A Pattern-Weight Formulation of
Search Knowledge

Robert Levinson

il Fuchs

UCSC-CRL-94-10
supersedes UCSC-CRL-89-22 and UCSC-CRL-91-15
February 1994

Board of Studies in Computer and Information Sciences
University of California, Santa Cruz
Santa Cruz, CA 95064
(408)459-2087
ARPANET:levinson@cse.ucsc.edu
UUCP:ucbvax!ucsclesellevinson

ABSTRACT

Pattern-weight pairs (pws) are a new form of search and planning knowledge.
Pws are predicates over states coupled with a least upper bound on the distance
from any state satisfying that predicate to any goal state. The relationship of pws
to more traditional forms of search knowledge is explored with emphasis on macros
and subgoals. It is shown how pws may be used to overcome some of the difficulties
associated with macro-tables and lead to shorter solution paths without replanning.
An algorithm is given for converting a macro-table to a more powerful pw set.
Superiority over the Squeeze algorithm is demonstrated. It is also shown how pws
provide a mechanism for achieving dynamic subgoaling through the combination of
knowledge from multiple alternative subgoal sequences. The flexibility and execution
time reasoning provided by pws may have significant use in reactive domains. The
main cost associated with pws is the cost of applying them at execution time.
An associative retrieval algorithm is given that expedites this matching-evaluation
process.

Keywords: heuristic search, knowledge representation, macro-operators, feature
construction, pattern retrieval, reactive planning, subgoals, tile puzzles

1. Motivations 1

When a philosopher invents a new approach to reality, he promptly finds that
his predecessors saw something as a unit which he can subdivide, or that they
accepted distinctions which his system can name as unities. The universe would
appear to be something like a cheese; it can be sliced in an infinite number of
ways—and when one has chosen his own pattern of slicing, he finds that other[’s]
cuts fall at the wrong places.

~Kenneth Burke [17]

1 Motivations

Korf [19, 20, 21] has done an excellent job of classifying and describing the traditional
forms of search knowledge. This was facilitated by the recognition that planning with
perfect information can be viewed as heuristic search. The difference in nomenclature refers
to the types of search knowledge being used. For planning, subgoals, macro-operators and
abstraction spaces are used; for heuristic search, heuristic evaluation is used. In examining
each of these knowledge forms, one wonders about their interaction in problem-solving and
whether there is a more basic form that captures the essence of each of these. It is these
questions that this paper begins to address.

The pattern-weight formulation that will be used to help answer these questions was
developed as part of a project to develop methods by which intelligent systems can improve
their search efficiency and accuracy through experience, in particular, by using pattern
formation and associative recall [27, 28, 30]. We will purposely not be focusing on the
learning issues in this paper, but instead will concentrate on the relationship of this form
of search knowledge to more traditional forms and to their interaction.

In particular, it will be shown that pattern-weight pairs (pws) due to their low granularity
provide the following advantages over macro-operators and subgoals:

e They can lead to shorter solution paths.

e Can support management of multiple alternative subgoal sequences.

e Are more amenable to reactive and execution time planning.

The main disadvantage of pws over traditional forms is that more computation is
required to make full use of them. It will be shown how this additional computation may
be managed efficiently.

The goal of the pattern-weight approach is to provide a more uniform problem-solving
mechanism at a lower-level of granularity than in other approaches [19, 22, 38]: no dis-
tinctions will be made between subgoals and non-subgoals, nor is knowledge about actions
explicitly stored. Instead, we shall take the view that if states can be evaluated properly (by
determining their distance from a goal state) that the actions will take care of themselves. [t
s hoped that the uniformity provided by pws will lead to more efficient and flexible problem-
solving schemes and also be more consistent with current cognitive models that emphasize
pattern matching over symbolic processing [44].

2 Preliminaries

We will abide largely by the definitions and understanding set out by Korf [21]. We
shall define a problem space (or state space search problem) as a set of states (the “state
space”) and operators where operators are partial mappings from states to states. Problem

2 2. Preliminaries

instances are composed of a problem space with an initial state and a goal where a goal is
a predicate over states. A solution to a problem instance is a sequence of operators that
map the initial state to a goal state where a goal state is any state that satisfies the goal
predicate.

We will assume that the goal remains fixed over the problem instances for a particular
problem space, and thus may be considered a third part of the problem state definition,
along with states and operators. For many practical problems this assumption is realistic,
since usually either the goal state or the initial state remains fixed. In the latter case we
can solve the corresponding problem with operators going in the opposite direction.

By using a fixed goal state an origin is established for computing distances. However,
this restriction may be removed [29].

Now we define a pattern as a predicate over states. Thus, the goal predicate is a pattern.
We will say that a pattern P occurs in a state S if P(S) is true. For simplicity of notation we
will use the symbol for a state (“S” in the previous sentence) to refer interchangeably to the
state itself or to the pattern that is true in that state and in no others. Typically, patterns
for a particular problem space will be represented in some fixed representation language and
we will only be interested in the patterns expressible in that language. Often, the pattern
representation language will be the same as the state representation language except that
patterns can be partial state descriptions. Patterns are partially ordered by the relation
more-general-than. Pattern A is more general than pattern B, if for all states S, if B(S) is
true, A(S) is true. What we call patterns have also been called features [43], equivalence
classes and schema [14] in the literature. We prefer the term “pattern” as they are most
useful when they occur regularly. We will see that they are also related to what have been
called abstract states and when coupled with a weight serve much the same purpose as
subgoals (Section 7).

Search control knowledge can be maintained by storing a subset of the patterns that
occur in the state space. With each pattern P is assigned a weight, w(P), which is to be
a least upper bound on the shortest distance from any state in which P is a subpattern
to any goal state. Fach state is evaluated as the minimum of the weights of the patterns
that occur in it. Thus the evaluation of a state S, e(S), is a least upper bound on the
shortest distance from the state to any goal state. Since if pattern A is more-general-
than pattern B then w(B) < w(A), e(S) is simply the minimum of the weights of S’s most
specific subpatterns. In general, e(S) < w(S) and when no two state patterns hold the more-
general-than relation to each other, e(S)=w(S). Here evaluations are pessimistic (being least
upper bounds) whereas those that traditionally go with A* and other search algorithms are
optimistic (lower bounds).

Examples in this paper will be taken from the n X n tile puzzles. The traditional small
tile puzzle [15], called an “eight puzzle,” is a 3x3 matrix of squares. Eight of the squares are
occupied by sliding tiles which are numbered 1-8. The ninth square is empty, allowing the
other tiles to be moved. The object is to arrange the numbers in a predefined pattern from
a random starting point. The puzzle can be extended to much larger sizes. The largest
commonly used size is 6x6, for a puzzle with 35 tiles and one empty square. The general
procedure for solving the puzzles is the same at any size, but the problem of finding optimal
solutions (those which require a minimum number of moves) is NP-hard [40].

Patterns for tile puzzles will be states that may leave zero or more tile positions unspec-
ified. A major theme of the paper is that useful patterns can be derived from macrotables
[19]. But before proceeding further it is worthwhile to consider how patterns (with weights

2. Preliminaries 3

as least-upper bounds) might enhance traditional heuristic functions. To determine this we
have done an analysis of the entire eight puzzle state space, considering all partial state
descriptions as patterns. For each pattern we consider all solvbable full states that match
a given pattern to determine that pattern’s statistical profile. Table 1 illustrates the aver-
age and range of patterns of a given size where size is defined in terms of number of tiles
specified. Tables 2 and 3 report results of an experiment in which the least upperbounds of
patterns of size 1 and 2 are summed and normalized (as opposed to taking the minimum
as we do in the remainder of the paper) to produce a heuristic that is more efficient and/or
more accurate than Manhattan Distance. Victories are said to occur when an optimal
solution is found and fewer states are expanded than with the others.

Size of Pattern | Population | Ave. | Min. | Max
6 4,896,814 | 21.45 | 19.37 | 23.45
5 1,905,111 | 21.50 | 17.15 | 25.14
4 381,024 | 21.50 | 14.55 | 26.67
3 42,336 | 21.50 | 11.62 | 28.03
2 2,592 | 21.50 | 8.27 | 29.27
1 81| 21.50 | 4.35 | 29.95
0 1] 21.50 | 0.00 | 30.00

Table 2.1: Statistical profile of patterns, grouped by size

Manhattan | all size 1 pats | all size 2 pats
average solution length 21.50 21.84 21.71
ave. no. states expanded 948.20 451.60 227.40
percentage optimality 100.00 86.10 90.00
percentage victories 7.80 5.60 86.60

Table 2.2: Cost/benefit comparison between A* heuristics

Manhattan | all size 1 pats | all size 2 pats
average solution length 21.50 21.84 21.71
ave. no. states expanded 948.20 451.60 794.90
percentage optimality 100.00 86.10 100.00
percentage victories 4.60 67.40 28.00

Table 2.3: Cost/benefit comparison (with admissable size-2 heuristic)

A planning strategy that we shall only touch on here is the use of abstraction in
hierarchical planning [19, 18]. In a common use of this strategy, certain states are collected
together to form “abstract states.” Interestingly, here too, a direct mapping to the pattern-
weight formulation is possible. As there is always a 1-1 correspondence between patterns
and subsets of the state space, the terms pattern and abstract state may be viewed similarly:
traveling from one abstract state to the next is equivalent to traveling from some state in
which one pattern is true, to another in which another pattern is true. Traveling within
an abstract state means to traverse states in which one particular pattern remains true.
Due to efficiency considerations, in this framework, patterns must have simple descriptions

4 3. Depth-First Hill-Climbing

to facilitate matching and not be complicated disjunctions of individual states as abstract
states may be in general.

3 Depth-First Hill-Climbing

Much of the following discussion will assume the use of pattern-weight sets (pws) with
the standard depth-first hillclimbing algorithm (DFHC) that always does only 1-ply search
and greedily moves to the adjacent state with best evaluation. We will be constructing
pattern-weight sets that insure that the algorithm will terminate and return a solution path
if a solution exists.

DFHC:
Begin
Let current-state = initial-state.
Let solution-path = empty-sequence.
While not goalp(current-state) do
Let S = the set of 3-tuples (s,0,d) where s is a legal state
reachable from current-state using operator o and receives
an evaluation of d.
Let (s*,0*,d*) be that tuple with smallest d value.
Let current-state = s*.
Let solution-path = solution-path followed by o*.
Return (solution-path).
End

4 Macro-Operators

Macro-operators (macros) are sequences of primitive operators. Such sequences can
naturally be represented as sets of pattern-weights. Sequences can be represented by
following the preconditions of the macro through the successive operator applications of the
macro and giving decreasing weights to each successive pattern. DFHC will then naturally
reproduce the operator sequence at execution time (though we will see that sometimes it may
not complete the sequence, but instead opt for something better!) since after each operator
application there will be a state with the next pattern (and, hence, lower evaluation).

For problems with serially decomposable subgoals (i.e. there exists some ordering of
subgoals for which the effect of each operator on each subgoal depends only on that subgoal
and previous subgoals in the ordering), Korf has shown how a table of macros can be
constructed that guarantee solution paths from all initial states. Later we will use such a
set of macros to produce a set of pws that, when coupled with DFHC, is guaranteed to
produce solution paths from all initial states that are shorter on the average than those
produced by the macros. The technique is best illustrated by an example:

EXAMPLE 1:

A macro-table is a completely general solution to the tile puzzle problem, pro-
viding a clear, unambiguous solution for every solvable puzzle configuration [19] For
instance, a macro-table for a 2x2 puzzle — three tiles, one empty square — might
look like the one in Table 4.

4. Macro-Operators 5

Tile
Position | 0 1 213
0 * * * T * [0 1
1 r * 113 2
2 dr | lurd | * | *
3 d | uldr | *] *

Table 4.1: A macro-table for solving the 2x2 tile puzzle.

To read this macro-table, the system first locates tile number 0 (the empty
space.) The entries in column number 0 corresponding to the empty tile’s location
indicates the sequence of moves necessary to properly position the space given it is
at positions 0,1,2 and 3 respectively.

Given that the 0 subgoal has been solved, we only need to specify macros for
tile 1 when it is in positions 2 and 3. These macros not only move tile 1 to its
destination, but also return the empty square to its proper place. In general, a macro
must ensure that all previously positioned tiles are returned to their proper locations
(though they may be moved during the macro’s operation.) If this condition is met,
then when the last macro is executed, the puzzle will be solved — the last tile, and
all previous ones, will be in their proper positions. The last two columns are always
empty in all tile puzzle macro tables, no matter what the size of the puzzle. This is
due to a property of tile puzzles [15]: if any two non-blank tiles in a solved board
are swapped the puzzle cannot be solved by any legal manipulation.

4.1 Weaknesses in the Macro-table Technique

Despite the obvious strengths of the macro-table technique in terms of space, correctness
and execution time efficiency there are some weaknesses [3]. The most serious weakness is
that the solution paths produced by macro-tables are often far from optimal (as depicted
in Table 4.2). Tables 4.2 through Table 5.3 are a running example based on states selected
for illustrative purposes. For a more statistically representative set of examples see Tables
A.1 and A.2 in the Appendix.

EXAMPLE 2: Non-optimality of macro solutions.

Solution Length
Size Initial state Macro(Mt) | Optimal
3x3 024813567 50 14
3x3 847035126 50 22
3x3 013724658 24 16
3x3 782134560 31 11
4x4 | c953086b41f2ad7e 131 33
4x4 | c130492a8e7fb5d6 132 22
4x4 | 851426a739b0fdec 120 20
4x4 | b3c7651280a4f9de 142 32

Table 4.2: Demonstration of the non-optimality of macro-tables

6 4. Macro-Operators

For higher-order puzzles, the problem gets worse. (The letters a-f represent
tiles numbered 10-16.) (these optimal solutions were generated using A* with a
Manhattan-distance heuristic.)

That macro-tables should lead to inefficient solution paths is not surprising. This is
almost always the case when a general heuristic strategy is applied to specific problem
instances. The difficulties are that macros operate at a high-level of granularity that
prevents adjustment while a macro is executing and that a macro-table depends on a
particular subgoal sequence (order in which state variables are to be solved) that may
be inconvenient for a given problem instance. Pws can be used to address these difficulties
by exploiting macro-crossover and subgoal sequence crossover, respectively. Further, pws
allow the knowledge from multiple macro-tables to be usefully exploited. The following
sections bring out these issues in detail.

Importance of Subgoal Ordering

The ordering of subgoals can have a profound effect on the efficiency of macro-based
solutions. This is due almost entirely to the side effects resulting from the positioning of
each tile. Tiles whose positions have not yet been fixed are shuffled around to undefined
places while a subgoal is being reached. Ordering the subgoals differently will change the
side effects, sometimes placing the remaining tiles closer to their final positions and reducing
the number of moves required to solve the puzzle. It should be clear that different subgoal
sequences will result in very different macro-tables.

Name Sequence
top 012345678
right 034567812
bottom 056781234
left 078123456
interleaved | 024681357

Initial state | Top(Mt) | Right(Mr) | Bottom(Mb) | Left(Ml) | Interleaved(Mi)
024813567 50 16 40 16 66
847035126 50 42 38 32 72
013724658 24 24 24 50 40
782134560 31 17 43 29 21

Table 4.3: Subgoal sequences and the importance of ordering

The effect of changing the ordering of subgoals can be seen in Table 4.3. Clearly, the
ordering of subgoals makes a difference. The trouble is that no single sequence is consistently
better than all the others. There is no known easy way to tell which sequence will be best
for an arbitrary tile configuration, other than to simply try several sequences and compare
the results.

Macro-crossover and Squeeze

Because of the high-level granularity of macro-based solutions, all the already-positioned
tiles must be returned to their proper places before the next tile can be positioned. That
is, assuming the ascending subgoal sequence (as above), the positioning of tile 3 must end

5. Patterns 7

a b ¢ ° oo h b 1 e goal

N7

Repeated state

Figure 4.1: Repeated states in a macro solution.

with tiles 0, 1, 2, and 3 in place before tile 4 can be evaluated. Tile 0 is obviously always
the last to be returned to its rest position. Because of this restriction, duplicate states often
occur. For example, suppose that the macro for a subgoal is “lurrd.” If the macro for the
next subgoal begins with a “u,” two moves have been wasted doing essentially nothing.

The “Squeeze” algorithm described briefly in [39] removes such inefficiency by removing
the paths (cycles) between two identical states and hence makes some improvements to
overall solution lengths (see Table 4). We will show in the next section that pws obviate
the need for Squeeze.

Size Initial state Optimal | Macro(Mt) | Squeeze
3x3 024813567 14 50 46
3x3 847035126 22 50 48
3x3 013724658 16 24 16
3x3 782134560 11 31 29
4x4 | ¢953086b41f2ad7e 33 131 111
4x4 | ¢130492a8e7tb5d6 22 132 124
4x4 | 851426a739b0tdec 20 120 112
4x4 | b3c7651280a4f9de 32 142 130

Table 4.4: The effects of Squeeze on macro length

5 Patterns

Recall that a pattern is defined as a predicate over states.

5.1 Patterns and Subgoals

Subgoals are intermediate goals to be achieved before reaching a final goal. Korf [21]
formally defines a subgoal as “a set of states, with the interpretation that a state is an
element of a subgoal set, if and only if it has the properties that satisfy the subgoal.” This
is, clearly, equivalent to our definition of pattern. Korf has shown that subgoals are useful
even if they need to be undone later since they indicate a direction in which the search
or plan should proceed. Well-chosen patterns fulfill precisely this purpose! Korf has also
shown that the best subgoals are not necessarily partial-descriptions of a goal-state [19].
Algorithms based only on ordering partial goal states, perform no better than brute force
in the worst case - additional knowledge is needed [16].

8 5. Patterns

The difference between patterns and subgoals is that subgoals are totally-ordered in the
order in which they are to be achieved. It is this ordering information that give subgoals
much of their power [41]. The optimal orderings are those that produce few impasses, where
impasses are said to occur when a previously solved subgoal must be undone to achieve a
current subgoal. Working towards well-ordered subgoals one at a time reduces the cost to
find a solution path (by focusing the search) at the cost of finding solution paths of much
greater length than optimal. We shall see that patterns can be used similarly, but with more
flexibility. Without imposing a total ordering, when coupled with weights they are used as
“signposts of progress.”

5.2 Decoupling macros into pattern-weight pairs

The primary weaknesses of all of the above techniques are that they either treat a state
as a whole, in the case of the Squeeze algorithm described above, or treat the board as a
series of single tiles in the case of the macro-table technique.

With the pattern-weight technique, the system no longer matches entire boards (as in
Squeeze) or looks at the positions of individual tiles. Instead partial board matches, or
“pattern matches” are searched for.

A macro-table that guarantees solution of an nxn puzzle from all states [19] can be

reformulated as patterns and weights as follows:

1. For each macro, create a pattern out of the preconditions of the macro. Let “key
tiles” stand for the tiles and blank that are specified in the preconditions. Then for
each successive state the macro goes through, create a new pattern depicting where
the key tiles occur in this state. Assign a weight recursively to each pattern equal
to the number of remaining operators in the macro plus the maximum weight of the
pattern in which the key tiles are all in their correct place (the post-conditions for
the original macro). Thus, the subgoals 0, 01, 012, 0123, 01234, 012345, 0123456,
01234567, 012345678 get weights of 62, 50, 40, 26, 18, 4, 0, 0, 0 respectively. For
example: Assume a goal-state for the 8-puzzle of:

1

3
4
5

[exBen i V]

8
7

where 0 is the blank space.

The macro for the state in which tiles 0 and 1 are in the correct place and tile 2 is
in position 4 is “ldru” The macro reaches a state in which tiles 0,1 and 2 are in their
correct place. From this macro we would create the following patterns where “-” may
be anything. The weights assigned are shown below:

44 43 42 41 40

2. Pattern-weight pairs now stand for “states that contain this pattern as a subpattern
are at most a distance equal to the weight from the goal” thus corresponding with
our specification of weight.

5. Patterns 9

3. As always, each state’s evaluation is the minimum of the weights of the most specific
subpatterns that apply to it.

4. This construction insures that DFHC will find a solution path no longer than the
weight of the minimum pattern occurring in the initial state. This follows directly
from Theorem 1 below.

Theorem 1: When DFHC is applied to the pws generated from a macro-table, given a
solvable initial state a solution path is generated. Further, the evaluations of states
on the solution path will be monotonically decreasing.

Proof: Each state S is evaluated as the minimum of the pws that apply to it. Call this
extreme pattern p(S) with w(p(S)) = e(S). Now if p(s) was a pattern generated
from intermediate conditions in a macro sequence, there is some operator application
(namely the one to be applied at that point in the macro) that will lead to a state
5" with a pattern with weight less than w(p(S)) and thus S”’s evaluation e(\S") is less
than ¢(S). Now if p(S) came from the terminating condition for a macro M, S must
be matched by some pattern P’ which is the initial state of some macro in the column
immediate to the right of M in the macro-table (and by our construction has weight
= e(S)). By executing the operator to be applied at P’ a state of lesser evaluation will
be reached, arguing as above.

The only state for which the above paragraph does not hold is the goal state since it
does not have any macros to the right. But it is at a goal state that DFHC terminates.

The reader may have noticed from the above proof that it is not actually necessary to
calculate and store a pw for the terminating conditions of a macro (except for perhaps the
goal state) since they will be subsumed by the patterns containing the initial conditions of
the macro to the right of them in the table. For example, in Table 7 the second pattern top
left need not actually be stored.

EXAMPLE 3:
— 0| [0 - - -1 [0 - 0 - — 0
- - 0| o -] |1 - 1| -1
5 4 6 5 4 4 3
1 1] [0 1] [T -] [1 1 0
- 0 - - 0 - N
2 1 0 3 2 1

Table 5.1: Pws created from the 2 x 2 macrotable

The patterns in Table 5.1 were created by using the algorithm given above
on the 2x2 macro-table.

The pw reformulation of a macro-table uses storage of the same order (though using
more bytes per macro-step) and produces 7-8% shorter solution paths in practice for the
8-puzzle and about 23% shorter paths for the 15-puzzle. (See tables A.1 and A.2 in the
Appendix.

10 5. Patterns

Macro-crossover opportunities are not recognizable until execution time since they de-
pend on the identity of those tiles not specified by the macros. It is true for a single
macro-table (as specified by Korf), however, that an intermediate pattern P, of macro A
can only satisfy an intermediate pattern, Pj, of macro B if P, is more-general-than than
Py. This condition is necessary, but not sufficient for macro-crossover. In Section 7, we will
be combining the knowledge from two or more macro-tables and then even this condition
need not be true.

An advantage of this technique over such algorithms as Joint and LPA* [39] is that no
potentially exponential searches of the state space as a whole are required. These techniques
apply A* in an attempt to shorten segments of existing solution paths. However, the
efficient solution paths produced by pws can be generated at execution time, no re-planning
1S necessary.

5.3 Patterns and Squeeze

After conversion to pws there is no need to run the solutions through a Squeeze routine:

Theorem 2: Solution paths based on a pw version of a macro-table never contain duplicate
states.

Proof: This follows directly from Theorem 1 since each state is given exactly one evaluation
and the evaluations of states in the solution path are monotonically decreasing.

In fact, patterns are stronger than Squeeze (except in rare instances, see next section).
Squeeze can only find a way to reduce the solution length when one state in the sequence
exactly matches another state further on in the sequence. Patterns, on the other hand, can
recognize a state as being further along based on less information. The result (see Table
5.2) is shorter overall solution lengths.

Size Initial state Macro(Mt) | Optimal | Squeeze | Pattern(Pt)
3x3 024813567 50 14 46 46
3x3 847035126 50 22 48 48
3x3 013724658 24 16 16 16
3x3 782134560 31 11 29 29
4x4 | ¢953086b41f2ad7e 131 33 111 93
4x4 | ¢130492a8e7tb5d6 132 22 124 68
4x4 | 851426a739b0tdec 120 20 112 82
4x4 | b3c7651280a4f9de 142 32 130 94

Table 5.2: Comparison of different solving strategies

5.4 When Macros or Squeeze May Be Better Than Patterns

Occasionally, for a given problem instance, it is possible to produce a solution path
using macros with or without Squeeze that is shorter than that produced by pws. These
cases can occur when a macro executed by the macro technique happens to solve more
than one subgoal but patterns, by skipping this macro, may miss this opportunity. These
anomalies do not occur because of any superiority of the macro knowledge but due to
fortune alone. We observe these occurring 3% of the time in the 8-puzzle. For example,
see states 348576021, 341568072, 281576043 in the appendix. On the 15-puzzle although
Patterns dominate, SQUEEZE comes out ahead about 6% of the time.

5. Patterns 11

In those cases in which the macros must be used to solve each subgoal (not skipping
any) the pattern-weight formulation is guaranteed to produce solution paths no longer than
those produced by the macros since in the worst case (by Theorem 1) the same path is
traversed.

5.5 Patterns and Dynamic Subgoaling

We pointed out earlier (Section 4.1) that macro-tables are restricted in the sense that
they are based on exactly one subgoal sequence that may be far from optimal. Ideally, we
would like a system that could choose among several alternative subgoal sequences and even
correct itself in midstream by taking advantage of subgoal sequence crossover. To achieve
this with pws, one first generates macrotables for each desired subgoal sequence, converts
them to pws and combines these pw sets by taking their union, with repeated patterns
receiving their minimum weight. Once the knowledge is in this form, DFHC can be applied
as before to produce solutions that are shorter on the average than those based on any
single subgoal sequence. (See Figure 2)

Size Initial state Macro(Mt) | Optimal | Squeeze | Pattern(Pt) | P5
3x3 024813567 50 14 46 46 14
3x3 847035126 50 22 48 48 32
3x3 013724658 24 16 16 16 16
3x3 782134560 31 11 29 29 11
4x4 | ¢953086b41f2ad7e 131 33 111 93 113
4x4 | ¢130492a8e7tb5d6 132 22 124 68 68
4x4 | 851426a739b0tdec 120 20 112 82 30
4x4 | b3c7651280a4f9de 142 32 130 94 76

Table 5.3: The effect of using pws from multiple subgoal sequences

Here, one sees the biggest advantage in using pws: to mix subgoal sequences. Tables A.1
and A.2 (see Appendix) were produced from solving 10,000 different random instances of
the 8-puzzle and 100 different random instances of the 15-puzzle. Each instance was solved
once using each of five different macrotables associated with a different subgoal sequence,
and then from pattern sets derived from the macros, once with four pattern sets combined
and once with five pattern sets combined.

As expected, the average solution lengths using any one of the subgoal sequences were
about the same (except for the interleaved sequence) and the pattern formulation of these
sequences produced path lengths that were about 9-10% shorter than those formed by the
macros for the 8-puzzle, and about 2% better on the 15-puzzle. Compared to SQUEEZE
the solutions were 2-3% and 15-16% on the 8-puzzle and 15-puzzle respectively.

When the pattern sets were mixed (P4,P5), solution paths that were nearly 16-17%
shorter on the 8-puzzle and 26-27% better on the 15-puzzle on the average than those
from the macros. Further, solution paths were about 10% and 1% shorter on the average
than those produced by any one pattern set. The explanation of this gain comes from
the two reasons cited in the previous paragraph: The system chooses a favorable subgoal
sequence to start with and can switch to another sequence if it becomes more favorable.
These sequence shifts are recognized by noting from which pw set a new state’s evaluation

12 5. Patterns

Top Right Bottom Left
Subgoal Sequences 012345678 034567812 056781234 078123456

Macro Tables

[]
[

[]
Pattern Weights L1

0O
[]
(]
[]
]
]
i
00
O]
]

Combined Pw Set |:||:||:|

DFHC

Shorter Solution Paths

Figure 5.1: Combining macro-table knowledge

is based. Although the system actually switched sequences infrequently, when it did so the
gains were significant.

Since P4 and P5 did so well one might wonder why Pm returns solution paths that are
about 15% and 9% shorter on the average than P4 or P5 (and 29% and 33% better than
the Macros)? The explanation is that while P4 or P5 might choose a good subgoal sequence
initially it may not turn out to be the best. The pattern sets for Top, Right, Bottom, and
Left and Interleaved are not close enough to generate enough subgoal sequence crossovers
to make up for this.

Table 5.3 gives a final example of using the patterns generated from multiple subgoal
sequences on solution length. The P5 column lists those solution lengths. The subgoal
sequences are the five subgoal sequences of Table 4.3. The first line represents a state that
was solved optimally by P5 and not close to optimally using a macrotable, Squeeze or a
single pattern set. An optimal sequence for this state is llurrdldlurdrul. In generating this

6. Implementing Efficient Pattern-Based State Evaluation 13

sequence P5H used patterns from the “bottom” sequence for 9 states and then switched to
“right” patterns for the next 4 states and completed using a pattern from “interleave”.

For the case of multiple subgoal sequences, theorems analogous to Theorems 1 and 2 (of
Section 6) can be proved.

6 Implementing Efficient Pattern-Based State Evaluation

In the previous section it was shown that pattern-weight sets can produce shorter
solution paths than from the macros from which they have been derived. The disadvantage
of using pattern-weight pairs over macros is that at execution time computation is required
at each step to evaluate the states adjacent to the current state and to choose the proper
operator. Whereas, while executing a macro little computation is required until the selection
of the next macro. However, state evaluation can be done efficiently by using an associative
retrieval algorithm that takes advantage of a partial ordering of patterns by more-general-
than [6, 10, 24, 25, 34].

Suppose for example that pattern R is known to be a generalization of pattern S. Now
once we determine that R is a specialization of a “query” pattern Q, we know that S is
also without performing further comparison tests! Similar reasoning applies to negative
information: If pattern X is a generalization of pattern Y, then if X is found not to be a
generalization of Q, than clearly Y isn’t either.

In this database organization all patterns are placed in a partially-ordered hierarchy by
the relation more-general-than (See, for example, figure 6.1). Because of transitivity only
the immediate predecessor (generalizations) arcs and immediate successor (specialization)
arcs need be stored (as in the Hasse diagram of any po-set). In essence, an object is indexed
by its predecessors in the ordering and indexes its successors!

Notice that to evaluate a state Q it is sufficient to find where it fits in the partial
order (i.e., Q’s immediate predecessors and immediate successors). The predecessors of
Q in the ordering are its generalizations and its successors are its specializations. Thus
the retrieval/insertion operation is essentially the same as an insertion operation. The
immediate predecessor and immediate successor sets are found in two consecutive phases.
Phase II makes use of the immediate predecessors found in Phase I to find immediate
successors. Both phases attempt to use the information in the hierarchy to minimize the
number of pattern comparison tests. For state evaluation without insertion only Phase I is
necessary.

Ordering the database objects by size produces a topologically sorted list, i.e. a total
ordering that embeds the original partial ordering by more-general-than. Since all database
objects will be preceded by their predecessors in the list they only will make it to the front
of the list if their predecessors have been found to be predecessors of Q. Thus, the proper
elimination of comparisons is taking place.

If we actually wish to insert Q into the hierarchy, the IP and IS sets of other objects
have to be updated. This is done in Phase III.

Thus, Phase II does not do a comparison test on a database pattern unless it contains
each member of IP(Q). Note how the original database objects are being used as screens
in Phases I and II. The big savings of this retrieval method comes from the fact that only
the immediate successors of Q need to be determined using comparison tests. All other
successors (specializations) are determined for free. Since the patterns eliminated in this
way are usually the most complex, many expensive tests have been eliminated.

14 6. Implementing Efficient Pattern-Based State Evaluation

O A i 5 %& Q Q Most General Objects

Most Specific Objects

O OOy

Figure 6.1: A hierarchy of objects ordered by “more-general-than”

Retrieval Phase I: (find IP(Q), the immediate predecessors of Q)
(1) List all patterns from smallest to those of the same size as Q.

(2) S:=0.
(3) While there is a member X in the list
If X is a predecessor of Q (comparison test) then
S:=S5SU{X} - IP(X)
Remove X from the list.
Else

Remove X and all successors of X from the list.

(4) Return S.

The efficiency of this algorithm can be improved by, in addition to the hierarchy,
maintaining a linked list of database objects sorted by size. Space for new links is reserved so
that the sublists needed by the algorithm may be formed dynamically. Further enhancement
can be achieved through incremental updating.

There are other algorithms for insertion of objects into partially-ordered sets, we rec-
ommend the one here due to its simplicity and efficiency. In practice only a small fraction
of the database objects need to be compared with Q) using comparison tests: 10 or 20 struc-
tures at the most on a database of 680 objects for example. Further, we have seen that as
database size grows the increase in retrieval time is sublinear and probably logarithmic [25,
34, 10].

This algorithm has been used for associative retrieval of organic molecules and reactions
[24, 25, 45], chess patterns [25, 28] and radio signals [26] in addition to the application

7. Extending to Real-World Planning and Search 15

Retrieval Phase 11. (find 15(Q), the immediate successors of Q)

(5) S :=0.
(6) Y := some element of IP(Q)
(7) | := intersection of the successor sets of each element of IP(Q) except Y

We suggest the following implementation of step 7:
(7') For each z in IP(Q) except Y do
For each successor s of z do
Increment count(s)
For each item s do

If count(s) = |IP(Q)| — 1 then | :=1U {s}

(8) For each successor X of Y in order by size do
If Xis in I and X is a successor of Q (comparison test) then
S:=SU{X}
Eliminate successors of X from the rest of the for loop.

(9) Return S.

Phase I1I. (update immediate predecessor and successor sets of other items)
(10) For each x in IP(Q) do
S(x) :=1S(x) U {Q} — 1S(Q)
(11) For each x in IS(Q) do
P(x) := IP(x) U {Q} — IP(Q)

here. Other applications are possible [34]. For simply represented states and patterns such
as tile-puzzle states even more efficient schemes are possible [9, 12]; the same is true for a
set of structured pattern-weights that are fixed since heavy precompilation can enable the
structure screening and comparison operations to be done simultaneously [35].

7 Extending to Real-World Planning and Search

The tile-puzzles have provided a good framework in which to illustrate the fundamentals
of the pattern-weight formulation. But how might these methods extend to real-world
domains? We shall consider two aspects of real-world problems:

1. Reactive domains in which the agent does not have absolute control of the world, i.e.

the state resulting after an operator application is not fully-predictable.

2. Domains in which the structure of the state-space is not fully known or knowable due
to high combinatorics or insufficient knowledge available to the agent.

7.1 Reactive Domains

We are suggesting that it is possible to use macro-operators and subgoals as they are
currently being used, but by converting them to pws, more flexibility and robustness is
achieved. In reactive domains the effects of each operation and the state of the world
are not fully predictable. Attempting to execute a macro in such an environment becomes
a risky operation. The longer the macro the less likely it is of succeeding because at some
point the preconditions of the next operator to execute may not be satisfied.

It is always possible to respond in these cases using a macro-table since an action is
recommended in every situation. But the macro-table, being confined to produce a solution

16 7. Extending to Real-World Planning and Search

based on a particular subgoal sequence may lead to tremendous inefficiencies, since during
execution of a macro it is quite possible to purposely and successfully undo previously
achieved subgoals. For example, in a “reactive” tile puzzle in which the effects of operators
are unpredictable a certain percentage of the time a macro-table may be endlessly returning
the blank to the center since this is always the recommendation when the blank is not in
its goal position.

The basic reactive planning techniques such as STRIPS triangle table representation
of macros [36] and Universal Planning [42] recover gracefully from interruptions but suffer
from one of the two weaknesses of macro-tables by being limited to a single subgoal sequence
or not taking advantage of macro-crossover.

In PET [38], macro-operators are decoupled into the form PRE state description =
POST state description with the interpretation:

IF the current state S matches PRE and
the state resulting from applying OP to PRE matches POST
such that the relations in the augmentation hold

THEN OP is recommended in S.

Similarly, in SOAR [22] macros are decoupled into situation-action rules. Both these
forms are functionally equivalent since the PR Fand POST conditions with the augmentation
can be viewed collectively as the situation.

Situation-action schemes due to their lower granularity lead to more fruitful responses to
reactive domains than macro-tables. Converting a macro-table into a situation-action rule
base is similar to the conversion into pws (intermediate state patterns are generated), except
that with each pattern rather than a weight being stored the operator to be applied when
that pattern occurs is stored. The effect is that if a macro is interrupted in processing, as
always the current state is matched against memory to see which operators apply, conflict
resolution takes place in the case of multiple pattern matches and potentially the same
macro or another useful one could be started up again from the middle. However, pws seem
to provide a more useful scheme than this on several accounts:

1. Conflict resolution is handled naturally by DFHC as the weights induce a prioritization
of patterns.

2. As DFHC evaluates “post-conditions” one level of lookahead is achieved. (Further
levels are also possible with pws but may be less useful in reactive domains due
to uncertainty.) In a situation-action framework it becomes more difficult to use
lookahead since it is difficult to choose between post-conditions. Of course, if a good
heuristic evaluator existed to choose amongst these the discussion becomes moot as
the evaluator itself rather than situation-action rules could guide the search process.

3. Pw-sets from multiple macro-tables can be combined more easily and fruitfully than
situation-action rules.

7.2 Incomplete Knowledge

The above uses of pws have assumed that complete knowledge of the structure of the
state space is available and that the problem is serially-decomposable. Now we will consider
the case in which such knowledge is not readily available. We shall break the discussion
into two parts:

8. Conclusions and Ongoing Work 17

1. Only a subset of the pws are available and there are gaps. That is, a state with
a known pattern P is no longer assumed to be adjacent to a state with a pattern
of weight one less than P’s weight, as was the case when pws were derived from a
macro-table.

2. The structure of the state space can only be learned through experience and thus it
is not possible to assign accurate weights to patterns.
Case 1 corresponds to the case in which Korf’s subgoal distance is greater than 1.
Subgoal distance, D(5,7) = the maximum shortest distance between a state that satisfies
S to a state that satisfies T, is defined as:

D(S,T)= max min d(s,t)

Since patterns and subgoals are defined identically, the above formula can be used
to establish a pattern distance function. Thus the same methods that are used to solve
problems in which the maximum subgoal distance [19] is greater that 1 can be applied
here: The problem defined by moving from one subgoal to the next is solved using some
technique such as breadth-first search, A* or means-ends-analysis that is exponential in
the subgoal distance in the worst case. However, as we saw before, the weights associated
with patterns provide greater flexibility than a simple subgoal sequence: from the current
state S one can do breadth-first search until reaching a state with a pattern whose weight
is less than the evaluation of S. This state becomes the new current state. Thus, essentially
performing DFHC with lookahead. The advantage of this approach over subgoals is that it
is not necessary to establish ahead of time which subgoals will be solved and in which order.
Patterns are not used as conditions to be achieved, but as signposts of progress. As long
as progress is being made, which patterns are being achieved is unimportant. Of course, as
with subgoals, it is possible to choose a particular pattern as the “next goal” and use A*
or means-ends analysis to achieve it.

Case 2 is the critical case and is a challenging problem for all planning systems. Here,
the structure of the domain can only be learned through experience. It is not possible to
assign accurate weights to patterns. The weights may be too large because one does not
yet know how to solve the problem optimally, or they may be too small because all states
that contain that pattern as a subpattern may not have been considered yet. Still there
is toom for research progress here. Perhaps, the weights associated with pws should be
ranges (lower and upper bounds) and search algorithms built up around them as in B* [4].
These ranges associated with patterns provide a useful mechanism of encoding only partial
knowledge of a domain. With subgoals and macro-operators more preciseness is required.

8 Conclusions and Ongoing Work

Let us summarize what has been learned:

1. We have outlined the difficulties with the macro-table technique that cause solution
paths to be far from optimal, namely, due to high granularity, macro-crossover is not
exploited and macros are based on one subgoal sequence.

2. We showed that Squeeze can improve solutions by looking for duplicate states, but
can not take advantage of partial matches.

3. We give a construction that takes a macro-table and converts it into pws.

18 References

4. The pw version of a macro-table when used with DFHC produces significantly shorter
solution paths on the average than from the macro table (alone or with Squeeze) by
exploiting macro-crossover.

5. Dynamic subgoaling can be achieved by using the pw sets from multiple macro-tables
(and hence multiple subgoal sequences). By taking advantage of subgoal sequence
crossover, solution paths significantly closer to optimal are achieved.

6. We give an efficient method for organizing pattern-based state evaluation.

7. Pw versions of macro-operators and subgoals may lead to more robust execution in
reactive domains.

We are also studying methods by which pws can be learned from experience. Similar
work is also being pursued by others [41]. Morph is a self-learning pattern-oriented chess
program that attempts to create pws that are useful in evaluating chess positions. We have
seen that macro-like behavior arises automatically from the pws. Efforts are underway to
bring Morph to as strong a level as is possible using a shallow search depth. [27, 28, 30, 32,
33]. It is our hope that this pattern-oriented, low-search approach will be more consistent
with cognitive models of human chess performance[13].

Acknowledgements

Steve Grimm wrote the initial program code and improved the descriptions of the
algorithms. Richard Snyder and Ira Pohl helped with an early draft. Sherri Shahrokhi
wrote the initial table generation routines for the 8-puzzle. Thanks to the systems stafl for
giving us adequate disk space to carry out the experiments.

References

[1] Aho, A. V., Hopcroft, J. E.and Ullman, J. D., Data Structures and Algorithms, Addison-
Wesley, 1983.

[2] Bagley, J.D., The behavior of adaptive systems which employ genetic and correlation
algorithms, PhD Thesis, University of Michigan, Dissertation Abstracts International,
28(12), 5106B. University Microfilms No. 68-7556, 1967.

[3] Banerji, R. B., Developments with GPS, in Search in Artificial Intelligence, Kanal, L.
and Kumar, V.(ed.), pp. 268-286, Springer-Verlag, New York, 1988.

[4] Berliner, H. “The B* Tree Search Algorithm: A Best First Proof Procedure,” Artificial
Intelligence, vol. 12, No. 1, May 1979

[5] Christensen, J. and Korf, R., A unified theory of heuristic evaluation functions and its
application to learning, in Proc. AAAI-86, 1986.

[6] Colin, C. and Levinson, R., Partial order maintenance: a tutorial, in Special Interest
Group on Information Retrieval (SIGIR) Forum. vol. 23, numbers 3,4 pp. 34-59, 1990.

[7] de Groot, A. D., Thought and Choice in Chess, The Hague: Mouton, 1965.

[8] Dreyfus, H., and Dreyfus, S. Mind over Machine, New York: The Free Press, 1986.

[9] Forgy, C. L. On the efficient implementation of production systems. PhD Thesis,
Carnegie-Mellon University,1979.

[10] Pattern Associativity and the Retrieval of Semantic Networks In the Special Issue of
Computers and Mathematics on Artificial Intelligence and Semantic Networks, Fritz
Lehmann, editor. Pergammon Press. 1990.

References 19

[11] Gibbons, A., Algorithmic Graph Theory, Cambridge University Press, 1985.

[12] Hayes-Roth, F. and Mostow, D. J., An automatically compilable network recognition
network for structured patterns. In Proc. [IJCAI-75, 246-251, 1975.

[13] Hearst, E., “Man and machine: chess achievements and chess thinking”, in Chess Skill
in Man and Machine, edited by Frey, P.W., Springer-Verlag, 1977.

[14] Holland, J., Adaptation in Natural and Artificial Systems. The University of Michigan
Press, Ann Arbor, 1975

[15] Johnson, W. and Store, W. “Notes on the ‘15’ puzzle,” A American Journal of Mathe-
matics, vol. 2, 1897, pp 397-404

[16] Joslin, D.E. and Roach, J. W., A Theoretical Analysis of Conjunctive-Goal Planning,
Artificial Intelligence, Volume 41, Number 1, November, 1989, pp. 97-106.

[17] Klir, G. J., Architecture of Systems Problem-Solving, Plenum Press, New York, 1985

[18] Knoblock, C. “A Theory of Abstraction for Hierarchical Planning,” Change of Repre-
sentation and Inductive Bias, Kluwer Publishers, 1990

[19] Korf, R. E., Learning to solve problems by searching for Macro-Operators. Research
Notes in Artificial Intelligence 5, Pitman Advanced Publishing Program, 1985.

[20] Korf, R. E. Planning as search: a quantitative approach, Artificial Intelligence, 1987.

[21] Korf, R. E., Optimal path finding algorithms, in Search in Artificial Intelligence, Kanal,
L. and Kumar, V.(ed.), pp.223-267, Springer-Verlag, 1988.

[22] Laird, J., Newell, A., and Rosenbloom, P., “SOAR: An Architecture for General Intelli-
gence,” Artificial Intelligence, Vol. 33, pp. 1-64, Elsevier Science Publishers, Amsterdam,
1987

[23] Lee, K. F. and Mahajan, S. “A Pattern Classification Approach to Evaluation Function
Learning”, Artificial Intelligence, Vol. 36, 1988, pp. 1-25.

[24] Levinson, R., A self-organizing retrieval system for graphs, In Proceedings of AAAI-84.
1984.

[25] Levinson, R., A self-organizing retrieval system for graphs., PhD Thesis, Technical
Report AL-85-05, from Artificial Intelligence Laboratory, University of Texas, Austin,
1985.

[26] Levinson, R. Intelligent signal analysis and recognition using a self-organizing database,
in Proceedings of The First International Conference on Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems, ACM. 1988.

[27] Levinson, R., “Pattern formation, associative recall and search: a Proposal”, Technical
Report available from Baskin Center of Computer Engineering, University of California,
Santa Cruz, 1989.

[28] Levinson, R., A self-learning, pattern-oriented, chess program”, in International Com-
puter Chess Association Journal, pp. 207-215, Dec. 1989, Vol. 12, No. 4.

[29] Levinson, R., A Pattern-Weight Formulation of Search Knowledge, Technical Report
UCSC-CRL-89-05, available from the Baskin Center of Computer Science, University
of California, Santa Cruz, 1989.

[30] Levinson, R., Snyder, R., Beach, B., Dayan, T., and Sohn, K., Adaptive-Predictive
Game-Playing Programs, submitted to Journal of Experimental and Theoretical Al.

[31] Levinson, R., Pattern Associativity and the Retrieval of Semantic Networks, in Special
Issue of Computers and Mathematics on Semantic Networks in Artficial Intelligence,
Fritz Lehmann, editor. Pergamon Press, 1991.

[32] Levinson,R. and Snyder,R. Adaptive Pattern-Oriented Chess, in Proceedings of AAAI-
91, pp.601-605, Morgan Kaufman, 1991.

[33] Levinson,R. Experience-Based Creativity, in Proceedings of Symposium on Artificial
Intelligence, Reasoning and Creativity, Brisbane, Kluwer Academic Press, to appear in
the book, “Artificial Intelligence and Creativity”, Terry Dartnall, ed., Kluwer 1994.

[34] Levinson, R. A Self-Organizing Pattern Retrieval System in Int’l Journal of Intelligent
Systems, vol. 6.,717-738, John Wiley and Sons. Also appears as Technical Report UCSC-
89-21, University of California, Computer Research Laboratory, Santa Cruz, CA 95064.

[35] Nagy, M. Z., Kozics, S., Veszpremi, T. and Bruck, P., Substructure search on very
large files using tree-structured databases in Chemical Structures: The International
Language of Chemistry, Wendy A. Warr (ed.). Springer-Verlag, 1988.

[36] Nilsson, N. J. Triangle tables: a proposal for a robot programming language. Tech Note
347, Al Center, SRI International, 1985.

[37] Pohl, 1., Bi-directional search, in Machine Intelligence 6, Meltzer, B. and Michie, D.
(Eds.), Edinburgh University Press, pp. 127-140, 1971.

[38] Porter, B. and Kibler, D., “Experimental Goal Regression: A Method for Learning
Problem-Solving Heuristics,” Machine Learning 1, pp. 249-286, Kluwer Academic Pub-
lishers, Boston, 1986

[39] Ratner, D. and Pohl, I., " Joint and LPA*: Combination of ap- proximation and search,”
Proceedings of the AAAIL-86, pp. 173-177, 1986.

[40] Ratner, D. and Warmuth, M., ”Finding a shortest solution for the NxN extension of the
15-puzzle is intractable,” Proceedings of the AAAI-86, pp. 168-172, 1986.

[41] Ruby, David and Kibler, Dennis Learning subgoal sequences for planning, Proceedings
of Eleventh International Joint Conference on Artificial Intelligence, Vol. 1, pp. 609-614,
1989.

[42] Schoppers, M. J., Representation and automatic synthesis of reaction plans, PhD Thesis,
Tech Report UTUCDCS-R-89-1546, Department of Computer Science, University of
Illinois at Urbana-Champaign, 1989.

[43] Readings in Machine Learning, edited by Shavlik, J., and Dietterich, T. Morgan Kauf-
mann Publishers, Inc, 1990

[44] Watanabe, S. Pattern Recognition Human and Mechanical, John Wiley and Sons New
York, 1985

[45] Wilcox, C.S. and Levinson, R.A., A self-organized knowledge base for recall, design,

and discovery in organic chemistry, in Artificial Intelligence Applications in Chemistry
edited by T. H. Pierce and Hohne, B. A., ACS Symposium Series, No. 306. 1986.

A Appendix

Tables A.1 and A.2 below summarize experiments run on the 8-puzzle and 15-puzzle, respectively. Table
A.1 illustrates 100 samples out of a 10,000 sample where solvable initial states were generated by a random
number (between 50,000 and 100,000) of tile swaps from the goal state where swaps did not correspond to
legal moves.

The columns for Table A.1 are as follows:

Init. state = the initial state.

Opt= Optimal solution length determined using A* with Manhattan Distance.

Mt = Macro table solution length based on “top” subgoal sequence: 012345678.
Sqz= Squeeze applied to Mt solution.

Mr = Macro table solution length based on “right” subgoal sequence:034567812.
Mb = Macro table solution length based on “bottom” subgoal sequence:056781234.
M1 = Macro table solution length based on “left” subgoal sequence:078123456.

Mi = Macro table solution length based on “interleaved” subgoal sequence:024681357.
Mm = Minimum of Mt,Mr,Mb, MI, Mi.

Pt = Solution length based on Pws derived from Mt macrotable.

Pr = Solution length based on Pws derived from Mr macrotable.

Pb = Solution length based on Pws derived from Mb macrotable.

Pl = Solution length based on Pws derived from Ml macrotable

P4 = Solution length based on combined Pws from Mt,Mr,Mb,MI.

P5 = Solution length based on combined Pws from Mt,Mr,Mb,MI] and Mi.

Table A.2 illustrates 49 samples out of a 100 samples where solvable initial states were generated for the
15-puzzle as was done for the 8-puzzle.

The columns for Table A.2 are as follows:

Init. state = the initial state. Using hexadecimal representation of tile numbers. Given time and
resource constraints optimal solutions were obtained for just the two states * = 38 with 74307 states
expanded and ** = 44 with 48320 states expanded using standard A* with Manhattan distance. All
other states required more than 10,000 expansions to solve.

Mt = Macro table solution length based on “top” subgoal sequence: 0123456789abcdef
Sqz= Squeeze applied to Mt solution.
Mr = Macro table solution length based on “right” subgoal sequence: 048c37bf26ae159d

Mb = Macro table solution length based on “bottom” subgoal sequence:0fedcba987654321 (These
solutions not shown in table).

Ml = Macro table solution length based on “left” subgoal sequence: 0d951ea62fb73c84 (Also not
shown).

Mi = Macro table solution length based on “interleaved” subgoal sequence:02468acel3579bdf.
Mm = Minimum of Mt,Mr,Mb, MI, Mi.

Pt = Solution length based on Pws derived from Mt macrotable.

Pr = Solution length based on Pws derived from Mr macrotable.

Pb = Solution length based on Pws derived from Mb macrotable (Not shown).

Pl = Solution length based on Pws derived from M] macrotable (Not shown).

Pi = Solution length based on Pws derived from Mi macrotable.

Pm = Minimum of Pt,Pr,Pb,P1 Pi.

P4 = Solution length based on combined Pws from Mt,Mr,Mb,MI.

P5 = Solution length based on combined Pws from Mt,Mr,Mb,MI] and Mi.

Init. state | Opt | Mt | Sqz | Mr | Mb | Ml | Mi | Mm | Pt | Pr | Pb | Pl | Pi | Pm | P4 | P5
612504873 18 28 20 36 34 48 78 28 20 36 20 48 | 64 20 20 20
254613870 20 30 22 26 42 30 80 26 20 26 30 28 | 56 20 26 26
726481530 22 38 30 50 38 54 52 38 30 48 30 52 | 70 30 52 52
436178052 24 40 38 36 48 40 36 36 38 48 46 36 | 46 36 48 48
068315724 20 30 30 42 42 50 68 30 30 42 40 48 | 58 30 40 40
726305841 24 34 32 40 50 36 68 34 32 38 48 34 | 66 32 34 30
542703186 18 18 18 34 22 42 68 18 18 32 22 42 | 50 18 32 32
756104328 26 32 32 46 50 30 70 30 32 42 48 30 | 60 30 32 32
348576021 22 48 46 52 44 34 56 34 48 46 44 34 | 54 34 44 44
472136085 20 46 44 50 44 48 60 44 44 | 40 38 46 | 56 38 46 46
370682541 22 50 50 46 60 52 66 46 34 | 44 56 50 | 56 34 44 44
041267358 26 44 42 56 52 30 76 30 40 54 52 28 | 76 28 28 28
257864013 24 38 38 26 44 52 58 26 38 30 32 42 | 50 30 42 50
258307614 22 30 28 34 48 46 44 30 26 34 46 46 | 42 26 34 34
186572430 18 42 42 40 40 44 38 38 42 40 38 38 | 36 36 42 42
341568072 24 32 32 50 32 30 44 30 48 52 32 26 | 64 26 32 32
426873150 20 52 50 52 30 30 76 30 50 52 20 30 | 38 20 30 30
281576043 18 42 42 52 34 26 78 26 48 40 34 26 | 40 26 34 34
817205643 22 38 34 32 44 38 44 32 34 22 44 30 | 44 22 34 34
548367210 26 36 36 46 46 44 76 36 36 38 46 42 | 76 36 38 38
832461570 26 46 44 32 50 46 48 32 44 | 42 46 44 | 48 42 40 40
482706135 24 50 48 42 36 32 66 32 48 42 36 32 | 52 32 32 32
320741865 20 48 44 46 48 22 58 22 44 36 48 30 | 54 30 30 30
540612738 24 44 40 48 42 54 62 42 40 48 36 48 | 60 36 36 36
513824067 16 44 42 38 56 44 20 20 16 36 50 20 | 16 16 36 36
246817530 18 46 44 28 46 20 76 20 42 28 42 18 | 64 18 42 42
274536081 26 56 56 42 50 40 60 40 34 | 40 28 38 | 40 28 40 40
348276150 16 34 34 30 24 16 32 16 34 28 24 16 | 32 16 20 20
371604825 20 46 44 38 36 38 30 30 44 36 32 36 | 30 30 36 36
042135876 10 26 24 50 32 32 60 26 20 48 10 10 | 42 10 10 10
538206417 22 36 36 46 52 44 56 36 36 44 50 44 | 54 36 44 44
582167340 24 44 34 50 46 40 54 40 34 | 42 46 36 | 52 34 34 34
576431082 28 46 46 38 40 44 68 38 46 44 46 54 | 60 44 44 44
730146258 22 34 34 42 58 28 56 28 32 38 58 44 | 44 32 38 38
830624715 16 32 30 24 16 36 38 16 30 22 16 24 | 30 16 22 22
146307528 22 32 30 46 32 38 60 32 30 38 32 38 | 42 30 30 30
621703458 24 46 44 48 46 44 52 44 44 | 46 46 44 | 52 44 46 46
064752318 26 48 44 52 38 42 70 38 44 | 40 38 40 | 60 38 38 38
524786130 26 36 32 48 34 52 68 34 32 38 30 52 | 64 30 30 30
872306415 26 52 52 42 30 34 56 30 52 42 30 34 | 46 30 34 34
230415678 20 48 46 30 32 38 32 30 46 30 44 36 | 30 30 30 30
438572061 26 46 46 48 48 36 72 36 42 44 38 36 | 72 36 44 44
845271360 20 40 38 38 28 28 60 28 38 38 20 36 | 44 20 20 20
170862435 20 40 40 50 36 42 58 36 40 40 28 32 | 56 28 32 32
072135864 18 42 42 36 48 46 54 36 38 36 46 42 | 42 36 38 38
826703451 22 50 48 46 34 46 72 34 48 44 32 36 | 70 32 46 46
128406753 14 36 36 28 38 26 30 26 36 28 36 26 | 28 26 36 36
132674580 20 38 34 50 48 34 80 34 34 22 48 30 | 70 22 24 24
538476210 26 56 52 48 40 46 78 40 52 44 40 46 | 76 40 44 44
140863572 20 44 42 34 36 32 42 32 38 26 38 32 | 60 26 38 38

number of trials, this page: 52

Goal State: 123804765

Table A.1: Comparing Pattern and Macro Strategies for 8-puzzle.

(table continued on next page)

Init. state | Opt Mt Sqz Mr Mb Ml Mi Mm Pt Pr Pb Pl Pi Pm P4

740358216 24 52 48 36 40 46 72 36 48 34 38 40 72 34 40
018367245 24 46 46 36 38 42 82 36 46 36 36 38 62 36 38
387164250 22 24 24 48 30 40 46 24 24 36 30 40 38 24 40
170236584 22 26 26 32 46 48 42 26 26 24 38 44 34 24 26
621408537 26 42 38 50 50 42 70 42 38 48 50 42 70 38 38
378615042 20 26 24 54 42 42 54 26 20 28 52 40 36 20 40
087413562 26 44 42 44 54 48 48 44 42 42 50 40 48 40 42
154736820 22 40 40 30 36 32 42 30 40 26 34 32 42 26 40
372541680 26 32 32 48 52 38 54 32 32 38 34 38 54 32 38
037625841 22 36 34 32 58 34 30 30 34 28 56 32 30 28 32
014832765 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
780146235 22 46 46 42 54 48 56 42 44 38 54 50 46 38 50
075312864 22 32 32 42 54 52 74 32 32 40 54 48 74 32 32
671524830 22 38 36 48 50 46 44 38 36 48 54 38 64 36 42
162573084 12 22 14 22 14 34 22 14 14 14 12 32 14 12 12
081563427 20 46 46 34 42 46 64 34 44 32 26 44 64 26 32
140785263 16 44 42 42 36 52 56 36 42 30 36 48 56 30 36
827406153 22 44 44 46 46 40 70 40 42 44 44 40 60 40 40
514276380 24 34 32 44 48 42 52 34 36 44 48 42 48 36 32
472803165 16 16 16 40 26 22 46 16 16 30 24 20 32 16 20
735421086 18 50 46 24 48 40 56 24 46 26 24 44 52 24 26
415768320 24 44 44 38 48 54 84 38 42 38 46 44 76 38 46
613407825 20 42 40 40 44 42 30 30 40 38 38 38 30 30 38
681503724 20 44 42 44 36 36 46 36 42 34 36 36 46 34 36
086217354 24 36 28 46 24 32 42 24 28 36 24 40 32 24 28
054173268 22 42 42 42 42 56 76 42 38 40 38 48 74 38 38
018526347 24 40 40 40 44 42 50 40 40 42 44 42 48 40 40
067581324 26 42 42 26 52 50 68 26 42 28 42 50 60 28 50
018452376 24 24 24 56 40 42 44 24 24 30 46 32 44 24 24
247306518 24 42 40 56 40 38 74 38 38 56 40 38 60 38 56
620715843 18 30 20 34 46 50 74 30 20 40 36 48 70 20 20
047521386 26 44 42 50 42 38 56 38 42 40 32 36 48 32 36
160372854 16 24 24 30 42 48 42 24 24 30 40 28 34 24 24
012748536 16 36 34 22 38 50 30 22 32 22 38 48 22 22 32
472163058 20 22 22 50 34 50 28 22 22 50 54 44 34 22 36
356402817 22 36 36 40 46 30 42 30 36 40 44 30 40 30 32
730584612 20 44 44 34 46 44 50 34 44 32 44 42 32 32 32
730645182 22 46 44 30 46 32 64 30 44 28 46 32 38 28 28
562817034 22 46 36 50 36 40 50 36 32 42 24 50 46 24 32
283506174 12 12 12 20 12 12 48 12 12 12 12 12 48 12 12
852476130 20 46 28 38 36 58 76 36 28 36 28 56 66 28 28
153268047 24 36 36 40 54 36 70 36 38 34 52 38 68 34 34
081642357 24 44 40 44 38 36 60 36 38 46 30 32 52 30 32
286507134 24 38 30 30 24 42 60 24 28 30 24 42 60 24 28
524817360 24 42 38 42 50 36 76 36 36 34 48 34 44 34 36
451803672 22 44 40 32 46 36 74 32 40 32 42 26 66 26 42
168457023 24 44 44 50 52 36 58 36 40 48 52 34 56 34 40
524106738 20 32 30 44 30 50 66 30 28 42 22 48 62 22 22
428763015 20 48 46 48 42 36 44 36 46 46 38 34 46 34 34

Average | 21.6 [39.9 | 37.7 | 40.1 | 40.1 | 40.2 [57.6 [31.5 | 36.9 | 36.8 | 36.9 [36.7 [52.3 | 28.4 | 33.3 | .

number of trials: 10000 Goal State: 123804765

Table A.1: Comparing Pattern and Macro Strategies for 8-puzzle.

100 out of 10000 trials shown; averages correspond to all trials.

Init. state Mt Sqz Mr Mi Mm Pt Pr Pi Pm P4 P5
069dbef4c58a7213 178 [132 | 136 | 174 | 136 | 158 | 114 | 174 | 112 | 112 | 112
8dc652{3b479e0al 142 | 128 | 160 | 190 | 112 | 118 | 152 | 144 | 118 | 122 | 122
eT18d2c6ab35094 164 | 150 | 168 | 138 | 138 | 112 | 152 | 134 | 112 | 112 | 112
6f5dc013adeb2798 170 | 156 | 166 | 188 | 166 | 168 | 120 | 136 | 106 | 106 | 106
1£e24a869703d5ch 134 | 118 | 136 | 126 | 120 | 104 | 114 | 104 66 66 66
f63d8a24bc07519e 150 | 146 | 192 | 170 | 118 | 128 | 148 | 152 74 74 74
cbe2d7a68435190 158 | 152 | 172 | 226 | 154 | 144 | 166 | 178 | 118 | 118 | 118
d20b3794f5ae68c1 138 | 134 | 150 | 140 | 138 | 100 | 128 | 140 | 100 | 124 | 124
392658ch0el7fdad 178 | 162 | 150 | 168 | 142 | 130 | 106 | 150 96 96 96
8b0cdf239a45e167 160 | 128 | 152 | 174 | 148 90 148 | 138 88 88 88
78bd564c1903a2ef 152 | 138 | 152 | 186 | 136 | 102 | 104 | 114 | 102 | 156 | 156
750fa1b28c6d43e9 178 | 174 | 214 | 208 | 144 | 120 | 170 | 176 | 102 | 102 | 102
e6fa873b912d4c50 174 | 158 | 182 | 198 | 168 | 128 | 168 | 188 | 128 | 138 | 138
0148¢237b6dcf529* 140 | 130 | 130 | 150 | 130 92 108 | 106 92 92 92
9bf8dae7c1065234 152 | 144 | 176 | 200 | 126 | 112 | 124 | 192 | 112 | 114 | 114
a20897e6d54c3b1 142 | 128 | 152 | 162 | 142 | 114 | 170 | 152 | 114 | 138 | 138
b9a480f2537d6elc 138 | 124 | 166 | 156 | 138 | 118 | 122 | 152 | 118 | 132 | 132
1fb8d2a03e57c496 172 | 156 | 140 | 192 | 138 | 130 | 166 | 162 | 118 | 130 | 130
aTe95dbfc1284360 134 | 124 | 166 | 226 | 128 | 126 | 138 | 180 | 120 | 120 | 120
a4081d69cbef5732 170 | 166 | 138 | 144 | 138 | 116 94 152 94 120 | 120
b4026a13f9e578dc 148 | 122 | 188 | 172 | 132 | 108 | 122 | 120 | 108 | 122 | 122
6a3729f4cde81b50 116 96 146 | 178 | 116 | 116 76 146 76 80 80
f2ea3b76d1485c90 190 | 164 | 138 | 170 | 138 | 118 | 140 | 176 | 116 | 116 | 116
431c5e976abdf820 122 | 110 | 162 | 190 | 122 98 1o | 132 98 106 | 106
4¢925016efba738d 152 | 146 | 192 | 172 | 142 | 154 | 168 | 186 | 104 | 154 | 154
f39ace56d8217b40 158 | 154 | 168 | 200 | 158 | 120 | 156 | 174 | 120 | 146 | 146
3a482916e5dc70fb 188 | 166 | 148 | 182 | 138 98 140 | 144 68 68 64
85617bdeac34290 124 | 114 | 170 | 206 | 124 | 138 | 154 | 148 | 112 | 136 | 136
93ab5270d6ecf148 156 | 146 | 116 | 184 | 116 | 118 90 146 90 100 | 100
b48c3ed906a71512 162 | 138 | 182 | 204 | 162 | 144 | 108 | 150 | 108 | 162 | 162
d4b780f56a9213ec 156 | 140 | 162 | 152 | 120 | 140 | 124 | 140 92 92 92
0ae51c84d72fb963** | 158 | 136 | 142 | 150 | 142 | 104 94 130 94 104 | 104
e5bd9f81620ac473 146 | 134 | 182 | 190 | 124 | 130 | 166 | 158 | 106 | 106 | 106
329871af5e4d60ch 160 | 154 | 190 | 144 | 136 74 134 | 154 74 86 86
9ca62815df0eTh43 154 | 136 | 210 | 180 | 140 96 94 178 94 126 | 126
a34b6dcf192875€0 176 | 158 | 156 | 182 | 138 | 100 | 118 | 160 | 100 | 114 | 114
14095fbc672e3a8d 112 | 100 | 194 | 162 | 112 96 106 | 142 96 96 96
463a90f18cd72be5 148 | 142 | 172 | 174 | 148 | 138 | 172 | 162 | 124 | 128 | 128
d60815afc73429eb 148 | 138 | 160 | 202 | 148 | 142 | 120 | 164 | 120 92 92
8f072ca9e153d64b 150 | 134 | 178 | 212 | 150 | 106 | 162 | 184 | 106 | 126 | 126
c487ed1af52b9036 142 | 124 | 164 | 210 | 134 | 104 | 154 | 176 | 104 | 108 | 108
e3b1a57d968c420 124 | 110 | 164 | 170 | 124 | 154 | 140 | 130 | 116 | 116 | 116
d79fb3e645a2108¢ 168 | 150 | 150 | 198 | 136 | 150 | 122 | 172 96 96 96
b49afe2501c8637d 122 | 122 | 164 | 180 | 122 | 116 | 128 | 120 | 116 | 136 | 136
28b7e9fa04cd1635 148 | 146 | 158 | 152 96 142 | 144 | 174 96 96 96
657efa4b32c9d810 162 | 158 | 164 | 170 | 144 | 134 | 148 | 168 92 92 92
3a9712ce6f4b508d 140 | 110 | 130 | 166 | 108 | 120 82 134 82 92 92
0cdb534917a86f2e 170 | 164 | 142 | 200 | 142 | 142 | 130 | 166 | 130 | 134 | 134
08fa41de3b7562c9 182 | 172 | 202 | 196 | 182 | 164 | 126 | 152 | 126 | 164 | 164
Average | 158.2 [144.3 | 166.0 [179.8 | 138.4 | 122.5 | 134.1 | 139.8 [106.6 | 116.8 [116.6

number of trials: 100

Goal State: 123456789%abcde0

Table A.2: Comparing Pattern and Macro Strategies for 15-puzzle.

49 out of 100 trials shown; averages correspond to all trials.

