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1 IntroductionAs computers and algorithms improve so do our expectations of the kind and quality of images that canbe produced. In scienti�c visualization, many data sets are larger than can be visualized in a comfortableamount of time, or even can be read into the available memory. The research described here explores theuse of multi-dimensional trees to deal with both the spatial and temporal aspects of this problem.Our particular problem area is visualization of sampled k-dimensional scalar data arranged on a regulargrid. Our visualization method is direct volume rendering. However, we believe the data representationparadigm we use is applicable to more general multivariate and non-rectilinear data sets, and also canprovide useful insights into the imaging of any large graphical database.Our approach is to build a space-e�cient hierarchy over the data, each node of which contains threetypes of information: a model of the data below it; error and evaluation information for selective traversal;and structural information. The user de�nes acceptable tolerances for evaluation parameters, and selectivetraversal of the tree de�nes that part of the hierarchy within those tolerances. Nodes beneath this selectedsubset of the tree can be pruned, resulting in an alternate, often more succinct, representation of the data.For imaging, the shallowest regions of the selected tree that lie within the tolerances are drawn.We have found that selective traversal produces images that are both subjectively and quanti�ably veryclose to those produced using the entire data set, but is signi�cantly faster. It provides an extremely exibletool for creating error-controlled images in acceptable time. Furthermore, by storing the selected portion ofthe tree, the method can also provide data compression.2 Background and Related WorkWork most closely related to ours is that concerned with hierarchical data structures for controlled imaging,algorithms for fast volume rendering, and methods for dealing with large data sets.Meagher did some of the earliest work in representing 3D data using octrees [Mea82], and many variationshave appeared over the years. Levoy used a binary octree to avoid regions whose data was transparent [Lev89,Lev90]. Wilhelms and Van Gelder used a max-min octree to avoid regions not intersecting the desiredisosurface, and presented a space-e�cient subdivision strategy, called branch on need (BON) [WVG92].This paper extends octrees and the BON strategy to k dimensions.Laur and Hanrahan build an octree over voxels, and compute the data mean and root mean squareerror (RME2) at each node [LH91]. This permits volume rendering by progressive re�nement, with the userspecifying an error tolerance. Nodes with RME2 within the tolerance are rendered as single \splats". Ourwork builds upon that paper, and extends it in several ways:1. Data models other than a constant (the mean) are supported, and computed throughout the tree inconstant time per node (Section 3.3). In particular, a trilinear model has been implemented. Otherpolynomial models are easily incorporated, and the design allows for other sets of orthogonal basisfunctions.2. Both voxel and cell conventions are supported.3. Error metrics based on Lq norms are supported (Section 4.3.1); RME2 corresponds to the L2 norm.Experiments indicate that higher values of q give better images for the same number of rendered objects(Section 8.2).4. Errors can be weighted by an \importance" function (Section 5).5. We have quanti�ed image di�erences (Section 8.2).2



Funkhauser and Sequin used a hierarchy for gaining consistent frame rate for complex viewingenvironment [FS93]. They also used a weighted combination of parameters to control imaging.Other than using hierarchies, speed gains for direct volume rendering have been achieved by using voxelsplatting [Wes89, Wes90], hardware-assisted projection [ST90, LH91, WVG91], and preprocessing [Cha93,DFM87, Wil92, VGW93]. Preprocessing, however, often involves creating large auxiliary data structures,which we are particularly trying to avoid in the research presented here.Our method of hierarchical data representation has some similarities to wavelets and multi-resolutionanalysis [Mal89, Chu92, Mur93, GSCH93], but it has several signi�cant di�erences:1. When a region is divided in two, the two subdivisions are not necessarily of the same length. Lengthsthat are not powers of two are handled naturally.2. Basis functions on the same level, or \scale", are orthogonal, but those on di�erent levels may not be.Basis functions are not normalized.3. There is no dilation, and no single \mother wavelet". Several independent basis functions may existon the same level in the same interval, such as a constant, a linear, and a quadratic function.4. \Detail" functions are not used. At any point, the value of the model function depends on basisfunctions at a single level only, not on a sum over all levels.5. Basis functions at the same level have either identical supports, or disjoint supports; there is nooverlapping.For example, Muraki used multi-resolution analysis to represent 3D volumes [Mur93]. In constrast to ourmethod, basis functions overlapped, and the calculation of one function value involved as many as 2000 basisfunctions.Malzbender described e�cient volume rendering through the use of Fourier transforms [Mal93]. Levoydescribed a variation that included a lighting model [Lev92]. Neither method can model opacity.Ning and Hesselink [NH92, NH93] used vector quantization to produce compressed data sets that couldbe rendered directly. While this approach gives very good compression, it is not as exible as a hierarchicalmodel for imaging.3 Hierarchical Data ModelsThis section describes the techniques to compute data models and approximation errors at all nodes of amulti-dimensional tree. E�ciency is achieved by computing the model and error at each node in terms ofthose values for the node's children. The set of basis functions for the model is �xed for a given tree, butthere is considerable exibility in choosing this set.3.1 NotationWe will be using notation for k-dimensional space of reals, Rk. In practice, k is usually 3 or 4. In general,bold face letters represent k-D vectors. Thus, location in k-D space is denoted by x = (x1; : : : ; xk). In 3-Dand 4-D we will often use (x; y; z) and (x; y; z; t).A volume in Rk is a rectangular k-D parallelopiped, or closed interval denoted as [xmin;xmax]. That is,point x is in the volume if and only if xmin;j � xj � xmax;j for j = 1; : : : ; k. The width in dimension j isdenoted by wj = xmax;j � xmin;j; the vector of widths is w.The volumetric data is given as discrete samples on a regular k-D grid of resolutions r = (r1; : : : ; rk).Sample data points are indexed by a k-D index p, where pj runs from 1 to rj . The spacings of the data are3



voxel model cell modelFigure 1: A voxel is the region surrounding a data point, whereas a cell is the region between data points.�x. The relationship of the grid to xmin and xmax depends on whether we are using the voxel convention,or the cell convention (see Figure 1).1. In the voxel convention, wj = rj�xj, xmin;j = �12rj�xj, and xmax;j = 12rj�xj. Each voxel isconsidered to have a sample data point at its centroid. Thus, the location associated with index p is((p1 � 12r1)�x1; : : : ; (pk � 12rk)�xk).2. In the cell convention, wj = (rj � 1)�xj, xmin;j = �12(rj � 1)�xj, and xmax;j = 12 (rj � 1)�xj. Eachcell is considered to have sample data points at each of its corners. Thus, the location associated withindex p is ((p1 � 12r1 + 12)�x1; : : : ; (pk � 12rk + 12 )�xk).Values of the sample data are denoted by g(p), and the data viewed as a function throughout the volume isg(x).3.2 Inner Products and OrthogonalityThe derivation and error analysis of the hierarchical representation rest upon the concept of inner product.Indeed, by conducting the analysis in terms of a general inner product, many of the complicated details ofparticular choices are avoided, and we retain the exibility to use di�erent inner products with only minorchanges to the implementation. Typical inner products of interest are integrals over the volume and sumsover the grid points. Integrals and sums may be weighted or unweighted.For two functions f and g, de�ned on Rk, and belonging to a suitable function space, let hf; gi denotetheir inner product. (We are not interested in the most general possible function space; let us take it tobe functions with piecewise-continuous second derivatives on the k-D interval (xmin;xmax).) Recall that aninner product is any operation satisfying the properties, or axioms:1. hf; gi = hg; fi and hf; g + hi = hf; gi+ hf; hi.2. For any scalar c, hf; cgi = chf; gi3. hf; fi � 0, with equality if and only if f = 0.An inner product on a volume induces inner products on subvolumes by restriction, but care must be takento weight the points on the boundaries of several subvolumes so that their total weight is the same as in theoriginal volume. This problem arises in practice only for a cell-based volume and a sum-based inner product.Our implementation avoids the complications by using an integral-based inner product.Two functions f and g are orthogonal if hf; gi = 0. An inner product induces a norm:kfk =phf; fiand the distance between f and g can be de�ned as kg � fk.If function f is separable as f(x; y) = f1(x)f2(y), then hf; fi = hf1; f1ihf2; f2i. The relationship extendsto any number of variables. 4



Now suppose we have a set B of basis functions, fbig, such that distinct functions in B are orthogonalw.r.t hi. (We do not assume that B forms a complete basis for the function space; in fact, we will be interestedonly in �nite B's.)For the purpose of approximating g, let us require f to be a weighted sum of basis functions. That is,f = Pi aibi, where the ai's are real numbers. Then, as is well known from Fourier theory, f is an optimalapproximation, in the sense that kg � fk is minimized, if and only ifhg � f; bii = 0 for all bi 2 BFor optimal f , several important properties will be used in the development:1. hg � f; fi = 0.2. hg � f; g � fi = hg; gi � hf; fi.3. The coe�cients of f are given by: ai = hg; biihbi; bii .4. hf; fi =Pi a2i .3.3 Divide-and-Conquer ApproximationWe are interested in deriving an optimal approximation f to a given function g and error bounds (w.r.t. aninner product hi), over the rectilinear k-D volume V . We seek an expression for f in terms of the optimalapproximation and error bounds for each of VL and VR. Here, VL and VR are a Left subvolume and a Rightsubvolume, respectively, that partition V in dimension j. I.e., V is partitioned by a hyperplane orthogonalto the xj axis.By using the divide-and-conquer approach, we will be able to compute the optimal coe�cients and errorsof approximation for all nodes in the tree in constant time per node, and with only one pass through thedata.1Let V be the closed k-D interval [�12w; 12w]. Let the width wj = wL + wR, where wL > 0 and wR > 0.De�ne xdiv;j = wL � 12wj = 12wj �wR = 12(wL � wR)Let VL, VR be the k-D intervals [(xmin)L; (xmax)L] and [(xmin)R; (xmax)R], respectively. Then, (xmin)L =�12w and (xmax)L = 12w except that (xmax;j)L = xdiv;j. Similarly, (xmin)R = �12w except that(xmin;j)R = xdiv;j, and (xmax)R = 12w. In dimension j, the center of VL is at �wR=2, and the centerof VR is at +wL=2. In other dimensions, their centers remain at 0.The desired approximation f over V will use the basis set B. The approximations over VL and VR arein basis sets BL and BR, which we assume are closely related to B, but apply to their respective domains.Speci�cally, we assume that any function in BL or BR can be obtained as a linear combination of functionsin B, restricted to VL or VR. This assumption holds for polynomials.Let b(L) denote basis function b 2 BL, expressed in the coordinate system of V . Also, denote therestriction of a function b to a subvolume VL by bjL; that is, bjL is equal to b in VL and is zero outside VL.Use similar notations for R.Example 3.1: Consider a 2-D \volume" V with w = (11; 4) and j = 1 (see Figure 2). Let the set of basisfunctions be B = f1; x; y; xyg. Suppose the desired partition is wL = 8 and wR = 3. The centroid of VL inthe coordinate system of V is at (�1:5; 0).1The computation is also more accurate numerically than summing in a \for loop" through the data.5
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Figure 2: Basis function x for V , VL and VR inExample 3.1.
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Height 1Figure 3: The BON strategy on an 11x4 2D\volume". Solid lines show how nodes subdivide.Dashed lines are voxel or cell boundaries.The basis set BL also has f1; x; y; xyg, but they are de�ned in the coordinate system of VL. Then wehave: 1(L) = 1jL 1(R) = 1jRx(L) = xjL + 1:5jL x(R) = xjR � 4jRy(L) = yjL y(R) = yjRxy(L) = xyjL + 1:5yjL xy(R) = xyjR � 4yjRObserve that the set of linear equations can be solved quickly for f1jL; xjL; yjL; xyjLg in terms off1(L); x(L); y(L); xy(L)g.The idea extends to any number of dimensions: additional dimensions remain centered on 0, like y. Also,higher degree polynomials can be translated, and the translations can be inverted e�ciently, as the matricesinvolved are triangular.Because basis functions are not normalized, it is convenient to de�ne unscaled coe�cients, Ai, byAi = hg; biiThen the optimal approximation is f = Xi � Aihbi; bii� bi. To �nd Ai, decompose g into gjL + gjR, therestrictions to VL and VR. Ai = hgjL; bii+ hgjR; bii = hgjL; bijLi+ hgjR; bijRiBut bijL is a linear combination of certain b(L)n , and bijR is a linear combination of certain b(R)n .We will recursively derive optimal approximations fL to gjL and fR to gjR. Therefore,(AL)n = hgjL; b(L)n i and (AR)n = hgjR; b(R)n iare known when the two subproblems are completed. These values can be used to compute the Ai. Thegeneral description above will now be illustrated for some common basis sets.6



Example 3.2: Suppose the basis set B consists of just the constant function, 1. There is only one unscaledcoe�cient, A0, so its subscript can be omitted. We have A = AL+AR. The scaled coe�cient is the (possiblyweighted) mean value of g, and is given bya = h1jL; 1jLiaL + h1jR; 1jRiaRh1; 1iThis case is essentially the one considered by Laur and Hanrahan, using the voxel model [LH91].Example 3.3: Suppose k = 3 or 4 and B is the trilinear or quadlinear basis. We shall index bi 2 B asfollows: b0(x) = 1 for x 2 Vb1(x) = x1b0(x)bi+2(x) = x2bi(x) for i = 0; 1bi+4(x) = x3bi(x) for i = 0; : : : ; 3bi+8(x) = x4bi(x) for i = 0; : : : ; 7Thus the bits of the index indicate whether the corresponding linear factor is present, and bi is independentof xj just when bi=2j�1c is even. We identify (x1; x2; x3; x4) with (x; y; z; t).Similarly to Example 3.2, for decomposition in direction j, we haveAi = (AL)i + (AR)i for bi=2j�1c even (bi independent of xj)For bi=2j�1c odd, we note (see Figure 2) thatbijL = b(L)i � 12wRb(L)i�2j�1 bijR = b(R)i + 12wLb(R)i�2j�1From this it follows thatAi = (AL)i + (AR)i � 12wR(AL)i�2j�1 + 12wL(AR)i�2j�1 for bi=2j�1c odd (bi linear in xj)Example 3.4: Continuing with Example 3.1, assume the indexing is as described in Example 3.3: b0 = 1,b1 = x, b2 = y, b3 = xy. Here j = 1, so bi is linear in x when i is odd. Then we �nd thatA0 = (AL)0 + (AR)0A2 = (AL)2 + (AR)2A1 = (AL)1 + (AR)1 � 1:5(AL)0 + 4(AR)0A3 = (AL)3 + (AR)3 � 1:5(AL)2 + 4(AR)2Example 3.5: Quadratic basis functions can be added to a set that already includes linear and constantfunctions. Say b0 = 1 and b1 = x. The general form of b2 on an interval [�12w; 12w] isb2(x;w) = x2 � 112w2We have hb2; b2i = w5=180 for the squared-integral inner product.Now when V is decomposed into VL and VR, we getb2(x;w)jL = b(L)2 (x+ 12wR; wL)� wRb(L)1 (x + 12wR; wL) + 16wR(wR � wL)b(L)0b2(x;w)jR = b(R)2 (x� 12wL; wR) +wLb(R)1 (x� 12wL; wR) + 16wL(wL �wR)b(R)07



The de�ning equation for A2 is A2 = hg; b2i = hgjL; b2jLi+ hgjR; b2jRiIt follows that the recursion equation for A2 isA2 = (AL)2 + (AR)2 �wR(AL)1 +wL(AR)1 + 16(wL � wR) (wL(AR)0 �wR(AL)0)Now the error in the approximation, e2 def= hg � f; g � fi, over the volume V , is computable as follows:hg; gi = hgjL; gjLi+ hgjR; gjRihf; fi = PiA2i =hbi; biie2 = hg; gi � hf; fiTo summarize, in each subproblem, VL and VR, we compute fAig and hg; gi, then use those results tocompute these quantities for V . To decompose in several j directions, we decompose in one after the other,recursively. At the bottom level, these quantities are computed directly from the data.4 Implementation of the HierarchyOur hierarchical method uses a exible k-dimensional tree that encodes structural information about the tree,model information describing the data within the region, and evaluation information to control compressionand image quality.4.1 Structural InformationThe hierarchy design is an extension to higher dimensions of the BON octree strategy, described elsewhere[WVG92]. As shown there, this strategy can achieve signi�cant savings when the grid resolutions are unequal,or are not powers of 2; higher dimensions tend to create greater savings. Figure 3 illustrates the main idea in2D. Our implementation handles up to 8 dimensions, but in practice, we have only used 3- and 4-dimensionaldata sets.Two types of structural information are stored within the tree. The �rst is a pointer to the �rst child ofthis node. Sibling tree nodes are contiguous, so one pointer su�ces for all. Nodes on height 1 point to the �rstchild in the data. If the data has been compressed (see below), the siblings are again contiguous; otherwiseother siblings are locatable in the original grid. If the children of a node are discarded due to compression,that node's child pointer is set to zero. The second type of structural information is the branching pattern,stored as a bit vector.4.2 Model InformationThe model information within each node represents the data beneath that node, either exactly orapproximately. In general, the approximation is closest near the bottom of the tree, and gets worse higherup. We have experimented with three data models described below. Only the mean was implemented forarbitrary dimensions; at this point, only 3D data has been used with the two trilinear models.4.2.1 The Voxel Mean ModelThe mean model is a simple voxel model. Each node stores one value representing the average of the datavalues of all points beneath it. While succinct, the model may show discontinuities in imaging where these8



regions meet, even when drawn at the deepest voxel level.2 The spatial cost of storing the mean is oneoating point value. For 3D data, there are about n=7 nodes for n data points; for 4D, the �gure is aboutn=15. The model is easily compressed by truncating the tree and discarding data in its region where desired.Incidentally, the mean model could be represented with Haar wavelets [Chu92], and, indeed, we �rstimplemented the model in that form. The advantage of the Haar wavelet method is that the tree becomes acomplete representation of the data, which is discarded. Disadvantages are that detail functions (7 coe�cientsin 3D, 15 in 4D) need to be combined to recover the means during tree traversal. As the cost of explicitlystoring the mean is only 1/7 the size of the data, we opted for simplicity and did so.4.2.2 The Voxel Trilinear ModelThe voxel trilinear model stores a trilinear function at each node that best �ts the data values representedby the node. The trilinear on height one of the tree �ts the data points exactly, so the data can be discardedand regenerated as needed from the trilinear coe�cients. This model uses the same amount of space as themean model for data and model combined (8n=7 in 3D, 16n=15 in 4D), and sometimes provides a betterapproximation of the data at higher levels of the tree.4.2.3 The Cell Trilinear ModelIn this more standard cell model, data points lie at the corners of cells and are shared between neighboringcells. At height one, a node covers (up to) a 2k array of cells. The pointer refers to the minimum datapoint of this array. For 3D data, these 8 cells contain 27 data points. The data points along the exteriorsof these cells are shared by neighboring cells. Assuming a trilinear function over the cell regions, the data�eld is continuous, so rendering at the deepest level of the tree can provide a more continous image than theprevious methods.Without compression, the spatial cost of this model, assuming oating point 3D data, is the size of theoriginal data n plus approximately n=7 nodes each of which contains 8 trilinear coe�cients, or 15n=7. Inmany cases this extra spatial cost may not prohibitive.Data compression is more complex for a cell model, because the data is shared between nodal regions. Onesolution is to separate the data into smaller grids which have redundant data points along the boundaries.For example, for a full 3D tree, each height 1 node could point to a cluster of 27 data points. In such arepresentation, the data level would contain approximately 27n=8 data points, rather than n points, and thetree contains n=7 nodes. Larger clusters of 125 yield 125n=64 data and n=56 tree nodes. But each tree nodecontains as many coe�cients as needed by the model, e.g., 8 for the trilinear model. To achieve compression,a substantial fraction of clusters need to be discardable.4.2.4 Continuity IssuesIn choosing a model, one can give priority either to continuity between regions or to a best �t of the dataover the de�ned region. We chose the latter, as being a more appropriate representation for scienti�c data.However, for some purposes, one might prefer a model that minimizes discontinuity along boundaries. Forexample, one could use a pyramid model where each pyramid level reduces the size of the data by two in eachdimension, and stores either a mean or representative data point from the region below it. If the pyramidsrepresented cells, imaging on a single level would give continuity. However, pyramids do not compress exibly.Another strategy would be to store a higher-order model, such as a tricubic, at each node. While thisrequires 64 coe�cients rather than 8, it can also �t data more closely and provide continuity with neighbors.For some data sets, the extra compression that may be possible for a given amount of error may justify sucha model. This can again provide continuity when imaging at a single level, as well as easy compressibility.2Splatting ameliorates discontinutities, but introduces other rendering inaccuracies involving opacity [LH91].9



However, even if continuity between regions on a particular hierarchy level is maintained, when imagingis done on di�erent tree levels, discontinuities will result.4.3 Evaluation InformationThe two types of evaluation information stored in the hierarchy are nodal error and data importance.4.3.1 Nodal ErrorThe nodal error is an average deviation of the model (f(p)) from the data (g(p)) within the region V (withjV j data points) covered by the node. In the Lq norm, the equation is:e =  1jV jXV jg(p)� f(p)jq! 1qFor q = 2 (see Section 3.3), e can be computed from hg; gi and the coe�cients of f ; also, either a sum oran integral can be used. For q 6= 2, each node's e must be computed from scratch.3 Experimental evidence,discussed later, suggests values of q much higher than 2 may give superior images for the same compression.4.3.2 Data ImportanceThe second evaluation metric is data importance. In many data sets, di�erent data values and/or di�erentregions have di�erent interest levels. For example, the air surrounding a CT scan may be consideredunimportant, or certain values in a simulation may be known to represent background. Initially all data isgiven importance 1. Using an interactive transfer function editor, the user can design an importance functiongiving each data value an importance between 0 and 1. At each tree node the maximum importance of anydata point in its region is stored (in one byte).5 Selective TraversalOnce the tree has been created, the user can selectively traverse it either for imaging or for data compression.A number of evaluation parameters are used to control the traversal, most of which are calculated on they not stored in the tree. Left in their default state, the parameters have no e�ect and traversal continuesuntil a node with no error is found. The user-controlled evaluation parameters are:1. Model Error Threshold : The user sets an allowed error value between zero and one, which is multipliedby the standard deviation of the entire volume. Nodes with nodal error (possibly modi�ed below) ator below this threshold are rendered as single objects.2. Data Importance: Using data importance is optional. When activated, the node's nodal error ismultiplied by its importance before being compared to the threshold.3. Pixel Coverage Weighting : The user can de�ne a pixel coverage value such that any node that projectsto less than the coverage is given reduced importance. The nodal error is again multiplied by thisvalue before being compared to the threshold.4. Region Restrict : The user can interactively de�ne a rectangular 3D region and limit traversal to nodesand data within the region.5. Dimension Restrict : For data with greater than three dimensions, the user can de�ne which threeshould be used for imaging, as well as the constant values for the dimensions not imaged. By default,imaging uses the �rst three dimensions and plane 0 of any further dimensions.3except q =1, the max-norm 10



6. Tree Depth: The user may specify a depth in the tree such that traversal never goes deeper.7. Allowed Time: This option is somewhat orthogonal to the above. If set, the system calculates thedeepest level that, using a rendering cost estimate, can be rendered in the allowed time.8. Clipping : When traversing for visualization, there is a further automatic evaluation parameter ofvisibility. Each node is checked to see if the region it represents is at all visible on the screen, andreturns immediately if not.The evaluation metrics de�ned above are checked at each node of the tree during selective traversal todetermine whether traversal should descend further or stop and return. If traversal stops and imaging isrequested, the region is drawn if visible. If the traversal is for compression, this node becomes a leaf; itschild pointer is set zero, and the rest of the subtree is discarded.5.1 Selective Traversal for Visualization or CompressionSelective traversal makes it possible to replace the data with a hierarchical representation that adequatelyrepresents it. In many cases, this representation is smaller than the original data set, because some datavalues or regions are of no importance, because the data values in some regions are constant or otherwisemodeled very accurately, or because some amount of error compared to the original data is tolerated. Inthese cases, the tree representation can be written out and used in future to represent the data.When selective traversal is used for imaging, the user will often allow much greater error, in the interestof speed, than she would as a permanent data representation. For such a use, the hierarchy must be retainedbecause future more accurate images may require it.6 Rendering MethodsOur hierarchical approach is not restricted to any particular rendering method. The implementationperforms direct volume rendering using the coherent projection approach [WVG91]. This method calculatesinformation concerning the projection of a rectilinear cell and uses hardware Gouraud-shading for rapidrendering. It is generally used with orthogonal projection on rectilinear cells. While the method does notproduce the highest quality images, it does produce quite good images rapidly.Consider renderings with no compression on a 3D volume of resolutions (rx; ry; rz), with n = rxryrz. Thevoxel mean model treats the projected region as having a constant value. One region drawn for each datapoint, n in all. The voxel and cell trilinear models treat the projected region as a trilinear function, whichis evaluated at region corners. Voxel trilinear draws about n=8 cells, most covering 8 voxels. Cell trilineardraws (rx�1)�(ry�1)�(rz�1) cells. Thus, the voxel models and cell models do not align exactly. Constantvalue coherent projection is approximately twice as fast as when corner values vary, due to reduced amountsof interpolation.Splatting [Wes90, LH91] provides a fast, reasonable alternative to rendering constant value voxels. Wepreferred coherent projection because the region projections �t more continuously than do splats, particularlywhen neighboring regions are of di�erent sizes, due to compression. Higher-quality rendering methods,including ray-casting or software projection methods, could be used with the hierarchical approach as well.It should be pointed out that the evaluation parameters, except for coverage, do not take into accountimaging issues. For example, the error does not consider the transfer function used to map data values tocolors; nor does it explicitly take into account possible discontinuity between neighbor regions that may bedrawn in one image. The hierarchical model could accommodate a more image-based metric than we haveused, should this be considered more important. 11



7 Error AnalysisTwo related but not identical issues must be considered in examining the hierarchical approach, or anyvisualization method. The �rst is the validity of the representation compared to the actual data being used.The second is the quality of the image, a more di�cult thing to measure.Our basic metric for data validity is the nodal error. In selectively traversing the tree, this is weighted, ifthe user wishes, by parameters described previously. The user-speci�ed allowed nodal error determines howclosely the data representation used for visualization or compression �ts the original data.Our metric for image quality is the closeness of the resultant image with some weighted error to astandard image produced by the same visualization method allowing no error. Thus, it is better to referto this comparison as the di�erence between images rather than the error. However, since the comparisonsuse techniques of error analysis, it seems more natural to retain the name error for the analysis. Thevisualization methods are constant-value coherent projection for the mean voxel model and varying-�eldcoherent projection for the trilinear models.In judging image quality we attempt to quantify what is partly a subjective evaluation. To do so, wehave examined �ve error levels determined by the variations between the standard image and those producedwith varying error and other evaluation parameters. The �ve error levels are quanti�ed by their root meansquared image errors (RME2), and their absolute maximum image error (MAE) compared to the standardimage. By image error, we mean pixel-by-pixel color di�erence between the standard image and the imagewith error, scaled to the range 0-255. Only pixels that are non-black in at least one image count toward theRME2. Di�erence images show the absolute value of the di�erence between two images.The �ve levels, with subjective evaluations, are speci�ed as follows:1. Level 0: RME2 = 0; MAE = 0. This is the standard image with no error.2. Level 1: RME2 < 3; MAE < 10. A level 1 image is nearly indistinguishable from the standard.3. Level 2: RME2 < 6; MAE < 20. A level 2 image is still very close to the standard, though thedi�erence image does show a slight but visible di�erence. Di�erences between images are subtle.4. Level 3: RME2 < 9; MAE < 40. A level 3 image is close the original on �rst glance, but on closerexamination di�erences can be seen. Di�erences are obvious on di�erence images.5. Level 4: RME2 < 12; MAE < 80. A level 4 image shows clear di�erences and sometimes blockyartifacts, but the main features visible in the standard image are still clear.Images with even greater error may be useful for quick positioning and scanning. We were only interestedin evaluations that provided images with good information content. The above criteria gives considerableweight to the maximum absolute di�erence, although this may involve only a few pixels. We chose to do sobecause in scienti�c data this seemed an important consideration. For images mainly of aesthetic value, theweighting for MAE could probably be reduced with little ill e�ect.8 Experimental ResultsIn our experiments, we concentrated on answering three main questions:1. What are the space and time costs of using a hierarchy compared to rendering from the data itself?2. How much can this be reduced using lossless and lossy compression?3. What choice of evaluation parameters provides a good balance between imaging time and quality?12



Dim. Data Set Resolution Sample Points Data Type Std.Dev3D Hipiph 64x64x64 262,144 oat .01845Sod 97x97x116 1,091,444 byte 15.62P6985 244x91x64 1,421,056 oat .004208Dolphin 320x320x40 4,096,000 short 612.3CTHalf 251x512x113 14,521,856 short 612.6Mandelbrot Set 256x256x256 16,777,216 oat 443.98CTHead 512x512x113 29,622,272 short 564.14D Radm 29x69x63x9 1,134,567 oat .001014Heart 256x256x8x16 8,388,608 short 57.38Table 1: Data Set CharacteristicsWe especially wished to explore ways to quantify our results. Space limitations force this description to beabbreviated; a longer version is available from the authors.We used a selection of 3D and 4D data sets, including molecular simulations, CT data, simulated CFDdata, mathematical functions, and experimentally measured pollution data.4 All were on rectilinear grids.Table 1 shows characteristics of the data sets we explored. Statistics were run on a Silicon Graphics RealityEngine II, with 64 megabytes of memory.8.1 Space UsageThis section examines the spatial requirements of using hierarchies, considering lossless and lossyrepresentations. We assume, for ease of comparison, that all our data was oating point (4 bytes). Allmean nodes require 16 bytes, and all trilinear nodes require 44 bytes.8.1.1 Three-Dimensional DataAs Table 2 shows, for 3D data, the mean and voxel trilinear hierarchical representation without compressiontook about 1.57 times the size of the data and cell trilinear took 2.57 times that size. To measure compressionfrom these sizes we used the size of the tree actually traversed plus the size of the data actually accessed,assuming the rest could be discarded. For the cell trilinear model, either the entire data set must be kept, orclusters of 27 data points involving considerable redundancy must be kept, whichever yields the lower total.In general, the hierarchical representation with no error allowed little compression. The exceptions werethe CTHead, CTHalf, and Mandelbrot Set data sets, which had substantial constant regions.Allowing even 1% error (relative to the dataset's standard deviation) usually brought the required sizedown below the size of the original volume, and 5% was commensurably more successful.On the data sets where importance and restriction were used, these generally brought the requiredhierarchy size down to a fraction of the original data size, even allowing no error on the data that remained.Allowing more error on those volumes had relatively little impact.8.1.2 Four-Dimensional DataFor 4D data and hexadec trees, the voxel mean model took about 1.27 to 1.33 times the size of the data,compared an optimal ratio of 1.267. We also compared the size taken by the 4D hexadec tree to separate3D trees for each time slice. In all cases Table2 considerable savings.4Sources omitted as requested in call-for-papers 13



Data Data Std No 1% 5% + Importance/RestrictSet Model Error Error Error No Error 1% Error 5% Error3D DataHipip Voxel Mean 1.57 1.57 1.03 0.55 - - -Voxel Trilinear 1.57 1.57 0.59 0.27 - - -Cell Trilinear 2.57 2.57 1.21 0.42 - - -Sod Voxel Mean 1.59 1.12 1.11 1.01 0.34 0.34 0.34Voxel Trilinear 1.59 1.46 1.44 1.31 0.55 0.55 0.55Cell Trilinear 2.59 2.49 2.45 2.23 1.03 1.03 1.00P6985 Voxel Mean 1.58 1.58 1.44 0.48 - - -Voxel Trilinear 1.58 1.58 0.46 0.14 - - -Cell Trilinear 2.58 2.56 0.76 0.19 - - -Dolphin Voxel Mean 1.57 1.26 0.36 0.17 0.21 0.17 0.08Voxel Trilinear 1.57 1.27 0.42 0.24 0.12 0.11 0.06Cell Trilinear 2.57 2.28 0.76 0.50 0.65 0.37 0.19CTHalf Voxel Mean 1.58 0.87 0.79 0.48 - - -Voxel Trilinear 1.58 0.95 0.92 0.58 - - -Cell Trilinear 2.58 2.55 1.78 0.93 - - -Mandelbrot Voxel Mean 1.57 0.87 0.79 0.48 - - -Set Voxel Trilinear 1.57 0.94 0.77 0.62 - - -Cell Trilinear 2.57 1.96 1.77 1.06 - - -CTHead Voxel Mean 1.58 0.73 0.68 0.43 - - -4D DataRadm Voxel Mean 1.33 1.14 0.71 0.44 - - -Separate 3D Trees 1.62 1.41 - - - - -Heart Voxel Mean 1.27 1.26 1.26 1.26 0.85 0.85 0.85Separate 3D Trees 1.57 1.57 - - - - -Table 2: Space Usage by Test Data Sets, discussed in Section 8.1. Numbers represent the ratio of thenecessary space for the data representation divided by the size of the original data set. Assumes data valuestake 4 bytes, mean nodes take 16 bytes, and trilinear nodes take 44 bytes. \+ Importance/Restrict" meansrestriction and/or importance was used.8.2 Image Evaluation and Selective TraversalFor this exploration, we compared images generated with varying amounts of error to those made with noerror for their particular data model (see Table 3). The times are given in c.p.u. seconds using one processor.In all cases, we found noticeable speedup (usually by two or three times) between the image generatedat \level 0" (no error), compared to \level 1" error, from which it is is virtually indistinguishable. (Error\levels" were de�ned in Section 7.) In going from level 0 to level 2 error, the speed-up was from three toten times, and images were generally nearly indistinguishable again. Level 3 images, where small di�erencesbegin to appear, saw speed-ups, compared to level 0, of from four to twenty times. Even level 4 images arehard to distinguish from the standard on many volumes, but can be drawn, usually, 10 to 50 times faster.Quite reasonable images at greater error levels can often be drawn hundreds of times faster.14



Data Set Model No Level 0 Level 1 Level 2 Level 3 Level 4Tree RME2=0 RME2�3 RME2�6 RME2�9 RME2�12MAE=0 MAE�10 MAE�20 MAE�40 MAE�803D DataHipip V.Mean Time 11.71 11.98 5.99 1.52 0.52 0.24UserE 0.00 0.00 0.018 0.15 0.25 0.90V.Tril. Time 22.01 3.95 1.33 0.84 0.38 0.25UserE 0.00 0.00 0.02 0.05 0.20 0.25C.Tril. Time 22.08 27.96 4.91 2.66 1.02 0.44UserE 0.00 0.00 0.015 0.035 0.12 0.25P6985 V.Mean Time 63.29 68.22 41.78 21.31 15.61 7.08UserE 0.00 0.00 0.022 0.040 0.055 0.11V.Tril. Time 128.57 22.17 11.4 9.04 5.78 3.48UserE 0.00 0.00 0.003 0.0055 0.014 0.032C.Tril. Time 128.57 151.45 65.21 49.26 17.74 8.29UserE 0.00 0.00 0.0012 0.0023 0.013 0.03CTHalf V.Mean Time 391.56 332.23 168.10 150.77 145.69 80.78UserE 0.00 0.00 0.05 0.075 0.10 0.20C.Tril. Time 961.82 778.02 548.37 476.82 307.75 113.07UserE 0.00 0.00 0.01 0.018 0.04 0.12CTHead V.Mean Time 799.1 567.9 357.4 196.2 129.6 77.0UserE 0.00 0.00 0.1 0.2 0.30 0.45Table 3: Time and Error by Test Data Sets, discussed in Section 8.2. Times are c.p.u. seconds on RealityEngine II.Figures 6, 7, 8 and 9 (see slides) shows images of error level 0, 2, and 4 (at the settings used for Table 3)for several volumes using the voxel mean and/or cell trilinear models. They also show a di�erence imagebetween levels 0 and 4, with color di�erences multiplied by 5 for greater visibility.We found the described levels of image di�erence to be an interesting �rst step in quantifying imagequality, but don't feel it is really comprehensive. Other characteristics of the image, which we are not usingto control rendering, clearly play a major role in image quality. For example, the small Hipip volume showsthe clearest di�erences in image quality using the �ve levels, and also the greatest speed up. But for theP6985 ow volume (photos, Figure 5) and the CTHalf (slides, Figure 8 and Figure 9), level 4 images werevisually di�cult to di�erentiate from level 0 images, even on the monitor. For P6985, this is probablyrelated to the relatively smooth gradient of the data. For the relatively large CTHalf volume drawn withinthe window, regions projected to few pixels, so discontinuities and di�erences are hard to see.Figure 11 compares voxel mean images to cell trilinear images with no error (left) and requiring the samerendering time (right), showing that cell visualization can be noticeably more continuous.15



8.2.1 Error ExponentsFor our �nal examination, we explored raising the nodal error to higher exponents (Section 4.3.1). Thisgives greater relative weight to large errors. Figure 10 (see slides) compares a zoomed image of the Hipipvolume using no error (time 8.36 seconds) to one using the standard L2 error, the L6 error, and L12 error.All these took 0.24 seconds to draw and accessed almost the same amount of the tree. But due to di�erenterror criteria, the various methods made di�erent choices on which parts of the tree to access. All would beclassi�ed, by our system, as level 4 errors. Notice that with the L2 error, some of the small red and bluefeatures have disappeared, but gradually reappear with the higher error exponents. Some, however, did notreappear at this level of error for any error exponent.The cell trilinear method did not show much sensitivity to the choice error metric on this data set.8.2.2 General ObservationsIn studying images from the di�erent data models, we found the voxel mean model generally more successfulthan we expected. Sometimes (not always), in nearly front-on views, discontinuities are obvious. Allowinggreater amounts of error, discontinuities between regions were often less using the mean model than thetrilinear ones.The voxel trilinear model could sometimes produces images very close to the voxel mean model is muchless time, but it was inconsistent. Because the trilinear function extrapolates the function over the datapoints, it can cause irritating discontinuities between neighboring regions when the extrapolations do notmatch. It would be possible, though we did not implement it, to image using constant value voxels from thevoxel trilinear model. This might make it possible to keep the advantages of both.The cell trilinear model, because the image drawn at the lowest level was continuous, did produce themost consistently pleasing images. That is, on volumes where the best possible voxel image tended toappear discontinuous, this model did not. There was, though, a commensurate cost in extra storage thatmight not be worth it on large volumes where di�erences between the images are often slight anyway.Interesting, discontinuities between regions were occasionally obvious when error was allowed, showing thecost of attempting to best �t the data throughout the region rather than only along the borders. For scienti�capplications, we still feel a good data model is better than a good image.9 ConclusionsWe found that the hierarchical strategy was extremely successful in providing a exible imaging approach.It provides a number of easy-to-use parameters that control the image quality and speed in an intuitivemanner. Because the parameters are related to the error compared to the original volume, they allow usersto control the accuracy of the image. While hierarchies do not compress as well as other methods, thecompressed version can be used nearly as quickly as the original data, the only decompression cost beinginvolved in tree traversal and evaluation. Further, in many cases, users may feel more con�dent than we didin using restriction and importance to reduce the necessary data size.We believe the hierarchical approach could be extremely helpful for irregularly sampled data sets. Theuse of an error-controlled regular hierarchy avoids many of the problems in imaging irregular regions, andif many data points are clustered in small regions, this regions can be given less weight when they projectto only a few pixels. We also think it would be interesting to extend this work in areas other than scienti�cvisualization, using metrics more closely tied to image quality.References[Cha93] Judy Challinger. Scalable parallel volume raycasting for nonrectilinear computational grids. In IEEEParallel Visualization Workshop, October 1993. (to appear).16
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Figure 4: The Radm 4D data set showing the YZT dimensions for X=5. T varies upward in the image.
Figure 5: The P6985 data set showing voxel mean, voxel trilinear, and cell trilinear with no error (level 0)descending in the left column, and the same models with level 4 error in the right column. The fastest imageshown was 44 times faster than the slowest. 18



The following are shown as slides:Figure 6: The Hipip data set using the voxel mean model showing error levels 0, 2, and 4 and the di�erencesof levels 0 and 4 scaled by 5.Figure 7: The Hipip data set using the cell trilinear model showing error levels 0, 2, and 4 and the di�erencesof levels 0 and 4 scaled by 5.Figure 8: CT Half data set using the voxel mean model showing error levels 0, 2, and 4 and the di�erencesof levels 0 and 4 scaled by 5.Figure 9: CT Half data set using the cell trilinear model showing error levels 0, 2, and 4 and the di�erencesof levels 0 and 4 scaled by 5.Figure 10: The Hipip data set using the voxel mean model showing a no error images compared to level fourimages with error exponents of 2, 6, and 12. Notice the features that disappear at error exponent 2 andsome of which reappear at higher error levels.Figure 11: The Radm data set comparing the mean and cell trilinear models. Left top is the no error voxelmean image; left bottom, the no error cell trilinear image; and at the right, images using those respectivemodels with some error, taking 1.68 seconds to draw.
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