26 O0_PAD

Pcond<4> Pcond<4> [0] X1.19 -> R2.8 0_PAD
Pcond<4> Pcond<4> [0] X2.23 -> R2.68 I_PAD
Pc<20> Pc<20> [0] X1.68 -> R2.69 I_PAD
Pc<20> Pc<20> [0] X2.68 -> R2.18 O0_PAD

The first column is the PAD (net) name, the second is the PAD’s alias name,
the third column is the cost, and the fourth column is the source FPGA’s pad
number, and the last column is the destination FPGA’s pad number and are
connections that need to be made inside R1 and R2.

?There may not be a consistent assignment and this problem is NP-complete.
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Assign will also generate two constraints files X1a.cst and X2a.cst. Use these
two files to route X1a.LCA and X2a.LCA with ppr again. You should use the
incremental option of (apr -g for the XC3000 designs ) ppr (available in XACT
5.0 in May 1994) to guide the new placement and routing processes using the
old designs, and the new constraints files X1a.cst and X2a.cst. For example,

C:> ppr Xla outfile=X1

C:> ppr X2a outfile=X2

Now, you have two new LLCA files X1.LCA and X2.LCA with the pad assignments
determined by assign.

. With the I/O map generated by assign, draw a schematic diagram for each

of the routing chips, R1 and R2, using viewdraw. The constraint files for the
routing chips have also been generated by assign.

Figure 6.2 illustrates a rather typical schematic drawing of the R1 routing chip.

Notice that there is actually some logic in the “routing chips.” Please generate
the routed LCA files of the routing chips using the Xilinx ADI software wir2xnf
and ppr (or xmake, if you like).

C:> wir2xnf ri

C:> wir2xnf r2

C:> ppr ri

C:> ppr r2

Now you have two routed LCA files: R1.LCA and R2.LCA.

. You generate the bit files for all the LCA files:

C:> makebits X1
C:> makebits X2
C:> makebits R1
C:> makebits R2

Now you put these bit files together into a single mcs file. Use makeprom, and set
the promsize to 64K, set the file format to Intel mcs, and load the bit files in the
upward direction starting from location 0. Gather the bit files and concatenate
them into a single mcs file, say design.mcs, by loading the bit files in the
following order

makeprom -o design.mcs -u 0 R1.bit X1.bit R2.bit X2.bit

The order is important since it corresponds to the order in which the FPGAs

are daisy-chained on the BORG board.

6. Download the mcs file using the program bd.

C:> bd design.mcs
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7. ASSIGN (Ver 3.0) A Pin Assignment Program for
BORG Prototyping Board

7.1 Preface to earlier versions

! Assign 3.0 may not necessarily be compatible with earlier versions of assign.
This new version generates pin assignment for connections involving one or two
user FPGAs (earlier versions are restricted to connection between two user FPGAs).
Although the algorithms used are deterministic, they are dependent upon the ordering
of the pads read in from the LCA files. The ordering of the pads is randomly changed
after each iteration, that is why multiple iterations of the algorithm can be run.
Therefore, minor changes to the LCA files may yield very different output from assign.
Assign 3.0 has been tested with Xilinx apr 3.2, apr 3.3 (with incremental place
and route version), and ppr 1.31 (without incremental place and route). Incremental
placement and routing is necessary for the efficient use of assign. Assign supports
XILINX X(C3020, XC3030, XC3042, XC3064, XC3090, XC4002, XC4003, XC4004,
and XC4005 PC84-package FPGAs used in the BORG I and II prototyping board.
The X1 and X2 user FPGAs are assumed to be of the same type.

7.2 Assign as a Pin Assignment Program

Locking (constraining) I/O pins down during placement and routing is known to
be harmful. Not only that it increases the time taken to place and route a design, but
locking down I/O pins also reduces your chances of having a successful placed and
routed designs. Assign is a pin (I/O pad) assignment program which will increase the
chance of successful placement and routing runs even under the given BORG board
level constraint.

Assign does so in two steps. First, use the placement and routing program (ppr
or apr) to place and route your designs without constraints. In other words, let ppr
or apr choose the initial pin assignments freely. Next, assign will then perturb the
initial pin assignments to satisfy the board level constraint. The designs are rerouted
using the incremental placement and routing option.

7.2.1 Place in the design process

Assign is a program that produces consistent pin assignments for the BORG pro-
totyping board. Assign takes two user LCA files which are intended to be downloaded
to BORG, and produces two corresponding constraint files which can then be used
by apr or ppr to generate a valid pin assignment.

BORG is a rapid prototyping board for PC-based machines. It contains two user-
programmable XILINX FPGAs (X1 and X2) and two dedicated routing FPGAs (R1
and R2) as shown earlier in Fig. 1.2. Wires going from each user chip to each routing

! Assign is written by Jason Y. Zien
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chip follow roughly an alternating pattern (wire ¢ of X1 goes to R1, wire i+1 of X1 goes
to R2, wire i+3 of X1 goes to R1, ...). Since BORG contains hardwired connections
between the user FPGAs and routing FPGAs, the initial pin assignments generated
by the XILINX tools (which have no knowledge of these board-level pin assignment
constraints), must be rearranged to produce a correct, usable circuit. The advantage
of having hardwired connections is the elimination of wire-wrapping a circuit, which
can be extremely time consuming and tedious.

The typical design process for BORG has several steps. Assign fits in the middle
of that process. The major steps in the design process are:

1. Draw schematics for X1 and X2 FPGAs.
2. Draw schematics for R1 and R2 FPGAs.
3. Create the unconstrained LCA files using apr or ppr.

4. Create the alias file for assign to match up nets with different names or to force
nets to go to a specific routing chip.

5. Run assign on the X1 and X2 LCA files.

6. Edit the R1 and R2 schematics so that nets which pass through these chips are
connected. These net names must match the incoming X1 or R1 net name, with
the X1_ or X2_ prefix attached, depending on the source of the net.

7. Rerun apr or ppr on each LCA file using the incremental placement and routing
option. For apr, use the ‘-c [file.cst]’ option so that the constraint file
generated by assign will lock the pads to the proper places. If running ppr
[file.xnf], it will automatically read in a constraint file named [file.cst].

8. Use makebits to create the bit files.

9. Use makeprom to group together the bit files into one .mcs file for downloading.

IMPORTANT |1 The constraint files generated for R1 and R2 prepend either
X1_or X2_to a net name depending on the source of the net. This is necessary because
if matched nets in X1 and X2 have the same name, that would cause a name clash on
the routing chip through which the net pass. Example: suppose nets neta on X1 and
bnet on X2 are to be forced through R1. The net adjacent to the pad in which neta
enters/leaves must be named X1 neta while the net adjacent to the pad in which bnet
leaves/enters must be named X2 bnet. This only applies if one uses the constraint

files generated by assign. Of course, one may choose to not use these net names, and
directly set the pad locations in the schematic based on the information in Rx.info.

IMPORTANT |: The user must exercise extreme care in making sure that nets
which are NOT to be matched have different names. In particular, one needs to be
careful of such things as CLOCK nets. assign may inadvertently match the clock
signals on both user chips. See Section 7.2.4.
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7.2.2 Command Line Arguments

assign takes a number of command line arguments. Its usage is as follows:

assign [options ...]

Options (and their descriptions, which follow the ’;’ symbol) include:
-1 x1file.lca ; xl1file.lca=name of the X1 lca file
-2 x2file.lca ; x2file.lca=name of the X2 lca file

-a aliasfile ; aliasfile= file that gives aliases to nets for matching
-u ; flag, use memory connections

-s num ; num=starting window size

—-e num ; num=ending window size

-m num ; num=maximum solutions allowed outside the window

-x1 x1file.cst ; xlfile.cst=name of the constraint file for chip X1
-x2 x2file.cst ; x2file.cst=name of the constraint file for chip X2
-rl rifile.cst ; rifile.cst=name of the constraint file for chip R1
-r2 r2file.cst ; r2file.cst=name of the constraint file for chip R2

-i ; run single and pairwise swap improvement phase
-g ; run greedy graph reduction
-c ; Output a CLB Locking constraint file (for apr ver 3.3)

If none of the constraint file output options (-x1 -x2 -r1 -r2) are specified,
then by default, the program writes out constraint files x1.cst, x2.cst, rl.cst,
and r2.cst. The constraint file output format is chip-specific. That is, the constraint
files for Xilinx XC3000 series FPGAs differ from XC4000 series FPGAs. It is assumed
that XC3000 series designs will be placed and routed using apr while XC4000 series
designs will be placed and routed using ppr. The output constraint files are generated
to be compatible with the corresponding place and route program.

The -u option allows assign to use special lines from R2 to the on-board memory.
Because of pin limitations of the FPGA packages used, and due to the large number
of memory address lines, these lines are selectively activated or not activated by some
switches on the BORG board. If the memory lines are not used, then extra connections
between the routing chips and user chips are available for general use. However, if the
memory lines are used, then these connections are unavailable for general-purpose use.
This option affects the use of all memory address lines for the 4K borg, but only the
upper address lines (bits 8-10) of the 3K BORG. *** BE SURE THAT THE BORG
DIP SWITCHES which affect the memory lines are set properly, or your design might
not work! #fstk

Due to a change in the way apr ver 3.3 handles the locking of blocks, the ‘-¢’
option of assign should be used to speed up the placement phase of apr. When
‘-¢’ is used, two files, x1clb.cst and x2clb.cst are created and the line ‘Include
x1lclb.cst;’ is included at the end of x1.cst and ‘Include x2clb.cst;’is included
at the end of x2.cst. The files x1clb.cst and x2clb.cst lock all of the CLBs which

were found in the input LCA files.
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Previously, the recommended usage of constraint files generated by assign was:

% assign -1 x1.lca -2 x2.1lca -a file.ali
h apr -1 -c xl.cst xl.lca xlnew.lca
h apr -1 -c x2.cst x2.lca x2new.lca

The -c option does not do anything when the chips are Xilinx XC4000 series FPGAs.
Now, for apr ver 3.3 (and later versions) we recommend:

% assign -1 x1.lca -2 x2.1lca -a file.ali -c
h apr -q -c xl.cst xl.lca xlnew.lca
h apr -q -c x2.cst x2.lca x2new.lca

By default, assign uses the augmentation algorithm. It has been experimentally
noted that using the default mode tends to produce better results for very large, dense
I/O designs, while the greedy graph reduction heuristic (-g option) tends to produce
better results for small, sparse designs.

In order to run assign, the user first needs to have at least one LCA file which
he/she intends to download to X1 and X2 of the BORG prototyping board. Also,
an alias file may be created so that nets having different names in the two LCA files
can be matched (or prohibited from being matched). These net names MUST BE
adjacent to I/O pads. Assign can not match nets which are not adjacent to I/O pads.
Assign is NOT case sensitive with respect to net names, however, the special alias
names which will be described below are case-sensitive.

7.2.3 An Environment Variable

You need to set an environment variable before assign can be run. In the UNIX
environment, the following line must be placed in the user’s .cshrc file.

setenv BORG_ASSIGN <Directory_Where_Assign_Resides>/

In the MS-DOS environment, the following lines must be added to the autoexec.bat
file:

set BORG_ASSIGN=<Directory_Where_Assign_Resides>/

where <Directory Where Assign Resides> is the full path to the directory in which
the assign program has been installed and which also contains the three data files:
xc3020.1i0, xc3042.10, alt3042.wir. Also, the directory contains several pin map-
ping files used internally, which are: 3020.map, 3030.map, 3042.map, 3064.map,
3090 .map, 4002 .map, 4003 .map, 4004 .map, and 4005.map.

7.2.4 Alias Files

By default, assign matches ALL nets in X1 and X2 which have the same name
(insensitive to case). An alias file is used to match nets which are to be connected
between two user FPGA chips which have different names. In the ideal case, the user
has created their design for the two user FPGAs X1 and X2 such that all nets which
are to be interconnected have the same name.
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The alias file itself contains pairs of net names that are to be matched. The first
column should be the X1 net name. The second column can contain the X2 net name,
or one of the special reserved names given above. If the first and second column are
X1 and X2 nets respectively, then the third column may contain one of the special
reserved names to force both other nets to go through a particular routing chip.

A special name is the - symbol. If the - symbol is the first name, then the next
string name signifies a net that is not to be matched by assign. This may be useful
for example, when a net such as the CLOCK net appears in both user chips, but have
already been given fixed locations which should not be modified by assign.

Another situation which requires the use of aliases is if for some reason, the user
gave different names to the signals, for example Select on X1 and select_data on X2,
an alias in the alias file will still allow the signals to be matched. This is particularly
useful if the user wants to use the memory chip or PC-bus. The user MUST alias
those signals to the names given in the wiring file. Those special signal names are
given below.

Forced Nets (nets forced to either R1 or R2):
&&R1, &&R2
PC Bus Data Lines:

&&BusData_0, &&BusData_1, &BusData_2, &&BusData_3,
&&BusData_4, &&BusData_5, &&BusData_6, &&BusData_7

PC Bus Address Lines:

&&BusAddress_0, &&BusAddress_1, &&BusAddress_2, &&BusAddress_3
PC Bus Control Lines:

&&BusControl_0, &&BusControl_1
Memory Data Lines:

&&MData_0, &&MData_1, &&MData_2, &&MData_3 &&MData_4,
&&MData_5, &&MData_6, &&MData_7

Memory Address Lines:

&&MAddress_0O, &&MAddress_1, &&MAddress_2, &&MAddress_3,
&&MAddress_4, &&MAddress_5, &&MAddress_6, &&MAddress_7

Memory Control Lines:
&&M_WE, &&M_OE, &&M_CS

In practice, it is sufficient to force nets using just &&R1 and &&R2. The other
aliases are included for backward compatibility with previous versions of assign. For
example, using &&M WE is equivalent to &&%R2. An example of an alias file is given
below.
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; some single forced nets
DirO &&BusData_0
Dirl &&BusData_1
Dir2 &&BusData_2

ROTS &&BusData_3
finish &&BusData_4
Startin &&BusData_5

tile_O &&BusAddress_O0
tile_1 &&BusAddress_1
tile_2 &&BusAddress_2

; some alias matching plus forced nets
CEO clkenO &&R1

CE1 clkenl &&R1

CE2 clken2 &&R1

CE3 clken3 &&R1

CE4 clken4 &&R1

CE5 clkenb &&R1

CLK_in CLKin &&R2

FIT Fit_in  &&R2

; some matching aliases
ROT_IN ROTS

TO CSO

T1 Cs1

T2 CS2

T3 CS3

T4 CsS4

T5 CS&

clkenO CEO

; some nets with same name that SHOULD NOT be matched by assign
- GlobalClock
- GlobalReset

7.2.5 Rx.info

The Rx.info file contains information necessary to generate the routing chips LCA
files for downloading (see Fig. 7.1). The first column is the pad (net) name, the second
is the pad (net) alias name, the third column is the cost (distance in usable pads from
its original pad position), the fourth column is the source chip and pin, and the last
column is the destination chip and pin.
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NET NAME NET ALIAS COST SRC DEST
Fit_in &&R2 [1] X1.84 -> R2.2 7_PAD
Fit_in &&R2 [1] X0 -> R2

CE5 &&R1 [0] X0 -> R1
CE5 &&R1 [0] X2.84 -> R1.84 O0_PAD
CsS4 T4 [0] X1.9 -> R2.8 I_PAD
CsS4 T4 [0] X2.37 -> R2.51
Cso TO [1] X1.83 -> R1.2 I_PAD
Cso TOo [1] X2.45 -> R1.40
ROT_IN &&BusData_3 [1] X1.47 -> R1.42 O0O_PAD
ROT_IN &&BusData_3 [1] X0 -> R1
Col COL [1] X1.70 -> R2.82 O0_PAD
Col COL [1] X2.48 -> R2.59 1I_PAD
clkeni &&R1 [3] X1.71 -> R1.77 I_PAD
clkeni &&R1 [3] X0 -> R1
clkenb &&R1 [2] X1.72 -> R1.73 I_PAD
clkenb &&R1 [2] X0 -> R1

tile_1 &&BusAddress_1 [0] X1.63 -> R1.63 0O_PAD
tile_1 &&BusAddress_1 [0] X0 -> R1

Clkin &&R2 [3] X1.3 -> R2.4 O0_PAD
Clkin &&R2 [3] X0 -> R2

CE3 &&R1 [0] X0 -> R1

CE3 &&R1 [0] X2.3 -> R1.3 O0_PAD

Cs2 T2 [2] X1.81 -> R1.83 I_PAD

Cs2 T2 [2] X2.20 -> R1.18

CE2 &&R1 [0] X0 -> R1

CE2 &&R1 [0] X2.82 -> R1.82 O0_PAD
decall DECALL [1] X1.16 -> R2.10 I_PAD
decall DECALL [1] X2.63 -> R2.68 0_PAD

Cs1 T1 [0] X1.77 -> R2.84 1I_PAD

Cs1 T1 [0] X2.66 -> R2.70

FIT &&R2 [0] X2.83 -> R2.83 I_PAD

CE1 &&R1 [0] X0 -> R1

CE1 &&R1 [0] X2.78 -> R1.78 O0_PAD
clken2 &&R1 [0] X1.66 -> R1.68 I_PAD
clken2 &&R1 [0] X0 -> R1

Figure 7.1: A sample Rx.info file.

There may be some extraneous rows generated in Rx.info. These are output for
informative purposes and the user need not use the information in any way.

Assign infers the pad type based on the filel.lca and file2.1lca pads. Cur-
rently, it only supports I_.PAD and O_PAD types, and all other pads output in the
Rx.info file are marked 7_PAD. The user must determine the pad type in those cases.
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Place Block clken4 P63;
Place Block Clkin P16;
Place Block Diril P2;
Place Block CS1 P17;
Place Block CS4 P3;
Place Block finish P71;
Place Block ROTS P39;
Place Block zero P44;
Place Block Dir0O P4;
Place Block CS2 P15;
Place Block clkenb P72;
Place Block Startin P21;
Place Block ROT_IN P30;
Place Block decall P60;
Place Block clkenO P56;
Place Block Dir2 P19;
Place Block Fit_in P84;
Place Block CS5 P77;
Place Block clken2 P66;
Place Block clken3 P61;
Place Block CSO P9;
Place Block tile_2 P26;
Place Block CS3 PS;
Place Block tile_0 P28;
Place Block Col P18;
Place Block clkenl P68;
Place Block tile_1 P24;
;  Comment out next line if CLB locking is not desired
Include x1clb.cst;

Figure 7.2: A Sample XC3000-series Constraint File.

all: chip.ali eval2.lca brains2.lca

brains2.cst, eval2.cst: brains2.xnf eval2.xnf chip.ali
# run apr once without constraints to generate lca files for assign
# - the next 2 lines may be unnecessary in subsequent design runs
apr brains2.lca
apr eval2.lca
assign -1 brains2.lca -2 eval2.lca -a chip.ali \\
-x1 brains2.cst -x2 eval2.cst -rl rl.cst -r2 r2.cst -i -g

brains.lca: brains2.cst
apr —q -c brains2.cst brains2.lca brains.lca
makebits brains2

eval.lca: eval2.cst

apr —q —-c eval2.cst eval2.lca eval.lca
makebits eval2

Figure 7.3: A Sample Makefile for XC3000 Series FPGAs.



7.3. 1/0 Specification File 53

7.2.6 Examples of using assign

Assign tries to generate a consistent pad assignment that matches all pads of the
same name between the two LCA files. Assign produces up to five output files, (four
.cst constraint files — one per chip) and a summary file, Rx. info (on DOS machines
Rx.inf). The constraint files are then used by apr (for XC3000 series FPGAs) or
ppr (for XC4000 series FPGAs) to force the pin assignments of the appropriate nets.
First, let us assume that the user already has generated the XNF files for his/her
design. In order to complete the design, the user must create unconstrained LCA files,
run assign and then create constrained LCA files.

7.2.7 Xilinx XC3000 Series Design

The Makefile in Fig. 7.3 shows the process of generating a XC3000 series design
and Fig. 7.2 shows an example of a constraint file. The constraint file consists of two
parts. The first part locks all the IOBs, and the second part locks the CLBs, if the
-c option was used. In the rare event that apr can’t complete the routing process,
unlocking the CLBs by commenting out the last line

Include x1clb.cst;
of the constraint file should help. Note that you must also create the routing chips
and place and route them before the final design can be downloaded.

7.2.8 XC4000 Series Design

The design flow for XC4000 parts is very much like that of XC3000-series parts,
except you use ppr instead of apr; except that the current version (April 1994) of ppr
has no incremental placement and routing option. We shall update assign as soon
as the incremental place and route option is available with ppr.

The constraint files generated thus conform to the syntax expected by ppr, and also
have the same pre-extension name as the XNF file to be placed and routed. Figure 7.5
shows a Makefile for running assign. In Fig. 7.4, we have shown the constraint file
generated for a routing chip. Notice that there are X1_ and X2_ prefixes to the normal
net names, indicating which user chip the nets come from. The same prefixes are used
in XC3000-series routing chip constraint files.

7.3 1/0 Specification File

There are two special files used by assign. These are xc3020.1i0 and xc3042. io.
These files contain information about the physical pin locations on the chip (which is
84 pin PLCC package) and the usable pins. You should not change these files. The
commands contained in the files include:

; a semicolon in the first column of a line denotes a comment MAP
<pin# start: pin# end> -> ( start_x:start_y, end_x:end_y) I0
<startpin:endpin> <startpin:endpin> .... CIO <startpin:endpin>
<startpin:endpin> ...
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Place instance X1_PSavcol<3>: P48;
Place instance X2_PLateral<2>: P46;
Place instance X2_Pnewtile<3>: P39;
Place instance X1_Pc<12>: P62;
Place instance X2_Pc<12>: P14;
Place instance X2_Pnewtile<2>: P47;
Place instance X2_Prot<i>: P37;
Place instance X1_Pc<17>: P36;
Place instance X2_Pc<17>: P35b;
Place instance X1_PYourmove: P24;
Place instance X1_PMoveready: P57;
Place instance X1_Pc<3>: P79;

Place instance X2_Pc<3>: P26;

Place instance X1_PSavcol<2>: P18;
Place instance X2_Prot<2>: P29;
Place instance X2_Pnewtile<1>: P28;
Place instance X2_PLateral<i>: P4;
Place instance X1_Pcond<i1>: P72;
Place instance X2_Pcond<i1>: P25;

Figure 7.4: A Sample XC4000 Series Constraint File.

all: amazerg.lca r2newg.lca rinewg.lca
makeprom —o amazer4 -u O rinewg amazerg r2newg e4003a

amazerx.cst: amazerx.ali amazerx.xnf
# run ppr once without constraints to generate amazerg.lca
# - the next line may be unnecessary in subsequent design runs
ppr amazerx.xnf outfile=amazerg
assign -1 amazerg.lca —a amazerx.ali -s 1 -x1 amazerx.cst\\
-rl rl.cst -r2 r2.cst -i -u

amazerg.lca: amazerx.cst
ppr amazerx outfile=amazerg logfile=amazerg
makebits amazerg

r2newg.lca: amazerx.cst
ppr r2 outfile=r2newg logfile=r2newg
makebits r2newg

rinewg.lca: amazerx.cst
ppr rl outfile=rinewg logfile=rinewg
makebits rinewg

Figure 7.5: A Sample Makefile for XC4000 series FPGAs (non-incremental
place and route version).
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Use MAP to specify the relation between the actual pin number and the logical
coordinate of the pin, taking the upper left corner of the chip to be (x=0, y=0) and
the lower right to be (x=22,y=22).

10 specifies the list of usable pins on the particular chip. Finally, CIO specifies
the list of possibly usable pins (pins which are used in configuration mode, but may
be used later).

7.4 BORG Wiring File

The alt3042.wir file contains a net list of physical wires on the XC3000 BORG
board. The 4k.wir file contains a net list of physical wires on the XC4000 BORG
board. The file specifies how your X1 and X2 FPGAs are connected to the routing
(R1, R2) chips. The BORG wiring configuration is hardwired, so this file should NOT
be changed by the user.

The connections are specified by:
<source>.<pin#> -> <dest>.<pin#> [&&alias_name]

where source € X1, X2, X0, M1 and dest ¢ R1, R2. A comment is denoted by a ’;’
semicolon at the start of a line. The X0 chip is an on-board chip of BORG which
contains logic to interface to the PC bus. The M1 chip is the memory chip. The
optional

[¥&alias_name]

parameter is ONLY used with X0 and M1 mapping in order to specify the alias name
for these forced nets. The actual wiring configuration is listed in Section 7.11.

7.5 Theory of ASSIGN

The pin assignment problem is formulated as a graph problem, which we call the
two-color assignment problem. The goal of the two-color assignment problem is to
find a consistent, minimum weight node assignment. I describe my solution to the

problem, which uses two methods, called graph reduction and augmentation 2.

7.6 Problem Description

The problem is formally defined as follows: Graph G(V, E) consists of three sets
of vertices, P, Q, and N, which are connected by a set of edges such that every edge
has one endpoint in P U Q, and the other endpoint in N. The N vertices represent
the nets which need to be matched on the user-programmable chips. The P vertices
represent the X1 pads to which the nets may be assigned, and the Q vertices represent
the X2 pads to which the nets may be assigned.

2The augmentation algorithm was created and implemented first by Professor Martine Schlag
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(P U Q, N) is a bipartition of G. Each vertex v e P U Q, has a color, ¢(v)=red or
green. These colors correspond to choosing a routing path through a routing chip R1
or R2, so the color of the vertex in P and the color of the vertex in Q of a matched
pair must be the same. It is because of these colors that a standard graph matching
algorithm cannot be used. A valid assignment consists of two one to one functions,
fp and fq, which map a vertex from N to either P or Q.
fp: N—= P, fq: N — Q

The weight of an assignment is the sum of all of the edge weights in the assignment.
Ideally, one would like to find the graph assignment of minimum weight. Edge weights
in the graph represent the distance of the chosen pad from the original pad assigned by
apr. It is beneficial to perturb the pad positions as little as possible so that apr may
be able to re-route the design WITHOUT re-placing the design, saving a substantial
amount of time.

In general, | N | < | P |and | N| < | Q| . There is one further constraint where
certain nets (such as those which go to the memory or PC bus) must be assigned to
a specific color (routing chip). These nets are called forced nets. The corresponding
pads associated with these forced nets are called forced-net-pads.

7.7 Graph Reduction

The first method for generating consistent pin assignments is called graph reduc-
tion. The graph reduction heuristic works as follows:
1. Remove edges from the graph that are impossible to match.

These are the pads of some color ¢ in set P which have no corresponding pads
of the same color in set Q, or vice versa. Repeat this step until there are no
more impossible edges to remove.

2. Find and remove forced pads.

A forced pad is one which some net MUST choose because it has no other
unmarked pads to choose from. These forced pads are NOT ONLY forced-net-
pads (defined above), but also pads which are forced due to vertex removal done
in the next step. The pad is marked as part of the solution set. Repeat this
step until no more forced pads remain.

3. Remove one vertex from the graph.

The edge removed depends on the current operating mode of the algorithm.
In GLOBALLY GREEDY mode, the edge chosen for removal is the largest
weight edge remaining in the graph. In LOCALLY GREEDY mode, the vertex
removed is the largest weight edge of the net at the head of the queue containing
unassigned nets. In RANDOM mode, the vertex removed is the vertex being
considered when a random number exceeds a threshold value (varied from 50%
to 90%). Vertices are considered based on their order in the list of vertices
connected to a particular net in N.

4. While there are still edges in G, loop back to the first step.
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This algorithm is fairly fast (polynomial time), and, if it finds a solution, it is
likely to be very close to the ideal solution since high weight edges are removed. The
main problem with this heuristic is that incomplete solutions may be generated since
a greedy vertex removal might cause some nets to become unassignable. Thus, after
the entire algorithm has completed, two more solution-searching phases are used:
Find_Last, and Augment2() (described in the next section).

The Find_Last phase looks at every unassigned net and searches for any vertex
(pad) which is unused and which the net can use. These are vertices that may have
been discarded in the greedy graph reduction. If one is found, the assignment is made.

7.8 Augmentation

There are two augmentation algorithms used: Augment1() and Augment2(). Both
algorithms search for alternating paths in the N, P and N, Q subgraphs. A breadth
first search is done on the graph starting with an incompletely assigned net vertex.
The algorithm recursively searches for a net which can choose some other pad for its
solution. In the Augment1() algorithm, the net looks only at pads of the same color
as its current solution for possible swapping. This is a standard augmenting path
algorithm consisting of only N and pads in P of the same color. In the Augment2()
algorithm the net also checks to see if a net can swap its solution with pads of the
opposite color.

The simplest way to describe the algorithm is with an example. Figure 7.6
illustrates how the Augment1() procedure works. In the figure, the dashed lines
show pads which a net may choose, provided that no other net has chosen to use that
pad. Solid lines represent a pad that a net has chosen as part of its matching. The
O’s inside the vertices represent routing chip R1, the X’s represent routing chip R2.
Net a is currently incompletely assigned. So, net a looks at all of the other nets which
have a solution that it can use. In this case, net b is the only one. Now, net b checks
to see if it can pick some other pad so that it can give its solution to net a. It cannot,
so it looks at all nets which have a solution that it could possibly use. In this case, it
looks at net ¢. Net ¢ cannot choose any other pads for its solution, so we recur once
again, and check if net d can choose some other pad for its solution. It can. So, net
d takes the unassigned pad, and then returns the pad it gave up, so net ¢ can take
that pad and return its previous solution to net b, which finally gives up its previous
solution to net a.

The Augment2() procedure is nearly the same as that of Augment1(). In fact,
Augment1() is called as a subroutine from Augment2(), and if no solution is found
by Augment1(), then the algorithm searches for pads of the opposite color which a
net can take as its solution. Note that forced nets cannot be considered because they
can not change colors (routing chips). Figure 7.7 illustrates how the Augment2()
procedure works. Starting at net a, we consider all nets that have a solution net
a could use. Nets b and d are the only ones. Net b cannot pick solutions of the
opposite color, so we recursively check all nets which could give up its solution to net
b. Net cis such a net. Now, net ¢ can pick a solution pair of the opposite color, so it
does. Net b can then pick a pair of solutions of the opposite color. Finally, net a can
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BEFORE AFTER
Figure 7.6: Example of the Augment1() Algorithm

Unassigned Unassigned
Pad Pad

BEFORE AFTER
Figure 7.7: Example of the Augment2() Algorithm

be assigned a new solution pair. The algorithm is then executed from the beginning
again, starting at net e, since it does not have a complete assignment, and a solution
is eventually found for it.

The pseudocode for each of the two algorithms is nearly identical, so we shall only
provide the code for Augment2() in Fig. 7.8. Many of the details of the algorithm
have been left out so that the general idea of the algorithm would not be overwhelmed
by the particular implementation details.

7.9 Main Program Loop

The augmentation and graph reduction algorithms are the major components of
assign, but it is also useful to see how they are used in the overall scheme of the



7.10. Performance 59

Augment2(NetNodes, SOLUTION_DESIRED) {
/* Recursive Breadth— First—Search */
for each unassigned node ’cnn’ {
mark cnn;

/¥ check if nel cnn can pick a pad of opposite color for
its solulion which some other net wants */
pad = swap_if_available2(¢nn,SOLUTION_DESIRED);
if (Ipad) pad = Augmentl(NetNodes,SOLUTION_DESIRED);

if (pad) return(pad);

for each unmarked pad ’p’ connected to cnn {
for each unmarked node ’nn’ connected to p {
if (’nn’ has a solution that cnn is looking for using pad p) {
mark p;
put nn onto NextQ;

}
}
}
}

/] recursive call

pad = Augment2(NextQ,SOLUTION_DESIRED);

if (pad) {
find the node ’cnn’ which wants to use pad for its solution;
rpad = swap(pad, cnn);
return(rpad);

}
}

Figure 7.8: The Augment2() Algorithm.

program. Figure 7.9 shows the pseudocode for the main program loop, and for the
Solve() procedure called by the main loop.

7.10 Performance

Let n be the number of nets to be pairwise assigned, p be the maximum number
of pads each net can be assigned to, and w be the number of window sizes spanned.

The default Augment2() algorithm runs in O(n®p?) time. This is because of the
particular implementation of the breadth first search algorithm, which looks at every
node, and every pad connected to every node. One would expect that the algorithm
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Solve(mode, parameter) {

/* ____________________________________________________ */

/¥ first run graph reduction if the command line switch was set */
S — %/
if (switch option ’-g’) {

graph_reduction(mode,parameter);
}

/* ____________________________________________________ */

/¥ run improvement step, if the command line switch was set */
S — %/
if (switch option ’-i%) {
Singular_Improvements();
Pair_ Wise_Swap_lmprovements();

) — %/
/* Run the Augment2() and Find_Last() procedures */

R ———————— */
do {
foundsolution=0;
for each remaining unmatched net {
foundsolution += Find_Last();
founsolution += Augment2();

}

} while (foundsolution);

/* ____________________________________________________ */

/¥ run improvement step, if the command line switch was set */
S — %/
if (switch option ’-i%) {
Singular_Improvements();
Pair_ Wise_Swap_lmprovements();

}

Save_Solution_If Better();

main() {

/¥ try as many window sizes as is necessary */
for (windowsize=start; windowsize<=end; windowsize++) {
if (the option ’-g’ was used) {
Solve(option, GLOBALLY GREEDY,NULL);
Solve(option, LOCALLY_GREEDY,NULL);
for (i=50; i<=90; i+=10) {
Solve(option, RANDOM., i);
}

/¥ check for exit condition */

if (Complete_And_Consistent_Solution_Found) exit_and_output_solution;

}
}

Figure 7.9: The Main Program of Assign.
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Design Blocks Nets | Pads Assigned | Switch Options | Total Weight | Runtime
Rb 714125 TT+92 29419 — 18 7.2s
Rb 714125 TT+92 29419 -1 17 13.9s
Rb 714125 TT+92 29419 -g 25 13.1s
Rb 714125 TT+92 29419 -g -1 25 18.3s
Mecl 714132 724118 26421 — 21 7.2s
Mecl 714132 724118 26421 -1 21 12.9s
Mecl 714132 724118 26421 -g 23 12.1s
Mecl 714132 724118 26421 -g -1 21 18.2s
Mtn 205499 2304107 51439 — 175 93.6s
Mtn 205499 2304107 51439 -1 158 282.7s
Mtn 205499 2304107 51439 -g 245 546.2s
Mtn 205499 2304107 51439 -g -1 185 933.6s

Table 7.1: Assign Performance

61

takes O(np) time, but because of the call to Augment1() within Augment2(), the total
execution time is O(n?p?).

The greedy reduction algorithm runs in O(np?) time. This comes from the fact

that at most p edges must be removed before the algorithm terminates, and for every
edge removed, it takes O(np) to find all of the forced pads and all of the pads which
are unmatchable.

Running the improvement phase takes O(n?) time.

performance is O(

wn?e?).

So, the overall program

Table 7.1 shows the actual performance of the program on three designs. All tests

were run with an initial window size of one, and were executed on a Sun Sparcstation

14.



62 7. ASSIGN (Ver 3.0) A Pin Assignment Program for BORG Prototyping Board

7.11 BORG wiring connections

7.11.1 XC3000-series BORG wiring connections

; Jan 29, 1992 (Pak K. Chan)

X1.83 -> R1.2
X1.84 -> R2.2
X1.2 -> R1.4
X1.3 -> R2.4
X1.4 -> R1.8
X1.5 -> R2.6
; X1.6 -> R1.6
; X1.7 -> R2.6
X1.8 -=> R1.10
X1.9 -> R2.8
; X1.10 -> R1.10
; X1.11 -> R2.8

; pin 13 is for GCLK input
; X1.14 -> R1.14 R1.14 is connected to X0
X1.15 -> R1.15
X1.16 -> R2.10
X1.17 -> R1.17
X1.18 -> R2.36
X1.19 -> R1.19
X1.20 -> R2.41
X1.21 -> R1.21
X1.23 -> R2.18
X1.24 -> R1.24
X1.25 -> R2.20
X1.26 -> R1.26
X1.27 -> R2.48
X1.28 -> R1.28
X1.29 -> R2.50
X1.30 -> R1.30
; pin 33 is M2
X1.37 -> R2.52
X1.39 -> R1.34
X1.40 -> R2.56
X1.42 -> R1.36
X1.44 -> R2.58

;X1.38 -> R1.41

X1.45 -> R1.39
X1 46 -> R2.60
; X1.41 -> Ri1.41
X1.47 -> R1.42
X1.48 -> R2.62
X1.49 -> R1.45
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X1.52 -> R2.65
X1.53 -> R1.47
X1.56 -> R2.67
X1.57 -> R1.49

; X1.50 ->

; X1.51 -> R2.50
X1.58 -> R2.69
X1.59 -> R1.53
X1.60 -> R2.71
X1.61 -> R1.59
X1.62 -> R2.76
X1.63 -> R1.63
X1.65 -> R2.78
X1.66 -> R1.68
X1.67 -> R2.80
X1.68 -> R1.75
X1.70 -> R2.82
X1.71 -> R1.77
X1.72 -> R1.73

; X1.72 and X1.73 can also be used as user I/0 pins
; X1.73 -> R2.72
X1.77 -> R2.84

; end of 25 pins

; extra pins

X1.78 -> R1.81
X1.81 -> R1.83

; X1 extra pins for XC3030s
;X1.38 -> R1.38
;X1.41 -> R1.41
;X1.50 -=> R1.50
;X1.51 -> R1.51

; one X2 pin for XC3030s
;X2.6 -> R2.7

X2.71 -> R2.79

; X2

; X2 north east face
X2.2 -> R2.3

X2.4 -> R2.5

X2.8 -> R2.9

X2.15 -> R2.11

; X2 north west face
X2.83 -> R2.83
X2.81 -> R2.81
X2.77 -> R2.77
X2.75 -> R2.75

; west face
; special addresses - BORG jumpers affect which lines are usable
; *¥*%% *REF1* The following 3 nets are not allowed when the memory
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; is used, otherwise, if the -u option is used in assign, then
; these lines are unavailable. See *REF2*

; X2.68 -> R2.15
; X2.70 -> R2.16
; X2.17 -> R2.17

X2.19 -> R2.42
X2.24 -> R2.19
X2.27 -> R2.21
X2.29 -> R2.49
; south face of X2
X2.37 -> R2.51
X2.40 -> R2.53
; extra from memory address A_11
X2.44 -> R2.14
X2.46 -> R2.57
X2.48 -> R2.59
; east face of X2
X2.57 -> R2.61
X2.59 -> R2.63
X2.61 -> R2.66
X2.63 -> R2.68
X2.66 -> R2.70
; end of 24 pins
; connection to R1
X2.3 -> R1.3
X2.5 -> R1.5
X2.9 -> R1.9
X2.16 -> R1.11
; west face
X2.18 -> R1.16
X2.20 -> R1.18
X2.23 -> R1.23
X2.25 -> R1.20
X2.26 -> R1.25
X2.28 -> R1.27
X2.30 -> R1.29
; south face
X2.35 -> R1.33
X2.39 -> R1.35
X2.42 -> R1.37
X2.45 -> R1.40
X2.47 -> R1.46
X2.49 -> R1.44
X2.52 -> R1.48
; east face
X2.58 -> R1.52
X2.60 -> R1.57
X2.62 -> R1.61
X2.65 -> R1.66
X2.67 -> R1.71
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; east north face
X2.72 -> R2.73
X2.76 -> R1.76
X2.78 -> R1.78
X2.82 -> R1.82
X2.84 -> R1.84

; end

; force nets
; R1 force nets

; data bits

X0.1 -> R1.72 &&BusData_0
X0.1 -> R1.70 &&BusData_1
X0.1 -> R1.67 &&BusData_2
X0.1 -> R1.65 &&BusData_3
X0.1 -> R1.62 &&BusData_4
X0.1 -> R1.60 &&BusData_5b
X0.1 -> R1.58 &&BusData_6
X0.1 -> R1.56 &&BusData_7

; address bits

X0.8 -> R1.79 &&BusAddress_0

X0.9 -> R1.80 &&BusAddress_1

X0.10 -> R1.69 &&BusAddress_2
X0.11 -> R1.14 &&BusAddress_3

; 1o control bits

X0.12 -> R1.6 &&BusControl_O
X0.13 -> R1.7 &&BusControl_1

; R2 forced nets

; memory data pins DO-D7
M1.9 -> R2.23 &&MData_0
M1.10 -> R2.24 &&MData_1
M1.11 -> R2.25 &&MData_2
M1.13 -> R2.26 &&MData_3
M1.14 -> R2.27 &&MData_4
M1.15 -> R2.28 &&MData_b
M1.16 -> R2.29 &&MData_6
M1.17 -> R2.30 &&MData_7

; memory address pins AO-A7
M1.8 -> R2.37 &&MAddress_0
M1.7 -> R2.38 &&MAddress_1

M1.6 -> R2.39 &&MAddress_2
M1.5 -> R2.40 &&MAddress_3
M1.4 -> R2.44 &&MAddress_4
M1.3 -> R2.45 &&MAddress_5
M1.2 -> R2.46 &&MAddress_6
M1.1 -> R2.47 &&MAddress_7

; special addresses - BORG jumpers affect which lines are usable
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; *%k* *REF2%
; The following 4 nets are usable when the -u option of assign is
; used. Otherwise, the *REF1* lines will be allowed.

M1.23 -> R2.17 &&MAddress_8
M1.22 -> R2.16 &&MAddress_9
M1.19 -> R2.15 &&MAddress_10
M1.19 -> R2.14 &&MAddress_11

; memory control pins WE OE CS
M1.21 -> R2.35 &&M_WE
M1.20 -> R2.34 &&M_OE
M1.18 -> R2.33 &&M_CS

; Dummy pins used by assign to generate forced nets for R1 and R2
X0.1 -> R1.1 &&R1
X0.1 -> R2.1 &&R2

; end
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7.11.2 XC4000-series BORG wiring connections

; Oct 26, 1993 (Pak K. Chan)
; Jan 20, 1994 (Jason Y. Zien) Added memory address, data, control lines

; BORG II XC4000-PC84 wiring file
; wiring file for BORG IT

; Dummy pins used by assign to generate forced nets for R1 and R2
X0.1 -> R1.1 &&R1
X0.1 -> R2.1 &&R2

; *%%*k Memory lines #*#*

; These are not present in 4knomem.wir

; these lines are allowed when the -u command-line option

; of assign is used, otherwise, 4knomem.wir is used if the

; -u option is not used.

; BORG dip-switch settings affect which set is physically active.

; mem. address lines
M1.1 -> R2.47 &&MAddress_0
M1.2 -> R2.48 &&MAddress_1

M1.3 -> R2.49 &&MAddress_2
M1.4 -> R2.50 &&MAddress_3
M1.5 -> R2.51 &&MAddress_4
M1.6 -> R2.56 &&MAddress_b5
M1.7 -> R2.57 &&MAddress_6
M1.8 -> R2.58 &&MAddress_7
M1.9 -> R2.61 &&MAddress_38

M1.10 -> R2.62 &&MAddress_9
M1.11 -> R2.67 &&MAddress_10
M1.12 -> R2.66 &&MAddress_11

; mem. data lines

M1.12 -> R2.46 &&MData_0
M1.13 -> R2.45 &&MData_1
M1.14 -> R2.44 &&MData_2
M1.15 -> R2.40 &&MData_3
M1.16 -> R2.39 &&MData_4
M1.17 -> R2.38 &&MData_5
M1.18 -> R2.37 &&MData_6
M1.19 -> R2.36 &&MData_7

; mem. control lines

M1.20 -> R2.65 &&M_OE
M1.21 -> R2.60 &&M_WE
M1.22 -> R2.30 &&M_CS
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; *%*% end of Memory lines **x*

; The following lines are not usable when the memory is used

;  (not usable when -u option of assign is set).

;  They are used by default.

; BORG dip-switch settings affect which set is physically active.

; AO

; X2.27 -> R2.47
; Al

; X2.35 -> R2.48
; A2

; X2.39 -> R2.49
; A3

; X2.40 -> R2.50
; A4

; X2.45 -> R2.51
; A5

; X2.50 -> R2.56
; A6

; X2.51 -> R2.57
s A7

; X2.47 -> R2.58
; Al12

; X2.46 -> R2.59
; A8

; X2.37 -> R2.61
; A9

; X2.70 -> R2.62
; A11 and A10

; X1.56 -> R2.66
; X1.58 -> R2.67
; end

; R1

=</
_

force nets to PC

-> R1.71 &&BusData_0
-> R1.69 &&BusData_1
-> R1.67 &&BusData_2
-> R1.65 &&BusData_3
R1.61 &&BusData_4
-> R1.59 &&BusData_5
-> R1.58 &&BusData_6
-> R1.56 &&BusData_7

Lo
o
~N O O WN RO
1
v

; 4 address lines

X0.8 -> R1.83 &&BusAddress_0
X0.9 -> R1.81 &&BusAddress_1
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X0.10 -> R1.82 &&BusAddress_2
X0.11 -> R1.80 &&BusAddress_3

; 3 io control lines

; Xior

X0.12 -> R1.51 &&BusControl_0O
; Xiow

X0.13 -> R1.50 &&BusControl_1
; interrupt

X0.14 -> R1.70 &&BusControl_3

X2.44 -> R1.14
X1.67 -> R1.18
X1.65 -> R1.19
X1.61 -> R1.20
X2.38 -> R1.23
X1.59 -> R1.24

X2.36 -> R1.25
X2.26 -> R1.26
X2.24 -> R1.27
X2.20 -> R1.28
X2.18 -> R1.29
X1.81 -> R1.3
X2.14 -> R1.35
X1.36 -> R1.36
X2.7 -> R1.37
X2.69 -> R1.4
X1.46 -> R1.40
X1.40 -> R1.44
X2.3 -> R1.45
X2.83 -> R1.46
X2.81 -> R1.47
X2.79 -> R1.49
X2.67 -> R1.5
X1.28 -> R1.57
X2.65 -> R1.6
X1.26 -> R1.60
X1.20 -> R1.66
X1.18 -> R1.68
X2.61 -> R1.7
X1.71 -> R1.72
X1.5 -> R1.79
X2.59 -> R1.8
X1.83 -> R1.84
X2.48 -> R1.9
; TDO

;R1.75 -> X1.15
X1.24 -> R1.62
X1.3 -> R1.78
X1.38 -> R1.48

X1.48 -> R1.38
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X2.5 -> R1.39

; R2

X1.27 -> R2.14

; X1.75 is TDO

; R2.15 -> X1.75
X2.68 -> R2.18
X2.66 -> R2.20
X2.62 -> R2.24
X1.14 -> R2.7
X1.62 -> R2.70

X2.84 -> R2.256
X2.4 -> R2.26
X2.60 -> R2.27
X2.25 -> R2.29
X2.49 -> R2.356
X2.41 -> R2.41
X1.72 -> R2.71
X2.71 -> R2.72
X1.60 -> R2.77
X2.19 -> R2.79
X1.80 -> R2.80
X1.19 -> R2.8
X1.23 -> R2.9
X1.37 -> R2.5
X1.39 -> R2.3
X1.4 -> R2.4
X1.45 -> R2.83
X1.47 -> R2.81
X1.6 -> R2.6
X1.66 -> R2.78
X1.68 -> R2.69
X1.82 -> R2.82
X1.84 -> R2.84
;R2.75 -> X2.15 TDO cannot be used okay 777
X2.6 -> R2.28
X2.80 -> R2.19
X2.82 -> R2.23

X2.23 -> R2.68
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8. Using the Protoboard and Schematic Drawings

8.1 Proto-area, Common Anode LEDs

The proto-area is on the left-hand-side of the protoboard. Each 1/O pad of the
XC4000 FPGAs can only supply 3 mA of current, which is not sufficient to drive
most LEDs. The author is certainly aware of the availability of the miniature HP
2 mA LEDs, unfortunately, they are not available as 7-segment displays. Therefore,
the 7-segment LEDs are common ANODE LEDs, with headers J48 and J49 providing
the access to the segments.

None of the LEDs are connected to the FPGAs, so you need to use jumpers/wires
(with sockets on both end) to display your signals. Each segment (in general each
LED in the proto-area) can source roughly 4mA to a maximum of 10mA. Header J45
provides the connections to the 4-bar LED4 and LED5 which are also common anode
LEDs. SW6 and SWT are connected to header J46 and J47 respectively; each position
is pulled high with a 10K resistor. The header supplies a ‘1’ when the switch is open,
and a ‘0’ otherwise.

SGCK1 GND PGCK4 GND
Vcl_clJﬂﬁﬁﬁﬁﬁl_lﬁvlc_?ljﬂﬁﬁﬁﬁl_l%lljjlv_vlsljﬂ-{glo
/11 100 9 8 7 6 5 4 3 2 1 84 83 82 8180 79 78 77 76 75
GND I: 12 74 :l vCcC
PGCKL []13 73]l ccLk
[« 72| SGCK4, DOUT
I 15 71[] DO, DIN
Tck []16 70| ] RCLK-BUSY/RDY
™S[]17 69]] D1
[z e8]
[ee 67]] D2
[0 e6]| RS
GND []21 6s5]] D3
vee [z XC4003A-PC84 aaf] GND
|: 23 63 :| vce
[2s 62|]
O2s 61|] D4
(2 60|] €SO
I: 27 59 :| D5
|: 28 58 :| D6
SGCK2 []29 s7]] PGCK3
M1 |: 30 56 :| D7
GND |: 31 55 :| PROG
MO I: 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 534 :l vee

LJLJL] NN N [y N [ N N N Jy
vcc M2 HDCITl TVC(:ITI ITlGNDITl

PGCK2 LDC GND SGCK3 DONE
ERR, INIT

Figure 8.1: XC4007A-PC84 package footprint.
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Figure 8.2: 84-pin PLCC Package Footprint and headers, Component Side.

For debugging purposes all the user FPGA pins are connected to the headers for
easy signal access. Figures 8.1 and 8.2 provide the 84-pin PLCC footprints and its
headers for the “component” side. The assembly drawing of the BORG board with
all the reference designators are given in Fig. 8.3. Finally, two sheets of the schematic

drawings (drawn with PADs LOGIC) of the BORG board are given in Fig. 8.4 and

8.5 for documentation and debugging purposes.
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Figure 8.3: The BORG board’s assembly drawing with reference designators.
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9. Guide to Some Laboratory Experiments

This chapter serves as a simple guide to use the BORG board. Suggestions for
some possible digital design experiments are provided but not elaborated.

9.1 Creating user I/O ports in R1

Two sheets of schematic drawings portest given in Fig. 9.1 and 9.2 provide the
basic idea of implementing I/O ports in R1 to communicate with the PC. We are
creating four user I/O ports. We use a 74139-like part from the Xilinx library for port
address decoding. Notice that the outputs of the decoder are active LOW, and the
selected output is used to clock the 74374-like (positive edge-triggered) octal registers.
The outputs of the octal registers share an 8-bit bus which is tri-stated. The signal
XIOR is used to control the direction of data on the bus. Note that the I/O pad
assignments are provided directly in the schematic in Fig. 9.1.

A simple program portest.c which writes and then reads from the I/O ports
created in R1 FPGA is given on the next page.

Given that the schematic drawing’s file name is portasy, you can download this
port test demo by taking the following steps:
wir2xnf portasy
ppr portasy
makebits portasy
makeprom -o portest.mcs -u O portasy.bit em4003a em4002a em4003a
bd portest.mcs
portest

O 0 0 0 0 0
vV V V V VvV Vv



"VO4I 19 oY) ut syrod (/T Suipying :1°6 9Insi|

AO

Al

ANDZ2

Xl OR

OBUFT

Asynchronous 1/ O
1/O Ports Realizers by 374s

X74- 139
e PORT4
O——0ms—~F=1
A0 e PORTS DI NO tristate-374 DI N4 tristate-374
P—DSaoore B TAIN ™ TAIN
AL s PORT6 | o DOUT4
O——s~—-= 1 DOU
gENE e N PORT7 - PORT4. PORTA  DATACQUT]| m grsRTa PORTA  DATACUT]|
S ==
P C [P c
P D P D
PORT DECODER R 1 OR R MR
DI N1 Tistate=37 DI N5 Tistate=
T ~ \TAT N
DOUT1 DOUTS
PORT4 PORTA DATAOCUT| PORT4 PORTA DATACUT|
PORTE 2 PORTB — |
PORTC PORTC
e i
.XI OoR I OR .XI OR X1 or
DI N2 Tistate=-37 DI N6 Tistate=-37
[} TATN = TAT TN
MAP t o addr esses DOUT2 DOUT6
PORT4 PORTA DATAOUT| PORT4 PORTA DATAQUT|
PORTB E— | PORTB e
A3 AZ AL AO = =
o] 1 X X
PR 1 OR PR 1 OR
DI N3 tristate-374 DI N7 tristate-374
[} TAT N TAT N
DOUT3 DOoUT7
PORT4 PORTA DATAOCUT| PORT4 PORTA DATACQUT|
PORTB — | PORTB — |
PORTC PORTC
= R
.XI OoR 1 OR .XI OoR 1 OR
Four 8-bit read/wite ports

UC SANTA CRUZ

¥ BORG |l

&7 XILINX

OBUFT

Port 1/ O Test

PART=4002APC84- 6

UC Sant a Cr uz/ Conput er

Engi neeri ng

sheet 1 of 2

Pak K.

DRAWN BY:

Chan

D

['6

Ty ul syprod ()/T Iesn Suijear;)

LL



O1YRWAYDS [LSHATYOd U} Ul 921A9p OYI[-PLET . 3RISIL], :g°6 2IndI

82

PORTA

NAND2 B2

PORTB

PORTC NanNm2e2

Xl OR <
NAND2 B2
PORTD o
R XIoR | p—a
DATAI N NAND2 B2
—
FD AT
PORTA ° ° I &
L pPe TBUF
ED BT DATACUT
D Q ! -
PORTB I
| O TBUF
- Cr
PORTC o © I P
| pC O TBUF
DTt
|
5 o N
PORTD L~
L Pe TBUF
Tri-State 74374
Dr awn By: Pak K. Chan

UC SANTA CRUZ

BORG I

&7 XILINX

PORTEST sheet 2

sheet 2 of 2

DRAWN BY:

Pak K. Chan

syuowirzedxy] A103vI0qR 9WOG 0O} 9pINL) 6




9.1. Creating user 1/0O ports in R1

/* portest: write and then read four PORTs in R1x*/
#include <stdio.h>

#include <dos.h>

#include <stdlib.h>

main O

{

unsigned int PORT1, PORT2, PORT3, PORT4;
unsigned int Portl;

int i, j;

float error;
unsigned char x;
char * portenv;

error=0;
setcbrk(1);

portenv=getenv("BORG") ;
/* Control Port in X0 */
if(!strcmp(portenv,"0x300"))
PortA = 0x300;
else if(!strcmp(portenv,"0x200"))
PortA = 0x200;
else if(!strcmp(portenv,"0x210"))
PortA = 0x210;
else if(!strcmp(portenv,"0x310"))
PortA = 0x310;
else {
printf(" \n Wrong PORT address\n");
printf(" Please specify PORT address\n e.g. set BORG=0x300%s\n");
exit(1);
}
printf(" BORG PORT address is %s\n",portenv);

PORT1=PortA+4;
PORT2=PortA+5;
PORT3=PortA+6;
PORT4=PortA+7;

for (i =0; i < 15; i++)
{outportb (PORT1,i);
outportb (PORT2,i+1);
outportb (PORT3,i+2);
outportb (PORT4,i+3);
printf (“Sent to port Data Read Data\n");

printf ("  PORT1: %d %d \n",i,inportb (PORT1));
printf ("  PORT2: %d %d \n",i+1,inportb (PORT2));
printf ("  PORT3: %d %d \n",i+2,inportb (PORT3));
printf ("  PORT4: %d %d \n",i+3,inportb (PORT4));
printf ("(hit return to continue ..)");

getchar ();

}

printf ("Starting automatic check (read after write)....\n");
printf ("This will take a minute or so ....\n");

for (j =0; j < 10000; j++)
for (i =0; i < 127; i++)
{outportb (PORT1,i);
x=inportb (PORT1);
if( x !'= i ) ++error;

outportb (PORT2,i+1);
x=inportb (PORT2);
if( x != i+l ) ++error;
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outportb (PORT3,i+2);
x=inportb (PORT3);
if( x != i+2 ) ++error;

outportb (PORT4,i+3);
x=inportb (PORT4);

if( x != i+3 ) ++error;
}

printf (“"Total errors %6.0f\n",error);

9.2 Hardware Interrupt and Interrupt Service Routine

This experiment will illustrate the hardware interrupt feature supported by the
BORG board.

The interrupt service routine is called isr.c. It indicates that it is serving a
hardware interrupt by beeping the PC’s speaker. This interrupt service routine counts
the number of times that it has been interrupted. It services 10 interrupts and then
removes itself. This interrupt service routine is loaded as a memory-resident program,
as documented in the code.

The schematic drawing that generates the hardware interrupt (from the BORG
board) is intpc.1, which is essentially an I/O address decoder connected to a toggle
flip-flop. The flip-flop toggles the interrupt request line every time that a predefined
I/0 address is selected. Now, enable IRQ9 on your board for this demo.

To load the interrupt generator intpc, you do:

:> wir2xnf intpc

ppr intpc

makebits intpc

makeprom -o intpc.mcs -u O intpc.bit em4003a em4002a em4003a
bd intpc.mcs

:> isr

O o 0 0 00
vV V V Vv

We use a small program intpc.c which activates the toggle flip-flop to demon-
strate the hardware interrupt generation and service processes
c:> intpc
BORG PORT address is 0x300

Make sure that you load ISR isr.com first.

Board Board interrupts PC.

ISR will ring the speaker 10 times.
1 (hit return to continue ..)

2 (hit return to continue ..)

3 (hit return to continue ..)



9.2. Hardware Interrupt and Interrupt Service Routine

#include <stdio.h>
#include <dos.h>
#include <stdlib.h>

main () /# Interrupt PC demo requires schematic drawing INTPC */

{
unsigned int PORT1, PortA;

int i, j;
unsigned char x;
char * portenv;

setcbrk(1);

portenv=getenv("BORG");
/* Control Port in X0 */
if(!strcmp(portenv,'0x300"))
PortA = 0x300;
else if(!strcmp(portenv,"0x200"))
PortA = 0x200;
else if(!strcmp(portenv,"0x210"))
PortA = 0x210;
else if(!strcmp(portenv,"0x310"))
PortA = 0x310;
else {
printf(" \n Wrong PORT address\n');
printf(" Please specify PORT address\n e.g. set BORG=0x300%s\n");
exit(1);
}
printf(" BORG PORT address is %s\n",portenv);

PORT1=PortA+4;
printf ("\n Make sure that you load ISR isr.com first.\n");
printf ("\n Board Board interrupts PC.\n ISR will ring the speaker 10 times.\n");

for (i =1; i < 15; i++)
{
outportb (PORT1,i); /* toggle the flip-flop inside R1 */
delay(1);
outportb (PORT1,i);
printf (" %24 (hit return to continue ..)", i);
getchar ();

81
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/*

Interrupt Service Routine isr.c
Modified from and credit to the Protozone User’s manual

9. Guide to Some Laboratory Experiments

A simple interrupt handler example using C without assembly language.

Code

in Borland C.

This program assumes IRQ9 is used and shows how to handle

the slave and master Programmable Interrupt Controllers 82594s (PICs)

We need to take care of both the PICs because IRQ9 is cascaded thru IRQ2.
The interrupt vector for IRQ2 is 0xOA as defined by the PC

Note: You need to pull IRQY low inorder to run this program properly

*/
/*

Compile and execute isr.com with
tcc -mt -M isr.c
exe2bin isr.exe isr.com

*/

#include <dos.h>
#include <conio.h>
#include <stdio.h>

#define PIC_master 0x20 /# Programmable Interrupt Controller PIC master */

#define PIC_slave 0xA0 /# Programmable Interrupt Controller PIC slave */

#define EOI 0x20 /#* end of interrupt code to send to PICs */

#define IRQ2_mask 0xFB /# interrupt mask to enable interrupt request 2
bit 2 is reset */

#define IRQ9_mask 0xFD /# interrupt mask to enable interrupt request 9
bit ‘9’ is reset */

#define IRQ9 0x0A /# interrupt number */

#define TIMES 10

void IntRemove();

void interrupt (*oldVector)();
unsigned char oldMaskl, oldMask2;
void Install(Q);

void interrupt mybeep(unsigned bp,
unsigned ds,
unsigned cx,

int 1i,j;
static count=0;

char originalbits, bits;
unsigned char bcount;

/* get the current control port

disable();
/* port for speaker */

unsigned di, unsigned si,
unsigned es, unsigned dx,
unsigned bx, unsigned ax)

of the PIC setting */

bits = originalbits = inportb(0x61);

bcount=500;
for(i=0;i<=bcount; i++){

outportb(0x61, bits & Oxfc);

for(j=0;3j<=300; j++);
outportb(0x61, bits | 2);
for(j=0;3j<=200; j++);

outportb(0x61, originalbits);
outport(PIC_master, EOI);



9.2. Hardware Interrupt and Interrupt Service Routine

outport(PIC_slave, EOI);
if ((++count) >= TIMES) IntRemove();
enable() ;

void Install(faddr, inum)
void interrupt (* faddr)();
int inum;
{
disable();
oldVector = getvect(inum);
setvect(inum, faddr);
oldMaskl = inportb(PIC_master +1);
oldMask2 = inportb(PIC_slave +1);
outportb(PIC_master+l, IRQ2_mask & oldMaskl);
outportb(PIC_slave +1, IRQ9_mask & oldMask2);

printf("Interrupt Handler installed.\n\n");
printf("This interrupt handler intercepts 10 interrupts\nand then remove itself.\n");
enable() ;

void IntRemove()
{
disable();
setvect (IRQ9, oldVector);
outportb(PIC_master+l, oldMaskl);
outportb(PIC_slave +1, oldMask2);
enable() ;
oldVector();

main()
{
char ch;
Install(mybeep,IRQ9);
/* check with isr.map
when compile with
tcc -mt -M isr.c
to generate a memory map

Start Stop Length Name Class
00000H 01594H 01595H _TEXT CODE
015A0H 019BBH 0041CH _DATA DATA
019BCH 019BFH 00004H _EMUSEG DATA
019COH 019C1H 00002H _CRTSEG DATA
019C2H 019C3H 00002H _CVTSEG DATA
019C4H 019C9H 00006H _SCHNSEG DATA
019CAH 01A15H 0004CH _BSS BSS

01A16H 01A16H O0000H _BSSEND STACK

*/
keep(0, 0x01C0); /* make the interrupt handler resident */
}
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9.3 Synchronization Problem

The PC and the BORG board are driven by different clocks. You need to syn-
chronize any information transfer between them to avoid any timing problems. Par-
ticularly when you have sequential logic (such as a finite state machine) inside the R1
FPGA, the data transfer from the PC to your sequential logic must be synchronized
by synchronization registers using the (not the PC) system clock.

The schematic drawing as shown in Fig. 9.4 has an I/O port located at
address PORT4. The output of this port feeds two D flip-flops, FFONE and FFTWO.
These two D flip-flops are clocked by the system clock, and these D flip-flops are
constrained to be mapped into different CLBs (just to exaggerate the failure rate,
you can put them together in the same CLB if you want). The counter registers the
number of times that the output of the flip-flops are different.

: What causes the outputs of the D flip-flops to be different? How
would you fix the problem?

To load this lab asylab, you do:

:> wir2xnf asylab

ppr asylab

makebits asylab

makeprom -o asylab.mcs -u O asylab.bit em4003a em4002a em4003a

o o o0 00
vV V V Vv

bd asylab.mcs
c:> asylab
A sample driver for this lab is included on the next page.
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/A kK Kok ok oK o K K KoK SR K K KoK oK oK o K Kok ok Sk o K K Kok ok ok K K Kok ok ko ok
/* asylab v1.0
/A kK Kok ok oK o K K KoK SR K K KoK oK oK o K Kok ok Sk o K K Kok ok ok K K Kok ok ko ok
#include<stdio.h>
#include<dos.h>

#include<stdlib.h>

int main(int argc,char *argv[])

{

unsigned char loc, oldloc;

int wait;

char * portenv;

unsigned int PORTRESET, PORT4;
unsigned PortA;

setcbrk(1);
portenv = getenv("BORG");

/* Control Port in X0 */
if(!strcmp(portenv,'0x300"))
PortA = 0x300;

April 5,1994%/

else if(!strcmp(portenv,"0x200"))

PortA = 0x200;

else if(!strcmp(portenv,"0x210"))

PortA = 0x210;

else if(!strcmp(portenv,"0x310"))

PortA = 0x310;
else {

printf(" Wrong PORT address\n");

printf(" Please specify P
exit(1);

}

PORTRESET = PortA + 3;

PORT4 = PortA + 4;

/* reset the machine */
outportb(PORTRESET, 0x00);
outportb(PORTRESET, 0x01);
delay(1);

/* read Port 4 until all zeroes */
wait = 10;

while((loc=inportb(PORT4)) '= O
{wait--; delay(1);
printf("Waiting for counter to

/* stop reading */
if(loc!=0) {printf("Counter in R1
}

else

{printf("Counter in R1 set to O
while(1){
outportb(PORT4, 0x01);
delay(1);
loc=inportb(PORT4);
if(loc !'= oldloc) {
printf("Counter --> %d
}
outportb(PORT4, 0x00) ;
delay(1);
loc=inportb(PORT4);
if(loc !'= oldloc) {
printf("Counter --> %d
}

ORT address\n e.g. set BORG=0x300%s\n");

&& wait !1=0)
reset.\n"); }

never reset.\n");

An"); oldloc = -1;

\n",loc); oldloc=loc;

\n",loc); oldloc=loc;
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9.4 Music Lab

This frequency synthesizer lab demonstrates the use of XC4000 CLBs as Read-
Only-Memories (ROMs). You will also need the following additional components to
appreciate this lab.!

1. one digital-to-analog converter part # TI TLC5H602CN

one 2N2219A NPN transistor, one 2N2222 NPN transistor
some resistors
three 10puF capacitors

one potentiometer

Ot W N

an 8 ) speaker

The DAC yields only one volt dynamic range, so we use some discrete components
to build a simple two-stage transistor amplifier with a voltage gain of 2, as shown in
Fig. 9.5. You can replace this part with a higher qualify amplifier.

D0D1D2D3D4D5D6D7
CLK
TLC5602CN Stage 1 Stage 2
DAC Voltage Gain = Voltage Gain =1

l L oy

10uF
From R1 FPGA
L0uF 2N2219A
I I IN2222
- Speaker
potentiometer
adjust Vref to approx. 3.96V =
47 — 10uF

Figure 9.5: Digital-to- Analog Converter and a two-stage transistor amplifier
for the “music” lab.

As illustrated in Fig. 9.5, the DAC is used to convert the digital output of the
R1 FPGA to an analog (sine-wave like) signal. The transistors and the rest of the
discrete components form a simple two-stage amplifier to drive a small 8Q speaker.

1Credit to Tom W. Geocaris.
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Referring to the schematic drawings as shown in Figs. 9.6 and 9.7, the module
ROM64W stores a (low fidelity) discretized “sine” wave. The content of the module is
initialized by using the Xilinx memgen utility on the data file rom64w.mem.

; rom64w.mem: A 64-word deep by 8-bit wide ROM memory.

TYPE ROM ; The memory is a ROM

DEPTH 64 ; The memory is 64 words deep
WIDTH 8 ; Each memory word is 8 bits wide

SYMBOL VIEWLOGIC PINS ; Build a VIEWLOGIC symbol with pin inputs
DATA 10#128%,
10#140%,
10#153%,
10#165%,
10#1774#,
10#188%#,
10#199%,
10#209%,
10#218%,
10#226%,
10#234#,
10#240%,
10#245%,
10#250%,
10#253%#,
10#254#,
10#255%,
10#254#,
10#253%#,
10#250%,
10#245%,
10#240%,
10#234#,
10#226%,
10#218%,
10#209%,
10#199%,
10#188%#,
10#1774#,
10#165%,
10#153%,
10#140%,
10#128%,
10#116%,
10#103%,
10#91%,
10#79%,
10#68%#,
10#574#,
10#47#,
10#38%,
10#30%,
10#22%,
10#16%,
10#11%,



90

10#6#,
10#3#,
10#2#,
10#1#,
10#2#,
10#3#,
10#6#,
10%#11#,
10#16#,
10%#22#,
10#30#,
10#38#,
10#47#,
10#57#,
10#68#,
10#79#,
10%#91#,

10#103#,

10#116#
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A 16-bit binary counter ¢NT16 is used to scan the ROM64W module at different
rates to produce sine waves of different frequencies. The scan rate is loadable from
the PC’s keyboard via two I/O ports located at the R1 FPGA.

To load this lab synth, you do:

c:

O o0 0 0 00
vV V V V VvV Vv

:>

wir2xnf synth

xnfmerge synth music

ppr music

makebits music

makeprom -o music.mcs -u O music.bit em4003a em4002a em4003a
bd music.mcs

music

Use the PC’s keyboard to change the frequency of the sound! A very primitive
driver is included for the purpose of illustration.

#include <stdio.h>
#include <math.h>
#tdefine PORT1 0x304
#tdefine PORT2 0x305
#tdefine CLK 8000000
#tdefine BUF_SIZE 64
#define CTRL_C 0x3

main( int argc, char **argv )

{

unsigned int n;
int i;
char buf[128];

while (1) {
switch ( getch() )
{
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J J .
case ’q’:
case ’w’:
case ’e’:
case ’r’:
case ’t’:

J J .
case ’y’:
case ’u’:
case ’i’:
case ’0’:

case ’'p’:
i= 9;
break;
case ’[’:
i= 10;
break;
case ’]’:
i= 11;
break;
case CTRL_C:
exit(1);
default:
continue;
}
n=floor (CLK/BUF_SIZE/ (440 .0%pow(1.0594631,1))+0.5) ;
outportb( PORT1, n & Oxff );
outportb( PORT2, (n & 0xff00) >> 8 );

91
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9.5 DMA Lab

I’ll fill in this part in the second revision of this user’s guide.

9.6 Boundary Scan Lab

I’ll fill in this part in the second revision of this user’s guide.

9.7 Possible Term Project Description

A little bit of history, I have given this Dr. Mario design as a term project in
Advanced Logic Design in Spring 1993. Four out of six groups (two per group) of
students finished their projects using the older XC3000 BORG board. A project

description is given on the next page.
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University of California, Santa Cruz, Spring ‘93 CMPE 126 P.K.Chan, April, 1993

Project Description Part 1
CMPE 126: Advanced Logic Design
Dr. MARIO ? Digital Machine (due May 4, 1993)

This is part one of the project description. There will be two more handouts which
will specify the interface and hardware in more detail.

Figure 9.8: DR. MIARIO (8 x 16) bottle.

9.8 Project

You will devise a strategy to play DR. MARIO and implement your strategy
with two Xilinx XC-3020-PC84s, and a 2K-byte SRAM. Your design will interface
with a “host” computer that will be responsible for keeping track of the Dr. Mario
screen and your machine’s score. The only information provided by the host will be
the next pill.

DK. MARIO is a 2-dimensional color matching game in which the doctor
(player) must consume the pills (and possibly viruses) before the pills destroy the
patient. Figure 9.8 shows the DR. MARIO “pill bottle”. There are nine different
pills, as shown in Figure 9.9, which are presented one at a time at the top of the
bottle. The two halves of the capsules are colored Scarlet, Aquamarine, or Liemon.3

2D|3<. M ARIO is a trademark of Nintendo of America Tnc.
?To avoid poisoning color-blind patients the pills are also labeled with S’s, Avsand Los.
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DEE
0B E
269

Figure 9.9: DR. MIARIO pills.

Figure 9.10: A typical game state in DF. MARIO .

(Actually, there are only six different pills but we are counting the mirror images of
the multi-colored pills as different pills.) The doctor must choose how to place the
pill within the rectangular 8x 16 bottle. The pill can be rotated in units of 90 degrees
and the pill can be moved left or right to the desired position. The pill then drops
to the bottom of the bottle or until it is stopped by other pills already in the bottle.
Figure 9.10 shows the bottle after several pills have been placed and the next pill at

the top of the bottle is .

If the doctor succeeds in placing the pill so that there is a rectangular grid region
of size 1 x n where n > 4 of the same color, then this region vanishes. Note that this
may cause the other remaining halves of the pills to fall further down in the bottle,
and when they fall, other regions may vanish, and so on. The game continues until
no more pills can be placed because the two grid squares in the center columns and
the top row are occupied.

Figure 9.11 illustrates and example. Suppose the doctor decides to place the
pill in the sixth column (from the left) after rotating it so that the A is at
the bottom. The two regions which vanish are the one in row 8 filles with S’s and

the one in column 6 filled with A’s. But causes the pill in row 9 to fall down
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Figure 9.11: A typical game state in DRK. MARIO

one row creating a vertical region filled with Li’s in column 3. After removing these 4
Ls, their other halves fall down in columns 2 and 4 as illustrated in the third bottle.
Nothing interesting happens in column 2, but in column 4 there is now a vertical
region of S’s. There is also a horizontal region of S’s in row 2. This brings out the
point that one side of a capsule may create both horizontal and vertical regions. After
removing these two regions we end up with the fourth bottle in Figure 9.11.

One last detail that need to be mentioned is that the bottle might not be empty
to begin with. There may be some viruses clinging arround at different points. These
viral beats look exactly like half-pills and will vanish in the same manner as the pills.

9.9 Design of a Dr. Mario player

As your term project in cmpel26, design and debug a digital-DR. MARIO -
player machine using two Xilinx XC3020-PC84 and a 2K-byte RAM.

To know and understand the game, a copy of the game is in the Athena cmpel126
directory called Mario. The program is called bugs and all the source codes are there.
The controls are: h for left, 1 for right, s for clockwise rotate, a for counter-clockwise
rotate, j for dropping the pill down, and q for quitting the game.

9.10 The game environment

Your machine will interface to a host PC that present the pills one at a time. 1
shall write (provide) the host PC driver. You are also allowed to a 2K-byte RAM as
part of your machine. The host maintains the screen, informs the player on the next
pill type, processes the player’s decision, keeps track of the state of the bucket and
the game score.
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Your_move’
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RESET”

Pill Type
Host PC /= . .
= Dr.Mario Machine CLOCK
Pill_Rotation 3Mhz
Pill_Lateral ‘
Move ready’
Your_move’ «
2
Pill Type >< ( ><

Think Time (5ms)

Move ready’
Pill_Rotation X
Pill_Lateral X

Figure 9.12: Host/ DR. MARIO Machine Handshake, after initialization

9.11

I reserve the right to modify:

What will be finalized later?

Viruses: whether or not there will be viruses and how they will be given.

Scoring: how the player will be scored.

Interface: protocol with the host PC.

System clock rate: of your machine. The host and your machine may be driven by

separate clocks.
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I’ll be responsible for building the host. When the host is completed in the sixth or
seventh week, all the above items will be finalized.

9.12 Ewvaluation

There will be a (single elimination?) tournament on June 11, 1993 in AS 240 (time
to be specified later). Also, the quality of your design will be evaluated based on

a. the number of xc3020 LCAs used, and the number of CLBs and IOBs used.

b. the propagation delay along the critical path(s), in other words, the maximum
clock rate of your design.

c. your machine’s scores for different clock rates.

d. the documentation of your design.

9.13 Your responsibilities

a. Devise and test your basic strategy with a high-level simulation. To exam-

ine how good your strategy is: code your strategy in C and integrated into the
DR;. MARIO source code that is supplied to you. [ DUE BY MAY 4, 1993 |,

Be prepared to present your strategy(ies) to the class.

There is always the danger that the high-level language constructs in C are too
powerful and may not be implemented efficiently or directly in hardware. Just
keep in mind that your strategy has to be realized in Xilinx FGPA, eventually.
Estimate the number of CLBs that is required by your strategy(ies).

b. Work in groups of two. Your group MUST have a complete hardware prototype
of the project by JUNE 11, 1993.

c. Submit a good quality final report documenting you strategy, design, schematic
diagrams, timing diagrams, test plan, simulation results, the name of your design
(.1ca) file on the AT (with a floppy disk), and your .bds files on Athena. DUE
BY JUNE 11, 1993.

d. Realize your design either with the BORG or PROTOZONE prototyping board.

9.14 Suggestion

When devising your strategy to solve this problem, keep the implementation con-
straints in mind. Students have a tendency to come up with “interesting” strategies
which are not easily implementable in hardware. Please start with a VERY simple
strategy first, and estimate the hardware resources needed to realize it. You can
improve the game strategy later on when you have time.

A successful project requires good planning, step by step documentation, and
innovation. Procrastination leads to disaster. Start working on it now.
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9.15 Initialization of the Bottle

Like your midterm, an XT/PC writes 8-bit words one at a time to an output
port at address 0x0304. There is a one-bit RDY flag (the least-significant bit) at
the outport port at address 0x0305. Your FSM in the R1 FPGA captures TWO
successive words from the PC.

wordB = DB7Y DB6 DB5 DB4 DB3 DB2 DB1 DBO
wordA = DA7 DA6 DA5 DA4 DA3 DA2 DA1 DAO

which represent the encoding of 8 initial viruses. Here is the virus encoding:

Bit
10
00 S
01 A
10 L

For example, an initial bottle status such as:
SSAALLSS

from left to right (column 0 to 7), they will be encoded as:
Position 01 2 3 4 5 6 7

1]
o
o
o
o
=
=
o
o

wordB

1]
o
o
=
=
o
o
o
o

wordA

The PC writes the first word wordA and then asserts RDY low, the FSM machine
reads the outport port and saves the word in a bank of 8-bit registers. The PC waits
for roughly 1ms, then deasserts RDY to high. It then sends out the second word
wordB and then asserts RDY low. The PC waits for roughly 1ms, then deasserts
RDY to high. The FSM machine reads the outport port and saves the second word in
another bank of 8-bit registers. The RDY signal then becomes the YourMove’ signal
in the game.

9.15.1 Pill encodings

There are six distinct pills, so their encodings are:
Bit Bit Bit

2 1 0
AA 0 0 0
LL 0 0 1
SS 0 1 0
AL 0 1 1
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AS 1 0
LS 1 0 1

9.16 Initialization of the Dr. Mario Machine

The host (driver) provides a global reset signal that resets all the flip-flops before
each round of the game.

9.17 Handshake and Timing

After initialization and sending the viruses to the ports, the PC communicates
with the DFR. MARIO Machine using the following protocol.

PS. your machine is required to register the laterals and pill rotation.
The port assignments in the R1 FPGA are:

I/0 Address: 0x300 Function: used by XO
I/0 Address: 0x301 Function: used by XO
I/0 Address: 0x302 Function: used by XO

I/0 Address: 0x303 Function: Global Reset- used by XO
I/0 Address: 0x304 (from PC to Mario machine)

Bit 7 6 5 4 3 2 1 0

Bit 7 6 5 4 3 2 1 0
| Pill Typel RDY/ |
| Bit | I
| 2 1 0 | YourMovel

Bit 7 6 5 4 3 2 1 0
| Rot | Lateral | |
[ ation| | |
| 1 012 1 0| MoveReadyl
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10. Troubleshooting

This section may help you isolate the problem and as a result, eliminate the need
to contact technical support and allow continued productivity (variations from SONY
TV guide).

Most the problems can be corrected with a better understanding of your com-
puter’s PC/XT configuration. Use diagnostic software such as QAPLUS to display
your PC’s configuration. You need to know the occupied port addresses, occupied IRQ
channels, occupied DMA channels, and occupied memory address. Do not configure
the BORG board in conflict with the occupied resources.

‘ Symptom ‘ Check these items ‘
No LEDI1 slide switch SW5 to ON,

check the conductivity of the fuse with a ohmmeter,
an high impedance indicates that the fuse is blown.

computer crashed | are you using a protozone adapter card?

If so, check IC 7T4HCT04 and connect (solder)

a 22K Ohm resistor between pin 1 and pin 7 of the IC.
This is a known manufacturing bug in the protozone
adapter card.

No LED2 This is an indication that X0 is not configured,

LED2 is tied to the DONE pin of X0 (xc4003APG120).
Check that a PROM is in U3.

Check plastic jumper is on the left side of J24

shunting positions 1 and 2.
check position 8 of SW1 and position 1 of SW2 are open.
This configuration sets X0 in the master serial mode.

bd complains This may be an indication that X0 is not configured,
x0 is dead or the communication between the PC and the BORG board
is broken.
Check the TTLs one by one.
board fail Check that the plastic jumpers are on the left side
scan test of jumpers J11-J23.
If they all are, some of the I/O pins of the user FPGAs
are dead.
board fail Check that the plastic jumpers are on the left side
scan test of jumpers J11-J23.

If they all are, they might not be making very
good contacts with the metal headers,

push the plastic jumpers in

and see if that improves the situation.

Table 10.1: To be Continued.
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board fail

memory test

Check that position 3 of SW1 is closed. This enables

the PC to access the dual-ported SRAM exclusively.

Check that the memory (base) address mapping

of the SRAM are matched on both the BORG board (hardware)
and the software mtest.exe

Consult Fig. 2.6 for the hardware mapping.

No LED3

All the DONE pins of the user FPGAs R1, X1, R2, and X2
are tied to LED3.

Check that when you make the mecs file for download,

you had all the correct bit stream and the correct

part type for the FPGAs.

No LED3

If you are downloading using the bd program,
check positions 1 and 2 of SW1 to make sure that
R1 is configured to peripheral mode.

If you are downloading using the xchecker cable,
check positions 1 and 2 of SW1 to make sure that
R1 is configured to slave mode.

Can’t interrupt

pPC

If you are using the protozone host adapter card,
check the setting of the IRQ requests.

If you are using the BORG board in the add-in mode,
check positions 5 to 8 of SW2 to select the IRQ
channel.

Check that the IRQ channel selected has no

conflict with other peripheral cards.

DMA not
working

You must use the protozone host adapter card for DMA.
Check the correct setting of the DMA channel selection.
Some DMA channels are only valid with a PC/XT

but not a PC/AT.

The standard X0 has no DMA mechanism built-in,

but you can easily build your own.

design doesn’t
run properly

Check the maximum clock speed of your design.
The default system clock is 8MHz, this may be too
fast for some designs. Slow down the system clock
by using the CLOCK utility.

design can’t

access SRAM

Check the logic for the arbitration of the dual-ported SRAM
is correct.

Check position 3 of SW1 for the favourtism of arbitration.
Use the utility arbit to change the default.

Table 10.2: Troubleshooting and diagnostics.




104 11. Acknowledgements

11. Acknowledgements

The development of the BORG board is supported in part by an National Sci-
ence Foundation Research Initiation Award supplement. The manufacturing of the
100 BORG boards is supported entirely by Xilinx, Inc. for educational purposes.
Therefore, I am grateful to Xilinx, Inc. for their support of the BORG project, in
particularly to David Lam for his magnificent coordination of the BORG project, and
his wonderful ability to pull all the resources together to finish this project. I am also
indebted to Xilinx engineering and technical staff: Carol Henley who taught me PCB
layout using PADs, IXd Resler who was willing to share his wisdom in manufacturing
hardware, and Fric Wright who had given me his expert advice and read the initial
draft of this users’ guide.

I can’t thank Jason Y. Zien enough for finding all sorts of way to improve assign
and taking the responsibility of coding and supporting two versions of it. I thank
Professor Abbas El Gamal of Stanford University for his pioneering work in FPGA
education and his inspiration. Finally, special thanks to Martine Schlag for the basic
algorithm of assign and insisting on designing an additional Tetris machine.



