
Poor Man's WatchpointsMax CoppermanJe� ThomasUCSC-CRL-94-17April 26, 1994Max CoppermanBoard of Studies in Computer andInformation SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 Je� ThomasKubota Paci�c Computer, Inc.2630 Walsh AvenueSanta Clara, CA 95051-0905This work largely supported by Kubota Paci�c Computer, Inc.abstractBugs that result from corruption of program data can be very di�cult to track downwithout specialized help from a debugger. If the debugger cannot help the user �nd thepoint at which data gets corrupted, the user may have a long iterative debugging task. If thedebugger is able to stop execution of the program at the point where data gets corrupted,as with watchpoints (also known as data breakpoints), it may be a very simple task to �nda data corruption bug. In this paper, we discuss a method of implementing watchpointson a system without hardware watchpoint support. By instrumenting the program code tocheck memory accesses, and supplying an interface to the instrumentation in the debugger,we provide an e�cient, general method of implementing watchpoints.Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debug-ging | debugging aids; D.2.6 [Software Engineering]: Programming Environments; D.3.4[Programming Languages]: Processors | code generation, compilersGeneral Terms: Algorithms, LanguagesAdditional Keywords and Phrases: debugging, watchpoints, post-loaders, instrumentation

1IntroductionThere is a class of bugs that can be very time-consuming and frustrating to �nd: whenan unidenti�ed pointer has an incorrect value, and an assignment through that pointermodi�es an arbitrary memory location. The di�culty stems from the fact that the symptomoccurs at a subsequent read of that memory location, which may be arbitrarily far from theassignment that wrote to that location. Watchpoints aid considerably in �nding bugs inthis class, because watchpoints allow the user to get control at the point that the location iswritten to, that is, at the assignment through the pointer, allowing the user to identify theerrant pointer. Watchpoints are also valuable because they enable a data-oriented debuggingstrategy in addition to a control-ow-oriented strategy. With conditional watchpoints, it issimple to arrange to break when a memory location is set to a particular value, without priorconcern for which source statements are responsible for setting that location.The most e�cient implementation of watchpoints requires hardware support. It isbecoming more common for machines to provide hardware support for watchpoints, butit is by no means universal; even otherwise state-of-the-art CPU's may be designed withoutwatchpoint support. While they are e�cient, hardware-supported watchpoints are notgeneral, typically limiting the user to watching a few words of memory. This article describesan implementation of watchpoints in software that is both general and e�cient enough tobe useful.Early implementations of watchpoints without hardware support were extremely slowbecause they required single-stepping the program and giving the debugger control aftereach instruction, or after each load or store. More recently there have been implementationsin software that are reasonably e�cient. Watchpoints can be implemented in software via� virtual memory|protecting pages containing watched addresses,� trap patching|replacing each store and/or load instructions with a trap instruction,and installing a trap handler that gives control to the debugger if the accessed locationis being watched, and emulates the instruction otherwise,� code patching|replacing each store and/or load instructions with an inline check orcall to a function that gives control to the debugger if the accessed location is beingwatched, and subsequently executes or emulates the instruction.The range of implementations is discussed in Wahbe [Wah92], who compared simulations ofeach type of watchpoint implementation. According to his simulations, code patching is themost e�cient method of implementing watchpoints in software.We implemented watchpoints via code patching on the Titan, a Mips R3000-basedmultiprocessor machine sold by Kubota Paci�c Computer, Inc. (KPC). The R3000 is aRISC chip with a branch delay slot and a load delay slot, but no other characteristics thatimpact our watchpoint implementation.

2DesignWe chose code patching because of its expected e�ciency and because we could implementit quickly without support from the operating system or the compiler. In adding watchpointsupport to KPC's debugger, we had a number of requirements:� It must be possible to watch an arbitrary number of memory locations at any time.� It must be possible to watch a contiguous range of locations without speci�ying eachlocation individually.� The debugger user must be able to choose the addresses to watch without signi�cantdelay. This implies that the patch code must be independent of the address(es) beingwatched.� The patched program must not be too large to run.� The patched program must not be so slow that no-one would use the facility.� The patched program must be as nearly as fast as the original when no addresses arebeing watched.These requirements were met with the following design:� There is a table of watched locations.� The table consists of low/high address pairs, giving a set of contiguous ranges.� The table is maintained by the debugger, and copied into the debuggee each time thedebuggee is executed under debugger control.� A subroutine do watch to test an accessed address against each range in the table isincluded in the program initialization module crt0, so that there is a single copy ofthis code.� A call to do watch is patched into the executable prior to each memory access.� A branch around the patched-in call is taken when no addresses are being watched.This design is general, and results in programs that are within acceptable size and speedincreases over the original.The DebuggeeA post-loader is a program that inserts instrumentation code into executables. A post-loader toolkit that simpli�es the building of post-loaders was available at KPC, and simplepost-loaders had been built to modify executables for performance measurements, simpleoptimizations, and to �nesse simple portability issues. With this toolkit, it was a simplematter to build a special-purpose post-loader to insert a patch prior to each watchpointpatch target, that is, each store and/or load in the debuggee.11A ag passed to the post-loader designates loads, stores, or both as patch targets.

3beq $fp, $0, target ; branch around the patch if; no register save areanop ; branch delaysw $ra, 0($fp) ; save return address registersw $a0, 4($fp) ; save a register in which to pass; the address being accessed,jal _do_watch ; jump to _do_watchaddiu $a0, $sp, 68 ; compute the address being accessed; (dependent on the patch target)lw $a0, 4($fp) ; restore registerlw $ra, 0($fp) ; restore return address registernop ; load delaytarget: sw $ra, 68($sp) ; patch target (from whence the; address being accessed is computed)Figure 0.1: The patch as applied to the �rst store in a routine's prologue (whichsaves the return address). The original store is the last instruction shown.To keep the patch small, we put as much work as possible into do watch. The patchminimally had to load a register with the address of the memory location accessed by thepatch target and call do watch. To do this without a�ecting the semantics of the originalprogram, the previous contents of that register and the return-address register must be savedand restored.Within do watch, more registers are used. A general mechanism to save registers wasneeded. On the Titan, the native compiler sets aside one register, $fp, for use by tools thatneed a scratch register (such as the pro�ler). When the user sets a watchpoint, the debuggersets $fp to point to a register save area in the debuggee's static data space, which allows usto save and restore as many registers as we need.2 When no watchpoints are set, we don'twant to su�er the overhead introduced by the inserted code. We therefore made the �rstinstruction in the patch branch around the rest of the patch if $fp contains zero. In ourimplementation, including branch and load delays, each patch takes nine instructions. Thepatch code is shown in Figure 0.1. The patch code could be smaller in some circumstances,but that would require more complex analysis of the code. Using a simple, general patchallowed us to use a simple post-loader.The additional registers needed by do watch are saved upon entry and restored on exit.do watch contains code to check the passed-in address against the address ranges stored inthe watch table. If the target address is found to be within range, control passes through apublicly known location watch break at which the debugger can set a breakpoint. Pseudo-code for do watch is shown in Figure 0.2. In our tuned implementation, do watch has a2Our implementation is safe for non-preemptive multi-threaded code. However, the use of a single staticdata area for saving registers is not safe in the presence of preemptive threads.

4 typedef struct {int start, end;} watch_table_entry;_do_watch(watched_address) {< save registers >watch_table_entry cur = &watch_table;while (cur <= &last_watch_table_entry) {if (watched_address >= cur->start && watched_address <= cur->end) {__watch_break: /* watchpoint hit: set breakpoint at this label */}else {cur++}}< restore registers >}} Figure 0.2: do watch()constant 14 instructions plus 12 instructions for every address range being watched. With thenine instructions from the patch, a single watchpoint has a speed overhead of 35 instructionsper patch target.With this much in place, testing of patched code began. Unexpected things happenedright away. The test program was:

5int a = 4;main () {a = a + 10;printf("a = %d\n",a);a += 42;printf("a = %d\n",a);}The unpatched version prints:a = 14a = 56The �rst time it was run after being patched it printed garbage. When the patchedprogram was run under debugger control and single-stepped at the instruction level, it gavethe right output. When the o�ending code (in do prnt) was run at full speed, it appearedthat a conditional branch was not being taken, even though we veri�ed that the branchconditions were true. After considerable investigation, we discovered a patch placed in abranch delay slot. The patch begins with a branch, so the patched code had a branch in abranch delay slot. It is not surprising that the patched code did not give the same resultsas the original code.We had not entirely overlooked this possibility. In the case in which a load or store is in abranch delay slot, we placed the patch immediately prior to the branch, rather than placingit immediately prior to the load or store. However, for historical reasons, the post-loadertreated a branch that is also a jump target specially, and the case of a load or store in thedelay slot of such a branch was not handled properly the �rst time around.With that problem out of the way, the test case ran properly. The facility was then usedon a C compiler in an attempt to �nd a real bug. We eventually did �nd the bug, but �rstwe had to �x our patch technology: once again, the patched program gave di�erent resultsfrom the unpatched version. There was a load to a register followed by a store from the sameregister. In the unpatched version, the store was in the delay slot, so the store took placeusing the old contents of the register. Because the patch inserted instructions between theload and store, in the patched version the store was not in the delay slot, so the store tookplace using the new contents.Memory accesses in load delay slots have the potential to involve read/write or write/writedependences on the load in whose delay slot they sit. Most of these dependences wereeliminated by re-ordering the code. When the post-loader �nds such a dependence, it movesthe instruction in the delay slot above the load is whose delay slot it resided, and places anop in that slot. It then inserts the patch without modifying the program's semantics.We punted on one such case. Suppose we have the following sequence of instructions:lw $s0, 0($a0)lw $a0, 0($s0)

6 Although the order of these instructions can be reversed, they must remain adjacent; apatch cannot safely be inserted between them. If the post-loader ever comes across this case,it will complain and will not insert a patch. To date we have not found a program fromwhich the Titan compiler generates this code.There were other bugs in our watchpoint patch technology, but they were all of the `weforgot to patch this instruction' avor, and are of no great interest.The DebuggerWith the post-loader correctly patching the code, one conceptual half of the job was done.The remaining work was to modify KPC's debugger dbg to let the user set watchpoints.dbg uses the syntax <cmd> at location, where <cmd> is any sequence of dbg commandsand location is an address, a line number, or a function name, to execute <cmd> atlocation. In the common case that the user wants to get control, <cmd> is break. Thesyntax <cmd> in fcn executes <cmd> at the end of function fcn's prologue. We chose thesyntax <cmd> on address and <cmd> on low address high address for watchpoints, tomaintain consistency in the interface. Internally, <cmd> on address is expanded to <cmd>on address address, so we need only discuss the latter form of the command.On receiving a watchpoint command, the debugger has to add an entry to the watchtable and ensure that <cmd> is executed when the watchpoint is hit.Maintaining The Watch TableThe watch table is located in a special version of the C start-up routine crt0. It must belocated in the debuggee's address space because the patch code that reads it is debuggee code.All data associated with the table are publicly known symbols so that they are available tothe debugger. The watch table itself is an array of address ranges (structs containing twopointers), and has one page of storage allocated to it|we didn't want to think about howbig it should be, so we made it big enough.3When a watchpoint command is entered or enabled, the address range is appended tothe debugger's watch table. When a command is disabled or canceled, the last range inthe table is copied over the range that is no longer being watched. At each point at whichthe debuggee is about to execute, the debugger's watch table is copied into the debuggee'saddress space. If the table is empty, $fp is set to zero. If the table is not empty, $fp is setto point to the register save area and a breakpoint instruction is placed at watch break.3The page size on the Titan is 16 Kbytes.

7Handling Watchpoint CommandsThere are two keys to the design of the debugger's watchpoint command handlingfacility: 1) every watchpoint that is hit by do watch causes a breakpoint to be reachedat location watch break, and 2) the user's command must be executed at the patch target(the instruction that is about to access the watched location). We allocate one breakpointstructure, wp bp, at debugger initialization time and associate it with watch break. Everytime the user enters a watchpoint command, we chain the command to wp bp, along withthe address range (in addition to modifying the debugger's watch table as described above).When a breakpoint at wp bp is hit, the debugger gets control at watch break. Thewatched location has been passed to do watch in $a0 and the target instruction is threeinstructions after the return from do watch.4 The debugger searches the commands chainedto wp bp for commands in whose address range the watched location falls. It chains themto a temporary breakpoint set at the target instruction. When execution of the debuggeeis continued, the standard breakpoint mechanism will execute the user's commands at thetarget instruction. This breakpoint is removed before a subsequent execution of the debuggeebecause there is no guarantee that the next execution of the target instruction is an accessof a watched location.In addition to adding these features, we added code to modify the parser, to disable,enable, and cancel individual watchpoints, and to disable and enable watchpoints as a group.There was little of interest involved in this, but adding an informative message required somesubtlety and uncovered some situations under which a watched location was accessed butour implementation did not take a breakpoint.The standard breakpoint handler prints a message telling the user about the point atwhich the debuggee halted:a.out stopped at `main:#15:t.o` (pc=0x400240)Under the implementation as described so far, when the user got control, it appeared bothto the user and to the debugger that a normal breakpoint had been reached. We added afacility to tell the user that a watchpoint was reached. When wp bp is hit, the debuggerconstructs a message like one of the following:Watchpoint: about to store 0x100 from $s0 into 0x7fdffd2c (= 0x37)Watchpoint: about to load 0x37 from 0x7fdffd2c into $t6 (= 0x0)The watched location (shown as 0x7fdffd2c) is available as the parameter to do watch.Its contents (shown as 0x37) can be found by looking in the debuggee's memory space.Finding the other information requires parsing the target instruction to determine the typeof the instruction and the register used. 54If the access of the watched location is in a branch slot, the user must get control at the branch instruction,although the access is at the subsequent instruction. The user always gets control three instructions afterthe return from do watch.5The debugger must take into account that if the target instruction is a branch, the following instructionis the load or store of interest.

8 The second time a watchpoint was hit after we added this facility, the patched programfailed with a bus error. We were watching an eight byte range of memory. The targetprogram was in a loop doing something like *p++ = *q++ where p and q were pointers tocharacters. For our message, we were always fetching a word from the watched location. The�rst watchpoint we hit, the contents were properly fetched. The second watchpoint we hitwas at the same instruction, a load-byte instruction. But the second time through the loop,the address of the accessed location (pointed to by p) was odd. When the debugger tried tofetch a word from that odd address, it used a load-word instruction and got an addressingexception.Our solution was to take into account the size of the operand, and fetch the right-sizedvalue from the watched location. Considering alignment issues brought a problem to ourattention. Suppose the user enters the command break on 19. The debugger duly entersthe range 19,19 into the watch table. What happens on a store-word instruction into address16? Clearly byte 19 is stored into, and the user's command should be executed. But 16 ispassed to do watch, is not found to be in the range 19,19, and do watch returns withoutcausing the debugger to get control.For a load-byte instruction, the code in do watch is correct. But for a load-halfwordinstruction or a load-word instruction, do watch may miss some accesses that it shouldcatch.In our implementation, when the debugger enters the address range into the watch table,it masks the low two bits of the start address. Every range that do watch tests starts on thelargest four-byte-aligned address less than or equal to the start address. Now rather thanmissing some accesses that should be found, do watch gives false positives. If the user iswatching byte 19, do watch will give the debugger control on all accesses of byte 19 { butalso on accesses of bytes 16, 17, and 18. The debugger maintains (an unmasked copy of)the start address, so once it has determined the type of the instruction, it can weed out thefalse positives.Each false positive causes a context switch to the debugger. These can be eliminatedby having three copies of do watch, one for byte accesses, one for halfword accesses,and one for word accesses. Each copy of do watch could mask the low address of therange appropriately. The post-loader could patch in a call to do watch byte for load-byte and store-byte instructions, do watch hword for load-halfword and store-halfwordinstructions, and do watch word for load-word and store-word instructions. Each versionof the do watch routine could pass control through the same location (watch break) ona hit (this would obviate the need for the debugger to maintain three separate breakpoints).For convenience, we allow the access type to be part of the watchpoint command. If youwant to watch stores into address A and loads from address B, you have to patch both loadsand stores. But at a load from A, you need not be given control of the program, becausethe debugger can check the access type and `continue' for you. Note that there could be onewatch table and copy of do watch for stores and another for loads; if at some time onlystores were being watched, the debugger need not place a breakpoint instruction in the `load'version of do watch, and no context switch to the debugger would be taken for loads.

9Program Version locations watched0 1 2 10linpack unpatched 1.00stores patched 1.03 2.13 2.46 5.08loads patched 1.27 6.27 7.74 20.02both patched 1.28 7.24 9.06 23.67C compiler unpatched 1.00stores patched 1.20 3.33 3.93 8.69loads patched 1.55 5.13 6.13 13.79both patched N/A { { {linker unpatched 1.00stores patched 1.04 2.46 2.91 6.19loads patched 1.12 3.70 4.45 10.68both patched 1.20 5.12 6.31 15.86Table 0.1: Normalized execution times for sample programs. Execution time foran unpatched version of linpack was 37.1 seconds, for the C compiler, 42.5 seconds,and for the linker, 9.8 seconds.With this implementation in hand, we compared the speed and size of some patchedprograms with their unpatched ancestors.ResultsPatched programs vary in their running speed relative to unpatched versions dependingon the proportion of patched instructions (loads, stores, or both) to other instructions,depending on the number of patched instructions inside loops, and depending on instruction-cache behavior. If we letm be the number of memory accesses (patch targets) in the program,and n be the number of address ranges that are being watched, the run-time overhead ofthe watchpoint facility is (12n+23)m instructions (except in the case when n = 0, in whichcase the overhead is 2m instructions, due to the branch around the patch).Table 0.1 shows the relative execution times of patched and unpatched versions of severalprograms. The C compiler could not be patched for both stores and loads because thecode expansion caused a relative branch to become out of range. This problem could havebeen solved by breaking a large routine into several smaller routines, or by modifying thepostloader to replace the relative branch with an absolute branch. Table 0.2 shows the sizesof the text section of patched and unpatched versions of these programs. Table 0.3 showsthe time required to patch the sample programs. All programs have been compiled withoutoptimization and with debugging information to resemble typical to-be-debugged code.Programs slow down signi�cantly; by about a factor of 3 in the typical case (watchingstores to a single location). By comparison, taking context switches to check memory access

10 Program Unpatched Stores Loads Bothsize patched patched patchedlinpack 1.0 2.22 2.64 3.87130992 291228 346308 506544C Compiler 1.0 1.88 2.75 N/A2724352 5122780 7499644linker 1.0 1.88 2.44 3.3156272 105592 137092 186412Table 0.2: Normalized text sizes, followed by actual text sizes (in bytes), for sampleprograms. Time to Time to Time toProgram Unpatched patch patch patchsize stores loads bothlinpack 130992 1.1 1.1 1.2C Compiler 2724352 21.6 23.1 N/Alinker 56272 0.5 0.5 0.5Table 0.3: Time required to patch sample programs (in seconds).slows programs down by an extreme factor: Wahbe et al. [Wah93] measured the overheadfor watchpoints using dbx at a factor of 85,000. Unlike the context-switch approach, ourwatchpoint facility is fast enough for everyday use. The overhead can be signi�cantly reducedby a more complex patching technology|Wahbe et al. [Wah93] achieved an overhead of only25 per cent, watching stores only.Finding a Free RegisterThe high-level watchpoint facility design is portable at least among RISC machines.The implementation is highly dependent on the particular architecture. On the Titan, webene�t from the convention that makes $fp available for instrumentation code. On otherarchitectures or using a di�erent compiler, there may not be a register available.Our patch methodology uses a number of registers, each of which must be made availableby `spilling' it: saving and restoring its value around the inserted uses. To spill a register,the address of the spill location must be in a register, so one free register is necessary. Otherregisters can be spilled using the same base address, thus one free register can be used tobootstrap the spilling of an arbitrary number of registers. Finding the �rst register remainsa problem; we suggest several possible alternatives:

11� It may be possible to spill a register into a location relative to the $pc. An example ofthis would be adding a nop instruction where it can never be executed (as after the endof each routine), and spilling the register into that location. There may be operatingsystem or architectural restrictions preventing use of this technique. For example,this technique cannot be used on most UNIX6 systems, because the text section is notwritable. It cannot be used on the Mips R3000 processor because $pc cannot be usedin address calculations.� Another possibility is to spill a register onto the stack. We deem this to be anundesirable option because it is more likely than the other options to change thebehavior of the program. However, if none of the other options are feasible, a stacklocation can be used for the spill. Depending on the calling convention, this mayrequire help from the compiler. For example, on the R3000 it is not possible to simplyspill the value to a location beyond the top of the stack, because a trap handler mayuse the same space. If there is free space on the stack (or the compiler can be modi�edto provide it), the value can be spilled there. It is best to minimize the number ofregisters spilled onto the stack, so we recommend spilling one register onto the stackand using it to bootstrap the spilling of other registers into the data section.� The best option is to spill registers into static data space. This is possible if thereis a register that always points to a known location in the data section and spacecan be reserved in the data section: the space can be accessed relative to the �xedregister. For example, many RISC processors have a register that is �xed to read-as-zero. If there is data space that can be accessed relative to the zero register andreserved for this purpose, registers can be spilled there. A number of platforms providea �xed global-pointer ($gp) register. On such a platform, a register save area can bereserved at a �xed o�set from $gp; as with our use of $fp, the `bootstrap' is alwaysavailable. Similarly, if there is a register that is \pseudo-�xed", that is, �xed perroutine or compilation unit, spill locations can be reserved for each possible value ofthat register. However, this probably requires compiler modi�cations, where with atruly �xed register, data space can probably be reserved using the data declarationsavailable in either a high-level or an assembly language.In general, the problem of �nding a free register requires the aid of the compiler, but onmany architectures the existing conventions allow for a solution without compiler modi�ca-tions.EnhancementsWe would like to be able to patch the program from within the debugger, and to have thedebugger run the patched executable, but keep its displays (especially disassembly) based onthe original executable. This would require a translation between addresses in the originalexecutable and addresses in the patched executable.6UNIX is a trademark of Bell Laboratories.

12 We would like to allow symbol names in the expressions that specify the address rangein a watch command.7A minor modi�cation to the implementation would generalize the functionality consid-erably: provide a functional interface to the watch table within the patched program, andwhen a watchpoint is hit, make a call through a public function pointer (initialized to pointto a routine that simply returns). Then code could be linked into the debuggee and executedon watchpoint hits without using the debugger at all.8Related WorkPatching technology has been successfully used for some time for performance evaluation.Patching technology was used by Wahbe et al. to implement watchpoints on stores e�ciently([Wah93]). Patching technology has also been used to implement fast conditional breakpoints([BK92], [Kes90]). When a breakpoint is set, the debugger patches in the code to test thecondition, so that a context switch to the debugger only occurs when the condition is met.An interesting technical issue is where the code to test the condition comes from. Kessler[Kes90] requires the code to be previously compiled and available to the Cedar debugger.Brown [BK92] has built a mini-compiler into the Los Alamos debugger ldb.SummaryWe have described a simple, reasonably e�cient, extremely general watchpoint imple-mentation that does not require hardware, operating system, or compiler support. A singlewatchpoint command can watch any contiguous range of locations. Up to 2048 watchpointcommands can be active at a time. The technique should be fairly easily adaptable to otherplatforms with RISC processors. A watched program runs signi�cantly slower than an un-watched program, as shown in Table 0.1, but orders of magnitude faster than watchpointsimplemented via regular context switches to check accesses. Faster software watchpointimplementations are possible but are more complex.AcknowledgmentsThis watchpoint facility is the brainchild of (in alphabetical order) Max Copperman,Bob Hood, Samir Patel, and Je� Thomas. The post-loader was modi�ed by Je� Thomas;7Allowing symbol names in watch commands introduces a problem. If a variable is residing in a register,accesses of that variable will not be trapped. (This is the case with hardware-supported and operating-system-supported watchpoint implementations as well.) This may confuse the naive user. We consider thisunfortunate, because it makes watchpoints less useful for a data-oriented debugging strategy than we wouldlike. However, it does not compromise the use of watchpoints to locate the point at which memory is gettingtrashed.8I`d like to thank an anonymous reviewer for this insight.

References 13the debugger was modi�ed by Max Copperman. Debugging patched code while viewingunpatched code was Kung Hsu's idea. The work was largely funded by Kubota Paci�cComputer, Inc.Thanks are due to the referees, whose comments led to a vastly improved paper.References[Wah92] R.Wahbe, \E�cient Data Breakpoints", Proceedings of the Fifth International Con-ference on Architectural Support for Programming Languages and Systems, SIGPLANNotices, Vol. 27, No. 9, pp. 200-212, September 1992.[Wah93] R. Wahbe, S. Lucco, S. Graham, \Practical Data Breakpoints: Design and Imple-mentation", Proceedings of the ACM SIGPLAN 1993 Conference on ProgrammingLanguage Design and Implementation, SIGPLAN Notices, Vol. 28, No. 6, pp. 1-12,June 1993.[BK92] J. Brown, R. Klamann, \The Application of Code Instrumentation Technology in theLos Alamos Debugger", Proceedings of the Supercomputer Debugging Workshop `92,October 1992.[Kes90] P. Kessler, \Fast Breakpoints: Design and Implementation", Proceedings of theSIGPLAN '90 Conference on Programming Language Design and Implementation,June 1990.[Bro91] J. S. Brown, \The Los Alamos Debugger ldb", Proceedings of the SupercomputerDebugging Workshop `91, November 1991.[CH91] B. Chase, R. Hood, \Debugging with Lightweight Instrumentation", Proceedings ofthe Supercomputer Debugging Workshop `91, November 1991.[HJ92] R. Hastings, B. Joyce, \Fast Detection of Memory Leaks and Access Errors", Pro-ceedings of the Winter Usenix Conference, pp. 1-12, January 1992.[Kep93] D. Keppel, \Fast Data Breakpoints", University of Washington, Computer Scienceand Engineering Technical Report 93-06, April 1993. Available as UW-CSE-93-04-06.PS.Z via anonymous ftp from ftp.cs.washington.edu.[LB92] J. R. Larus, T. Ball, \Rewriting Executable Files to Measure Program Behavior",University of Wisconsin-Madison, Computer Science Technical Report 1083, March1992, to appear in Software Practice & Experience.

