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both real-time applications and logically multi-threading servers and drivers.
Our experience confirms the unsettling fact that in producing a high-performance implementation one

must selectively avoid the principles of information hiding and transparent layering. As [Padlipsky, 1985]
has stated, “Layering makes a good servant but a bad master.” We found that to improve the performance
of Swift/RAID levels 4 and 5 it was essential for us to investigate what the compiler generated within the
parity computation loop and for us to design the Swift/RAID library with transfer plan executor internals in
mind.

The Swift/RAID system implements the core functions required for any RAID system. Areas for
future enhancement include investigating adaptive burst mode protocols, integrating automatic node rebuild
operations, locking services, and enhancing directory service.
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7 Related Work

Variants of the finite state machine approach similar to that described here have been used in the past.
In addition to use within various I/O controllers and coprocessors, this approach has often been used in
real-time avionics [Glass, 1983]. Discussions of this approach can be found in literature [MacLaren, 1980,
Shaw, 1986, Baker and Scallon, 1986]. The use of static precompiled tables is discussed by MacLaren, who
refers to this approach as a traditional cyclic executive. Our approach differs from that of MacLaren in
that we generate our plans dynamically and our finite state machine is event driven, rather than cycle time
driven. MacLaren notes that generating scheduling tables by hand can become difficult, and also notes
that “the efficiency of a cyclic executive derives from its minimal scheduling property, and from the very
small implementation cost.” Our scheduling tables are generated by the logic of the Swift/RAID library.
Shaw [Shaw, 1986] describes real-time software as either being based on concurrent interacting processes
or as using the table-driven finite state machine approach, which he terms slice-based. Shaw notes that the
schedulable atomic units we have called instructions have often gone under such names as slices, chunks,
or stripes. He contrasts the two approaches to real-time software design, and calls for research in including
time as a first class programming object.

Variants of this approach have also long been used to implement logically multi-threading servers and
drivers in environments where true threads have not been available. Our experience with this approach
confirms the observations of other researchers [Allworth, 1981, Beizer, 1983], i.e., this approach can work
well but has the flavor of low-level programming, and thus may entail commensurate development and
debugging difficulties. An overview of a real-time system implemented using this approach is provided by
Baker and Scallon [Baker and Scallon, 1986]. They define their view of the “executive as an independently
programmable machine that executes application procedures written in conventional programming languages
as if they were individual instructions of a higher level program.” According to them the resulting system
provides a virtual machine for the system specification, rather than simply a virtual machine for the
application program.

8 Conclusions

RAID level 4 and 5 functionality has been added to Swift. We have demonstrated that RAID systems can
be implemented in software in a client-server environment. In the network investigated, both Swift/RAID
levels 4 and 5 currently obtain peak read rates near 90% of the original Swift. Swift/RAID level 5 obtains
a write rate slightly above 50% of the original Swift write rate, while Swift/RAID level 4 obtains only
around 35% of the original write rate. The observed five node Swift/RAID level 5 data rates, for transfers
larger than 100 kilobytes, ranged from 560 kilobytes/second to 680 kilobytes/second for reads, and from
380 kilobytes/second to 560 kilobytes/second for writes. These indicate that future work with distributed
RAID systems is feasible.

Our reimplementation uses a methodology based on atomic and durable sets of data transmission
operations. These operations are generated by a run-time library and are interpreted by a distributed finite
state machine, the transfer plan executor. This methodology dominates all aspects of the implementation
and enabled us to experiment with software RAID implementations on typical Unix research networks.

The distributed table-driven finite state machine approach solves the distributed concurrent programming
problem to the degree necessary to implement the different RAID systems. Designing the sequences of
required atomic operations and implementing the programs to generate these sequences is difficult. While
this process has the flavor of low-level programming and has the associated difficulties encountered when
debugging and testing, it has the virtue of working and of raising the level of abstraction by providing atomic
I/O operations. For these same reasons, variants of our approach have been used in the past to implement
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Figure 14: The cost of parity computation for five node Swift/RAID systems.

to less than 100 to 200 kilobytes/second.
Congestion avoidance is better than congestion recovery. The use of stop-and-wait protocols provided

congestion avoidance. Initial experimentation with simple blast protocols, where multiple instructions were
executed between synchronization, resulted in lower performance than for the simple stop-and-wait protocol
once congestion recovery was required, specifically, once UDP socket overflow errors were detected.

CPU speed is essential for network performance. Our experience with the cost of parity calculations
confirms that the computational cost of processing packet data may be as significant as the protocol overhead.
Naively implemented exclusive-or loops at first resulted in system performance only about 20% of that finally
obtained. As network speed increases, the memory and CPU costs of processing data bytes will likely
become the bottleneck. Banks and Prudence [Banks and Prudence, 1993] note that memory bandwidth may
already be the primary communications bottleneck on networked workstations, and advocate the adoption
of single-copy protocol stacks to address this problem.

Swift/RAID performs operations directly out of the user’s buffers. If a communications protocol other
than UDP/IP was used that supported direct network access, Swift/RAID would provide a single-copy
protocol. An important advantage of the Swift/RAID approach in providing maximum performance single-
copy operations is that the executor extends naturally to providing direct support of device driver code.
Instructions can be defined which factor device driver functionality so as to provide the primitive instruction
set required to drive the device. A means of having the device interrupt routine activate the executor must
also be implemented. Device driver instructions and application instructions can then be mixed within plans
as required. Since no domain context switches, data copy operations, or memory management need occur,
near maximum performance operations are possible. The packet filter [Mogul et al., 1986], where a kernel
resident interpreter for a very simple stack-based language is used to route packets to the appropriate user
application, was also motivated by minimizing domain crossing operations.

17



0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300 400 500 600 700 800

M
eg

ab
yt

es
 p

er
 S

ec
on

d

I/O Size (K bytes)

Writes
Reads

Writes, degraded
Reads, degraded

Figure 12: Swift/RAID level 5 data rates in degraded mode, five nodes, one failed.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300 400 500 600 700 800

M
eg

ab
yt

es
 p

er
 S

ec
on

d

Write I/O Size (K bytes)

5 Node Original Swift
5 Node Swift/RAID-0
5 Node Swift/RAID-5
4 Node Swift/RAID-5
3 Node Swift/RAID-5

Figure 13: Swift/RAID level 5 write data rates by number of nodes.

16



0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300 400 500 600 700 800

M
eg

ab
yt

es
 p

er
 S

ec
on

d

Write I/O Size (K bytes)

Original Swift
Swift/RAID-0
Swift/RAID-4
Swift/RAID-5

Figure 10: Write data rates of Swift/RAID, five nodes.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300 400 500 600 700 800

M
eg

ab
yt

es
 p

er
 S

ec
on

d

I/O Size (K bytes)

Writes
Reads

Writes, lost parity disk
Reads, lost parity disk
Writes, lost data disk
Reads, lost data disk

Figure 11: Swift/RAID level 4 data rates in degraded mode, five nodes, one failed.

15



0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300 400 500 600 700 800

M
eg

ab
yt

es
 p

er
 S

ec
on

d

Read I/O Size (K bytes)

Original Swift
Swift/RAID-0
Swift/RAID-4
Swift/RAID-5

Figure 9: Read performance of Swift/RAID, 5 nodes.

Note that the degraded mode Swift/RAID level 5 performance is significantly better than that of Swift/RAID
level 4. As expected, in Figure 11, undegraded Swift/RAID level 4 reads and degraded reads with the parity
node failed perform similarly. Swift/RAID level 4 writes when any node has failed all perform similarly,
as every node in the stripe other than the failed node must either be read or written. Note that reads with a
failed data disk perform essentially the same as writes, since all nodes in the stripe must be read to compute
the missing blocks. The Swift/RAID level 5 data in Figure 12 shows that, in the 5 node case, performance
in degraded mode differs little from non-degraded mode performance. Degraded writes actually perform
slightly better than undegraded writes, reinforcing results in [Ng and Mattson, 1992].

Figure 13 investigates the effect on performance of the number of nodes in a Swift/RAID network.
Swift/RAID level 5 write performance is shown for three node, four node, and five node networks, with the
performance of the original Swift and Swift/RAID level 0 shown for contrast. For three, four, and five node
networks, Swift/RAID level 5 write performance can be seen to increase by about 50 kilobytes/second with
each additional node in the stripe.

Figure 14 shows the performance cost of the parity calculations required to support RAID operations.
The cost of parity computations was investigated by building versions of Swift/RAID levels 4 and 5 which
did no parity calculations, but did perform all required parity block I/O. Even in the final Swift/RAID
version, the parity cost can be seen to be substantial.

6.2.1 Reflections on Network Performance

Our experience reinforces several rules of network performance: avoid time-outs and retransmissions,
congestion avoidance is better than congestion recovery, and CPU speed is essential for network performance
[Mogul, 1993].

Avoid time-outs and retransmissions. A time-out occurs when network bandwidth has been significantly
wasted. In general, our experience was that as soon as time-outs occurred throughput dropped substantially,
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6.1 Measurement runs

The benchmarks reported in this section are based on programs in which repeated Swift/RAID read or
write requests are issued within a loop. These programs were similar to those previously described
[Legge and Ali, 1990], except that all I/O transfers always started at the beginning of the Swift file, i.e., a
seek to the start of the file was performed before every I/O transfer. The size of the I/O transfer was increased
by 8 kilobytes in every iteration of the loop, with the maximum size of a single Swift I/O operation being
800 kilobytes. The Swift files were preallocated, so there were no effects from file extension. All writes
were done synchronously.

With single exception noted below regarding the original Swift data, the results reported here were
obtained by averaging 50 iterations over each 8 kilobyte transfer size between 8 kilobytes and 800 kilobytes.
Performance tests were run on a lightly loaded network. UDP datagram sockets were used, and no overflows
occurred during the performance testing reported here.

6.2 Discussion of the measurements

The performance of any RAID system is sensitive to the frequency of write operations, as writes require
both parity computations and parity block modification. Optimum write throughput occurs when an entire
stripe is written in one I/O, in which case the parity block for the stripe can be written without any additional
I/O required other than the parity block write itself. For large multistripe aligned operations, the larger
the number of blocks in the stripe, the less will be the relative I/O cost due to writing the parity block.
Conversely, the larger the stripe, the greater the relative cost for small writes.

RAID degraded mode operations occur when a node has failed and data needs to be reconstructed
from the operational nodes. Degraded mode data rate must also be considered when selecting stripe size.
Investigating these performance trade-offs has been an active area of RAID research. Results are sometimes
counter-intuitive. Ng and Mattson, for example, note that degraded mode data rate, for some stripe sizes and
read-to-write ratios, can actually provide superior data rates when compared to undegraded performance
[Ng and Mattson, 1992].

Figures 9 and 10 contrast undegraded performance on a five node network of the original Swift imple-
mentation and all three Swift/RAID implementations. Read and write data rates are shown separately. As
expected, read data rates are similar for all systems since, in undegradedΦΦΦΦΦundegraded mode, the
number of RAID read I/O operations is the same as for non-RAID reads. Read throughput for all systems
remains around 600 kilobytes/second.

The write data rate of the original Swift and of Swift/RAID level 0 are comparable. As it was not
possible to run the original Swift reliably for 50 iterations at large block sizes, only 10 iterations were
used to obtain the original Swift data rate data, while all Swift/RAID data was obtained using 50 iterations.
Write throughput for the original Swift and for Swift/RAID level 0 remains between 800 kilobytes/second
and 900 kilobytes/second. In Figure 10 Swift/RAID level 4 achieves a write throughput in the order
of 300 kilobytes/second and Swift/RAID level 5 in the order of 560 kilobytes/second. This data rate
difference illustrates the rationale behind RAID level 5, i.e., Swift/RAID level 4 suffers from all parity
blocks being located on the same parity node. We believe our write data rate compares favorably with
the 1.15 megabytes/second derived experimentally by [Boggs et al., 1988] for the maximum rate obtainable
between a pair of hosts on an Ethernet. Measurements done on a three node system achieved similar
throughput.

In Figures 11 and 12 both Swift/RAID level 4 and Swift/RAID level 5 degraded mode performance
is shown. In both cases a five node network was operating in degraded node, i.e., with only four nodes.
Undegraded data rate is shown for reference. In the case of Swift/RAID level 4, throughput is shown both
for the case where the failed node is the parity node and for the case where a non-parity node has failed.
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acknowledgment is required within a plan, a distributed instruction pair must be generated in the plan using
the await sync/send sync op-codes.

Communication failures result in time-outs, corrupted messages, or lost messages. These events cause
resynchronization of the relevant distributed instruction pair via a restart instruction, which resets the local
and remote program counters of the plans containing the instruction pair. A restart is the only instruction
that is ever generated on-the-fly within the executor.

All time-outs correspond to a blocked local receive instruction. Upon time-out, a restart instruction
is sent to the cooperating executor. The restart instruction contains the program counter of the expected
partner instruction. When an executor receives a restart, it sets the program counter of the corresponding
local plan to the program counter specified within the received restart instruction. The restart forces a
jump to a predefined synchronization location in the remote plan.

If the partner program counter contained within a received instruction is less than the current local
program counter, the message is assumed to be a duplicate and is discarded. If the partner program counter
within the received instruction is greater than the current program counter, some message are assumed lost,
perhaps due to overrun. The received instruction is discarded and a restart transmitted to restart the partner
to keep it synchronized with the current program counter.

Nothing keeps track of whether a restart has been transmitted. If a restart is lost, a time-out to the same
blocked instruction will recur and another restart will be transmitted. After transmitting restart, either
communication from the expected remote instruction is received, in which case the plans proceed, another
unexpected instruction is received, in which case a restart is reissued, or a restart is received, in which
case it is respected and the local program counter reset.

5 The Reimplementation of Swift

The RAID level 5 implementation consists of approximately 4000 lines of C code, with the transfer
plan executor containing some 1100 lines and the Swift/RAID level 5 library containing 1800 lines. For
comparison, the Swift/RAID level 0 library contains some 550 lines. The Swift/RAID level 0 implementation
has the same functionality as the original Swift, and was implemented first to develop and debug the transfer
plan executor approach.

The versions of Swift/RAID described here used client-server plans generated so that a stop-and-wait
protocol was implemented between each cooperating client and server plan. Stop-and-wait is implemented
by compiling pairs of instructions which perform explicit synchronization. The simple stop-and-wait
protocol provides a base performance level against which to evaluate the more complex protocols with
which we have begun to experiment.

Implementation and performance analysis was performed on a dedicated Ethernet network consisting of
a SparcStation 2, a SparcStation IPX, a SparcStation IPC, and three SparcStation SLCs. The SparcStation
2 was used as the client.

6 Performance Evaluation of Swift/RAID levels 4 and 5

This section describes our initial performance evaluation of Swift/RAID. The measurements of the prototype
are presented in Figures 9 through 14.

The data rates observed for a five node Swift/RAID system and a three node Swift/RAID system were
similar. We chose to present the measurements for the five node system as its data rate decreases less under
failures.
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Figure 8: Swift/RAID operation codes clustered in three categories.

the low-level op-code dispatching low-level transfer plan executor operations and the high-level op-code
dispatching high-level RAID operations. A RAID implementation library is required to provide high-level
pre and post dispatchers.

The low-level instructions perform simple I/O operations required of any RAID implementation and
perform no parity calculations. The low-level instructions are essentially used to read and write server
storage blocks. The read disk instruction reads a specified disk block and transmits it to a corresponding
read result instruction, which typically places the received data in the proper location in a user buffer.
The write cmd instruction transmits data, often directly from a user buffer, to a cooperating write disk
instruction which then writes the corresponding disk block. The low-level op-code is occasionally a no-op.
The high-level op-codes provide RAID functionality specific to each RAID variant and perform dynamic
functions that cannot be precomputed when the instruction is assembled, for instance, setting a buffer address
to that of a server allocated parity computation buffer.

4.2 Error Handling

Instructions are generated as distributed client-server pairs with all instructions containing two static program
location fields (see Figure 7). The two program locations specify the instruction’s program counter within
the local plan and the program counter of the partner instruction in the remote plan. These two fields in
each instruction support error recovery. When an error occurs during execution of the distributed instruction
pair, both sides of the distributed instruction are restarted as a unit. The header of each message received
by an executor contains a destination plan identifier and a copy of the remote instruction that requested
the message transmission. This remote instruction copy contains the expected program counter of its local
partner instruction.

All communication between nodes is supervised by the cooperating transfer plan executors. The
executors are responsible for error control, retransmissions, and time-outs. Instruction implementation
routines thus never have to deal with acknowledgments, flow-control, or timing issues as the executor
work-loop’s process of advancing plan program counters includes assuring that required communication
has occurred. When a network I/O completes, the executor attempts to advance the relevant plan program
counter. The executors do not use any special flow control or acknowledgment messages. If an explicit
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The routines loc compile and rmt compile are called by the Swift/RAID library to build a plan set
tailored to a given user request. It is this high-level logic which differs among the Swift/RAID variants.
The executor executes the resulting instructions by advancing the program counter for each plan through its
instructions, dispatching functional code as directed by the op-codes. When an instruction initiates network
I/O by either transmitting a data block or awaiting reception of a data block, further execution on behalf of
the current plan is blocked and another plan is selected for execution. It is the execution of a distributed pair
of instructions, for instance a remote read disk and a local read result, which actually causes data blocks
to be transmitted between the server and the client. Because the complete plan set is computed in advance,
unexpected network data I/O never occurs, although messages may potentially be lost or repeated.

Processing of a Swift/RAID user request thus consists of two phases: a generation phase in which
a plan is assembled, and an execution phase driven by a call to the transfer plan executor. Plans are
not discarded until after the entire plan set has completed execution. Experimenting with protocols that
do not require immediate acknowledgments is thus possible. Such protocols include sliding window
protocols, light-weight timer based protocols, and blast protocols. See Long et al. [Long et al., 1993] for
a discussion of such protocols with respect to Swift multimedia applications, and Carter and Zwaenepoel
[Carter and Zwaenepoel, 1989] for a discussion of blast mode protocols.

Swift/RAID uses low-level communication routines very similar to those used in the original Swift
implementation. These routines are based on the UDP sendmsg and rcvmsg primitives. UDP is the Internet
Protocol (IP) based User Datagram Protocol [Cerf, 1993].

4 The Transfer Plan Executor

4.1 Instruction Execution

The transfer plan executor is a distributed virtual machine executing on every Swift/RAID network node.
The executor virtual machine can concurrently process an arbitrary number of plans. In effect, it is
multiprocessed. Although all plan sets for a particular Swift/RAID service are similar, the details of each
depend on the specifics of the requested operation.

A simple client-server transfer plan pair is shown in Figure 6 This example shows the cooperating plan
pair for the first node in a three node Swift/RAID level 5 write operation. The first instruction in the local
plan (migrate partner) causes the corresponding remote plan to be transmitted to the server node. Each
local write cmd instruction then transmits either a section of the user’s buffer or a stripe parity buffer to a
cooperating remote write disk instruction. Each write disk instruction writes the data it receives into the
correct block of server storage.

The executor executes a work-loop resembling the fetch, decode, and execute cycle of a CPU. This
work-loop also performs some simple kernel functions in that it schedules, executes, and blocks all locally
executing plans and drives all network communication. Each plan contains a program counter identifying
the plan’s current instruction. The instruction op-code contains a bit indicating whether an instruction posts
an I/O request, in which case the work-loop will block the current plan after executing the instruction.

The executor executes instructions by calling one of two dispatch routines and then advancing the
program counter. The dispatch routines execute code corresponding to the instruction’s op-code. Figure 7
shows the format of all Swift/RAID instructions. Figure 8 lists Swift/RAID level 5 op-codes. A pre-dispatch
routine executes instructions that may initiate a network I/O request. A post-dispatcher executes instructions
that execute after the network I/O completes. Such instructions are called receive instructions. Execution
of the plan blocks when the first receive instruction is encountered.

A high/low protocol stack is used to provide high-level functionality specific to a particular RAID
implementation. To support this high/low protocol scheme every instruction contains two op-codes, with
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Figure 4: Library implementation Swift/RAID.

[Spector et al., 1985, Cabrera et al., 1993]. Synchronization is inherent in the dispatch mechanism of the
executor. Since each instruction corresponds to a single I/O, failure atomicity is provided in that the operation
either fails or succeeds. All instructions can be restarted on failure any number of times. Instructions have
permanence in that the completion of an instruction which accesses the disk can only occur if the I/O is
complete. Plans and plan sets do not have these transaction properties.

3 Swift/RAID Overview

A summary of the Swift/RAID library implementation is shown in Figure 4.
The Swift/RAID library contains an application interface which provides conventional Unix file oper-

ations, with the additional requirement that transfers always be aligned on the file block size and transfer
lengths are always multiples of this block size. Different Swift/RAID files can have different block sizes.
A Swift/Raid application always runs on a client node.

Every Swift/RAID server node is required to run a swift server. A swift server source is linked with the
appropriate Swift/RAID library to produce the server supporting a particular RAID variant. Libraries exist
for Swift/RAID levels 0, 4, and 5. Application programs also link to the corresponding Swift/RAID library.

When an application calls a Swift/RAID function, the client library generates a corresponding transfer
plan set and then calls the local transfer plan executor. The executor transmits the required plans to the
servers. The client and server executors then cooperate to execute the plan set. Each of the remote plans is
transmitted in a single message to the server on which it will execute.

Servers are driven by a work-loop which calls a load routine to receive the next plan and then calls its
local transfer plan executor to execute the plan. This server work-loop is executed once for every Swift/RAID
function called by the client application and requiring support from the node on which the server is running.
When a Swift file is initially accessed, a copy of the swift server process is forked. On a given node, there
will be one swift server process for every open Swift/RAID file.

The relationship between the data structures managed by Swift/RAID is shown in Figure 5. The
file desc structure roots all data structures supporting operations on the file, and differs for each RAID
implementation. The plan hdr structure contains asynchronous I/O masks, time-out values, and pointers
to node structures. The node structures contain plan contexts, pointers to the arrays of instructions which
define plans, and the sockets used for network communication. It is the node structure that contains program
status for the local plan serving that node, including fields such as a program counter and halt/run flags.
This is illustrated in Figure 5.
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The operation of the Transfer Plan Executor proceeds in five steps:

1. The application (the client) calls a Swift/RAID library function:

swift write(file, buffer, length);

2. The library assembles (at the client) local and remote plans for every node.

localremote remote remotelocallocal

Node 1 Node 2 Node 3

3. Local and remote instructions will cooperate in lock-step. All remote plans are transmitted to the
remote nodes.

remote

remotelocal

Client

Nodes 1,2,3

4. Cooperating plans are executed by the executors on the client and each of the servers.

Remote Plan Instructions

write_cmd

Local Plan Instructions

PC write_disk PC

data block

Server (remote) NodeClient (local) Node

Executor Executor

5. All operations and data transmissions are accomplished by cooperating local and remote instructions,
as driven by the executors.

Figure 3: The five operation steps of the Transfer Plan Executor.

6



All Swift/RAID operations are defined as cooperating sequences of serially executed atomic primitives.
The atomic primitives are called instructions. Each instruction corresponds to a C subroutine that imple-
ments the instruction. Each instruction’s implementation is atomic with respect to Swift operations. This
facilitates concurrent programming since all instruction implementationcode occurs within a critical section.
Swift/RAID transfer plans are formed by simply concatenating instruction data structures. The instruction
data structure contains fields specifying op-code and operand elements. These are similar to the instruction
fields of traditional machine language instructions, with op-codes indicating which implementation routine
is to execute and operands supplying arguments to that routine.

Figure 3 shows the steps involved in servicing a Swift/RAID application request. The request results
in the run-time generation of a unique transfer plan set consisting of a collection of transfer plans, each
of which consists of an instruction sequence. The Swift/RAID library analyzes the request and generates
a corresponding transfer plan set by issuing calls to two routines: loc compile and rmt compile. Each
of these routines assembles a single instruction into the current location in a plan. For every remote node
involved in the Swift/Raid operation, two cooperating plans are generated, one for the remote node and
one for the local client node. The loc compile routine assembles an instruction into the local plan and the
rmt compile routine assembles into the remote plan. These routines each take as arguments a node number,
two op-codes, and three operands. One op-code drives low-level network activity and the other high-level
RAID activity. Both local and remote instructions contain two distinct op-codes. The three operands often
specify buffer address, transfer length, and file location, but may be used in any manner an instruction
requires. The loc compile and rmt compile routines are almost always called together, thus generating
a pair of cooperating local and remote instructions which in effect define a distributed instruction. The
low-level op-codes specify operations such as reading a disk block into a buffer location, sending a buffer
to another node, and writing a block to a file location. The high-level op-codes specify operations such as
computing the parity of a buffer or another such RAID operation.

The application programmer is unaware of transfer plans. All plan assembly is performed automatically
by the Swift/RAID library as it determines how to execute the request. The entire plan set is generated at the
client node and contains a specific unique plan for each Swift/RAID server participating in the execution of
the requested function. Each of the server plans cooperates with the corresponding plan executing on the
client, that is, plans are generated in client-server pairs.

Because the implementation is factored into instructions, explicit synchronization programming is
not required. The cost, however, is that all code must be written so that it never blocks on network
communication, that is, network I/O cannot be requested via a synchronous system call that would block
the transfer plan executor. An instruction implementation issues an asynchronous network request and then
returns without awaiting completion, thus providing another instruction the opportunity to execute under
control of the transfer plan executor. In practice, one function is provided which is used by the instruction
implementor to activate all asynchronous I/O. The transfer plan executor itself handles all asynchronous
I/O completion. Thus, once the executor is implemented, the programmer need not worry about explicitly
handling asynchronous I/O.

The atomic primitives of Swift/RAID are somewhat similar to the large atomic blocks described by Park
and Shaw, although the blocks of code defining a Swift/RAID instruction are determined based solely on I/O
[Park and Shaw, 1991]. Loops and other operations of variable duration are permissible within Swift/RAID
atomic primitives, although it is assumed that the duration of such operations is reasonably bounded.

The distributed atomic instruction approach described here is an implementation technique. Shaw has
described the use of distributed real-time state machines for specification purposes [Shaw, 1992]. Although
the implementation technique is very general, the implementation provided by the Swift/RAID system is
very specific and does not constitute a general purpose concurrent programming environment.

Individual Swift/RAID instructions have the atomicity properties required of distributed transactions
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completion of the corresponding Swift/RAID server I/O.
The plan set specifies a complete specification (including order and location) of the atomic primitives

(instructions) that are to be executed to satisfy a particular distributed Swift/RAID operation. The plan set
consists of transfer plans each describing a serially executed list of instructions. Transfer plans are generated
in pairs, with each pair specifying the interaction between a single client and one of the Swift/RAID servers.
There is a Swift/RAID server for each storage device making up a file. Each transfer plan pair consists of a
local transfer plan, which specifies the instructions to be executed on the client, and a remote transfer plan,
which specifies the instructions to be executed on the server. The local and remote plans in a transfer plan
pair contain cooperating instructions. Each pair of cooperating local and remote instructions effectively
defines a single distributed instruction. Each distributed instruction is generated such that a message from
one side (local or remote) is required before the cooperating instruction can complete. Local and remote
components of the plan pair execute in lock-step. The plan pair servicing each server executes concurrently
with the plans servicing other servers; each plan pair can execute at an arbitrary rate relative to other plan
pairs.

Transfer plan sets provide a mechanism to coordinate concurrent programming activity without requiring
multiple threads or a single physical address space. Error recovery is simplified because each instruction
in the plan is a simple atomic primitive. Additionally, this technique readily extends to single-copy
communication protocols.

The clean error recovery model was particularly important as error recovery is fundamental to RAID
operations. A single Swift/RAID user request involves the simultaneous coordination of a number of nodes.
Both complete failure of a node and transitory communication failures must be handled transparently while
in the midst of a user request.

The performance of the original Swift was compared with the new RAID level 0, 4, and 5 imple-
mentations. The performance of the Swift/RAID level 0 implementation was similar to the original Swift
prototype, but Swift/RAID levels 4 and 5 write data rates were initially only 25% of the original Swift
data rates. This was determined to result primarily from the computational cost of the exclusive-or parity
computations required by RAID. After examining the generated code, a simple change from byte to long op-
erations and from unoptimized use of the vendor supplied compiler to optimized use of the Gnu C compiler
resulted in peak Swift/RAID write data rates approaching a more satisfactory 50-60% of the original Swift
write rates. This peak result was not obtained on the average as performance over time exhibited a saw-tooth
pattern varying by some 300 kilobytes/second. This was first thought to be an artifact of RAID striping, but
was found to result from two subtle implementation errors which resulted in erroneous time-outs. Removing
these errors resulted in the performance reported in x6.

The remainder of this paper is organized as follows: the atomic instruction approach is discussed inx2 and a functional description of the new implementation is provided in x3. The transfer plan executor
is examined in x4 and software engineering aspects of the reimplementation are briefly considered in x5.
Performance measurements are presented in x6. Related work is discussed in x7, followed by our conclusions
and directions for future work in x8.

2 The Distributed Atomic Instruction Approach

A methodology based on table-driven distributed real-time state machines was used to implement the
Swift/RAID prototype. This is similar to an approach that has long been used in programming real-time
systems, and has been termed slice-based by Shaw, who characterizes it as one of the two basic approaches
to real-time programming [Shaw, 1986]. Descriptions of systems using this approach are provided by
MacLaren [MacLaren, 1980] and by Baker and Scallon [Baker and Scallon, 1986].
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Figure 2: Operation of a four node RAID level 4 System. For every stripe, the corresponding parity block
contains parity bytes for every byte in the stripe. If node 3 is lost, the bytes of Block 3 are reconstructed
using stripe parity. The first byte is 1 � 0 � 1 = 0 and the last byte is 0 � 0 � 1 = 1. Data reconstruction
must be done for every byte of the lost block.
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Figure 1: Base components of Swift architecture.

the devices. The number of devices that participate in such an operation defines the degree of striping. Data
within each data stripe is logically contiguous. Swift uses a network of workstations in a manner similar
to a disk array. A Swift application on a client node issues I/O requests via library routines which evenly
distribute the I/O across multiple server nodes. The original Swift prototype used striping solely to enhance
performance.

Currently, RAID (Redundant Arrays of Inexpensive Disks) systems are being used to provide reliable
high-performance disk arrays [Katz et al., 1989]. RAID systems achieve high performance by disk striping
while providing high availability by techniques such as RAID levels 1, 4, and 5. RAID level 0 refers to
simple disk striping as in the original Swift prototype. RAID level 1 implies traditional disk mirroring.
RAID levels 4 and 5 keep one parity block for every data stripe. This parity block can then be used to
reconstruct any unavailable data block in the stripe. RAID levels 4 and 5 differ in that level 4 uses a
dedicated parity device while level 5 scatters parity data across all devices, thus achieving a more uniform
load. The fault tolerance of levels 4 and 5 can be applied to any block structured storage device, indeed,
the level 4 technique appears to have been developed originally to increase the fault tolerance of magnetic
bubble memories [Patel, 1982].

When a device failure occurs during a RAID level 4 or 5 read, all other devices, including the parity
device, must subsequently be read and the stripe parity calculated to reconstruct the data from the missing
device. When a device failure occurs during a write, all other devices must be read, stripe parity computed,
the remaining modified data blocks written, and the new parity written. A RAID level 4 scheme is illustrated
in Figure 2.

For Swift to tolerate server failure and to investigate the performance of RAID levels 4 and 5, the
Swift prototype was reimplemented to support RAID levels 0, 4, and 5. The new implementation is based
on a distributed transfer plan executor. The transfer plan executor decodes and executes instructions.
The set of available instructions constitute a language of atomic I/O operations designed specifically for
the Swift/RAID architecture and implemented atomically with respect to the network. The executor is a
distributed virtual state machine which decodes and executes this language, thus driving all data-transfer
activities in the system and managing all network communication.

Transfer plans are sequences of atomic instructions. Every Swift/RAID user request is implemented by
a unique set of transfer plans, called a plan set. The exact plan set implementing a particular Swift/RAID
user request is generated at run-time by the Swift/RAID library when it is called by the user. Transfer plans
are then decoded and executed atomically with respect to other transfer plans acting on the same Swift
file. The executor guarantees Swift/RAID clients that request completion implies coherent and consistent
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Abstract

The Swift I/O architecture is designed to provide high data rates in support of multimedia type
applications in general purpose distributed environments through the use of distributed striping. Striping
techniques place sections of a single logical data space onto multiple physical devices. The original
Swift prototype was designed to validate the architecture, but did not provide fault tolerance. We have
implemented a new prototype of the Swift architecture that provides fault tolerance in the distributed
environment in the same manner as RAID levels 4 and 5. RAID (Redundant Arrays of Inexpensive
Disks) techniques have recently been widely used to increase both performance and fault tolerance of
disk storage systems.

The new Swift/RAID implementation manages all communication using a distributed transfer plan
executor which isolates all communication code from the rest of Swift. The transfer plan executor is
implemented as a distributedfinite state machine which decodes and executes a set of reliable data transfer
operations. This approach enabled us to easily investigate alternative architectures and communications
protocols.

Providing fault tolerance comes at a cost, since computing and administering parity data impacts
Swift/RAID data rates. For a five node system, in one typical performance benchmark, Swift/RAID level
5 obtained 87% of the original Swift read throughput and 53% of the write throughput. Swift/RAID level
4 obtained 92% of the original Swift read throughput and 34% of the write throughput.

Keywords: Swift architecture, RAID, data striping, client-server data transmission, network data
service, distributed atomic operations, concurrent programming, distributed state machines, real-time dis-
tributed programming.

1 Introduction

The Swift system was designed to investigate the use of network disk striping to achieve the data rates required
by multimedia in a general purpose distributed system. The original Swift prototype was implemented during
1991, and its design and performance was described, investigated, and reported [Cabrera and Long, 1991,
Emigh, 1992]. A high-level view of the Swift architecture is shown in Figure 1. Swift uses a high speed
interconnection medium to aggregate arbitrarily many (slow) storage devices into a faster logical storage
service, making all applications unaware of this aggregation. Swift uses a modular client-server architecture
made up of independently replaceable components.

Disk striping is a technique analogous to main memory interleaving that has been used for some time to
enhance throughput and balance disk load in disk arrays [Kim, 1986, Salem and Garcia-Molina, 1986]. In
such systems writes scatter data across devices (the members of the stripe) while reads ‘gather’ data fromySupported in part by the National Science Foundation under Grant NSF CCR-9111220 and by the Office of Naval Research
under Grant N00014–92–J–1807
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