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ABSTRACT

As the system clock speed increases, crosstalk becomes one of the major sources of noise
which can limit the performance of high-speed digital systems in addition to delay and ring-
ing. The congruence transformation can be used to decouple a coupled transmission-line
system. In this paper, we extended the scattering parameter based macromodel to include
the congruence transformation to analyze the crosstalk in the coupled transmission-line sys-
tems. After decouple the n coupled transmission lines using the congruence transformation,
the computation of scattering matrix of the coupled transmission lines then becomes those
of the scattering matrix of the congruence transformers and those of the n decoupled single
transmission lines. A very simple scattering parameter description of the congruence trans-
former for coupled lossless transmission lines is derived. It has been extended to handle the
coupled lossy transmission lines. Unlike some of the previous methods[14][16] which only
consider the coupling between immediate adjacent lines, our method takes into account the
coupling among all lines. We also present the results obtained from our simulator as well as
those obtained from the SPICE-like simulators (for example: SPICE3e2 and ASTAP) and
state- of-the-art moment-matching simulators (for example: SWEC and Coffee).

Keywords: Coupled Transmission Lines, Transient Analysis, Congruence Transformation,
Scattering Parameters, Macromodel, S-Parameter Based Simulator.
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2 1. Introduction

1 Introduction

As the system clock speed increases, crosstalk becomes one of the major source of noise in
addition to the delay and ringing which can limit the performance of high-speed digital systems [2]
[3] [5] [6] [7] [14] [15] [16]. The crosstalk can often lead to excessive overshoots, undershoots and
glitches. Tt can also cause false switchings on the non-active lines as well as undetected switchings
on the active lines, not to mention that it can also increase power dissipation of the output drivers.
It can be considered as the dominant factor of noise in the high density interconnection networks.
Thus for a reliable operation, the crosstalk should be strictly controlled within a certain limit.
An efficient and accurate transient analysis also becomes a key element in the combating of the

crosstalk.

Previous research works which uses scattering parameter for the analysis of coupled transmission
lines include those of the full-wave analysis by Cooke et al [6] and time domain simulation by
Schutt-Aine et al [16]. In Schutt-Aine’s paper, they demonstrated a great accuracy improvement
in simulating circuits that includes non-linear drivers and terminations [16]. Whereas in Cooke’s
paper, they illustrated an ability to simulate frequency dependent model propagation [6]. Recently,
a frequency domain simulator using scattering parameter based macromodels has been presented
by Liao et al [11] [12]. Based on the scattering parameter based macromodel, Pade technique
or Exponentially Decayed Polynomial Function (EDPF) can be used to approximate transfer
functions of the coupled interconnects. This approach avoids the costly matrix computation for
converting the frequency domain scattering parameter matrix representation into the time domain
transfer/reflection matrix representation [16] and the time consuming full-wave analysis [6]. An
adoption of the scattering parameter based macromodel and Pade/EDPF approximation do provide
a trade off between speed and accuracy.

The difficulty in high-performance system design comes from the coupled noise among the
transmission lines which are placed closely together in today’s dense process technology. The

coupled noise (crosstalk) is inversely proportion to the interline spacing and is proportional to
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several parameters including those of the thickness of the dielectric material, the distance which the
coupled lines are in parallel, the rate of change of the input waveforms, and the line impedances.
There are signal distortions caused by coupling mechanisms such as n mode propagation and
crosstalk. In order to rigorously analyze crosstalk in a coupled transmission line systems, the
method of congruence transformation decoupling can be employed [2] [3] [9] [14]. The analysis
is focused on finding the crosstalk among all of the possible coupling lines, but not limited to
the immediate adjacent lines. The scattering parameter based macromodel provides the crucial

information about the crosstalk waveforms for the coupled transmission lines analysis and design.

In Section 2, the congruence transformation of lossless coupled transmission lines is derived
based on frequency-independent per-unit-length L and C matrices. The scattering parameter based
macromodel of lossless coupled transmission lines is derived from the congruence transformation.
An addition simplification of the scattering parameter based macromodel is derived based on
the similarity transformation property. In Section 3, the derivation is repeated for coupled lossy
transmission lines. In Section 4, several examples of lossless as well as lossy coupled transmission
lines are simulated, and their results are compared with published results, commercial tools, and
state-of-the-art simulators such as SWEC [13] and Coffee [4]. Finally we will conclude this paper

with some remarks on the proposed method and directions for the future research.

2 Congruence Transformation of the Lossless Coupled Transmission Lines

Wayve propagation in multiconductor has been extensively studied by the Microwave, Electronic-
Magnetic-Compatibility (EMC), and Electrical engineers. Due to the coupling between transmis-
sion lines, different modes which have different propagation velocities exist simultaneously in the
system. For an n conductor system shown in Figure 2.1, there are n fundamental modes of propa-

gation.

Starting with the quasi-TEM analysis, the congruence transformation decoupling for the coupled

lossless transmission lines can first be derived. Later based on the congruence transformation
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where 0 < 2 < [land v(z,t)and i(z,t) are column vectors defining the voltages vy (z,t) and currents
ir(x,t) distributed on the conductors £ = 1,2,3,...,n. The L and C are the n by n symmetric
matrices of the per-unit-length inductance and capacitance of the n conductor system. Throughout

this paper, the L and C matrices are assumed to be frequency-independent.

2.2 Congruence Transformation of the Coupled Lossless Transmission Lines

Taking derivative with respect to z for both sides of Equation (2.1) and (2.2) with proper

substitution of terms, one obtains the following equations:

0?v(x,t) 0?v(z,t)

—— = LC——— 2.
dx* ot* (23)

0?%i(z, 1) 0?%i(x, 1)

——— = CL—— 2.4
Ox* o’ (24)

In order to decouple the coupled system, all four matrices L, C, LC, and CL in Equation (2.1),

(2.2), (2.3), and (2.4), must be simultaneously diagonalized.

By applying congruence transformation, we can change the variable basis from » to v and from
i to j. The terminal voltages and currents at opposite sides of the transformer are related by (see

Figure 2.2) [2]:

vp(z,t) = Zn:kaum(x,t) (2.5)
Je(z,t) = —Zn:kaim(x,t), (2.6)

The negative sign is used to indicate the direction of current ji is flowing into the transformer.

Rewrite Equation (2.5) and (2.6) in a matrix notation, one obtains:

Vie,t) = XU(z,t) (2.7)

i) = - (x9)7 I, (2.8)
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where V, U, I and J are column vectors, V = [v(2,1),...,vp(z, )], U = [ug(@, ), oo un(z, )],
I =[ir(x, ), in(z, )], and J = [j1(2,1), ..., julz, )]

Substituting Equation (2.7) and (2.8) into Equations (2.1), (2.2), (2.3), and (2.4), one obtains:

811($,t) -1 na 8.]($7t)
= —x7'L(x) [—7] (2.9)
Ox ot
R[S R——— 1 (1)
5 = X CXiat (2.10)
2 2
M — X_ILCXM (2.11)
Ox ot
82j($,t) t Nt 82j(x,t)

It has been shown that the right eigenvector matrix X which is obtained from the similarity

transformation of L satisfys the following property [14]:

Xt = x4 (2.13)

So the right eigenvector matrix X can simultaneously diagonalize all four matrices:

L = X 'L (Xt)_l = X'LX = diag(Ly) (2.14)

~ -1

¢ = X'CX =X'C(X') = diag(Cy) (2.15)
L¢ = X 'LecX=Xx"'L (X’f)_1 X'CX = diag((LC),) (2.16)
¢ = X'cL (X’f)_1 = X'CXX'L (Xt)_l = diag((C'L),), (2.17)

where k = 1...n and diag( L) represents an n by n diagonal matrix L which all off-diagonal elements
are equal to zero. The Ly, Cy, (LC),, and (CL), are the k — th eigenvalue of the matrices L, C,

LC, and CL.

Redefine the Telegraphist Equations of decoupled system to be:

du(z,t) —i[ 8j(w,t)]

dx At

= (2.18)
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macromodel simulator. The scattering parameter based macromodel simulator takes full advan-
tage of being a frequency domain simulator and lumps the multiport components together using
the Pade or EDPF approximation [11] [12]. The derivations of equations of the voltage scattering
parameter matrices of all the components in the decoupled system are presented in the next two

section.

2.3 Scattering Parameter Matrix of a Congruence Transformer

Due to the choice of identical reference impedance Zg at any port for the scattering parameter
based macromodel simulator, the scattering parameter matrix S of any multi-port component is
equivalent to its voltage scattering parameter matrix SV. Since only the terminal voltages and

currents are of an interest, the following representations are introduced (see Figure 2.1):

vlk(t) = vk(ac = O,t) vgk(t) = vk(ac = l,t) ilk(t) = zk(ac = O,t) igk(t) = zk(ac = l,t),

where k = 1..n. The wuyg, uog, jik, and jop are the terminal voltages and currents after the

transformation, they represent:

urk(t) = up(e = 0,1)  wok(t) = up(ex =1,t)  j1x(t) = jr(z = 0,t)  jor(t) = jr(z = 1,1),

To find the voltage scattering parameter matrix of a congruence transformer, first the time-domain
voltage and current are transformed into frequency-domain using Laplace transform. For example,
Jpk(s) = L(jpr(t)), where p=1,2 and k = 1,...,n. Then the terminal voltages and currents of the
both sides of the transformer are separated into the incident and reflect wave components as shown

in Figure 2.3: Writing the voltage and current wave components in vector notation, one obtains:

-
1

| e (2.22)

-
1

Ur+U,; (2.23)

I, = LF-1; (2.24)



J 4 PU+}J ti!l,_l'l:lti U_L 4_}_”:! J;L'JLI'CLL\
E16016 53°3: L P6 26bgrggr



10 2. Congruence Transformation of the Lossless Coupled Transmission Lines

The definitions of voltage scattering parameters matrix S and its submatrices 5};, 575, 53, and

5Y, are:

sy sy
11 12
sV =
4 14
‘921 ‘922
SV _ Vp
o= yE
P lut=0
SV _ Vp_
2 = F
p Vp+:0
SV _ Up
2 T yF
P lut=0
SV _ Up
2 = F
p Vp+:0

By arithmetic manipulation of Equations (2.22), (2.23), (2.24), (2.25), (2.26), (2.27), (2.28), (2.29),

.30), an .31), and by settin to be an all-zero column vector, one can fin as:
2.30), and (2.31), and b ing Uf tob i 1 find 57
So= XM XX - X (2.32)

Similarly one can find other submatrices of 5V

Sty = 2[Xt4 X! (2.33)
Sy = 22X +(XH! (2.34)
Sy = X+ X)X - (X7 (2.35)

The voltage scattering parameter matrix 5 is:

. _[X—l _I_Xt]—l[X—l _ Xt] Q[X_l _I_Xt]—l
sV = (2.36)
X+ (X)X (XY - ()

Since the similarity transformation property X ' = X! holds for all X that simultaneously



2. Congruence Transformation of the Lossless Coupled Transmission Lines 11

diagonalize the L, C, LC, and CL matrices, Now the scattering parameter matrix S can be
simplified to:
0 X
S = . (2.37)
Xt 0
This equation holds when the right eigenvector matrix X is obtained either from similarity trans-

formation of a full I matrix, or Romeo’s method which deals with a tri-diagonal L matrix.

Bayard first outlines the transformation, A'ZA, and calls it “translator” [1]. Hazony is the
first one to name the transformation “congruence transformer” in his book [9]. Chang uses the
congruence transformer to decouple both the lossless [2] and lossy coupled transmission lines [3].
Chang’s method for the analysis of coupled lossless transmission lines relies on simultaneously
diagonalizing the L, C, LC, and CL matrices using special conditioned matrix. Romeo and
Santomauro present a different method of finding the right eigenvector matrices for coupled lossless
transmission lines with tri-diagonal L and C matrices [14]. In this paper, one will find the right
eigenvector matrices of a full I matrix. The method proposed here may be more preferred than
Chang’s method because it leads to simpler equations for scattering parameter based macromodel
representation of congruence transformer. In Chang’s method where the similarity transformation
property X! = X! may not hold, the scattering parameter matrix representation cannot be
simplified to Equation (2.37). The proposed method in more general than Romeo’s method because
it does not have the limitation that each transmission line is only coupled to the immediate adjacent

lines.
For each of the decoupled lossless transmission line shown in Figure 2.2, its scattering parameter
matrix is [8]:
1 (72 — Z?)sinh(y) 2707,

S L
151= [S ] 2707 cosh(y) + (43 + Z2)sinh(v) 2707 (Z2 - 7%)sinh(y) (2.38)

where Zg is the reference impedance, and both Z. and 7 are computed from the eigenvalues Ly
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and (' of the I and C matrices respectively. The Z,. = é—z is the characteristic impedance of the
k —th line and k& = 1...n, and v = sy/LpC} - [ is the propagation constant of the & — th line and [

is the coupling length.

3 Congruence Transformation of the Lossy Coupled Transmission Lines

When the ohmic loss of the conductors is not negligible, the transmission lines are considered
to be lossy. It is very common that the lossy conductors are fabricated by embedding them in
several layers of homogeneous dielectrical media. This structure supports TEM waves traveling
at multiple propagation speeds. However, there is an attenuation in addition to phase shift that
must be considered when the different modes of wave propagate through the lossy media. The
decoupling analysis is repeated here for the coupled lossy transmission lines similar to the analysis

done in previous section.

3.1 Quasi-TEM Wave Propagation on the Coupled Lossy Transmission Lines

With the assumption of quasi-TEM wave propagation, the distributions of voltages and currents
in an n coupled lossy transmission-line system can be described by the generalized Telegraphist’s

equations [3]:

ov(z,t) di(x, 1) )
i(x,t v(a,t

where 0 < 2z < [, and v(z,t) and i(z,t) are column vectors defining the voltages vi(z,t) and
currents ix(z,t) distributed on the conductors k& = 1,2,3,...,n. The L and C are the n by n
symmetric matrices of the per-unit-length inductance and capacitance of the n conductor system.
The R = diag(Rgx), k = 1...n is the diagonal matrix of the per-unit-length resistance of the n

conductors.
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3.2 Congruence Transformation of the Coupled Lossy Transmission Lines

Chang proposes the method of congruence transformation of n coupled lossy transmission lines
in his 1989 paper [3]. Taking derivative with respect to z for both sides of Equation (3.1) and (3.2)

with proper substitution of terms, one obtains the following equations:

2 2
d*v(z,t) LCa v(z,t) Rcav(x,t)

0’ ot* ot (3:3)
*i(z,t) *i(x, 1) di(z, 1)

In order to decouple the coupled system, all seven matrices R, L, C, LC, CL, RC, and CR must

be simultaneously diagonalized.
It has been shown that the following steps can achieve this goal [3]:
1. Construct the time constant matrix T.
2. Find the eigenvalues of the matrix T.
3. Construct the congruence transformation matrix X.
4. Diagonalize all matrices using matrix X.

5. Build the decoupled system based on the diagonalized matrices.
First, one needs to find the right eigenvector matrix W of the time constant matrix T using
standard mathematical methods such as Givens and Household method. Define the eigenvalues of

time constant matrix T to be 74, one obtains:

T = R YVLR™Y? = Wdiag(r)W ™!, (3.5)

where R™1/2 = diag(1/v/Rik), k = 1,...,n, and the right eigenvector matrix W has the property

of the similarity transformation W=! = W*.

Now applying the linear transformation:

Vo(t) = XUp(t) (3.6)
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!
L) = = (X)L, (3.7)
where the congruence transformer matrix X is defined as:
X = diag(vVRep)Wdiag(\/i/ L), (3.8)

into Equation (3.1), (3.2), (3.3) and (3.4), after rearrangement, after rearrangements, one obtains

the following Equations (3.9) to (3.12):

Ml o ()T [P R () e (3.9)
—L(;’t) _ —Xfcxiaugﬁ’t) (3.10)
T
*u(x,1) _1 o*u(z,t) _1 du(z,t)
— 0 - xnex—/— Uy xT'Rex (3.11)
da® ot ot
82j($,t) t A\t 82j(9@,t) t A\t 8.]($7t)
o = X'OL (x) —a +X'CR (x) =5 (3.12)

It can be shown that the coeflicient matrices are all diagonal matrices as represented by Equations

(3.13) to (3.13):

R = X 'R(XY)7! = diag(Ry) = diag(Ly/ )
L = X'L(XYH™ =diag(Ly)
C = X'CX = diag(Cy) = diag(1/v2Ly,)
~ ~ -1
LC = X7'LCX = X7'L(XY) X'CX = diag(LCy) = diag(1/v?)
-~ -1 _1
CL = X'CL(X') =X'CXXT'L(X') = diag(CLy) = diag(1/v?)
~ ~ -1
RC = X7T'RCX = X7'R(X') X'CX = diag(RC})
-~ -1 _1
CR = X'CR(X') =X'CXXT'R(X') = diag(CRy).

where k = 1...n and diag( L) represents an n by n diagonal matrix L which all off-diagonal elements

are equal to zero. The Ry, Ly, C, (LC),, (CL),, (RC),, and (CR), are the k — th eigenvalue of
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exception of X where X is now defined in Equation (3.8).
_[X—l + Xt]—l[X—l _ Xt] Q[X_l + Xt]—l
S = . (3.17)
20X + (X7 —[X 4 ()T - (X))

For each of the decoupled lossy transmission line shown in Figure 3.1, the scattering parameter
matrix representation is the same and the computation of Z. and 7 are different [8]:
1 (72 — Z%)sinh(7) 2707,

_ Vi —
[5]= [S ] " 277, cosh(y) + (Z2 + Z2)sinh(v) e (22— 72y sih) (3.18)

where Zy is the reference impedance, and both Z. and 4 are computed from the eigenvalues
Ry, Li, and C} obtained from the diagonalization of the R, L, and C matrices respectively.

The Z. = ,/Rk%sfk is the characteristic impedance of the k& — th line where £ = 1...n, and

v = /(Rg + sLi)(sCy) - | is the propagation constant of the k — th line where [ is the coupling

length.

4 Experiment Results

The examples presented here are some of the MCMC-94 Benchmarks (1994 IEEE Multi-Chip
Module Conference Interconnect Simulation Benchmarks). The results are compared with digitized
waveforms extracted from the published papers with the exception of Example 2 which instead is
compared to Ansoft’s Maxwell/Spicelink results. Example 3 is a coupled lossy transmission-line
systems whereas the rest of the examples are coupled lossless transmission-line systems. All of the
Far-end waveforms are simulated with time-of-flight captured explicitly [10]. The running time
reported in all examples using our simulator or SPICE-like simulator are the running time on a
SUN SPARC station 14. The running time of other simulators are not listed because they are

executed on different machines.
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4.1 Example 1

The circuit and geometry parameters of Example 1 as shown in Figure 4.1 (a) is taken from
Chang’s paper [2]. The geometry parameters are listed in the circuit schematic with all three

transmission lines are uniform in geometry. The C and L of the configuration are:

3.8790 nH/cm 1.6238 nH/em  0.8252 nH/em
L = 1.6238 nH/em  3.7129 nH/em  1.6238 nH /em

0.8252 nH/em  1.6238 nH/em  3.8790 nH /em

1.0413 pF/em  —0.3432 pF/em  —0.0140 pF/em

¢ = —0.3432 pF/em  1.1987 pF/em  —0.3432 pF/em

—0.0140 pF/em  —0.3432 pF/em  1.0413 pF/em

The simulation waveforms of this example are compared to Chang’s and are shown in Figure 4.1
(b), (¢), (d), (e), (f), and (g). The total running time for this example is 3.48 seconds. Our
simulation results does not match the published measurement results too well because the extreme
long time-of-flight. This kind of coupled lossless transmission line systems are best handled in

time-domain using Method of Characteristic model [2].

4.2 Example 2

The circuit and geometry parameters of Example 2 as shown in Figure 4.2 (a) are taken from
Romeo et al paper [14]. The C and L matrices are generated using Maxwell from Ansoft whereas the
SPICE simulation results are obtained from Spicelink which uses a method derived from Djordjevic
[7]. The relative permittivity is changed from 4.65 to 10.0. The geometry parameters are listed
in the circuit schematic where all three transmission lines are uniform. The C and L of the

configuration obtained from Maxwell are:



1°00 ‘ O~
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4.9693 nH/cm  1.1697 nH/em  0.4952 nH [em
L = 1.1697 nH /em 4.9946 nH/cm  1.1691 nH/em

0.4952 nH/em  1.1691 nH/em  4.9735 nH/em

1.3341 pF/em —0.13852 pF/em  —0.010318 pF/em

¢ = —0.13852 pF/em  1.33445 pF/em —0.13699 pF/em

—0.010318 pF'/em  —0.13699 pF/em  1.32823 pF/em

The simulation waveforms of this example are compared to those generated by SWEC [13], Coffee
[4], and Spicelink and are shown in Figure 4.2 (b), (¢), (d), and (e). All the simulation results from
four different simulators agree with each other very well. The total running time of this example

is 1.10 seconds. The total simulation time for Ansoft Spicelink is 7.95 seconds.

4.3 Example 3

The circuit and geometry parameters of Example 3 as shown in Figure 4.3 (a) are taken from
Schutt-Aine et al paper [16]. The geometry parameters are listed in the circuit schematic where all
three transmission lines are uniform. The length of this coupled system is 25 inch. The R, L and

C of the configuration are listed as follow:

o | 0.5000 ohm/em  0.0000 ohm/cm
- | 0.0000 ohm/cm  0.5000 ohm/cm

;o | 3.1200 nH/em  1.0000 nH/em
- | 1.0000 nH /em  3.1200 nH /em

p | 1.0840 pF'/em  —0.1940 pF/em
- | —0.1940 pF/em  1.0840 pF/em

The simulation waveforms of this example are shown in Figure 4.3 (b), (¢), (d), and (e). Results from

SPICE3e2 and Schutt-Aine are also plotted for comparison. The SPICE3e2 results are obtains by
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applying the decoupling technique in time-domain. For all the waveform plots, our method obtains
results that match SPICE3e2 simulation results better than Schutt-Aine’s. The total running time

for this example is 4.4 seconds.

4.4 Example 4

The circuit and geometry parameters of Example 4 as shown in Figure 4.4 are taken from
Cooke’s paper [6]. The driving signal is 100-MHz 50% duty-cycle pulse with 0.1ns rise/fall time.
The estimated harmonic bandwidth of this driving signal is well over 3.5-GHz. The geometry
parameters are listed in the circuit schematic where all six transmission lines are uniform. The R,

L and C of the configuration are:

5.033 nH/em 1.734 nH/em 0818 nH/em
L = 1.734 nH/em  4.972 nH/cm  1.734 nH /em

0.818 nH/em 1.734 nH/em  5.033 nH/cem

0.667 pF/em  —0.163 pF/em  —0.0145 pF/em

¢ = —0.163 pF/em  0.722 pF/em  —0.163 pF/em

—0.0145 pF/em  —0.163 pF/em  0.667 pF/em

The simulation waveforms of this example are shown in Figure 4.5 (a), (b), (¢), and (d). Two
zoom in portion of the simulation waveforms are shown in Figure 4.5 (e) and (f). The ASTAP and
Cooke’s simulation waveforms are digitized from the results published in Cooke’s paper [6] while
the SWEC results are obtained from MCMC-94 benchmarks. The SWEC uses analytic method to
find the derivatives of the admittance in order to compute the moments; because of the complexity,
it only find lower order moments [13]. In all the plots, the results obtained from SWEC and our
macromodel simulator agree with published ASTAP results. However, the macromodel simulation
waveforms match those of the ASTAP simulator better than those derived from the SWEC. In
all the waveform plots, Cooke’s results deviate from the ASTAP results the most. OQur method is

better than Cooke’s scattering parameter approach because our results match those of the ASTAP
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Figure 4.5: Simulation Waveforms of the Two Groups of Three Coupled Lossless
Transmission Lines: The topology is shown in Figure 4.4. The output waveforms of
the near end of the active line are shown in (a) together with its corresponding Cooke’s,
ASTAP and SWEC simulation results. The output waveforms of the far end of all three
lines are shown in (b), (¢), and (d) together with their corresponding Cooke’s ASTAP and
SWEC simulation results. Two enlarged portion of waveforms are shown in (e) and (f).
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This has also been extended to the analysis of the coupled lossy transmission lines.

Taking full advantage of the frequency domain simulation nature of the scattering parameter

based macromodel simulator, transient analysis of coupled transmission lines can approach the

accuracy of SPICE-like simulator with orders of magnitude less computation time.
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