
UDS: A Universal Data StructureRobert LevinsonUCSC-CRL-94-15June 10, 1994Board of Studies in Computer and Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064(408)459-2087FAX: (408)459-4829E-mail: levinson@cse.ucsc.eduabstractThis paper gives a data structure (UDS) for supporting database retrieval, inference andmachine learning that attempts to unify and extend previous work in relational databases,semantic networks, conceptual graphs, RETE, neural networks and case-based reasoning.Foundational to this view is that all data can be viewed as a primitive set of objects andmathematical relations (as sets of tuples) over those objects. The data is stored in threepartially-ordered hierarchies: a node hierarchy, a relation hierarchy, and a conceptual graphshierarchy. All three hierarchies can be stored as \levels" in the conceptual graphs hierarchy.These multiple hierarchies support multiple views of the data with advantages over any of theindividual methods. In particular, conceptual graphs are stored in a relation-based compactform that facilitates matching. UDS is currently being implemented in the Peirce conceptualgraphs workbench and is being used as a domain-independent monitor for state-space searchdomains at a level that is faster than previous implementations designed speci�cally for thosedomains.In addition it provides a useful environment for pattern-based machine learning.Keywords: RETE, pattern matching, conceptual structures, relational database, machinelearning, conceptual graphs, state space search, rule matching.



1. Introduction 1I am for the delicate dance from parts to wholes and back again. We should not becaptured at either end. The dance should go forever.| P. Suppes [21]1 IntroductionThree popular and competing database paradigms are relational databases, in which datais stored and accessed as a set of tables, conceptual graphs, in which data is stored as a set ofgraphs, or semantic networks in which data is stored in one large homogeneous network(graph).In this paper we give a data structure that can be seen to replace the others, with all the advantagesof each and fewer of the disadvantages.The basic idea will be to store the data as they traditionally are stored in a semantic networkas a set of nodes with edges or hyperedges representing n-ary relations. 1. Each node correspondsto a primitive domain object or value. To store the semantic network one requires a node table thatgives for each node all the relation instances (edges) it is in and its position in each relation. Arelation table stores for each relation instance, pointers to the nodes involved in that instance. Onemight then think of representing a relational database simply by giving the relation table. What ismissing however are the relational schema: the type headings on individual relations in a relationaldatabase. Such schema can be created by making the node table and the relation table each into apartially-ordered hierarchy by more-general-than. Once this is done it is seen that the node tablecorresponds to the traditional type hierarchy used in conceptual graph theory and the more-general-than relation over the relational hierarchy forms the traditional tables of relational databases: eachrelational table sits directly under its schema de�nition.The next key idea is that a conceptual graph (CG) can be viewed as a sequence of joins on aset of relations 2. Thus, a conceptual graphs database can be stored simply as a partial order overordered lists of relation instances from the relation hierarchy. Thus, the resulting data structure hasthree hierarchies:� The node hierarchy� The relation hierarchy� The conceptual graphs hierarchyEach of these hierarchies can be stored as one: the node hierarchy and relationhierarchy would sit at the top of the standard conceptual graph hierarchy. However,the distinction between the three levels needs to be retained to allow for the multipleaccess mechanisms to be supported.Figure 1 below gives a conceptual graphs database of seven graphs and a query graph fromwhich we will be taking our examples. Figure 2 shows the node hierarchy, relation hierarchy andgraph hierarchy corresponding to the UDS representation of Figure 1. To be noted is the compactrepresentation of the graphs in the graph hierarchy. Such compaction of conceptual structures is ahallmark of this new storage and retrieval method and is explained further below.Although not made explicit in the diagram, there are bidirectional pointers from objects in theconceptual graphs hierarchy to the objects they contain in the relation hierarchy and bidirectionalpointers from objects in the relation hierarchy to objects in the the node hierarchy. For example,there are pointers from Sue in the node hierarchy to the �rst argument of relations 4,7, and 12 in therelation hierarchy (and hence the label Sue need not actually be stored with the relations). Similarlyrelation 7 points to G4 in the graph hierarchy. Also not made explicit in the diagram is that siblingsin the node hierarchy be sorted alphanumerically.1A hypergraph is a set of nodes and a set of hyperedges which are subsets of 0 or more nodes. Thus a semanticnetwork can be viewed as a directed-labelledhypergraphand partitioned semantic networks as nested-labelled directedhypergraphs[2]2Informally: a CG is a very small relational database!



2 1. Introduction

manr quicklyeat eat quicklymanr pie cont apples
personQuery GraphG7:G6:G5:G4:G3:G2:Database Graphs Suegirlman personDan FrankType Hierarchy:

person eatG1: girl
eatSue

agentagent
agentSue eatagent quicklymanr applescontpieobjagentSue eat manr quicklyeat

objagent eatDan poss SueagentQ:
obj pie

Figure 1.1: Type hierarchy, database and query graph.This example is adapted from [20] pp.92-93 and reprinted from [12] \manr" stands for \manner",\cont" stands for \contains" and \poss" stands for \possesses". G1 and G7 are generalizations ofthe query Q, G2 and G4 are specializations of Q and G3, G5, and G6 are incomparable.



1. Introduction 3Dan Frankman girl pie applesfoodperson Sue

G7 f11g G1 f2gG2 f3g G5 f12g G6 f6,8,10gG4 f7g G3 f4,6g

Node Hierarchy
Relation Hierarchy
Graph Hierarchy

1. eat[agent,obj,manr]2. eat[person, , ] 11. eat[ , ,quickly]3. eat[girl, ,quickly]4. eat[Sue,pie, ] 8. eat[Dan,pie, ]7. eat[Sue,pie,quickly]
5. cont[whole,part]6. cont[pie,apples]9. pos[owner,owned]10. pos[Sue,pie]12. eat[Sue, , ]

Figure 1.2: The hierarchies corresponding to the graphs of Figure 1



4 1. IntroductionAlso associated with each hierarchy is an additional data structure that allows subsumptiontesting in the hierarchy to be done in constant time. The three standard data structures for thispurpose are sparse arrays, hash tables and bitcodes[4]. Which scheme is selected depends on storagecosts.This use of multiple hierarchies is reminiscent of the data structure used in multi-level hierarchicalretrieval [13]. The major di�erence is that the node descriptor hierarchy is being replaced by arelation hierarchy that better facilitates CG matching by incorporating the power of a relationaldatabase. UDS also incorporates ideas from the original universal graph method [11] proposed by usin 1984 and the universal relational model [19, 22]. Here we add some new twists that take advantageof a better understanding of the relationship between conceptual graphs, relational databases andmarker-passing semantic networks[9, 6]. The new design exploits the following principles that wefeel are critical in designing cost-e�ective information retrieval systems:� Every primitive data object, label or symbol should be stored only once withpointers used to denote the actual uses of the object.� Every compound object should be stored with the minimum information requiredto represent the combinations of its parts. Thus, for example, transitive relations shouldbe stored by only giving the arcs represented in the transitive kernel, and the designation thatthe relation is transitive.� Given no loss of accuracy, objects should be processed at the highest level ofabstraction possible. For example, below we see that conceptual graphs can be processedat the \relational" level rather than at the node and edge level.The competing methods may each operate over UDS while deriving bene�ts that were not therein the original methods:� Semantic network marker-passing algorithms can make use of the semantic net-work formed from the node hierarchy and the relation hierarchy, and the parti-tioning provided by the CG hierarchy. Advantages over traditional semantic networkalgorithms are that the relation hierarchy allows multi-argument relations to be treated asindividual chunks, and the partial order over the nodes and relations allows generalizationqueries to be handled more quickly and e�ciently.� Relational database retrieval operations operate directly on the relation hierarchyby making use of the pointers to and from the node hierarchy to enhance thejoin process during query processing (it is easy to determine which objects join witheach object). The type hierarchy formed by the node hierarchy is a facility most relationaldatabases don't have. Further, the sorting (see above) in the type hierarchy can be used toreturn answers to queries in a desired sorted order.� Conceptual graph operations can operate as before on the graphs representedin the conceptual graphs hierarchy supported by the type information in thenode hierarchy. For example, the Method III retrieval scheme [11, 12] and associatedenhancements [13, 4] can operate directly on this hierarchy. Graph matching will be muchfaster than before due to the compact nature of the graphs (see below).In addition to being able to process the data using the multiple viewpoints, other advantages toconceptual graph processing are accrued:� Storage of the conceptual graphs has been greatly reduced since nodes and re-lations are actually stored only once. Redundancy has been removed. Similar ideasinvolving storage based on canonical rules are given in [3].� Conceptual graph matching can make use of the chunks provided by processingthe graphs at the relational level rather than at the node level.� Method V retrieval can also proceed naturally. Method V is a previously unpublishedmethod that proceeds exactly as in Method III (where a node is not queried unless its pre-decessors are known to match the query) except that information about how the predecessorsbind to the query is propagated up the hierarchy. These bindings are reected as relation-to-relation bindings in UDS as opposed to node-to-node bindings in a standard CG system, thusleading to substantial complexity reduction.(For further details, see Section 5 below.)



2. Retrieval 5� The fact that the semantic network represents a join over all the relations is agreat advantage : Suppose we have one CG: \Joe eats popcorn" and another CG: \popcornis white". If we never take the join of these two CGs we might have di�culty discoveringthat \Joe eats something that is white." The semantic network representation facilitates thediscovery of relationships that may not have been previously recognized.2 RetrievalIn UDS, queries can be answered using either marker passing, relational processingor conceptual graph retrieval. Which method is best depends on the type of query. For instancein the example of Figures 1 and 2 one could use CG retrieval to �nd immediate generalizations ofthe object as G1 and G7 with an immediate specialization as G2 and a further specialization as G4.G4 gives the conclusion that \Sue ate quickly".Ignoring the CG hierarchy and using just the relation hierarchy, one would check for the positionof the relation eat[person,,quickly] �nding generalizations of 2 and 11 and a specialization of 3 thatleads to the specialization of 7 that \Sue ate quickly."Marker passing would start with the node hierarchy at nodes eat, person and quickly, �ndingall relations involving only these nodes as 2 and 11. Through spreading activation to more speci�cinstances of \person" it would be discovered that both \a girl" and Sue eat quickly.In this example, in which the query was a single relation, relation-based retrieval worked best.For queries involving multiple relations and highly structured objects it is likely that CG retrievalwould work best, having formed the chunks ahead of time. In particular, conceptual graphscan be used to store complex relational database queries for faster processing in thefuture, much in the same way as views[5] do currently.Semantic network marker-passing will work best for \free form" queries such as \ In which waysare Joe and Sue related?".3 Insertion and DeletionThe costs of insertion and deletion from the structure have decreased on the average due to theindexing properties of the multiple hierarchies and improved matching costs. If inserting a node, oneadds it to the node hierarchy exactly as one would do with the type hierarchy in conceptual graphs.Inserting a relation or a new relational scheme de�nition into the relation hierarchy likewise proceedsexactly as in relational databases while bene�ting from the hierarchical organization. Insertion of aconceptual graph also proceeds exactly as before except that the relations in the conceptual graphmust also be inserted into the relation hierarchy. This small additional cost is outweighed by thebene�ts gained due to more e�cient matching in the conceptual graphs hierarchy.4 Compaction of Conceptual GraphsThe standard diagrammatic representation of conceptual graphs [20] makes these graphs appearto have more complexity than they actually do. If one were to implement a conceptualgraph based on the diagrammatic representation the costs associated with storage andmatching would be much higher than they need to be.For example, a 3-ary relation in a diagrammatic conceptual graph requires 3 concept nodes, 1relation node and 3 argument arcs. Taking the view [2] that conceptual graphs are nested directedhypergraphs, the 3-ary relation becomes simply 3 nodes and 1 labeled hyperedge. This is certainlyan improvement.But there is yet farther to go, if one takes the relational view of UDS. A 3-ary relation is a singlenode in the relation table! A conceptual graph becomes a set of relation nodes where the relationsare those stored in the relational table. In those conceptual graphs in which an individual objectappears only once it is enough to assume that all relations are joined to other relations in which one



6 5. Method V retrieval algorithmor more nodes are shared commonly. For those conceptual graphs in which objects may be repeatedand take di�erent slots in the relations, explicit joins must be de�ned between the relation nodes inwhich it is stated exactly which arguments get joined to which arguments. So, the �nal view isthat a CG is a set of nodes representing individual relations and a set of labeled edgesrepresenting joins between these relations.Figure 3 below illustrates a compaction of a conceptual graph representing a molecule involving2 oxygen atoms, a carbon atom, 2 nitrogen atoms, a double bond and 3 single bonds. Thus thestandard chemical diagram contains 5 nodes (for atoms), and 4 edges (for bonds). From the diagramwe see that the standard CG diagrammatic form requires 9 nodes and 8 edges. The hypergraphrepresentation of the CG uses 5 nodes and 4 edges (as in the chemical graph). But the relation-basedCG representation has managed to store everything as 4 nodes and 3 edges where the nodes point torelations in the relation hierarchy. The labels on the edges denote which arguments in one relationjoin to which arguments in the next relation. Note further that for the graphs in Figures 1 and 2no such join information was required and the graphs were reduced to sets (of relations).This compaction has favorable properties for supporting matching:� There are fewer nodes and edges.� Since nodes denote more speci�c objects than before, their likelihood of matchingis signi�cantly lessened. This leads to fewer false matches that require backtracking insubsumption tests.� Since relation nodes are stored only once, it is easy to �nd node correspondencesbetween two CGs since if a node is shared they will be pointing to the same node in therelation hierarchy, (or if one node is more-general-than the other there will be a path). Thatis, the �rst stage of most subgraph-isomorphism tests [1] in which one �nds which nodes couldbind (as \candidates") to other nodes can be performed by simply reading o� correspondencesfrom the hierarchy, or comparing bit encodings [4].The same abstraction mechanism that goes from nodes to relations to graphs canbe taken one step further to facilitate the storage and retrieval of nested-contextconceptual graphs. A graph will point to nested-graphs in which it serves as a context. Theencoding of negated contexts and lines of identity is analogous to the encoding of join-structurewhen going from relations to graphs. The abstraction mechanism may be continued on to multiplelayers of nesting.4.1 Subsumption preservation in compacted formFor the relation-based compacted form to be useful it is desirable that the more-general-thanrelation between two conceptual graphs G1 and G2 be checkable by subgraph-isomorphism on thecompacted form. This is the case, since the structure of CGs is such that if G1 is more-general-thanG2 each relation in G1 should have a corresponding more-speci�c relation in G2. This correspondsdirectly to comparing two nodes in the relation hierarchy.The edges in the compacted form represents the join of two adjacent relations. Whether edgesin G1 can match edges in G2 can be determined by simply checking that the �elds on which therelations are joined correspond (given that the endpoints of the edges are known to correspond).5 Method V retrieval algorithmMethod V retrieval is a previously unpublished algorithm that is designed to have the simplicityof Method III retrieval [11] coupled with the bene�ts of Method IV. We discuss it here since it canbe used to even further enhance the e�ciency of retrieval over the conceptual graph hierarchy.Method IV [12, 13] introduced the notion of \node descriptors" which are more speci�c descrip-tions of nodes in graphs that support matching due to their speci�city much in the way that relationnodes do so in the above discussion. The idea of Method IV is to do many graph comparisons inparallel by taking advantage of their shared node descriptors. Method V goes one step further by



5. Method V retrieval algorithm 7
CG Diagramatic Representation

Relation-Based CG Representation
1 243

Oxygen bond Carbon singlebond Oxygen singlebond NitrogensinglebondNitrogen single bond single bondCG Hypergraph Representation
Oxygen Carbon OxygenNitrogen Nitrogen

1 double bond [Oxygen,Carbon]2 single bond [Oxygen,Carbon]3 single bond [Oxygen,Nitrogen]4 single bond [Nitrogen,Carbon]Relation Table
single bondf2,2g f2,2gf1,1g

double bond
double

Figure 4.1: Compacting Conceptual Structures



8 6. State-space search as relation-based hypergraph transformationnoting that a graph is itself its best descriptor of its nodes and that if A is a subgraph of B,the nodes in A (and hence their descriptors) have bindings to nodes (and descriptors) in B.In the conceptual graph hierarchy we store bindings from the nodes of each graph to the nodesof their successors. (These are additional pointers than those discussed above). As a graph maybind in more than one place, there actually may be multiple sets of bindings that would have tobe stored and sometimes, such as with star-graphs, an exponential number of bindings may bepossible. To prevent this combinatorial explosion and for simplicity sake, for each node in a graphwe store all the nodes it could possibly bind to in each of its successor graphs. Compaction as abovereduces the number of such possibilities. This information can now be used to dramatically improvethe performance of Method III, by reducing the size of the candidate binding lists. For example,suppose graph G has four immediate predecessor graphs H1, H2 , H3, H4. If we query graph G inPhase I of Method III we know that H1, H2 , H3 and H4 have all matched Q. This gives us a verygood indication of how G may �t into (bind to) Q. For example, if node 1 of H1 mapped into node5 of Q, and we know that this same node maps only into nodes 7 and 8 of G, we know that at leastone of these nodes must bind to node 5 of Q - if G is to be a subgraph of Q. Further, constraintsof the bindings of nodes 7 and 8 of G can be retrieved from the bindings of H1, H2, H3, H4, thussubstantially reducing the candidate binding lists of G, before backtracking is taken up to resolvethe remaining bindings. Note that in this framework it is necessary to �nd ALL bindings of eachgraph to the query graph(at least for insertion) and that �nding them is facilitated by the methoditself.6 State-space search as relation-based hypergraph transformationThe state space search paradigm in which problems are broken down into initial conditions,terminal conditions (goals) and operators continues to be one of the most pervasive problem-solvingmodels used in AI research 3 The fundamental importance of the paradigm is seen when onerecognizes that each of automatic programming (in which the machine translates from one veryhigh-level language into one less \high"), automatic theorem proving (in which one tries to proveformulas from axioms and inference rules), and pattern recognition (in which one parses from onerepresentation into another) are special cases. We now show how all state space search problems asthey are normally formalized [10] can be viewed as relation-based transformations over hypergraphs(which are a special case of conceptual graphs). In the next section we show how this relation-basedview can allow these problems to be monitored incrementally and e�ciently.To reach a de�nition of generic search problem we consider notions of domain objects, staticrelations, dynamic relations, variables and bindings. The framework is inspired by Peirce's existentialgraphs[18], conceptual graphs, and our own work in experience-based planning [14].The following is a description of the components of a search problem, with running examplestaken from Tic-Tac-Toe 4 and Towers-of-Hanoi on three disks: 5� Each domain will have a �nite set of domain objects. In Tic-Tac-Toe the objects willbe squares fS1,S2,S3,S4,S5,S6,S7,S8,S9g and pieces fX,O,B (for blank)g.In Towers-of-Hanoi, the objects are PegsfP1,P2,P3g and Disks fD1,D2,D3g.� Unary, binary and higher relations may be de�ned on these objects. An n-aryrelation is a set of n-tuples of domain objects. In the �nite search domains, rather than de�ningtypes explicitly we shall simply note that they are implicitly de�ned as the set of objects thatoccur in any single �eld (attribute) of a relation. At the implementation level, relations that3The objective of a state-space search problem is to �nd a sequence of operators (transformations) that will converta state that satis�es the initial conditions into one that satis�es the terminal conditions, under various optimalitycriteria and resource constraints.4Tic-Tac-Toe is played on a 3x3 board with two players X and O alternating turns selecting cells with X going�rst. The �rst player completing a row, column or diagonal wins.5Towers-of-Hanoi is a single agent game involving three disks \small", \medium", \large" placed on top of eachother in order on the �rst peg of three. The object is to move the disks one at a time such that at no time is a diskon top of a disk smaller than it on the same peg, and such that the disks �nish all on the third peg.



6. State-space search as relation-based hypergraph transformation 9are symmetric or transitive may be abbreviated by specifying a kernel set of tuples and thengiving the mathematical properties from which the remaining tuples can be inferred. Otherabbreviations and computation of relations are possible such as �nding adjacent squares onthe chessboard through calculation. We break relations into two classes: static relations arethose whose de�nition (tuples) remain constant for a given game, and dynamic relations arethose whose content can change from state to state. A frequent use of static relations is inde�ning board topology. Most domains have a dynamic relation corresponding to ON to saywhich pieces are on which squares.In Tic-Tac-Toe, we de�ne a \THREE-IN-A-ROW" static relation corresponding to winningsets of squares: f (S1, S2, S3), (S4, S5, S6),...g and the ON dynamic relation initializedas f(B,S1),(B,S2) etc. g. In Towers-of-Hanoi there is a static relation SMALLER-THANinitialized to:f(D1,D2),(D2,D3),(D1,D3)g. Towers-of-Hanoi also has the dynamic relation ON, initializedto:f(D3,P1),(D2,P1),(D1,P1)g.� Operators de�ne transformations over states by changing the contents of dynamicrelations. They are speci�ed by giving sets of preconditions, additions and dele-tions. Note that each of these sets (and their combination) can be viewed as a conceptualgraph or hypergraph.For Tic-Tac-Toe we have an operator MOVE(piece,square): Pre: ON(B,S1), Add: ON(X,S1),Del: ON(B,S1). (we assume the board is always oriented with X to move.) For Towers-of-Hanoiwe have the following MOVE operator:MOVE(d1:disk,p1:peg,p2:peg) =pre: ON(d1,p1) AND ~(p1=p2) AND ~((ON(d2,p2) OR ON(d2,p1))AND SMALLER_THAN(d2,d1)).add: ON(d1, p2)del: ON(d1, p1)� States are hypergraphs over domain objects. As the static relations are always true itis only necessary to give the dynamic relations when representing a state.� An operator is then applicable in a given state i� there is a 1-1 mapping in variablesof the preconditions of the operator to domain objects such that all relationsspeci�ed in the operator are true (or false, if negated) of those domain objects.The result of applying the operator is to remove from the current state thosetuples corresponding to the deletions and add those tuples associated with theadditions to the contents of the dynamic relations.Since static relations are constant throughout the problem-solving process those bindings ofobjects to variables that could ever possibly (constrained by the static relations) satisfy anoperator de�nition, can in principle be computed ahead of time leaving only the dynamicconditions to be checked.� Terminal conditions are de�ned in exactly the same way as preconditions, additionand deletion conditions of operators. It is automatically assumed that a playerhaving no legal moves is terminal. For tic-tac-toe, we have THREE-IN-A-ROW(s1,s2,s3)AND ON(X,s1) AND ON(X,s2) AND ON(X,s3) as terminal. In Towers-of-Hanoi, we haveON(D1, P3) AND ON(D2, P3) AND ON(D3, P3) as terminal conditions.� Reward conditions are conditions (often the same as terminal) that are coupledwith a reward to each player based on the outcome of the game.. For Towers-of-Hanoiand Tic-Tac-Toe, reward conditions are the same as terminals and assign a win to the playerwho has just moved.� Finally, FLIP is a static binary relation over domain objects used to de�ne sym-metries so that a game can be encoded from one player's perspective only. Fortic-tac-toe FLIP is:f(X,O),(O,X),(B,B),(S1,S1),(S2,S2)...g. Tower-of-Hanoi, being a single-agent game, does notrequire a FLIP operator.



10 7. Monitoring state-space search incrementally using UDS� In summary, an abstract game or search problem is de�ned as a �nite set of domainobjects, and �nite sets of static relations, dynamic relations, operators, terminalconditions and reward conditions. Finally, for convenience in encoding, we de�nea symmetry condition (known as FLIP.)The conclusion is that a large spectrum of single-agent and multi-agent search problems can beviewed as games of (hyper)graph-to-graph transformation directly analogous to organic chemicalsynthesis: states are graphs, and operators are graph-to-graph productions, terminal and rewardconditions may also be expressed as graphs. This conclusion is not surprising, given that conceptualgraphs and other semantic network schemes have been shown to carry the same expressive power as�rst-order logic. The conclusion is signi�cant, however, in that it suggests the potential forgraph-theoretic analysis of the rules of a domain and ensuing experience for uncoveringpowerful heuristics and decision-making strategies. [16] It also suggests that state-spacesearch can be monitored in a uniform manner, we take up this topic in the next section.7 Monitoring state-space search incrementally using UDSTo claim universality for UDS we must show that it is an e�ective monitor and executor of thespeci�cations of any given state space search domain. As it turns out, due to the relation-basedperspective of UDS the following ideas from the RETE algorithm [7, 17] can be exploited with littleadjustment to UDS as de�ned above:� The �ring of an individual operator does not a�ect the current state radically.� If an operator did not match in the previous cycle it most likely will not match inthe current cycle.� On each cycle we should only try to re-match operators that could have beena�ected by the previous operator application.� Di�erent operators may share a large amount of the same structure. Thus,separate conditions of operators should only be matched once per cycle.� Variable bindings from cycle to cycle remain relatively consistent.UDS (our implementation is in C++) monitors search problems as follows:The relations in the relational hierarchy are used to represent dynamic relations. Speci�c relations(tuples) that are true are stored beneath (as speci�cations) the schema declarations for the relations.A schema declaration and its tuples is equivalent to a table in a traditional relational database and weshall also use the term \table" in the following discussion. The preconditions of operators are storedusing the graph hierarchy. Repeated parts of operators are only represented once in the relationhierarchy. Figure 7.1 depicts the initial UDS network for monitoring the Towers-of-Hanoi. There maybe a di�erence between UDS and standard RETE implementations in that UDS exploits the relation-based representation of CGs to extend the types of patterns that can be matched and enhances thespeed of doing so. However, the important thing is that UDS naturally supports RETEin addition to a variety of other data manipulation methods appropriate to relationaldatabases, CGs and semantic networks.Those dynamic relations that do not depend on any other relations in their de�nition are knownas primitive dynamic relations. The post-conditions of operators work directly on the primitivedynamic relations (through pointers) by adding or deleting tuples from their contents. Staticrelations are compiled away at network generation time since by de�nition the set of tuples thatsatisfy them remains constant. Conceptual graphs representing the preconditions of operators areonly re-matched if the content of one of their composing relations changes. Only that part of theconceptual graph a�ected by the change need be re-matched.7.1 What happens after an operator is selected.1. A selected operator corresponds to a tuple in one of UDS's operator tables, e.g. Move(D1,P1,P3)in Towers-of-Hanoi.



7. Monitoring state-space search incrementally using UDS 11
F

SMALLER-THAN (static)

D1

D2 D3

Disk1   Disk2

TERMINAL (dynamic)

D2 P2

Disk   Peg

ON (dynamic)

D2

D1 P1

D3 P3

MOVE (dynamic)

Disk   Peg1   Peg2    Delete   Add

D1

D1

P1

P1

P2

P3

D1,P2

D1,P3

D1 D3

P1 P2 P3

D2
D1

D3

Figure 7.1: Initial state of UDS network for monitoring Towers-of-Hanoi2. This tuple is bound to the given variable-arguments of that operator schema and lists of addand delete tuples are built based on the add and delete conditions of that schema. In ourexample of �ring Move(D1,P1,P3): ON(D1,P1) will be deleted and ON(D1,P3) will be added.3. These lists of tuples are then added and deleted immediately from the appropriate primitivedynamic relation tables in the net. Since the truth value of the net has been altered becauseof the immediate adding and deleting of the operator-generated tuples, these new changes arepropagated up the net.4. Each of the tuples in the add/delete lists created, are iterated thru for each table in the netthat they may directly a�ect (these are their successors in the hierarchy) by changing the truthvalues of tuples in that table. If one of the added or deleted tuples match a pre-condition ofa table, then a \re-join" procedure is called to update the tuples currently being stored inthe table. Those tables not a�ected by the new add/delete tuples are ignored. Thus, in ourexample, the �ring of Move(D1,P1,D3) removes (D1,P1,P2) and (D1,P1,D3) from the Movetable and adds (D1,P2,P1) and (D2,P1,P3) to the Move table.7.2 How Join works.A relation table de�ned as the conjunction of two or more subtables can have its tuples calculatedby taking a join of its subtables as in a relational database. In UDS we calculate the contents of a



12 7. Monitoring state-space search incrementally using UDStable incrementally when one or more of its subtables have their contents changed (by deleting oradding tuples). Obviously, Join is a critical operation and must be as e�cient as possible.A join of an individual tuple is similar to a traditional subgraph-isomorphism test [1],but by working at the table (or schema) level a large number of subgraph bindingsare found simultaneously, { illustrating another advantage of the UDS organization.Further advantages are accrued due to the incrementality.For each table T, Join is called once for each pre-condition table P that has changed.Join works in two phases: If the current precondition table P has variables that have already beenbound previously (on earlier preconditions in T's precondition list ), then in Phase II, the systemchecks to see if the current tuples in T are valid given P's tuples and already bound variables, andremoves any that are not. Otherwise (one or more variables are unbound) a Merge operation is donein Phase II based on iteration rather than Look-up of pre-condition Tuples.For example, consider a table, T, to be updated which contains the following tuples: (s1, WP,S5), (s1, BN, S45), and (s1, WK, S4). Variables s2 and s3 have already been bound for all threetuples (constants are in uppercase) , while s1 remains unbound. Now suppose Join is iterating uponthe following pre-condition argument P: ON(WP, s3). Then Phase I immediately determines that allvariables in pre-condition ON(WP, s3) (fs3g in this case) are already bound, and so PHASE II willbe a Look-up phase. In this phase, tuples in T will be iterated over, and by combining the boundvariables with ON(WP, s3), the following subtuples will have there existence checked in ON: (WP,S5), (WP, S45) and (WP, S40). If the subtuple queried is not present in ON, the correspondingtuple of T will be eliminated.Merge.If a Merge is required in Phase II, then Join iterates through the tuples in T, binding each tupleto all possible variables in turn, then iterating through P's tuples, and building a new tuple basedon comparing the current T tuple to the pre-condition tuple, seeing if currently bound variablesmatch, and adding new objects to the unbound variables.For example, again start with table T above. Suppose that join is iterating upon pre-conditionargument: CAPTURE(s1, WP). We see that \s1", the only variable in the pre-condition, is unboundin T. Merge is then called to iterate over the CAPTURE tuples, stopping at any tuples where thesecond argument is \WP" (the constant) and will then bind \s1" to the �rst argument. Thus an\s1" bind with (for example) CAPTURE(S33, WP), would create new Tuples in T: (S33, WP, S5),(S33, BN, S45) and (S33, WK, S4). Note that \s1" can be bound more than once, and in thisparticular example, three new tuples would then be created each time a bind occurred.7.3 Implementation and ExtensionsJoin, as de�ned above, is used to combine subtables that are connected through conjunction(AND). Tables that are combined through OR use an implicit UNION operation (as in relationaldatabases). Since UNION simply involves including all tuples in each subtable in a new table ,UNION is implemented by simply storing a list of subtables (rather than creating a new table).NOT is also simulated (as opposed to creating a new table of tuples) by returning exactly theopposite answers about tuple existence as its subtable.Relation tables in our implementation of UDS are stored as hashtables over their tuples that alsoallow iteration (through a linked-list of buckets) over all tuples. Note that the pointers from thenode hierarchy into the relation hierarchy can be used as indices to further facilitate the Look-Upand Merge operations of join. For example, the WP node will point to all tuples involving WP.7.4 Performance results.With this scheme, we have been able to monitor a variety of domains including Tic-Tac-Toe,Tower-of-Hanoi, 8-puzzle, and Hexpawn at a level of e�ciency that is faster (in some cases up to



8. Support for pattern matching 1310 times) than previous programs of ours that had been written speci�cally for these domains butwere not incremental.In Figure 7.4 below we give initial timings for UDS in playing (at various search depths) andmonitoring a variety of search domains that have been compiled into its tuple network from rulede�nitions as in Section 6. As UDS is domain-independent and not hard-coded for any of thesedomains it clearly should not be as fast as any domain-speci�c system. Still, through incrementality,its results, as shown, are reasonable and would likely beat (for domains with high branching factors)a hard-coded program that does not exploit incrementality. As this is an early implementation withseveral optimizations not yet completed, we expect even stronger results in the near future. Theresults reported are using a C++ implementation on a SUN SparcII with 64 megabytes of mainmemory.8 Support for pattern matchingA common problem-solving operation used in case-based reasoning systems is to �nd all gener-alizations of previously seen situations that match a given state. This information is used to reasonby analogy with the past, perhaps by retrieving the previous situations themselves.Other systems such as Morph[8, 15] construct an evaluation function that is a combination ofthe weights of the most-speci�c patterns that match a state.Both types of reasoning require matching a large database of patterns against the current state.Methods III-V were designed exactly with this operation in mind. However, until the integrationof the ideas from RETE these algorithms were not necessarily as fast as they could be since theydid not support incrementality (in which there is little change from one query to the next). Thusthe Morph chess system, using UDS, after a pawn moves need only rematch thosepatterns a�ected by the pawn move rather than starting from scratch by reconsideringits database of (up to 50000) patterns. Such savings due to incrementality should providegreat bene�ts in most inference settings.9 Support for machine learningNot only does UDS support retrieval, problem-space monitoring and pattern-matching, it alsoprovides a structure that is highly convenient for developing machine learning algorithms for learningevaluation functions [16].The multi-level hierarchical view of UDS shows directly how nodes are combined into relationsand in turn how relations are combined into conceptual graphs. This hierarchical decompositioninto wholes-and-parts is also fundamental in machine learning. Much of the work in neuralnetworks, statistics and pattern recognition deals directly with \how" the values ofparts combine to create the value of the whole. Such methods include gradient-descent,linear-regression and nearest neighbor algorithms [23]. UDS gives one the capability of employingthese methods to produce a combining rule for each decomposition as one traverses the hierarchy.For example, in chess one might like to determine the value of having a piece between the kingand an attacking piece. In our declarative representation of the rules of chess, we have de�ned theBETWEEN-KING-ATTACKER relation as follows:BETWEEN-KING-ATTACKER(SQUARE:s1,SQUARE:s2,SQUARE:s3;BLACKPIECE:p1,WHITEPIECE:p2) = ATTACK(s1,s2) & ON(WK, s2) & BETWEEN(s1, s2, s3)& MOVEABLE(s2, s3) & MOVEABLE(s1, s3) & ON(p1, s1) & ON(p2, s3).This relation represents a conceptual graph composed of more primitive relations. Informally, themeaning is a white piece p2 on s3 is between a white king on s2 and an attacking piece p1 on s1, ifs3 is between s1 and s2 and it is possible to move p1 from s1 to s2 and then to s3. The table forthis relation will sit below (in the CG hierarchy) the tables for the relations it is composed of. TheAPSII domain-independent game-playing system [16] uses UDS to evaluate a BETWEEN-KING-ATTACKER tuple, say (10,11,12,br,wp) as follows:



14 9. Support for machine learningMONITORING AND EXECUTION TIME FOR VARIOUS DOMAINSSINGLE AGENT GAMES (IN MOVES TAKEN):TOWERS-OF-HANOI100 Turns 500 Turns (With Game Restarts)--------- ---------total | ave total | ave (min:secs).R vs R < :01 | - :02 | 0.0041 ply :03 | 0.03 :15 | 0.032 ply :19 | 0.19 1:42 | 0.203 ply 1:50 | 1.10 10:18 | 1.248 PUZZLE100 Turns 500 Turns (Randomly, only 1 Game)--------- ---------total | ave total | ave (min:secs).R vs R < :01 | 0.01 :02 | 0.0041 ply :04 | 0.04 :22 | 0.042 ply :42 | 0.42 3:25 | 0.413 ply 4:58 | 2.98 26:45 | 3.21DOUBLE AGENT (IN GAMES):HEX PAWN100 Games 500 Games--------- ---------total | ave total | ave (min:secs).R vs R :02 | 0.02 :10 | 0.021 ply :06 | 0.06 :30 | 0.062 ply :22 | 0.22 1:50 | 0.223 ply 1:20 | 0.80 6:45 | 0.81TIC-TAC-TOE100 Games 500 Games--------- ---------total | ave total | ave (min:secs).R vs R :03 | 0.03 :15 | 0.031 ply :09 | 0.09 :45 | 0.092 ply :55 | 0.55 4:50 | 0.583 ply 6:55 | 4.15 -R vs. R means "random-player vs. random-player".n-Ply means one agent is searching this deep, the other agent is playingrandomly.



10. Conclusion 151. The tuple is looked up in a table of previously seen tuples (each relation table has a historytable for learning purposes). If the tuple is found, the learned weight for the tuple is returned,else the system continues on to steps 2 and 3.2. Subtables are called to get the weights of subtuples (based on the table's de�nition) of the origi-nal tuple. In our example, the weights of ATTACK(10,11), ON(WK,11), MOVEABLE(11,12),MOVEABLE(10,12), ON(BR,10), and ON(WP,12) are asked for. In general, such calls maythemselves induce deeper recursive calls to subtables of subtables and so on, until tuples arefound or we bottom out in the node tables that represent individual domain objects (andserve as arguments to the primitive dynamic relations). A bottom level table returns a default(neutral) value if a tuple is not found in its history table. Note that BETWEEN is not calledon (10,11,12) since it is a static relation. 63. Once the values of all subtuples are found, they are combined linearly using coe�cients (thehigher the coe�cient the more accurate (with respect to feedback sent to the BETWEEN-KING-ATTACKER table) the subtable has been in the past) that have been learned for thetable. The result of the linear combination is returned. In our example, suppose weights of0.55,0.45,0.43,0.42,0.50 had been returned from the subtables. If the learned coe�cients for theBETWEEN-KING-ATTACKER table are 0.3, 0.3, 0.2, 0.1, 0.1 (the coe�cients are normalizedto sum to 1) the value returned for the tuple (10,11,12,br,wp) will be 0.478.10 ConclusionHere we have shown how UDS can be used to combine the best features of semantic networkmarker passing retrieval, relational databases and conceptual graphs. A standout features of this newdata structure is the degree to which it is able to simplify and compact the storage of a conceptualgraphs database.In addition to giving Method V as an improvement over Methods III-IV retrieval we have shownhow UDS can be used to incrementally monitor state-space search domains (since they are based ontransformations of conceptual graphs) and to support pattern-matching and machine learning.Although there are details still to be worked out in how to best integrate the major databaseparadigms in UDS, we hope that the ideas presented here will lead to a further uni�cation of currentlydisparate information retrieval and problem-solving methods.Future directions are directed at the fact that in UDS as in its underlying components, queryprocessing time is too heavily inuenced by exactly which structures and joins are pre-stored inthe database. We feel that a truly universal model should not be as susceptible to the originalrepresentation of the facts and should be able to reorganize itself to make better use of them. Alongsimilar lines, the determination of key intermediate concepts remains a critical and fundamentalissue in machine learning and one that we are studying.11 AcknowledgementsThis research was supported in part by NSF research grant IRI-9112862. Thanks to Don Robertswho provided diagrams and feedback during the construction of the paper. Thanks to Yuxia Zhangfor her assistance with UDS and search-space de�nition. Finally, thanks to John Amenta who islargely responsible for the current UDS implementation, helped obtain the performance results, andsupplied some algorithmic descriptions for the paper.6The presence of a tuple in a static relation is invariant across positions and hence supplies no new information tobase an evaluation on.



16 ReferencesReferences[1] J.M. Barnard. Problems of substructure search and their solution. In Wendy Warr, editor,Chemical Structures the International Language of Chemistry,. Springer-Verlag, 1988.[2] H. Boley. Declarative operations on nets. Computers and Mathematics with Applications, 23(6-9):601{638, 1992. Part 2 of Special Issue on Semantic Networks in Arti�cial Intelligence, FritzLehmann, editor. Also reprinted on pages 601{638 of the book, Semantic Networks in Arti�cialIntelligence, Fritz Lehmann, editor, Pergammon Press, 1992.[3] G. Ellis. Compiledhierarchical retrieval. In E.Way, editor,Proceedings of SixthAnnualWorkshopon Conceptual Structures), pages 187{208, SUNY-Binghamton, 1991. To Appear.[4] G. Ellis. E�cient retrieval from hierarchies of objects using lattice operations. In G. Mineauand B. Moulin, editors, Proceedings of First International Conference on Conceptual Structures(ICCS-93), Montreal, 1993. To Appear.[5] R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. Benjamin/Cummings,Redwood City, California, 2 edition, 1994.[6] S. Fahlman. NETL: A System for Representing and Using Real-World Knowledge. MIT Press,Massachusetts, 1979.[7] C.L. Forgy. Rete: A fast algorithm for the many pattern/many object patern match problem.Arti�cial Intelligence, 19(1):17{37, 1982.[8] J. Gould and R. Levinson. Experience-based adaptive search. In R.Michalski andG. Tecuci, edi-tors,Machine Learning:AMulti-Strategy Approach, volume 4, pages 579{604.Morgan Kau�man,1994.[9] J.A. Hendler. Massively-parallel marker-passing in semantic networks. In Fritz Lehmann, editor,Semantic Networks in Arti�cial Intelligence, pages 277{292. Pergamon Press, 1992.[10] R. E. Korf. Planning as search. Arti�cial Intelligence, 1987.[11] R. Levinson. A self-organizing retrieval system for graphs. In AAAI-84, pages 203{206. MorganKaufman, 1984.[12] R. Levinson. Pattern associativity and the retrieval of semantic networks. Computers andMathematics with Applications, 23(6-9):573{600, 1992. Part 2 of Special Issue on SemanticNetworks in Arti�cial Intelligence, Fritz Lehmann, editor. Also reprinted on pages 573{600 of thebook, Semantic Networks in Arti�cial Intelligence, Fritz Lehmann, editor, Pergammon Press,1992.[13] R. Levinson and G. Ellis. Multilevel hierarchical retrieval. Knowledge-Based Systems, 5(3):233{244, September 1992. Special Issue on Conceptual Graphs.[14] R. Levinson and K. Karplus. Graph-isomorphism and experience-based planning. In D. Sub-ramaniam, editor, Proceedings of Workshop on Knowledge Compilation and Speed-Up Learning,Amherst, MA., June 1993.[15] R. Levinson and R. Snyder. Adaptive pattern oriented chess. In Proceedings of AAAI-91, pages601{605. Morgan-Kaufman, 1991.[16] R.A. Levinson. Exploiting the physics of state-space search. In Proceedings of AAAI Symposiumon Games:Planning and Learning, pages 157{165. AAAI Press, 1993.[17] D. P. Miranker. Treat: A better match algorithm for ai production systems. In Proceedings ofAAAI-87, pages 42{47, 1987.[18] D.D. Roberts. The existential graphs. In Semantic Networks in Arti�cial Intelligence, pages639{664. Roberts, 1992.[19] E. Sciore. A complete axiomatization for join dependencies. JACM, 29(2):373{393, April 1982.[20] J. F. Sowa. Conceptual Structures. Addison-Wesley, 1983.[21] P. Suppes. Models of data. In Logic, Methodology and Philosophy of Science, pages 252{261.Stanford, East Lansing, 1962.[22] J.D. Ullman. The u.r. strikes back. In Proceedings of the ACM SIGACT-SIGMOD Symposiumon Principles of Database Systems, pages 10{22, 1982.[23] S. Watanabe. Pattern Recognition:Human and Mechanical. Wiley, New York, 1985.


