
Exponentiated Gradient VersusGradient Descent for LinearPredictorsJyrki KivinenManfred K. WarmuthUCSC-CRL-94-16June 21, 1994Revised December 7, 1995Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractWe consider two algorithm for on-line prediction based on a linear model. Thealgorithms are the well-known gradient descent (GD) algorithm and a new algorithm,which we call EG�. They both maintain a weight vector using simple updates. Forthe GD algorithm, the update is based on subtracting the gradient of the squared errormade on a prediction. The EG� algorithm uses the components of the gradient in theexponents of factors that are used in updating the weight vector multiplicatively. Wepresent worst-case loss bounds for EG� and compare them to previously known boundsfor the GD algorithm. The bounds suggest that the losses of the algorithms are ingeneral incomparable, but EG� has a much smaller loss if only few components of theinput are relevant for the predictions. We have performed experiments, which show thatour worst-case upper bounds are quite tight already on simple arti�cial data.

1 IntroductionWe consider a scenario in which the learner, or learning algorithm, tries to accurately predictreal-valued outcomes in a sequence of trials. In the beginning of the tth trial, the learner receivesan instance xt, which is an N -dimensional real vector. The components xt;i of the instances arealso called input variables. Based on the instance xt and information received in the previoustrials, the learner makes its real-valued prediction ŷt. After this, the actual tth outcome yt isobserved, and the learner is charged for the possible discrepancy between the predicted outcomeŷt and the actual outcome yt. The discrepancy is measured by a loss function L, for exampleby the square loss function given by L(yt; ŷt) = (yt � ŷt)2. Over a long sequence of trials, thelearner tries to minimize its total loss, which is simply the sum of the losses incurred at theindividual trials. A learning algorithm that follows this protocol is called an (on-line) predictionalgorithm.Obviously, if no assumptions are made concerning the relation between the instances andoutcomes, there is not much a prediction algorithm can do. To set a reasonable goal, wemeasure the performance of the algorithm against the performances of predictors from some�xed comparison class P . (The comparison class is analogous to the touchstone class of theagnostic PAC model of learning [KSS94].) The algorithm is required to perform well if at leastone predictor from the comparison class performs well. At the extremes, the outcomes couldbe completely random, in which case they can be predicted neither by the algorithm nor anypredictor from the comparison class P , or the outcomes might always be completely predictedby one �xed predictor from P , in which case the algorithm should incur only a small loss beforelearning to follow that predictor.In general, the predictors p 2 P are arbitrary mappings from RN to R. In this paper, weconcentrate on linear predictors . To any vector u 2 RN we associate a linear predictor pu,which is de�ned by pu(x) = u � x for x 2 RN . Then any set U � RN of vectors de�nes acomparison class P of linear predictors by P = f pu j u 2 U g.Given an `-trial sequence S = ((x1; y1); : : : ; (x`; y`)), the total loss of the algorithm is givenby LossL(A; S) = Pt̀=1L(yt; ŷt), where ŷt is the tth prediction of the algorithm. Analogously,the total loss of a predictor p is given by LossL(p; S) =Pt̀=1L(yt; p(xt)). For linear predictors,we also use the notation LossL(u; S) for LossL(pu; S). A very �rst goal could be to obtainbounds of the form LossL(A; S) = O� infu2U LossL(u; S)� ; (1:1)when we allow the length ` of sequences, and hence the total losses, increase without bound. Atthis �rst stage, we simplify the presentation by keeping the number N of dimensions constantand assuming that there is some �xed subset X � RN to which the instances xt always belong.It turns out that we can often obtain something better that (1.1). We can get the coe�cientof the leading term on the right-hand side of (1.1) down to 1 and thereby obtainLossL(A; S) = (1 + o(1)) infu2U LossL(u; S) ; (1:2)where the quantity o(1) approaches 0 as infu2U LossL(u; S) approaches in�nity. Thus, thebound (1.2) means that the additive additional loss LossL(A; S) � infu2U LossL(u; S) of thealgorithm grows at a sublinear rate as a function of infu2U LossL(u; S). The asymptotic notationin (1.1) and (1.2) hides the dependence of the total loss of the algorithm on the number N ofdimensions, as well as the ranges U of the predictor vectors in the comparison class and thedomain X of the instances. As these dependences are usually quite important, we will lateralso consider the constants not shown in the asymptotic bounds.1

Note that the bounds (1.1) and (1.2) are worst-case bounds with respect to S. We mayneed to assume that the instances xt belong to a restricted domain X , but we do not assumethat they are drawn from a probability measure, nor do we make any assumptions about howthe outcomes yt are related to the instances xt. If there is no good linear predictor u for thetrial sequence S, then the right-hand sides of the bounds (1.1) and (1.2) are very large, so thebounds may not be very interesting. However, the bounds always hold. This is in contrast tomore common approaches where statistical assumptions about the distribution of the instancesand the dependence of the outcomes on the instances are used in order to derive probabilisticloss bounds for the prediction algorithm [WS85, Hay91].The research reported in this paper was inspired by Littlestone [Lit89b, Lit88], who provedworst-case bounds for the case when the comparison class consists of Boolean monomials, ormore generally linear threshold functions. In this case it was assumed that the components ofthe instances, as well as the predictions and the outcomes, were Boolean, and the total losswas measured by the number of mistakes, i.e., the number of incorrect predictions made by thealgorithm. More recently, there has been some work on using an arbitrary �nite comparisonclass P = f p1; : : : ; pN g. Predictors from a �nite class are often called experts [CBFH+94]. Notethat a �nite comparison class can be considered as a comparison class with a very restricted setof linear predictors. For i = 1; : : : ; N , let ui 2 RN be the unit vector with uii = 1 and uij = 0for j 6= i. If we replace an instance xt by the vector x0t = (p1(xt); : : : ; pN(xt)), the originalpredictor pi, applied to the original instance xt, can be represented as the linear predictor pui,applied to the new instance x0t. Hence, instead of the original comparison class P we considerthe comparison class of linear predictors pu with u 2 U , where U consists of the N unit vectorsu1; : : : ;uN . The number of dimensions is now the number of experts, i.e., the size N of theoriginal comparison class. Vovk [Vov90] proved that for a large class of loss functions, a simplealgorithm achieves bounds of the form LossL(A; S) � infu2U LossL(u; S) + c logN , where theconstant c depends only on the loss function. Such bounds are even tighter than those of theform (1.2). However, for the absolute loss such bounds were not obtained. Vovk [Vov90] andLittlestone and Warmuth [LW94] had bounds of the form (1.1) for the absolute loss. LaterCesa-Bianchi et al. [CBFH+94] showed how these bounds could be improved to the form (1.2)by a careful choice of certain parameters in Vovk's algorithm. Some of these results assumedthat the outcomes yt must be in f 0; 1 g and were generalized for continuous-valued outcomesyt 2 [0; 1] by Haussler, Kivinen, and Warmuth [HKW94].In this paper, we consider proving bounds of the form (1.2) for a comparison class of generallinear predictors, rather than only predictors that choose one of the N components of theinstance. We also describe simple experiments that verify that the worst-case bounds re
ectthe actual behavior of the algorithms. We have succeeded in the proofs only for the squareloss (yt � ŷt)2, although the basic ideas of this paper can be phrased for general loss functions.The immediate predecessors of this work are the papers by Cesa-Bianchi et al. [CBLW95] andLittlestone et al. [LLW95]. Cesa-Bianchi et al. consider the gradient descent algorithm, orthe GD algorithm, for linear predictions. This algorithm is also known as the Widrow-Ho�algorithm and the Least Mean Squares algorithm. It is also one of the main algorithms usedin this paper. The algorithm maintains a weight vector and updates it after each trial. Thetth weight vector wt can be considered as the hypothesis the algorithm has before trial t aboutthe best linear predictor for the trial sequence. At trial t, the algorithm gives the predictionŷt = wt � xt. After receiving the outcome yt, it updates the weight vector according to theupdate rule wt+1 = wt � 2�(ŷt � yt)xt ;2

where � is a positive learning rate. To motivate our name GD for this algorithm, note thatthe derivative of the loss (yt � wt � xt)2 of the algorithm with respect to the weight wt;i isgiven by 2(wt � xt � yt)xt;i. Hence, the update subtracts from the weight vector the gradientrwt(yt�wt �xt)2 multiplied by the scalar �. The GD algorithm can be considered as a simpleapplication of the gradient descent heuristic to our on-line prediction problem. Choosing thelearning rate � is nontrivial and can signi�cantly a�ect the performance of the algorithm.We also introduce a new on-line prediction algorithm, which we call the exponentiatedgradient algorithm, or the EG algorithm. The EG algorithm is closely related to the algorithmgiven by Littlestone et al. [LLW95]. The EG algorithm also has a weight vector wt and predictswith ŷt = wt � xt. The update rule iswt+1;i = rt;iwt;iPNj=1 rt;jwt;j ;where rt;j = e�2�(ŷt�yt)xt;j for some positive learning rate �. Thus, the ith component of thegradient now appears in the exponent of a factor that multiplies wt;i.The weights of the EG algorithm are positive and sum to 1. This restriction on the weightvector clearly also restricts the predictive ability of the algorithm. Therefore, we also introducethe exponentiated gradient algorithm with positive and negative weights , or the EG� algorithm.The EG� algorithm is obtained by applying a simple transformation to the EG algorithm. Thecomponents of its weight vector can be positive or negative. Their sum is not �xed, but thealgorithm assumes a �xed upper bound for it.The algorithms GD and EG can be motivated using a common framework. In making anupdate, the algorithm must balance its need to be conservative, i.e., retain the information ithas acquired in the preceding trials, and to be corrective, i.e., to make certain that if the sameinstance were observed again, the algorithm could make a more accurate prediction, at least ifthe outcome is also the same. Thus, with an old weight vector s, the algorithm chooses a newweight vector w that approximately minimizesd(w; s) + �L(yt;w � xt) ;where d(w; s) is some measure of distance from the old to the new weight vector, L is theloss function, and the magnitude of the positive constant � represents the importance ofcorrectiveness compared to the importance of conservativeness. The measure d is typically not ametric. For the square loss function, using the squared Euclidean distance d(w; s) = 12 jjw�sjj22results in the GD algorithm. The EG algorithm results from using for d the relative entropy,also known as Kullback-Leibler divergence,dre(w; s) = NXi=1wi ln wisi :This assumes that all the components si and wi are positive, and the constraints Pi si =Piwi = 1 are maintained. The use of the relative entropy as a distance measure is motivatedby the Maximum Entropy Principle of Jaynes and the more general Minimum Relative EntropyPrinciple of Kullback. These fundamental principles have many applications in InformationTheory, Physics and Economics (See Kapur and Kesavan [KK92] and Jumarie [Jum90] for anoverview). 3

For our work it is central that the distance measure is used in two di�erent ways: �rst, itmotivates the update rule, and second, it is applied as a tool in the analysis of the algorithmthus obtained. By estimating the change of distance from the weight vector wt of the algorithmto a comparison vector u at each update, it is possible to prove the kind of worst-case lossbounds we consider here. This use of a distance measure for obtaining worst-case loss boundswas pioneered by Littlestone's analysis of Winnow [Lit89b], which also employs a variant ofthe relative entropy. Amari's [Ama94, Ama95] approach in using the relative entropy forderiving neural network learning algorithms is similar to the �rst use we have here for thedistance measure. The distance term in the minimized function is also somewhat analogous toregularization terms used in neural network algorithms to avoid over�tting [Hay93].We now discuss the actual worst-case bounds we can obtain for the GD and EG� algorithms.For the GD algorithm, the bounds we cite were already given by Cesa-Bianchi et al. [CBLW95].These include bounds of both the forms (1.1) and (1.2). For the EG� algorithm, we givenew bounds that are strictly better than those obtained by Littlestone et al. [LLW95] fortheir algorithm. In particular, we also have bounds of the form (1.2), whereas Littlestoneet al. [LLW95] had only bounds of the form (1.1). The importance of considering both thealgorithms GD and EG� comes from the fact that for these algorithms, the constants hiddenby the notation in (1.1) and (1.2) are quite di�erent. To state the exact bounds, recall that forpositive p, the Lp norm for vectors x 2 RN is de�ned by jjxjjp = (jx1jp + � � �+ jxN jp)1=p. Thisis generalized for p =1 by setting jjxjj1 = maxi jxij. All the bounds that follow hold only forthe square loss, and we omit mentioning the loss function in them.Assume now that a trial sequence S satis�es jjxtjj2 � X , where X is a known constant, butlet S be otherwise arbitrary. For the GD algorithm, setting the learning rate � suitably resultsin the bound Loss(GD; S) � 2 �Loss(u; S) + jjujj22X2�that holds for all vectors u 2 RN [CBLW95]. To make the coe�cient in front of Loss(u; S)equal to 1 and thus obtain a bound of the form (1.2), the algorithm needs before the �rst trialreasonably good estimates of some characteristics of the whole trial sequence. These estimateshelp the algorithm to set the learning rate �. In addition to the bound X , the algorithm needbounds K and U , such that some vector u with L2 norm at most U has loss at most K. If thealgorithm is given before the �rst trial any values for the parameters K, U , and X , then thebound Loss(GD; S) � Loss(u; S) + 2pKUX + jjujj22X2 (1:3)holds for all weight vectors u and trial sequences S such that Loss(u; S) � K and jjujj2 � Uhold and jjxtjj2 � X holds for all t. If the parameters K, U , and X are given too low values, thebound (1.3) can become vacuous because the conditions for u and S are not satis�ed for anyu. On the other hand, if the parameters are overly conservative, then the bound also becomesvery loose. If it is not possible to obtain satisfactory values for all the parameters before the�rst trial, it is in some cases possible to apply an iterative scheme for obtaining increasinglyaccurate estimates for some of them as the trial sequence proceeds. This leads to a bound thatis similar to (1.3) but has slightly larger constant coe�cients [CBLW95].For the EG� algorithm, it is necessary to give as a parameter an upper bound U for the L1norm of the vectors u of the comparison class. Assuming now that the instances of the trialsequence S have a bounded L1 norm jjxtjj1 � X for some known constant X , we have thebound Loss(EG�; S) � 3 �Loss(u; S) + U2X2 ln 2N�4

that holds for all u 2 RN such that jjujj1 � U . As with the GD algorithm, additional knowledgeof the trial sequence helps the algorithm to choose the learning rate � more accurately. If, inaddition to U and X , the algorithm is given a parameter K, then it achieves the boundLoss(EG�; S) � Loss(u; S) + 2pK ln 2NUX + 2U2X2 ln 2N (1:4)for all comparison vectors u and trial sequences S such that jjujj1 � U and Loss(u; S) � S holdand jjxtjj1 � X holds for all t.Note that Lp and Lq are dual norms if 1=p + 1=q = 1 [Roy63]. Hence, the L1 norm usedfor the comparison vectors and the L1 norm used for the instances in the bounds for the EG�algorithm are dual. The norm L2, used for both the comparison vectors and the instances inthe bounds for the GD algorithm, is its own dual. We now show that the di�erent pairs of dualnorms in the upper bounds for the GD and the EG� algorithms result in certain situations inradically di�erent behavior for large N . For simplicity, we consider the case in which there isa perfect linear relation between the instances and outcomes, and therefore some comparisonvector u satis�es Loss(u; S) = 0. We can then take K = 0 in the bounds (1.3) and (1.4).Assume that all the other parameters are also set optimally, and write Xp = maxt jjxtjjp forp = 2 and p = 1. Then the bound (1.3) simpli�es to Loss(GD; S) � jjujj22X22 and the bound(1.4) to Loss(EG�; S) � 2jjujj21X21 ln 2N .For clarity, we consider two extreme cases. First, assume that u has exactly k componentswith value 1 and the rest N � k components have value 0. Thus, only k input variables arerelevant for the prediction task. Assume that the instances xt are from the set f�1; 1 gN ofvertices of an N -dimensional cube. Then jjujj2 = pk, jjujj1 = k, X2 = pN , and X1 = 1.The bounds become Loss(GD; S) � kN and Loss(EG�; S) � 2k2 ln 2N , so for N � k the EG�algorithm has clearly the better bound. On the other hand, let u = (1; : : : ; 1), and let theinstances be rows of the N �N unit matrix. Then jjujj2 = pN , jjujj1 = N , and X2 = X1 = 1.The bounds become Loss(GD; S) � N and Loss(EG�; S) � N2 ln 2N , so the GD algorithm hasclearly the better bound. Thus, the bounds for GD and EG� are incomparable, and for largeN the di�erence can be arbitrarily large in either direction.The simpli�ed scenario given above can be generalized. If only few of the input variablesare relevant for predicting the outcomes, but all the input variables take values of roughly equalmagnitudes, then the EG� algorithm has the better bound. The GD algorithm has the betterbound if all the input variables are almost equally relevant for predicting, and the L2 norms ofthe instances are not much larger than the L1 norms. This happens if most of the total weightin the instance vectors is concentrated on the largest components. The conclusions remainsimilar also when no comparison vector u achieves Loss(u; S) = 0, which is the case if thereis noise in the instances or outcomes. However, the di�erences between the total losses of thealgorithms become less pronounced in these less pure situation.While the preceding comparison is based purely on worst-case bounds, the conclusions aboutthe relative merits of the algorithms are con�rmed by experiments on simple arti�cial data. Thisis true both with and without noise in the outcomes. In the experiments we have also seenthat the learning rates suggested by our worst-case upper bound analysis are quite close to theoptimal ones.In particular, we have observed that the number of examples the GD algorithm needs beforeit obtains an accurate hypothesis is roughly comparable to the numberN of input variables, evenif almost all of the input variables are irrelevant for the prediction task. For the EG� algorithm,the dependence on the number of irrelevant input variables is only logarithmic, so doubling thenumber of irrelevant variables results in only a constant increase in the total loss. It seems5

that the EG� algorithm has a strong bias for hypotheses with few relevant variables. Thus, ifonly few variables are needed for prediction, then the loss bound of EG� grows sublinearly inthe number N of the variables. The GD algorithm is biased towards hypotheses with small L2norm, and even if only few variables are relevant, it uses all the dimensions in a futile searchfor a good predictor with a small norm.We feel that the situation that favors the EG� algorithm is much more natural and likelyto arise in practice. Since linear predictors are very restricted, a natural extension wouldbe to expand the instance xt by including as new input variables the values fi(xt) for somesuitably chosen basis functions fi. Then a linear prediction algorithm could actually use alinear combination of the basis functions as its predictor. As an example, we might includeall the O(N q) products of up to q original input variables [BGV92]. Assuming that the inputvariables are in the range [�1; 1], this does not increase the L1 norms of the instances. Assumefurther that the outcomes are actually given by some degree q polynomial of the input variables,with k terms that each have a constant coe�cient of at most 1. Then the loss bound for theEG� algorithm after the expansion of the instances would be O(k2q logN). However, the GDalgorithm would su�er from the fact that the expansion increases the L2 norms of the instances,and could have a loss O(kN q). Unfortunately, expanding the instances increases the amount ofcomputations needed in the predictions and updates.Worst-case upper bounds have become a powerful tool in analyzing simple learning problems.The learning algorithms GD and EG� can be directly applied to feed-forward neural networks.For the GD algorithm, this leads to the back-propagation algorithm. From the EG� algorithmwe obtain a neural network algorithm that uses the same gradient information as the back-propagation algorithm, but applies it in a radically di�erent manner. We expect that some ofthe di�erences in the behavior of the GD and EG� algorithms for a linear neuron carry overto feed-forward neural networks, but it seems unlikely that one could prove worst-case boundsin this more complicated setting. For single sigmoided neurons, worst-case bounds have beenobtained recently [HKW95].We de�ne the basic notation in Section 2. Our main algorithms are introduced in Section 3,and their derivations using the various distance measures are given in Section 4. In Section 5 weprove our worst-case upper bounds for the losses of the algorithms. Both Section 4 and Section 5begin with a high-level description of our approach, after which the more technical applicationof the ideas for the various algorithms follows. Section 6 gives some related lower bound results.In Section 7 we show how the algorithm and their upper bound proofs can be modi�ed for ageneralized scenario, in which the algorithm is required to make several predictions at once.Section 8 contains a brief discussion on converting our worst-case total loss bounds for expectedinstantaneous loss bounds. Our experimental comparisons of the algorithms are described inSection 9.To quickly get an idea of our main results, the reader can skim through the de�nitions inSection 2 and the descriptions of the algorithms in Section 3, and then go to Section 9 for thecomparison of our theoretical and empirical results for the di�erent algorithms. Section 4 isimportant for gaining intuition about the algorithms. The most important theoretical resultsare given in Section 5.2 PreliminariesOn-line prediction algorithms function as follows. In trial t, for t = 1; 2; : : :, the algorithm�rst receives an instance xt 2 RN . After producing a prediction ŷt 2 R, the algorithm receives6

an outcome yt 2 R as feedback. The performance of the algorithm at trial t is measured interms of a loss function L that assigns a nonnegative real loss L(y; ŷ) to each possible outcome-prediction pair (y; ŷ) and has the property L(y; y) = 0 for y 2 R. For a more compact notation,we de�ne Ly(ŷ) = L(y; ŷ). In particular, we write L0y(ŷ) for (@L(y; z)=@z)z=ŷ when ŷ is somegiven �xed value. Our default loss function is the square loss, i.e., L(y; ŷ) = (y � ŷ)2. Anothercommonly used loss function, for predictions and outcomes in the interval [0; 1], is the entropicloss function: L(y; ŷ) = y ln(y=ŷ) + (1 � y) ln((1 � y)=(1 � ŷ)). Here we follow the standardconvention 0 ln 0 = 0.Technically, an on-line prediction algorithm is a mapping A that maps a sequence (xi; yi),i = 1; : : : ; t � 1, of instance-outcome pairs and a new instance xt into a prediction ŷt =A((x1; y1); : : : ; (xt�1; yt�1);xt). In this paper we only consider on-line prediction algorithmsthat represent all the information they retain from the trials 1; : : : ; t� 1 by a weight vector wtand predict with ŷt = wt � xt. Then the weight vector can be considered as the algorithm'slinear hypothesis. The initial weight vector w1 is a parameter of the algorithm. At the end ofeach trial the algorithm updates its previous weight vector wt into wt+1, taking into accountthe instance xt and the outcome yt as well as wt. We will discuss various update rules in thispaper.The total loss of A on a sequence S = ((x1; y1); : : : ; (x`; y`)) isLossL(A; S) = X̀t=1L(yt; ŷt) :We also de�ne a total loss for a weight vector u 2 RN byLossL(u; S) = X̀t=1L(yt;u � xt) :We omit the subscript L when we use the square loss L(y � ŷ) = (y � ŷ)2.Our goal is to have algorithms for which the loss LossL(A; S) is low for all possible trialsequences. Obviously, without some knowledge of the trial sequence S, we cannot give anyuseful guarantees about LossL(A; S). To set a reasonable goal for the algorithms, we considerthe loss infu2U LossL(u; S) of the best linear hypothesis in some class U � RN of weight vectors.The quantity LossL(A; S)� infu2U LossL(u; S) (2:1)is then the additional loss of the algorithm compared to the weight vectors of the class U .We seek algorithms with provable upper bounds on the additional loss that hold for arbitrarysequences S. We call the set U the comparison class and the vectors u 2 U comparison vectors.We sometimes call a particular comparison vector u 2 U that has a small loss a target vector.To prove bounds for the additional loss (2.1), we usually need to make some assumptions aboutthe norms of the comparison vectors u 2 U , as well as about the instances xt that appear inthe trial sequence S. Observe that the in�mum measures how well a linear model can do whenwhole sequence is given in a advance. The on-line learner only sees one example at a time andthe additional loss over the in�mum measures the price the algorithm has to pay for not seeingthe whole sequence in advance.For any positive real p, the Lp norm for vectors x 2 RN is de�ned by jjxjjp = (jx1jp +� � � + jxN jp)1=p. For the case p = 1 we have jjxjj1 = PNi=1 jxij, and for case p = 2 we havethe Euclidean length jjxjj2 = qPNi=1 x2i of the vector x. Besides these two norms, we also use7

the L1 norm jjxjj1 = maxNi=1 jxij, which is obtained as a limit in the de�nition of Lp when papproaches 1.We have various measures of distance between two weight vectors u and w. In applyingthe distance measures to be presented shortly, we usually take as u some comparison vectorand as w the hypothesis of the algorithm at some trial. In general, a distance measure d isany function mapping RN �RN to the nonnegative reals in such a way that d(u;u) = 0 holdsfor all u 2 RN . The most basic of our distance measures is the squared Euclidean distance dsqde�ned by dsq(u;w) = 12 jju�wjj22. Some distance measures we use are only de�ned if u and ware in a particular subset of RN . The relative entropy is a distance measure that is only de�nedwhen both vector are probability vectors , which means that their components are nonnegativeand sum to 1. For two probability vectors u and w the relative entropy dre(u;w) is de�ned bydre(u;w) = NXi=1 ui ln uiwi :Note that we allow the components to be zero, and for that case the usual convention 0 ln 0 = 0is used. If we have wi = 0 and ui > 0 for some i, then dre(u;w) = 1. It can be shown thatdre(u;w) is always nonnegative, and 0 only if u = w.If w = (1=N; : : :; 1=N) is the uniform probability vector, then for all probability vectorsu 2 [0; 1]N we have dre(u;w) = lnN � H(u), where the quantity H(u) = �PNi=1 ui ln ui iscalled the entropy of the weight vector u. Every probability vector u satis�es 0 � H(u) � lnNand, hence, dre(u;w) � lnN for the uniform vector w.We now generalize the relative entropy by removing the requirement that the componentsof u and w sum to 1 but still keeping the requirement that the components of both vectors arenonnegative. We de�ne the unnormalized relative entropy dreu(u;w) for all u and w in [0;1)Nby dreu(u;w) = NXi=1�wi � ui + ui ln uiwi� :Note that dreu(u;w) = dre(u;w) holds when both u and w are probability vectors. It is easyto see that dreu(u;w) � 0 holds for all vectors u and w in 2 [0;1)N and equality holds only ifu = w.We also consider the distance measure d�2(u;w) de�ned byd�2(u;w) = 12 NXi=1 (ui � wi)2wi = 12 NXi=1 u2iwi � 1! ;where the second equality is based on assuming PNi=1 ui = PNi=1 wi = 1. Because the functionf given by f(u) = w � u + u ln(u=w) has around u = v the second-order Taylor expansionf(u) = (u�w)2=(2w)+O((u�w)3), the measure d�2(u;w) can be considered an approximationfor the measure dreu(u;w). Since ln x � x� 1, it is also easy to see that dre(u;w)� 2d�2(u;w)holds for probability vectors u and w.Note that none of the distance measures discussed above satis�es the triangle inequality,and with the exception of the squared Euclidean distance dsq the distance measures are notsymmetric. For the squared Euclidean distance dsq, we clearly have dsq(u;u) � 0 for all u, anddsq(u;w) > 0 for all w 6= u. These properties also hold for the distance measures dreu and d�2if the vectors w and u are restricted to have only nonnegative components, and for dre if u andw are restricted to be probability vectors. See Helmbold et al. [HSSW95] for some plots thatvisualize the distance measures for probability vectors in the three-dimensional case.8

Algorithm GDL(s; �)Parameters:L: a loss function from R�R to [0;1),s: a start vector in RN , and�: a learning rate in [0;1).Initialization: Before the �rst trial, set w1 = s.Prediction: Upon receiving the tth instance xt, give the prediction ŷt = wt � xt.Update: Upon receiving the tth outcome yt, update the weights according to therule wt+1 = wt � �L0yt(ŷt)xt :Figure 3.1: The gradient descent algorithm GDL(s; �).3 The main algorithmsIn this section we introduce the main on-line prediction algorithms we consider in this paper.In Section 4 we give a motivation that shows how each of the algorithms naturally arises froman approximate solution to a certain minimization problem. A number of additional algorithmsare also introduced in Section 4.All the algorithms share the same basic structure. The algorithm maintains a weight vector,which can be considered as the algorithm's guess of a good linear predictor. We use wt todenote the weight vector of an algorithm before trial t. The weight vector wt contains the onlyinformation the algorithm retains about the trials 1; : : : ; t� 1. The algorithm starts by settingthe initial weight vector w1 to be some start vector s. After seeing the tth outcome yt, thealgorithm updates its weight vector to wt+1 according to its update rule. The value of the newweight vector wt+1 depends on the old weight vector wt, the instance xt, the prediction ŷt,the outcome yt, and a learning rate �. The exact dependence is called the update rule of thealgorithm. The di�erence between our various algorithms is that they use di�erent update rules.The learning rate � may be di�erent at di�erent trials, but here we usually keep it �xed. Theprediction ŷt after seeing the instance xt at trial t is given by ŷt = wt �xt for all the algorithms.As a small exception to this, for some of the algorithms the predictions are restricted into a�xed interval, and if the value wt �xt fall outside this interval, the prediction will be the closestvalue inside the interval.Figure 3.1 gives the algorithm which we call the gradient descent algorithm and denote byGDL. Recall that L0yt(ŷt) = (@L(yt; z)=@z)z=ŷt . Notice that the ith component of the gradientrwtL(yt;wt � xt) is given by @L(yt;w � x)=@wi = (@L(yt; z)=@z)z=w�x xi = L0yt(w � x)xi. Thus,the gradient descent algorithm updates the weight vector by subtracting from it the gradientrwtL(yt;wt � xt) multiplied by the scalar �. The GD algorithm can therefore be seen as astraightforward application of the usual gradient descent minimization method to the on-lineprediction problem. We let GD(s; �) denote the algorithm GDL(s; �) for the case when theloss function L is the square loss function given by L(y; ŷ) = (y � ŷ)2. The algorithm GD(s; �)has many names, including the Widrow-Ho� algorithm and the Least Mean Square (LMS)algorithm [CBLW95, WS85]. The update for GD(s; �) is simplywt+1 = wt � 2�(ŷt � yt)xt : (3:1)The start vector s of the algorithm can be arbitrary. Typically one would choose s = 0. As thetrial sequence proceeds, the individual weights wt;i can reach arbitrarily high and low values. A9

Algorithm EGL(s; �)Parameters:L: a loss function from R�R to [0;1),s: a start vector, with PNi=1 si = 1 and si � 0 for all i, and�: a learning rate in [0;1).Initialization: Before the �rst trial, set w1 = s.Prediction: Upon receiving the tth instance xt, give the prediction ŷt = wt � xt.Update: Upon receiving the tth outcome yt, update the weights according to therule wt+1;i = wt;irt;iPNj=1 wt;jrt;j ; (3:3)where rt;i = exp ���L0yt(ŷt)xt;i� : (3:4)Figure 3.2: The exponentiated gradient algorithm EGL(s; �).typical learning rate could be � = 1=(4X2) where X is an estimated upper bound for the largestL2 norm maxt jjxtjj2 of the instances. Later in Theorem 5.3 we give some theoretical resultsabout the proper choice of � and the resulting performance of GD. As a general heuristic, thelearning rate should be low if it is expected, for example because of noise, that there is no linearpredictor u for which LossL(u; S) is low. The learning rate should be high if it is expected thatfor all good linear predictors u, the distance jju� sjj2 from the start vector is large.We also consider one particular method of letting the learning rate of GD vary betweentrials. Thus, we use the name GDV(s; �) for the algorithm that is as GD(s; �) except that theupdate (3.1) is replaced by wt+1 = wt � 2 �jjxtjj22 (ŷt � yt)xt : (3:2)The variable learning rate algorithm GDV is of particular interest when it is assumed thatyt = u � xt holds for some �xed unknown vector u.We now turn to the two main new algorithms of this paper. The �rst, and simpler, ofthese is given in Figure 3.2. We call it the exponentiated gradient algorithm, or EG. In theupdate of EG, each weight is multiplied by a factor rt;i that according to (3.4) is obtainedby exponentiating the ith component @L(yt;wt � xt)=@wt;i = L0yt(wt � xt)xi of the gradientrwtL(yt;wt � xt). After this multiplication, the weights are normalized, as shown in (3.3), sothat they sum to 1. The weights clearly never change sign. Hence, the weight vector wt of EGis always a probability vector, i.e., it satis�es Pi wt;i = 1 and wt;i � 0 for all i. Therefore, theprediction wt � xt is a weighted average of the input variables xt;i, and wt gives the relativeweights of the components in this weighted average. This is in contrast to the GD algorithm,where also the total weight jjwtjj1 can change. The fact that the weight vector is always aprobability vector clearly restricts the abilities of EG to learn more general linear relationships.We shall soon see how these restrictions can be avoided by a simple reduction.As the GD algorithm, the EG algorithm has a loss function, start vector, and a learningrate as its parameters. Again, L0yt(ŷt) = (@L(yt; z)=@z)z=ŷt . If the loss function L is the squareloss function, we denote EGL(s; �) simply by EG(s; �). For the square loss, (3.4) becomesrt;i = e�2�(ŷt�yt)xt;i :10

We assume that the start vector s also satis�es Pi si = 1 and si � 0 for all i. The usualchoice for s is the uniform probability vector (1=N; : : :; 1=N). A typical learning rate could be� = 2=(3R2), where R is an upper bound for the maximum di�erence maxt (maxi xt;i �mini xt;i)between the components xt;i of an instance xt. Analogously to the GD algorithm, the EGalgorithm should have a low learning rate if no probability vector u is assumed to be a goodpredictor, and a high learning rate if it is assumed that for the good predictors u the distancedre(u; s) from the start vector is large. If s is the uniform vector (1=N; : : :; 1=N), then thedistance is largest for nonuniform vectors u, having its maximum value lnN when for some ithe vector u has ui = 1 and uj = 0 for j 6= i. More detailed results about the choice of thelearning rate and the resulting total loss of EG are given in Theorem 5.10.Before proceeding to our second main algorithm, we give a simpli�ed alternative for theupdate rule of the EG algorithm. The alternative has the bene�t of avoiding the use ofthe exponential function and thus possibly saving some computation time. We use the nameapproximated EG for the algorithm obtained from the EG algorithm by replacing the update(3.3) by wt+1;i = wt;i �1� �L0yt(ŷt) (xt;i � ŷt)� : (3:5)To see how the approximated update (3.5) arises, note that the �rst order Taylor approximationof e�av for v close to v0 is given by e�av � e�av0(1� a(v � v0)). By replacing the exponentialson the right hand side of (3.3) by this approximation, with a = �Lyt(ŷt), v = xt;i, and v0 = ŷt,we obtain wt+1;i = wt;ie�aŷt(1� a(xt;i � ŷt))PNi=1 wt;je�aŷt(1� a(xt;j � ŷt)) : (3:6)We get (3.5) from (3.6) by noticing that PNi=1wt;j = 1 and PNi=1 wt;j(xt;j � ŷt) = 0, whichmakes the denominator on the right hand side of (3.6) equal to e�aŷt . Admittedly, it may seemsomewhat arbitrary to use ŷt as the center of the Taylor approximation for e�axt;i . However,we shall see in Subsection 4.4 that the update rule (3.5) also has another motivation that isnot based on approximating (3.3). It has also been noticed that in applying the exponentiatedgradient update to a certain unsupervised learning problem [HSSW95] the approximation givenhere leads to a generalization of the Expectation Maximization algorithm [DLR77].Note that the update rule (3.5) maintains the invariant PNi=1 wt;j = 1. However, it maymake some of the weights wt+1;i zero or negative. A weight that once gets set to 0 can neverrecover because of the multiplicative nature of the update, and this might be a problem. Oneway to ensure that the weights remain positive after the update (3.5) is to enforce that thelearning rate satis�es � < �L0yt(ŷt)(xt;i � ŷt)��1 (3:7)for all indices i for which the quantity on the right-hand side of (3.7) is positive. In some verypreliminary experiments we have performed, it seems that the performance of the approximatedEG is hardly distinguishable from that of the unapproximated EG, and that there is no realproblem with weights going to zero. However, di�culties may arise in more complicatedsituations.The second new algorithm, which we call the exponentiated gradient algorithm with positiveand negative weights, or EG�, is given in Figure 3.3. The EG� algorithm can best beunderstood as a way to generalize the EG algorithm for more general weight vectors by usinga reduction. Given a trial sequence S, let S 0 be a modi�ed trial sequence obtained from S byreplacing each instance xt by x0t = (Ux1; : : : ; UxN ;�Ux1; : : : ;�UxN). Hence, the number of11

Algorithm EG�L (U; (s+; s�); �)Parameters:L: a loss function from R�R to [0;1),U : the total weight of the weight vectors,s+ and s�: a pair of start vectors in [0; 1]N, with PNi=1(s+i + s�i) = 1, and�: a learning rate in [0;1).Initialization: Before the �rst trial, set w+1 = Us+ and w�1 = Us�.Prediction: Upon receiving the tth instance xt, give the predictionŷt = (w+t �w�t) � xt :Update: Upon receiving the tth outcome yt, update the weights according to therules w+t+1;i = U � w+t;ir+t;iPNj=1 �w+t;jr+t;j + w�t;jr�t;j� (3.8)w�t+1;i = U � w�t;ir�t;iPNj=1 �w+t;jr+t;j + w�t;jr�t;j� ; (3.9)where r+t;i = exp ���L0yt(ŷt)Uxt;i� (3.10)r�t;i = exp ��L0yt(ŷt)Uxt;i� = 1r+t;i (3.11)Figure 3.3: Exponentiated gradient algorithm with positive and negative weightsEG�L(U; (s+; s�); �).
12

dimensions is doubled. For a start vector pair (s+; s�) for EG�, let s = (s+1 ; : : : ; s+N ; s�1 ; : : : ; s�N).Consider using EG�(U; (s+; s�); �) on a trial sequence S and using EG(s; �) on the modi�edtrial sequence S 0. If we let w0t be the tth weight vector of EG(s; �) on the trial sequenceS 0, it is easy to see that Uw0t = (w+t;1; : : : ; w+t;N ; w�t;1; : : : ; w�t;N) holds for all t and, therefore,w0t � x0t = (w+t �w�t) � xt. Hence, the predictions of EG� on S and EG on S 0 are identical, soEG� is a result of applying a simple transformation to EG. This transformation leads to analgorithm that in e�ect uses a weight vector w+t �w�t , which can contain negative components.Further, by using the scaling factor U , we can make the weight vector w+t �w�t range over allvectors w 2 R for which jjwjj1 � U . Although jjw+t jj1 + jjw�t jj1 is always exactly U , vectorsw+t �w�t with jjw+t �w�t jj1 < U result simply from having both w+t;i > 0 and w�t;i > 0 for somei. For other examples of reductions of this type, see Littlestone et al. [LLW95].The parameters of EG� are a loss function L, a scaling factor U , a pair (s+; s�) of startvectors in [0; 1]N with PNi=1(s+i + s�i) = 1, and a learning rate �. We simply write EG� forEG�L where L is the square loss function. As the start vectors for EG�, one would typically uses+ = s� = (1=(2N); : : : ; 1=(2N)). This gives w+1 �w�1 = 0. A typical learning rate functioncould be � = 1=(3U2X2) where X is an estimated upper bound for the maximum L1 normmaxt jjxtjj1 of the instances. More detailed theoretical results are given in Theorem 5.11.Again, we introduce one particular variable learning rate version of EG�. We use the nameEGV� for the algorithm that is as EG� except that (3.10) and (3.11) are replaced byr+t;i = exp�� �jjxtjj21 (ŷt � yt)Uxt;i� (3.12)r�t;i = exp� �jjxtjj21 (ŷt � yt)Uxt;i� = 1r+t;i : (3.13)Again, EGV� turns out to be interesting in the noise-free case yt = u � xt.As with the EG algorithm, we can replace the exponential functions in the update rule ofEG� by a suitable approximation. As we soon see, this leads to the update rulew+t+1;i = w+t;i �1� �L0yt(ŷt)U (xt;i � ŷt)� (3.14)w�t+1;i = w�t;i �1� �L0yt(ŷt)U (�xt;i � ŷt)� : (3.15)We call the resulting algorithm the approximated EG� algorithm. As with the approximatedEG algorithm, to guarantee that the weights remain positive the learning rate � must satisfy� < �L0yt(ŷt)U(xt;i � ŷt)��1 (3:16)for all i for which the right-hand side of (3.16) is positive, and� < �L0yt(ŷt)U(�xt;i � ŷt)��1 (3:17)for all i for which the right-hand side of (3.17) is positive.In order to derive the updates (3.14) and (3.15), we again use the approximation e�av �e�av0(1 � a(v � v0)) with a = �Lyt(ŷt), v0 = ŷt, and v = xt;i or v = �xt;i. Hence, insteadof (3.10) and (3.11) we use r+t;i = e�aŷt(1 � a(xt;i � ŷt)) and r�t;i = e�aŷt(1 � a(�xt;i � ŷt)).By observing that PNi=1(w+t;i + w�t;i) = 1 and PNi=1(w+t;i � w�t;i)xt;i = ŷt, we see that for theapproximated EG� algorithm, the denominator on the right-hand side of (3.8) becomesNXi=1 �w+t;ir+t;i + w�t;ir�t;i� = e�aŷt (1 + aŷt) NXi=1(w+t;i + w�t;i)� a NXi=1(w+t;i � w�t;i)xt;i! = e�aŷt :13

Then (3.14) and (3.15) follow easily from (3.8) and (3.9).4 Derivation of the updates4.1 Basic methodIn this section, we give a common motivation for the algorithms GD and EG introduced inSection 3, as well as some additional algorithms. Consider an algorithm that before a giventrial has s as its weight vector. At the trial, the algorithm receives an instance x, gives aprediction ŷ = s � x, and receives an outcome y. The algorithm then updates its weight vectorto w. In choosing the new weight vector w, there are two main considerations. First, thealgorithm should learn something from the trial. Thus, if the same instance and outcome wereto be observed again, the loss L(y;w � x) of the algorithm with the new weight vector shouldbe smaller than the loss L(y; s �x) with the old weight vector. We call the tendency to improvethe prediction on the example correctiveness . Second, the algorithm should remember at leastpart of what it learned in the preceding trials. Since all the information that the algorithm hasretained from the preceding trials is contained in the weight vector s, the new weight vectorshould be close to the old weight vector w, as measured by some distance measure d(w; s). Wecall the tendency to remain close to the old weight vector conservativeness .The correctiveness and conservativeness requirements are usually at odds with each other,so the algorithm needs to make a compromise. One way for the algorithm to obtain such acompromise is to minimize a functionU(w) = d(w; s) + �L(y;w � x) ; (4:1)where the coe�cient � > 0 is the importance given to correctiveness relative to conservativeness.If � is close to 0, minimizing U(w) is close to merely minimizing d(w; s), and hence the algorithmtends to make only small updates. On the limit where � approaches in�nity, the problemof minimizing U(w) approaches the problem of minimizing d(s;w) subject to the constraintL(y;w �x) = 0. If we expect that the instances or outcomes given to the algorithm are subjectto noise or otherwise unreliable, we choose a small value of �, which prohibits the algorithmfrom making too radical changes based on a single trial.To minimize U(w), we would need to set its N partial derivatives @U(w)=@wi to zero. Since@L(y;w �x)=@wi = L0y(w �xt)xi, this means �nding, for i = 1; : : : ; N , the value wi that satis�es@d(w; s)@wi + �L0y(w � x)xi = 0 : (4:2)Solving (4.2) for wi is, in general, very di�cult. However, if we replace L0y(w � x) by L0y(s � x)in (4.2), we get the equation @d(w; s)@wi + �L0y(s � x)xi = 0 ; (4:3)which turns out to be easy to solve for all the distance measures d we consider. If the update issmall, i.e., if the new weight vector w is close to the old weight vector s, then replacing L0y(w �x)by L0y(s�x), which leads from (4.2) to (4.3), gives a reasonable approximation. Thus, we apply inour algorithms update rules that result from solving (4.3) for wi with various distance measuresd. 14

Helmbold et al. [HSSW95] give an alternative motivation for (4.3). Recall that our goalis to minimize U(w), and that solving this minimization problem exactly is di�cult becauseboth d(w; s) and L(y;w � x) depend on w. To simplify the dependence of L(y;w � x) on w weapproximate L(y;w �x) with its �rst-order Taylor polynomial with respect to w around w = s.In other words, instead of minimizing U(w) we minimize its approximation bU(w) de�ned bybU(w) = d(w; s)+ � �L(y; s � x) + L0y(s � x) x � (w� s)� :Now the equation @ bU(w)=@wi = 0 simpli�es to (4.3).Of course, instead of approximating U with bU and then solving the minimization problem forbU exactly, we could apply some numerical method directly to �nd an approximate minimum forU . It is not clear whether this would results in a better prediction performance, but it certainlywould make the computations more complicated.For another view to the meaning of minimizing U , assume that there is a unique weightvector w0 such that that U(w) is minimized for w = w0, and write p = L(y;w0 � x). Thus, p isa real number that depends on �, y, s, and x. When � approaches 1, the relative importanceof L(y;w � x) in U(w) increases and hence p approaches 0. It is the easy to see that w0 is alsothe unique solution to the constrained problem of minimizing d(w; s) subject to L(y;w �x)� p.Hence, the optimal weight vector w0 can be seen as obtained from moving from s into a regionof low loss, de�ned by the condition L(y;w � x) � p, along the shortest possible route. Forlarge values of �, the value p is close to 0 and the new weight vector is required to be almostcorrect for the received instance and outcome. For small values of �, the value p is slightly lessthan L(y; s � x), so the weight vector is made to make only a small corrective movement. Thisapproach to updating a weight vector is similar to the methods introduced by Amari [Ama94,Ama95] for more general neural network learning problems.In the next subsections we derive the updates of this paper using the method describedabove with the distance measures dsq, dre, dreu, and d�2 . Sometimes, in particular with thedistance measure dre, we wish to guarantee the additional property PNi=1 wi = 1. We do thisby the usual method of introducing a Lagrangian multiplier
. Hence, instead of minimizing bUwe minimize eU de�ned byeU(w;
) = d(w; s)+ � �L(y; s � x) + L0y(s � x) x � (w � s)� +
 NXi=1wi!� 1! :Setting the N + 1 partial derivatives of eU to zero gives us the equations@d(w; s)@wi + �L0y(s � x)xi +
 = 0 (4:4)for i = 1; : : : ; N and the additional equationNXi=1wi = 1 : (4:5)Thus, when the additional constraint PNi=1 wi = 1 is needed, we solve for i = 1; : : : ; N theequations (4.4) instead of (4.3) and then apply (4.5) to obtain the value for
.15

4.2 Gradient descent algorithmsThe gradient descent algorithm GDL is obtained by using the squared Euclidean distancedsq as the distance measure. For this case the equations (4.3) result in the updatewi = si � �L0y(s � x)xi ; (4:6)which is the update rule for the GDL algorithm.Note that if the loss function is the square loss, the gradient descent update becomesw = s� 2�(s � x� y)x :For the square loss and the Euclidean distance squared we can also minimize U(w) directlywithout making any approximations. In this case, (4.2) becomesw = s� 2�(w � x� y)x : (4:7)From (4.7) one can solve w � x by �rst taking the dot product of both sides with x. If w � x issubstituted back into (4.7), one getsw = s� 2�1 + 2�jjxjj22(s � x� y)x :Thus, minimizing U(w) gives the same update as minimizing bU(w), except that the learningrate parameter is changed in a manner that is independent of w.If we use the squared Euclidean distance together with the constraint that the weightswi must sum to one, we obtain an algorithm GPL that is known as the gradient projectionalgorithm [Lue84]. For this case, the equation (4.4) implieswi = si � �L0y(s � x)xi �
 : (4:8)By substituting (4.8) into (4.5) and using the assumption PNi=1 si = 1 we obtain
 = ��L0y(s � x)avg(x); where avg(x) = NXi=1 xi=N :Substituting this back into (4.8) gives us the update rulewi = si � �L0y(s � x) (xi � avg(x)) : (4:9)for the GPL algorithm. We introduce GPL in this paper for the purpose of comparison to ournew algorithm EGL which also maintains the constraint that the weight sum to one. Actuallythe new algorithm EGL also keeps the weights positive. One can keep the weights of GPLpositive as well by setting a suitable upper bound for the learning rate as we did for theapproximated EGL and EG�L algorithms in Section 3.16

4.3 Exponentiated gradient algorithmsWe now use the relative entropy distance measures dreu and dre. Both measures assume thatthe weight vectors have non-negative components, and dre(w; s) requires that the componentsof the weight vectors sum to one. Substituting d = dreu in (4.3) gives usln wisi + �L0y(s � x)xi = 0 :By solving for wi we obtain the update rulewi = si exp ���L0y(s � x)xi� : (4:10)We call the algorithm with this update rule the exponentiated gradient algorithm with unnor-malized weights and denote it by EGUL. The update rule of the EGUL algorithm is like theupdate rule of EGL, except for the normalization in the update rule for EGL. Assuming thatthe components of s are nonnegative, the components of the updated updated weight vectorw are nonnegative as well. Thus, the nonnegativity constraints are always preserved by thisupdate.Consider now the distance measure dre, which requires the constraintPNi=1 wi =PNi=1 si = 1.For this case, the equation (4.4) becomesln wisi + 1 + �L0y(s � x)xi +
 = 0 ;from which we obtain wi = si exp ���L0y(s � x)xi � 1�
� :Hence, wi = siri exp(�
 � 1) whereri = exp ���L0y(s � x)xi� :Applying (4.5), we obtain exp(�
 � 1) = �PNj=1 sjrj��1. Hence, the update rule iswi = siriPNj=1 sjrj :Note that the update rule keeps the weights wi positive if the weights si are positive.4.4 Approximated exponentiated gradientIn Section 3 we introduced a simple approximation (3.5) for the update rule of the EGalgorithm. We next show that we can motivate the update rule (3.5) of the approximated EGalgorithm starting directly from a distance measure, as we already did for the GD and EGalgorithms. Hence, the approximated EG algorithm seems to have some interest in its ownright. We use the distance measure d�2 to motivate the approximated EG algorithm. As notedin Section 2, d�2(w; s) approximates dreu(w; s) if w and s are close to each other. We �rstlook at the restricted case with PNi=1 wi = PNi=1 si = 1. In this case we obviously can alsoapproximate dre(w; s) by d�2(w; s).For the distance function d�2 , the equation (4.3) becomeswisi � 1 + �L0y(s � x)xi +
 = 0 :17

Solving for wi, and for
 that gives PNi=1 wi = 1, we get from thiswi = si �1� �L0y(s � x) (xi � s � x)� ;which is the update rule (3.5) of the approximated EG algorithm. The nonnegativity of theweights wi is guaranteed if we bound the learning rate by requiring� < �L0y(s � x)(xi � s � x)��1to hold for all i such that L0y(s � x)(xi � s � x) is positive. Since the update is multiplicative, acomponent si that is zero will stay at zero. Therefore, we should not allow wi to be set to 0.We can use the measure d�2 also when the sums PNi=1 si and PNi=1wi are not necessarily 1.Omitting the normalization constraint from the previous derivation gives us the update rulewi = si �1� �L0y(s � x)xi� ;which is an approximation to the update rule of the EGU algorithm. In a simple unsupervisedlearning problem for learning mixture coe�cients it has been noticed that the distance measured�2 can also be used to motivate a generalization of the Expectation Maximization (EM)optimization method [HSSW95].In summary, we have seen that there are two di�erent ways of arriving at the same approxi-mated EG algorithm. First, one can approximate the exponential function in the update rule ofEG. Second, one can use the d�2 distance measure, which is an approximation for the relativeentropy dre, to derive an algorithm in the same manner the relative entropy was used to derivethe EG algorithm.4.5 The approximation step in the derivationsIn the following sections we prove that learning algorithms based on the preceding semi-rigorous motivations actually perform well for the square loss. We prove worst-case square lossbounds for all algorithms introduced in this section, except for the approximated versions of theexponentiated gradient updates. However, experimental results suggest that the approximatedversion of the exponentiated gradient updates behave very closely to the actual exponentiatedgradient updates (See Subsection 9.5).We have been unable to prove worst-case loss bounds expressed as a function of the lossof the best linear weight vector for other loss functions than the square loss. In fact, we havereason to believe that the step of evaluating the derivative @L(y; z)=@z = L0y(z) at z = s � xinstead of z = w �x may lead to bad results particularly if the loss function is unbounded. Forexample, let L be the relative entropy loss. We then haveL0y(z) = �yz + 1� y1 � z :For 0 < y < 1, the value L0y(z) changes dramatically as z approaches 0 or 1. Hence, if theprediction s � x was very close to 0 or 1, then the value L0y(s � x) may not be close to the valueL0y(w � x), even if w and s were relatively close to each other. Therefore, the approximationmade in the derivation of the algorithms may be very inaccurate.18

To see the possible consequences of using the algorithms based on the questionable approx-imation, consider the algorithm EGL for the relative entropy loss in a simple two-dimensionalcase with x = (0; 1) and s = (1 � p; p) for some p. Then s � x = p. As p approaches 0 andy remains �xed to, say 1=2, the value exp ���L0y(p)xi� approaches 1 for i = 2, but remains1 for i = 1. Hence, if we write w = (1 � q; q) for the weight vector w after the update, wesee that q approaches 1 as p approaches 0. Similarly, if p approaches 1, then q approaches 0.Thus, if at some stage of the trial sequence the weight vector get too close to (0; 1) or (1; 0),the consequent updates cause the weight vector to oscillate wildly, even if the outcomes remainconstant. This eventually leads to arbitrarily large losses for the algorithm, although a �xedlinear predictor might have a very small loss.We believe that for linear prediction with the relative entropy loss and other unboundedloss functions, better prediction results can be obtained by solving the minimization problemfor U(w) numerically. However, we have no results on this. Obviously, the numerical solvingwould increase the computational cost of the algorithm.5 Worst case upper bounds for the total loss5.1 Basic methodWe next introduce the basic method used in our proofs for worst case upper bounds forthe losses of on-line prediction algorithms. The method is an abstraction of the proof methodemployed by Littlestone [Lit89b, Lit91] and others [LLW95, CBLW95]. In the subsequentsubsections, we show how this basic idea can be applied to the speci�c algorithms introduced inSection 3. We have succeeded in this application only for the square loss function, but we hopeit could also be applicable to other loss functions. In a simpler situation, where the learneris not trying to learn a linear function but merely to pick out the best single component ofthe instances for predicting the outcomes, it has been possible to use a similar approach toprove bounds for a very general class of loss functions [Vov90]. As noted in Section 4, thealgorithms can be motivated by applying a distance measure to the weight vectors maintainedby the algorithms. These distance measures will also be useful in proving worst-case loss bounds.They have a role similar to that of potential functions in amortized algorithm analysis [CLR90].Let w1; : : : ;w` be the sequence of weight vectors produced by an algorithm A on an N -dimensional trial sequence S = ((x1; y1); : : : ; (x`; y`)), and let ŷt be the tth prediction of A.Then ŷt = wt � xt holds for the algorithms we consider, except in some special cases where weconstrain the range of ŷt. For convenience, we assume that the algorithm makes an updateeven after the last trial, although the resulting weight vector w`+1 is never used for predicting.Let d be a distance measure and L a loss function. Given a weight vector u 2 RN , we saythat d(u;wt) � d(u;wt+1) is the amount of progress made by the algorithm at trial t towardsu. Negative progress towards u means actually moving away from u. Naturally, u must be inthe domain of the distance measure d. For instance, u must satisfy u 2 [0; 1]N and Pi ui = 1if d(u;w) = dre(u;w).In a single trial, we would expect the algorithm to make positive progress towards thosevectors u that made an accurate prediction, and negative progress towards those vectors u thatpredicted inaccurately. This is re
ected in the motivation of the algorithms, where our goal isto move the weight vector towards those weight vectors that made an exactly correct prediction.Over a whole sequence of trials, we would expect the net e�ect to be that the algorithm makespositive progress towards those vectors u for which the total loss LossL(u; S) is relatively small,19

and negative progress towards those vectors u for which the total loss LossL(u; S) is relativelylarge.Consider �rst the special case that for some particular vector u we have yt = u �xt for all t,and hence LossL(u; S) = 0. We then say u is the target vector, and the algorithm should try to�nd it. We could require that the progress towards the target u at trial t should be proportionalto the loss of the algorithm at trial t. This is a speci�c way of saying that the algorithm shouldlearn from its mistakes. Generally, we wish to allow the situation that LossL(u; S)> 0 holds forall u. Then there is no obvious target vector for the algorithm to try to approach. However, wecan require that at each trial t, for all weight vectors u, the progress of the algorithm towardsu is at least aL(yt; ŷt)�bL(yt;u �xt) for some positive coe�cients a and b. Thus, the algorithmshould make large progress towards those weight vectors that predicted much more accuratelythan the algorithm did.Hence, we try to establish bounds of the formaL(yt; ŷt)� bL(yt;u � xt) � d(u;wt)� d(u;wt+1) ; (5:1)which we require to hold for all weight vectors u that we consider as possible targets. Provingbounds of this form is the main technical problem in this paper. To get the tightest bound, wewould wish a to be as large and b to be as small as possible in (5.1). Expectedly, there is atrade-o�, and for any given positive value b there is some largest value of a for which we canprove (5.1). It turns out to be convenient to introduce a new parameter, c, and two functions,f and g, such that for all values c > 0, if we take b = g(c), then a = f(c) is the largest value ofa for which we can prove (5.1). To obtain (5.1) for a = f(c) and b = g(c), the learning rate �must be set in a particular manner that depends on the value c. The bound for the total lossof the algorithm follows by adding the bounds (5.1) with a = f(c) and b = g(c) for t = 1; : : : ; `,which yields f(c)LossL(A; S)� g(c)LossL(u; S) � X̀t=1 (d(u;wt)� d(u;wt+1))= d(u;w1)� d(u;w`+1)� d(u; s) ;since w1 = s and d(u;w`+1) � 0. Hence, we haveLossL(A; S)� g(c)f(c)LossL(u; S) + d(u; s)f(c) : (5:2)Note that (5.2) holds for all possible weight vectors u, although we naturally get the best boundif u has a small loss and is close to the start vector. The �nal step in the proof is to choose thevalue c that minimizes the right-hand side of (5.2) and, hence, gives the tightest bound. Forthe functions f we obtain in our proofs, it is always the case that as c approaches 0, the ratiog(c)=f(c) approaches 1 and 1=f(c) approaches in�nity; as c goes to in�nity, the ratio g(c)=f(c)also goes to in�nity while 1=f(c) approaches some positive constant. Therefore, the larger theloss LossL(u; S) is compared to the distance d(u; s), the smaller value of c we wish to use. Forthe particular functions f and g we have in this paper, choosing c in the optimal way givesbounds of the formLossL(A; S) � infu �LossL(u; S) + c1qLossL(u; S)d(u; s)+ c2d(u; s)� : (5:3)20

The coe�cients c1 and c2 can depend on the norms of the instances xt.Since the learning rate � for which (5.2) is achieved depends on c, and the bound (5.3) isobtained only by choosing c based on some estimates on LossL(u; S) and d(u; s) for a suitabletarget u, we do not directly obtain the bound (5.3) in the absence of such estimates. However,if such estimates are not known before the trial sequence begins, it is in some situations possibleto use an iterative method, commonly known as the doubling technique [CBFH+94, CBLW95],for obtaining increasingly accurate estimates as the trial sequence proceeds and modifying thelearning rate accordingly. This leads to bounds of the form (5.3), but with slightly worseconstant coe�cients. Another possibility is to settle for weaker bounds of the formLossL(A; S) � c3 infu (LossL(u; S) + d(u; s)) (5:4)that has a coe�cient c3 > 1 for the leading term LossL(u; S). The weaker bounds can beachieved without any additional knowledge.5.2 Worst-case loss bounds for GDIn this subsection we give a streamlined version of the worst-case analysis of the GDalgorithm. The analysis was originally presented by Cesa-Bianchi et al. [CBLW95]. We start bybounding the loss of the algorithm at a single trial in terms of the loss of a comparison vectoru at that trial and the progress of the algorithm towards u.Lemma 5.1: Let wt be the weight vector of GD(s; �) before trial t in a trial sequence S =((x1; y1); : : : ; (x`; y`)), and let u 2 RN be arbitrary. Let t be arbitrary, and let X be such thatjjxtjj2 � X. For all values a and b such that 0 < a � b=(1 + 2X2b), and a learning rate � thatsatis�es � = b=(1+ 2X2b), we havea(yt �wt � xt)2 � b(yt � u � xt)2 � 12 �jju�wtjj22 � jju�wt+1jj22� : (5:5)For any values a and b such that 0 < b=(1+ 2jjxtjj22b) < a, for any learning rate � there aretrial sequences S and vectors u 2 RN such that (5.5) does not hold.Proof Write pt = yt �wt � xt and qt = yt � u � xt. For wt+1 = wt + 2�ptxt we then have12 �jju�wtjj22 � jju�wt+1jj22� = �2�pt(wt � xt � u � xt)� 2�2jjxtjj22p2t� �2�pt(qt � pt)� 2�2X2p2t :Here equality holds if X = jjxtjj2. Hence, to prove (5.5), it is su�cient to show F (pt; qt; �) � 0,where F (p; q; �) = 2�p(q � p) + 2�2X2p2 + ap2 � bq2 :Further, if X = jjxtjj2, then F (pt; qt; �) � 0 is also a necessary condition for (5.5).As F is a second degree polynomial in q and b is positive, we easily see that for a �xed pand �, the value F (p; q; �) is maximized when q = �p=b. Hence, it is su�cient to show for all pthat G(p; �)� 0, whereG(p; �) = F (p; �p=b; �) = p2((2X2+ 1=b)�2� 2� + a) :21

Again, we easily see that for �xed p the value G(p; �) is minimized if we choose � = b=(1+2X2b).For this optimal choice we getG(p; b=(1+ 2X2b)) = p21 + 2X2b �2X2ab+ a� b� :Thus, if 0 < a � b=(1 + 2X2b) = �, we have G(p; �)� 0, and (5.5) holds. If b=(1 + 2X2b) < a,then for all values of � we have F (p; q; �) > 0 for some p and q. Since we can easily constructa trial sequence S and a vector u for which yt �wt �xt = p and yt � u �xt = q hold, this showsthat (5.5) does not hold if X = jjxtjj2 and b=(1 + 2X2b) < a. 2The next simple lemma shows how repeated application of Lemma 5.1 to all the trials of asequence gives a total loss bound. We introduce a new parameter c for the purpose of choosingthe values of a and b in the applications of Lemma 5.1.Lemma 5.2: Let S = ((x1; y1); : : : ; (x`; y`)) be an arbitrary trial sequence. Let � = c=(X2(1 +2c) where c � 0 is an arbitrary parameter and X � 0 an upper bound such that jjxtjj2 � Xholds for all t. For all start vectors s 2 RN and comparison vectors u 2 RN we then haveLoss(GD(s; �); S)� (1 + 2c)Loss(u; S) + �1 + 12c� jju� sjj22X2 : (5:6)Proof Let b = c=X2 and a = b=(1+ 2X2b) = c=(X2(1+ 2c)). Let wt be the tth weight vectorof GD(s; �) on the trial sequence S. Then (5.5) holds by Lemma 5.1, and thereforec1 + 2c(yt �wt � xt)2 � c(yt � u � xt)2 � X22 �jju�wtjj22 � jju�wt+1jj22� : (5:7)By adding the bounds (5.7) for t = 1; : : : ; ` we getc1 + 2cLoss(GD(s; �); S)� cLoss(u; S) � X22 �jju�w1jj22 � jju�w`+1jj2�� jju�w1jj22X22 ;which is equivalent with (5.6). 2We now show how the �nal loss bounds are obtained by choosing the parameter c inLemma 5.2 appropriately. If we have no knowledge of the relative magnitudes of the lossLoss(u; S) of the comparison vector u and the product jju � sjj22X2, we can choose c in sucha way that the coe�cients of these quantities become the same. If we have some estimates ofthese quantities, we obtain a tighter bound by choosing c in such a way that the larger quantitygets a smaller coe�cient.Theorem 5.3: For a trial sequence S = ((x1; y1); : : : ; (x`; y`)), let X be an upper bound suchthat jjxtjj2 � X holds for all t. With the learning rate � = 1=(4X2) and an arbitrary startvector s 2 RN , we have for any vector u the boundLoss(GD(s; �); S)� 2 �Loss(u; S) + jju� sjj22X2� : (5:8)Further, let K and U be arbitrary constants, and let the learning rate � satisfy� = U2XpK + 2UX2 : (5:9)Then for all u 2 RN such that Loss(u; S) � K and jju� sjj2 � U hold, we haveLoss(GD(s; �); S)� Loss(u; S) + 2pKUX + jju� sjj22X2 : (5:10)22

Note that the second bound becomes vacuous if there is no u 2 RN such that Loss(u; S) � Kand jju � sjj2 � U . The typical start vector for GD is s = 0. For that start vector, U is anupper bound on the L2 norm of u.Proof We �rst apply Lemma 5.2 with c = 1=2. For this value we have 1+2c = 1+1=(2c) = 2,so the bound (5.6) gives (5.8). The bound (5.6) with c = 1=2 holds for the learning rate� = (1=2)=(X2(1 + 1)) = 1=(4X2) as required.To obtain (5.10), we �rst notice that for K and U that satisfy the assumptions of thetheorem, the bound (5.6) impliesLoss(GD(s; �); S)� Loss(u; S) + jju� sjj22X2 + F (c) ; (5:11)where F (c) = 2cK + U2X2=(2c). Assume �rst that K > 0. As F 0(c) = 2K � U2X2=(2c2), wethen have F 0(c) = 0 for c = UX=(2pK). Since F 00(c) > 0 for all c, the value F (c) is minimizedfor c = UX=(2pK). Substituting this value of c into (5.11) yields (5.10).In the special case K = 0 we also have Loss(u; S) = 0, and hence the right-hand side of(5.11) has the limit jju� sjj22X2 as c approaches in�nity. Let us denote by �c the learning rate�c = c=(X2(1 + 2c)). Lemma 5.2 now implies limc!1 Loss(GD(s; �c); S) � jju � sjj22X2. Letnow �1 = limc!1 �c = 1=(2X2). Since the loss Loss(GD(s; �); S) is a continuous function ofthe learning rate �, we obtainLoss(GD(s; �1); S) = limc!1Loss(GD(s; �c); S) � jju� sjj22X2 ;which is the results we claim for K = 0. 2We can perform a simple dimension check to see that the learning rates given in Theorem 5.3are, to an extent, meaningful. Assume, for instance, that the input variables xt;i represent timesmeasured in seconds, and the outcomes yt represent lengths measured in meters. Then also theunit of the predictions ŷt = wt � xt should be 1 meter, so the unit of the weights wt;i shouldbe 1 meter per second. More generally, let the dimension of the input variables be [x] and thedimension of the outcomes [y]. Then the dimension of the weights in [x]�1[y]. By consideringthe update rule (3.1) we see that the dimension of the learning rate � should be [x]�2. Sincethe dimensions of X , K, and U are [x], [y]2, and [x]�1[y], respectively, we see that this is indeedthe case. It is also true that all the terms on the right-hand side of the bounds (5.8) and (5.10)have the same dimension as the loss of the algorithm, namely [y]2.Note that this analysis assumes that all the input variables have the same dimension. Ifthis is not the case, and we change the unit used to measure certain input values while keepingother units unchanged, then the behavior of the algorithm is changed.Recall that by GDV we mean the algorithm that works as GD except that the learning rate� has been replaced by �=jjxtjj2, in other words, the update rule (3.1) has been replaced by(3.2). We now see that the GDV algorithm is particularly well suited for prediction if the lossesat each trial are suitably scaled. Thus, consider measuring the loss at trial t by (yt� ŷt)2=jjxtjj22.Let Loss0 denote the loss of an algorithm or a comparison vector on a trial sequence measuredby this scaled square loss. Given a trial sequence S = ((x1; y1); : : : ; (x`; y`)), we consider themodi�ed trial sequence S 0 = ((x01; y01); : : : ; (x0̀ ; y 0̀)), where x0t = xt=jjxtjj2 and y0t = yt=jjxtjj2.Since (ŷt � yt)2jjxtjj22 = (xt �wt � yt)2jjxtjj22 = � xtjjxtjj2 �wt � ytjjxtjj2�2 ;23

we have Loss0(u; S) = Loss(u; S 0) for all u. Note that (3.2) is equivalent withwt+1 = wt � 2�(wt � x0t � y0t)x0t ;which implies that the weight vectors of GDV(s; �) on the trial sequence S are the sameas the weight vectors of GD(s; �) on the trial sequence S 0. Hence, Loss0(GD(s; �); S) =Loss(GD(s; �); S0). Therefore, Theorem 5.3 applied to the trial sequence S 0, in which jjx0tjj2 = 1for all t, gives the following corollary.Corollary 5.4: Let S = ((x1; y1); : : : ; (x`; y`)) be an arbitrary trial sequence. For arbitrarystart vector s 2 RN and comparison vector u we haveLoss0(GDV(s; 1=4); S)� 2 �Loss0(u; S) + jju� sjj22� :Further, let K and U be arbitrary constants, and let the learning rate be� = U2pK + 2U :Then for all u 2 RN such that Loss0(u; S)� K and jju� sjj2 � U hold, we haveLoss0(GDV(s; �); S)� Loss0(u; S) + 2pKU + jju� sjj22 :The GDV algorithm can also be applied in the situation in which we assume the trialsequence to be noise-free, e.g., yt = u � xt for all t.Theorem 5.5: Let u 2 RN be arbitrary, and consider a trial sequence S = ((x1; y1); : : : ;(x`; y`)) in which yt = u � xt holds for all t. We then haveLoss(GDV(s; 1=2); S)� jju� sjj22maxt jjxtjj22 (5:12)for all start vectors s.Proof Let c � 0 be an arbitrary parameter, and letwct be the tth weight vector of GDV(s; c=(1+2c)) on trial sequence S. By applying Lemma 5.1 withX = jjxtjj2 and b = c=jjxtjj22 and assumingyt = u � xt we get 1jjxtjj22 c1 + 2c(yt �wct � xt)2 � 12 �jju�wct jj22 � jju�wct+1jj22� :Let wt be the tth weight vector of GDV(s; 1=2) on trial sequence S. By considering the limitwhere c approaches 1 we see that(yt �wt � xt)2 � jjxtjj22 �jju�wtjj22 � jju�wt+1jj22� :In particular, we have jju�wtjj22 � jju�wt+1jj22 > 0, and we get(yt �wt � xt)2 � �maxt jjxtjj22��jju�wtjj22 � jju�wt+1jj22� :By adding these inequalities for t = 1; : : : ; ` and observing that jju�w`+1jj2 � 0 we get (5.12).224

5.3 Worst-case loss bounds for GPIn this subsection we show how the worst-case upper bounds for the square loss of the GDalgorithm imply similar bounds for the GP algorithm, which uses the update rule (4.9). Letavg(x) =PNi=1 xi=N , and let avg(x) denote the N -dimensional vector in which each componenthas the same value avg(x). Then for the square loss, the update rule (4.9) becomeswt+1 = wt � 2�(ŷt � yt)(xt� avg(xt)) ;where ŷt = wt � xt. The new weight vector wt+1 satis�es PNi=1 wt+1;i = PNi=1wt;i. Hence, ifthe GP algorithm uses a start vector s with PNi=1 si = U , then the algorithm maintains theinvariant PNi=1wt;i = U for all trials t.Consider now applying the algorithm GP(s; �), with PNi=1 si = U , to a trial sequenceS = ((x1; y1); : : : ; (x`; y`)). De�ne a modi�ed trial sequence S 0 by S 0 = ((x01; y01); : : : ; (x0̀ ; y 0̀)),where x0t = xt � avg(xt) and y0t = yt � Uavg(xt). Then it is easy to see that the weightvectors of the algorithm GD(s; �) on the trial sequence S 0 are the same as the weight vectorsof the algorithm GP(s; �) algorithm on the trial sequence S. Further, if ŷt is the tth predictionof GP(s; �) on the trial sequence S, then the tth prediction of GD(s; �) on the trial sequenceS 0 is given by ŷt � Uavg(xt). Hence, Loss(GP(s; �); S) = Loss(GD(s; �); S 0). By applyingTheorem 5.3 we obtain the following bounds.Corollary 5.6: For a trial sequence S = ((x1; y1); : : : ; (x`; y`)), let V be an upper bound suchthat jjxt� avg(xt)jj2 � V holds for all t. With the learning rate � = 1=(4V 2) and an arbitrarystart vector s 2 RN , we have for all vectors u such that PNi=1 ui =PNi=1 si the boundLoss(GP(s; �); S)� 2 �Loss(u; S) + jju� sjj22V 2� : (5:13)Further, let K and U be arbitrary constants, and let� = U2VpK + 2UV 2 :Then for all u 2 RN such that PNi=1 ui =PNi=1 si, Loss(u; S) � K, and jju� sjj2 � U hold, wehave Loss(GP(s; �); S)� Loss(u; S) + 2pKUV + jju� sjj22V 2 : (5:14)Thus, if the values xt;i are concentrated close to their average value avg(xt), but the averagevalues avg(xt) are large, and we know the value PNi=1 ui for the comparison vectors u we wishto use, then the GP algorithm can make use of this additional knowledge and incur a lower lossthan the GD algorithm would.As with the GD algorithm, we de�ne for GP a variant GPV with variable learning rates.The update rule of GPV iswt+1 = wt � 2 �jjxt � avg(xt)jj22(ŷt � yt)(xt � avg(xt)) ;and we have the following upper bound.Theorem 5.7: Let u 2 RN and s 2 RN be such that PNi=1 ui = PNi=1 si, and consider a trialsequence S = ((x1; y1); : : : ; (x`; y`)) in which yt = u � xt holds for all t. We then haveLoss(GPV(s; 1=2); S)� jju� sjj22maxt jjxt� avg(xt)jj22 : (5:15)25

5.4 Worst-case loss bounds for EGIn this subsection, we give worst-case upper bounds for the loss of the EG algorithm, whichwas derived in Section 4 using the relative entropy as a distance measure. Similar bounds wereearlier proven by Littlestone et al. [LLW95] for their algorithm, which is related to ours butdoes not have an analogous derivation. Our bounds are lower than those of Littlestone et al.In particular, we have bounds of the form (5.3), which seem unobtainable for the algorithm ofLittlestone et al.Again, we start by proving an upper bound for the loss of the algorithm at a single trial interms of the loss of a comparison vector u and the progress of the algorithm at that trial.Lemma 5.8: Let wt be the weight vector of EG(s; �) before trial t in a trial sequence S =((x1; y1); : : : ; (x`; y`)), and let u 2 [0; 1]N be a vector with Pi ui = 1. Consider an arbitrarytrial t. Let R be an upper bound such that maxi xt;i �mini xt;i � R. For any constants a and bsuch that 0 < a � 2b=(2 +R2b), and a learning rate � = 2b=(2+ R2b), we havea(yt �wt � xt)2 � b(yt � u � xt)2 � dre(u;wt)� dre(u;wt+1) : (5:16)Proof Let �t = e2�(yt�ŷt). Then wt+1;i = wt;i�xt;it =Pj wt;j�xt;jt , and we havedre(u;wt)� dre(u;wt+1) = NXi=1 ui ln wt+1;iwt;i = NXi=1 uixt;i ln �t � ln NXi=1wt;i�xt;it :Hence, (5.16) is equivalent with F (wt;xt;wt � xt; yt;u � xt; �t) � 0 whereFN(w;x; ŷ; y; r; �) = ln NXi=1wi�xi � r ln � + a(y � ŷ)2 � b(y � r)2 (5:17)and �t = e2�(yt�ŷt).Let now B be such that B � xt;i � B + R holds for 1 � i � N . We then have0 � (xt;i � B)=R � 1 for 1 � i � N . The bound �x � 1 � x(1 � �) holds for � � 0 and0 � x � 1, and is tight for x = 0 and x = 1. By applying this with � = �R we obtain�xi = �B ��R�(xi�B)=R � �B �1� xi �BR �1� �R�� :Using the above gives usln NXi=1wi�xi � B ln � + ln�1� w � x�BR �1� �R��when PNi=1wi = 1. Hence, we get FN (w;x;w � x; y; r; �)� G(w � x; y; r; �), whereG(ŷ; y; r; �) = B ln � + ln�1� ŷ �BR �1� �R��� r ln � + a(y � ŷ)2 � b(y � r)2 :Note that the inequality is tight if, for instance, N = 2 and x = (B;B +R).26

To obtain (5.16), it is now su�cient to show that G(ŷ; y; r; �) � 0 holds for all values of ŷ,y, and r, when � = e2�(y�ŷ) with � = 2b=(2 + R2b). Since @2G(ŷ; y; r; �)=@r2 = �2b < 0, thevalue G(ŷ; y; r; �) is maximized when r is such that @G(ŷ; y; r; �)=@r = 0. Solving this givesr = y � ln �=(2b). In particular, for � = e2�(y�ŷ), we see that proving G(ŷ; y; r; e2�(y�ŷ)) � 0for r = y + �(ŷ� y)=b implies G(ŷ; y; r; e2�(y�ŷ)) � 0 for all values r. For r = y + �(ŷ� y)=b wehave G(ŷ; y; r; e2�(y�ŷ)) = H(ŷ; y) whereH(ŷ; y) = 2�B(y � ŷ) + ln�1� ŷ � BR �1� e2�R(y�ŷ)��� 2�y(y� ŷ) + a+ �2b ! (y � ŷ)2 :It remains to show that H(ŷ; y) � 0. We apply the bound ln(1� q(1� ep)) � pq+ p2=8, whichholds for 0 � q � 1 and p 2 R [HSSW95, Lemma 1]. We get H(ŷ; y) � S(ŷ; y) whereS(ŷ; y) = 2�B(y � ŷ) + 2�R(y� ŷ) ŷ � BR + 18 (2�R(y� ŷ))2� 2�y(y � ŷ) + a+ �2b ! (y � ŷ)2= (y � ŷ)22b �(2 +R2b)�2� 4b�+ 2ab� :Therefore, it remains to show Q(�) � 0 where Q(�) = (2 + R2b)�2 � 4b� + 2ab. We easily seethat Q(�) is minimized for � = 2b=(2 + R2b), and that for this value of � we have Q(�) � 0 ifand only if a � 2b=(2 +R2b). 2As with the GD algorithm, we can combine the bounds for individual trials to give a boundfor the total loss of the algorithm. We introduce a parameter c, which is later chosen in asuitable way to balance the two terms in the loss bound.Lemma 5.9: Let S = ((x1; y1); : : : ; (x`; y`)) be an arbitrary trial sequence and R an upperbound such that maxi xt;i�mini xt;i � R holds for all t. Let c be an arbitrary positive constant,and let � = 2c=(R2(2 + c)). Then for any start vector s 2 RN and comparison vector u 2 RN ,we have the boundLoss(EG(s; �); S)� �1 + c2�Loss(u; S) + �12 + 1c�R2dre(u; s) : (5:18)Proof Let b = c=R2 and a = 2b=(2 + R2b) = 2c=(R2(2 + c)). Let wt be the tth weight vectorof EG(s; �) on the trial sequence S with � = a. Then (5.16) holds by Lemma 5.8, and therefore2c2 + c(yt �wt � xt)2 � c(yt � u � xt)2 � R2 (dre(u;wt)� dre(u;wt+1)) : (5:19)By adding the bounds (5.19) for t = 1; : : : ; ` we get2c2 + cLoss(EG(s; �); S)� cLoss(u; S) � R2 (dre(u; s)� dre(u;w`+1)) � R2dre(u; s) ;which is equivalent with (5.18). 2We now obtain actual loss bounds for the EG algorithm by choosing a suitable value c inLemma 5.9. The simplest way is to balance the terms proportional to the loss of the comparisonvector u and to the distance dre(u; s). If we have estimates K and D for these quantities, wecan do a more careful analysis of the trade-o� and obtain a tighter bound.27

Theorem 5.10: For a trial sequence S = ((x1; y1); : : : ; (x`; y`)), let R be is a bound such thatmaxi xt;i �mini xt;i � R holds for all t. Let � = 2=(3R2). For any start vector s 2 [0; 1]N andcomparison vector u 2 [0; 1]N with Pni=1 si =PNi=1 ui = 1, we have the boundLoss(EG(s; �); S)� 32 �Loss(u; S) + R2dre(u; s)� : (5:20)Further, let K and D be arbitrary constants, and let� = 2pDRp2K + R2pD : (5:21)If then additionally Loss(u; S) � K and dre(u; s)� D hold, we haveLoss(EG(s; �); S)� Loss(u; S) +Rp2KD + R2dre(u; s)2 : (5:22)Typically, we apply EG with the start vector s = (1=N; : : : ; 1=N). In this case, we havedre(u; s) = lnN � H(u), where H(u) = �PNi=1 ui ln ui is the entropy of u. Since the entropyis always positive, we then have dre(u; s) � lnN .Proof We apply Lemma 5.9. With the choice c = 1, the bound (5.18) simpli�es to (5.20), andthe bound is achieved by applying the learning rate � = 2=(3R2).Let now K and D be such that Loss(u; S)� K and dre(u; s) � D. Then (5.18) impliesLoss(EG(s; �); S)� Loss(u; S) + R2dre(u; s)2 + F (c) ; (5:23)where F (c) = Kc=2 + R2D=c. Assume �rst that K > 0. As F 0(c) = K=2� R2D=c2, we thenhave F 0(c) = 0 for c = Rp2D=K. Since F 00(c) > 0 for all c, the value F (c) is minimized forc = Rp2D=K. Substituting this value of c into (5.23) yields (5.22). The special case K = 0follows by considering the limit where c approaches 1. 2As for the GD algorithm, a simple dimension analysis provides a crude check for the learningrates given in Theorem 5.10. First note that due to the update, the weights wt;i of the EGalgorithm are always dimensionless. This is a natural consequence of requiring their sum to be1. Hence, the predictions ŷt have the same dimension as the input variables xt;i, and thereforethe outcomes yt must also have this dimension. Let [x] denote this common dimension. Thenthe dimension of the learning rate � must be [x]�2 in order to make the exponent in the updatefactor rt;i = e2�(yt�ŷt)xt;i dimensionless. This is true for the learning rates given in Theorem 5.10,since the quantity D is dimensionless and the quantities R and pK have the dimension [x].Note that EG requires that the start vector and the hypotheses are probability vectors.By doubling the number of components we can allow negative weights as well. The resultingalgorithm EG� is our main competitor for the standard gradient descent algorithm GD. TheEG� algorithm still requires a parameter U such that we use only comparison vectors u withjjujj1 � U . Let u 2 RN be an arbitrary weight vector. We de�ne two weight vectors with onlypositive weights, u+ and u�, by setting u+i = ui if ui > 0 and u+i = 0 otherwise, and u�i = �uiif ui < 0 and u+i = 0 otherwise. Then u = u+ � u�. Given an instance vector x 2 RN , if wede�ne u0 = (u+1 ; : : : ; u+N ; u�1 ; : : : ; u�N) 2 [0;1)N and x0 = (x1; : : : ; xN ;�x1; : : : ;�xN) 2 RN , wehave u0 � x0 = u � x. Thus, the 2N -dimensional vector u0 with only positive weights representsthe same linear function as u, assumed that the instances x are duplicated before taking thedot product with the weight vector. 28

For the vector u0 de�ned above, we have jju0jj1 = jjujj1. If we wish to de�ne a weight vectoru00 with jju00jj1 = U > jjujj1, we can simply set u00i = u0i + (U � jjujj1)=(2N) for i = 1; : : : ; 2N .That is, we distribute the excess weight U � jjujj1 uniformly to the components of u00. Wecan also distribute the excess weight nonuniformly. We need to only maintain the relationsu00i � u00i+N = ui for i = 1; : : : ; N . Thus, given a weight vector u 2 RN with jjujj1 � U , we saythat a vector u00 2 [0; U]2N is a norm U representation of u if jju00jj1 = U and u00i � u00i+N = uifor i = 1; : : : ; N . We now see how this reduction can be used to obtain an upper bound for theloss of the EG� algorithm, with positive and negative weights, from the known upper boundsfor the EG algorithm.Theorem 5.11: Let S = ((x1; y1); : : : ; (x`; y`)) be a trial sequence and X a bound such thatjjxtjj1 � X holds for all t. Let u 2 RN be an arbitrary weight vector with jjujj1 � U , and letu0 2 [0; U]2N be an arbitrary norm U representation for u. Let s = (s+; s�) 2 [0; 1]N � [0; 1]Nbe a pair of start vectors with PNi=1(s+i + s�i) = 1, and let s0 = (s+1 ; : : : ; s+N ; s�1 ; : : : ; s+N). Forthe learning rate � = 1=(3U2X2) we haveLoss(EG�(U; s; �))� 3 �Loss(u; S) + U2X2dre(u0=U; s0)� : (5:24)Further, let K and D be positive constants, and let� = pDUXp2K + 2U2X2pD :For all weight vectors u 2 RN and all norm U representations u0 of u, if Loss(u; S) � K anddre(u0=U; s0) � D hold, we haveLoss(EG�(U; s; �); S)� Loss(u; S) + 2UXp2KD + 2U2X2dre(u0=U; s0) : (5:25)Finding a norm U representation u0 of u that minimizes the relative entropy dre(u0=U; s0)seems to be nontrivial. However, for the uniform start vector this relative entropy is always atmost ln 2N , and using D = ln 2N leads to reasonable bounds.Proof We de�ne a new trial sequence S 0 = ((x01; y1); : : : ; (x0̀ ; y`)) by setting x0t =(Uxt;1; : : : ; Uxt;N ;�Uxt;1; : : : ;�Uxt;N). The algorithm EG� has been de�ned in such a waythat the predictions produced by EG�(U; s; �) on the trial sequence S are the same asthose produced by EG(s0; �) on the trial sequence S 0. In particular, Loss(EG�(U; s; �); S) =Loss(EG(s0; �); S 0). We further note that Loss(u0=U; S 0) = Loss(u; S) and maxi x0t;i�mini x0t;i =2U jjxtjj1 for all t. Therefore, the bound (5.25), and the learning rates that achieve this bound,follow directly from the corresponding part of Theorem 5.10.To obtain (5.24), we apply Lemma 5.9 to the trial sequence S 0 and comparison vector u0=Uwith R = 2UX . Then the bound (5.18) yieldsLoss(EG�(U; s; �); S)� �1 + c2�Loss(u; S) + �2 + 4c�U2X2dre(u0=U; s0) ;and the bound (5.24) follows by choosing c = 4. The resulting learning rates satis�es � =1=(3U2X2). 2To check the dimension of the learning rates, let again the dimension of the input variablesbe [x] and of the outcomes [y]. Then the dimension of the weights wt;i, and of the parameterU , is [x]�1[y]. The update includes exponentiating the value 2�(yt� ŷt)Uxt;i. Hence, this value29

should be dimensionless, which means that the dimension of the learning rate � should be [y]�2.Since the quantity D in Theorem 5.11 is dimensionless, and the quantity K has dimension [y],this is the case for the learning rates given in Theorem 5.11.Recall that we de�ned the algorithm EGV� as a modi�cation of EG� in which � is replacedby �=jjxtjj1 in the update after trial t; in other words, the formulas (3.10) and (3.11) arereplaced by (3.12) and (3.13). Like with GD and GDV, there are some situations in which wecan obtain loss bounds for EGV� from our bounds for EG�. First, we can obtain an upperbound for the scaled loss Loss0 de�ned for a weight vector u byLoss0(u; S) = X̀t=1�yt � u � xtjjxtjj1 �2 ;and generalized to de�ne Loss0(EG�(U; s; �)) is the obvious manner. A reduction analogous tothe one applied to obtain Corollary 5.4 gives the following result.Corollary 5.12: Let S = ((x1; y1); : : : ; (x`; y`)) be an arbitrary trial sequence. Let u 2 RN bean arbitrary vector, with U a bound such that jjujj1 � U , and let u0 2 [0; U]2N be an arbitrarynorm U representation for u. Let s = (s+; s�) 2 [0; 1]N � [0; 1]N be a start vector pair withPNi=1 �s+i + s�i � = 1, and let s0 = (s+1 ; : : : ; s+N ; s�1 ; : : : ; s�N). We then haveLoss0(EGV�(U; s; 1=(3U2)); S)� 3 �Loss0(u; S) + U2dre(u0=U; s0)� :Further, let K and U be arbitrary constants, and let� = pDUp2K + 2U2pD :Then for all u 2 RN such that Loss0(u; S)� K and dre(u0=U; s0) � U hold, we haveLoss0(EGV�(s; �); S)� Loss0(u; S) + 2Up2KD + 2U2dre(u0=U; s0) :Second, we can apply EGV� in the noise-free case.Theorem 5.13: Let u 2 RN be an arbitrary vector, with U a bound such that jjujj1 � U ,and let u0 2 [0; U]2N be an arbitrary norm U representation for u. Consider a trial sequenceS = ((x1; y1); : : : ; (x`; y`)) in which yt = u �xt holds for all t. Let s = (s+; s�) 2 [0; 1]N� [0; 1]Nbe a start vector pair with PNi=1 �s+i + s�i � = 1, and let s0 = (s+1 ; : : : ; s+N ; s�1 ; : : : ; s�N). We thenhave Loss0(EGV�(U; s; 1=(2U2)); S) � 2U2�maxt jjxtjj1�2 dre(u0=U; s0) :Proof The proof is analogous with the proof on Theorem 5.5; we omit the details. 25.5 Worst-case loss bounds for EGUWe now consider the EGU algorithm introduced in Subsection 4.3. This algorithm uses amultiplicative update similar to that of the EG algorithm. The di�erence to the EG algorithmis that in the EGU algorithm, the total weightPNi=1 wt;i is not kept constant. Accordingly, theEGU algorithm is useful when we wish to allow comparison vectors u for which the norm jjujj1is not known. 30

For the EGU algorithm, we have been able to prove worst-case loss bounds of the form (5.3)only in the case that all the outcomes and the input variables are positive, and the comparisonvectors have only positive components. Preliminary experiments suggest that the algorithmworks well also when the input variables can be negative, but much work remains to be doneon this. For our proof it is also necessary to restrict the range of the predictions and outcomes.Thus, we give an additional parameter Y to the algorithm, with the understanding that theoutcomes are in the range [0; Y]. We write EGU(s; Y; �) for the EGU algorithm that has a startvector s and learning rate function �, and predicts with ŷt = wt � xt if wt � xt � Y holds andwith ŷt = Y otherwise.As usual, we start with a technical lemma.Lemma 5.14: Letwt be the tth weight vector and ŷt the tth prediction of EGU(s; Y; �) in a trialsequence S = ((x1; y1); : : : ; (w`; y`)), and let u 2 [0;1)N be arbitrary. Consider an arbitrarytrial t. Let X be such that 0 � xt;i � X holds for all i, and assume that 0 � yt � Y holds. Forconstants a and b such that 0 < a � b=(1 + 2XY b), and the learning rate � = b=(1 + 2XY b),we have a(yt �wt � xt)2 � b(yt � u � xt)2 � dreu(u;wt)� dreu(u;wt+1) : (5:26)For any constants a and b such that 0 < b=(1+2XY b) < a and for any learning rate function�, there are a weight vector wt, comparison vector u 2 [0;1)N , and an outcome yt such that(5.26) does not hold for N = 2 and xt = (0; X).Proof Let xt 2 [0; X]N be given. We �rst estimate the progress dreu(u;wt) � dreu(u;wt+1),when wt+1;i = wt;i�xt;i with � > 0. We havedreu(u;wt+1)� dreu(u;wt) = NXi=1 (wt+1;i � wt;i) + NXi=1 ui ln wt;iwt+1;i= NXi=1wt;i (�xt;i � 1)� NXi=1 uixt;i ln � :By applying the bound �z � 1�z(1��), which holds for � > 0 and 0 � z � 1, with z = xt;i=Xand � = �X , we obtaindreu(u;wt+1)� dreu(u;wt) � NXi=1wt;ixt;iX ��X � 1�� NXi=1 uixt;i ln � (5.27)= wt � xt�X � 1X � u � xt ln � : (5.28)By substituting � = e2�(yt�ŷt) into (5.28) we see that for proving (5.26) it is su�cient to showG(wt � xt; ŷt; yt;u � xt) � 0, whereG(q; ŷ; y; r) = q e2X�(y�ŷ) � 1X � 2r�(y� ŷ) + a(y � ŷ)2 � b(y � r)2 :Further, since the estimate �z � 1 � z(1 � �) is tight for z = 0 and z = 1, in the casext = (0; X) 2 R2 it is also necessary to show G(wt � xt; ŷt; yt;u � xt) � 0.Recall that the prediction ŷt of the EGU(s; Y; �) algorithm is given by ŷt = wt � xt ifwt � xt � Y holds; otherwise ŷt = Y . Thus, we need to prove G(q; ŷ; y; r) � 0 for ŷ = q, andfor 0 � ŷ = Y < q. By the assumptions of the lemma, we also have 0 � y � Y . Clearly31

G(q; ŷ; y; r) is nonincreasing in q for ŷ � y. Hence, in the case ŷ = Y < q the conditionG(q; ŷ; y; r) � 0 follows if G(Y; Y; y; r) � 0 holds. Thus, without loss of generality we consideronly 0 � ŷ = q � Y .By di�erentiating G(ŷ; ŷ; y; r) with respect to r we see that for �xed ŷ and y, the valueG(ŷ; ŷ; y; r) is maximized whenr = y + �b (ŷ � y) = �1� �b� y + �b ŷ :Note that for 0 � � � b, this value of r is between y and ŷ. We have G(ŷ; ŷ; y; y+ �(ŷ� y)=b) =H(ŷ; y) where H(ŷ; y) = ŷX �e2X�(y�ŷ) � 1�� 2�y(y � ŷ) + a+ �2b ! (y � ŷ)2 :To obtain (5.26), it is now su�cient to prove that for values of a and b as in the statement ofthe lemma we have H(ŷ; y) � 0 for 0 � ŷ � Y and 0 � y � Y . We �rst see that for H(ŷ; y) � 0to hold it is necessary that the values a and b satisfy the conditions of the lemma. We then seethat these conditions are also su�cient, which is the main part of the claim.We have @H(ŷ; y)@y = 2ŷ�e2X�(y�ŷ) � 2�(y� ŷ)� 2�y + 2a+ 2�2b ! (y � ŷ) ;so for y = ŷ we have H(ŷ; y) = @H(ŷ; y)=@y = 0. Hence, a necessary condition for havingH(ŷ; y) � 0 for values of y close to ŷ is that the second derivative@2H(ŷ; y)@y2 = 4ŷX�2e2X�(y�ŷ) � 4� + 2a+ 2�2bis nonpositive for y = ŷ. Hence, we need Q(y) = (4Xy + 2=b)�2� 4� + 2a � 0 for 0 � y � Y .In this range, Q(y) is clearly maximized for y = Y . By di�erentiating, the value of � thatminimizes Q(Y) is seen to be b=(1+ 2XY b). For this value of �, we have Q(Y) � 0 if and onlyif a � b=(1 + 2XY b).We have now seen that a � b=(1 + 2XY b) is a su�cient condition for G(ŷ; ŷ; y; r) in thespecial case that y is close to ŷ. Before proving that the condition is also su�cient in thegeneral case, we show that it is necessary for the claim of the lemma to hold. Let yt = Y � "for a small positive value ". Supposing a > b=(1 + 2XY b), the preceding argument showsthat H(Y; yt) > 0 holds. The value r = yt + �(Y � yt)=b is positive. Therefore, for anynonzero instance xt 2 [0;1)N we can �nd a comparison vector u and a weight vector wsuch that u � xt = r and wt � xt = Y . In this case we have, by the preceding argument,G(wt � xt; ŷt; yt;u � xt) > 0. If we choose the particular instance xt = (0; X), then the bound(5.27) holds as an equality, and hence G(wt � xt; ŷt; yt;u � xt) > 0 implies that (5.26) does nothold for this trial.We now let � = a = b=(1 + 2XY b) and see that these choices indeed give us H(ŷ; y) � 0for 0 � y � Y and 0 � ŷ � Y . As explained in the preceding part of the proof, thisis su�cient for proving the lemma. For the special case ŷ = 0 we then obtain H(0; y) =�2XY b2y2=(1 + 2XY b)2 � 0. Assume now ŷ > 0. The third derivative@3H(ŷ; y)@y3 = 8ŷX2�3e2X�(y�ŷ)32

is then strictly positive for all y. As our choices for a and � in the case ŷ = y � Y imply@2H(ŷ; y)@y2 = 2b1 + 2XY b � 1 + 2Xyb1 + 2XY b � 1� � 0 ;we must have @2H(ŷ; y)=@y2 � 0 for all y � ŷ. Therefore, since H(ŷ; y) = @H(ŷ; y)=@y = 0holds for y = ŷ, we have H(ŷ; y) � 0 for y � ŷ.In the special case that @2H(ŷ; y)=@y2 = 0 holds for y = ŷ, the positiveness of the thirdderivative implies that H(ŷ; y) > 0 holds for y > ŷ and, in particular, H(ŷ; Y) > 0. If thesecond derivative @2H(ŷ; y)=@y2 is strictly negative for y = ŷ, then H(ŷ; y) as a function ofy has a local maximum at y = ŷ. The positiveness of the third derivative implies that thesecond derivative can attain value 0 at most once. Hence, the function cannot have anotherlocal maximum in the range ŷ < y < Y , since between these two zeroes of the derivative@H(ŷ; y)=@y there would have to be a third, at a local minimum, and hence two zeroes of thesecond derivative. Therefore, H(ŷ; y) obtains its maximum value for ŷ � y � Y either at y = ŷor at y = Y . Thus, it remains to verify that H(ŷ; Y) � 0 holds. We have@H(ŷ; Y)@ŷ = e2X�(Y�ŷ) � 1X � 2ŷ�e2X�(Y�ŷ) + 2�Y � 2a+ 2�2b ! (Y � ŷ)@2H(ŷ; Y)@ŷ2 = �4�e2X�(Y�ŷ) + 4ŷX�2e2X�(Y�ŷ) + 2a+ 2�2b@3H(ŷ; Y)@ŷ3 = 4X�2e2X�(Y�ŷ)(3� 2ŷX�) :Thus, regardless of the choice of � and a, we get H(ŷ; Y) = @H(ŷ; Y)=@ŷ = 0 for ŷ = Y , andto prove H(ŷ; Y) � 0 for 0 � ŷ � Y it is su�cient to prove @2H(ŷ; Y)=@ŷ2 < 0 for 0 < ŷ < Y .For our particular choices of � and a, we obtain @2H(ŷ; Y)=@ŷ2 = 0 for ŷ = Y , and@3H(ŷ; Y)@ŷ3 = 4Xb2(6Y � 2ŷ)Xb+ 3(1 + 2XY b)3 exp�2Xb(Y � ŷ)1 + 2XY b � > 0 :Hence, @2H(ŷ; Y)=@ŷ2 < 0 holds for 0 � ŷ < Y , and we have H(ŷ; Y) � 0 for ŷ � Y . 2As with the algorithms GD and EG, we now combine the single trial bounds given byLemma 5.14.Lemma 5.15: Consider a trial sequence S = ((x1; y1); : : : ; (x`; y`)) with xt 2 [0; X]N andyt 2 [0; Y] for all t for some constants X and Y . Let c be an arbitrary positive constant, and let� = c=(XY (1+2c)). Then for all start vectors s 2 [0;1)N and comparison vectors u 2 [0;1)Nwe have the boundLoss(EGU(s; Y; �); S)� (1 + 2c)Loss(u; S) + �2 + 1c�XY dreu(u; s) : (5:29)Proof For t = 1; : : : ; `, let b = c=XY and a = b=(1 + 2XY b) = c=(XY (1 + 2c)). Let wt bethe tth weight vector of EGU(s; Y; �) on the trial sequence S with � such that �(xt) = a. Then(5.26) holds by Lemma 5.14, and thereforec1 + 2c(yt �wt � xt)2 � c(yt � u � xt)2 � XY (dreu(u;wt)� dreu(u;wt+1)) : (5:30)33

By adding the bounds (5.30) for t = 1; : : : ; ` we getc1 + 2cLoss(EGU(s; Y; �); S)� cLoss(u; S) � XY (dreu(u; s)� dreu(u;w`+1))� XY dreu(u; s) ;which is equivalent with (5.29). 2Finally, we show suitable values for c for obtaining good loss bounds from Lemma 5.15.Theorem 5.16: Consider a trial sequence S = ((x1; y1); : : : ; (x`; y`)) with xt 2 [0; X]N andyt 2 [0; Y] for all t for some constants X and Y . With the learning rate � = 1=(3XY) and anarbitrary start vector s 2 [0;1)N, we have for any vector u 2 [0;1)N the boundLoss(EGU(s; Y; �); S)� 3 (Loss(u; S) +XY dreu(u; s)) : (5:31)Further, let K and D be arbitrary constants, and let� = pDp2KXY + 2XYpD : (5:32)If then additionally Loss(u; S) � K and dreu(u; s) � D hold, we haveLoss(EGU(s; Y; �); S)� Loss(u; S) + 2p2KXYD + 2XY dreu(u; s) : (5:33)Proof We apply Lemma 5.15. With the choice c = 1, the bound (5.29) simpli�es to (5.31),and we get � = 1=(3XY). Let now K and D be such that Loss(u; S) � K and dreu(u; s) � D.Assume �rst K > 0. Then (5.29) impliesLoss(EGU(s; Y; �); S)� Loss(u; S) + 2XY dreu(u; s) + F (c) ; (5:34)where F (c) = 2Kc + XYD=c. Then F 0(c) = 2K � XYD=c2, and F 0(c) = 0 for c =pXYD=(2K). Since F 00(c) > 0 for all c, the value F (c) is minimized for c = pXYD=(2K).Substituting this value of c into (5.34) yields (5.33), and the learning rate � for this c satis�es(5.32). In the special case K = 0 we consider limits as c approaches in�nity, as we did in theproof of Theorem 5.3. 2To check the dimensions of the learning rates, let the dimension of the input variables be [x]and of the outcomes [y]. Then the quantity 2�(yt � ŷt)xt;i that appears exponentiated in theupdate rule is dimensionless if the dimension of � is [x]�1[y]�1. In Theorem 5.16, the dimensionof the quantity D is [x]�1[y] and the dimension of K is [y]2, so the learning rates satisfy thiscondition.6 Lower boundsWe �rst consider the case where the instances xt and the target u satisfy norm constraintsjjujjp � U and jjxtjjq � X for some p and q in R+[f1g, but the outcomes yt can be arbitrary.Recall that the norms Lp and Lq are dual if 1=p + 1=q = 1. Hence, the L2 norm is its owndual, and the L1 norm is the dual of L1 norm. If the norms Lp and Lq are dual, then theCauchy-Schwartz Inequality can be generalized to show that jjujjp � U and jjxjjq � X togetherimply ju � xj � UX [Roy63]. 34

Theorem 6.1: Let p; q 2 R+ [f1g. Let A be an arbitrary on-line prediction algorithm, andlet K, U , and X be arbitrary positive reals. Then for all N 2 N+ there are an instance xt 2 RNwith jjxjjq = X, an outcome y 2 R, and a comparison vector u 2 RN with jjujjp = U , suchthat for the 1-trial sequence S = ((x; y)) we have Loss(u; S) = K andLoss(A; S) � K + 2cNUXpK + (cNUX)2where cN = N1�1=p�1=q. In particular, if 1=p+ 1=q = 1 then cN = 1, and if 1=p+ 1=q < 1 thenlimN!1 cN =1.Proof We de�ne two potential target vectors u+ = (UN�1=p; : : : ; UN�1=p) and u� = �u+,and an instance vector x = (XN�1=q; : : : ; XN�1=q). Then jju+jjp = jju�jjp = U , jjxjjq = X ,and u � x = UXN1�1=p�1=q. Let ŷ be the prediction of the algorithm A, when it sees theinstance x at the �rst trial. We further choose y = UXN1�1=p�1=q + pK if ŷ � 0 andy = �UXN1�1=p�1=q � pK otherwise. Then either Loss(u+; S) = K or Loss(u�; S) = K.Since LossL(A; S) � y2, we get the stated bound. 2The special case p = q = 2 of Theorem 6.1 was noted already by Cesa-Bianchi et al.[CBLW95]. The lower bound given in Theorem 6.1 for this case coincides with the upperbound given in Theorem 5.3 for the GD algorithm. Hence, the GD algorithm has the bestobtainable worst case loss bound.Note that in Theorem 6.1, K cannot be made arbitrarily large without also making theabsolute value of the outcome arbitrarily large. The following lower bound, also from Cesa-Bianchi et al. [CBLW95], shows that if the number N of dimensions can be arbitrarily large,then again the loss bound for GD is the best possible, even if range of the outcomes is restricted.For a comparison vector u and instances xt, the range of the outcomes is [�UX;UX], whereU = jjujj2 and X = maxt jjxtjj2. Since UX = max fu � x j jjujj2 = U; jjxjj2 = X g, this is anatural range for the outcomes.Theorem 6.2: Let U , X, and K be arbitrary positive reals, and let the dimension N beat least (1 + pK=(UX))2. Let A be an arbitrary on-line prediction algorithm. There is acomparison vector u 2 RN , with jjujj2 = U , and a trial sequence S = ((x1; y1); : : : ; (xN ; yN)),with xt 2 f�X;X gN and yt 2 [�UX;UX] for all t, such that Loss(u; S) = K andLoss(A; S) � K + 2UXpK + (UX)2 :Consider now the lower bound of Theorem 6.1 for p = 1 and q =1, which is the case relatedto the EG� algorithm. The lower bound has cN = 1 for all N . However, the upper bound forthe EG� algorithm in Theorem 5.11 includes the factorsp2D and 2dre(u0=U; s), which can growlogarithmically in N . Thus, for large N there is a signi�cant gap between the upper and lowerbounds. We would like to know if it is possible to improve the upper bounds by eliminatingthe lnN factors. In the general case, we have had no success in solving this problem. Wenow present two partial results that hint that our upper bounds may be reasonably tight. Weconsider the upper bounds for the simpler EG algorithm, from which the bounds for EG� areobtained via a reduction. If we were able to improve the bounds for EG, then an improvementfor EG� would automatically follow.The following result of Littlestone et al. [LLW95] shows that in the case Loss(u; S) = 0,a factor lnN in the loss of the algorithm cannot be avoided. For simplicity, we consider onlythe case xt 2 [0; 1]N. For the case Loss(u; S) = K > 0, the lower bound in this results doesnot come close to the upper bound, as it does not contain a term proportional to pK. Itremains an open question whether the pK term can be avoided if the range of the outcomes is[�UX;UX]. 35

Theorem 6.3: Let k and N be positive integers, with k � N . Let K be an arbitrary positivereal, and let A be an arbitrary on-line prediction algorithm. There is a target vector u 2 [0; 1]N,with PNi=1 ui = 1, and a trial sequence S = ((x1; y1); : : : ; (x`; y`)), with xt 2 [0; 1]N andyt 2 [0; 1] for all t, such that Loss(u; S) = K andLoss(A; S) � K + lnN � ln k4 ln 2 � 12 :The comparison vectors u used in the proof Theorem 6.3 contain k components with value1=k, with the rest of the components having the value 0. Hence, for the uniform vectors = (1=N; : : : ; 1=N) we have dre(u; s) = lnN � ln k.The next theorem shows that if we consider only upper bounds of the form used in Theo-rem 5.10, then the constant coe�cients given in the theorem are optimal. However, this leavesopen the possibility that smaller coe�cients could be obtained by inserting, for example, anadditive constant term.Theorem 6.4: Let A be an arbitrary prediction algorithm and let s = (1=2; 1=2). If p and qare constants such thatLoss(A; S) � Loss(u; S) + pqLoss(u; S)dre(u; s) + qdre(u; s) (6:1)holds for all one-trial sequences S = ((x1; y1)) with x1 2 [0; 1]2 and y1 2 [0; 1], and all weightvectors u 2 [0; 1]2 with PNi=1 ui = 1, then p � p2, and if p = p2 then q � 1=2.Proof We take x1 = (0; 1) as the only instance in the sequence. Then the prediction ofA at the �rst trial must be 1=2, or the weight vector u = s = (1=2; 1=2) would violate theassumptions of the theorem for the outcome y = 1=2. Consider now u = (1=2 � "; 1=2 + ")for 0 < " < 1=4. Let the outcome of the trial be y = 3=4 + ". Then Loss(u; S) = 1=16 andLoss(A; S) = 1=16 + "=2 + "2. On the other hand, we havedre(u; s) = ln 2 + �12 + "� ln �12 + "� + �12 � "� ln �12 � "� = 2"2 + O("4) ;and hence pdre(u; s) = p2"+ O("3). Therefore, in the case Loss(u; S) = 1=16 the right-handside of (6.1) can be expanded as116 + ppdre(u; s)4 + qdre(u; s) = 116 + pp24 "+ 2q"2 + O("3) :Therefore, (6.1) cannot hold for for small " unless p and q satisfy the stated bounds. 27 Batch predictionsWe consider generalizing the prediction problem into a setting in which at each trial, theprediction algorithm predicts for each of a batch of several instances and then receives the out-comes for all these instances. A generalized trial sequence is a sequence ((M1;y1); : : : ; (M`;y`)),where for each t we have Mt 2 Rmt�N and yt 2 Rmt for some mt. We de�ne Mt;i to be the ithcolumn of the tth instance matrix Mt. A prediction algorithm for generalized trial sequences isde�ned as with usual trial sequences, except that now the tth prediction ŷt is a vector in Rmt .To measure the loss of an algorithm, we now need a loss function from Rm � Rm to [0;1).Here we consider only the square loss function de�ned by L(y; ŷ) = jjy� ŷjj22. The notions ofthe loss of an algorithm or a weight vector on a trial sequence are de�ned in the obvious way.36

All of the algorithms introduced in Section 3 can be converted for generalized trial sequencesin a straightforward manner. The predictions ŷt = wt �xt are naturally replaced by ŷt =Mtwt.In the updates, we replace the derivatives@L(yt;wt � xt)@wt;i = Lyt(wt � xt)xt;i (7:1)by @L(yt;Mtwt)@wt;i = �@L(yt; z)@z �z=Mtwt �Mt;i : (7:2)In particular, for the square loss the generalization of the GD algorithm, which we call theGDM algorithm, has the update rulewt+1 = wt � 2�MTt (ŷ� yt)and the generalization for the EG algorithm, which we call the EGM algorithm, has the updaterule wt+1;i = wt;irt;i=(Pj wt;jrt;j) wherert;i = exp (�2�(ŷ� yt) �Mt;i) : (7:3)It has been previously shown [CBLW95, SW94] that the GDM algorithm has a loss boundsimilar to that of GD. Recall that the norm jjAjj2 for a matrix A is de�ned as jjAjj2 =max f jjAxjj2 j jjxjj2 = 1 g.Theorem 7.1: Let S = ((M1;y1); : : : ; (M`;y`)) be a generalized trial sequence such thatjjMtjj2 � X for all t. For the batch prediction algorithm GDM(s; �) with the learning rate� = 1=(4X2), we have for all weight vectors u the boundLoss(GDM(s; �); S)� 2(Loss(u; S) + jjs� ujj22X2) :Assume further that we know bounds K and U such that for some weight vector u we haveLoss(u; S) � K and jjs� ujj2 � U . Then for the learning rate� = U2UX2 + 2XpKwe have Loss(GDM(s; �); S)� Loss(u; S) + 2UXpK + jjs� ujj22X2 :The proof of Theorem 7.1 is based on noticing that the proof of Theorem 5.3 for the GDalgorithm easily generalizes to the situations where the instances are matrices instead of vectors.The upper bound of Theorem 7.1 can be shown to be tight [SW94]. We now give a similar resultfor the EGM algorithm. The proof is based on a reduction that allows us to apply directly theupper bound given in Theorem 5.10 for the EG algorithm. We could easily generalize result forthe more general algorithm EG� when it is applied to matrices. In the noise-free case K = 0,similar results were given by Littlestone et al. [LLW95]. The reduction could also be appliedto the GD algorithm to obtain Theorem 7.1.Theorem 7.2: Let S = ((M1;y1); : : : ; (M`;y`)) be a generalized trial sequence such that for allt and i, the L2 norm of the ith columnMt;i of the matrixMt is at most R=2, i.e., jjMt;ijj2 � R=2.For the batch prediction algorithm EGM(s; �), with the learning rate � = 2=(3R2), and for anycomparison vector u 2 [0; 1]N with PNi=1 ui = 1, we have the boundLoss(EGM(s; �); S)� 32(Loss(u; S) +R2dre(u; s)) :37

Assume further that we know bounds K and U such that for some u 2 [0; 1]N with PNi=1 ui = 1we have Loss(u; S) � K and dre(u; s) � D. Then for the learning rate� = 2pDRp2K + R2pD (7:4)we have Loss(EGM(s; �); S)� Loss(u; S) +Rp2KD + R2dre(u; s)2 :Proof We prove the theorem by reducing it to the upper bound given in Theorem 5.10 for theEG algorithm.Let w1; : : : ;w`+1 be the sequence of weight vectors that EGM(s; �) produces on the trialsequence S. We de�ne a trial sequence S 0 = ((x1; y1); : : : ; (x`; y`)), with xt 2 RN andyt 2 R, such that on the trial sequence S 0, the algorithm EG(s; �) also produces the sequencew1; : : : ;w`+1 of weight vectors. Letxt;i = Mtwt � ytjjMtwt � ytjj2 �Mt;iand yt = Mtwt � ytjjMtwt � ytjj2 � yt :For any weight vector r we then haver � xt � yt = (Mtwt � yt)jjMtwt � ytjj2 � (Mtr� yt) : (7:5)Applying (7.5) for r = wt we get wt � xt � yt = jjMtwt � ytjj2, so (wt � xt � yt)xt;i =(Mtwt � yt) � Mt;i. Hence, when xt and yt are de�ned as given here, the gradients givenin (7.1) and (7.2) have the same values. Thus, the weight vectors generated by EGM(s; �) onthe sequence S are the same as the weight vectors generated by EG(s; �) on the sequence S 0.Further, we get (wt � xt � yt)2 = jjMtwt � ytjj22 and, hence, Loss(EGM(s; �); S) =Loss(EG(s; �); S0). Applying (7.5) for r = u we get(u � xt � yt)2 = ((Mtwt � yt) � (Mtu� yt))2jjMtwt � ytjj22 � jjMtu � ytjj22 ;so Loss(u; S 0) � Loss(u; S). Further, since jjMt;ijj2 � R=2 implies �R=2 � xt;i � R=2, byapplying the upper bound of Theorem 5.10 with the learning rate � = 2=(3R2) we getLoss(EGM(s; �); S) = Loss(EG(s; �); S0) � 32 �Loss(u; s) + R2dre(u; s)�for any comparison vector u 2 [0; 1]N with PNi=1 ui = 1. Finally, assume that Loss(u; S) � Kand dre(u; s)� D hold for some u. We then get Loss(u; S 0) � K and, hence,Loss(EGM(s; �); S) = Loss(EG(s; �); S 0)� Loss(u; S 0) + Rp2KD+ R2dre(u; s)2� Loss(u; S) +Rp2KD+ R2dre(u; s)2for the learning rate given in (7.4). 238

8 Obtaining expected instantaneous loss boundsSo far the focus of this paper has been worst-case bounds for the total loss of on-linealgorithms. We now show how from these worst-case total loss bounds we can derive boundsfor the expected total loss and for the expected loss on the next instance.We study only a very simple probabilistic model. As can be seen from the proofs, muchweaker probabilistic assumption would lead to similar bounds. An example is a pair e = (x; y)that consists of an instance x 2 RN and an outcome y 2 R. We assume that there is a �xed butunknown probability distribution D on the example domain RN�R, and that the examples aredrawn independently at random from this distribution. The following bounds on the expectedloss are still worst-case in the sense that we make no assumptions about the distribution D.The �rst part of this section relies on the fact that once we have an inequality of the form of(5.2) which always holds, then by taking expectations of both sides we get for all ` the boundES�D` (LossL(A; S)) � g(c)f(c)ES�D` (LossL(u; S)) + d(u; s)f(c)= ` g(c)f(c)Ee�D (LossL(u; e)) + d(u; s)f(c) :The parameter c and thus the learning rate can now be optimized as a function of upper boundson the expected loss Ee�D(LossL(u; e)) of the vector u on a single example and the distanced(u; s). For example, in the case of the GD algorithm this leads to the following probabilisticversion of Theorem 5.3.Theorem 8.1: Let D be a probability distribution on fx j jjxjj2 � X g�R. With the learningrate � = 1=(4X2) and an arbitrary start vector s 2 RN , we have for any vector u and all ` � 1the bound ES�D` (Loss(GD(s; �); S))� 2 �`Ee�D (Loss(u; e)) + jju� sjj22X2� : (8:1)Further, let K and U be arbitrary constants, and let � be the learning rate� = U2Xp`K + 2UX2 :Then for all u 2 RN such that Ee�D (Loss(u; e)) � K and jju� sjj2 � U hold, we haveES�D` (Loss(GD(s; �); S))� `Ee�D (Loss(u; e)) + 2p`KUX + jju� sjj22X2 : (8:2)In many cases we are not interested in worst-case total loss bounds of an on-line algo-rithm but rather than that we are looking for a hypothesis which predicts well on a randominstance. We de�ne a hypothesis h to be any mapping from RN to R. The instantaneous lossInstLossL(h;D) of a hypothesis h with respect to a distribution D on RN+1 is de�ned as theexpected loss when the hypothesis h is used to predict on a random instance drawn from D,that is, InstLossL(h;D) = E(x;y)�D (L(h(x); y)) :A common goal of learning is to produce a hypothesis with small instantaneous loss afterseeing a reasonable number of examples. In the case when the instantaneous loss is measuredwith respect to to some distribution D, it is assumed that the training examples are drawnindependently at random from the same distribution.39

Giving a sequence S = (e1; : : : ; e`) of ` examples to an on-line predicting algorithm natu-rally leads to ` + 1 hypothesis. For our linear on-line prediction algorithms, the sequence S,interpreted as a trial sequence, would lead to the `+1 weight vectors w1; : : : ;w`+1, and each ofthese de�nes a hypothesis that maps the instance x 2 RN to wt � x. More generally, we de�nethe tth hypothesis ht of an on-line prediction algorithm A on the example sequence S to be themapping that maps an instance x to the prediction ŷ the algorithm would give if it were givenx as the tth instance after the instance-outcome pairs e1; : : : ; et�1 of previous trials. We denotethis hypothesis ht by A(e1; : : : ; et�1). For t = 1, this is the initial hypothesis of A.In obtaining a good hypothesis from an on-line prediction algorithm, it might seem a goodstrategy to give the whole example sequence to the algorithm and then pick the last hypothesis,which is based on all the examples. Since additional information should only help the learner,one might think that the expected instantaneous loss for the hypothesis ht is lower than thatfor the hypothesis ht�1, or in general for any earlier hypothesis. This could be formalized inthe inequalityE(e1 ;:::;et)�Dt (InstLossL(A(e1; : : : ; et); D)) � E(e1;:::;et�1)�Dt�1 (InstLossL(A(e1; : : : ; et�1); D)) :However, this inequality does not necessarily hold for our algorithms. As a trivial coun-terexample, assume that there is a unique weight vector u for which the expected lossE(x;y)�D(L(u � x; y)) is minimized. If the start vector of the algorithm is equal to u andthe learning rate is positive, then the expected loss of the second hypothesis w2 obviously ishigher than that of the initial hypothesis w1 = u.We conclude this section by presenting a simple method [HW95] that can be used for provingexpected instantaneous loss bounds for all algorithms and distributions. We can rewrite theexpected total loss asES�D`(LossL(A; S)) = E(e1;:::;e`)�D` X̀t=1 LossL(A((e1; : : : ; et�1)); et)!= X̀t=1E(e1;:::;et�1)�Dt�1 (Ee�D (LossL(A((e1; : : : ; et�1)); e)))= X̀t=1E(e1;:::;et�1)�Dt�1 (InstLossL(A(e1; : : : ; et�1); D))) :Given the ` hypotheses h1; : : : ; h`, we de�ne the randomized hypothesis hR as follows. Give aninstance x, we �rst choose an index t from the uniform distribution on f 1; : : : ; ` g. We then letthe prediction hR(x) of the hypothesis be the prediction ht(x) of the tth hypothesis. From thede�nition of hR and the preceding equality we obtainE(e1;:::;e`�1)�D`�1 (InstLossL(hR; D)) = 1̀ES�D` (LossL(A; S)) : (8:3)In this paper, the hypotheses are represented by N -dimensional weight vectors. Let hA denotethe average hypothesis represented by the average weight vector wA =Pt̀=1wt=`. Assume nowthat for all �xed x and y, the value L(w �x; y) is a convex function of w, which is a reasonableassumption and holds for the loss functions L we are interested in. Then for any x and y,Jensen's Inequality yieldsL(hA(x); y) = L 1̀ X̀t=1wt! � x; y! � 1̀ X̀t=1L (wt � x; y) :40

U1U2 X2X1a aq qEG� GDtarget norms:GD's target normis smaller instance norms:EG's instance normis smaller
6norms increase

Figure 9.1: Schematic representation of the main factors a�ecting the loss bounds ofthe GD and EG� algorithms.By taking expectations when (x; y) is drawn from D we obtain InstLoss(hA; D) �InstLoss(hR; D) and, hence,E(e1;:::;e`�1)�D`�1 (InstLossL(hA; D)) � E(e1;:::;e`�1)�D`�1 (InstLossL(hR; D)) :This together with equality (8.3) can be seen as a crude method for converting an algorithmwhose expected total loss is bounded to an algorithm with bounded instantaneous loss. Moresophisticated conversion methods are given by Cesa-Bianchi et al. [CBFH+94] and Littlestone[Lit89a].9 Experimental and theoretical comparison of the algorithms9.1 Comparison of the worst-case upper boundsIn this subsection we compare the worst-case upper bounds given for GD and EG� inTheorems 5.3 and 5.11. Considering the upper bounds helps us to understand the circumstancesin which the algorithms could be expected to perform well or poorly. We later performexperiments with arti�cial data to verify that the upper bounds give us correct ideas aboutthe actual behavior of the algorithms. The experimental setting is described in Subsection 9.2,and the experiments are described in the following subsections.The bounds given in Theorems 5.3 and 5.11 are not directly comparable, since they are givenin terms of di�erent quantities. For both algorithms, the bound is of the form (pK + C)2,where K = Loss(u; S) for some vector u and the quantity C depends on the distance fromthe start vector to the target vector and the norms of the instances. For simplicity, let usreplace in the following discussion the relative entropy dre(u0=U; s) in the bound for EG� byits upper bound ln 2N . For the GD algorithm, we have C = U2X2, where U2 = jjujj2 andX2 = max f jjxtjj2 j t = 1; : : : ; ` g. For the EG� algorithm, we have C = U1X1p2 ln 2N , whereU1 = jjujj1 and X1 = max f jjxtjj1 j t = 1; : : : ; ` g.Figure 9.1 illustrates the trade-o�s between the di�erent norms in the bounds. Recall thatalways jjwjj1 � jjwjj2 � jjwjj1, and how tight these inequalities are depends on the vector w.Hence, the EG� algorithm has the advantage over the GD algorithm on the instance side of the�gure, since its loss bound includes the factor X1 that is less than (or in special cases equal41

to) the factor X2 in the loss bound for GD. Similarly, GD has the advantage on the target side,since the factor U2 in the bound for GD never exceeds the factor U1 in the bound for EG�.The additional factor 2 ln 2N in the bound for EG� further favors GD. As the products X2U2and X1U1 are incomparable, the total e�ect can favor either GD or EG�.We �rst construct a situation in which the bound for EG� is, for a large number Nof dimensions, is better. To make GD lose its advantage on the target side, we chooseu = (1; 0; : : : ; 0). Then U1 = U2 = 1, and the only advantage for the bound for GD nowcomes from the factor 2 ln 2N in the bound for EG�. To maximize the advantage of EG� onthe instance side, we take xt;i 2 f�1; 1 g for all t and i. This gives X1 = 1 and X2 = pN ,which maximizes the ratio X2=X1. Hence, in the case K = 0, we have the upper bound 2 ln 2Nfor the loss of EG� and the upper bound N for the loss of GD. A less exaggerated setting thatleads to similar results is obtained by choosing the target u = (1; : : : ; 1; 0; : : : ; 0), with k nonzerocomponents, for some small k. Then U1 = k and U2 = pk. Taking again xt 2 f�1; 1 gN , weget in the noise free case the bound 2k2 ln 2N for EG� and the bound kN for GD. Thus, ifthe number N � k of irrelevant variables is large, then EG� has the advantage over GD. Moregenerally, if a large part of the total weight jjujj1 is concentrated on few components of u, thenU1 is reasonably close to U2, and GD has only a small advantage on the target side.In Subsection 9.3 we perform simple experiments in situations such as just described. Wesee that on arti�cial random data, the actual losses of the algorithms compare to each otheras we could predict based on the analysis of worst case upper bounds. In other words, randomirrelevant variables confuse the GD algorithm much more than the EG� algorithm. When thenumber k of relevant variables is kept constant, the loss of the GD algorithm grows linearly inN , whereas for the EG� algorithm the growth is only logarithmic.It could be argued that in natural data, even irrelevant variables are usually not random.However, we propose applying our algorithm to nonlinear prediction problems by expandingthe instances to include the values of a number of basis functions; see Subsection 9.6 for details.Via this expansion, even a small number of truly random variables generates a large number ofpseudorandom variables, which also seem to confuse the GD algorithm.We now show that the GD algorithm can be better, as well. We can make X2 = X1 bytaking the instance vectors xt to be unit vectors in the direction of the coordinate axes. ThenX1 = X1 = 1, and EG� has no advantage on the instance side. To make U2 as much smallerthan U1 as possible, we choose u = (1; : : : ; 1), which minimizes the ratio jjujj2=jjujj1. ThenU2 = pN and U1 = N , so in the case K = 0, the upper bound for GD is N , while the upperbound for EG� is 2N2 ln 2N . In Subsection 9.4 we study experimentally this situation andsome of its less extreme variants. Again, we see that the worst-case upper bounds describe thereal behavior of the algorithms reasonably well.9.2 The experimental settingThe theoretical results in Section 5 are derived for worst-case situations, where an adversarymay generate the examples. We wish to see if these theoretical results describe the behaviorof the algorithms also when the examples are not chosen adversarially. For this purpose, weconsider simple arti�cial data. First, we generate ` instances xt by drawing each instance xtindependently from some probability measure in RN . Typical probability measures that we useinclude the uniform measure on the unit cube [�1; 1]N, the uniform measure on the set f�1; 1 gNof vertices of the unit cube, and the uniform measure on the unit sphere fx j jjxjj2 = 1 g. Wechoose a target u 2 RN to suit the particular experiment we wish to perform. To generate theactual outcomes, we take the values u � xt predicted by the weight vector u and add random42

noise to them. We quantify the amount of noise by a noise rate
, which roughly gives theerror ju � xt � ytj as a fraction of u � xt. Thus, let C = max f ju � xtj j t = 1; : : : ; ` g be a scalingfactor that gives the range of the predictions u � xt. The tth outcome yt is chosen uniformlyfrom [u � xt �
C;u � xt +
C]. We then run the algorithms on the example sequence and plotthe cumulative losses Pmt=1(yt � ŷt)2, for m = 1; : : : ; `, for the various algorithms.Recall that the algorithms GD, GP, and EG� have their variants GDV, GPV, and EGV�.As suggested by Theorems 5.5, 5.7, and 5.13, we use the variable learning rate algorithms inthe noise-free case
 = 0 if the norms of the instances xt are not same for all t. (Of course, if,say, jjxtjj2 = X for all t, there is no di�erence between GD and GDV, so we just use GD.)Our experiments are all on arti�cial data. However, we use these experiments in an unusualway. We do not merely compare the actual performances of some algorithms A and B onparticular arti�cial data. We also compare the actual losses of the algorithms to their worst-case upper bounds. In the cases when the loss bound of B is much larger than the loss boundof A, we typically see that already the actual loss of B is much larger than the loss boundof A. We do not need the experiments to show A performs well, as this is taken care of byproving a worst-case loss bound for A. The point is to show that already on a simple arti�cialdata, the competing algorithm B exceeds the worst-case bound of A. The worst-case boundsdepend only on the distance of the start vector s to the target vector u as measured by somedistance measure, and the total loss of the target vector u. They are not based on assumptionsabout the distributions of instances or the noise mechanism. If we consider other data, with adi�erent instance distribution and noise process but the same target and same total loss of thetarget, then the loss A will always stay below its upper bound. However, the loss of B mightbecome low as well.We represent our experimental results by showing the cumulative loss curves of some typicalexperiments. In other words, we plot the cumulative loss Pti=1 L(yi; ŷi) of an algorithm up totrial t as a function of t. It should be noted that the actual numerical values of the cumulativelosses of the algorithms are not important for us. The experiments are meant to demonstratethat by changing the target and the instances, we can make the di�erences in the losses of thevarious algorithms arbitrarily large in either direction.Recall that we discuss two forms of upper bounds in this paper. We need very littleinformation for bounds of the form (5.4). However, for the more sophisticated upper bounds ofthe form (5.3), as well as for the learning rates to be used by the algorithms so as to achievethese bounds, we need a number of parameters such as U , X , K, and D. The parameter Ubounds the norm of the target vector, X bounds the norm of the instances, K bounds the lossof the target u, and D bounds the distance d(u; s) from the start vector s to the target u.In practice, these quantities are usually not known, and some other methods must be used toobtain a good learning rate. If only one of the parameters is unknown, there are strategies forguessing its value with increasing accuracy [CBFH+94, CBLW95]. These strategies sometimeslead to loss bounds of the form (5.3), but with the coe�cient c1 and c2 somewhat larger thanthe ones obtained in Theorems 5.3 and 5.11 when good values of the parameters are known. Inour experiments, we have used our knowledge of the target to set all parameters optimally andtune the learning rate as a function of the optimal choices. This is because we did not want thedi�culties of choosing the learning rates hinder a fair comparison of the algorithms. It turnsout that the learning rates given in the theorems are in our experiments reasonably close to thebest possible ones.In applying a learning algorithm, one is usually not so much concerned with the cumulativeloss as with the quality of the �nal hypothesis. In our experimental setting, one would wish43

0 50 100 150 200 250 300
0

50

100

150

200

250

300

trials

cu
m

ul
at

iv
e

lo
ss

GD

EG+-

Figure 9.2: Cumulative losses of GD (solid line) and EG� (dotted line), with theirupper bounds, for instances xt 2 f�1; 1 g100 and target u = (�1; 1;�1; 0; : : : ; 0).the hypotheses wt of the algorithm to converge to the target vector u. As shown in Section 8,bounds for the rate of convergence can be obtained from the worst-case total loss bounds.Further, in the experiments we have performed we have noticed that the algorithm with thesmaller cumulative loss usually also converges faster. However, the methods we have used,in particular in choosing the learning rates in the various algorithms, have not been designedwith convergence in mind. Consequently, it is possible that another approach would result indi�erent algorithms with better convergence. In particular, one might wish to initially use ahigh learning rate in order to quickly get close to the target, and then decrease the learningrate in order to decrease the oscillations around the target which are cause by noise. One canalso improve convergence by averaging several hypothesis. These considerations are beyond thescope of this paper.9.3 Sparse target, instances from the unit cubeWe consider some situations in which the analysis of Subsection 9.1 suggests that EG� wouldbe better. Figure 9.2 shows the cumulative losses for the GD and EG� algorithms in a typicalexperiment with a sparse target and instances from f�1; 1 gN . The number N of dimensions is100, and the target has been chosen as u = (�1; 1;�1; 0; 0; : : : ; 0). The instances xt have beenchosen uniformly from f�1; 1 gN . Hence, we have X2 = p100, X1 = 1, U2 = p3 � 1:7321,and U1 = 3. The start vectors for GD is the all zero vector. For EG� we set the parameterU to U1 and all components of both the start vectors to 1=(2N), which e�ectively starts EG�with the all zero vector as well. Then dre(u=U1; s) = ln(200=3) � 4:1997. The noise rate hasbeen set to 0, so the upper bounds obtained from Theorems 5.3 and 5.11 become 102 � 3 = 300for GD and 2 � 32 ln(100=3) � 75:5947 for EG�. The �gure shows the actual cumulative lossesfor this experiment and their respective upper bounds. In the special case with no noise, andhence the loss of the target being 0, the learning rates suggested in Theorems 5.3 and 5.11, andused in this experiment, depend only on the instances and not on the target or the outcomes.From Figure 9.2 we see that for both algorithms, the upper bound is reasonably tight. Inexperiments we have observed that typically the cumulative loss of GD approaches its upperbound when the length of the trial sequence increases. The actual loss of GD is clearly higher44

than the worst-case loss bound of EG�. The loss curve of EG�, and later that of GD, turnshorizontal, as the hypothesis of the algorithm converges to the target and there is no more loss.Figure 9.3 shows the results of an experiment similar to that of Figure 9.2, except that nowthere is a moderate amount of noise. The noise rate
 has been set to 0:2. Now the knowledgeof the distance between the start vector and the target, and the total loss of the target vectoron the 300 examples, have been used in calculating both the learning rates and the worst-caseupper bounds for the loss. We notice that the worst-case upper bounds are less tight, butthe performances of the algorithms compared to each other are similar to those observed inthe noise free case. Due to the presence of noise, the loss curves do not turn horizontal butapproach a positive constant slope.The following experiment illustrates the behavior of the GD algorithm when the instancesare orthogonal. A square matrix with all its components from f�1; 1 g is a Hadamard matrixif its rows are orthogonal. We take the instance xt to be the (((t� 1) mod N) + 1)st row of anN by N Hadamard matrix, for N = 256. We take u = (1; 0; : : : ; 0) as the target, and set thenoise rate to 0. The cumulative losses of the algorithms are shown in Figure 9.4.In the special case that the instances x1; : : : ;xN are orthogonal, and there is no noise, theweight vector wt+1 of the GDV algorithm with the learning rate � = 1=2 is the least squaressolution to the (possibly underdetermined) system of equations w � xj = yj , j = 1; : : : ; t. Thatis, it is the solution with the least L2 norm. Hence, applying linear least squares predictionin an on-line manner in this situation results in the same large loss as shown for GD inFigure 9.4. More generally, it can be shown that no algorithm that uses weight vectors ofthe form wt+1 = Pti=1 aixi can have smaller loss in this situation [LLW95]. This class ofalgorithms also includes a basic variant of weight decay, where an additional jjwtjj22 error termis used as a penalty for large weights [Hin86].According to a commonly accepted heuristic, the number of examples needed to learn linearfunctions is roughly proportional to the number of dimensions in the instances. The resultspresented here do not contradict this in any way. The number of examples required for theEG� algorithm to learn is much smaller than the number of dimensions, but this is becausethe target functions have only a few nonzero components. Since the GD algorithm cannottake advantage of this, it is outperformed by EG�. In the experiments of Figures 9.2 and 9.3,there were only three relevant ones among the 100 input variables. If the number of relevantcomponents is increased, keeping the values of all the relevant weights equal, the losses of GDand EG� �rst approach each other. When there are about 25 relevant components, the losses ofthe algorithms are roughly the same. If the number of relevant components is increased above25, the GD algorithm outperforms the EG� algorithm more and more clearly. Based on theforms of the loss bounds for GD and EG�, we expect EG� to perform well even if most of thecomponents of the target are not zero, but the weight is concentrated on a few components,and jjujj1 is thus not much larger than jjujj2.9.4 Dense target, instances from the unit sphereWe now consider a case where the target u is dense, in the sense that every component ofan instance x a�ects the value u �x. For N dimensions, we choose the target u = (1; : : : ; 1). Wechoose the instances xt uniformly from the N -dimensional unit sphere nx 2 RN j jjxjj2 = 1o.Then jjxtjj2 = 1 for all t.In Figure 9.5, the cumulative losses of GD and EGV�, with the respective upper bounds,have been plotted for N = 20 and noise rate 0. The GD algorithm clearly outperforms theEGV� algorithm, as we would expect from the discussion in Subsection 9.1.45

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

trials

cu
m

ul
at

iv
e

lo
ss

EG+-

GD

Figure 9.3: Cumulative losses of GD (solid line) and EG� (dotted line), with theirupper bounds, for instances xt 2 f�1; 1 g100 and target u = (�1; 1;�1; 0; : : : ; 0), andnoise rate 0:2.
0 50 100 150 200 250 300

0

50

100

150

200

250

300

trials

cu
m

ul
at

iv
e

lo
ss

GD

EG+-Figure 9.4: Cumulative losses of GD (solid line) and EG� (dotted line), with theirupper bounds, with u = (1; 0; : : : ; 0) as the target, and rows of a 256 by 256 Hadamardmatrix as instances. 46

0 50 100 150 200 250 300
0

50

100

150

200

250

300

trials

cu
m

ul
at

iv
e

lo
ss

EGV+-

GDFigure 9.5: Cumulative losses of GD and EGV�, with their upper bounds, for targetu = (1; : : : ; 1) and instances from the 20-dimensional unit sphere.
47

0 50 100 150 200 250 300
0

100

200

300

400

500

600

trials

cu
m

ul
at

iv
e

lo
ss

EG+-

GDFigure 9.6: Cumulative losses of GD and EG�, with their upper bounds, for u =(1; : : : ; 1) as target and rows of the 20 by 20 unit matrix as instances.
0 50 100 150 200 250 300

0

50

100

150

200

250

300

350

trials

cu
m

ul
at

iv
e

lo
ss

learning rate factor

0.8
1.0
1.2
1.4Figure 9.7: Cumulative loss of GD with learning rate multiplied by 0:8, 1:0, 1:2, and1:4.To make the di�erence between the GD and EG� algorithms as clear as possible, we againconsider nonrandom data. We choose the instances by going in order through the rows of anN�N unit matrix, for N = 20. Hence, the instance xt has xt;i = 1 if i = (t�1) mod N+1, andxt;i = 0 otherwise. As the target we use u = (1; : : : ; 1), and the noise rate is 0. The results aredepicted in Figure 9.6. The GD algorithm learns the correct weight ui at trial i, and achievesperfect performance after trial N .9.5 Variants of the algorithmsFigure 9.7 shows the cumulative losses for the GD algorithm in the experiment of Figure 9.3with slightly di�ering learning rates. We see that the algorithm is robust with respect to small48

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

trials

cu
m

ul
at

iv
e

lo
ss

GDV

EG+-

GPV

EGFigure 9.8: Cumulative losses of GDV, EG�, GPV, and EG for instances xt 2 f 4; 6 g20and target u = (1=3; 1=3; 1=3; 0; : : : ; 0).deviations in the learning rate, and that the learning rate obtained from Theorem 5.3 is closeto optimal.If the algorithm is given additional information about the target vector u, its performanceshould improve. In Section 3 we considered in particular the restrictionPi ui = 1. As discussedin Section 3, incorporating this restriction into the GD algorithm leads to the GP algorithm.(Here we do not restrict the weights of GP to be nonnegative.) By Corollary 5.6, for anyvector u such that Pi ui = 1, the cumulative loss of GP is bounded by (pK + U2V)2, whereK = LossL(u; S), U2 = jjujj2, and V = maxt jjxt � avg(xt)jj2. If the values xt;i are large but,for each t, close to each other, then V can be much lower than X2 = maxt jjxtjj2. Then wewould expect GP perform better than GD does. We also have the EG algorithm, which can bethought of as EG� applied to the special case Pi ui = 1 and ui � 0 for all i. For EG we haveby Theorem 5.10 the bound �pK + U1Rp(lnN)=2�2, where R = maxt(maxi xt;i � mini xt;i).Again, if the values xt;i are large but concentrated for each t, then EG is favored over EG�.Figure 9.8 shows the results of an experiment with large, concentrated values of xt;i. Thereare 20 variables that attain values in f 4; 6 g, and the target vector has 3 nonzero components.There is no noise. The algorithms GPV and EG, which make use of the fact that Pi ui = 1,clearly outperform the algorithms GDV and EG�, which do not make use of this fact. If datalike this were to appear in practice, one might want to subtract a constant from the inputvariables to avoid problems with large values. However, unless the value Pi ui is known, onecannot know how the outcomes should be transformed in order to maintain their linear relationto the instances.We have also made experiments with the approximated EG algorithm introduced in Sec-tion 3. The advantage of the approximate algorithm is that it needs only addition and mul-tiplications, and no exponentiation, in its update, and hence is computationally simpler. Insituations considered here, the approximated and exact EG algorithms seem to have roughlythe same learning performance. The learning rates suggested by the analysis of the EG andEG� algorithms also seem to work well for the corresponding approximated versions. Ourexperiments with the approximate algorithm have not been extensive, and we do not know if49

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

trials

cu
m

ul
at

iv
e

lo
ss

GD

EG+-Figure 9.9: Cumulative losses of GD and EG�, with their upper bounds, for sparsetarget and expanded instances.under some circumstances there are likely to be problems with weights going to zero.We also performed some very preliminary experiments with the EGU algorithm. Thealgorithms seemed to work also in the case where some of the input variables are negative.9.6 Expanding the instancesOur next experiment illustrates the use of linear function learning to learn nonlinear targetfunctions by the means of expanding the instances in such a way that the target functionbecomes linear for the expanded inputs (see Boser et al. [BGV92]). For example, let B(x; q),for q = 1; 2; 3; : : :, be a vector that has as its components all monomials over the variables xi, upto degree k. Thus we have, e.g., B((x1; x2; x3); 2) = (1; x1; x2; x3; x1x2; x1x3; x2x3; x21; x22; x23).Then every polynomial of degree at most q over the variables xi can be written as u �B(x; q)for some coe�cient vector u. Accordingly, polynomials of degree at most q can be learned aslinear functions by using the expanded instances B(x; q) instead of the original instances x asthe input to the algorithm. If the original instances have N components, then the expandedinstances have O(N q) components. However, if the target polynomial has only few terms, thenthe target vector u has only few nonzero components, and the EG� algorithm can still performwell.Figure 9.9 shows the results of an experiment with expanded instances. The originalinstances have been chosen uniformly from f�1; 1 g8, and an expanded instance consist of theproducts of the components of the original instance. Since the components xt;i are from f�1; 1 g,we do not consider products that include the same variable more than once. Hence, there are256 products. We have chosen the target polynomial x2x3x4 + x2x2x3x6 + x1x2x3x4x6x7x8,with three terms, which for the encoding we use gives the target coe�cient vector u withu59 = u96 = u251 = 1 and ui = 0 for i 62 f 59; 96; 251 g. The noise rate has been set to 0.Figure 9.9 is qualitatively similar to Figure 9.3. Hence, in the case of a sparse target andinstances from the unit cube, the advantage of EG� over GD does not depend on the inputvariables being independent, which was the case for Figure 9.3 but not for Figure 9.9.50

In real-world data, there might be some truly independent variables, possibly together withother variables with correlations and more complicated dependencies. The experiment suggeststhat in such data, the new variables generated as the products of the few original independentvariables cause the GD algorithm similar di�culties as a large number of independent randomvariables, although the introduced new variables are not truly independent. Hence, if theinstances are expanded, results may be similar to those described in Subsection 9.3 even if thenumber of independent random variables in the original instances is small.When we expand the instances, the time for predicting and computing the updated weightvector usually becomes linear in the dimension of the expanded instances. For simplicity, weconsider the case xt 2 f�1; 1 gN and ignore products that contain some variable more thatonce. In the expansion method discussed above, the expanded instances B(x; q) then have�Nq � = O(N q) dimensions. Thus, the expense of the prediction and update time restricts ourchoice of q. However, the EG� algorithm still generalizes well when the target is sparse. If theoriginal instances are in f�1; 1 g, then the components of B(x; q) are also in f�1; 1 g. If thetarget u over the expanded domain has exactly k components in f�1; 1 g and its remainingcomponents are zero, then (using the notation of Subsection 9.1) we get the following norms:U2 = pk, U1 = k, X2 = �N�q�1=2, and X1 = 1. In the noise-free case, this leads the total lossbounds U22X22 = k�N�q� = O(kN q) for GD and 2U21X21 ln �2�N�q�� = O(k2q logN) for EG�.Assume that our goal is to obtain a hypothesis with instantaneous loss at most ". If we takethe bounds given by the reductions in Section 8 to be fair indicators of the actual instantaneouslosses of the algorithms, then an algorithm with a total loss bound T leads to an algorithm withinstantaneous loss T=t after O(t) examples. Thus, GD would require O �k�N�q�="� examples andEG� would require O(k2q logN=") examples. As seen before, when k is small the EG� algorithmhas good generalization performance. However, this is only useful if the time O ��N�q�� is notprohibitive.When the number of examples is small, the prediction and update time of the GD algo-rithm can be signi�cantly improved from the straightforward O ��N�q��. If the start vector isalso of the form B(s; q) then the tth weight vector wt is a linear combination of B(s; q) andB(x1; q); : : : ; B(xt�1; q). Updating is done by adding a new component to the linear combina-tion, and computing the prediction wt � xt amounts to computing t dot products of the formB(a; q) � B(b; q), where a;b 2 RN . Using dynamic programming, such a dot product canbe computed in time O(qN). Thus, for the tth example the total prediction and update timebecomes O(qNt) instead of O ��N�q��. In the special case q = N , computing one of the dot prod-ucts can be further sped up to O(N) even though each N -dimensional instance is expanded to2N components. This is achieved by simply using the equalityB(a; N) �B(b; N) = NYi=1(1 + aibi) :Thus, if q = N , then the total time the tth example is O(tN) instead of O ��N�q��. We know ofno way to speed up the prediction and update for the EG� algorithm.Thus, the GD algorithm seemingly has an advantage. However, as argued above, thisalgorithm can require as many as
 ��N�q�� examples, and only during the �rst few trials canthe GD algorithm save time by using the above methods. For large values of t, the update andprediction time O(tN) for trial t would be larger than the time O ��N�q�� obtained by simply51

maintaining one weight for each of the dimensions of the expanded instances. In summary, theupdate and prediction times of GD can be reduced, but algorithm might use so many examplesthat the speed-up becomes useless.10 ConclusionsThe following are the key methods used in this paper.1. We use worst-case bounds for the total loss for evaluating on-line learning algorithms.The bounds are expressed as a function of the loss of the best linear predictor.2. We introduce a common framework for deriving learning algorithms based on the trade-o� between the distance traveled from the current weight vector and a loss function.Di�erent distance functions lead to radically di�erent algorithms. This framework hasbeen adapted recently [HSSW95] to an unsupervised setting.3. The distance function also serves in a second role as a potential function in provingworst-case loss bounds by amortized analysis [CLR90]. The bounds are �rst expressedas a function of the learning rate and various norms of the instances and target vectors,as well as the loss of the target vector. Good loss bounds are then obtained by carefullytuning the learning rate.In this paper we are clearly championing the EG� algorithm derived from the relative en-tropy distance measure. The use of this distance measure is motivated by theMinimum RelativeEntropy Principle of Kullback [KK92, Jum90]. The resulting new algorithm EG� learns verywell when the target is sparse and the components of the instances are in a small range. Suchsituations naturally arise if we perform nonlinear predicting by �rst expanding the instancesto include the values of some nonlinear basis functions and then predict using linear functionsof the expanded instances. Since the loss of the EG� algorithm increases only logarithmicallyin the number of irrelevant input variables, it is possible to have a good generalization perfor-mance even if the number of basis functions, that is the number of dimensions in the expandedinstances, signi�cantly exceeds the number of training examples. As one possible heuristic, wesuggest guessing a reasonable set of basis functions and then iteratively replacing the functionsthat receive a small weight, and are thus not used, with new hopefully more useful functions.Cross-validation can be used to avoid over�tting.Even for the single linear neuron we have been able to prove worst-case loss bounds (in termsof the loss of the best linear predictor) only for the square loss. Ideally we would like to haveloss bounds for other standard loss functions such as the relative entropy loss. It would also beinteresting to �nd new distance measures that would lead to new linear prediction algorithms,for which the loss bounds depend on other pairs of dual norms than the pairs (L1; L1) and(L2; L2), which correspond to the algorithms EG� and GD, respectively.The bounds for GD are provably optimal. However, we still need matching lower boundsfor the exponentiated gradient algorithms EG and EG�. The bounds for EGU still need to begeneralized to allow for negative components in the instances.Applying gradient descent in multilayer sigmoid networks leads to the well-known back-propagation algorithm. The exponentiated gradient algorithms can similarly be generalizedto obtain a new exponentiated back-propagation algorithm. As a long-term research goal, wesuggest developing a whole family of algoritms derived using the relative entropy as a distancemeasure. Many of the tradional neural network algorithms belong to the gradient descent familyof algorithms that in our framework can be derived using the squared Euclidean distance. Thisfamily includes the Perceptron algorithm for thresholded linear functions, the GD algorithm52

for linear functions, the standard back-propagation algorithm for multilayer sigmoid networks,and the Linear Least Squares algorithm for �tting a line to data points. The new familyincludes, respectively, the Winnow algorithm [Lit88], the EG� algorithm, the exponentiatedback-propagation algorithm, and an algorithm for �tting a line to data points so that therelative entropy of the coe�cient vector is minimized. The new family uses a new bias, whichfavors sparse weight vectors. We have observed that in the case of linear regression, this leadsto improved performance in high dimensional problems if the target weight vector is sparse.We also expect to see similar behavior in more general settings.Recently Helmbold et al. [HKW95] were able to prove worst-case loss bounds for singlesigmoided linear neurons when the tanh function is used as the sigmoid function and the lossfunction is the relative entropy loss. In this case, worst-case loss bounds can be obtained forthe algorithms from the gradient descent and exponentiated gradient family.AcknowledgmentsJyrki Kivinen has been funded by Emil Aaltonen Foundation, University of Helsinki, and theAcademy of Finland. Manfred K. Warmuth has been funded by the NSF grant IRI-9123692. Wewish to thank Nicol�o Cesa-Bianchi, David P. Helmbold, and Yoram Singer for their comments.We also thank John Denker for inspiring us to use dimension analysis for checking update rulesand learning rates.References[Ama94] S. Amari. Information geometry of the EM and em algorithms for neural networks.Technical Report METR 94-4, University of Tokyo, Tokyo, 1994.[Ama95] S. Amari. The EM algorithm and information geometry in neural network learning.Neural Computation, 7(1):13{18, January 1995.[BGV92] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimalmargin classi�ers. In Proc. 5th Annu. Workshop on Comput. Learning Theory,pages 144{152. ACM Press, New York, NY, 1992.[CBFH+94] N. Cesa-Bianchi, Y. Freund ,D. Haussler, D. P. Helmbold, R. E. Schapire, and M. K.Warmuth. How to use expert advice. Technical Report UCSC-CRL-94-33, Univ.of Calif. Computer Research Lab, Santa Cruz, CA, 1994. An extended abstractappeared in STOC '93.[CBLW95] N. Cesa-Bianchi, P. Long, and M.K. Warmuth. Worst-case quadratic loss boundsfor on-line prediction of linear functions by gradient descent. IEEE Transactions onNeural Networks, 1995. To appear. An extended abstract appeared in COLT '93.[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MITPress, Cambridge, MA, 1990.[DLR77] A. P.Dempster, N.M.Laird, and D. BRubin. Maximum-likelihood from incompletedata via the EM algorithm. Journal of the Royal Statistical Society, B39:1{38, 1977.[HKW94] D. Haussler, J. Kivinen, and M. K. Warmuth. Tight worst-case loss bounds forpredicting with expert advice. Technical Report UCSC-CRL-94-36, University ofCalifornia, Santa Cruz, Computer Research Laboratory, November 1994. Partialresults appeared in EuroCOLT '93 and EuroCOLT '95.53

[Hay91] S. Haykin. Adaptive Filter Theory. Prentice-Hall, Englewood Cli�s, NJ, 1991.Second edition.[Hay93] S. Haykin. Neural Networks: a Comprehensive Foundation. Macmillan, New York,NY, 1993.[HKW95] D. P. Helmbold, J. Kivinen, and M. K. Warmuth. Worst-case loss bounds forsigmoided linear neurons. In Advances in Neural Information Processing Systems8. MIT Press, 1995. To appear.[HSSW95] D. Helmbold, R. E. Schapire, Y. Singer, and M. K. Warmuth. A comparison ofnew and old algorithms for a mixture estimation problem. Technical Report UCSC-CRL-95-50, University of California, Santa Cruz, Computer Research Laboratory,October 1995. An extended abstract appeared in COLT '95.[HW95] D. Helmbold and M. K. Warmuth. On weak learning. Journal of Computer andSystem Sciences, 50(3):551{573, June 1995.[Hin86] G. E. Hinton. Learning distributed representations of concepts. In Proc. 8th AnnualConf. of the Cognitive Science Society, pages 1{12, Hillsdale, 1986. Erlbaum.[Jum90] G. Jumarie. Relative information. Springer-Verlag, 1990.[KK92] J. N. Kapur and H. K Kesavan. Entropy Optimization Principles with Applications.Academic Press, Inc., 1992.[KSS94] Michael J.Kearns, RobertE. Schapire, andLindaM.Sellie. Toward e�cient agnosticlearning. Machine Learning, 17(2/3):115{142, 1994.[Lit88] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2:285{318, 1988.[Lit89a] N. Littlestone. From on-line to batch learning. In Proc. 2nd Annu. Workshop onComput. LearningTheory, pages 269{284,SanMateo, CA, 1989.MorganKaufmann.[Lit89b] N. Littlestone. Mistake Bounds and Logarithmic Linear-threshold Learning Algo-rithms. PhD thesis, Technical Report UCSC-CRL-89-11, University of CaliforniaSanta Cruz, 1989.[Lit91] N. Littlestone. Redundant noisy attributes, attribute errors, and linear thresholdlearning usingWinnow. In Proc. 4th Annu.Workshop on Comput. LearningTheory,pages 147{156, San Mateo, CA, 1991. Morgan Kaufmann.[LLW95] N. Littlestone, P.M. Long, andM.K.Warmuth. On-line learning of linear functions.Journal of Computational Complexity, 5:1{23, 1995.[LW94] N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Informationand Computation, 108(2):212{261, 1994.[Lue84] D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, Reading,MA, 1984.[Roy63] H. Royden. Real Analysis. Macmillan, New York, NY, 1963.[SW94] R. E. Schapire and M. K. Warmuth. On the worst-case analysis of temporal-di�erence learing algorithms. InProc. 11th InternationalConf. onMachineLearning,pages 266{274, San Francisco, CA, July 1994. Morgan Kaufmann. To appear inMachine Learning.[Vov90] V.Vovk. Aggregating strategies. InProc. 3rdAnnu.Workshop onComput. LearningTheory, pages 371{383. Morgan Kaufmann, 1990.[WS85] B. Widrow and S. Stearns. Adaptive Signal Processing. Prentice-Hall, EnglewoodCli�s, NJ, 1985. 54

