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1. Motivations 1When a philosopher invents a new approach to reality, he promptly �nds thathis predecessors saw something as a unit which he can subdivide, or that theyaccepted distinctions which his system can name as unities. The universe wouldappear to be something like a cheese; it can be sliced in an in�nite number ofways{and when one has chosen his own pattern of slicing, he �nds that other['s]cuts fall at the wrong places.{Kenneth Burke [17]1 MotivationsKorf [19, 20, 21] has done an excellent job of classifying and describing the traditionalforms of search knowledge. This was facilitated by the recognition that planning withperfect information can be viewed as heuristic search. The di�erence in nomenclature refersto the types of search knowledge being used. For planning, subgoals, macro-operators andabstraction spaces are used; for heuristic search, heuristic evaluation is used. In examiningeach of these knowledge forms, one wonders about their interaction in problem-solving andwhether there is a more basic form that captures the essence of each of these. It is thesequestions that this paper begins to address.The pattern-weight formulation that will be used to help answer these questions wasdeveloped as part of a project to develop methods by which intelligent systems can improvetheir search e�ciency and accuracy through experience, in particular, by using patternformation and associative recall [27, 28, 30]. We will purposely not be focusing on thelearning issues in this paper, but instead will concentrate on the relationship of this formof search knowledge to more traditional forms and to their interaction.In particular, it will be shown that pattern-weight pairs (pws) due to their low granularityprovide the following advantages over macro-operators and subgoals:� They can lead to shorter solution paths.� Can support management of multiple alternative subgoal sequences.� Are more amenable to reactive and execution time planning.The main disadvantage of pws over traditional forms is that more computation isrequired to make full use of them. It will be shown how this additional computation maybe managed e�ciently.The goal of the pattern-weight approach is to provide a more uniform problem-solvingmechanism at a lower-level of granularity than in other approaches [19, 22, 38]: no dis-tinctions will be made between subgoals and non-subgoals, nor is knowledge about actionsexplicitly stored. Instead, we shall take the view that if states can be evaluated properly (bydetermining their distance from a goal state) that the actions will take care of themselves. Itis hoped that the uniformity provided by pws will lead to more e�cient and exible problem-solving schemes and also be more consistent with current cognitive models that emphasizepattern matching over symbolic processing [44].2 PreliminariesWe will abide largely by the de�nitions and understanding set out by Korf [21]. Weshall de�ne a problem space (or state space search problem) as a set of states (the \statespace") and operators where operators are partial mappings from states to states. Problem



2 2. Preliminariesinstances are composed of a problem space with an initial state and a goal where a goal isa predicate over states. A solution to a problem instance is a sequence of operators thatmap the initial state to a goal state where a goal state is any state that satis�es the goalpredicate.We will assume that the goal remains �xed over the problem instances for a particularproblem space, and thus may be considered a third part of the problem state de�nition,along with states and operators. For many practical problems this assumption is realistic,since usually either the goal state or the initial state remains �xed. In the latter case wecan solve the corresponding problem with operators going in the opposite direction.By using a �xed goal state an origin is established for computing distances. However,this restriction may be removed [29].Now we de�ne a pattern as a predicate over states. Thus, the goal predicate is a pattern.We will say that a pattern P occurs in a state S if P(S) is true. For simplicity of notation wewill use the symbol for a state (\S" in the previous sentence) to refer interchangeably to thestate itself or to the pattern that is true in that state and in no others. Typically, patternsfor a particular problem space will be represented in some �xed representation language andwe will only be interested in the patterns expressible in that language. Often, the patternrepresentation language will be the same as the state representation language except thatpatterns can be partial state descriptions. Patterns are partially ordered by the relationmore-general-than. Pattern A is more general than pattern B, if for all states S, if B(S) istrue, A(S) is true. What we call patterns have also been called features [43], equivalenceclasses and schema [14] in the literature. We prefer the term \pattern" as they are mostuseful when they occur regularly. We will see that they are also related to what have beencalled abstract states and when coupled with a weight serve much the same purpose assubgoals (Section 7).Search control knowledge can be maintained by storing a subset of the patterns thatoccur in the state space. With each pattern P is assigned a weight, w(P), which is to bea least upper bound on the shortest distance from any state in which P is a subpatternto any goal state. Each state is evaluated as the minimum of the weights of the patternsthat occur in it. Thus the evaluation of a state S, e(S), is a least upper bound on theshortest distance from the state to any goal state. Since if pattern A is more-general-than pattern B then w(B) � w(A), e(S) is simply the minimum of the weights of S's mostspeci�c subpatterns. In general, e(S) � w(S) and when no two state patterns hold the more-general-than relation to each other, e(S)=w(S). Here evaluations are pessimistic (being leastupper bounds) whereas those that traditionally go with A* and other search algorithms areoptimistic (lower bounds).Examples in this paper will be taken from the n� n tile puzzles. The traditional smalltile puzzle [15], called an \eight puzzle," is a 3x3 matrix of squares. Eight of the squares areoccupied by sliding tiles which are numbered 1-8. The ninth square is empty, allowing theother tiles to be moved. The object is to arrange the numbers in a prede�ned pattern froma random starting point. The puzzle can be extended to much larger sizes. The largestcommonly used size is 6x6, for a puzzle with 35 tiles and one empty square. The generalprocedure for solving the puzzles is the same at any size, but the problem of �nding optimalsolutions (those which require a minimum number of moves) is NP-hard [40].Patterns for tile puzzles will be states that may leave zero or more tile positions unspec-i�ed. A major theme of the paper is that useful patterns can be derived from macrotables[19]. But before proceeding further it is worthwhile to consider how patterns (with weights



2. Preliminaries 3as least-upper bounds) might enhance traditional heuristic functions. To determine this wehave done an analysis of the entire eight puzzle state space, considering all partial statedescriptions as patterns. For each pattern we consider all solvbable full states that matcha given pattern to determine that pattern's statistical pro�le. Table 1 illustrates the aver-age and range of patterns of a given size where size is de�ned in terms of number of tilesspeci�ed. Tables 2 and 3 report results of an experiment in which the least upperbounds ofpatterns of size 1 and 2 are summed and normalized (as opposed to taking the minimumas we do in the remainder of the paper) to produce a heuristic that is more e�cient and/ormore accurate than Manhattan Distance. Victories are said to occur when an optimalsolution is found and fewer states are expanded than with the others.Size of Pattern Population Ave. Min. Max6 4,896,814 21.45 19.37 23.455 1,905,111 21.50 17.15 25.144 381,024 21.50 14.55 26.673 42,336 21.50 11.62 28.032 2,592 21.50 8.27 29.271 81 21.50 4.35 29.950 1 21.50 0.00 30.00Table 2.1: Statistical pro�le of patterns, grouped by sizeManhattan all size 1 pats all size 2 patsaverage solution length 21.50 21.84 21.71ave. no. states expanded 948.20 451.60 227.40percentage optimality 100.00 86.10 90.00percentage victories 7.80 5.60 86.60Table 2.2: Cost/bene�t comparison between A* heuristicsManhattan all size 1 pats all size 2 patsaverage solution length 21.50 21.84 21.71ave. no. states expanded 948.20 451.60 794.90percentage optimality 100.00 86.10 100.00percentage victories 4.60 67.40 28.00Table 2.3: Cost/bene�t comparison (with admissable size-2 heuristic)A planning strategy that we shall only touch on here is the use of abstraction inhierarchical planning [19, 18]. In a common use of this strategy, certain states are collectedtogether to form \abstract states." Interestingly, here too, a direct mapping to the pattern-weight formulation is possible. As there is always a 1-1 correspondence between patternsand subsets of the state space, the terms pattern and abstract state may be viewed similarly:traveling from one abstract state to the next is equivalent to traveling from some state inwhich one pattern is true, to another in which another pattern is true. Traveling withinan abstract state means to traverse states in which one particular pattern remains true.Due to e�ciency considerations, in this framework, patterns must have simple descriptions



4 3. Depth-First Hill-Climbingto facilitate matching and not be complicated disjunctions of individual states as abstractstates may be in general.3 Depth-First Hill-ClimbingMuch of the following discussion will assume the use of pattern-weight sets (pws) withthe standard depth-�rst hillclimbing algorithm (DFHC) that always does only 1-ply searchand greedily moves to the adjacent state with best evaluation. We will be constructingpattern-weight sets that insure that the algorithm will terminate and return a solution pathif a solution exists.DFHC:BeginLet current-state = initial-state.Let solution-path = empty-sequence.While not goalp(current-state) doLet S = the set of 3-tuples (s,o,d) where s is a legal statereachable from current-state using operator o and receivesan evaluation of d.Let (s*,o*,d*) be that tuple with smallest d value.Let current-state = s*.Let solution-path = solution-path followed by o*.Return (solution-path).End4 Macro-OperatorsMacro-operators (macros) are sequences of primitive operators. Such sequences cannaturally be represented as sets of pattern-weights. Sequences can be represented byfollowing the preconditions of the macro through the successive operator applications of themacro and giving decreasing weights to each successive pattern. DFHC will then naturallyreproduce the operator sequence at execution time (though we will see that sometimes it maynot complete the sequence, but instead opt for something better!) since after each operatorapplication there will be a state with the next pattern (and, hence, lower evaluation).For problems with serially decomposable subgoals (i.e. there exists some ordering ofsubgoals for which the e�ect of each operator on each subgoal depends only on that subgoaland previous subgoals in the ordering), Korf has shown how a table of macros can beconstructed that guarantee solution paths from all initial states. Later we will use such aset of macros to produce a set of pws that, when coupled with DFHC, is guaranteed toproduce solution paths from all initial states that are shorter on the average than thoseproduced by the macros. The technique is best illustrated by an example:EXAMPLE 1:A macro-table is a completely general solution to the tile puzzle problem, pro-viding a clear, unambiguous solution for every solvable puzzle con�guration [19] Forinstance, a macro-table for a 2x2 puzzle { three tiles, one empty square { mightlook like the one in Table 4.



4. Macro-Operators 5TilePosition 0 1 2 30 * * * *1 r * * *2 dr lurd * *3 d uldr * * 0 13 2Table 4.1: A macro-table for solving the 2x2 tile puzzle.To read this macro-table, the system �rst locates tile number 0 (the emptyspace.) The entries in column number 0 corresponding to the empty tile's locationindicates the sequence of moves necessary to properly position the space given it isat positions 0,1,2 and 3 respectively.Given that the 0 subgoal has been solved, we only need to specify macros fortile 1 when it is in positions 2 and 3. These macros not only move tile 1 to itsdestination, but also return the empty square to its proper place. In general, a macromust ensure that all previously positioned tiles are returned to their proper locations(though they may be moved during the macro's operation.) If this condition is met,then when the last macro is executed, the puzzle will be solved { the last tile, andall previous ones, will be in their proper positions. The last two columns are alwaysempty in all tile puzzle macro tables, no matter what the size of the puzzle. This isdue to a property of tile puzzles [15]: if any two non-blank tiles in a solved boardare swapped the puzzle cannot be solved by any legal manipulation.4.1 Weaknesses in the Macro-table TechniqueDespite the obvious strengths of the macro-table technique in terms of space, correctnessand execution time e�ciency there are some weaknesses [3]. The most serious weakness isthat the solution paths produced by macro-tables are often far from optimal (as depictedin Table 4.2). Tables 4.2 through Table 5.3 are a running example based on states selectedfor illustrative purposes. For a more statistically representative set of examples see TablesA.1 and A.2 in the Appendix.EXAMPLE 2: Non-optimality of macro solutions.Solution LengthSize Initial state Macro(Mt) Optimal3x3 024813567 50 143x3 847035126 50 223x3 013724658 24 163x3 782134560 31 114x4 c953086b41f2ad7e 131 334x4 c130492a8e7fb5d6 132 224x4 851426a739b0fdec 120 204x4 b3c7651280a4f9de 142 32Table 4.2: Demonstration of the non-optimality of macro-tables



6 4. Macro-OperatorsFor higher-order puzzles, the problem gets worse. (The letters a-f representtiles numbered 10-16.) (these optimal solutions were generated using A* with aManhattan-distance heuristic.)That macro-tables should lead to ine�cient solution paths is not surprising. This isalmost always the case when a general heuristic strategy is applied to speci�c probleminstances. The di�culties are that macros operate at a high-level of granularity thatprevents adjustment while a macro is executing and that a macro-table depends on aparticular subgoal sequence (order in which state variables are to be solved) that maybe inconvenient for a given problem instance. Pws can be used to address these di�cultiesby exploiting macro-crossover and subgoal sequence crossover, respectively. Further, pwsallow the knowledge from multiple macro-tables to be usefully exploited. The followingsections bring out these issues in detail.Importance of Subgoal OrderingThe ordering of subgoals can have a profound e�ect on the e�ciency of macro-basedsolutions. This is due almost entirely to the side e�ects resulting from the positioning ofeach tile. Tiles whose positions have not yet been �xed are shu�ed around to unde�nedplaces while a subgoal is being reached. Ordering the subgoals di�erently will change theside e�ects, sometimes placing the remaining tiles closer to their �nal positions and reducingthe number of moves required to solve the puzzle. It should be clear that di�erent subgoalsequences will result in very di�erent macro-tables.Name Sequencetop 0 1 2 3 4 5 6 7 8right 0 3 4 5 6 7 8 1 2bottom 0 5 6 7 8 1 2 3 4left 0 7 8 1 2 3 4 5 6interleaved 0 2 4 6 8 1 3 5 7Initial state Top(Mt) Right(Mr) Bottom(Mb) Left(Ml) Interleaved(Mi)024813567 50 16 40 16 66847035126 50 42 38 32 72013724658 24 24 24 50 40782134560 31 17 43 29 21Table 4.3: Subgoal sequences and the importance of orderingThe e�ect of changing the ordering of subgoals can be seen in Table 4.3. Clearly, theordering of subgoals makes a di�erence. The trouble is that no single sequence is consistentlybetter than all the others. There is no known easy way to tell which sequence will be bestfor an arbitrary tile con�guration, other than to simply try several sequences and comparethe results.Macro-crossover and SqueezeBecause of the high-level granularity of macro-based solutions, all the already-positionedtiles must be returned to their proper places before the next tile can be positioned. Thatis, assuming the ascending subgoal sequence (as above), the positioning of tile 3 must end



5. Patterns 7goalRepeated state ibhcba Figure 4.1: Repeated states in a macro solution.with tiles 0, 1, 2, and 3 in place before tile 4 can be evaluated. Tile 0 is obviously alwaysthe last to be returned to its rest position. Because of this restriction, duplicate states oftenoccur. For example, suppose that the macro for a subgoal is \lurrd." If the macro for thenext subgoal begins with a \u," two moves have been wasted doing essentially nothing.The \Squeeze" algorithm described briey in [39] removes such ine�ciency by removingthe paths (cycles) between two identical states and hence makes some improvements tooverall solution lengths (see Table 4). We will show in the next section that pws obviatethe need for Squeeze.Size Initial state Optimal Macro(Mt) Squeeze3x3 024813567 14 50 463x3 847035126 22 50 483x3 013724658 16 24 163x3 782134560 11 31 294x4 c953086b41f2ad7e 33 131 1114x4 c130492a8e7fb5d6 22 132 1244x4 851426a739b0fdec 20 120 1124x4 b3c7651280a4f9de 32 142 130Table 4.4: The e�ects of Squeeze on macro length5 PatternsRecall that a pattern is de�ned as a predicate over states.5.1 Patterns and SubgoalsSubgoals are intermediate goals to be achieved before reaching a �nal goal. Korf [21]formally de�nes a subgoal as \a set of states, with the interpretation that a state is anelement of a subgoal set, if and only if it has the properties that satisfy the subgoal." Thisis, clearly, equivalent to our de�nition of pattern. Korf has shown that subgoals are usefuleven if they need to be undone later since they indicate a direction in which the searchor plan should proceed. Well-chosen patterns ful�ll precisely this purpose! Korf has alsoshown that the best subgoals are not necessarily partial-descriptions of a goal-state [19].Algorithms based only on ordering partial goal states, perform no better than brute forcein the worst case - additional knowledge is needed [16].



8 5. PatternsThe di�erence between patterns and subgoals is that subgoals are totally-ordered in theorder in which they are to be achieved. It is this ordering information that give subgoalsmuch of their power [41]. The optimal orderings are those that produce few impasses, whereimpasses are said to occur when a previously solved subgoal must be undone to achieve acurrent subgoal. Working towards well-ordered subgoals one at a time reduces the cost to�nd a solution path (by focusing the search) at the cost of �nding solution paths of muchgreater length than optimal. We shall see that patterns can be used similarly, but with moreexibility. Without imposing a total ordering, when coupled with weights they are used as\signposts of progress."5.2 Decoupling macros into pattern-weight pairsThe primary weaknesses of all of the above techniques are that they either treat a stateas a whole, in the case of the Squeeze algorithm described above, or treat the board as aseries of single tiles in the case of the macro-table technique.With the pattern-weight technique, the system no longer matches entire boards (as inSqueeze) or looks at the positions of individual tiles. Instead partial board matches, or\pattern matches" are searched for.A macro-table that guarantees solution of an nxn puzzle from all states [19] can bereformulated as patterns and weights as follows:1. For each macro, create a pattern out of the preconditions of the macro. Let \keytiles" stand for the tiles and blank that are speci�ed in the preconditions. Then foreach successive state the macro goes through, create a new pattern depicting wherethe key tiles occur in this state. Assign a weight recursively to each pattern equalto the number of remaining operators in the macro plus the maximum weight of thepattern in which the key tiles are all in their correct place (the post-conditions forthe original macro). Thus, the subgoals 0, 01, 012, 0123, 01234, 012345, 0123456,01234567, 012345678 get weights of 62, 50, 40, 26, 18, 4, 0, 0, 0 respectively. Forexample: Assume a goal-state for the 8-puzzle of:1 2 38 0 47 6 5where 0 is the blank space.The macro for the state in which tiles 0 and 1 are in the correct place and tile 2 isin position 4 is \ldru" The macro reaches a state in which tiles 0,1 and 2 are in theircorrect place. From this macro we would create the following patterns where \-" maybe anything. The weights assigned are shown below:1 - - 1 - - 1 - 0 1 0 - 1 2 -- 0 2 - 2 0 - 2 - - 2 - - 0 -- - - - - - - - - - - - - - -44 43 42 41 402. Pattern-weight pairs now stand for \states that contain this pattern as a subpatternare at most a distance equal to the weight from the goal" thus corresponding withour speci�cation of weight.



5. Patterns 93. As always, each state's evaluation is the minimum of the weights of the most speci�csubpatterns that apply to it.4. This construction insures that DFHC will �nd a solution path no longer than theweight of the minimum pattern occurring in the initial state. This follows directlyfrom Theorem 1 below.Theorem 1: When DFHC is applied to the pws generated from a macro-table, given asolvable initial state a solution path is generated. Further, the evaluations of stateson the solution path will be monotonically decreasing.Proof: Each state S is evaluated as the minimum of the pws that apply to it. Call thisextreme pattern p(S) with w(p(S)) = e(S). Now if p(s) was a pattern generatedfrom intermediate conditions in a macro sequence, there is some operator application(namely the one to be applied at that point in the macro) that will lead to a stateS0 with a pattern with weight less than w(p(S)) and thus S 0's evaluation e(S 0) is lessthan e(S). Now if p(S) came from the terminating condition for a macro M, S mustbe matched by some pattern P 0 which is the initial state of some macro in the columnimmediate to the right of M in the macro-table (and by our construction has weight= e(S)). By executing the operator to be applied at P 0 a state of lesser evaluation willbe reached, arguing as above.The only state for which the above paragraph does not hold is the goal state since itdoes not have any macros to the right. But it is at a goal state that DFHC terminates.The reader may have noticed from the above proof that it is not actually necessary tocalculate and store a pw for the terminating conditions of a macro (except for perhaps thegoal state) since they will be subsumed by the patterns containing the initial conditions ofthe macro to the right of them in the table. For example, in Table 7 the second pattern topleft need not actually be stored.EXAMPLE 3:- 0 0 - - - - - 0 - 0 - - 0- - - - - 0 0 - 1 - - 1 - 15 4 6 5 4 4 3- 1 - 1 0 1 1 - 1 - 1 0- 0 0 - - - 0 - - 0 - -2 1 0 3 2 1Table 5.1: Pws created from the 2� 2 macrotableThe patterns in Table 5.1 were created by using the algorithm given aboveon the 2x2 macro-table.The pw reformulation of a macro-table uses storage of the same order (though usingmore bytes per macro-step) and produces 7-8% shorter solution paths in practice for the8-puzzle and about 23% shorter paths for the 15-puzzle. (See tables A.1 and A.2 in theAppendix.



10 5. PatternsMacro-crossover opportunities are not recognizable until execution time since they de-pend on the identity of those tiles not speci�ed by the macros. It is true for a singlemacro-table (as speci�ed by Korf), however, that an intermediate pattern Pa of macro Acan only satisfy an intermediate pattern, Pb, of macro B if Pa is more-general-than thanPb. This condition is necessary, but not su�cient for macro-crossover. In Section 7, we willbe combining the knowledge from two or more macro-tables and then even this conditionneed not be true.An advantage of this technique over such algorithms as Joint and LPA* [39] is that nopotentially exponential searches of the state space as a whole are required. These techniquesapply A* in an attempt to shorten segments of existing solution paths. However, thee�cient solution paths produced by pws can be generated at execution time, no re-planningis necessary.5.3 Patterns and SqueezeAfter conversion to pws there is no need to run the solutions through a Squeeze routine:Theorem 2: Solution paths based on a pw version of a macro-table never contain duplicatestates.Proof: This follows directly from Theorem 1 since each state is given exactly one evaluationand the evaluations of states in the solution path are monotonically decreasing.In fact, patterns are stronger than Squeeze (except in rare instances, see next section).Squeeze can only �nd a way to reduce the solution length when one state in the sequenceexactly matches another state further on in the sequence. Patterns, on the other hand, canrecognize a state as being further along based on less information. The result (see Table5.2) is shorter overall solution lengths.Size Initial state Macro(Mt) Optimal Squeeze Pattern(Pt)3x3 024813567 50 14 46 463x3 847035126 50 22 48 483x3 013724658 24 16 16 163x3 782134560 31 11 29 294x4 c953086b41f2ad7e 131 33 111 934x4 c130492a8e7fb5d6 132 22 124 684x4 851426a739b0fdec 120 20 112 824x4 b3c7651280a4f9de 142 32 130 94Table 5.2: Comparison of di�erent solving strategies5.4 When Macros or Squeeze May Be Better Than PatternsOccasionally, for a given problem instance, it is possible to produce a solution pathusing macros with or without Squeeze that is shorter than that produced by pws. Thesecases can occur when a macro executed by the macro technique happens to solve morethan one subgoal but patterns, by skipping this macro, may miss this opportunity. Theseanomalies do not occur because of any superiority of the macro knowledge but due tofortune alone. We observe these occurring 3% of the time in the 8-puzzle. For example,see states 348576021, 341568072, 281576043 in the appendix. On the 15-puzzle althoughPatterns dominate, SQUEEZE comes out ahead about 6% of the time.



5. Patterns 11In those cases in which the macros must be used to solve each subgoal (not skippingany) the pattern-weight formulation is guaranteed to produce solution paths no longer thanthose produced by the macros since in the worst case (by Theorem 1) the same path istraversed.5.5 Patterns and Dynamic SubgoalingWe pointed out earlier (Section 4.1) that macro-tables are restricted in the sense thatthey are based on exactly one subgoal sequence that may be far from optimal. Ideally, wewould like a system that could choose among several alternative subgoal sequences and evencorrect itself in midstream by taking advantage of subgoal sequence crossover. To achievethis with pws, one �rst generates macrotables for each desired subgoal sequence, convertsthem to pws and combines these pw sets by taking their union, with repeated patternsreceiving their minimum weight. Once the knowledge is in this form, DFHC can be appliedas before to produce solutions that are shorter on the average than those based on anysingle subgoal sequence. (See Figure 2)Size Initial state Macro(Mt) Optimal Squeeze Pattern(Pt) P53x3 024813567 50 14 46 46 143x3 847035126 50 22 48 48 323x3 013724658 24 16 16 16 163x3 782134560 31 11 29 29 114x4 c953086b41f2ad7e 131 33 111 93 1134x4 c130492a8e7fb5d6 132 22 124 68 684x4 851426a739b0fdec 120 20 112 82 304x4 b3c7651280a4f9de 142 32 130 94 76Table 5.3: The e�ect of using pws from multiple subgoal sequencesHere, one sees the biggest advantage in using pws: to mix subgoal sequences. Tables A.1and A.2 (see Appendix) were produced from solving 10,000 di�erent random instances ofthe 8-puzzle and 100 di�erent random instances of the 15-puzzle. Each instance was solvedonce using each of �ve di�erent macrotables associated with a di�erent subgoal sequence,and then from pattern sets derived from the macros, once with four pattern sets combinedand once with �ve pattern sets combined.As expected, the average solution lengths using any one of the subgoal sequences wereabout the same (except for the interleaved sequence) and the pattern formulation of thesesequences produced path lengths that were about 9-10% shorter than those formed by themacros for the 8-puzzle, and about 2% better on the 15-puzzle. Compared to SQUEEZEthe solutions were 2-3% and 15-16% on the 8-puzzle and 15-puzzle respectively.When the pattern sets were mixed (P4,P5), solution paths that were nearly 16-17%shorter on the 8-puzzle and 26-27% better on the 15-puzzle on the average than thosefrom the macros. Further, solution paths were about 10% and 1% shorter on the averagethan those produced by any one pattern set. The explanation of this gain comes fromthe two reasons cited in the previous paragraph: The system chooses a favorable subgoalsequence to start with and can switch to another sequence if it becomes more favorable.These sequence shifts are recognized by noting from which pw set a new state's evaluation



12 5. Patterns
Combined Pw Set

Shorter Solution Paths
Pattern WeightsMacro TablesSubgoal Sequences LeftBottomRightTop

DFHC

078123456056781234034567812012345678

Figure 5.1: Combining macro-table knowledgeis based. Although the system actually switched sequences infrequently, when it did so thegains were signi�cant.Since P4 and P5 did so well one might wonder why Pm returns solution paths that areabout 15% and 9% shorter on the average than P4 or P5 (and 29% and 33% better thanthe Macros)? The explanation is that while P4 or P5 might choose a good subgoal sequenceinitially it may not turn out to be the best. The pattern sets for Top, Right, Bottom, andLeft and Interleaved are not close enough to generate enough subgoal sequence crossoversto make up for this.Table 5.3 gives a �nal example of using the patterns generated from multiple subgoalsequences on solution length. The P5 column lists those solution lengths. The subgoalsequences are the �ve subgoal sequences of Table 4.3. The �rst line represents a state thatwas solved optimally by P5 and not close to optimally using a macrotable, Squeeze or asingle pattern set. An optimal sequence for this state is llurrdldlurdrul. In generating this



6. Implementing E�cient Pattern-Based State Evaluation 13sequence P5 used patterns from the \bottom" sequence for 9 states and then switched to\right" patterns for the next 4 states and completed using a pattern from \interleave".For the case of multiple subgoal sequences, theorems analogous to Theorems 1 and 2 (ofSection 6) can be proved.6 Implementing E�cient Pattern-Based State EvaluationIn the previous section it was shown that pattern-weight sets can produce shortersolution paths than from the macros from which they have been derived. The disadvantageof using pattern-weight pairs over macros is that at execution time computation is requiredat each step to evaluate the states adjacent to the current state and to choose the properoperator. Whereas, while executing a macro little computation is required until the selectionof the next macro. However, state evaluation can be done e�ciently by using an associativeretrieval algorithm that takes advantage of a partial ordering of patterns by more-general-than [6, 10, 24, 25, 34].Suppose for example that pattern R is known to be a generalization of pattern S. Nowonce we determine that R is a specialization of a \query" pattern Q, we know that S isalso without performing further comparison tests! Similar reasoning applies to negativeinformation: If pattern X is a generalization of pattern Y, then if X is found not to be ageneralization of Q, than clearly Y isn't either.In this database organization all patterns are placed in a partially-ordered hierarchy bythe relation more-general-than (See, for example, �gure 6.1). Because of transitivity onlythe immediate predecessor (generalizations) arcs and immediate successor (specialization)arcs need be stored (as in the Hasse diagram of any po-set). In essence, an object is indexedby its predecessors in the ordering and indexes its successors!Notice that to evaluate a state Q it is su�cient to �nd where it �ts in the partialorder (i.e., Q's immediate predecessors and immediate successors). The predecessors ofQ in the ordering are its generalizations and its successors are its specializations. Thusthe retrieval/insertion operation is essentially the same as an insertion operation. Theimmediate predecessor and immediate successor sets are found in two consecutive phases.Phase II makes use of the immediate predecessors found in Phase I to �nd immediatesuccessors. Both phases attempt to use the information in the hierarchy to minimize thenumber of pattern comparison tests. For state evaluation without insertion only Phase I isnecessary.Ordering the database objects by size produces a topologically sorted list, i.e. a totalordering that embeds the original partial ordering by more-general-than. Since all databaseobjects will be preceded by their predecessors in the list they only will make it to the frontof the list if their predecessors have been found to be predecessors of Q. Thus, the properelimination of comparisons is taking place.If we actually wish to insert Q into the hierarchy, the IP and IS sets of other objectshave to be updated. This is done in Phase III.Thus, Phase II does not do a comparison test on a database pattern unless it containseach member of IP(Q). Note how the original database objects are being used as screensin Phases I and II. The big savings of this retrieval method comes from the fact that onlythe immediate successors of Q need to be determined using comparison tests. All othersuccessors (specializations) are determined for free. Since the patterns eliminated in thisway are usually the most complex, many expensive tests have been eliminated.



14 6. Implementing E�cient Pattern-Based State EvaluationMost General Objects
Most Speci�c ObjectsFigure 6.1: A hierarchy of objects ordered by \more-general-than"Retrieval Phase I: (�nd IP(Q), the immediate predecessors of Q)(1) List all patterns from smallest to those of the same size as Q.(2) S := ;.(3) While there is a member X in the listIf X is a predecessor of Q (comparison test) thenS := S [ fXg � IP(X)Remove X from the list.Else Remove X and all successors of X from the list.(4) Return S.The e�ciency of this algorithm can be improved by, in addition to the hierarchy,maintaining a linked list of database objects sorted by size. Space for new links is reserved sothat the sublists needed by the algorithm may be formed dynamically. Further enhancementcan be achieved through incremental updating.There are other algorithms for insertion of objects into partially-ordered sets, we rec-ommend the one here due to its simplicity and e�ciency. In practice only a small fractionof the database objects need to be compared with Q using comparison tests: 10 or 20 struc-tures at the most on a database of 680 objects for example. Further, we have seen that asdatabase size grows the increase in retrieval time is sublinear and probably logarithmic [25,34, 10].This algorithm has been used for associative retrieval of organic molecules and reactions[24, 25, 45], chess patterns [25, 28] and radio signals [26] in addition to the application



7. Extending to Real-World Planning and Search 15Retrieval Phase II. (�nd IS(Q), the immediate successors of Q)(5) S := ;.(6) Y := some element of IP(Q)(7) I := intersection of the successor sets of each element of IP(Q) except YWe suggest the following implementation of step 7:(7') For each z in IP(Q) except Y doFor each successor s of z doIncrement count(s)For each item s doIf count(s) = jIP(Q)j � 1 then I := I [ fsg(8) For each successor X of Y in order by size doIf X is in I and X is a successor of Q (comparison test) thenS := S [ fXgEliminate successors of X from the rest of the for loop.(9) Return S.Phase III. (update immediate predecessor and successor sets of other items)(10) For each x in IP(Q) doS(x) := IS(x) [ fQg � IS(Q)(11) For each x in IS(Q) doP(x) := IP(x) [ fQg � IP(Q)here. Other applications are possible [34]. For simply represented states and patterns suchas tile-puzzle states even more e�cient schemes are possible [9, 12]; the same is true for aset of structured pattern-weights that are �xed since heavy precompilation can enable thestructure screening and comparison operations to be done simultaneously [35].7 Extending to Real-World Planning and SearchThe tile-puzzles have provided a good framework in which to illustrate the fundamentalsof the pattern-weight formulation. But how might these methods extend to real-worlddomains? We shall consider two aspects of real-world problems:1. Reactive domains in which the agent does not have absolute control of the world, i.e.the state resulting after an operator application is not fully-predictable.2. Domains in which the structure of the state-space is not fully known or knowable dueto high combinatorics or insu�cient knowledge available to the agent.7.1 Reactive DomainsWe are suggesting that it is possible to use macro-operators and subgoals as they arecurrently being used, but by converting them to pws, more exibility and robustness isachieved. In reactive domains the e�ects of each operation and the state of the worldare not fully predictable. Attempting to execute a macro in such an environment becomesa risky operation. The longer the macro the less likely it is of succeeding because at somepoint the preconditions of the next operator to execute may not be satis�ed.It is always possible to respond in these cases using a macro-table since an action isrecommended in every situation. But the macro-table, being con�ned to produce a solution



16 7. Extending to Real-World Planning and Searchbased on a particular subgoal sequence may lead to tremendous ine�ciencies, since duringexecution of a macro it is quite possible to purposely and successfully undo previouslyachieved subgoals. For example, in a \reactive" tile puzzle in which the e�ects of operatorsare unpredictable a certain percentage of the time a macro-table may be endlessly returningthe blank to the center since this is always the recommendation when the blank is not inits goal position.The basic reactive planning techniques such as STRIPS triangle table representationof macros [36] and Universal Planning [42] recover gracefully from interruptions but su�erfrom one of the two weaknesses of macro-tables by being limited to a single subgoal sequenceor not taking advantage of macro-crossover.In PET [38], macro-operators are decoupled into the form PRE state description )POST state description with the interpretation:IF the current state S matches PRE andthe state resulting from applying OP to PRE matches POSTsuch that the relations in the augmentation holdTHEN OP is recommended in S.Similarly, in SOAR [22] macros are decoupled into situation-action rules. Both theseforms are functionally equivalent since the PREand POST conditions with the augmentationcan be viewed collectively as the situation.Situation-action schemes due to their lower granularity lead to more fruitful responses toreactive domains than macro-tables. Converting a macro-table into a situation-action rulebase is similar to the conversion into pws (intermediate state patterns are generated), exceptthat with each pattern rather than a weight being stored the operator to be applied whenthat pattern occurs is stored. The e�ect is that if a macro is interrupted in processing, asalways the current state is matched against memory to see which operators apply, conictresolution takes place in the case of multiple pattern matches and potentially the samemacro or another useful one could be started up again from the middle. However, pws seemto provide a more useful scheme than this on several accounts:1. Conict resolution is handled naturally by DFHC as the weights induce a prioritizationof patterns.2. As DFHC evaluates \post-conditions" one level of lookahead is achieved. (Furtherlevels are also possible with pws but may be less useful in reactive domains dueto uncertainty.) In a situation-action framework it becomes more di�cult to uselookahead since it is di�cult to choose between post-conditions. Of course, if a goodheuristic evaluator existed to choose amongst these the discussion becomes moot asthe evaluator itself rather than situation-action rules could guide the search process.3. Pw-sets from multiple macro-tables can be combined more easily and fruitfully thansituation-action rules.7.2 Incomplete KnowledgeThe above uses of pws have assumed that complete knowledge of the structure of thestate space is available and that the problem is serially-decomposable. Now we will considerthe case in which such knowledge is not readily available. We shall break the discussioninto two parts:



8. Conclusions and Ongoing Work 171. Only a subset of the pws are available and there are gaps. That is, a state witha known pattern P is no longer assumed to be adjacent to a state with a patternof weight one less than P's weight, as was the case when pws were derived from amacro-table.2. The structure of the state space can only be learned through experience and thus itis not possible to assign accurate weights to patterns.Case 1 corresponds to the case in which Korf's subgoal distance is greater than 1.Subgoal distance, D(S; T ) = the maximum shortest distance between a state that satis�esS to a state that satis�es T, is de�ned as:D(S; T ) � maxs2S mint2T d(s; t)Since patterns and subgoals are de�ned identically, the above formula can be usedto establish a pattern distance function. Thus the same methods that are used to solveproblems in which the maximum subgoal distance [19] is greater that 1 can be appliedhere: The problem de�ned by moving from one subgoal to the next is solved using sometechnique such as breadth-�rst search, A* or means-ends-analysis that is exponential inthe subgoal distance in the worst case. However, as we saw before, the weights associatedwith patterns provide greater exibility than a simple subgoal sequence: from the currentstate S one can do breadth-�rst search until reaching a state with a pattern whose weightis less than the evaluation of S. This state becomes the new current state. Thus, essentiallyperforming DFHC with lookahead. The advantage of this approach over subgoals is that itis not necessary to establish ahead of time which subgoals will be solved and in which order.Patterns are not used as conditions to be achieved, but as signposts of progress. As longas progress is being made, which patterns are being achieved is unimportant. Of course, aswith subgoals, it is possible to choose a particular pattern as the \next goal" and use A*or means-ends analysis to achieve it.Case 2 is the critical case and is a challenging problem for all planning systems. Here,the structure of the domain can only be learned through experience. It is not possible toassign accurate weights to patterns. The weights may be too large because one does notyet know how to solve the problem optimally, or they may be too small because all statesthat contain that pattern as a subpattern may not have been considered yet. Still thereis room for research progress here. Perhaps, the weights associated with pws should beranges (lower and upper bounds) and search algorithms built up around them as in B* [4].These ranges associated with patterns provide a useful mechanism of encoding only partialknowledge of a domain. With subgoals and macro-operators more preciseness is required.8 Conclusions and Ongoing WorkLet us summarize what has been learned:1. We have outlined the di�culties with the macro-table technique that cause solutionpaths to be far from optimal, namely, due to high granularity, macro-crossover is notexploited and macros are based on one subgoal sequence.2. We showed that Squeeze can improve solutions by looking for duplicate states, butcan not take advantage of partial matches.3. We give a construction that takes a macro-table and converts it into pws.
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A AppendixTables A.1 and A.2 below summarize experiments run on the 8-puzzle and 15-puzzle, respectively. TableA.1 illustrates 100 samples out of a 10,000 sample where solvable initial states were generated by a randomnumber (between 50,000 and 100,000) of tile swaps from the goal state where swaps did not correspond tolegal moves.The columns for Table A.1 are as follows:� Init. state = the initial state.� Opt= Optimal solution length determined using A* with Manhattan Distance.� Mt = Macro table solution length based on \top" subgoal sequence: 012345678.� Sqz= Squeeze applied to Mt solution.� Mr = Macro table solution length based on \right" subgoal sequence:034567812.� Mb = Macro table solution length based on \bottom" subgoal sequence:056781234.� Ml = Macro table solution length based on \left" subgoal sequence:078123456.� Mi = Macro table solution length based on \interleaved" subgoal sequence:024681357.� Mm = Minimum of Mt,Mr,Mb,Ml,Mi.� Pt = Solution length based on Pws derived from Mt macrotable.� Pr = Solution length based on Pws derived from Mr macrotable.� Pb = Solution length based on Pws derived from Mb macrotable.� Pl = Solution length based on Pws derived from Ml macrotable� P4 = Solution length based on combined Pws from Mt,Mr,Mb,Ml.� P5 = Solution length based on combined Pws from Mt,Mr,Mb,Ml and Mi.Table A.2 illustrates 49 samples out of a 100 samples where solvable initial states were generated for the15-puzzle as was done for the 8-puzzle.The columns for Table A.2 are as follows:� Init. state = the initial state. Using hexadecimal representation of tile numbers. Given time andresource constraints optimal solutions were obtained for just the two states * = 38 with 74307 statesexpanded and ** = 44 with 48320 states expanded using standard A* with Manhattan distance. Allother states required more than 10,000 expansions to solve.� Mt = Macro table solution length based on \top" subgoal sequence: 0123456789abcdef� Sqz= Squeeze applied to Mt solution.� Mr = Macro table solution length based on \right" subgoal sequence: 048c37bf26ae159d� Mb = Macro table solution length based on \bottom" subgoal sequence:0fedcba987654321 (Thesesolutions not shown in table).� Ml = Macro table solution length based on \left" subgoal sequence: 0d951ea62fb73c84 (Also notshown).� Mi = Macro table solution length based on \interleaved" subgoal sequence:02468ace13579bdf.� Mm = Minimum of Mt,Mr,Mb,Ml,Mi.� Pt = Solution length based on Pws derived from Mt macrotable.� Pr = Solution length based on Pws derived from Mr macrotable.� Pb = Solution length based on Pws derived from Mb macrotable (Not shown).� Pl = Solution length based on Pws derived from Ml macrotable (Not shown).� Pi = Solution length based on Pws derived from Mi macrotable.� Pm = Minimum of Pt,Pr,Pb,Pl,Pi.� P4 = Solution length based on combined Pws from Mt,Mr,Mb,Ml.� P5 = Solution length based on combined Pws from Mt,Mr,Mb,Ml and Mi.
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Init. state Mt Sqz Mr Mi Mm Pt Pr Pi Pm P4 P5069dbef4c58a7213 178 132 136 174 136 158 114 174 112 112 1128dc652f3b479e0a1 142 128 160 190 112 118 152 144 118 122 122e718d2c6ab3f5094 164 150 168 138 138 112 152 134 112 112 1126f5dc013a4eb2798 170 156 166 188 166 168 120 136 106 106 1061fe24a869703d5cb 134 118 136 126 120 104 114 104 66 66 66f63d8a24bc07519e 150 146 192 170 118 128 148 152 74 74 74cbe2d7a6f8435190 158 152 172 226 154 144 166 178 118 118 118d20b3794f5ae68c1 138 134 150 140 138 100 128 140 100 124 124392658cb0e17fda4 178 162 150 168 142 130 106 150 96 96 968b0cdf239a45e167 160 128 152 174 148 90 148 138 88 88 8878bd564c1903a2ef 152 138 152 186 136 102 104 114 102 156 156750fa1b28c6d43e9 178 174 214 208 144 120 170 176 102 102 102e6fa873b912d4c50 174 158 182 198 168 128 168 188 128 138 1380148e237b6dcf5a9* 140 130 130 150 130 92 108 106 92 92 929bf8dae7c1065234 152 144 176 200 126 112 124 192 112 114 114a20f897e6d54c3b1 142 128 152 162 142 114 170 152 114 138 138b9a480f2537d6e1c 138 124 166 156 138 118 122 152 118 132 1321fb8d2a03e57c496 172 156 140 192 138 130 166 162 118 130 130a7e95dbfc1284360 134 124 166 226 128 126 138 180 120 120 120a4081d69cbef5732 170 166 138 144 138 116 94 152 94 120 120b4026a13f9e578dc 148 122 188 172 132 108 122 120 108 122 1226a3729f4cde81b50 116 96 146 178 116 116 76 146 76 80 80f2ea3b76d1485c90 190 164 138 170 138 118 140 176 116 116 116431c5e976abdf820 122 110 162 190 122 98 110 132 98 106 1064c925016efba738d 152 146 192 172 142 154 168 186 104 154 154f39ace56d8217b40 158 154 168 200 158 120 156 174 120 146 1463a482916e5dc70fb 188 166 148 182 138 98 140 144 68 68 648f5617bdeac34290 124 114 170 206 124 138 154 148 112 136 13693ab5270d6ecf148 156 146 116 184 116 118 90 146 90 100 100b48c3ed906a715f2 162 138 182 204 162 144 108 150 108 162 162d4b780f56a9213ec 156 140 162 152 120 140 124 140 92 92 920ae51c84d72fb963** 158 136 142 150 142 104 94 130 94 104 104e5bd9f81620ac473 146 134 182 190 124 130 166 158 106 106 106329871af5e4d60cb 160 154 190 144 136 74 134 154 74 86 869ca62815df0e7b43 154 136 210 180 140 96 94 178 94 126 126a34b6dcf192875e0 176 158 156 182 138 100 118 160 100 114 11414095fbc672e3a8d 112 100 194 162 112 96 106 142 96 96 96463a90f18cd72be5 148 142 172 174 148 138 172 162 124 128 128d60815afc73429eb 148 138 160 202 148 142 120 164 120 92 928f072ca9e153d64b 150 134 178 212 150 106 162 184 106 126 126c487ed1af52b9036 142 124 164 210 134 104 154 176 104 108 108e3b1a57d968c4f20 124 110 164 170 124 154 140 130 116 116 116d79fb3e645a2108c 168 150 150 198 136 150 122 172 96 96 96b49afe2501c8637d 122 122 164 180 122 116 128 120 116 136 13628b7e9fa04cd1635 148 146 158 152 96 142 144 174 96 96 96657efa4b32c9d810 162 158 164 170 144 134 148 168 92 92 923a9712ce6f4b508d 140 110 130 166 108 120 82 134 82 92 920cdb534917a86f2e 170 164 142 200 142 142 130 166 130 134 13408fa41de3b7562c9 182 172 202 196 182 164 126 152 126 164 164Average 158.2 144.3 166.0 179.8 138.4 122.5 134.1 139.8 106.6 116.8 116.6number of trials: 100 Goal State: 123456789abcde0Table A.2: Comparing Pattern and Macro Strategies for 15-puzzle.49 out of 100 trials shown; averages correspond to all trials.


