UDS: A Universal Data Structure

Robert Levinson

UCSC-CRL-94-15
June 10, 1994

Board of Studies in Computer and Information Sciences
University of California, Santa Cruz
Santa Cruz, CA 95064
(408)459-2087
FAX: (408)459-4829

E-mail: levinson@cse.ucsc.edu

ABSTRACT

This paper gives a data structure (UDS) for supporting database retrieval, inference and
machine learning that attempts to unify and extend previous work in relational databases,
semantic networks, conceptual graphs, RETE, neural networks and case-based reasoning.
Foundational to this view is that all data can be viewed as a primitive set of objects and
mathematical relations (as sets of tuples) over those objects. The data is stored in three
partially-ordered hierarchies: a node hierarchy, a relation hierarchy, and a conceptual graphs
hierarchy. All three hierarchies can be stored as “levels” in the conceptual graphs hierarchy.
These multiple hierarchies support multiple views of the data with advantages over any of the
individual methods. In particular, conceptual graphs are stored in a relation-based compact
form that facilitates matching. UDS is currently being implemented in the Peirce conceptual
graphs workbench and is being used as a domain-independent monitor for state-space search
domains at a level that is faster than previous implementations designed specifically for those
domains.In addition it provides a useful environment for pattern-based machine learning.

Keywords: RETE, pattern matching, conceptual structures, relational database, machine
learning, conceptual graphs, state space search, rule matching.

1. Introduction 1

I am for the delicate dance from parts to wholes and back again. We should not be
captured at either end. The dance should go forever.
— P. Suppes [21]

1 Introduction

Three popular and competing database paradigms are relational databases, in which data
is stored and accessed as a set of tables, conceptual graphs, in which data is stored as a set of
graphs, or semantic networks in which data is stored in one large homogeneous network(graph).
In this paper we give a data structure that can be seen to replace the others, with all the advantages
of each and fewer of the disadvantages.

The basic idea will be to store the data as they traditionally are stored in a semantic network
as a set of nodes with edges or hyperedges representing n-ary relations. !. Each node corresponds
to a primitive domain object or value. To store the semantic network one requires a node table that
gives for each node all the relation instances (edges) it is in and its position in each relation. A
relation table stores for each relation instance, pointers to the nodes involved in that instance. One
might then think of representing a relational database simply by giving the relation table. What is
missing however are the relational schema: the type headings on individual relations in a relational
database. Such schema can be created by making the node table and the relation table each into a
partially-ordered hierarchy by more-general-than. Once this is done it is seen that the node table
corresponds to the traditional type hierarchy used in conceptual graph theory and the more-general-
than relation over the relational hierarchy forms the traditional tables of relational databases: each
relational table sits directly under its schema definition.

The next key idea is that a conceptual graph (CG) can be viewed as a sequence of joins on a
set of relations 2. Thus, a conceptual graphs database can be stored simply as a partial order over
ordered lists of relation instances from the relation hierarchy. Thus, the resulting data structure has
three hierarchies:

e The node hierarchy
e The relation hierarchy

e The conceptual graphs hierarchy
Each of these hierarchies can be stored as one: the node hierarchy and relation
hierarchy would sit at the top of the standard conceptual graph hierarchy. However,
the distinction between the three levels needs to be retained to allow for the multiple
access mechanisms to be supported.

Figure 1 below gives a conceptual graphs database of seven graphs and a query graph from
which we will be taking our examples. Figure 2 shows the node hierarchy, relation hierarchy and
graph hierarchy corresponding to the UDS representation of Figure 1. To be noted is the compact
representation of the graphs in the graph hierarchy. Such compaction of conceptual structures is a
hallmark of this new storage and retrieval method and 1s explained further below.

Although not made explicit in the diagram, there are bidirectional pointers from objects in the
conceptual graphs hierarchy to the objects they contain in the relation hierarchy and bidirectional
pointers from objects in the relation hierarchy to objects in the the node hierarchy. For example,
there are pointers from Sue in the node hierarchy to the first argument of relations 4,7, and 12 in the
relation hierarchy (and hence the label Sue need not actually be stored with the relations). Similarly
relation 7 points to G4 in the graph hierarchy. Also not made explicit in the diagram is that siblings
in the node hierarchy be sorted alphanumerically.

1A hypergraph is a set of nodes and a set of hyperedges which are subsets of 0 or more nodes. Thus a semantic
network can be viewed as a directed-labelled hypergraph and partitioned semantic networks as nested-labelled directed
hypergraphs[2]

?Informally: a CG is a very small relational database!

2 1. Introduction

Type Hierarchy:

person
man girl\
Dan Frank Sue
Database Graphs
Gi: person agent |=<—| eat
Go: girl <—| agent eat |= —| quickly
Gs: Sue - agent eat 9‘9 pie — —=| apples
Gy: Sue |[=—| agent eat = —| pie
—| quickly
Gs: Sue [=| agent eat
Ge: Dan |=<—{ agent eat 9‘9 pie —={ apples
=<— | Sue
Gr: eat |=> — | quickly
Query Graph
Q: person [<—{ agent eat = —| quickly

Figure 1.1: Type hierarchy, database and query graph.

This example is adapted from [20] pp.92-93 and reprinted from [12] “manr” stands for “manner”,
“cont” stands for “contains” and “poss” stands for “possesses”. (71 and G'; are generalizations of
the query @), G'» and G4 are specializations of ¢ and ('3, G5, and (g are incomparable.

1. Introduction

person food
man girl pie apples

N\

Dan Frank Sue

Node Hierarchy

1. eatfagent,obj,manr] 5. cont[whole,part]
2. eat[person, , | 11. eat[, ,quickly] 6. cont[pie,apples]

/

3. eat[girl, ,quickly

12. eat[Sue, , | 9. pos[owner,owned]
4. eat[Sue,pie, | 8. eat[Dan,pie,] 10. pos[Sue,pie]

/

7. eat[Sue,pie,quickly]

Relation Hierarchy

GT {11} a1 {2)

o T

G2 {3} G5 {12} G6 {6,8,10}
e |
G4 {7} G3 {4,6)

Graph Hierarchy

Figure 1.2: The hierarchies corresponding to the graphs of Figure 1

4 1. Introduction

Also associated with each hierarchy is an additional data structure that allows subsumption
testing in the hierarchy to be done in constant time. The three standard data structures for this
purpose are sparse arrays, hash tables and bitcodes[4]. Which scheme is selected depends on storage
costs.

This use of multiple hierarchies is reminiscent of the data structure used in multi-level hierarchical
retrieval [13]. The major difference is that the node descriptor hierarchy is being replaced by a
relation hierarchy that better facilitates CG matching by incorporating the power of a relational
database. UDS also incorporates ideas from the original universal graph method [11] proposed by us
in 1984 and the universal relational model [19, 22]. Here we add some new twists that take advantage
of a better understanding of the relationship between conceptual graphs, relational databases and
marker-passing semantic networks[9, 6]. The new design exploits the following principles that we
feel are critical in designing cost-effective information retrieval systems:

e Every primitive data object, label or symbol should be stored only once with

pointers used to denote the actual uses of the object.

e Every compound object should be stored with the minimum information required
to represent the combinations of its parts. Thus, for example, transitive relations should
be stored by only giving the arcs represented in the transitive kernel, and the designation that
the relation is transitive.

e Given no loss of accuracy, objects should be processed at the highest level of
abstraction possible. For example, below we see that conceptual graphs can be processed
at the “relational” level rather than at the node and edge level.

The competing methods may each operate over UDS while deriving benefits that were not there

in the original methods:

e Semantic network marker-passing algorithms can make use of the semantic net-
work formed from the node hierarchy and the relation hierarchy, and the parti-
tioning provided by the CG hierarchy. Advantages over traditional semantic network
algorithms are that the relation hierarchy allows multi-argument relations to be treated as
individual chunks, and the partial order over the nodes and relations allows generalization
queries to be handled more quickly and efficiently.

e Relational database retrieval operations operate directly on the relation hierarchy
by making use of the pointers to and from the node hierarchy to enhance the
join process during query processing (it is easy to determine which objects join with
each object). The type hierarchy formed by the node hierarchy is a facility most relational
databases don’t have. Further, the sorting (see above) in the type hierarchy can be used to
return answers to queries in a desired sorted order.

e Conceptual graph operations can operate as before on the graphs represented
in the conceptual graphs hierarchy supported by the type information in the
node hierarchy. For example, the Method III retrieval scheme [11, 12] and associated
enhancements [13, 4] can operate directly on this hierarchy. Graph matching will be much
faster than before due to the compact nature of the graphs (see below).

In addition to being able to process the data using the multiple viewpoints, other advantages to

conceptual graph processing are accrued:

e Storage of the conceptual graphs has been greatly reduced since nodes and re-
lations are actually stored only once. Redundancy has been removed. Similar ideas
involving storage based on canonical rules are given in [3].

e Conceptual graph matching can make use of the chunks provided by processing
the graphs at the relational level rather than at the node level.

e Method V retrieval can also proceed naturally. Method V is a previously unpublished
method that proceeds exactly as in Method IIT (where a node is not queried unless its pre-
decessors are known to match the query) except that information about how the predecessors
bind to the query is propagated up the hierarchy. These bindings are reflected as relation-to-
relation bindings in UDS as opposed to node-to-node bindings in a standard CG system, thus
leading to substantial complexity reduction.(For further details, see Section 5 below.)

2. Retrieval 5

e The fact that the semantic network represents a join over all the relations is a
great advantage : Suppose we have one CG: “Joe eats popcorn” and another CG: “popcorn
is white”. If we never take the join of these two CGs we might have difficulty discovering
that “Joe eats something that is white.” The semantic network representation facilitates the
discovery of relationships that may not have been previously recognized.

2 Retrieval

In UDS, queries can be answered using either marker passing, relational processing
or conceptual graph retrieval. Which method is best depends on the type of query. For instance
in the example of Figures 1 and 2 one could use CG retrieval to find immediate generalizations of
the object as G1 and G7 with an immediate specialization as G2 and a further specialization as G4.
(G4 gives the conclusion that “Sue ate quickly”.

Ignoring the CG hierarchy and using just the relation hierarchy, one would check for the position
of the relation eat[person,,quickly] finding generalizations of 2 and 11 and a specialization of 3 that
leads to the specialization of 7 that “Sue ate quickly.”

Marker passing would start with the node hierarchy at nodes eat, person and quickly, finding
all relations involving only these nodes as 2 and 11. Through spreading activation to more specific
instances of “person” it would be discovered that both “a girl” and Sue eat quickly.

In this example, in which the query was a single relation, relation-based retrieval worked best.
For queries involving multiple relations and highly structured objects it is likely that CG retrieval
would work best, having formed the chunks ahead of time. In particular, conceptual graphs
can be used to store complex relational database queries for faster processing in the
future, much in the same way as views[5] do currently.

Semantic network marker-passing will work best for “free form” queries such as “ In which ways
are Joe and Sue related?”.

3 Insertion and Deletion

The costs of insertion and deletion from the structure have decreased on the average due to the
indexing properties of the multiple hierarchies and improved matching costs. If inserting a node, one
adds it to the node hierarchy exactly as one would do with the type hierarchy in conceptual graphs.
Inserting a relation or a new relational scheme definition into the relation hierarchy likewise proceeds
exactly as in relational databases while benefiting from the hierarchical organization. Insertion of a
conceptual graph also proceeds exactly as before except that the relations in the conceptual graph
must also be inserted into the relation hierarchy. This small additional cost is outweighed by the
benefits gained due to more efficient matching in the conceptual graphs hierarchy.

4 Compaction of Conceptual Graphs

The standard diagrammatic representation of conceptual graphs [20] makes these graphs appear
to have more complexity than they actually do. If one were to implement a conceptual
graph based on the diagrammatic representation the costs associated with storage and
matching would be much higher than they need to be.

For example, a 3-ary relation in a diagrammatic conceptual graph requires 3 concept nodes, 1
relation node and 3 argument arcs. Taking the view [2] that conceptual graphs are nested directed
hypergraphs, the 3-ary relation becomes simply 3 nodes and 1 labeled hyperedge. This is certainly
an improvement.

But there is yet farther to go, if one takes the relational view of UDS. A 3-ary relation is a single
node in the relation table! A conceptual graph becomes a set of relation nodes where the relations
are those stored in the relational table. In those conceptual graphs in which an individual object
appears only once it 1s enough to assume that all relations are joined to other relations in which one

6 5. Method V retrieval algorithm

or more nodes are shared commonly. For those conceptual graphs in which objects may be repeated
and take different slots in the relations, explicit joins must be defined between the relation nodes in
which it is stated exactly which arguments get joined to which arguments. So, the final view is
that a CG is a set of nodes representing individual relations and a set of labeled edges
representing joins between these relations.

Figure 3 below illustrates a compaction of a conceptual graph representing a molecule involving
2 oxygen atoms, a carbon atom, 2 nitrogen atoms, a double bond and 3 single bonds. Thus the
standard chemical diagram contains 5 nodes (for atoms), and 4 edges (for bonds). From the diagram
we see that the standard CG diagrammatic form requires 9 nodes and 8 edges. The hypergraph
representation of the CG uses b nodes and 4 edges (as in the chemical graph). But the relation-based
CG representation has managed to store everything as 4 nodes and 3 edges where the nodes point to
relations in the relation hierarchy. The labels on the edges denote which arguments in one relation
join to which arguments in the next relation. Note further that for the graphs in Figures 1 and 2
no such join information was required and the graphs were reduced to sets (of relations).

This compaction has favorable properties for supporting matching:

e There are fewer nodes and edges.

e Since nodes denote more specific objects than before, their likelihood of matching
is significantly lessened. This leads to fewer false matches that require backtracking in
subsumption tests.

e Since relation nodes are stored only once, it is easy to find node correspondences
between two CGs since if a node is shared they will be pointing to the same node in the
relation hierarchy, (or if one node is more-general-than the other there will be a path). That
is, the first stage of most subgraph-isomorphism tests [1] in which one finds which nodes could
bind (as “candidates”) to other nodes can be performed by simply reading off correspondences
from the hierarchy, or comparing bit encodings [4].

The same abstraction mechanism that goes from nodes to relations to graphs can
be taken one step further to facilitate the storage and retrieval of nested-context
conceptual graphs. A graph will point to nested-graphs in which it serves as a context. The
encoding of negated contexts and lines of identity is analogous to the encoding of join-structure
when going from relations to graphs. The abstraction mechanism may be continued on to multiple
layers of nesting.

4.1 Subsumption preservation in compacted form

For the relation-based compacted form to be useful it is desirable that the more-general-than
relation between two conceptual graphs G1 and G2 be checkable by subgraph-isomorphism on the
compacted form. This is the case, since the structure of CGs is such that if G1 is more-general-than
(G2 each relation in G1 should have a corresponding more-specific relation in G2. This corresponds
directly to comparing two nodes in the relation hierarchy.

The edges in the compacted form represents the join of two adjacent relations. Whether edges
in G1 can match edges in G2 can be determined by simply checking that the fields on which the
relations are joined correspond (given that the endpoints of the edges are known to correspond).

5 Method V retrieval algorithm

Method V retrieval is a previously unpublished algorithm that is designed to have the simplicity
of Method III retrieval [11] coupled with the benefits of Method TV. We discuss it here since it can
be used to even further enhance the efficiency of retrieval over the conceptual graph hierarchy.

Method IV [12, 13] introduced the notion of “node descriptors” which are more specific descrip-
tions of nodes in graphs that support matching due to their specificity much in the way that relation
nodes do so in the above discussion. The idea of Method IV is to do many graph comparisons in
parallel by taking advantage of their shared node descriptors. Method V goes one step further by

5. Method V retrieval algorithm 7

Oxygen @ Carbon %2%15 Oxygen %g%l(f Nitrogen
single
w

Nitrogen

CG Diagramatic Representation

double bond single bond

single bond single bond

Nitrogen

Nitrogen

CG Hypergraph Representation

le {2.2) 2
Relation Table
1 double bond [Oxygen,Carbon]
(2,2} 2 single bond [Oxygen,Carbon]
{11 3 single bond [Oxygen,Nitrogen]
4 single bond [Nitrogen,Carbon]
3 ®/

Relation-Based CG Representation

Figure 4.1: Compacting Conceptual Structures

8 6. State-space search as relation-based hypergraph transformation

noting that a graph is itself its best descriptor of its nodes and that if A is a subgraph of B,
the nodes in A (and hence their descriptors) have bindings to nodes (and descriptors) in B.

In the conceptual graph hierarchy we store bindings from the nodes of each graph to the nodes
of their successors. (These are additional pointers than those discussed above). As a graph may
bind in more than one place, there actually may be multiple sets of bindings that would have to
be stored and sometimes, such as with star-graphs, an exponential number of bindings may be
possible. To prevent this combinatorial explosion and for simplicity sake, for each node in a graph
we store all the nodes it could possibly bind to in each of its successor graphs. Compaction as above
reduces the number of such possibilities. This information can now be used to dramatically improve
the performance of Method III, by reducing the size of the candidate binding lists. For example,
suppose graph G has four immediate predecessor graphs H1, H2 | H3, H4. If we query graph G in
Phase I of Method IIT we know that H1, H2 | H3 and H4 have all matched Q. This gives us a very
good indication of how G may fit into (bind to) Q. For example, if node 1 of H1 mapped into node
5 of Q, and we know that this same node maps only into nodes 7 and 8 of GG, we know that at least
one of these nodes must bind to node 5 of Q - if G is to be a subgraph of Q. Further, constraints
of the bindings of nodes 7 and 8 of G can be retrieved from the bindings of H1, H2, H3, H4, thus
substantially reducing the candidate binding lists of G, before backtracking is taken up to resolve
the remaining bindings. Note that in this framework it is necessary to find ALL bindings of each
graph to the query graph(at least for insertion) and that finding them is facilitated by the method
itself.

6 State-space search as relation-based hypergraph transformation

The state space search paradigm in which problems are broken down into initial conditions,
terminal conditions (goals) and operators continues to be one of the most pervasive problem-solving
models used in Al research 3 The fundamental importance of the paradigm is seen when one
recognizes that each of automatic programming (in which the machine translates from one very
high-level language into one less “high”), automatic theorem proving (in which one tries to prove
formulas from axioms and inference rules), and pattern recognition (in which one parses from one
representation into another) are special cases. We now show how all state space search problems as
they are normally formalized [10] can be viewed as relation-based transformations over hypergraphs
(which are a special case of conceptual graphs). In the next section we show how this relation-based
view can allow these problems to be monitored incrementally and efficiently.

To reach a definition of generic search problem we consider notions of domain objects, static
relations, dynamic relations, variables and bindings. The framework is inspired by Peirce’s existential
graphs[18], conceptual graphs, and our own work in experience-based planning [14].

The following is a description of the components of a search problem, with running examples
taken from Tic-Tac-Toe * and Towers-of-Hanoi on three disks: °

e Each domain will have a finite set of domain objects. In Tic-Tac-Toe the objects will
be squares {S1,52,53,54,55,56,57,58,59} and pieces {X,0,B (for blank)}.

In Towers-of-Hanoi, the objects are Pegs{P1,P2,P3} and Disks {D1,D2 D3}.

e Unary, binary and higher relations may be defined on these objects. An n-ary
relation is a set of n-tuples of domain objects. In the finite search domains, rather than defining
types explicitly we shall simply note that they are implicitly defined as the set of objects that
occur in any single field (attribute) of a relation. At the implementation level, relations that

3The objective of a state-space search problem is to find a sequence of operators (transformations) that will convert
a state that satisfies the initial conditions into one that satisfies the terminal conditions, under various optimality
criteria and resource constraints.

4 Tic-Tac-Toe is played on a 3x3 board with two players X and O alternating turns selecting cells with X going
first. The first player completing a row, column or diagonal wins.

5Towers-of-Hanoi is a single agent game involving three disks “small”, “medium”, “large” placed on top of each
other in order on the first peg of three. The object is to move the disks one at a time such that at no time is a disk
on top of a disk smaller than it on the same peg, and such that the disks finish all on the third peg.

6. State-space search as relation-based hypergraph transformation 9

are symmetric or transitive may be abbreviated by specifying a kernel set of tuples and then
giving the mathematical properties from which the remaining tuples can be inferred. Other
abbreviations and computation of relations are possible such as finding adjacent squares on
the chessboard through calculation. We break relations into two classes: static relations are
those whose definition (tuples) remain constant for a given game, and dynamic relations are
those whose content can change from state to state. A frequent use of static relations is in
defining board topology. Most domains have a dynamic relation corresponding to ON to say
which pieces are on which squares.

In Tic-Tac-Toe, we define a “THREE-IN-A-ROW?” static relation corresponding to winning
sets of squares: { (S1, S2, S3), (5S4, S5, S6),...} and the ON dynamic relation initialized
as {(B,S1),(B,S2) etc. }. In Towers-of-Hanoi there is a static relation SMALLER-THAN
initialized to:

{(D1,D2),(D2,D3),(D1,D3)}. Towers-of-Hanoi also has the dynamic relation ON, initialized
to:

{(D3,P1),(D2,P1),(D1,P1)}.

e Operators define transformations over states by changing the contents of dynamic
relations. They are specified by giving sets of preconditions, additions and dele-
tions. Note that each of these sets (and their combination) can be viewed as a conceptual
graph or hypergraph.

For Tic-Tac-Toe we have an operator MOVE(piece,square): Pre: ON(B,S1), Add: ON(X,S1),
Del: ON(B,S1). (we assume the board is always oriented with X to move.) For Towers-of-Hanoi
we have the following MOVE operator:
MOVE(d1:disk,pl:peg,p2:peg) =
pre: ON(d1,p1) AND ~(pi=p2) AND ~((ON(d2,p2) OR ON(d2,p1))
AND SMALLER_THAN(d2,d1)).
add: 0ON(d1, p2)
del: 0N(d1, pl)

e States are hypergraphs over domain objects. As the static relations are always true it

is only necessary to give the dynamic relations when representing a state.

e An operator is then applicablein a given state iff there is a 1-1 mapping in variables
of the preconditions of the operator to domain objects such that all relations
specified in the operator are true (or false, if negated) of those domain objects.
The result of applying the operator is to remove from the current state those
tuples corresponding to the deletions and add those tuples associated with the
additions to the contents of the dynamic relations.

Since static relations are constant throughout the problem-solving process those bindings of
objects to variables that could ever possibly (constrained by the static relations) satisfy an
operator definition, can in principle be computed ahead of time leaving only the dynamic
conditions to be checked.

e Terminal conditions are defined in exactly the same way as preconditions, addition
and deletion conditions of operators. It is automatically assumed that a player
having no legal moves is terminal. For tic-tac-toe, we have THREE-IN-A-ROW(s1,82,s3)
AND ON(X,s1) AND ON(X,s2) AND ON(X,s3) as terminal. In Towers-of-Hanoi, we have
ON(D1, P3) AND ON(D2, P3) AND ON(D3, P3) as terminal conditions.

e Reward conditions are conditions (often the same as terminal) that are coupled
with a reward to each player based on the outcome of the game.. For Towers-of-Hanoi
and Tic-Tac-Toe, reward conditions are the same as terminals and assign a win to the player
who has just moved.

e Finally, FLIP is a static binary relation over domain objects used to define sym-
metries so that a game can be encoded from one player’s perspective only. For
tic-tac-toe FLIP is:

{(X,0),(0,X),(B,B),(51,51),(52,52)...}. Tower-of-Hanoi, being a single-agent game, does not

require a FLIP operator.

10 7. Monitoring state-space search incrementally using UDS

e In summary, an abstract game or search problem is defined as a finite set of domain
objects, and finite sets of static relations, dynamic relations, operators, terminal
conditions and reward conditions. Finally, for convenience in encoding, we define
a symmetry condition (known as FLIP.)

The conclusion is that a large spectrum of single-agent and multi-agent search problems can be
viewed as games of (hyper)graph-to-graph transformation directly analogous to organic chemical
synthesis: states are graphs, and operators are graph-to-graph productions, terminal and reward
conditions may also be expressed as graphs. This conclusion is not surprising, given that conceptual
graphs and other semantic network schemes have been shown to carry the same expressive power as
first-order logic. The conclusion is significant, however, in that it suggests the potential for
graph-theoretic analysis of the rules of a domain and ensuing experience for uncovering
powerful heuristics and decision-making strategies. [16] It also suggests that state-space
search can be monitored in a uniform manner, we take up this topic in the next section.

7 Monitoring state-space search incrementally using UDS

To claim universality for UDS we must show that it is an effective monitor and executor of the
specifications of any given state space search domain. As it turns out, due to the relation-based
perspective of UDS the following ideas from the RETE algorithm [7, 17] can be exploited with little
adjustment to UDS as defined above:

e The firing of an individual operator does not affect the current state radically.

e If an operator did not match in the previous cycle it most likely will not match in
the current cycle.

e On each cycle we should only try to re-match operators that could have been
affected by the previous operator application.

e Different operators may share a large amount of the same structure. Thus,
separate conditions of operators should only be matched once per cycle.

e Variable bindings from cycle to cycle remain relatively consistent.

UDS (our implementation is in C+4) monitors search problems as follows:

The relations in the relational hierarchy are used to represent dynamic relations. Specific relations
(tuples) that are true are stored beneath (as specifications) the schema declarations for the relations.
A schema declaration and its tuples is equivalent to a table in a traditional relational database and we
shall also use the term “table” in the following discussion. The preconditions of operators are stored
using the graph hierarchy. Repeated parts of operators are only represented once in the relation
hierarchy. Figure 7.1 depicts the initial UDS network for monitoring the Towers-of-Hanoi. There may
be a difference between UDS and standard RETE implementationsin that UDS exploits the relation-
based representation of CGs to extend the types of patterns that can be matched and enhances the
speed of doing so. However, the important thing is that UDS naturally supports RETE
in addition to a variety of other data manipulation methods appropriate to relational
databases, CGs and semantic networks.

Those dynamic relations that do not depend on any other relations in their definition are known
as primitive dynamic relations. The post-conditions of operators work directly on the primitive
dynamic relations (through pointers) by adding or deleting tuples from their contents. Static
relations are compiled away at network generation time since by definition the set of tuples that
satisfy them remains constant. Conceptual graphs representing the preconditions of operators are
only re-matched if the content of one of their composing relations changes. Only that part of the
conceptual graph affected by the change need be re-matched.

7.1 What happens after an operator is selected.

1. A selected operator corresponds to a tuple in one of UDS’s operator tables, e.g. Move(D1,P1,P3)
in Towers-of-Hano.

7. Monitoring state-space search incrementally using UDS

11

P1 P2 P3
D1
D2
D3
+ON (dynamic) —eemTTTTT 77~ -> TERMINAL (dynamic)
Disk | Peg
D1 | PL =717 F
D2 | P2 R
D3| P3

\
\
\
\

\

MOV E (dynamic) <———,7"7""‘"",-‘“ff‘“--~-SMALLER-THAN (static)

Disk |Pegl [Peg2 |Delete/add [Disk1 | Disk2
p1| PL [P2 | e |DLP2e- D1 | D2
DL| PL | P3 | e |DLP3e D2 | D3

D1 | D3

Figure 7.1: Initial state of UDS network for monitoring Towers-of-Hanoi

2. This tuple is bound to the given variable-arguments of that operator schema and lists of add

and delete tuples are built based on the add and delete conditions of that schema. In our
example of firing Move(D1,P1,P3): ON(D1,P1) will be deleted and ON(D1,P3) will be added.

. These lists of tuples are then added and deleted immediately from the appropriate primitive
dynamic relation tables in the net. Since the truth value of the net has been altered because
of the immediate adding and deleting of the operator-generated tuples, these new changes are
propagated up the net.

. Each of the tuples in the add/delete lists created, are iterated thru for each table in the net
that they may directly affect (these are their successors in the hierarchy) by changing the truth
values of tuples in that table. If one of the added or deleted tuples match a pre-condition of
a table, then a “re-join” procedure is called to update the tuples currently being stored in
the table. Those tables not affected by the new add/delete tuples are ignored. Thus, in our
example, the firing of Move(D1,P1,D3) removes (D1,P1,P2) and (D1,P1,D3) from the Move
table and adds (D1,P2,P1) and (D2,P1,P3) to the Move table.

7.2 How Join works.

A relation table defined as the conjunction of two or more subtables can have its tuples calculated

by taking a join of its subtables as in a relational database. In UDS we calculate the contents of a

12 7. Monitoring state-space search incrementally using UDS

table incrementally when one or more of its subtables have their contents changed (by deleting or
adding tuples). Obviously, Join is a critical operation and must be as efficient as possible.
A join of an individual tuple is similar to a traditional subgraph-isomorphism test [1],
but by working at the table (or schema) level a large number of subgraph bindings
are found simultaneously, — illustrating another advantage of the UDS organization.
Further advantages are accrued due to the incrementality.

For each table T, Join is called once for each pre-condition table P that has changed.

Join works in two phases: If the current precondition table P has variables that have already been
bound previously (on earlier preconditions in T’s precondition list), then in Phase II, the system
checks to see if the current tuples in T are valid given P’s tuples and already bound variables, and
removes any that are not. Otherwise (one or more variables are unbound) a Merge operation is done
in Phase II based on iteration rather than Look-up of pre-condition Tuples.

For example, consider a table, T, to be updated which contains the following tuples: (s1, WP,
S5), (sl1, BN, S45), and (s1, WK, S4). Variables 82 and s3 have already been bound for all three
tuples (constants are in uppercase) , while s1 remains unbound. Now suppose Join is iterating upon
the following pre-condition argument P: ON(WP, s3). Then Phase T immediately determines that all
variables in pre-condition ON(WP, s3) ({s3} in this case) are already bound, and so PHASE IT will
be a Look-up phase. In this phase, tuples in T will be iterated over, and by combining the bound
variables with ON(WP, s3), the following subtuples will have there existence checked in ON: (WP,
S5), (WP, S45) and (WP, S40). If the subtuple queried is not present in ON, the corresponding
tuple of T will be eliminated.

Merge.

If a Merge is required in Phase II, then Join iterates through the tuples in T, binding each tuple
to all possible variables in turn, then iterating through P’s tuples, and building a new tuple based
on comparing the current T tuple to the pre-condition tuple, seeing if currently bound variables
match, and adding new objects to the unbound variables.

For example, again start with table T above. Suppose that join is iterating upon pre-condition
argument: CAPTURE(sl, WP). We see that “s1”, the only variable in the pre-condition, is unbound
in T. Merge is then called to iterate over the CAPTURE tuples, stopping at any tuples where the
second argument is “WP” (the constant) and will then bind “s1” to the first argument. Thus an
“s1” bind with (for example) CAPTURE(S33, WP), would create new Tuples in T: (S33, WP, S5),
(S33, BN, S45) and (S33, WK, S4). Note that “s1” can be bound more than once, and in this

particular example, three new tuples would then be created each time a bind occurred.

7.3 Implementation and Extensions

Join, as defined above, is used to combine subtables that are connected through conjunction
(AND). Tables that are combined through OR use an implicit UNION operation (as in relational
databases). Since UNION simply involves including all tuples in each subtable in a new table |
UNION is implemented by simply storing a list of subtables (rather than creating a new table).
NOT is also simulated (as opposed to creating a new table of tuples) by returning exactly the
opposite answers about tuple existence as its subtable.

Relation tables in our implementation of UDS are stored as hashtables over their tuples that also
allow iteration (through a linked-list of buckets) over all tuples. Note that the pointers from the
node hierarchy into the relation hierarchy can be used as indices to further facilitate the Look-Up
and Merge operations of join. For example, the WP node will point to all tuples involving WP.

7.4 Performance results.

With this scheme, we have been able to monitor a variety of domains including Tic-Tac-Toe,
Tower-of-Hanoi, 8-puzzle, and Hexpawn at a level of efficiency that is faster (in some cases up to

8. Support for pattern matching 13

10 times) than previous programs of ours that had been written specifically for these domains but
were not incremental.

In Figure 7.4 below we give initial timings for UDS in playing (at various search depths) and
monitoring a variety of search domains that have been compiled into its tuple network from rule
definitions as in Section 6. As UDS is domain-independent and not hard-coded for any of these
domains it clearly should not be as fast as any domain-specific system. Still, through incrementality,
its results, as shown, are reasonable and would likely beat (for domains with high branching factors)
a hard-coded program that does not exploit incrementality. As this is an early implementation with
several optimizations not yet completed, we expect even stronger results in the near future. The
results reported are using a C+4 implementation on a SUN Sparcll with 64 megabytes of main
memory.

8 Support for pattern matching

A common problem-solving operation used in case-based reasoning systems is to find all gener-
alizations of previously seen situations that match a given state. This information is used to reason
by analogy with the past, perhaps by retrieving the previous situations themselves.

Other systems such as Morph[8, 15] construct an evaluation function that is a combination of
the weights of the most-specific patterns that match a state.

Both types of reasoning require matching a large database of patterns against the current state.
Methods III-V were designed exactly with this operation in mind. However, until the integration
of the ideas from RETE these algorithms were not necessarily as fast as they could be since they
did not support incrementality (in which there is little change from one query to the next). Thus
the Morph chess system, using UDS, after a pawn moves need only rematch those
patterns affected by the pawn move rather than starting from scratch by reconsidering
its database of (up to 50000) patterns. Such savings due to incrementality should provide
great benefits in most inference settings.

9 Support for machine learning

Not only does UDS support retrieval, problem-space monitoring and pattern-matching, it also
provides a structure that is highly convenient for developing machine learning algorithms for learning
evaluation functions [16].

The multi-level hierarchical view of UDS shows directly how nodes are combined into relations
and in turn how relations are combined into conceptual graphs. This hierarchical decomposition
into wholes-and-parts is also fundamental in machine learning. Much of the work in neural
networks, statistics and pattern recognition deals directly with “how” the values of
parts combine to create the value of the whole. Such methods include gradient-descent,
linear-regression and nearest neighbor algorithms [23]. UDS gives one the capability of employing
these methods to produce a combining rule for each decomposition as one traverses the hierarchy.

For example, in chess one might like to determine the value of having a piece between the king
and an attacking piece. In our declarative representation of the rules of chess, we have defined the

BETWEEN-KING-ATTACKER relation as follows:
BETWEEN-KING-ATTACKER(SQUARE:s1,SQUARE:s2,SQUARE:s3;BLACKPIECE:p1,

WHITEPIECE:p2) = ATTACK(s1,s2) & ON(WK, s2) & BETWEEN(s1, s2, s3)

& MOVEABLE(s2, s3) & MOVEABLE(s1, s3) & ON(p1l, s1) & ON(p2, s3).

This relation represents a conceptual graph composed of more primitive relations. Informally, the
meaning 1s ¢ white piece p2 on s3 is between a white king on s2 and an attacking piece pl on si, if
53 1s between sl and s2 and 1t is possible to move pl from si to s2 and then to s3. The table for
this relation will sit below (in the CG hierarchy) the tables for the relations it is composed of. The
APSIT domain-independent game-playing system [16] uses UDS to evaluate a BETWEEN-KING-
ATTACKER tuple, say (10,11,12,br,wp) as follows:

14 9. Support for machine learning

MONITORING AND EXECUTION TIME FOR VARIOUS DOMAINS
SINGLE AGENT GAMES (IN MOVES TAKEN):
TOWERS-OF-HANOI

100 Turns 500 Turns (With Game Restarts)
total | ave total | ave (min:secs).
R vs R <:01 | - :02 | 0.004
1 ply :03 | 0.03 :156 | 0.03
2 ply :19 | 0.19 1:42 | 0.20
3 ply 1:50 | 1.10 10:18 | 1.24
8 PUZZLE
100 Turmns 500 Turns (Randomly, only 1 Game)
total | ave total | ave (min:secs).
R vs R < :01] 0.01 :02 | 0.004
1 ply :04 | 0.04 :22 | 0.04
2 ply 142 | 0.42 3:25 | 0.41
3 ply 4:58 | 2.98 26:45 | 3.21

DOUBLE AGENT (IN GAMES):

HEX PAWN
100 Games 500 Games
total | ave total | ave (min:secs).
R vs R :02 | 0.02 :10 | 0.02
1 ply :06 | 0.06 30 | 0.06
2 ply 122 | 0.22 1:50 | 0.22
3 ply 1:20 | 0.80 6:45 | 0.81
TIC-TAC-TOE
100 Games 500 Games
total | ave total | ave (min:secs).
R vs R :03 | 0.03 :156 | 0.03
1 ply :09 | 0.09 :45 | 0.09
2 ply :65 | 0.55 4:50 | 0.58
3 ply 6:55 | 4.15 -

R vs. R means '"random-player vs. random-player".
n-Ply means one agent is searching this deep, the other agent is playing
randomly.

10. Conclusion 15

1. The tuple is looked up in a table of previously seen tuples (each relation table has a history
table for learning purposes). If the tuple is found, the learned weight for the tuple is returned,
else the system continues on to steps 2 and 3.

2. Subtables are called to get the weights of subtuples (based on the table’s definition) of the origi-
nal tuple. In our example, the weights of ATTACK(10,11), ON(WK,11), MOVEABLE(11,12),
MOVEABLE(10,12), ON(BR,10), and ON(WP,12) are asked for. In general, such calls may
themselves induce deeper recursive calls to subtables of subtables and so on, until tuples are
found or we bottom out in the node tables that represent individual domain objects (and
serve as arguments to the primitive dynamic relations). A bottom level table returns a default
(neutral) value if a tuple is not found in its history table. Note that BETWEEN is not called
on (10,11,12) since it is a static relation. °

3. Once the values of all subtuples are found, they are combined linearly using coefficients (the
higher the coefficient the more accurate (with respect to feedback sent to the BETWEEN-
KING-ATTACKER table) the subtable has been in the past) that have been learned for the
table. The result of the linear combination is returned. In our example, suppose weights of
0.55,0.45,0.43,0.42,0.50 had been returned from the subtables. If the learned coefficients for the
BETWEEN-KING-ATTACKER table are 0.3, 0.3, 0.2, 0.1, 0.1 (the coefficients are normalized
to sum to 1) the value returned for the tuple (10,11,12,br,wp) will be 0.478.

10 Conclusion

Here we have shown how UDS can be used to combine the best features of semantic network
marker passing retrieval, relational databases and conceptual graphs. A standout features of this new
data structure is the degree to which it is able to simplify and compact the storage of a conceptual
graphs database.

In addition to giving Method V as an improvement over Methods III-IV retrieval we have shown
how UDS can be used to incrementally monitor state-space search domains (since they are based on
transformations of conceptual graphs) and to support pattern-matching and machine learning.

Although there are details still to be worked out in how to best integrate the major database
paradigmsin UDS, we hope that the ideas presented here will lead to a further unification of currently
disparate information retrieval and problem-solving methods.

Future directions are directed at the fact that in UDS as in its underlying components, query
processing time is too heavily influenced by exactly which structures and joins are pre-stored in
the database. We feel that a truly universal model should not be as susceptible to the original
representation of the facts and should be able to reorganize itself to make better use of them. Along
similar lines, the determination of key intermediate concepts remains a critical and fundamental
issue in machine learning and one that we are studying.

11 Acknowledgements

This research was supported in part by NSF research grant IRI-9112862. Thanks to Don Roberts
who provided diagrams and feedback during the construction of the paper. Thanks to Yuxia Zhang
for her assistance with UDS and search-space definition. Finally, thanks to John Amenta who is
largely responsible for the current UDS implementation, helped obtain the performance results, and
supplied some algorithmic descriptions for the paper.

8The presence of a tuple in a static relation is invariant across positions and hence supplies no new information to
base an evaluation on.

16

References

References

(1]
[2]

[22]

[23]

J.M. Barnard. Problems of substructure search and their solution. In Wendy Warr, editor,
Chemical Structures the International Language of Chemistry,. Springer-Verlag, 1988.

H. Boley. Declarative operations on nets. Computers and Mathematics with Applications, 23(6-
9):601-638, 1992. Part 2 of Special Issue on Semantic Networks in Artificial Intelligence, Fritz
Lehmann, editor. Also reprinted on pages 601-638 of the book, Semantic Networks in Artificial
Intelligence, Fritz Lehmann, editor, Pergammon Press, 1992.

G. Ellis. Compiled hierarchical retrieval. In E. Way, editor, Proceedings of Sizth Annual Workshop
on Conceptual Structures), pages 187-208, SUNY-Binghamton, 1991. To Appear.

G. Ellis. Efficient retrieval from hierarchies of objects using lattice operations. In G. Mineau
and B. Moulin, editors, Proceedings of First International Conference on Conceptual Structures
(ICC5-93), Montreal, 1993. To Appear.

R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. Benjamin/Cummings,
Redwood City, California, 2 edition, 1994.

S. Fahlman. NETL: A System for Representing and Using Real-World Knowledge. MIT Press,
Massachusetts, 1979.

C.L. Forgy. Rete: A fast algorithm for the many pattern/many object patern match problem.
Artificial Intelligence, 19(1):17-37, 1982.

J. Gould and R.. Levinson. Experience-based adaptive search. In R. Michalski and G. Tecuci, edi-
tors, Machine Learning:A Multi-Strategy Approach, volume 4, pages 579-604. Morgan Kauffman,
1994.

J.A. Hendler. Massively-parallel marker-passing in semantic networks. In Fritz Lehmann, editor,
Semantic Networks in Artificial Intelligence, pages 277-292. Pergamon Press, 1992.

R. E. Korf. Planning as search. Artificial Intelligence, 1987.

R. Levinson. A self-organizing retrieval system for graphs. In AAAI-84, pages 203-206. Morgan
Kaufman, 1984.

R. Levinson. Pattern associativity and the retrieval of semantic networks. Computers and
Mathematics with Applications, 23(6-9):573-600, 1992. Part 2 of Special Issue on Semantic
Networks in Artificial Intelligence, Fritz Lehmann, editor. Also reprinted on pages 573-600 of the
book, Semantic Networks in Artificial Intelligence, Fritz Lehmann, editor, Pergammon Press,
1992.

R. Levinson and G. Ellis. Multilevel hierarchical retrieval. Knowledge-Based Systems, 5(3):233—
244, September 1992. Special Issue on Conceptual Graphs.

R. Levinson and K. Karplus. Graph-isomorphism and experience-based planning. In D. Sub-
ramaniam, editor, Proceedings of Workshop on Knowledge Compilation and Speed-Up Learning,
Ambherst, MA., June 1993.

R. Levinson and R. Snyder. Adaptive pattern oriented chess. In Proceedings of AAAI-91, pages
601-605. Morgan-Kaufman, 1991.

R.A. Levinson. Exploiting the physics of state-space search. In Proceedings of AAAI Symposium
on Games:Planning and Learning, pages 157-165. AAAT Press, 1993.

D. P. Miranker. Treat: A better match algorithm for ai production systems. In Proceedings of
AAAI-87, pages 42-47, 1987.

D.D. Roberts. The existential graphs. In Semantic Networks in Artificial Intelligence, pages
639-664. Roberts, 1992.

E. Sciore. A complete axiomatization for join dependencies. JACM, 29(2):373-393, April 1982.
J. F. Sowa. Conceptual Structures. Addison-Wesley, 1983.

P. Suppes. Models of data. In Logic, Methodology and Philosophy of Science, pages 252-261.
Stanford, East Lansing, 1962.

J.D. Ullman. The u.r. strikes back. In Proceedings of the ACM SIGACT-SIGMOD Symposium
on Principles of Database Systems, pages 10-22, 1982.

S. Watanabe. Pattern Recognition:Human and Mechanical. Wiley, New York, 1985.

