
Classifying Networks:When Can Two AnonymousNetworksCompute The Same Vector-ValuedFunctions?Nancy E. NorrisUCSC-CRL-94-01March 30, 1994Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractAn \anonymous network" is a computer network in which all processors runthe same algorithm during a computation. We will consider two classi�cations ofanonymous networks: Networks will be called \f -equivalent" if the set of vector-valued functions each can anonymously compute is the same, and \p-equivalent" ifthe set of functions each can compute is the same, \up to a permutation". We �rstgive a characterization of the vector-valued functions a given network can anony-mously compute. This extends a result in [YK88] characterizing the scalar-valuedfunctions a network can compute. Next, we develop algebraic and graph-theoretictechniques for handling edge-labeled digraphs. We will use these techniques, alongwith results from algebraic automata theory and permutation group theory, toderive a polynomial-time algorithm for determining whether two networks are f -equivalent. This will yield a polynomial-time algorithm for determining whethertwo edge-labeled digraphs have the same lattice of quotient-graph isomorphisms,and will let us conclude that classifying networks by what they can compute iseasy. Classifying networks by \p-equivalence", on the other hand, is likely to bea much harder problem. We will present a polynomial-time transformation of thegroup-isomorphism problem to the problem of \p-equivalence". As of this writing,the best known algorithm solves group-isomorphism in O(nlgn) time for a groupof order n.
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11. IntroductionOne year at a large philosophy conference, a group of n philosophers ina seminar discovered that they were all named Linda. Since all had thesame name, talk turned naturally toward symmetry breaking experiments thatthey might undertake. The dining philosophers problem (involving symmetry-breaking in a ring) immediately came up, but seemed a bit old hat. Then Linda(one of them) suggested an experiment: They would form themselves into a net-work and attempt to distributively decide where to eat. They went outdoors to a�eld, and there made 3n can telephones by connecting pairs of cans with string.Each philosopher picked up 6 cans. They then arranged themselves around the�eld, tightened the strings, and attempted to discern the majority preferenceamong two eating places, by talking over their phone lines. The conversationbecame rather involved. One said to another, \The Linda on my third cansaid that the Linda on her second can said that the Linda on her fourth canwants pizza. The Linda on my fourth can said that the Linda on her secondcan also wants pizza. If I am going to tally their votes I need to know if thesewere the same Linda or two di�erent people". Another philosopher wondered:\If we were arranged in a line or a circle instead of in our current con�gura-tion, would this problem be easier to solve?" Later, over lunch, conversationturned to the more general question of the e�ects of symmetry on distributedfunction-computation.Consider a system of interacting agents; for instance, the molecules in a uid, the birdsin a ock, or the neurons in a neural net. We will call such a system \anonymous" if theagents are functionally identical. This paper examines \anonymous networks"; anonymoussystems whose agents are the processors in a connected network. For anonymous networks,in contrast with some other anonymous systems, the coupling between agents is �xed:Which processor is linked to which in the network does not change over time. We canstate the problem of anonymous computing briey as follows: Consider a network of nidentical processors, each connected to one or more processors in the network by two-waylinks. Suppose that all of the processors have the same id, so that none of the processors hasa distinct id. by which it can identify itself to other processors. However, each processorcan distinguish among its links and has a unique label for each link. In \anonymouscomputing", an operator, outside of the network, assigns each processor a unique name(not available to the processors) from the set f1; : : : ; ng. The operator gives the networkan input vector ~x = (x1; : : : ; xn) from a set In: Processor 1 gets input x1, processor 2gets x2, and so on. The task of the processors in the network is to compute a functionf(~x) = ~y = (y1; : : : ; yn), where ~y is a member of a set On, by communicating amongthemselves over their links. The network will have computed the function when processor1 has computed y1, processor 2, y2, and so on. The network is said to \compute (a function)anonymously" if all the processors run the same algorithm during the computation. The



2 1. Introductionalgorithm at processor i receives xi as input but not the id i. Thus processors do not haveaccess to their ids unless these are given as part of the input.We will call such a network an anonymous network, and the computational problem,computing a vector-valued function on an anonymous network. We will use the conven-tional graphical representation for a network: Networks will be drawn as graphs in whichvertices represent processors, and edges; two-way links between processors. An edge be-tween processor v and processor w in a network is labeled with a pair (k; l) of \link-labels",where k is processor v's name for the link and l is processor w's name for the link. (Figure1.1.) The \graph of a network" is an edge-labeled, directed graph which will be de�nedmore precisely in the next chapter.
N 2,2G

2 3 2,11,2 1,12,2 1,121221 1
21 31Figure 1.1: A network N and its graph GFor instance, the network in Figure 1.1 computes the function f(x1; x2; x3) = (x2 +x3; x3�x2; x3) if processor 1 compute x2+x3, processor 2 computes x3�x2, and processor 3computes x3 whenenver processor 1 gets input x1, processor 2 gets input x2, and processor3 gets input x3.1.1 Why Anonymous?There are several reasons for considering anonymous networks. Anonymous networkscan be used to investigate distributed, leaderless decision-making, and also provide aconvenient vehicle for studying the e�ects of network-topology on network behavior. Onemight, for instance, use anonymous networks to determine the class of computations whichare impossible for a neural-net, even if its processors are universal computers running thesame program instead of the usual �nite-state machines. A non-anonymous network,if it is connected and has arbitrarily powerful processors, can compute any function. Bycontrast, the set of functions an anonymous network can compute depends on the network'stopology. We will see that highly \symmetrical" anonymous networks can compute fewerfunctions than \asymmetrical" anonymous networks.



1.2. Summary Of The Paper 3A potentially useful framework for anonymous networks is in the study of fault-tolerantcomputing1. Here the fault in question is in the transmission of processor ids: Onecan think of an anonymous network as a distributed system in which some or all of theprocessor ids are transmitted incorrectly during computation. A network experiencingfaulty transmission of ids may not be entirely incapacitated. In some networks, dependingon the network's topology, processors may be able to construct unique identities forthemselves even if they are not assigned unique ids. A processor accomplishes this bymaking a local model of the network (by exchanging messages with other processors ) andlocating itself in the model. If a network is highly symmetrical, two or more processorsmay locate themselves in the same spot in their models of the network, and thus assignthemselves the same id. In this case the processors are functionally indistinguishable andhave the same behavior under any algorithm. The extent to which the global structureof a network can be reconstructed by a processor making local queries comes heavily intoplay in the study of anonymous networks.1.2 Summary Of The PaperThis paper addresses three problems. They are:(1) Characterizing the set of functions a given network can compute. In the next chapterwe will develop techniques that can be used to show, for instance, that the networkG2 in Figure 1.2 can compute any function from R3 to R3, because each processor candistinguish itself from the others in the network. The processors in G1 cannot distinguishamong themselves, and G1 can, it will turn out, only compute functions which satisfy:f(x; x; x) = (y; y; y), and if f(x1; x2; x3) = (y1; y2; y3), then f(x2; x3; x1) = (y2; y3; y1),and f(x3; x1; x2) = (y3; y1; y2).
G1 G21 21 212 3 321 11 221 2 1 2

Figure 1.2: G1 and G2 compute di�erent functions(2) Classifying networks by what they can compute. We will consider two classi�cations:For the �rst, we will say that two networks are \f -equivalent" if the set of functions eachcan compute is the same. For the second, say that two networks are \p-equivalent" i� they1See [FLM85,FLP85]



4 1. Introductioncompute the same functions \up to a permutation". (This will be de�ned in Chapter 3.)The question for each classi�cation is: Are there features of the graphs of networks whichcharacterize the f- and p- equivalence-classes a given graph belongs to? For example, thenetworks G1 and G2 in Figure 1.3 look quite disimilar. However, the methods developedin this paper will show that they compute the same functions. What do their graphs havein common? (We will examine this example in greater detail in Chapter 5, in Example
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Figure 1.3: G1 and G2 compute the same functions5.5.2.)(3) Finding a small set of graph features which correctly classify graphs according to thetwo equivalence-relations above.Chapter 2 addresses the �rst problem. In this chapter we will introduce the model andsome of the tools to be used later { covering graphs, universal covers, and a monoid; the\edge-label monoid" E(G) associated with the graph G of a network. We will characterizethe set of functions computable by a network in terms of a collection of trees related tothe universal cover of the network's graph.Chapter 3 introduces quotient-graphs and their isomorphisms. We will �nd partitions� of the set of vertices of a graph G for which a quotient-graph G=� is well-de�ned. Thesecond problem | that of classifying networks, will be solved in terms of these quotients:The \characteristic graph features" we seek for distinguishing networks will be seen to bethe set of all isomorphisms of quotients of the graph of a network. Since isomorphisms



1.3. Related Work 5are bijections between partitions, two networks can have the same set of isomorphisms ofquotients even if their graphs are not isomorphic. We will see that two networks computethe same set of functions i� they have identical sets of quotient-graph isomorphisms, andthat two networks compute the same set of functions \up to a permutation" i� their setsof quotient-graph isomorphisms are the same \up to a permutation".The third problem given above | that of �nding a small set of graph features whichcorrectly classify graphs, can be rephrased as follows: Is there a small set of graph featureswhich two graphs share i� they have the same set of quotient-graph isomorphisms, or,respectively, i� they have the same set of isomorphisms \up to a permutation"? In Chapter5 we will see that a graph with n vertices can have O(nlgn) quotients and O(nlgn+1)isomorphisms of quotients, so the quotient-graph isomorphisms themselves are not a \smallset of characteristic features". Chapters 4 and 5 address the question of �nding suchfeatures for the case when the edge-label monoid E(G) of a graph G is a group. In Chapter4 we will look at the relationship between subgroups of E(G) and quotient-isomorphismsof G; �nding a one-to-one map from the set of isomorphisms of quotients of G into theset of left cosets of subgroups of E(G). We will use this correspondence in Chapter 5 toshow that the set of quotient-isomorphisms of G forms a lattice. We will �nd a smallset of generators for this lattice | these will be the desired \characteristic features" |and show that �nding these generators is easy. Thus, the answer to the �rst classi�cationquestion: \Is it easy to tell whether two graphs are f -equivalent?" { is \yes". The otherclassi�cation problem | that of determining whether two graphs are p-equivalent, will befound to be at least as hard as determining whether two �nite permutation groups areisomorphic.Chapter 6 shows that the results found above for graphs in which E(G) is a groupalso hold for graphs in which E(G) is an arbitrary monoid. We will see that a graph inwhich E(G) is a monoid can be decomposed into a collection of graphs, all of which haveisomorphic edge-label groups. This will let us reduce the problem of classifying arbitrarygraphs to the problem discussed above, of classifying `group graphs'.1.3 Related WorkAnonymous Networks: The 1972 paper by Rosentiehl, Fiskel and Hollinger ([RFH72]) on\intelligent graphs" investigates networks of identical �nite-state machines. At each time-step on one of these networks, each processor (that is, each �nite-state machine) updatesits state as a function of the states of its neighboring processors. The paper examinesvarious problems that such a network might attempt to solve, including the \�ring squadproblem", in which a network has one \distinguished processor" and all processors attemptto enter a given state at the same time. Some papers on cellular automata also examinenetworks of �nite-state machines; e.g., \Computation on Finite Networks of Automata"by M. Tchuente ([Tch87]), addresses the question of what functions are computable onsuch networks.Angluin's seminal paper of 1980, Local and Global Properties in Networks of Processors,([Ang80]) addresses the question of how well a network can function if the network's



6 1. Introductionprocessors do not have global knowledge about the network, e.g., if they do not `know'the graph of the network or their identities. The processors in Angluin's networks arearbitrarily powerful computers instead of �nite-state machines which communicate witheach other by passing messages over links. Angluin assumes that all processors of thesame degree are identical. The paper considers two questions: One, the question ofcharacterizing networks which can distributively choose a `distinguished processor' orleader, and two, the question of how well the processors in a network can construct a modelof the network's graph, using only the information available through message-passing.A number of papers on anonymous computing have suceeded Angluin's, with the ma-jority of these considering networks having the ring topology. In Computing on an Anony-mous Ring ([ASW88]), Attiya, Snir and Warmuth characterize the set of (scalar-valued)functions computable by a ring, and derive lower bounds for the message-complexity ofsynchronous and asynchronous computation. They also consider network computationsother than function computation; for instance, the problem of \network orientation", inwhich all processors in a ring attempt to agree on a consistent notion of left and right; and\start-synchronization", in which the processors in a ring coordinate their clocks so thatall begin a computation at the same time. In Gap Theorems for Distributed Computation([MW93]), Moran and Warmuth show that an anonymous ring with n processors requires
(n logn) messages to compute any non-constant function, and that a non-anonymousring has the same lower bound if the processor ids are taken from a su�ciently large do-main. In [BMW93], Bodlander, Moran and Warmuth show that this lower bound remainseven if the set of possible ids is small, i.e., is n1+� for positive �.In [BB89], Beame and Bodlander investigate the message complexity of distributedcomputing The papers by Scheiber and Snir ([SS89]) and by Matias and Afek ([MA89])show that the processors in an anonymous network can distributively compute distinct idsfor themselves by using probabalistic algorithms to break symmetry. Kranakis, Krizancand van den Berg ([KKvdB90]) study the bit complexity of the problem of computingboolean functions on arbitrary anonymous networks.Perhaps the most complete investigation of anonymous networks to date appears in thepapers of Yamashita and Kameda ([YK87b,YK87a,YK88]). In Computing on AnonymousNetworks, Yamashita and Kameda describe the classes of networks which can distributivelysolve the following problems: Choosing a unique processor as a leader, choosing a uniqueedge in the network, constructing a spanning tree of the graph of the network, and�nding the graph of the network. The authors consider these problems for four levelsof information which processors in a network might have about the network: A processorcan have no information; can know an upper bound on the number of processors in thenetwork, can know the exact number of processors in the network, or can know the graphof the network. The authors show, for instance, that processors in a network whose graphis a tree can distributively compute the graph of the network, if they are given the size ofthe network. In Computing Functions on Anonymous Networks, Yamashita and Kamedacharacterize the set of scalar valued functions a given anonymous network can compute.We will give a more thorough review of this paper at the end of the next chapter.Other Related Topics: The edge-label monoid E(G) mentioned above is used extensivelyin algebraic automata theory, where it plays a part in the decomposing of �nite-state



1.3. Related Work 7machines into simpler machines. We will make similar use of the monoid in this paper,when we examine quotient graphs of networks. A more complete description of the relationbetween our results and results in algebraic automata theory will be given at the ends ofChapters 2 and 3.The proof of Theorem 5.5.1 in Chapter 5 makes use of a result from computationalgroup theory, and perhaps itself belongs most correctly to that �eld. Computationalgroup theory considers questions of the form: \How hard is Problem X from grouptheory?", where Problem X might be, for instance, �nding the stabilizer subgroup ofa set, or checking a permutation for membership in a permutation group given by a set ofgenerators. Theorem 5.5.1 discusses \isomorphisms" of the block-systems of a permutationgroup, and shows that it is easy to determine whether two permutation groups have thesame set of block-system isomorphisms.



8 2. Characterizing The Functions A Network Can Compute2. Characterizing The Functions A Network Can Compute2.1 IntroductionThe aim of this chapter is to �nd a characterization of the set of functions computableby any given network. To this end, in Section 2.1 we will describe the computational modelused in the paper, explicating what we mean by `function computation' and `anonymousnetwork', and what properties we will assume of the graph of a network. In Section 2.2 wewill examine a natural monoid associated with the graph of a network and will characterizethe graph covering maps in terms of this monoid. In Section 2.3, we will introduce thenotion of a covering graph, and show that two \rooted universal covers" are isomorphic i�they are isomorphic to a certain �nite depth. Finally, in Section 2.4, we will characterizethe set of functions computable by a network in terms of a set of rooted trees related tothe universal cover.Main Results: The main result of this chapter is a characterization of the functionscomputable by a network in terms of a set of trees associated with the network (Theorem2.5.1). In subsequent chapters we will make heavy use of Proposition 2.3.1, which de�nesgraph isomorphism in terms of a monoid associated with the graph.Related Results: The \edge-label monoid", which we introduce in this chapter, is standardin algebraic automata theory; e.g., see [Hol82]. We also de�ne what it means for one graphto \cover" another graph and de�ne the \universal cover" of a graph. These de�nitionsare from algebraic topology; see [Mas67]. We will review these and some results from theanonymous computing literature at the end of the chapter.2.2 The ModelIntuitively, a network is nothing more than a collection of processors connected by two-way links. Processors in a network can \tell their links apart"; that is, a processor canspecify the number of the link through which it will send any given message. Thus, eachlink between two processors has a pair of numbers associated with it: The �rst number isthe �rst processor's name for the link, and the second number is the second processor'sname for the link. This motivates the following de�nition:De�nition 2.2.1: A network N is a triple hVN ;EN ; �Ni, where:� VN , the processor set, is a �nite set of arbitrarily powerful processors,� �N , the processor labeling map is a bijection from VN to f1; : : : ; jVN jg, and� EN , the set of links, is a subset of the set of all pairs (two element multisets)L = f(v; i); (w; j)g, where v; w 2 VN and i; j 2 N.A link L = f(v; i); (w; j)g is called the ith link of processor v and the jth link of processorw. L = f(v; i); (w; j)g is said to be incident with v and w, and two processors are calledadjacent if they are incident with the same link. Two processors may share multiple links,



2.2. The Model 9but we will require that all all processors in a network satisfy the following \link-labelcondition":Property 1: Link-Label Condition:For each v 2 N there is a nonnegative integer deg(v), where deg(v) = 0 if v has nolinks. If v is incident with one or more links, then for each 1 � i � deg(v), processor vhas exactly one ith link. Processor v has no ith links for i > deg(v).Note: deg(v) is the number of links incident with v, where a loop f(v; i); (v; j)g iscounted as being incident with v twice, and a loop f(v; i); (v; i)g is incident with v once.Example 2.2.1: For instance, in Figure 2.1, N1 satis�es the link-label condition, anddeg(v) = 4. N2 does not satisfy the link-label condition because v has two \�rst"links L1 = f(v; 1); (w; 1)g and L2 = f(v; 1); (v; 2)g, and two \second" links: L2, andL3 = f(v; 2); (w; 3)g.
N2N1

123 1v 311 22
wvw

1
24131 2 Figure 2.1: The Link-Label ConditionDe�nition 2.2.2: The number i = �N (v) is called the id of processor v. If �N (v) = i forv 2 VN we will sometimes refer to processor v as \processor i".2.2.1 Computing On A NetworkComputations are performed distributively on a network, with each processor i runninga deterministic algorithm Ai from a set A = fA1; : : : ; Ang, for n = jVN j. Initially eachalgorithm Ai is given deg(i) and a letter from an input-alphabet I as input. De�ne amessage to be any �nite-length word over an arbitrary message alphabet. A processorbegins to execute its algorithm when it either spontaneously \wakes up", or when itreceives a message from another processor. Algorithms run in steps. During each step ofan algorithm run by a processor v, the processor may:� Send messages through one or more of its links. Processor v can specify the numberi 2 f1; : : : ; deg(v)g of the link that a given message is to be sent through. During a stepa processor can send at most one message out of any given link.



10 2. Characterizing The Functions A Network Can Compute� Receive messages through one or more of its links. A message received through a thejth link of a processor is given the label j. This means that a processor can tell throughwhich of its links a given message has come. During a step a processor receives at mostone message through any given link.� Perform a computation based on messages received, the results of computations inprevious steps, and input. The result of a given computation may be specially marked andcalled the output of the algorithm's run on v. Each processor computes only one output,and then terminates.Synchronous and Asynchronous Executions: In a distributed system there is no centralcontrol: No one processor is designated from the beginning as the leader or organizerof the network (although processors can in some cases choose a leader1 and there is noglobal clock available to the processors for coordinating their message-sending. Processorsmay make computations at di�erent speeds or be temporarily interrupted, and the time ittakes messages to travel between any two processors can vary unpredictably, although weassume that all messages sent eventually do arrive in �nite time. Since there is no globalclock, two executions of A from the same start-state may well be di�erent: A given stepmay take place at di�erent times in the two executions and messages may be sent andarrive at di�erent times. This will perhaps motivate the following de�nition:De�nition 2.2.3: Let N be a network with n processors, let i be a processor in N , andlet Ai be an algorithm. An execution of Ai by processor i from input xi is the sequence ofsteps of Ai (where a step includes message-sending, message-receiving and computation,as outlined above) together with the time that each step begins, each message is sentor received, and each computation takes place, as measured by an external clock. LetA = fA1; : : : ; Ang be a collection of algorithms. An asynchronous execution of A by Nfrom a given input ~x = (x1; : : : ; xn) is the set of executions of each Ai 2 A by processori (i = 1; : : : ; n) from input xi. An execution must satisfy the requirement that messagesarrive at a processor via a given link in the order in which they were sent, after anunspeci�ed but �nite delay. A special case of asynchronous execution is synchronousexecution, in which all processors begin executing their algorithms at the same time, asmeasured by the external clock, and each step of an algorithm occurs at some discretetime t 2 N: Messages sent at time t arrive at time t + 1, and computations take zerotime.2Function Computation: We will now de�ne what it means for a network to compute afunction. We will distinguish between three kinds of functions: The \computable func-tions" (De�nition 2.2.4), the functions which are \computable by a network" (De�nition2.2.5), and the functions which are \ anonymously computable by a network" (De�nition2.2.6).De�nition 2.2.4: A function is said to be computable if it can be computed on a Turingmachine.1For instance, see [MA89] and [SS89]. The papers [YK87b,YK88] and [Ang80], along with others, alsodiscuss leader election.2There are a number of alternative ways to de�ne the synchronous execution that we could have usedhere; e.g., a computation begun at time t could be completed at time t+ 1.



2.2. The Model 11De�nition 2.2.5: Let I and O be input and output alphabets. We will assume that theyare totally ordered sets.3 Let ~x = (x1; : : : ; xn) 2 In. If N is a network with n processors,we will say that N is given input ~x if processor i is assigned input xi for i = 1; : : : ; n. ThenetworkN is said to compute ~y 2 On given ~x 2 In if there is a collection A = fA1; : : : ;Angof algorithms such that for any execution of A by N given input ~x, algorithm Ai producesoutput yi; for i = 1; : : : ; n, in a �nite number of steps. A computable function f : In ! Onis said to be computable by N if there is a collection A of algorithms such that for each~x 2 In and for any execution of A given input ~x, the network N computes f(~x) .Example 2.2.2: A network with three processors will sucessfully compute the functionf(x1; x2; x3) = (x1 + x22; x3; x3=2) if processor 1 computes x1 + x22, processor 2 computesx3, and processor 3 computes x3=2 whenever processor 1 is given x1, processor 2 is givenx2 and processor 3 is given x3 as input.Remark 2.2.1: Suppose that there is a function f and a collection A = fA1; : : : ;Ang ofalgorithms such that A can compute f on a network only under the synchronous execution.If such an A exists, there is always a collection A0 = fA01; : : : ;A0ng of algorithms whichcomputes f on the network under any execution. That is, the set of functions computableby a network under synchronous executions equals the set of functions computable by thenetwork. To show this, let A be as above, and de�ne A0 = fA01; : : : ;A0ng as follows: Initially,all processors send a token through each of their links. Each processor i then repeats thefollowing: After receiving a token through each of its links, processor i simulates a step ofAi and then sends a token through each of its links. The collection A0 can now simulatethe synchronous execution of A.Anonymous Computation: In this paper we will investigate computation on \anonymousnetworks", whose processors have no immediate way of distingushing among themselves.De�nition 2.2.6: A network N with n processors will be said to perform an anonymouscomputation if it executes a collection A = fA1; : : : ;Ang of algorithms for which A1 =A2 = � � � = An. That is, in an anonymous computation, all processors in the networkrun the same algorithm during any given execution. A network compute a function fanonymously if f is computed by N via a collection of algorithms A = fA1; : : : ;Ang forwhich A1 = A2 = : : := An.We will informally refer to a network performing anonymous computations as an\anonymous network".One implication of this de�ntion is that the algorithm running on each processor inan anonymous computation does not have access to the processor's id, unless this is givenas part of the input.4 This means that the processors have no easy way of determiningfrom where a given message originated in the network. One of the chief computationalproblems facing an anonymous network is that of constructing unique labels or ids forthe processors using whatever information is available locally. We will see later that the3We will actually need a stronger condition on I; that its order be a computable function (De�nition2.2.4).4If the input to each processor i in an anonymous computation always consists of an ordered pair(i; xi)(that is, always includes the processor id) then the network can compute any reasonable function over thisdomain. This will follow from Theorem 2.5.1 in Section 2.5.



12 2. Characterizing The Functions A Network Can Computeprocessors in an anonymous network can in fact construct labels for themselves, althoughthese labels are not usually unique. Only in networks with special network topologies willprocessors be able to construct unique labels for themselves.The synchronous execution of an algorithm is in some sense the \hardest case" foran anonymous network. In aynchronous executions, processors may be able to make useof the random arrival-time of messages to break symmetry and to distinguish amongthemselves. (For instance, see the papers [MA89] and [SS89] in which the authors showedthat processors in an anonymous network can choose distinct id's for themselves if theyhave access to a coin-ip). In this paper we are interested in exploring the e�ect of anetwork's topology on its capacity for coordinated action, rather than in investigatingsymmetry-breaking through randomness. For this reason we require that algorithms forfunction-computation on a network work under all executions, including synchronous ones.By Remark 2.2.1, any algorithm can simulate a synchronous execution, and so we needonly consider synchronous executions in this paper.2.2.2 The Graph Of A NetworkIt will be convenient to be able to think of networks as directed graphs in the nextsection, when we de�ne the monoid of a network and begin to explore the structure ofnetworks as mathematical objects. Associating links in a network with directed edges ina graph is not intended to imply that links are one-way, however | the association isstrictly for mathematical convenience.De�nition 2.2.7: A directed, edge-labeled graph G is a triple hV(G);E(G);A(G)i, where:V(G), the set of vertices, andA(G), the set of edge-labels, are �nite sets, andE(G), the set of edges is a subset of V(G)XA(G)XV(G).We will usually refer to directed edge-labeled graphs simply as graphs. If e = hv awiis an edge in G, we say that vertices v and w are adjacent and that e is an edge with labela, directed away from v and directed towards w. (We will think of a loop hvavi as beingdirected towards v and away from v.) An edge e = hv awi is incident with both v and w.Pictoral Conventions: We will use the following shorthand in picturing graphs: An edgehv awi will be drawn as in Figure 2.2 below. We will usually draw the pair hv awi andv waFigure 2.2: The edge hv awihwa vi as a single edge with an arrow on each end (Figure 2.2.2) instead of as a pair ofedges.



2.2. The Model 13a wvFigure 2.3: The pair fhv awi; hwa vig of edgesWe will use the convention that distinct letters a; b; c; : : : in a pictured graph representdistinct edge-labels in A(G).5As mentioned earlier, networks are undirected, but it will be convenient to be able tothink of networks as directed objects in the next section, when we de�ne the monoid of anetwork. For this reason we will associate a network with a directed graph.De�nition 2.2.8: Let N = hVN ;EN ; �N i be a network with n processors. The graph ofN is a graph G = hV(G);E(G);A(G)i, with:� V(G) = f1; : : : ; ng. The processor-labeling map �N of N maps VN bijectively ontoV(G);� A(G) is a subset of NXN, and� E(G) is the following subset of V(G)XA(G)XV(G): For each link L =f(v; i); (w; j)g 2 EN there is a set fhv (i; j)wi; hw(j; i) vig of edges in E(G). (IfL = f(v; i); (v; i)g, this set has only one member; hv; (i; i); vi.)Example 2.2.3: The graph G in Figure 2.4 is the graph of a network having linksL1 = f(1; 1); (2; 2)g, L2 = f(2; 1); (3; 1)g, L3 = f(2; 3); (2; 3)g, and L4 = f(3; 2); (1; 2)g.
GN

21 12
121 3 2 33 3,33 12 1,2 2,1 1,11,1 2,22,2Figure 2.4: The graph of a network5We will use the letters a, b, c, d, e as variables taking values in A(G) (and later, for words over A(G)).For consistency, the letters labeling the edges of a graph in a �gure should also be taken to be variables.However, since we use the convention that distinct letters take distinct values in A(G), the reader will notbe misled by imagining that the letters are actual edge-labels, instead of variables.



14 2. Characterizing The Functions A Network Can ComputeA network is called connected if its graph is connected. We will assume that anynetwork we consider is connected. We will usually identify a network with its graph whenthis doesn't cause confusion, and will commonly refer to a processor or vertex as \processorv", \processor i", \vertex v" or \vertex i", and identify links with pairs of edges.A Condition on Edge-Labels: In this paper we will restrict our attention to graphshaving the following edge-label property:Property 2: For any vertex v, no two edges directed towards v have the same edge-label,and no two edges directed away from v have the same edge-label.Note that this is a generalization of the \link-label condition" (Property 1). All graphsconsidered in this paper will satisfy Property 2, and so it should not cause confusion torefer to graphs with this property simply as graphs.In subsequent chapters we will �nd that the structure of the graph of a network ispartly dependent on the input to the network. That is, the graphs we are considering arenot only edge-labeled, they are also vertex-labeled; and the vertex-labeling changes as theinput to the network changes. This motivates the following notation:Notation: If ~x is an input-vector for a network N we will write (G; ~x) for the graph G ofN with vertex i (for i 2 f1; : : : ; ng) labeled with the ith component of ~x.2.3 Monoids and Covering MapsIn this section we will de�ne a monoid, the edge-label monoid, which has a naturalassociation with an edge-labeled directed graph. We will make heavy use of this monoidin Chapters 3 and 4 for describing the structure of a graph in terms of its quotient-graphs.The main results of this section are Propositions 2.3.1, which states that the graphcovering maps are surjective maps which commute with the elements of the graph'smonoid; and Corollary 2.3.1, which states that a covering map is determined by its actionon a single vertex.2.3.1 The Monoid Of A GraphAn edge-label a of a graph can be thought of as inducing a partial function fa on thevertices of the graph, where fa(v) = w whenever there is an edge hv awi in the graph. Thecollection of all such functions generates a monoid under function composition. Followingis a more complete description of this monoid.Let A(G) be the set of edge-labels for a graph G, and let A(G)� = fa�1 : a 2 A(G)g,where a�1 is a formal symbol. If a 2 A(G) [ A(G)�, de�ne (a�1)�1 to be a. Write A(G)�for the set of all words over A(G) [ A(G)�, including the empty word, denoted by �.We will denote words in A(G)�, including words of length 1 in A(G) [ A(G)�, by thesymbols a; b; c; d; e. A word a = a1a2 : : :ak 2 A(G)� will be said to be reduced if no twosucessive letters in a are of the form bb�1 for b 2 A(G) [ A(G)�.



2.3. Monoids and Covering Maps 15Each letter a 2 A(G) is associated with a partial function fa : V(G) ! V(G), wherefa(v) = w i� there is an edge hv awi 2 E(G). If we append a vertex un (for \unde�ned")to V(G), we can de�ne fa to be a total function on V(G)[fung, as follows: fa(v) equals wif there is an edge hv awi 2 E(G), and equals un otherwise. We de�ne the \partial inverse"fa�1 : a�1 2 A(G)� similarly: fa�1(v) = w if there is an edge hwa vi 2 E(G), and equals unotherwise. De�ne fa(un) = un for all a 2 A(G) [ A(G)�. Let f� be the identity functionon V(G)[ fung, where � is the empty word. The set ffa : a 2 A(G) [A(G)� [ f�gg thengenerates a monoid, which we denote E(G), under function composition.De�nition 2.3.1: We will write E(G) for the edge-label monoid of G, and call its elementsthe edge-label maps of G.We will call G a group graph in case E(G) is a group, and a monoid graph otherwise.Note that Property 2 insures that the maps fa 2 E(G) are one-to-one.Notation: Let a = a1a2 : : :ak be a nonempty word in A(G)�. To simplify notation,6 wewill write fa for the function fa1 � fa2 � � � � � fak .Remark: The relation fafa�1 = f� does not hold in general for E(G) since fa�1 may notbe de�ned on all vertices of G. Hence if b is a word in A(G)� and b0 is its reduced form, itis not true in general that fb = fb0 .De�nition 2.3.2:1. Let a 6= � 2 A(G)�. We will say that fa 2 E(G) is de�ned on v 2 V(G) if fa(v) 6= un.We will take f� to be de�ned on all v 2 V(G).2. If v0; vk 2 V(G), a path of length k from v0 to vk is a string P =v0a1v1a2 : : : vk�1akvk, with vi 2 V(G) and ai 2 A(G)[A(G)�, such that hvi�1aivii 2E(G) if ai 2 A(G), and hvia�1i vi�1i 2 E(G) if ai 2 A(G)�, for i = 1; : : : ; k. A singlevertex is a path of length 0. (See Example 2.3.1 below. Note that this de�nition isnonstandard: A path may contain edges directed towards or away from each other.)If P = v0a1v1a2 : : :vk�1akvk is a path, the word of P is the string a = akak�1 : : : a1.(See Remark 2.3.1 below.) A path P = v0a1v1 : : : vk is called a simple path if if the wordof P is reduced and nonempty, and a closed path if v0 = vk . A tree is a graph with nosimple closed paths.Example 2.3.1: In Figure 2.5, the path P = 0 a�1 1 b�1 2 a 3 is a path of length 3 fromvertex 0 to vertex 3. Its word is ab�1a�1, a reduced word.Remark 2.3.1: A path P = v0a1v1a2 : : : vk has word akak�1 : : :a1 i� fakak�1:::a1(v0) = vk.For instance, in Example 2.3.1 above, fab�1a�1 is de�ned on v0 and fab�1a�1(v0) = v3. Inother words, if P is a path from v0 to vk having word a, then fa is de�ned on v0 andfa(v0) = vk. Conversely, if fa(v0) = vk for a word a 2 A(G)�, then there is a path from v0to vk having a as its word. That is, there is a one-to-one correspondence between the setof paths from a vertex v 2 G and the set of words a 2 A(G)� such that fa is de�ned onv. The sequence of letters in the word of a path is reversed over its sequence in the pathbecause we compose functions on the left.6In actuality, we are putting a relation � on the free semigroup over A(G)�, where a � b for words aand b 2 A(G)� i� fa = fb. The monoid E(G) is isomorphic to the quotient of the free semigroup mod thisrelation. See [Hol82]



16 2. Characterizing The Functions A Network Can Computec0 a aaa 1 2 345a b GFigure 2.5: Paths and words2.3.2 Covering MapsIf G1 and G2 are graphs, a surjective map from the vertices of G1 to the vertices ofG2 will be called a covering map if it preserves edges, edge-labels and orientations. Moreformally, we have:De�nition 2.3.3: Let G1 = hV(G1);E(G1);A(G1)i and G2 = hV(G2);E(G2);A(G2)i begraphs. A covering map is a surjective map � : V(G1)! V(G2) satisfying:1. If hv awi 2 E(G1) then h�(v)a�(w)i 2 E(G2), and2. If hv awi 2 E(G2) then each vertex in ��1(v) has an edge with label `a' directed awayfrom it and each vertex in ��1(w) has an edge labeled `a' directed towards it. Thatis, for each vertex v0 2 ��1(v) there is an edge hv0ar0i 2 E(G1) and for each vertexw0 2 ��1(w) there is an edge hr0aw0i 2 E(G1).(See Example 2.3.2.) We will call a covering map � an isomorphism if it is a bijection.An automorphism is an isomorphism from a graph to itself. (Note that by Proposition2.3.1 below, isomorphisms have the expected property of commuting with the edge-labelmaps.)We will say that a graph G covers a graph H if there is a covering map � : G! H.Below are some examples of covering maps.Example 2.3.2: In Figure 2.6, the map �1 : G1 ! G2 which takes v to r and w to s isnot a covering map because ��1(r) does not have an edge labeled `b' directed away fromit. The map �2 : G3 ! G4 which takes u0; v0 to v and w0; r0 to w, is a covering map.Remark 2.3.2: Note that there can be a covering map from G1 to G2 only if A(G1) =A(G2).Lemma 2.3.1: Let � : G1 ! G2 be a covering map. Then for all a 2 A(G1)� and forall v 2 V(G1), fa 2 E(G1) is de�ned on v i� ga 2 E(G2) is de�ned on �(v). In otherwords, there is a path with word a from v 2 V(G1) i� there is a path with word a from�(v) 2 V(G2).Proof Let a = a1a2 : : : ak 2 A(G1)�.(1) Let fa be de�ned on v 2 V(G1). By Remark 2.3.1 there is a path P =vakvk�1ak�1 : : : a1v0 with word a from v to some vertex v0 2 V(G1). Then �(P) =�(v)ak�(vk�1) : : :a1�(v0) is a path from �(v) to �(v0) in G2, because if ai 2 a is inA(G1) then hviaivi�1i 2 E(G1) and so h�(vi)ai�(vi�1)i 2 E(G2), and if ai 2 A(G1)� then



2.3. Monoids and Covering Maps 17
G1 G2a �2a ba b bG4 wvv0r0w0u0r swv b a abG3�1

Figure 2.6: Graph Coveringhvi�1a�1i vii 2 E(G1) and so h�(vi�1)a�1i �(vi)i 2 E(G2). Hence a is the word of a path P 0from �(v) in G2, and so ga is de�ned on �(v).(2) Let v0 2 V(G1) and suppose that ga is de�ned on �(v0) 2 V(G2). Then there is apath P = �(v0)akvk�1ak�1 : : : a1v0 from �(v0) to some v0 2 V(G2). Since � is a coveringmap, by condition (2) of the de�nition there is a vertex v0k�1 2 V(G1) such that �(v0k�1) =vk�1 and hv0 ak v0k�1i 2 E(G1) if h �(v0)akvk�1i 2 E(G2), and hv0k�1 a�1k v0i 2 E(G1) ifhvk�1 a�1k �(v0)i 2 E(G2). That is, there is a path P1 = v0akv0k�1 of length l in G1 suchthat �(P1) = �(v0)ak�(v0k�1) = �(v0)akvk�1 is a subpath of P from �(v0) to vk�1. Arguingby induction over path length we see that there is a path P 0 = v0akv0k�1ak�1 : : :a1v00 in G1such that �(P 0) = �(v0)ak�(v0k�1)ak�1 : : : a1�(v00) = P . Then fa is de�ned on v00, since P 0has word a. 2Let G1 and G2 be graphs. We will see next that the graph covering maps from G1 toG2 are the maps which commute with elements of E(G1) and E(G2).Proposition 2.3.1: Let G1 = hV(G1);E(G1);A(G1)i and G2 = hV(G2);E(G2);A(G2)i begraphs such that A(G1) = A(G2). Then a surjective function � from V(G1) onto V(G2) isa graph covering map i� G1; G2 and � satisfy:1. For any a 2 A(G1)� and for any v 2 V(G1), fa 2 E(G1) is de�ned on v i� ga 2 E(G2)is de�ned on �(v).2. For all v 2 V(G1), if fa 2 E(G1) then �fa(v) = ga�(v).Proof Suppose �rst that � : G1 ! G2 is a covering map, and let a 2 A(G1)� andv 2 V(G1). By Lemma 2.3.1, fa is de�ned on v i� ga is de�ned on �(v). By the samelemma, fa(v) = v0 i� there is a path with word a from v to v0 in G1, and there is a pathwith word a from v to v0 in G1 i� there is a path with word a from �(v) to �(v0) in G2.That is, �fa(v) = �(v0) = ga�(v).Conversely, suppose that G1;G2 and � satisfy (1) and (2) above. Let hv awi 2 E(G1).Then fa(v) = w and so by hypothesis, ga is de�ned on �(v) and �fa(v) = ga�(v). Thatis, ga�(v) = �(w), so h�(v)a�(w)i 2 E(G2). Hence condition 1 of the de�nition of coveringmap is satis�ed.



18 2. Characterizing The Functions A Network Can ComputeLet hv awi 2 E(G2). Then ga(v) = w and ga�1(w) = v. Let v0 2 ��1(v) andw0 2 ��1(w). Then by hypothesis, fa is de�ned on v0 and fa�1 is de�ned on w0. Thatis, there is an edge directed away from v0 having label a and an edge directed towards w0having label a, and so � is a covering map . 2Corollary 2.3.1: Let �1 and �2 be covering maps from G1 to G2. If �1(v) = �2(v) forsome v 2 V(G1) then �1 = �2. That is, a covering map is determined by its action on asingle vertex.Proof Let �1(v) = �2(v) and let w be any vertex in G1. We will show that �1(w) = �2(w)also. Take fa 2 E(G1) such that fa(v) = w. Note that fa exists since G1 is connected.Since there is a covering map from G1 to G2, there is also an element ga 2 E(G2), byRemark 2.3.2. Since �1 and �2 are covering maps, we have �1(w) = �1fa(v) = ga�1(v)= ga�2(v) = �2fa(v) = �2(w). 22.4 Universal CoversA \universal cover" of a graph G is a (usually in�nite) tree covering G. In this sectionwe will explore some properties of universal covers; in particular, of \rooted universalcovers", in which one vertex of the tree is chosen to be its root. We will make extensiveuse of a set of rooted universal covers in characterizing the set of functions a network cancompute.The main result of this section is Proposition 2.4.1, which states that two rooteduniversal covers are isomorphic if they are isomorphic out to �nite (small) depth. Thisresult is proved in greater generality in [Nor93]. Here we give a shortened proof for theclass of graphs considered in this paper.De�nition 2.4.1: The universal cover U of a graph G is a tree covering G. That is, thereis a covering map from U to G. U is in�nite unless G is a �nite tree.The following results are standard in algebraic topology, for instance, see [Mas67] andthe papers [Ang80] and [Lei82].We have:Lemma 2.4.1:� The universal cover of a network is unique up to isomorphism.� If �1 and �2 are covering maps from U to G and �1(~v) = �2( ~w) for ~v and ~w 2 V(U)then there is an automorphism � : U! U such that �(~v) = ~w and �1 = �2�.Proof Let U1 and U2 be universal covers for G. Let �1 : U1 ! G1 and �2 : U2 ! G2be covering maps and let ~v 2 V(U1) and ~w 2 V(U2) be such that �1(~v) = �2( ~w). We will�nd an isomorphism � : U1 ! U2 such that �1 = �2�, and conclude that U1 and U2 areisomorphic. If U1 = U2, the same construction yields � : U! U such that �1 = �2�.Observe �rst that ~fa 2 E(U1) is de�ned on ~v i� ~ga 2 E(U2) is de�ned on ~w: Since�1 and �2 are covering maps, ~fa is de�ned on ~v i� fa 2 E(G) is de�ned on v = �1(~v),and fa is de�ned on v i� ~ga is de�ned on any ~w 2 �2�1(v). We now construct a relation� : V(U1) ! V(U2) as follows: �(~v) = ~w. For any ~fa 2 E(U1) which is de�ned on ~v



2.4. Universal Covers 19and for which a is a reduced word, de�ne � ~fa(~v) to be ~ga�(~v) = ~ga( ~w). If ~r 2 V(U1),let ~fa be the unique element of E(U1) such that ~fa(~v) = ~r and a is reduced, and de�ne�(~r) � � ~fa(~v) = ~ga( ~w). Then � is an isomorphism:(1) � is a one-to-one function: Let �(~u) = �(~r) for vertices ~u and ~r 2 V(U1). Let ~faand ~fb 2 E(U1) map ~v to ~u and ~v to ~r, respectively, for a and b reduced words. Then�(~u) = ~ga( ~w) and �(~r) = ~gb( ~w), so ~ga( ~w) = ~gb( ~w), and so ~ga = ~gb since U2 has no closedpaths. Then fa = fb in E(G) since U2 covers G, and so ~fa = ~fb since U1 covers G. Thus~u = ~r and � is one-to-one. A similar argument shows that � is a function.(2) � is onto: If ~u 2 V(U2), let ~ga 2 E(U2) map ~w to ~u. Then ~fa maps v to some ~u0and �(~u0) = ~u.(3) � is a covering map: Let ~r 2 V(U1) and let ~fc 2 E(U1) be de�ned on ~r, and~fa 2 E(U1) map ~v to ~r, where c and a are reduced words. Then ~fc(~r) = ~fc ~fa(~v) and~gc�(~r) = ~gc~ga( ~w). Then ~gc is de�ned on �(~r) if ~fc is de�ned on ~r, because ~fc ~fa beingde�ned on ~v implies that fafb is de�ned on v in G, which in turn implies that ~gc~ga is de�nedon ~w = �(~v), since �2( ~w) = �1(~v). The same argument shows that if ~gc is de�ned on �(~r)then ~fc is de�ned on ~r. Furthermore, � ~fc(~r) = � ~fc ~fa(~v) = ~gc~ga�(~v) = ~gc~ga( ~w) = ~gc�(~r):Thus � is an isomorphism by Proposition 2.3.1.Since �1(~v) = �2�(~v), we can use Corollary 2.3.1 to conclude that �1 = �2�. The sameargument can be used to prove the second part of the propostion. 2Next we de�ne the rooted universal cover of a graph:De�nition 2.4.2: Let v 2 V(G) and let U be the universal cover for G. We de�ne therooted universal cover Uv to be a triple Uv = (U; ~v; �); where ~v 2 U and � : U ! G is acovering map such that �(~v) = v.Uv can be thought of as the tree7 U rooted at ~v.By Lemma 2.4.1, if �1(~v1) = �2(~v2) = v then there is an automorphism � of U mapping~v1 to ~v2 such that �1 = �2�. In this sense Uv is unique up to isomorphism. The map � iscalled the canonical covering map for Uv; it is the unique covering map taking ~v to v.If v and w are vertices in G, we will say that Uv and Uw are isomorphic via anisomorphism �, written Uv ' Uw, if there is an automorphism � : U ! U which mapsthe root ~v of Uv to the root ~w of Uw. Note that by Corollary 2.3.1 there is at most oneautomorphism of U which maps ~v to ~w.We will need the following notation:Notation: Let G be a network and let V(G) = f1; : : : ; ng. If ~x = (x1; : : : ; xn) is aninput for G, write Uv~x for the graph Uv with vertices labeled with the components of ~x asfollows: Each vertex ~u in Uv is labeled x�(~u), where � is the canonical covering map for7For de�niteness we could make the following formal construction of Uv: The vertex set for Uv is theset of all simple paths (that is, having reduced words) from v in G. The edges are triples hP1aP2i where ifPi = va1v2 : : : akvk then Pj = va1v2 : : : akvkavk+1 for i; j 2 f1; 2g: The root of Uv is the path P = v andthe canonical covering map � takes each vertex P = va1v2 : : : akvk 2 V(Uv) to vk 2 V(G). This consructionis given in [Ang80] and [Lei82].



20 2. Characterizing The Functions A Network Can ComputeUv . That is, the vertices in the set f��1(i) 2 V(U)g are labeled with the ith componentof ~x.De�nition 2.4.3: Let �1 : Uv ! G and �2 : Uw ! G be the canonical covering maps andlet ~x and ~y 2 In. We will say that Uv~x and Uw~y are isomorphic and write Uv~x ' Uw~y ifUv ' Uw via an isomorphism � and if for every vertex ~r 2 Uv , the vertex-label of ~r equalsthe vertex-label of �(~r). That is, x�1(~r) = y�2�(~r) for all ~r 2 V(Uv). (See example 2.4.1.)The next lemma states that if Uv~x and Uw~y are isomorphic, then so are are the treesobtained by `translating' Uv~x and Uw~y by a path with word w. (See Example 2.4.1 below.)This result is standard; see Proposition 3.1 in [YK88].Lemma 2.4.2: Let G be a graph with universal cover U. If Uv~x ' Uw~y for some ~x and~y 2 In, then Ufa(v)~x ' Ufa(w)~y for any fa 2 E(G) which is de�ned on v and w. Inparticular, this means that if Uv ' Uw then Ufa(v) ' Ufa(w).Proof Let �1 : Uv ! G and �2 : Uw ! G be the canonical covering maps and letfa 2 E(G) be de�ned on v and w. Then ~fa 2 E(U) is de�ned on the roots ~v and ~w ofUv and Uw since �1 and �2 are covering maps . Let Ufa(v) have root ~r and canonicalcovering map �10. Then �1 ~fa(~v) = fa�1(~v) = fa(v) = �10(~r), and so by Lemma 2.4.1,there is an automorphism �1 : U ! U such that �1(~r) = ~fa(~v), and �10 = �1�1.If Ufa(w) has root ~u and canonical covering map �20, then the same argument showsthat there is an automorphism �2 : U ! U such that �2(~u) = ~fa( ~w) and such that�20 = �2�2. Let �3 be the unique automorphism of U which maps ~v to ~w. Then we have�3( ~fa(~v)) = ~fa�3(~v) = ~fa( ~w). Let � = ��12 �3�1 : U ! U. Then � is an automorphismmapping ~r to ~u, and so U ~fa(~v) = U~r ' U~u = U ~fa( ~w) via �. Since Uv~x ' Uw~y via�3, we have x�1(~i) = y�2�3(~i) for any ~i 2 V(U). Hence x�10(~i) = x�1(�1(~i)) = y�2�3(�1(~i))= y�2�2�(~i) = y�20�(~i) for any ~i in V(U), and so, by de�nition, Ufa(v)~x ' Ufa(w)~y. 2De�nition 2.4.4: (1) The distance between two vertices v and w in a graph G is de�nedto be the length of the shortest path between v and w.(2) We will write Ukv for the subgraph of Uv induced by the set of vertices of Uv ofdistance at most k from its root ~v.Example 2.4.1: Figure 2.7 pictures (G; ~x) and U2v~x for ~x = (x; y; x; y). It can be checkedthat U1~x ' U3~x and U2~x ' U4~x. Since U2~x and U4~x are isomorphic, Lemma 2.4.2 says,for instance, that Ufa(2)~x = U3~x is isomorphic to Ufa(4)~x = U1~x.The following is a technical lemma:Lemma 2.4.3: Let v; w 2 V(G) and let k > 0. Then Ukv~x ' Ukw~y i� U1v~x ' U1w~y and forall a 2 A(G) [ A(G)� such that fa is de�ned on v, we have Uk�1fa(v)~x ' Uk�1fa(w)~y.Proof One direction is immediate: If � : Ukv~x ! Ukw~y is an isomorphism, then �restricted to U1v~x is an isomorphism between U1v~x and U1w~y, and � restricted to Uk�1fa(v)~x isan isomorphism between Uk�1fa(v)~x and Uk�1fa(w)~y.
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Figure 2.7: (G; ~x) and U22~xConversely, if there is an isomorphism �1 : U1v~x! U1w~y, then for any a 2 A(G)[A(G)�,the element fa is de�ned on v i� it is de�ned on w. Suppose that for each a 2 A(G)[A(G)�such that fa is de�ned on v there is an isomorphism �a from Uk�1fa(v)~x to Uk�1fa(w)~y. De�nea map � from Ukv~x to Ukw~y as follows: � = �1 on U1v~x. For each a 2 A(G) [ A(G)�, de�ne� = �a on each subtree of Ukv~x rooted at fa(v) (that is, on each subgraph of Ukv~x inducedby fa(v) and its descendants.) It is easy to verify that � is an isomorphism. 2Finally we can show:Proposition 2.4.1: If G has n vertices and v; w 2 V(G), then Uv~x ' Uw~y i� U2n�1v ~x 'U2n�1w ~yProof If Uv~x ' Uw~y then U2n�1v ~x ' U2n�1w ~y by restriction of the isomorphism.Conversely, suppose that U2n�1v ~x ' U2n�1w ~y. We will show that Ukv~x ' Ukw~y for all k � 0,and the conclusion will follow from this.For each k � 0, de�ne an equivalence relation �k on the set V(G) � f~x; ~yg by:hv; ~z1i �k hw; ~z2i for ~z1 and ~z2 2 f~x; ~yg i� Ukv~z1 ' Ukw~z2. Write �k for the partitionof V(G) corresponding to �k . Then �k satis�es the following two properties:(1) �k+1 is a re�nement of �k . That is, if the pairs hv; ~z1i and hw; ~z2i are in distinctblocks of �k then they are in distinct blocks of �k+1.(2) If �k�1 = �k for some k > 0 then �k = �k+1, and hence �k = �k+j for all j � 0.(1) is immediate. (2) follows from Lemma 2.4.3 above; for suppose that for allpairs hv; ~z1i and hw; ~z2i in V(G) � f~x; ~yg, we have hv; ~z1i �k�1 hw; ~z2i implies that



22 2. Characterizing The Functions A Network Can Computehv; ~z1i �k hw; ~z2i; that is, Uk�1v ~z1 ' Uk�1w ~z2 implies that Ukv~z1 ' Ukw~z2. Pick pairshv; ~z1i and hw; ~z2i such that v �k�1 w and let a 2 A(G)[A(G)� be such that fa is de�nedon v. Then Ukv~z1 ' Ukw~z2, and so by Lemma 2.4.3 above, we have Uk�1fa(v)~z1 ' Uk�1fa(w)~z2. Byhypothesis, Ukfa(v)~z1 ' Ukfa(w)~z2 and so, again by Lemma 2.4.3, Uk+1v ~z1 ' Uk+1w ~z2. Thisproves (2).To prove the proposition, observe �rst that by (1) and (2) above, �k becomes strictly�ner as k increases, up to a point. �0 has at least one block. If �1 has only one blockthen �k has only one block for all k � 1. Suppose that �1 has at least two blocks. Thenif �2 6= �1 then �2 has at least three blocks, and if �3 6= �2 then �3 has at least fourblocks, and so on. Since �k can have at most 2n blocks, we must have �2n�1 = �2n = �kfor all k � 2n. That is, U2n�1v ~x ' U2n�1w ~y implies that Ukv~x ' Ukw~y for all k � 0, and soUv~x ' Uw~y. 2A similar argument gives us the following:Proposition 2.4.2: Let a graph G have n vertices. If Un�1v ~x ' Un�1w ~x for some ~x 2 Inand for v; w 2 V(G) then Ukv~x ' Ukw~x for all k � 0.Proof De�ne an equivalence relation �k on V(G) by: v �k w i� Ukv~x ' Ukw~x. Theargument used in the proof of Proposition 2.4.1 then yields the desired conclusion. 22.5 Computing On Anonymous NetworksAs mentioned earlier, the processors in a network performing an anonymous computa-tion do not have acess to their ids unless these are given as input. Suppose for a momentthat each processor in such a network could compute a unique label for itself, and that thislabel was independent of the input to the network. Theorem 2.5.1 in this section will showthat such a network can compute any computable function f : In ! On. In this sectionwe will see that the processors in a network performing an anonymous computation cancompute labels for themselves, where the `label' each processor i computes for itself isits tree U2n�1i ~x. Depending on the network's topology, this label will not be unique to aprocessor, and of course will vary with the input to the network. For any input-vector ~xwe can put an equivalence-relation �~x on the processors of a network G, where i �~x j i�processors i and j compute the same label for themselves under input ~x. Theorem 2.5.1then says in part that G can compute a function only if it is invariant under this relation,in a sense that will be de�ned in this section.The main result of this section is a characterization of the set of functions computableby a network (Theorem 2.5.1). The next three lemmas will be used in this characterization.These lemmas explore the computational capacity of anonymous networks.Lemma 2.5.1: Consider two synchronous executions of an algorithm A in anonymouscomputations on a network G; the �rst with input ~x and the second with input ~y. IfUv~x ' Uw~y for processors v and w in G, then at each step k of the �rst execution, processorv sends and receives the same messages and computes the same values as processor w doesduring the kth step of the second execution of A.



2.5. Computing On Anonymous Networks 23Proof (by induction on the steps k of A):Suppose �rst that U1v~x ' U1w~y. Then at step 1 of A's run on v under input ~x processorv must receive the same messages from adjacent processors as processor w receives duringstep 1 of A's run on w, under input ~y. Since processors v and w run the same algorithmA, if they receive the same messages during step 1 then each must compute the samevalues and send the same messages as the other. Thus the �rst step of A on v with input~x is the same as the �rst step of A on w under input ~y.Suppose now that the result holds for the kth step of A. By Lemma 2.4.2, there is abijection � between the set of vertices adjacent to v and those adjacent to w in G suchthat for each vertex u adjacent to v we have Uu~x ' U�(u)~y. By hypothesis, by the kthstep of A, processors u and �(u) (adjacent to v and w) have sent the same messages to vand w, respectively, in the two executions. Thus in the k+ 1st step of the two executionsprocessors v and w receive identical message-sets from adjacent processors, and so v andw compute the same values and send the same messages to neighboring processors. 2Remark 2.5.1: By Proposition 2.4.1, if U2n�1v ~x ' U2n�1w ~y then Uv~x ' Uw~y, and theabove lemma holds.The following lemma was proved by Yamashita and Kameda ([YK87b,YK88]). Theirproof applies to our model with few modi�cations.Lemma 2.5.2: Let G be a network and let G have input ~x. A processor v in G cananonymously compute a graph isomorphic to Ukv~x for any k � 0.Proof See Lemma 3.4 in [YK88]. Here we sketch an algorithm for reference.Algorithm 2.5.1: Step 1: Each processor v sends its input-value to adjacent processors.A message (an input value) sent through the ith link of a processor has the value \i"appended to it on the right, and a message received through a processor's jth link hasthe value \j" appended to it on the right. Each processor v waits until it has received amessage through each link, and then uses these messages to construct U1v~x.Steps 2,: : : ,k: Each processor u sends a pair (Ul�1u ~x; i) through its ith link, fori = 1; : : : ; deg(u). If a processor receives such a message through its jth link, it appendsa j to the message. Each processor v waits until it has received a message through eachof its links, and then uses these messages (with the appended link labels), together withits input-value, to construct Ulv~x. 2There are several possible procedures for constructing Ulv~x. One possibility is to appendleaves to Ul�1v ~x. Another possiblility, which we describe here, is to choose the `correct'subgraphs of each rooted universal cover of depth l� 1 belonging to adjacent processors,and to connect all of these subgraphs at a vertex to form Ulv~x. (See Example 2.5.1 below.)This can be done as follows:At step l, processor v receives Ul�1u ~x from each adjacent processor u. From each ofthese rooted universal covers processor v constructs a pair fT1; T2g of subtrees, as describedbelow. All such subtrees are then merged at the root to form Ulv~x.The two subtrees T1 and T2 of a neigboring universal cover Ul�1u ~x are given as follows.Suppose that Ul�1u ~x is sent to processor v via a link f(u; i); (v; j)g. Let e1 = h~u; (i; j)u1iand e2 = hu2; (j; i); ~ui be edges adjacent to the root ~u of Ul�1u ~x. Let T 01 be the subgraph



24 2. Characterizing The Functions A Network Can Computeof Ul�1u ~x obtained by removing all edges adjacent to the root except for e1. Then T1 isthe connected component of T 01 containing u1. T2 is constructed similarly. 2Example 2.5.1: We will describe part of the construction of U3v , omitting the input ~x forsimplicity. At step 2, processor v receives U2w and U2u. The trees T1 and T2 constructedfrom U2u are pictured. (To save space we have drawn the trees and universal coversschematically, with triangles representing subtrees.) The roots of T1 and T2 are identi�ed,and the resulting graph forms part of U3v.
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2N2 vu w1,2 2,1 2,2 1,1G2,2 Figure 2.8: Computing U3vThe next theorem characterizes the set of functions a given network can computeanonymously. In [YK87a], Yamashita and Kameda obtained similar results for scalarvalued functions: See Theorem 4.1 in [YK87a], and also the related results section at theend of this chapter.Theorem 2.5.1: Let G be a network. Any computable function f : In ! On can becomputed anonymously by G i� f satis�es: For all inputs ~x and ~y and for all processorsi and j, if Ui~x ' Uj~y then f(~x)i = f(~y)j.Let us defer the proof of the theorem until the end of the section. We next give someexamples illustrating the theorem.



2.5. Computing On Anonymous Networks 25Example 2.5.2: (Computing Processor id's)Let f be the constant function given by: f(~x) = (1; : : : ; n) for all ~x 2 In. A networkwhich computes f has computed the id of each processor (De�nition 2.2.2) in the network.By the theorem, this function is computable by a network G if and only if Ui~x 6' Uj~y forall processors i and j in G and all inputs ~x and ~y. This holds i� all processors in thenetwork have distinct rooted universal covers, ie, i� Ui 6' Uj for any processors i and j inthe network.Example 2.5.3: Let ~x = (x; x; y; y) and ~y = (y; y; x; x). Then for G in Figure 2.9 we haveU1~x ' U2~x ' U3~y ' U4~y, so any function f which G computes must at least satisfy:f(~x)1 = f(~x)2 = f(~y)3 = f(~y)4.
G 3,32,2

2,221 341,1 1,1Figure 2.9: Computable functionsWe now give a brief outline of the proof of Theorem 2.5.1. The \=) " direction,showing that an anonymously computable function satis�es the given conditions, is easy.Briey; if Ui~x ' Uj~y then processors i and j cannot distinguish themselves in a syn-chronous computation with inputs ~x and ~y, and so must compute the same output. Theproof of the \(=" part of the theorem requires �nding an algorithm which anonymouslycomputes f(~x)i on each processor i. Before we present this algorithm we will show thateach processor can anonymously compute a particular permutation ~x0 of an input-vector~x, where ~x0 is such that the set of rooted universal covers of (G; ~x) equals the set of rooteduniversal covers of (G; ~x0). An algorithm for computing ~x0 is given in Lemma 2.5.3 below.Given this result, it will be easy to show that the following procedure, run on processor i,computes f(~x)i:Processor i �rst computes U2n�1i ~x. Processor i then computes the permutation ~x0mentioned above, and �nds a vertex v in G for which U2n�1v ~x0 ' U2n�1i ~x. Finally, processori computes f(~x0) and outputs f(~x0)v.The next task before giving a detailed proof of Theorem 2.5.1 will be to show that thepermutation ~x0 discussed above is anonymously computable. It might seem at �rst thatcomputing any permutation of ~x anonymously is impossible. Processors can exchange



26 2. Characterizing The Functions A Network Can Computetheir components of ~x until each has a complete set, but there is no obvious way to tellwith what multiplicity each component should occur. However, consider the following twofacts:(1) If i 2 V(G), the tree U2n�1i ~x can sometimes be \mapped onto" G at a vertex v 2 V(G),as follows: For each path P from the root of U2n�1i ~x, let P 0 be the path (if any) fromv in G having the same word as P . If P 0 exists, map the terminal vertex ~w of P to theterminal vertex w of P 0, and label the vertex w 2 G with the vertex-label x ~w of ~w. If everypath from the root of U2n�1i ~x corresponds to a path from v in G, and if the resultingvertex-labeling of G is consistent (i.e., no vertex gets two distinct labels) we will say thatU2n�1i ~x maps onto G at v. If U2n�1i ~x maps onto G at v then the mapping procedure labelsthe vertices of G with the components of ~x. That is, there is a vector ~yv whose componentsequal those of ~x, such that the vertex- labeling obtained by the mapping equals (G; ~yv). Wewill see that the set of rooted universal covers of (G; ~x) equals the set of rooted universalcovers of (G; ~yv).(2) It does not violate anonymity to allow an algorithm running on each processor ofa network to have a copy of the graph of the network, complete with edge-labels andprocessor ids, but without input ~x.This suggests the following procedure for computing ~x0: Each processor i �rst computesU2n�1i ~x, and then attempts sucessively to \map" U2n�1i ~x onto vertex 1, vertex 2,: : : , andso on, of its copy of G. If v is the �rst vertex at which U2n�1i ~x maps onto G, processor itakes the vector ~yv described above to be ~x0. In this way all processors compute the samevector ~x0.A more formal description of this algorithm will be given in the proof of Lemma 2.5.3.Example 2.5.4: It can be checked that U1 ' U2 ' U3, but U1~x 6' U2~x 6' U3~x, in Figure2.10. For this reason U52~x can only be \mapped onto" G at vertex 2. U52~x does not maponto G at vertex 1, for instance, because under the attempted mapping, vertex 2 gets twodistinct labels | label \x" from the path from the root of U52~x having word \b", and alsolabel \z", from the path with word \a".De�nition 2.5.1: Let G be a network and let ~x and ~y be input-vectors for G. We willsay that ~x and ~y are equivalent if for each j = 1; : : : ; n there is a vertex k 2 V(G) suchthat Uj~x ' Uk~y.Example 2.5.5: For instance, let G be as pictured in Figure 2.11. If ~x = (x1; x2; x3; x4)and ~y = (x3; x4; x1; x2) then ~x and ~y are equivalent, since U1~x ' U3~y; U2~x ' U4~y;U3~x ' U1~y, and U4~x ' U2~y.Remark 2.5.2: Note that ~x and ~y are equivalent i� there are vertices i and j in G suchthat Ui~x ' Uj~y. This follows from Lemma 2.4.2, for suppose that Ui~x ' Uj~y and thatv is any vertex in G. Since G is connected, there is a path with word a from i to v. ByLemma 2.4.2, Uv~x ' Ufa(i)~x ' Ufa(j)~y.Lemma 2.5.3: If a network G is given input ~x, then each processor in G can anonymouslycompute a vector ~x0 equivalent to ~x, and all processors compute the same ~x0.Proof We will present an algorithm for computing ~x and show that the algorithm iscorrect. The algorithm is as follows:
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Figure 2.10: Mapping U52~x onto G
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Figure 2.11: Equivalent input-vectorsAlgorithm 2.5.2: (Run at each processor i, for computing a vector ~x0 equivalentto ~x)Step 1: Compute U2n�1i ~x.Step 2: For each vertex v = 1; : : : ; n 2 V(G), run the procedure LABEL-G given below.Step 3: For v the �rst vertex in G such that U2n�1i ~x maps onto G at v, take ~x0 =(x01; : : : ; x0n), where x0j is the label of vertex j in G obtained from the procedure LABEL-G.Procedure LABEL-G



28 2. Characterizing The Functions A Network Can Compute� For each simple path P from the root ~i of U2n�1i ~x, check for a path P 0 from v in Ghaving the same word as P . Conversely, for each simple path P 0 from v, check for asimple path P from ~i having the same word. If no such corresponding path exists,output: \U2n�1i ~x does not map onto G at v". Otherwise, label the terminal vertexw of P 0 with the label x ~w 2 fx1; : : : ; xng of the terminal vertex of P .� If w already has a label xj 6= x ~w, output: \U2n�1i ~x does not map onto G at v".� If all simple paths from ~i in U2n�1i ~x have corresponding paths P 0 from v andconversely, and if no vertex in G gets two distinct labels, output: \U2n�1i ~x mapsonto G at v". 2Proof of correctness: We will show that if U2n�1i ~x maps onto G at v and the algorithmcomputes a vector ~x0, then Ui~x ' Uv~x0. That ~x and ~x0 are equivalent then follows fromRemark 2.5.2.Suppose that U2n�1i ~x maps onto G at v. Let � : U2n�1i ! U2n�1v be the map whichtakes the terminal vertex of each path P1 from the root of U2n�1i to the terminal vertex ofthe corresponding path P2 from the root of U2n�1v , where P1 and P2 have the same word.Since U2n�1i ~x maps onto G at v we have that ~fa 2 E(U) is de�ned on the root of Ui i�fa 2 E(G) is de�ned on v. Since Uv covers G, we have fa is de�ned on v i� ~fa is de�nedon the root of Uv . Hence � is de�ned everywhere. The proof of Lemma 2.4.1 shows that� is an isomorphism. By construction, any pair of vertices ~r 2 U2n�1i and �(~r) 2 U2n�1vshare the same vertex-label, and so U2n�1i ~x ' U2n�1v ~x0 (De�nition 2.4.3). By Proposition2.4.1, Ui~x ' Uv~x0. 2We can now give a formal proof of Theorem 2.5.1.Proof (of Theorem 2.5.1)(=)) Suppose that f can be computed by G, that is, that there is an algorithm Afor computing f on G. Then any execution, in particular, the synchronous execution ofA, computes f on G. Suppose that ~x; ~y; i and j are such that Ui~x ' Uj~y. Then byLemma 2.5.1 above, at each step of the synchronous execution of A on G with input ~x,processor i computes the same values that processor j produces during the same step ofthe synchronous execution of A with input ~y. Hence the value processor i computes forf(~x)i is the same as the value that processor j computes for f(~y)j , and f(~x)i = f(~y)j .((=) Suppose �rst that f is computable and satis�es the conditions of the theorem. Wewill argue that f is anonymously computable on G.Algorithm 2.5.3: (for computing f on G)To compute f(~x)i, processor i �rst computes U2n�1i ~x. Processor i then runs Algorithm2.5.2 to �nd a vector ~x0 equivalent to ~x and a vertex v for which U2n�1i ~x ' U2n�1v ~x0. Finally,processor i computes f(~x0) and outputs f(~x0)v.



2.6. Related Work 29By Lemma 2.5.2, any processor i can compute U2n�1i ~x. By Lemma 2.5.3 any processorcan compute ~x0 and all processors compute the same vector ~x0. The vector f(~x0) canbe computed since f is a computable function. By hypothesis, f(~x)i = f(~x0)v wheneverUi~x ' Uv~x0. By Proposition 2.4.1, we have f(~x)i = f(~x0)j whenever U2n�1i ~x ' U2n�1v ~x0,and so processor i computes the correct value. 22.6 Related WorkThe Edge-Label Monoid: There is an extensive literature on the semigroups associatedwith �nite-state machines, usually presented under the heading of \algebraic automatatheory" (e.g., see Holcombe's book, [Hol82]). Any �nite-state machine M has associatedwith it a graph G = hV(G);E(G);A(G)i, where G need not satisfy Property 2. Thesemigroup ofM is de�ned to be the quotient of the free semigroup on A(G) by the relation�, where a1 � a2 for a1 and a2 2 A(G)� if fa1(v) = fa2(v) for all v 2 V(G), for fai de�nedas in Subsection 2.3.1. The edge-label monoid as we have de�ned it is a special case ofthis, for which the functions fa are total and are one-to-one on V(G), and for which anidentity and partial inverses are given.From combinatorial group theory we obtain the related notion of a \groupoid". (See[Coh89].) A groupoid is a set G together with a partial multiplication which is associativewhere de�ned, such that any element in G has a partial inverse. For instance, the set ofvertices of a graph G, together with the set ffa : a 2 A(G)g of partial edge-label functions,forms a groupoid under partial function composition. Cohen associates a graph with agroupoid as follows: the vertices are the partial identity elements. If an element b 2 Ghas left and right identities e and f , respectively, then there is an edge labeled \b" frome to f in the graph. Thus instead of completing the partial functions in our edge-labelmonoid, we could have de�ned the \edge-label groupoid" of a graph in this paper.Covering Maps: The de�nition of covering map we use is borrowed more-or-less intactfrom algebraic topology (for instance, see [Mas67]). Algebraic automata theory uses ageneralization of this notion of covering. In our notation, it is given as follows: Let Gand H be edge-labeled digraphs, not necessarily satisfying Property 2. A covering mapfrom G to H is a pair (�; ) of maps, where � : V(G) ! V(H) is a partial function and : A(G)! A(H) is a function such that fa�(v) = �(f(a)(v)) for all v 2 V(G) on which �is de�ned. ([Hol82], page 43)Covering maps (as we de�ne them) are used in distributed computing to capture thenotion of two networks being \locally the same". Angluin showed that if the graphs oftwo computer networks have a common �nite cover, then the behavior of the networks isindistinguishable if the networks have a \uniform initial con�guration" and if all processorsof the same degree run the same algorithm ([Ang80]). She exhibited a polynomial-timealgorithm for determining whether two networks have isomorphic rooted universal covers,and Leighton ([Lei82]) showed that graphs having isomorphic universal covers share acommon �nite cover. Fischer, Lynch and Merritt ([FLM85]) used graph covers to simplifyproofs in fault-tolerant computing. Attiya, Snir and Warmuth ([ASW88]), studying ringsof anonymous processors, made extensive use of the notion of the \k-neigborhood" of a



30 2. Characterizing The Functions A Network Can Computevertex v in a ring. The k-neighborhood of a vertex uniquely speci�es the rooted universalcover with root v, truncated at depth k.In their paper ([YK87b]), Yamashita and Kameda introduced the notion of the \view"of a vertex of an edge-labeled directed graph. The view Tv of a vertex v in a graph Gis a rooted subgraph of Uv induced by the collection of paths directed away from theroot of Uv . In ([YK87b]) Yamashita and Kameda showed that the view of a processorin an anonymous network represents what the processor can learn of the topology of itsnetwork by exchanging messages with its neighbors. Kranakis, Krizanc and van den Berg([KKvdB90]) made use of the view in deriving a number of results on computing booleanfunctions on anonymous networks.The view (although not called by that name) also makes an appearance in algebraicautomata theory. States s1 and s2 in a deterministic �nite-state machine are called k-equivalent if Ts1 , truncated at depth k, is isomorphic to Ts2 truncated at depth k. In1956 Moore ([Moo56]) showed that states s1 and s2 are n � 2 equivalent in an n statemachine i� they are k-equivalent for all positive k. An argument similar to Moore's givesus Proposition 2.4.1 in this paper.Anonymous Computing: The papers [Ang80], [YK87b,YK87a,YK88] and [KKvdB90] allrequire that an algorithm which runs on an anonymous network work for any edge-labelingof the network satisfying Property 2. This means that an algorithm must work on everygraph in the family f(G; �) : � 2 �g of networks, where G is a graph without edge-labelsand each � 2 � is an edge-labeling of G satisfying Property 2. As a consequence, theconditions these papers derive for functions to be computable are more restrictive thanthe conditions we derive here. The viewpoint of this paper is that a network's edge-labeling is an intrinsic part of the network, and we require an algorithm to work only ona particular edge-labeling.In [ASW88], Attiya, Snir and Warmuth gave the following characterization of thefunctions computable on a ring of n processors:Theorem 2.6.1:1. Let G be an \oriented" ring of n processors. That is, the links of G aref(v1; 1); (v2; 2)g, f(v2; 1); (v3; 2)g, : : : , f(vn�1; 1); (vn; 2)g, f(vn; 1); (v1; 2)g.Then any function f : In ! O is computable by G i� f is invariant under cyclicshifts of the input. (Here G is said to \compute" f(x1; : : : ; xn) = y if each processori computes the same value y when given input xi.)2. There exists an algorithm that computes f on any ring with n processors (that is,with any edge-labeling) i� f is invariant under cyclic shifts and reversals of the input.In [YK87a], Yamashita and Kameda generalized the second part of this result toarbitrary anonymous networks. As in the above, a network G is said to compute a functionf(x1; : : : ; xn) = y if each processor i computes the same value y when given xi as input.In our notation, Yamashita and Kameda's characterization is as follows:Theorem 2.6.2: (Theorem 4.1 in [YK87a])Let G be a network with n processors. Let � be the equivalence-relation on the set ofall input-vectors ~x 2 In, given as follows:



2.6. Related Work 31~x � ~y i� there exist two edge-labelings (�1 and �2) of the edges of G such that the setsfUi~x : i 2 V(G); G labeled with �1g and fUi~y : i 2 V(G), G labeled with �2g are equal.Then G computes f : In ! O i� f(~x) = f(~y) whenever ~x � ~y.The characterization we obtain for vector-valued functions is clearly quite similar tothis. The partition associated with the equivalence relation we give on the set of inputs(De�nition 2.5.1) is a re�nement the partition from Yamsahita and Kameda's de�nition,and our Theorem 2.5.1 implies that a network G computes f : In ! O i� f(~x) = f(~y)whenever ~x and ~y are equivalent, by our de�nition of equivalence.The anonymous computing literature explores a number of issues which we do notaddress in this paper. For instance, [ASW88] and [YK88] show that certain computationsare impossible for an anonymous network if the network does not `know' how manyprocessors it has. Most of the papers on anonymous computing consider the runningtime of algorithms, which we do not, except to di�erentiate hard from easy problems.Yamashita and Kameda ([YK87b,YK88]) examine a network's capacity under variousassumptions about how much the network `knows' about its topology; whereas in theproof of Theorem 2.5.1 we assume that every processor knows the graph of the network.



32 3. The Symmetries of a Network3. The Symmetries of a Network3.1 IntroductionIn the last chapter, we found a characterization of the set of functions that a givennetwork can compute. In this chapter we begin work on a pair of classi�cation problems.To describe these, let us say that two networks are \f -equivalent" if the set of functionseach can compute are the same, and \p-equivalent" if the set of functions are the same\up to a permutation", that is, if they would be the same if the vertex-labels of one graphwere changed by a permutation. We will look for a collection of topological or algebraicfeatures of the graphs of networks which correctly place them in their equivalence-classesunder these two relations.What graph features might we expect to succeed at the �rst classi�cation job? Alogical �rst choice might be the set of automorphisms of a graph: Perhaps two networkscan compute the same functions i� their automorphism groups are identical. In Chapter 5,in fact, we will see that having identical automorphism groups is a necessary condition fortwo graphs to compute the same set of functions. It is not a su�cient condition, however,as Example 3.1.1 shows.Example 3.1.1: It can easily be checked that the graphs G1 and G2 in Figure 3.1 bothhave the trivial automorphism group. For instance, any automorphism of G1 must mapthe vertex \3" to itself, and by Corollary 2.3.1, an automorphism is determined by itsaction on a single vertex. In G2 it can be checked that there is no automorphism mapping
G2G1 6b a ba a a b b a b aa a

a
ba321

6 5 4 1 2 3 45
Figure 3.1: G1 and G2 have identical automorphism groups but compute di�erentsets of functions.



3.2. Universal Covers And Vertex Partitions 33vertex 1 to vertex 2, or mapping vertex 1 to vertex 3, and so on, and hence no nontrivialautomorphisms. However, if we choose inputs ~x = (x; x; x; y; y; y) and ~y = (y; y; y; x; x; x),then it can be checked by hand that, for instance, Un�11 ~x ' Un�14 ~y in G1 but not in G2.By Theorem 2.5.1, this implies that G2 can compute a function that G1 cannot compute.The graph G1 in the above example has, in a sense, more `symmetry' than G2: There areinput vectors for G1 under which a number of its vertices have isomorphic rooted universalcovers, but this is not true of G2. (This can be checked using techniques developed laterin this chapter.) In general, networks which are highly \symmetrical" in this sense cancompute fewer functions than asymmetrical networks. One aim of this chapter will beto make precise this notion of network symmetry. The graph properties that we call\network symmetries" will turn out, in fact, to be the features we are seeking for classifyingnetworks.Chapter Outline and Main Results:Our �rst step in de�ning the symmetries of a network G will be to describe a class ofpartitions of the vertex-set of a graph which are preserved by the edge-label monoid ofthe graph. If � is such a partition, there is a natural quotient-graph G=�, obtained byidentifying the vertices in each block of �. In Section 3.2 of this chapter we will de�nethese \correct partitions" and explore their relationship with universal covers. We willprove that there is a unique \coarsest" correct partition (Proposition 3.2.2.) In Section3.3 we will de�ne the quotient graph G=�, where � is a correct partition, and lay outsome of the properties of quotient-graph isomorphisms. In Section 3.4, we will de�ne`network symmetry' and what it means for a network to satisfy a symmetry, and prove thefollowing: (1) A network computes a function i� the function satis�es all of the network'ssymmetries (Theorem 3.4.1), and (2) Networks compute the same set of functions i� theirsymmetry-sets are identical. (Theorem 3.4.2). Finally, in the last section, we will considernetworks which would compute the same set of functions if the processor id's of one of thenetworks were changed by a permutation. We will say that two such networks \di�er bya permutation", and show that two networks di�er by a permutation i� their symmetrysets \di�er by a permutation" also.3.2 Universal Covers And Vertex PartitionsThe next two sections �ll in some necessary background which will be used to trackdown a notion of `network symmetry'. In this section we will look at a family of partitionsof V(G) which are preserved by the graph monoid.We will need the following notation:Notation: Let G be a graph. If B = fi1; i2; : : : ; ikg � V(G) and fa 2 E(G), we will writefaB for the image of B under fa, i.e., for the set ffa(i1); : : : ; fa(ik)g.De�nition 3.2.1: Let G be a graph, and Let � = fB1; : : : ;Bkg be a partition of V(G).We call � a correct partition with respect to E(G), or c-partition for short, if it satis�es:1. For each block B 2 �, any fa 2 E(G) is de�ned on all or none of the elements of B.



34 3. The Symmetries of a Network2. For any block B 2 � and for any fa 2 E(G), if fa is de�ned on the elements of Bthen faB 2 �.Example 3.2.1: In Figure 3.2 below, the c-partitions of G are �1 = 1=2=3=4 (i.e., �1 =fB1;B2;B3;B4g where B1 = f1g; : : : ;B4 = f4g) and �2 = 1; 4=2; 3.
G

ba b41 32Figure 3.2: A graph and its c-partitionsNotation: If � is a partition of V(G), we will write [i] for the block of � containing apoint i 2 V(G). If �1 and �2 are two c-partitions, write [i]�1 for the block of �1 containingi and [i]�2 for the block of �2 containing i.We will see next that the c-partitions of a graph are the partitions associated with acertain class of equivalence relations, the `congruences'.De�nition 3.2.2: Let G be a graph. A congruence relation1 � on V(G) is an equivalencerelation satisfying:1. For all fa 2 E(G) and v; w 2 V(G), if v � w then fa is de�ned on both or neither ofv and w.2. For all fa 2 E(G) and v; w 2 V(G), v � w implies that fa(v) � fa(w) if fa is de�nedon v and w.The following is immediate from the de�nintion of c-partition:Lemma 3.2.1: Let � be a partition of V(G) and let � be the equivalence relation de�nedby �, i.e., i � j i� [i] = [j] in �. Then � is a c-partition i� � is a congruence relation.2The next proposition shows that all blocks of a given c-partition are the same size.Proposition 3.2.1: If � is a c-partition of G then j[v]j = j[w]j for all [v] and [w] in �.Proof Let [v] and [w] be two blocks in � and let i 2 [v] and j 2 [w]. Since G is connected,there is some fa 2 E(G) such that fa(i) = j. Then fa([v]) = [w], since if i; k 2 [i] andfa(i) 2 [w] then fa(k) 2 [w], by de�nition of congruence relation. By Property 2 inChapter 2 the elements of E(G) are one-to-one on V(G), and so fa induces a bijection from[v] to [w]. Hence j[v]j= j[w]j. 21[B�89] page 91, also [BS81]



3.2. Universal Covers And Vertex Partitions 35The next lemma gives a relationship between graph covering maps and c-partitions. Itstates that the partition induced by the inverse image of a covering map is a c-partition.Lemma 3.2.2: Let G and H be graphs, and let � : G ! H be a covering map. De�ne anequivalence relation �� on V(G) by: v �� w i� �(v) = �(w). Then �� is a congruenceand so the related partition �� of V(G) is a c-partition.Example 3.2.2: Let � be the covering map taking 1 and 2 to u, and 3 and 4 to v inFigure 3.3 below. Then � = 1; 2=3; 4 is a c-partition.b b ba1 24 3 vua�aaFigure 3.3: Example for Lemma 3.2.2Proof of the lemma: Suppose �rst that v �� w and that fa 2 E(G) is de�ned on v.Then since � is a covering map, ga 2 E(H) is de�ned on �(v) 2 H and so fa is de�ned onw, by Proposition 2.3.1 in Chapter 2. Similarly, if fa is de�ned on w then it is de�ned onv. Next, suppose that fa 2 E(G) is de�ned on vertices v and w 2 V(G). Then since � is acovering map, we have �fa(v) = ga�(v) and �fa(w) = ga�(w) ( again by Proposition 2.3.1in Chapter 2). Since �(v) = �(w), we have �(fa(v)) = �(fa(w)), and so fa(v) �� fa(w),and �� is a congruence. 2The next three lemmas give conditions that insure that two rooted universal covers areisomorphic. Lemma 3.2.3 is a generalization of Lemma 2.4.1 in Chapter 2. It states thattwo rooted universal covers are isomorphic if the paths from the root of one are isomorphicto the paths from the root of the other. Lemma 3.3.3 is a corollary of Lemma 3.2.3.Lemma 3.2.3: Let G have universal cover U and let Uv and Uw have roots ~v and ~w,respectively. Suppose that each ~fa 2 E(U) is de�ned on ~v i� it is de�ned on ~w. Then thereis an isomorphism ~� : Uv ! Uw given as follows: ~�(~v) = ~w. For all ~fa 2 E(U) de�ned on~v for which a is reduced, de�ne ~� ~fa(~v) to be the vertex ~fa~�(~v) = ~fa( ~w). For each ~r 2 V(U),de�ne ~�(~r) to be ~� ~fa(~v), where ~fa is the unique element of E(U) mapping ~v to ~r for whicha is reduced.Proof The proof of Lemma 2.4.1, Chapter 2, shows that ~� is an isomorphism. 2Lemma 3.2.4: Let � be a c-partition of G and let i and j 2 V(G) be in the same block of�. Then Ui ' Uj.



36 3. The Symmetries of a NetworkProof Let i and j 2 V(G) be such that [i] = [j] 2 �. Let Ui and Uj have roots ~i and~j, respectively, and canonical covering maps �1 and �2. The conclusion will follow fromLemma 3.2.3 if we show that fa 2 E(G) is de�ned on ~i i� it is de�ned on ~j. Suppose that~fa 2 E(U) is de�ned on ~i. Then fa 2 E(G) is de�ned on �1(~i) = i since �1 is a coveringmap. Since i and j are in the same block of �, fa is de�ned on j, and hence ~fa is de�nedon ~j since �2 is a covering map. The same argument shows that if ~fa 2 E(U) is de�nedon ~j then it is de�ned on ~i. 2The next lemma will be used in the proof of Proposition 3.3.5. It describes conditionsunder which an isomorphism between two graphs `lifts' to an isomorphism between rooteduniversal covers.Lemma 3.2.5: Let G1 and G2 have the same universal cover U and let � : G1 ! G2 bean isomorphism such that �(v) = w for some v 2 V(G1) and w 2 V(G2). Then there is anisomorphism ~� : Uv ! Uw such that �2~� = ��1 for �1 : Uv ! G1 and �2 : Uw ! G2 thecanonical covering maps. That is, the following diagram commutes:- ?? �2�1 -Uv G2Uw~��G1Proof De�ne ~� as in Lemma 3.2.3. We �rst use Lemma 3.2.3 to show that ~� is anisomorphism. If ~fa 2 E(U) is de�ned on the root ~v of Uv then ga 2 E(G1) is de�ned on vsince �1 is a covering map. Also, ha 2 E(G2) is de�ned on �(v) since � is an isomorphism,and so ~fa is de�ned on the root ~w of Uw since �2 is a covering map. Similarly, ~fa beingde�ned on ~w implies that ~fa is de�ned on ~v, and so by Lemma 3.2.3, ~� is an isomorphism.Let ~r 2 V(U) and let ~fa be the unique element of E(U) mapping ~v to ~r for which ais reduced. If �1 : Uv ! G1 and �2 : Uw ! G2 are the canonical covering maps thenby Proposition 2.3.1 in Chapter 2 we have ��1(~r) = ��1 ~fa(~v) = �fa�1(~v). Furthermore,�fa�1(~v) = �fa(v) = fa�(v) = fa(w), and �2~�(~r) = �2 ~fa( ~w) = fa�2( ~w) = fa(w), and so��1(~r) = �2~�(~r). Since a covering map is determined by its action on a single vertex, wehave ��1 = �2~�. 2The last proposition in this section shows that any graph has a unique c-partition withlargest block-size. We will use this proposition in Chapter 6.De�nition 3.2.3: We will say that a partition �1 is a re�nement of a partition �2, written�1 � �2, if whenever i and j are in the same block of �1 they are also in the same blockof �2.Proposition 3.2.2: Let G be a graph. Then there is a unique \coarsest" c-partition � ofV(G) such that any other c-partition of V(G) is a re�nement of �. (Figure 3.4)



3.3. Quotient Graphs And Their Isomorphisms 37Example 3.2.3: The graph in Figure 3.4 has \coarsest c-partition" � = 1; 2; 3=4; 5; 6.a bb abb b a14
5 6

32Figure 3.4: Illustrating the \coarsest c-partition" of a graphProof of Proposition 3.2.2 Let G have universal cover U. Put a relation � on V(G) byv � w if Uv ' Uw . It is easy to see that � is an equivalence relation. An argument similarto that used in the proof of Corollaries 3.2.4 and 3.2.5 shows that if v � w then fa 2 E(G)is de�ned on v i� it is de�ned on w. By Lemma 2.4.2 in Chapter 2, if fa is de�ned on vand v � w then Ufa(v) ' Ufa(w), and so fa(v) � fa(w). Thus � is a congruence relationand the associated partition � is a c-partition. Let � be any other c-partition of G , with�� its associated congruence relation. If v �� w for v; w 2 V(G), then by Corollary 3.2.4above, Uv ' Uw and so v � w. That is, � is a re�nement of �. 23.3 Quotient Graphs And Their IsomorphismsThis section examines a relationship between the set of graphs covered by a graph Gand the set of c-partitions of G. In Proposition 3.3.2, we will �nd that these sets are inone-to-one correspondence, that is, for every c-partition � there is a \quotient graph" G=�which G covers. In Proposition 3.3.5 we will �nd a relationship between isomorphisms ofrooted universal covers with input and isomorphisms of quotient graphs.De�nition 3.3.1: If � is a c-partition of G, the quotient graph G=� is de�ned as follows:The vertices of G=� are the blocks of �. A triple h[v] a [w]i is an edge of G=� for [v] and[w] 2 � i� there is an edge hv awi 2 E(G) with v 2 [v] and w 2 [w].It is easy to see that G=� is well-de�ned and is a graph. (See Example 3.3.1.)Example 3.3.1: Graphs G and G=� are pictured in Figure 3.5, for � = 1; 2; 3=4; 5; 6.To simplify notation in future proofs, we will rephrase Proposition 2.3.1 from Chapter2 for quotient-graphs:



38 3. The Symmetries of a Network
G G=�

4,5,6a b a 6bb b
b ab541 32 1,2,3a bFigure 3.5: G and G=�, where � = 1; 2; 3=4; 5; 6.Proposition 3.3.1: Let �1 and �2 be c-partitions of a graph G. A surjective map � :G=�1 ! G=�2 is a covering map i� � satis�es both of the following:(1) For all blocks B 2 �1, any fa 2 E(G) is de�ned on B i� fa is de�ned on �(B).(2) For all fa 2 E(G) and for all blocks B 2 �1 on which fa is de�ned, �faB = fa�(B).Proof By construction, the maps ga 2 E(G=�1) and ha 2 E(G=�2) are de�ned on B 2 �1and on �(B) 2 �2, respectively, i� fa 2 E(G) is de�ned on all of the elements of B and onall of the elements of �(B). Also, �gaB = ha�(B) i� �faB = fa�(B) by construction of thequotient graph. The conclusion then follows from Proposition 2.3.1 in Chapter 2. 2The next proposition gives a correspondence between the c-partitions of a graph G andthe graphs covered by G.Proposition 3.3.2: Let G and H be graphs. If � is a c-partition of V(G) then G coversG=�. Conversely, if G covers H then H ' G=� for some c-partition � of G.Proof Let � be a c-partition of G. We will show �rst that G covers G=�. Let� : V(G)! V(G=�) map each vertex v 2 V(G) to [v] 2 V(G=�). Then � is a covering map:Clearly � is onto. By de�nition of c-partition, fa 2 E(G) is de�ned on v 2 V(G) i� it isde�ned on all elements of [v]. Suppose that fa(v) = w for some v 2 V(G) and fa 2 E(G).Then by the de�nition of c-partition, fa[v] = [w]. By construction, �fa(v) = �(w) = [w],whereas fa�(v) = fa[v] = [w]. Thus �fa(v) = fa�(v), and by Proposition 3.3.1 above, �is a covering map.Suppose now that G covers a graph H via a covering map �. We show that there is ac-partition � such that H ' G=�. Put a relation �� on V(G) by: v �� w i� �(v) = �(w).By Lemma 3.2.2, this relation is a congruence and so the related partition � of V(G) is ac-partition. De�ne a map � : H ! G=� by �(w) = �1��1(w) 2 �, where �1 : G ! G=�maps each i to [i]�. It is straightforward to show that � is an isomorphism. 2



3.3. Quotient Graphs And Their Isomorphisms 39De�nition 3.3.2: Let �1 and �2 be c-partitions such that �1 � �2. The inclusion coveringmap � : G=�1 ! G=�2 is the map which takes each block [i] 2 �1 to [i] 2 �2.The argument used in the �rst part of the proof of Proposition 3.3.2 also gives us thefollowing:Lemma 3.3.1: The inclusion covering map is a covering map. That is, if �1 � �2 forc-partitions �1 and �2, then G=�1 covers G=�2. 2The next two results are ones we would expect to hold if \isomorphism" and \coveringmap" are de�ned correctly. The �rst result will be used in Chapter 5.Proposition 3.3.3: Let � : G=�1 ! G=�2 be an isomorphism, and suppose that G=�2covers G=�4. Then there is a c-partition �3 of G such that G=�1 covers G=�3, for whichthere is an isomorphism �0 : G=�3 ! G=�4; where �0 = �2��1�1 for �1 : G=�1 ! G=�3 and�2 : G=�2 ! G=�4 the inclusion covering maps.Proof De�ne a partition �3 of V(G) such that v and w are in the same block of �3 i��2�([v]) = �2�([w]). By Lemma 3.2.2, �3 is a c-partition, and �1 � �3 by construction.By Lemma 3.3.1, G=�1 covers G=�3. As in Proposition 3.3.2, it is straightforward to showthat �0 = �2��1�1 is an isomorphism: G=�3 ! G=�4 for �1 and �2 the inclusion coveringmaps. 2Proposition 3.3.4: Let �1; �2 and �3 be c-partitions, and let �1 : G=�1 ! G=�3 and�2 : G=�2 ! G=�3 be isomorphisms such that �1([1]�1) = �2([1]�2). Then �1 = �2 and�1 = �2.Proof Let �1 : G ! G=�1 and �2 : G ! G=�2 be the inclusion covering maps (Thatis, �1(i) = [i]�1 ; �2(i) = [i]�2). Then since graph covering map are determined by theiraction on a single point, we have �1�1(1) = �2�2(1) implies that �1�1 = �2�2. Since �1 and�2 are isomorphisms, the blocks of �1; �2 and �3 are the same size. Thus if v 2 [1]�1 butv 62 [1]�2 then �1�1(v) 6= �2�2(v). Hence [1]�1 = [1]�2. Since �1�1 = �2�2, we can use thesame argument to show that [v]�1 = [v]�2 for any v 2 V(G). Thus �1 = �2 and so �1 = �2.2 We will now introduce a c-partition which is associated with an input vector.Notation: Let ~x be an input for G. De�ne an equivalence relation �~x on V(G) by: v �~x wi� Uv~x ' Uw~x. This relation induces a partition, which we denote by �~x, on V(G).We have:Lemma 3.3.2: �~x is a c-partition of V(G) for any input ~x to G.Proof Let [v] 2 �~x and fa 2 E(G) be de�ned on v 2 [v]. Then for all w 2 [v] we haveUv~x ' Uw~x, and so fa is de�ned on w also, by Proposition 2.3.1 in Chapter 2. By Lemma2.4.2 in Chapter 2, if Uv~x ' Uw~x and fa is de�ned on v and w then Ufa(v)~x ' Ufa(w)~x.Hence if fa is de�ned on the elements of [v] then fa([v]) 2 �. 2



40 3. The Symmetries of a NetworkRemark: The \coarsest" c-partition � of a graph G equals �~x, where ~x is any inputvector, all of whose components are equal. Similarly, the �nest c-partition � = 1=2= : : :=nequals �~x, for any ~x with all distinct components. In general, for any c-partition � thereexist inputs ~x such that � = �~x.Note that since �~x is a c-partition, G=�~x is de�ned (as before) and G covers G=�~x.The last proposition in this section gives a relationship between isomorphisms of rooteduniversal covers Ui~x and isomorphisms of quotient-graphs G=�~x. This proposition will beused to prove Theorem 3.4.1 in the next section.Before we present the proposition, we will need a consistent notion of what it meansfor an isomorphism on a quotient-graph G=� to act on an input vector ~x, if � is are�nement of �~x. For instance, let �1 = 1; 6=2; 5=3; 4=7; 8 and �2 = 1; 2=3; 8=4; 7=5; 6,and let � : f1; 6g ! f4; 7g; f2; 5g ! f3; 8g; f3; 4g ! f1; 2g; and f7; 8g ! f5; 6g. (SeeExample 3.3.2.) If ~x = (x1; x2; : : : ; xn) = (x; x; y; z; r; r; z; y) then �2 = �~x and it isreasonable to de�ne �(~x) to be that vector whose ith component is the �([i])th componentof ~x, i.e., �(~x) = (x4; x3; x1; x1; x3; x4; x5; x5) = (z; y; x; x; y; z; r; r). This motivates thefollowing notation:Notation:1. Let � be a c-partition of a graph and let ~x be such that � � �~x. We will write x[i]for xi, where i 2 [i] 2 �.This is well-de�ned since xi = xj whenever [i] = [j] in �.2. Let � : G=�1 ! G=�2 be an isomorphism and let ~x be such that �2 � �~x. We willwrite �(~x) for the vector (x�([1]); : : : ; x�([n])). That is, �(~x) = (xi1 ; : : : ; xin) whereij 2 �([j]).We will need the following lemma:Lemma 3.3.3: Suppose that a network G has a c-partition � and an input ~x satisfying:xi = xj whenever [i] = [j] in �. Then if [i] = [j] in � then Ui~x ' Uj~x, and so � � �~x.Proof Let B be a block in � and let i and j 2 B. By Lemma 3.2.4, Ui ' Uj . De�nean isomorphism � : Ui ! Uj as Lemma 3.2.3. Let ~v be a vertex in Ui and ~w = �(~v) be avertex in Uj . We will show that xv = xw, and conclude that Ui~x ' Uj~x. Let ~fa 2 E(U)map ~i to ~v. Then ~w = �(~v) = � ~fa(~i) = ~fa(~j). Since fa(B) is a block of �, it follows thatv and w are in the same block of � and so by hypothesis, xv = xw. Hence ~v and ~w bothhave the same label xv, and so Ui~x ' Uj~y. 2We have:Proposition 3.3.5: Let G be a network. Then:1. If there are inputs ~x and ~y and vertices i and j of G such that Ui~x ' Uj~y, then thereis an isomorphism � : G=�~x ! G=�~y such that �([i]) = [j] and ~x = �(~y).2. If � : G=�1 ! G=�2 is an isomorphism for c-partitions �1 and �2 of G, then for all~y such that �2 � �~y, we have �1 � ��(~y) and Ui�(~y) ' Uj~y for any i and j such that�([i]) = [j].



3.3. Quotient Graphs And Their Isomorphisms 41Example 3.3.2: Examples of this proposition are given in Figures 3.6 and 3.7 below.y
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Figure 3.6: Example for Propostition 3.3.5 part 1.In Figure 3.6, let ~x = (z; y; x; x; y; z; r; r) and ~y = (x; x; y; z; r; r; z; y). Then U1~x ' U4~y,for instance, and the map �: 1; 6 ! 4; 7, 2; 5 ! 3; 8, 3; 4 ! 1; 2, 7; 8 ! 5; 6 is anisomorphism from G=�~x to G=�~y for which �(~y) = ~x.In Figure 3.7 take G1, G2, and � as above, and let �1 = �~x = 1; 6=2; 5=3; 4=7; 8 and�2 = �~y = 1; 2=3; 8=4; 7=5; 6. Let ~y = (x; x; x; x; r; r; x; x). Then �(~y) = (x; x; x; x; x; x; r; r)and, for instance, U1�(~y) ' U4~y.Proof of the proposition:(1) Suppose that there are inputs ~x and ~y and vertices i and j such that Ui~x ' Uj~y. Let�1 : G ! G=�~x and �2 : G ! G=�~y be the inclusion covering maps. We will �nd a map



42 3. The Symmetries of a Network�
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Figure 3.7: Example for Propostition 3.3.5 part 2.� : G=�~x ! G=�~y such that �2 = ��1 and show that � is an isomorphism which maps [i]to [j].De�ne a map � : G=�~x ! G=�~y as follows: �([i]) = [j] for [i] 2 �~x and [j] 2 �~y. Forany fb 2 E(G) for which b is reduced, let �fb([i]) = fb�([i]) = fb([j]). Since G is connected,� is de�ned on all blocks of �~x. It is also well-de�ned: For suppose that �([k]) = [l1] and�([k]) = [l2] for [k] 2 �~x and [l1] and [l2] 2 �~y. Then there are elements fa and fb 2 E(G)such that fa([i]) = fb([i]) = [k] 2 �~x and fa([j]) = [l1], and fb([j]) = [l2] 2 �~y . By Lemma2.4.2 in Chapter 2, if Ui~x ' Uj~y then Ufa(i)~x ' Ufa(j)~y and Ufb(i)~x ' Ufb(j)~y for fa andfb de�ned on i. Since fa([i]) = fb([i]), we have Ufa(i)~x ' Ufb(i)~x. By transitivity, then,Ufa(j)~y ' Ufb(j)~y and so fa([j]) = fb([j]) 2 �~y . Thus [l1] = [l2] and � is well-de�ned.A similar argument shows that � is one-to-one. If B is any block in �~y then since G isconnected there is an element fa 2 E(G) such that fa([j]) = B. Then �fa([i]) = B, so� is onto. That � is a covering map follows from Proposition 3.3.1 above: For supposethat fb 2 E(G) is de�ned on a block fa([i]) 2 �~x. Then fbfa is de�ned on [i] and henceon [j], since Ufbfa(i)~x ' Ufbfa(j)~y by Lemma 2.4.2 in Chapter 2. Thus fb is de�ned onfa([j]) 2 �~y . The same argument shows that if fb is de�ned on fa([j]) 2 �~y then it isde�ned on fa([i]) 2 �~x. The map � commutes with the elements of E(G) by construction,and so by the abovementioned proposition, � is a covering map. Since y�([l]) = x[l] forl = 1; : : : ; n, we have �(~y) = ~x. This proves (1).(2) Let � : G=�1 ! G=�2 be an isomorphism. Let ~y be such that �2 � �~y , and write�(~y) = ~x. Then:1. �1 � �~x: This will follow from Lemma 3.3.3 if xi = xj whenever [i] = [j] 2 �1.Suppose that [i] = [j] in �1 Then the following three facts hold:



3.4. Symmetry And Its Consequences 43(a) Since � is an isomorphism from G=�1 to G=�2, we have [i] = [j] 2 �1 i��([i]) = �([j]).(b) �([i]) = �([j]) implies that y�([i]) = y�([j]).(c) Because ~x = �(~y), we have y�([i]) = y�([j]) i� xi = xj .Hence xi = xj and �1 � �~x.2. Ui~x ' Uj~y whenever �([i]) = [j]: Suppose that �([i]) = [j]. By Lemma 3.2.5,Ui ' Uj via an isomorphism ~� such that �2~� = ��1 for �1 and �2 the canonicalcovering maps. Let ~v 2 V(Ui) and let ~�(~v) = ~r: Then �([v]) = [r] and so xv =y�([v]) = y[r] = yr . Hence Ui~x ' Uj~y. 23.4 Symmetry And Its ConsequencesWe now have the machinery for �nding a set of network features which classify networksaccording to the functions they can compute. Let us consider again what these featuresmight be. We have already seen that the graph automorphisms do not reliably distinguishbetween networks. Another plausible choice might be the elements of the edge-labelmonoid of a graph. However, this also fails to consistently classify networks. In Chapter5 we will give an example of two networks having distinct edge-label monoids whichnonethless can compute the same functions. It is true, however, that if two networkshave identical (not just isomorphic) edge-label monoids, that the set of functions each cancompute is the same. (See Remark 5.3.1 in Chapter 5.)Perhaps two networks compute the same functions i� they have the same c-partitions?Unfortunately, this is also false, as Example 3.4.1 shows.Example 3.4.1: The graphs G1 and G2 in Figure 3.8 share the same c-partitions, namely,�1 = 1=2=3=4, �2 = 1; 2=3; 4, and �3 = =1; 2; 3; 4=. However, they do not have the samequotient-graph isomorphisms. G1, for instance, has an automorphism � = (1; 2; 3; 4) whichG2 does not have. By Proposition 3.3.5 in the previous section, this implies (for instance)that in G1, U4�(~x) ' U1~x for any ~x. This does not hold for G2, so G2 can compute afunction that G1 cannot compute.
G1 G2 ba a aa a a b 432143 21 aFigure 3.8: G1 and G2 have the same c-partitions but compute di�erent functions.



44 3. The Symmetries of a NetworkIn this section we will see that the set of distinguishing features or `symmetries' {as we call them { of a graph consists of the c-partitions of the graph and its quotient-graph isomorphisms. This section's �rst theorem gives an alternate characterization ofthe functions computable by a network in terms of its \symmetries". The second theoremshows that the set of symmetries correctly classi�es networks: Two networks compute thesame functions i� they have the same symmetry set.We de�ne a `network symmetry' to be a triple consisting of two c-partitions and theassociated quotient-graph isomorphism. More formally, we have:De�nition 3.4.1: Let G be a graph, and let � : G=�1 ! G=�2 be an isomorphism ofquotient-graphs G=�1 and G=�2. Then � induces a bijection, which we also call �, betweenthe blocks of �1 and �2. We will call a triple h�1; �2; �i a symmetry of G if � : G=�1 ! G=�2is an isomorphism. The symmetry set of a graph G is the set of symmetries of G.We will show next that a network can compute a function f i� f \satis�es thesymmetries" of the network. What should it mean for a function to `satisfy a symmetry'?Consider the network G in Example 3.3.2. The triple h�1; �2; �i is a symmetry for G,where �1; �2 and � are as given in the example. Let ~y = (x; x; y; z; r; r; z; y) and �(~y) =(z; y; x; x; y; z; r; r) as in the example. By Theorem 2.5.1, f must satisfy f(�(~y))i =f(~y)�([i]) for all i = 1; : : : ; n, since Ui�(~y) ' U�([i])~y for i = 1; : : : ; n. That is, f(�(~y)) =�f(~y) for this ~y for which �2 = �~y. This motivates the following de�nition:De�nition 3.4.2: We will say that a function f : In ! On satis�es a symmetry s =h�1; �2; �i if for all inputs ~x such that �2 � �~x, we also have �2 � �f(~x) and f(�(~x)) =�(f(~x)).The clause \�2 � �f(~x)" insures that �(f(~x)) is de�ned.We have:Theorem 3.4.1: A network with graph G computes a function f i� f satis�es all sym-metries in the symmetry-set of G.Proof Suppose �rst that f satis�es all symmetries of G. Let i; j 2 V(G) and ~x; ~y 2 I besuch that Ui~x ' Uj~y. By part 1 of Proposition 3.3.5, there is a symmetry s = h�~x; �~y; �iwith ~x = �(~y) and [j] = �([i]). Since f satis�es s, we have f(�(~y)) = �f(~y). That is,f(~x)i = f(~y)j , and so by Theorem 2.5.1 in Chapter 2, G computes f .Conversely, suppose that G computes f . Let s = h�1; �2; �i be a symmetry of G andlet ~x be an input-vector such that �2 � �~x. If [i] = [j] in �2 then Ui~x ' Uj~x (by de�nitionof �~x), and we have f(~x)i = f(~x)j , since G computes f (Theorem 2.5.1, Chapter 2.) ByLemma 3.3.3, this implies that �2 � �f(~x). To complete the proof that f satis�es s weneed to show that f(�(~x)) = �f(~x), i.e., that f(�(~x))i = f(~x)�([i]) for i = 1; : : : ; n. Since�2 � �~x we have by Proposition 3.3.5 part 2 that Ui�(~x) ' U�([i])~x. Then by Theorem2.5.1, f must satisfy f(�(~x))i = f(~x)�([i]), since G computes f . Thus f satis�es s. 2The next lemma will be used to prove Theorem 3.4.2.Notation: If G1 is a network, we will write �1 for a c-partition of G1, and i1 or j1 willdenote vertices in G1. We will denote a c-partition �~x of G1 by �1~x.



3.4. Symmetry And Its Consequences 45Lemma 3.4.1: Let G1 and G2 be networks with jV(G1)j = jV(G2)j. Let �1 and �2 bec-partitions of G1 and G2, respectively, such that �1 = �2. If �1 � �1~x for some ~x then�2 � �2~x.Proof If i2 and j2 are in the same block of �2 then i1 and j1 are in the same block of �1since �1 = �2. If i1 and j1 are in the same block of �1 then Ui1~x ' Uj1~x (since �1 � �1~x),and so xi = xj . Hence if [i2] = [j2] 2 �2 then xi = xj . Thus by Lemma 3.3.3, �2 � �2~x. 2Theorem 3.4.2: Let G1 and G2 be networks and suppose that jV(G1)j = jV(G2)j. Thenthe sets of functions which G1 and G2 can compute are equal i� their symmetry-sets areidentical.Proof Let G1 and G2 have symmetry-set S1 and S2, respectively.((=) Suppose �rst that S1 = S2 and that G1 computes a function f . We will showthat G2 also computes f , by showing that f satis�es all of the symmetries in S2. Lets1 = h�1a; �1b ; �i 2 S1. We show that f satis�es s2 = h�2a; �2b ; �i 2 S2, where s1 = s2.Let ~x be an input-vector such that �2b � �2~x: We need to show that �2b � �2f(~x) and thatf(�(~x)) = �f(~x). Since �1b = �2b , we have �1b � �1~x, by Lemma 3.4.1. By Proposition 3.3.3there is a symmetry s = h�1c ; �1~x; �0i 2 S1, where �0 = �2��1�1 for �1 : G1=�1a ! G1=�1c and�2 : G1=�1b ! G1=�1~x the inclusion covering maps. Since f satis�es all of the symmetries inS1, it satis�es s, so �1~x � �1f(~x) and �0f(~x) = f(�0(~x)). Since �1b � �1~x, we have �1b � �1f(~x).Since �1b = �2b , we have, again by Lemma 3.4.1, that �2b � �2f(~x). That f(�(~x)) = �f(~x)follows from the easily-veri�ed fact that �(~y) = �0(~y) for all ~y on which �0 is de�ned. Inparticular, �(~x) = �0(~x) and �f(~x) = �0f(~x), and f(�0(~x)) = �0f(~x) since f satis�es s.Hence f satis�es s2. Since S1 = S2, this shows that f satisfes all symmetries in S2 andthus, by Theorem 3.4.1, that G2 computes f . The same argument shows that if G2 cancompute a function f , then G1 can compute it.(=)) Conversely, suppose that G1 and G2 compute the same functions. We will showthat S1 = S2, where S1 and S2 are the symmetry-sets of G1 and G2, respectively.Suppose on the contrary that G2 has a symmetry s = h�1; �2; �i that G1 does nothave. We will construct a function f which G1 can compute but G2 cannot. Nows = h�1; �2; �i 62 S1 means that either (1) �1 or �2 are not c-partitions of G1, or (2) �is not an isomorphism from G1=�1 to G1=�2. Let us consider these two cases separately.Case 1: Suppose that �1 is not a c-partition of G1. Then there is a block B 2 �1,ga 2 E(G1), and i and j 2 B such that either ga(i) and ga(j) are in di�erent blocks of �1,or ga is de�ned on one but not both of fi; jg. De�ne a function f by f(~x)l = xga(l) forl 2 f1; : : : ; ng on which ga is de�ned, and f(~x)l = y 62 fx1; : : : ; xng for l on which ga isunde�ned. Then if ~x0 2 In is such that x0r = x0s i� r and s are in the same block of �1,then f(~x0)i 6= f(~x0)j for i; j as above. Note that f is computable by G1 by construction,since each processor l can request xga(l) from processor ga(l) if such exists, or output `y'if ga is not de�ned on l. However, f is not computable by G2: Ui~x0 ' Uj~x0 for i; j, and ~x0as above, and by Theorem 2.5.1 G2 computes f only if f(~x0)i = f(~x0)j .



46 3. The Symmetries of a NetworkCase 2: Suppose now that �1 and �2 are c-partitions of G1 but that � is not anisomorphism from G1=�1 to G1=�2. Then there is a block B 2 �1 and an element ga 2 E(G1)such that either ga is de�ned on B but not on �(B), or vice-versa, or �ga(B) 6= ga�(B).De�ne f as above in Case 1. Let ~x0 2 In be such that xr = xs i� r and s are in the sameblock of �2. Then �f(~x0) 6= f�(~x0), since for each i 2 f1; : : : ; ng we have:�f(~x0)i = ( x0�([ga(i)]) for i on which ga is de�nedy otherwisef(�(~x0))i = ( x0ga�([i]) for �([i]) on which ga is de�nedy otherwiseThus there exists i 2 B such that x0�([ga(i)]) 6= x0ga�([i]), by construction.By construction, G1 can compute f ; but by Theorem 2.5.1 in Chapter 2, G2 cannot. 23.5 Networks Di�ering By A PermutationConsider the graphs G1 and G2 in Figure 3.9 below.
G1 G2

aa a 3 45a a a a3 a 1 aa 4522 1 Figure 3.9: Networks di�ering by a permutationG2 is identical to G1, except that its �rst three vertex-labels have been cyclicallypermuted. It would be reasonable to expect that G1 and G2 would compute the sameset of functions. However, due to the way we have de�ned function-computation on anetwork, they only `almost' compute the same functions. For instance, to be computableby G1, a function f must satisfy f(�1(~x)) = �1f(~x) for all ~x 2 In and for �1 = (1; 2; 3; 4; 5).A function computable by G2, on the other hand, instead satis�es f(�2(~x)) = �2f(~x) for�2 = (1; 4; 5; 2; 3).In this section we will make precise this artifact of our model. We will show that twonetworks have symmetry-sets \di�ering by a permutation" i� the functions they computedi�er by the same permutation.



3.5. Networks Di�ering By A Permutation 47Notation: Let � be a permutation of f1; : : : ; ng. Then � induces a map, which we alsocall �, on the set In of input-vectors for G, by �(x1; : : : ; xn) = (x�(1); : : : ; x�(n)). That is,�(~x)i = ~x�(i). Let f1 and f2 be functions de�ned on In. We will say that f2 di�ers fromf1 by a permutation � if �f1((~x)) = f2(~x) for all ~x 2 In.If G is a graph and � is a permutation of f1; : : : ; ng, write �G for G with its verticesrelabeled by �. That is, �(v) 2 V(�G) i� v 2 V(G), and h�(v)a�(w)i 2 E(�G) i�hv awi 2 E(G).Let us look again at the set of functions graphs G and �G can compute. If G is giveninput ~x and �G is given input ��1(~x), then the vertex called \i" in �G is called \��1(i)"in G, and both vertices receive the same input-value. In �G, processor i gets input x��1(i)and computes f(~x)��1(i). In G, processor ��1(i) also gets input x��1(i) and computesf(~x)��1(i). Thus:Remark 3.5.1: Let G be a network, ~x an input-vector, � a permutation of f1; : : : ; ng andf a function from In to On. Then G computes f(~x) when given input ~x i� �G computes��1f(~x), given input ��1(~x). That is, G computes a function f i� �G computes ��1f�.2This suggests the following de�nition:De�nition 3.5.1: Let F1 and F2 be two sets of functions: In ! On. Let � be apermutation of f1; : : : ; ng and write �(x1; : : : ; xn) = (x�(1); : : : ; x�(n)) as before. We willsay that F1 di�ers by � from F2 if � induces a bijection: f ! ��1f� from F1 to F2.Remark 3.5.1 then gives us the following:Remark 3.5.2: The set of functions computable by a network G di�ers by � from the setof functions computable by �G, for any permutation � of f1; : : : ; ng. 2Notation: Let � be a partition of f1; : : : ; ng and let � : f1; : : : ; ng ! f1; : : : ; ng be apermutation. Write �(�) for the partition of f1; : : : ; ng satisfying: If [i] = [j] 2 � then[�(i)] = [�(j)] in ��. If � : �1 ! �2 is a bijection from the blocks of �1 to the blocks of�2, we will write �� for the bijection from �(�1) to �(�2) which takes each block �(B) of�(�1) to a block �(�(B)) of �(�2).Example 3.5.1: If �1 = 1; 2; 3=4; 5; 6=7; 8; 9 and � = (1; 4; 5; 8)(3; 7; 9)then �(�1) = 2; 4; 7=5; 6; 8=1; 3; 9 because �(1) = 4, �(2) = 2, �(3) = 7, and so on.If �2 = 1; 4; 7=2; 5; 9=3; 6; 8 then �(�2) = 4; 5; 9=2; 3; 8=1; 6; 7If � : f1; 2; 3g! f1; 4; 7g; f4; 5; 6g! f2; 5; 9g, and f7; 8; 9g! f3; 6; 8g, then�� : f2; 4; 7g! f4; 5; 9g; f5; 6; 8g! f2; 3; 8g, and f1; 3; 9g! f1; 6; 7g.Notation: Suppose that networks G1 and G2 have symmetry-sets S1 and S2, respectively.We will write S2 = �S1 if � induces a bijection from S1 to S2 such that any triple h�1; �2; �iis a symmetry in S1 i� h�(�1); �(�2); � � �i is a symmetry in S2.By constuction, we have:



48 3. The Symmetries of a NetworkRemark 3.5.3: A triple s = h�1; �2; �i is a symmetry of G i� �S = h��1; ��2; ��i is asymmetry of �G. 2Finally we can show:Theorem 3.5.1: Let G1 and G2 be networks with symmetry-sets S1 and S2, respectively.Then S2 = �S1 for some permutation � i� the set of functions computable by G1 di�ersby � from the set of functions computable by G2.Proof By Remark 3.5.3, �G1 has symmetry-set �S1. Suppose �rst that S2 = �S1. Thenby Theorem 3.4.1, �G1 and G2 compute the same set of functions. By Remark 3.5.2,the set of functions computed by G1 di�ers by � from the set of functions computed by�G1, and the conclusion follows. Conversely, suppose that the functions computable byG1 di�er by � from those computable by G2. Then G2 and �G1 compute the same set offunctions, so S2 = �S1. 23.6 Related WorkA generalization of our \correct partition" appears in algebraic automata theory underthe name \admissible partition". (See [Hol82]). In our notation, an admissible relationof the states of a �nite-state machine is an equivalence-relation � on the vertices of anedge-labeled, directed graph G, satisfying: For all words a over A(G), if v � w and if fa isde�ned on v and w then fa(v) � fa(w). A partition of V(G) is admissible if the associatedequivalence-relation is admissible. Note that all congruence-relations (as we de�ne them)are admissible, but not all admissible relations are congruences. There is a well-de�nedquotient of G associated with each admissible partition.



494. Group Graphs4.1 IntroductionIn the last chapter we described a classi�cation for networks, such that two networksare in the same class i� the set of functions each can compute is the same. We found aset of network features | the symmetries | having the property that each equivalence-class of networks is uniquely speci�ed by a set of symmetries. Our task in the remainingthree chapters is to show that classifying networks is easy. In Chapter 5 we will showthat classifying \group graphs" is easy, where a group graph is a graph whose edge-labelmonoid is a group. In Chapter 6, we will show that classifying graphs with arbitraryedge-label monoids is also easy. To show that classi�cation is easy, we will �nd a small,easily-computed subset of the set of symmetries of a graph which generates the wholesymmetry-set under certain operations. This subset can be used in place of the symmetry-set to characterize an equivalence-class of graphs.Chapter Summary and Main Results: This chapter develops the necessary group-and-graph background for the classi�cation e�ort. Two propositions from this chapter willbe used in Chapter 5: Proposition 4.6.5, which gives a correspondence between subgroupconjugacy and quotient-graph isomorphism, and Proposition 4.6.6, which gives a one-to-one correspondence between the symmetries of a graph G and certain cosets of subgroupsof E(G). Most of the rest of the chapter is preparation for these results.In Section 4.2, we will review some facts about the block-systems of permutationgroups. In Section 4.3, we review the idea of a group acting on a set, and in Section 4.4,use these group actions to construct graphs { \operator graphs", of which group-graphsare an instance. In Section 4.5 we will show that the set of graphs covered by a group-graph G forms a lattice isomorphic with a sublattice of the lattice of subgroups of E(G).Finally, in Section 4.6, we will �nd the desired relationships between graph ismorphismand subgroup conjugacy and between cosets and symmetries.4.2 Block SystemsIn this section we will review some basic facts about \block-systems" of permutationgroups: If G is a transitive permutation group on a set S, a block-system is a partitionof S which is preserved by G. We will �nd a close correspondence between block-systemsand subgroups, and between the cosets of a subgroup and the blocks of a block-system.The results in this section are well-known; see [Jac74], [Rob82], [Sco87], and [Wei64].Notation:1. Write (G; S) for a permutation group G on a �nite set S.2. Write Sym(S) for the symmetric group on S.3. Write Gv for the stabilizer subgroup of G of the point v 2 S. That is, Gv = fg 2 G :g(v) = vg.



50 4. Group GraphsLemma 4.2.1: ([Jac74], page 74) If (G; S) is a transitive permutation group then Gv andGw are conjugate subgroups for any v; w 2 S. In particular, if g(v) = w for g 2 G andv; w 2 S then Gw = gGvg�1.De�nition 4.2.1: Let (G; S) be a transitive permutation group. A subset B of S is calleda block, if for all g 2 G, either gB = B or B \ gB = ;.In the sequel we will assume that all permutation groups are transitive, unless statedotherwise.Weilandt proves the following about blocks:Proposition 4.2.1: (Proposition 6.2 in [Wei64])If B is a block of a transitive permutation group G, then gB is a block of G, for allg 2 G.We also have:Proposition 4.2.2: (Proposition 6.3 in [Wei64])If B is a block of G then jBj divides jSj.De�nition 4.2.2: A block-system or system of imprimitivity for a transitive permutationgroup G is a set � of blocks such that S is the disjoint union of the blocks in �, and ifB 2 � and g 2 G, then gB 2 �.Example 4.2.1: If G is a connected graph for which E(G) is a group, then the block-systems of E(G) are the c-partitions of G.Proposition 4.2.3: (Proposition 10.5.4 in [Sco87]) Let B be a block and � a collectionof blocks containing B. Then � is a block-system i� � is the set of all distinct blocksfgB : g 2 Gg.Note that:Remark 4.2.1: A block-system is uniquely determined by a single block.Notation: If H � G and v 2 S, we will write H(v) for the set fh(v) : h 2 Hg.If we �x an element v 2 S, there is a one-to-one correspondence between the blocks ofG containing v and the subgroups of G containing the stabilizer subgroup Gv:Proposition 4.2.4: (Proposition 10.5.6 in [Sco87]) There is a bijection T from the setof all subgroups of G containing Gv onto the set of all blocks of G containing v. T is givenby: T (H) = H(v).Corollary 4.2.1: Let B be a block, v 2 B and let H be a subgroup such that Gv � H andH(v) = B. Then H = fg 2 G : gB = Bg.Proof Let J = fg 2 G : g(v) 2 Bg: It is easy to verify that J is a subgroup of G.Note that Gv � J . We claim that J = H. First, H � J , and so H(v) � J (v). SinceJ (v) � H(v), the blocks H(v) and J (v) are equal and so by Proposition 4.2.4, H = J .The conclusion will follow if the sets fg : gB = Bg and fg : g(v) 2 Bg = H are equal.Let g 2 G. If gB = B then g(v) 2 B, so fg : gB = Bg � H. Conversely, if h 2 H, thenh(v) 2 B and so hB = B. Thus H � fg 2 G : gB = Bg. 2De�nition 4.2.3: A permutation group G on a set S is called regular if it is transitiveand �xed-point free; that is, if it satis�es:



4.2. Block Systems 51� For all v; w 2 S there is an element g 2 G such that g(v) = w� If g(v) = v for some v 2 S then g is the identity element in G.If G is regular and jSj = n then G has order n also: For �x v 2 S. Then for everyw 2 S there is a unique element of G which maps v to w.Note also that if (G; s) is regular, then Gv is always trivial for any v 2 S, since Gis �xed-point free. Hence if (G; S) is regular then the blocks of S containing v are inone-to-one correspondence with the subgroups of G, by Proposition 4.2.4.Since each block of a permutation group (G; S) uniquely determines a block-system,Proposition 4.2.4 gives a one-to-one correspondence between the subgroups of G containingGv and the set of block-systems of G, with a subgroup H corresponding to the block-systemcontaining H(v). More formally, we have:De�nition 4.2.4: Fix v 2 S. We will call a block-system � the block-system correspond-ing to subgroup H with respect to v, and subgroup H is called the subgroup correspondingto � with respect to v if Gv � H and H(v) is a block in �.Example 4.2.2: Let G be the dihedral group D8 on the set f1; : : : ; 8g and generated by:f2 = (1; 2)(3; 4)(5; 6)(7; 8) andf8 = (1; 8)(2; 3)(4; 5)(6; 7).(Refer to Example 4.5.1 for the whole group. )Note that � = 1; 2=3; 8=4; 7=5; 6 is a block-system of G. Then � corresponds to thesubgroup H generated by f2 with respect to any of the points 1; 2; 5; or 6, since, forinstance, hf2i(1) = f1; 2g 2 �; hf2i(5) = f5; 6g 2 �, and so on.If we �x a di�erent point v in S, we have the following:Proposition 4.2.5: Let (G; S) be a transitive permutation group. Let v; w 2 S, let � bea block-system for G and let H be the subgroup of G corresponding to � with respect to v.Then the unique subgroup J corresponding to � with respect to w is J = gHg�1, whereg(v) = w.Proof Suppose that J corresponds to � with respect to w. Choose g 2 G such thatg(v) = w. Then gHg�1(w) = gH(v) = J (w) 2 �, so by Proposition 4.2.4, J = gHg�1. 2We also have the following correspondence:Proposition 4.2.6: Let Gv � H � G. There is a one-to-one correspondence between theleft cosets of H and the blocks in the corresponding block-system, given by: gH ! gH(v).Proof Let � : gH ! gH(v). Note �rst that fgH(v) : g 2 Gg is a block-system: ByProposition 4.2.4, H(v) is a block; say, H(v) = B. By Proposition 4.2.3, fgB : g 2 Ggis a block-system, and so � is onto. We show that � is well-de�ned and one-to-one. Wehave g1B = g2B i� g�12 g1B = B. By Corollary 4.2.1, H = fg : gB = Bg, so g�12 g1B = B i�g2g�11 2 H or g1H = g2H. Hence � is well-de�ned and one-to-one. Thus � is a bijection,as claimed. 2Corollary 4.2.2: Let Gv � H � G. Then for any left coset g0H of H, we have g0H =fg 2 G : gH(v) = g0H(v)g.



52 4. Group GraphsProof Let S = fg : gH(v) = g0H(v)g. If h 2 g0H then hH = g0H and so hH(v) = g0H(v),by Proposition 4.2.6, and so h 2 S. Thus g0H � S. Conversely, if g 2 S then byProposition 4.2.6 we have gH = g0H. Thus S � g0H. 2In the next section we will see that G permutes the blocks of any block-system in thesame way that it permutes the left cosets of the corresponding subgroup.4.3 Group ActionsPerhaps the most natural way to think of the edge-label group of a graph G is as agroup acting on the vertices of G, where any fa 2 E(G) acts on the vertices by permutingthem. In this section we will review the notion of a group action and de�ne what itmeans for two actions to be \equivalent". The aim is to formalize the idea of a groupaction for use in the next section, where we will construct graphs from groups and actions.Again, the material in this section is review. See [Jac74] for a description of action andequivalence and [Mas67] for a de�nition of equivariant maps.De�nition 4.3.1: An action of a group G on a set S is a mapping T : G � S ! Ssatisfying:(1) T (1; s) = s for all s 2 S (where 1 is the identity of G)(2) T (g1g2; s) = T (g1; T (g2; s)) for all g1 and g2 2 G and s 2 S.An action T on G � S is said to be transitive, and G is said to act transitively on S iffor any two points s1 and s2 2 S there is an element g 2 G such that T (g; s1) = s2.Unless otherwise stated we will assume that G and S are �nite and that G acts transitivelyon S.Example 4.3.1: ( Action By Left Or Right Multiplication)Let S = G and let Tl : G � S ! S be de�ned by: Tl(g; h) = gh. It is easy to see thatTl is an action. It is called the action of G on itself by left multiplication. If we let S = Gand de�ne Tr : G � S ! S by: Tr(g; h) = hg�1, then Tr is an action, called the action ofG on itself by right multiplication.1If we �x a group G and a set S, there is a one-to-one correspondence between the set ofgroup actions T : G �S ! S and the set of group homomorphisms �T : G ! Sym(S) (SeeProposition 1.6.5 in [Rob82]). This is given as follows: If T is an action: G �S ! S, thenthe corresponding homomorphism �T maps each group element g 2 G to the permutations! T (g; s). That is, �T (g)(s) = T (g; s). This gives us the following de�nition:De�nition 4.3.2: We call the group �T (G) � Sym(S) the permutation group correspond-ing to the action T .Example 4.3.2: Let G = Z4 = f1; �; �2; �3g act on S = fa; bg by T (1; a) = T (�2; a) = a;T (1; b) = T (�2; b) = b, and T (�; a) = T (�3; a) = b, and T (�; b) = T (�3; b) = a. Then thepermutation group �T (G) is Z2.1If Tr(g; h) = hg instead of hg�1 then Tr is not an action, since it fails condition (2) of the de�nition.



4.3. Group Actions 53Suppose that G = Z3 = f1; �; �2g and that G acts on a set S1 = fa; b; cg by permutingit: T1(�; a) = b;T1(�; b) = c, and T1(�; c) = a. Suppose that G acts on a set S2 = f1; 2; 3g\in the same way" as it acts on S1; i.e., T2(�; 1) = 2;T2(�; 2) = 3; and T2(�; 3) = 1. Thenthe actions T1 and T2 are identical up to a bijection from S1 to S2. It will be convenientto have a formalization of the notion of a group \acting in the same way" on two sets.Following is such a formalization:De�nition 4.3.3: Let T1 : G � S1 ! S1 and T2 : G � S2 ! S2 be actions. A surjectivemap � : S1 ! S2 is called a G�equivariant2 map from T1 to T2 if � commutes with T1 andT2, that is, if �T1(g; s) = T2(g; �(s)) for all g 2 G and s 2 S1. The actions T1 and T2 arecalled equivalent actions and � is called an equivalence if � is a bijective G�equivariantmap from T1 to T2.We have:Proposition 4.3.1: Let T1 : G � S1 ! S1 and T2 : G � S2 ! S2 be actions. If there is aG-equivariant map � from T1 to T2 then there is a group epimorphism from K to H, whereK and H are the permutation groups corresponding to T1 and T2, respectively.Proof We will use the following fact, which derives immediately from the secondisomorphism theorem for groups:(*) Let G;H and K be groups, and �1 : G ! K and �2 : G ! H epimorphisms suchthat ker(�1) � ker(�2). Then there is an epimorphism from K to H.Proof of (*): We want an epimorphism: G=ker�1 ! G=ker�2, because K 'G=ker�1 and H ' G=ker�2. By the second isomorphism theorem, G=ker�2 '(G=ker�1)=(ker�2=ker�1).By (*) it su�ces to show that ker(�T1) � ker(�T2), where �T1 : G ! K and �T2 : G ! Hare the group epimorphisms corresponding to T1 and T2, respectively. Now g 2 ker(�T1) i�T1(g; s) = s for all s 2 S1. Suppose that g 2 ker(�T1). Then �T1(g; s) = �(s) = T2(g; �(s)),so g 2 ker�T2, since � is onto. 2The next proposition shows that a group permutes the blocks of a block-system in thesame way that it permutes the left cosets of the corresponding subgroup.Proposition 4.3.2: Let (G; S) be a transitive permutation group; let v 2 S and let � bea block-system corresponding to a subgroup H of G with respect to v. Then the action of Gon the left cosets of H by left multiplication is equivalent to the action of G on the blocksof � by left multiplication. In particular, the map � : fgH : g 2 Gg ! fB 2 �g given by�(gH) = gH(v) is an equivalence between the two actions.Proof By Proposition 4.2.6, � is a bijection. Also, � commutes with the group actionssince �(g1gH) = g1gH(v) = g1�(gH) for any g1 and g 2 G. 2Remark: The proposition holds in particular for B the trivial block B = fvg. In this caseH = Gv and Proposition 4.3.2 shows that G acts on the left cosets of Gv in the same waythat it acts on S.2Massey pg 255. The notion of equivalent actions is from [Jac74], page 72.



54 4. Group Graphs4.4 Operator GraphsRecall that a group-graph is a graph whose edge-label monoid is a group. The nextthree sections examine the structure of group-graphs. A group graph G can be thoughtof as a picture of the action of a group (E(G)) on a set (V(G)), with the labeled edgesrepresenting group elements acting on the vertices. In this section we will describe a classof graphs, the \operator graphs", which are constructed from group actions in this way.A well-known example of an operator graph is a Cayley graph, which is constructed fromthe action of a group on itself by left (or right) multiplication. More generally, any actionspeci�es a graph once a generator-set for the group is chosen.De�nition 4.4.1: Let G be a group with generator-set X , let S be a set, and T : G�S !S be a transitive group action. The operator graph3 of G with respect to X and T is agraph G = hV(G);E(G);A(G)i, given as follows:� V(G) = S;� A(G) = X ; and� E(G) is the set of triples hv g wi, where v and w 2 S and g 2 X , and T (g; v) = w.It is immediate that these graphs satisfy the \edge-label property" (Property 2 inChapter 2, since elements of G are one-to-one on S.Remark 4.4.1: Suppose that G is a group, T is an action and G is a correspondingoperator graph. Then E(G) is the permutation group �T (G) � Sym(S) associated with T ,because if g 2 G then �T (g)(v) = T (g; v) for all v 2 S.Example 4.4.1: Let G be a graph such that E(G) is a group. De�ne the natural actionT of E(G) on V(G) by: T (fa; v) = fa(v). Let G0 be the operator graph of the naturalaction of E(G) on V(G) with respect to the generator set X = ffa : a 2 A(G)g. Then G0 isthe graph obtained from G by replacing every edge-label a in an edge in G with the labelfa 2 X . That is, hv awi 2 E(G) i� hv fawi 2 E(G0). We will usually equate G0 with G andcall G the operator graph of E(G) with respect to the natural action.Example 4.4.2: (Cayley graphs) Let G be a group, X a set of generators for G, andT : G � G ! G the action of G on itself by left multiplication. The operator graph Gassociated with G; X and T is called a (left) Cayley graph of G. That is, V(G) = G,A(G) = X , and E(G) is the set of triples hg1; g2; g3i with g1 2 X and g2 and g3 2 G beingsuch that g2g1 = g3.The next proposition shows that the covering maps between two quotient-graphsG=�1 ! G=�2 are precisely the E(G)-equivariant maps between the natural actions onG=�1 and G=�2.Proposition 4.4.1:(1) Let G be a group with generator-set X, and let T1 : G�V1 ! V1 and T2 : G�V2 ! V2be actions such that there is a G-equivariant map � : T1 ! T2. Then � is a covering mapfrom G1 to G2, where G1 and G2 are the operator graphs with respect to X, for T1 and T2,respectively.3The term \operator graph" may be due to F.R.K. Chung of Bellcore. See also [ABR87]. Every operatorgraph is isomorphic with a Schrier coset graph [Bol79], which is an operator graph in which V(G) is theset of left cosets of a subgroup of G and G acts on the left cosets by left multiplication. (Corollary 4.4.1).



4.4. Operator Graphs 55(2) Conversely, if G1 and G2 are graphs and if there is a covering map � : G1 ! G2 thenthere are actions T1 : E(G1)� V(G1)! V(G1) and T2 : E(G1)� V(G2)! V(G2) such that� is an E(G1)-equivariant map from T1 to T2. The graphs G1 and G2 are operator graphsof T1 and T2, respectively, with respect to the generator-set X = ffa : a 2 A(G1)g.Proof(1) Let G, T1, T2 and � be as given. Note �rst that A(G1) = A(G2) = X . We will showthat � : V1 ! V2 is a covering map from G1 to G2. This follows from Proposition 2.3.1in Chapter 2, for let a 2 G and write fa 0 for �T1(a) 2 E(G1) and fa 00 for �T2(a) 2 E(G2).Then:(a) All elements of E(G1) and E(G2) are de�ned on all elements of V1 and V2 respec-tively, since T1 and T2 are de�ned on all of G � V1 and G � V2, respectively.(b) For all v 2 V1 and a 2 G, �T1(a; v) = T2(a; �(v)). That is, �(fa0(v)) = fa00�(v).Thus by Proposition 2.3.1 in Chapter 2, � is a covering map .(2) Let G1 and G2 be graphs and let � : G1 ! G2 be a covering map. Let G = E(G1),let T1(fa; v) = fa(v), and let T2(fa; �(v)) = �(T1(fa; v)). Then T1 and T2 are easily seento be actions, and the map � : T1 ! T2 is G-equivariant by construction. By Example4.4.1, G1 is the operator graph of T1 with respect to X . Edges in the operator graph of T2are of the form h�(v) fa �(w)i, where �(w) = T2(fa; �(v)) = �fa(v). Since � is a coveringmap, edges in G2 are also of the form h�(v) a �(w)i, where �(w) = �(fa(v)). Thus G2 isthe operator graph of T2 with respect to X . 2We will show next that any operator graph is covered by a Cayley graph of the samegroup.Notation: If G is a graph and E(G) is a group, we will write \R" for the left Cayley graphof E(G) with respect to the generator set ffa : a 2 A(G)g.Note that E(R) is a regular permutation group isomorphic to E(G).Corollary 4.4.1: Let E(G)v � H � E(G). Denote the left cosets of H in E(G) by �H andthe partition of V(G) associated with H by �. Then R=�H ' G=� (and so R covers G=�).In particular, if H = E(G)v then R=�H ' G.Proof Let T1 be the action of E(G) on �H by left multiplication; i.e., T1(fa; fbH) = fafbHfor all blocks fbH 2 �H. De�ne an action T2 of E(G) on � similarly, i.e., T2(fa;B) = faBfor any B 2 �. Let � : �H ! � be given by �(faH) ! faH(v). By Proposition 4.3.2 thisis an equivalence (that is, a bijective E(G)-equivariant map) and so by Proposition 4.4.1part 1, � is a covering map from R=�H to G=�. Since � is a bijection, it is an isomorphism.2Corollary 4.4.2: Let G1 and G2 be graphs. If there is a covering map: G1 ! G2 thenthere is a group epimorphism: E(G1)! E(G2). In particular, if G1 and G2 are isomorphicthen E(G1) and E(G2) are isomorphic also.



56 4. Group GraphsProof Suppose that there is a covering map from G1 to G2. By Proposition 4.4.1 part2, there is an E(G1)-equivariant map � : T1 ! T2 such that G1 and G2 are the operatorgraphs for T1 and T2 with respect to the generator set X = ffa 2 E(G1) : a 2 A(G1)g. ByProposition 4.3.1, there is a group epimorphism from the permutation group associatedwith T1 to the permutation group associated with T2. By Remark 4.4.1, these permutationgroups are equal to E(G1) and E(G2), respectively. 2Remark 4.4.2: This section gives us a way of constructing nonisomorphic graphs whichshare the same symmetries. Let T : G XS ! S be an action of a group G on a set S. IfG1 and G2 are operator-graphs of T with respect to two unequal generator-sets X and Yof G, then G1 and G2 are nonisomorphic. G1 and G2 have the same symmetries, however,since a symmetry is determined only by the action of G on S, not by the set of generatorschosen for G.4.5 The Lattice Of Block-Systems And The Lattice OfQuotient-GraphsIf E(G) is a group, the set of subgroups of E(G) containing a stabilizer-subgroupE(G)v forms a lattice under the operations subgroup-join and intersection. The set ofblock-systems of G inherits this lattice structure, since by Proposition 4.2.4, the block-systems are in one-to-one correspondence with the subgroups containing E(G)v . Sincethe block-systems are also in one-to-one correspondence with the graphs covered by G(Proposition 3.3.2 in Chapter 3), these graphs also inherit the lattice structure of thelattice of subgroups. This section briey describes these lattices.We begin by de�ning the lattice of block-systems (that is, of c-partitions) of a graphG.De�nition 4.5.1: Let G be a graph for which E(G) is a group and let v 2 V(G). De�nea lattice LBv of block-systems of G as follows:� The partial order on LBv is given by �1 � �2 i� �1 is a re�nement of �2.If �1 and �2 are block-systems corresponding to subgroups H1 and H2, respectively,with respect to v, then� �1^�2 is the block-system corresponding toH1\H2, i.e., the block-system containingthe block [v] = (H1 \ H2)(v).� �1_�2 is the block-system corresponding to the subgroup join hH1;H2i of H1 andH2, i.e., the block-system containing the block [v] = hH1;H2i(v).The next lemma shows that LBv is independent of the choice of v.Lemma 4.5.1: LBv = LBw for all v; w 2 V(G).Proof Let Lv be the lattice of subgroups of E(G) containing E(G)v and Lw, the lattice ofsubgroups containing E(G)w. By Lemma 4.2.1, E(G)v and E(G)w are conjugate via somefa 2 E(G), where fa(v) = w. Then fa induces a lattice isomorphism (preserving latticejoin and meet) from Lv to Lw by: H ! faHfa�1 for all H 2 Lv . This holds because theinner automorphism is a group isomorphism, and so preserves subgroups, intersections,



4.5. The Lattice Of Block-Systems And The Lattice Of Quotient-Graphs 57and joins of subgroups. By Proposition 4.2.5, if a block-system � corresponds to H withrespect to v then it corresponds to faHfa�1 with respect to w. Thus LBv = LBw. 2Since LBv is independent of v, we will write LB instead of LBv in the sequel.The next lemma will be used in Chapter 5 to show that the symmetries of a graphform a lattice.Lemma 4.5.2: Let Gv be contained in subgroups H and J of G. Then g1H(v)\g2J (v) =(g1H \ g2J )(v) for any g1; g2 2 G.Proof Let w 2 (g1H \ g2J )(v). Then there is an element g0 2 g1H \ g2J such thatg0(v) = w. Thus g0(v) 2 g1H(v) \ g2J (v), and (g1H \ g2J )(v) � g1H(v) \ g2J (v).Now let w 2 g1H(v) \ g2J (v). Then there exists g1h 2 g1H and g2j 2 g2J suchthat g1h(v) = g2j(v) = w. Since g2J (v) is a block and since g1h maps v 2 J (v) toa point in g2J (v), it maps J (v) bijectively onto g2J (v). By Corollary 4.2.2, g2J =fg : gJ (v) = g2J (v)g, and so g1h 2 g2J . Then w = g1h(v) 2 (g1H \ g2J )(v), and sog1H(v) \ g2J (v) � (g1H \ g2J )(v), and the two sets are equal. 2Corollary 4.5.1: The intersection of two blocks is a block. 2Corollary 4.5.2: Let Gv � H;J � G. If g1H(v) � g2J (v) then g1H � g2J .Proof By Propositions 4.2.4 and 4.2.6 there is a one-to-one correspondence betweenthe set of left cosets of subgroups of G containing Gv and the set of blocks of G, givenby: gH ! gH(v). Suppose that g1H(v) � g2J (v). By Lemma 4.5.2 we have g1H(v) =g1H(v) \ g2J (v) = (g1H \ g2J )(v). Since g1H \ g2J is a left coset of H \ J we haveg1H = g1H \ g2J , or g1H � g2J . 2The set of quotient graphs of G also forms a lattice LG under the partial order \�",where G=�1 � G=�2 if �1 is a re�nement of �2 (i.e., if G=�2 is a quotient of G=�1). Its joinand meet are described as follows:� G=�1^G=�2 = G=�1^�2� G=�1_G=�2 = G=�1_�2.Then LG inherits the lattice structure from LB.Example 4.5.1: Figure 4.1 pictures a Cayley graph of the dihedral groupD8, its lattice ofquotient-graphs and the corresponding lattice of subgroups. Figure 4.2 shows the quotient-graphs of G.The elements of E(G) are as follows:f1 = id f5 = (1; 5)(2; 6)(3; 7)(4; 8)f2 = (1; 2)(3; 4)(5; 6)(7; 8) f6 = (1; 6)(2; 5)(3; 8)(4; 7)f3 = (1; 3; 5; 7)(2; 8; 6; 4) f7 = (1; 7; 5; 3)(2; 4; 6; 8)f4 = (1; 4)(2; 7)(3; 6)(5; 8) f8 = (1; 8)(2; 3)(4; 5)(6; 7)(Here \fi" denotes the group-element mapping 1 to i. The subscript \i" is not a wordin A(G)�.)



58 4. Group GraphsThe block-systems for G and their corresponding subgroups with respect to vertex 1are given as follows:�1 = =1; 2; : : : ; 8= � E(G) �6 = 1; 6=2; 5=3; 4=7; 8� hf1; f6i�2 = 1; 2; 5; 6=3; 4; 7; 8� hf1; f2; f5; f6i �7 = 1; 5=2; 6=3; 7=4; 8� hf1; f5i�3 = 1; 3; 5; 7=2; 4; 6; 8� hf1; f3; f5; f7i �8 = 1; 4=2; 3=5; 8=6; 7� hf1; f4i�4 = 1; 4; 5; 8=2; 3; 6; 7� hf1; f4; f5; f8i �9 = 1; 8=2; 7=3; 6=4; 5� hf1; f8i�5 = 1; 2=3; 8=4; 7=5; 6� hf1; f2i �10 = 1=2=3=4=5=6=7=8� hf1i
hf1; f4; f5; f8ia b abab12 3 4 5678b a

G is a Cayley graph of D8,generated by f2 and f8.
The lattice of quotientsG = G=�0 G=�4G=�3G=�2 G=�7G=�6G=�5 G=�8 G=�9G=�1 The lattice of subgroups

E(G)hf1; f3; f5; f7ihf1; f2; f5; f6ihf6i hf4ihf5ihf2i hf8ihf1i
Figure 4.1: A graph G and its lattice of subgroups and lattice of quotient-graphs
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G=�8 ' G=�92,31,45,86,7aba b3,84,75,6

baba
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G=�5 ' G=�6 bG=�2
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G=�43,4,7,8 1,3,5,72,4,6,8
3,72,61,54,81,2,5,6 2,3,6,71,4,5,8
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G=�31,2,3,4,5,6,7,8ab G=�1 Figure 4.2: The quotient-graphs of G4.6 Graph Isomorphisms And Conjugate SubgroupsOne of our aims in the next chapter will be to �nd an algorithm which generatesall of the symmetries of a given network. In this section we will show that there is aone-to-one map from the set of symmetries of a graph G (or more particularly, the setof all isomorphisms of quotients of G) into the set of all left cosets of subgroups of E(G).This will allow us to characterize each symmetry uniquely as a left coset of a subgroup ofE(G). We will also �nd a correspondence between subgroup conjugacy and quotient-graphisomorphism.First we need a de�nition:De�nition 4.6.1: If G is a permutation group on a set S, the centralizer CSym(S)G of Gin the symmetric group Sym(S) is the set of all elements in Sym(S) which commute withall elements of G:



60 4. Group GraphsCSym(S)G = fh 2 Sym(S) : hg = gh for all g 2 Gg.Note that:Proposition 4.6.1: (Proposition 10.3.6 in [Sco87]) If (G; S) is a regular permutationgroup then CSym(S)G is regular and isomorphic to G.The next proposition is an immediate corollary of Proposition 2.3.1 in Chapter 2.Proposition 4.6.2: If G is a graph such that E(G) is a group, then the automorphismgroup of G is the centralizer in Sym(V(G)) of E(G).Proof Let � be an automorphism of G. By Proposition 2.3.1 in Chapter 2, � commuteswith all elements of E(G) and so is an element of the centralizer. Conversely, let h be anelement of the centralizer in Sym(V(G)) of E(G). Since E(G) is a group, any fa 2 E(G)is de�ned on all v 2 V(G). Since h 2 CSym(V(G))E(G), we have hfa(v) = fah(v) for allfa 2 E(G) and v 2 V(G). By Proposition 2.3.1 in Chapter 2, h is an automorphism of G.2Example 4.6.1: In Figure 4.1, G is the left Cayley graph of D8, generated by f2 =(1; 2)(3; 4)(5; 6)(7; 8) and f8 = (1; 8)(2; 3)(4; 5)(6; 7). (See Example 4.5.1.) The automor-phism group is the permutation group associated with D8 acting on itself, generated by�2 = (1; 2)(3; 8)(4; 7)(5; 6) and �8 = (1; 8)(2; 7)(3; 6)(4; 5). See Proposition 4.6.4.We will need the following proposition from group theory:Proposition 4.6.3: ([Koc70], page 118)� Let G be a group and Tl : G�G ! G and Tr : G�G ! G the actions by left and rightmultiplication, respectively. Write Gl for the permutation group �Tl(G) associatedwith Tl and Gr for the permutation group associated with Tr. Then Gl = CSym(G)Grand Gr = CSym(G)Gl.� Gl and Gr are regular permutation groups. 2As a corollary of Propositions 4.6.2 and 4.6.3 we have:Proposition 4.6.4: Let G be a graph and let R be the left Cayley graph of E(G) withrespect to the generator-set ffa : a 2 A(G)g. De�ne E(G)l and E(G)r as in Proposition4.6.3 above. Then E(R) = E(G)l and the automorphism group of R is E(G)r.Proof E(R) = E(G)l by the construction of left Cayley graphs. By Proposition 4.6.2,the automorphism group of R is CSym(V(R))E(R) = CSym(V(R))E(G)l = CSym(E(G))E(G)l.By Proposition 4.6.3, this latter equals E(G)r. 2Informally this says that E(R) is the group E(G) acting on itself by left multiplication,and the automorphism group of R is E(G) acting on itself by right multiplication. (SeeExample 4.3.1 for a de�nition of these actions.)The next lemma shows that any isomorphism of quotient-graphs \lifts" to an auto-morphism of R, where \lifting" is as de�ned below.



4.6. Graph Isomorphisms And Conjugate Subgroups 61De�nition 4.6.2: Let graphs G1 cover H1 via a covering map �1, let G2 cover H2 via �2,and let �1 be an isomorphism from G1 to G2 and �2 be an isomorphism from H1 to H2.We will say that �2 lifts to �1 via �1 and �2 if the following commutes:- ?? H2G2-H1 �2G1 �2�1 �1Example 4.6.2: In Figure 4.3 the automorphism �2 = (r; s) lifts to the automorphism�1 = (1; 2)(3; 4) via covering maps �1 = �2 : f1; 4g! r and f2; 3g! s.
G �1 = �2b G=�a a abb 412 3 rsbFigure 4.3: LiftingWe have:Lemma 4.6.1: Let � : G=�1 ! G=�2 be a graph isomorphism and letH � E(G) correspondto �1 and J � E(G) correspond to �2, with respect to v 2 V(G). Then for any coveringmaps �1 : R ! G=�1 and �2 : R ! G=�2, there is an automorphism � of R such that �lifts to � via �1 and �2. If �1 and �2 are the inclusion covering maps then � induces abijection between the left cosets of H and the left cosets of J .Proof Let �1 : R ! G=�1 and �2 : R ! G=�2 be any covering maps, and let v andw 2 V(R) be such that ��1(v) = �2(w). Let � : R ! R be an automorphism such that�(v) = w This automorphism exists because E(R) is regular (Proposition 4.6.4).Then �2�(v) = ��1(v), so �2� = ��1 since �2� and ��1 are graph epimorphisms andhence determined by their action on a single vertex. Thus � lifts to � via �1 and �2.Suppose that �1 : R ! G=�1 and �2 : R ! G=�2 are the inclusion covering maps;that is, that �1(fbh) = fbH(v) for each fbh 2 fbH, and �2 is de�ned similarly. Since��1(v) = �2�(v) for all v 2 V(R), the automorphism � must map cosets onto cosets. 2We will need the next two propositions in Chapter 5. Proposition 4.6.5 (next) showsthat there is a close correspondence between quotient-graph isomorphisms and subgroupconjugacy.



62 4. Group GraphsProposition 4.6.5: Let H correspond to �1 with respect to a vertex v and let J corre-spond to �2 with respect to v. Then:1. If � : G=�1 ! G=�2 is an isomorphism and �(H(v)) = faJ (v) for some fa 2 E(G)then Hfa = faJ .2. Conversely, if Hfa = faJ for some fa 2 E(G) then there is an isomorphism� : G=�1 ! G=�2 such that �(H(v)) = faJ (v).In particular, H and J are conjugate in E(G) i� G=�1 and G=�2 are isomorphic.Example 4.6.3: In Example 4.5.1, the block-system �1 = 1; 2=3; 8=4; 7=5; 6 correspondsto the subgroup H generated by f2, and �2 = 1; 6=2; 5=3; 4=7; 8 corresponds to thesubgroup J generated by f6. Here H and J are conjugate: Hf3 ' f3J . The quotient-graphs G=�1 and G=�2 are isomorphic via the isomorphism � : f1; 2g ! f3; 4g; f3; 8g !f2; 5g; f4; 7g ! f1; 6g, and f5; 6g ! f7; 8g.Proof (of Proposition 4.6.5) Suppose �rst that � : G=�1 ! G=�2 is an isomorphismand that �(H(v)) = faJ (v) for some fa 2 E(G). By Lemma 4.6.1 above, � lifts to anautomorphism � of R via the inclusion covering maps �1 and �2. By construction, � mapsH to faJ . By Proposition 4.6.4, � is an element fb�1 of E(G) acting on E(G) by rightmultiplication: If � maps H to faJ then Hfb = faJ . Then fb = faj for some j 2 J , andso Hfb = Hfaj = faJ , or Hfa = faJ .Conversely, suppose that Hfa = faJ for some fa 2 E(G). By Proposition 4.6.4, fa�1,viewed as an element of E(G) acting on E(G) by right multiplication, is an automorphismof R. In fact, fa�1 induces a bijection � between the left cosets of H and the left cosets ofJ by �(fbH) = fbHfa = fbfaJ . Let �1 : R ! G=�1 and �2 : R ! G=�2 be the inclusioncovering maps and de�ne � = �2��1�1 : G=�1 ! G=�2. Then � is well-de�ned and is easilyseen to be an isomorphism. By construction, �(H(v)) = faJ (v). 2Finally, we have:Proposition 4.6.6: G;R as before. Fix v 2 V(G). There is an injective map � from theset of all isomorphisms of quotients of G into the set of left cosets of the subgroups of E(G)which contain E(G)v. This is given as follows:Let � : G=�1 ! G=�2 be an isomorphism and let �1 correspond to H and �2 correspondto J with respect to v. Then � maps � to faJ , where Hfa = faJ and faJ (v) = �(H(v)).That is, if �([v]�1) = [w]�2, then � : � ! faJ where faJ (v) = [w]�2.Example 4.6.4: In Example 4.6.3, � corresponds to f3J = ff3; f4g. We have f3J (1) =f3; 4g. Indeed, �(f1; 2g) = f3; 4g.Proof of Proposition 4.6.6 Let �, �, H and J be as given. We will show that � iswell-de�ned on the set of all isomorphisms of quotients of G, and that it is one-to-one. Let�1 : R! G=�1 and �2 : R! G=�2 be the inclusion covering maps. By Lemma 4.6.1, � liftsto an automorphism � of R via �1 and �2, and � maps the left cosets of H bijectively ontothe left cosets of J . By de�nition of lifting, �(H(v)) = ��1(h) = �2�(h) = faJ (v) forsome fa 2 E(G) and h 2 H, and so � is de�ned on �. If faJ (v) = fbJ (v) for some fa andfb 2 E(G) then faJ = fbJ by Proposition 4.2.6, and so � is well-de�ned. By Proposition4.6.5, if � maps � to faJ then Hfa = faJ . Finally, � is one-to-one, for suppose that �maps two isomorphisms to the same left coset:



4.7. Related Results 63�1(H1(v)) = faJ (v) and�2(H2(v)) = faJ (v) also. By Proposition 4.6.5, H1fa = H2fa = faJ , so H1 = H2 =faJ fa�1, and �1 = �2. 24.7 Related ResultsOperator Graphs: The term \operator graph" may have been coined by F.R.K. Chungof Bellcore. An older name for operator graph is \group action graph"; see [ABR87] and[BR91]. As mentioned in the footnote in Section 4.4, any operator graph of G is isomorphicwith a Schrier coset graph of a group G, which is an operator graph of the action of G onthe left cosets of a subgroup of G. See [Bol79].An operator graph is a special case of a \G-graph", de�ned in [Coh89]. If G is a group,a \G-graph" is a graph G such that G acts on V(G) and E(G) in such a way that theorientations and inverses of the edges are preserved. If we let G be an operator graph ofa group G with respect to an action T1 on V(G), and let T2 : G � E(G) ! E(G) be theidentity action which maps each edge to itself, then G is a G-graph.An operator graph is also a special case of a \voltage graph". The term voltage graphwas coined by J Gross ([GT87]) and refers to a digraph G whose edges are given \plus" and\minus" directions, together with a map from the plus-directed edges into a permutationgroup. Voltage graphs are used in [GT87] to compute covering graphs for given graphs;that is, for reconstructing a graph from one of its quotients.The lattices of quotient graphs and of subgroups: In [B�89], B�uchi derives related resultsfor \k-algebras". A k-algebra is a tuple A = hA;E; f1; : : : ; fki, where A is a set of \states",E 2 A is the \start state", and each fi for i = 1; : : : ; k is a function from A to A.A k-algebra A is associated in a natural way with a graph G: Let V(G) = A and lethv fi wi 2 E(G) whenever fi(v) = w. A k-algebra is called reduced if its associated graphis strongly connected.A congruence relation � on a k-algebra A is an equivalence relation on A such thatv � w i� fi(v) � fi(w) for i = 1; : : : ; k. Congruence relations induce quotient algebras inthe usual way. B�uchi proves the following:Theorem 4.7.1: (Theorem 4 in [B�89] ) The lattice of quotients of a reduced k-algebraA is anti-isomorphic to the lattice of all congruences on A, where the anti-isomorphismmaps each quotient A= � to the congruence �.The order relation on the lattice of quotients is \homomorphism", where a homomor-phism from a k-algebra A = hA;E; f1; : : : ; fki to a k-algebra B = hB; F; g1; : : : ; gki is amap � from A onto B such that gi�(v) = �fi(v) for i = 1; : : : ; k and for all v 2 A.(Notice the similarity between B�uchi's de�nition of homomorphism and our de�nition ofcovering map. ) As might be expected, there is a one-to-one correspondence between thehomomorphims from an algebra A and the congruence relations on A.B�uchi also shows the following for a family �i of congruences on a k-algebra A:Theorem 4.7.2: (Theorem 4 part 2 in [B�89] )A=(Ti �i) is isomorphic to Ni (A=�i), where `T' is the meet-operator on the lattice ofcongruences and `N' is the \reduced direct sum";



64 4. Group GraphsA=(Si �i) is isomorphic to Vi (A=�i), where ` S' is the join-operator on the lattice ofcongruences, and ` V' is the meet-operator on the lattice of quotients.



655. Classifying Group Graphs5.1 IntroductionHow hard is it to classify networks? This chapter addresses the question for the twoclassi�cations described previously, in which networks were called \f -equivalent" if the setof functions each can compute is the same, and \p-equivalent" if the set of functions eachcan compute is the same up to a permutation. In light of Theorems 3.4.2 and 3.5.1 inChapter 3, the question of how hard it is to classify networks can be rephrased as follows:Is there a small, easily-computed set of graph-features which two graphs share in commoni� they have the same set of quotient-graph isomorphisms (or, respectively, i� their sets ofisomorphisms di�er by a permutation)? The answer to the �rst question is \yes" | the�rst classi�cation task is relatively easy. The second classi�cation problem will turn out tobe at least as hard as determining whether two �nite permutation groups are isomorphic.Chapter Summary and Main Results: The �rst four sections of this chapter addressthe �rst classi�cation question. In Section 5.2 we will show that a graph can havea subexponential number of symmetries, and conclude that checking two graphs forequivalence by comparing their symmetry-sets is potentially slow. In Section 5.3 we willsee that the symmetry-set of a graph forms a lattice, and in Section 5.4, will �nd a smallgenerator-set, the \constraint-set", for the lattice of symmetries. We will show that twonetworks compute the same set of functions i� they have the same constraint-set. Section5.5 gives an algorithm polynomial in the number of edges of a graph for �nding the graph'sconstraints, and concludes the examination of the �rst classi�cation question. Section 5.6addresses the second classi�cation problem, and gives a polynomial-time transformationof this problem to the group-isomorphism problem. Since we are only concerned with thetractability of problems, we will aim for algorithms which are easy to understand, ratherthan optimally fast.This chapter concerns itself only with group-graphs. In the �nal chapter we will seethat the results obtained for group-graphs also hold for arbitrary monoid-graphs.5.2 The Number Of Symmetries Of A NetworkIn this section we will count the number of block-systems and symmetries of a network.We will see that a network can have a subexponential number of both block-systems andsymmetries.The following proposition is folklore in computational group theory. It may be due toTarjan (See [Mil78]).Proposition 5.2.1: A group G of order n has O(nlgn) subgroups. G is generated by a setof size no bigger than lg n.Proof sketch Adding one element to a set of generators of a subgroup of G at leastdoubles the size of the subgroup generated. Therefore G has a generator-set of size lessthan or equal to lg n. There are Plgnk=1 �nk� subsets of G of size less than or equal to lg n



66 5. Classifying Group Graphsand hence no more thanPlgnk=1 �nk� subgroups. The conclusion follows from the well-knownfact that Pmk=0 �nk� � nm + 1. 2A similar argument gives us the following:Proposition 5.2.2: Let (G; S) be a transitive permutation group, with jSj = n. Then Ghas O(nlgn) block-systems.Proof of the proposition: Let Gv be the stabilizer subgroup of a point v 2 S. We showthat G has O(nlgn) subgroups containing Gv. The conclusion then follows from Proposition4.2.4 in Chapter 4, which says that there is a one-to-one correspondence between block-systems and subgroups containing Gv .Let J be a subgroup of G containing Gv , but not containing a given left coset gGvof Gv. Then the subgroup hgGv;Ji generated by gGv and J contains at least twice asmany left cosets of Gv as J contains. Recall that jGj=jGvj = n for any transitive group G.(See Proposition 1.6.1 in [Rob82].) Therefore, there is a collection of no more than lg nleft cosets of Gv which generates G (that is, G is generated by the set of group-elementscomprising these cosets). The same argument shows that any subgroup J of G containingGv is generated by a set of no more than lgn left cosets of Gv . Since there are at mostPlgnk=1 �nk� = O(nlgn) sets of left cosets of Gv of size less than or equal to lg n, there areO(nlgn) subgroups of G containing Gv. 2Corollary 5.2.1: If jV(G)j = n and E(G) is a group then G has O(nlgn) c-partitions. 2Estimate of the number of symmetries of a network:Let G be a network with n vertices. By Proposition 4.6.6 in Chapter 4, each block ofE(G) represents at most one symmetry, so we will count the number of blocks of E(G).By Proposition 5.2.2, E(G) has O(nlgn) block-systems. Each block-system has at most nblocks, so G has at most O(nlgn+1) blocks, and hence O(nlgn+1) symmetries.Remark 5.2.1: There exist graphs having nearly nlgn symmetries. For instance, a Cayleygraph of the group Zn2 = Z2�� � ��Z2 has roughly nlgn symmetries, since Zn2 has roughlynlgn subgroups. Each subgroup is associated with a quotient graph and each quotientgraph has at least the identity automorphism, so there is at least one symmetry for eachsubgroup.5.3 The Lattice Of SymmetriesIn this section we will show that the set of symmetries of a network G forms a lattice,the lattice of symmetries of G. We saw that the lattice of symmetries of a network with nvertices can be large, but we will see that it has a subset, the \constraint-set", which has atmost n elements and generates the lattice of symmetries under the lattice-join operation.Since the constraint set generates the lattice of symmetries, it completely determines thebehavior of the network vis-a-vis function-computation. That is, two networks computethe same set of functions i� they have identical constraint-sets.



5.3. The Lattice Of Symmetries 67By Propostition 4.6.6 in Chapter 4 there is an injective map from the set of isomor-phisms of quotients of G into the set of left cosets of subgroups of E(G). This gives us thefollowing de�nition:De�nition 5.3.1: Fix v 2 V(G) and let s = h�1; �2; �i be a symmetry of G. ByProposition 4.6.6 of Chapter 4 there are subgroups H and J of E(G) and fa 2 E(G)such that Hfa = faJ and faJ (v) = �([v]�1). We will call the left-coset faJ the cosetrepresentative of the symmetry s with respect to v.We will show next that there are meet- and join- operations which make the set ofcoset-representatives of a graph into a lattice. This induces a lattice structure on the setof symmetries of G in a natural way. We will make use of the following proposition fromlattice theory:Proposition 5.3.1: (Corollary 2.17 in [DP90] ) Let X be a set and L a family of subsetsof X, ordered by inclusion, such that1. X 2 L2. Ti2I Ai 2 L for every non-empty family fAigi2I � L.Then L is a lattice with meet and join operations given as follows: Ai^Aj � Ai \ Aj ,for Ai and Aj 2 L. Ai_Aj � TfA 2 LjAi [ Aj � Ag. 2Proposition 5.3.2: Let G be a network and let Cv be the set of coset-representatives forG with respect to a vertex v. Then Cv adjoin the empty set forms a lattice under theinclusion order, with the meet and join operations as in Proposition 5.3.1 above.Example 5.3.1: For G as in Figure 5.1, E(G) is generated by fa = (1; 2)(3; 4) andfb = (2; 3) and has group elements fa, fb, fc = (1; 3; 4; 2), fd = (1; 2; 4; 3), fe = (1; 3)(2; 4),ff = (1; 4)(2; 3), and fg = (1; 4).b C4b b aaG 32 41 ;Lcv
C5C3C1 C2Figure 5.1: Lattice of Coset-RepresentativesChoose v = 1. Then the symmetries and their corresponding coset-representatives areas follows:



68 5. Classifying Group Graphs� s1 = h1=2=3=4; 1=2=3=4; �1 = idi with coset representative C1 = E(G)v = fid; fbg,� s2 = h1=2=3=4; 1=2=3=4=; �2 = (1; 4)(2; 3)i with coset representative C2 =ffE(G)v = fff ; fffbg = fff ; fgg,� s3 = h1; 4=2; 3; 1; 4=2; 3; �3 = idi with coset representative C3 = J = hid; fb; ff ; fgi,� s4 = h1; 4=2; 3; 1; 4=2; 3; �4 = (f1; 4g; f2; 3g)i with coset representative C4 = faJ =ffa; fc; fd; feg,� s5 = h=1; 2; 3; 4=; =1; 2; 3; 4=; �5 = idi with coset representative C5 = E(G).The lattice Lcv of coset-representatives is pictured.Proof of the proposition: This will follow from Proposition 5.3.1 above if Cv [ ; isclosed under intersection. Let s1 = h�1; �3; �1i and s2 = h�2; �4; �2i be two symmetries,where �1; �2; �3 and �4 correspond, respectively, to subgroups H1;H2;H3 and H4 of E(G);and faH3 and fbH4 are the coset-representatives of s1 and s2 with respect to a vertexv 2 V(G). We will show that if faH3\fbH4 6= ; then faH3\fbH4 is a coset-representativewith respect to v, and conclude that Cv [ ; is closed under intersection.Suppose that faH3 \ fbH4 6= ;. Then faH3 \ fbH4 is a left coset, say fc(H3 \ H4),of H3 \ H4. By Proposition 4.6.5 of Chapter 4, H1fa = faH3 and H2fb = fbH4, and soH1fa \ H2fb = faH3 \ fbH4 6= ;. The set H1fa \ H2fb is a right coset of H1 \ H2; say,H1fa \ H2fb = (H1 \H2)fd for some fd 2 E(G). So we have:(H1 \ H2)fd = fc(H3 \ H4). This implies that H1 \ H2 and H3 \ H4 are conjugate;in fact, (H1 \ H2)fc = fc(H3 \ H4). (If (H1 \ H2)fd = fc(H3 \ H4) then fd = fch forsome h 2 H3 \ H4. Hence (H1 \ H2)fch = fc(H3 \ H4), or (H1 \ H2)fc = fc(H3 \ H4)h= fc(H3 \ H4).) Since E(G)v � H1 \ H2 and H3 \ H4, we have by Proposition 4.6.5 inChapter 4 that fc(H3 \H4) is a coset-representative for G with respect to v. 2Notation: We will write Lcv for the lattice of coset-representatives of a graph with respectto a vertex v.The Lattice of Symmetries: The lattice structure of Lcv induces a lattice structure on thesymmetries of G, as follows: Let symmetries s1 and s2 have coset-representatives C1 andC2, respectively. Then s1 � s2 if C1 � C2; s1_s2 is the symmetry with coset representativeC1_C2, and s1^s2 is the symmetry with coset-representative C1^C2.Notation: We will write LSv for the lattice of symmetries of a network with respect to avertex v.In Chapter 4 we saw that the lattice of block-systems is independent of the choice of avertex v 2 V(G). This also holds for the lattice of symmetries, as Proposition 5.3.3 belowshows. First we will need two lemmas:Lemma 5.3.1: Let fb(v) = w for v and w 2 V(G) and fb 2 E(G). Then if faH isthe coset representative for a symmetry s with respect to v, then fbfaHfb�1 is the coset-representative for s with respect to w.



5.3. The Lattice Of Symmetries 69Proof Let s = h�1; �2; �i. We will show that �([w]) = fbfaHfb�1(w). Since � isan isomorphism, we have �([w]) = �fb([v]) = fb�([v]) (Proposition 3.3.1). Since faHis the coset-representative of s with respect to v, we have �([v]) = faH(v). Hence�([w]) = fb�([v]) = fbfaHfb�1fb(v) = fbfaHfb�1(w). Note that fbfaHfb�1 is a left cosetof fbHfb�1; namely, fbfaHfb�1 = fbfafb�1fbHfb�1. By Proposition 4.2.5 in Chapter 4,fbHfb�1 is the subgroup corresponding to �2 with respect to w. 2Lemma 5.3.2: Lcv ' Lcw for any v and w 2 V(G).Proof Suppose that w = fb(v) for some fb 2 E(G). De�ne � : Lcv ! Lcw by: �(faH) !fbfaHfb�1 for each faH 2 Lcv. By Lemma 5.3.1, if faH is the coset-representative of asymmetry s with respect to v then �(faH) is the coset-representative of s with respect tow. Hence � is a bijection. It remains to show that � preserves the lattice meet- and joinoperations. We recall a proposition from lattice theory:1: (Theorem 2.3 in [BS81]). A bijective map � between lattices is a lattice isomorphismi� both � and ��1 are order-preserving.But this is immediate, for if faH � fcJ then fbfaHfb�1 � fbfcJ fb�1, and conversely. 2Proposition 5.3.3: LSv = LSw for any v and w 2 V(G), where LSv and LSw are thelattices of symmetries with respect to v and w, respectively.Proof By Lemma 5.3.2, Lcv ' Lcw via an isomorphism �. By construction, LSv ' Lcvand LSw ' Lcw, so LSv ' LSw. By Lemma 5.3.1, if faH is the coset-representative of asymmetry s with respect to v then �(faH) is the coset-representative of s with respect tow. Hence LSv = LSw. 2Notation: In light of Proposition 5.3.3, we will write LS for the lattice of symmetries ofG. The following proposition shows that the lattice of symmetries is reasonably well-behaved.1Proposition 5.3.4: Let s1 = h�1; �3; �1i and s2 = h�2; �4; �2i be symmetries in LS. Thens1 � s2 i� �1 � �2 and �3 � �4 and �2 lifts to �1 via the inclusion covering maps�1 : G=�1 ! G=�2 and �2 : G=�3 ! G=�4. In particular, this means that s1 � s2 i��1([v]�1) � �2([v]�2) for any v 2 V(G).Proof Let �i correspond to Hi with respect to v for i = 1; : : : ; 4; and let s1 have coset-representative faH3 and s2 have coset-representative fbH4. Suppose �rst that s1 � s2.Then by de�nition, faH3 � fbH4 and so H3 � H4. Since H3 corresponds to �3 andH4 corresponds to �4 this gives us �3 � �4. Note that ��12 �2�1([w]�1) 2 �2 for allw 2 V(G), and is a covering map, for �2 the canonical covering map: G=�3 ! G=�4.Hence �1 � �2. If �1 is the canonical covering map: G=�1 ! G=�2 then by de�nition wehave �1(H1(v)) = H2(v) and �2(faH3(v)) = fbH4(v), and so �2�1(H1(v)) = fbH4(v) =1It is not entirely well-behaved. In particular, there is not always an isomorphism �0 such that s1_s2 =h�1_�2; �3_�4; �0i. (For instance, consider s1_s2 in Figure 5.1.)



70 5. Classifying Group Graphs�2�1(H1(v)). Since covering maps are determined by their action on a single point, thisimplies that �2�1 = �2�1.Conversely, suppose that �2 lifts to �1 via �1 and �2. Then �2�1([v]) = fbH4(v)= �2�1([v]) = �2faH3(v), and so faH3(v) � fbH4(v). By Corollary 4.5.2 in Chapter 4, wehave faH3 � fbH4, and so s1 � s2. 2Remark 5.3.1: The discussion so far yields the following two observations:(1) If E(G1) and E(G2) are identical then G1 and G2 compute the same set of functions,since they then have the same set of symmetries.(2) The converse is false. To �nd an example of graphs which compute the same functionsbut have di�erent edge-label semigroups, we can look for permutation groups (G; S) and(H; S) which have no subgroups between G and Gv and betweenH and Hv , respectively, forsome v 2 S, so that the two corresponding operator graphs have only the trivial symmetry.For instance, let G1 and G2 be as follows: V(G1) = V(G2) = fu; v; w; rg; E(G1) =Sym(V(G)), and E(G2) = A4. Then E(G1)v is the symmetric group on three letters andE(G2)v = A3 = Z3, and G1 and G2 have the same symmetries s1 = h1=2=3=4; 1=2=3=4; idiand s2 = h=1; 2; 3; 4=; =1; 2; 3; 4=; idi.This example also shows that networks can have di�erent lattices of coset representa-tives but share the same lattice of symmetries. That is, Lcv and E(G) over-determine thenetwork.The de�nition of lattice-join as it is given above has a disadvantage: s1_s2 can becomputed only if all of LS is known. In the next section we will need a de�nition of joinwhich depends only on s1 and s2. How might such a de�nition be given? Consider thefollowing example. Let s1 = h�1; �3; �1i and s2 = h�2; �4; �2i, and s1_s2 = h�5; �6; �3i,where�1 = �3 = �4 = 1; 2=3; 8=4; 7=5; 6; �2 = 3; 4=2; 5=1; 6=7; 8, and �1 : f1; 2g ! f5; 6g;f3; 8g ! f4; 7g; f4; 7g! f3; 8g; f5; 6g ! f1; 2g; and�2 : f3; 4g ! f1; 2g; f2; 5g! f3; 8g; f1; 6g ! f4; 7g, and f7; 8g ! f5; 6g.By Proposition 5.3.4, �3 lifts to �1 and �2 via the inclusion covering maps. This means,for instance, that since �1(f1; 2g) = f5; 6g and �2(f1; 6g) = f4; 7g, that �3 must map f1; 2gto f5; 6g and map f1; 6g to f4; 7g. That is, �3 must map a block containing f1; 2; 6gto a block containing f5; 6; 4; 7g. Similarly, since �1(f3; 8g) \ �2(f1; 6g) 6= ;, �3 mustmap a block containing f1; 6; 3; 8g to a block containing f4; 7g = �1(f3; 8g) [ �2(f1; 6g).Continuing with the same line of reasoning, we �nd that �5 = �6 = =1; 2; � � � ; 8= and that�3 is the identity map.This suggests a de�nition:De�nition 5.3.2: Let s1 = h�1; �3; �1i and let s2 = h�2; �4; �2i. De�ne s1_0s2 =h�5; �6; �3i as follows:� i and j are in the same block of �5 if any of the following three conditions hold: (1)i and j are in the same block of �1 or in the same block of �2, (2) [i]�1 \ [j]�2 6= ;,or (3) �1([i]�1)\ �2([j]�2) 6= ;.� i and j are in the same block of �6 if any of the following three conditions hold: (4)i and j are in the same block of �3 or in the same block of �4, or (5) [i]�3 \ [j]�4 6= ;,or (6) ��11 ([i]�3) \ ��12 ([j]�4) 6= ;.



5.3. The Lattice Of Symmetries 71� De�ne �3 = �3�1��11 , where �1 : �1 ! �5 and �3 : �3 ! �6 are the inclusion maps.We can now show the following:Proposition 5.3.5: s1_s2 = s1_0s2 for any s1 and s2 2 LS.Proof Let s1_s2 = h�a; �b; �i. We will show �rst that s1_0s2 is a symmetry, and thenthat s1_0s2 = s1_s2.First, �5 is a c-partition: Let fa 2 E(G) and choose points i and j in a block of �5.Assume �rst that one of the conditions 1, 2, 3 from the de�nition holds for the pair (i; j).If condition 1 holds then fa(i) and fa(j) are in the same block of �1 (or �2) and so are in thesame block of �5. If condition (2) holds then [fa(i)]�1\[fa(j)]�2 6= ;, and so fa(i) and fa(j)are in the same block of �5. If condition (3) holds then fa(�1([i]�1)\ �2([j]�2)) 6= ;. Since�1 and �2 are isomorphisms, they commute with fa, and so (�1(fa[i])�1)\�2(fa[j])�2)) 6= ;,and fa(i) and fa(j) are in the same block of �5. If i and j do not satisfy any of conditions1, 2, or 3 then there is a sequence i = i1; i2; : : : ; ik = j of points in C such that each pair(il; il+1) for l = 1; : : : ; k � 1 satis�es one of conditions 1, 2 or 3. Then by the above, foreach pair (il; il+1) in a block of �5, the pair (fa(i); fa(j)) is in the same block of �5, and�5 is a c-partition.The same argument shows that �6 is a c-partition.�3 is an isomorphism: First, �3 commutes with the elements of E(G) since �1, �2, and�1 do. That is, �3 is a covering map. By construction, �3 lifts to �1. Note also that�3�1��11 = �4�2��12 , where beta2 : G=�2 ! G=�5 and �4 : G=�4 ! G=�6 are the inclusioncovering maps. To show this, choose [i] 2 �1 and [j] 2 �2 such that [i]�1 \ [j]�2 6= ;.Then i and j are in the same block C of �5 by condition (3) of the de�nition of �5, and�3�1��11 (C) = �4�2��12 (C) by condition (6). That is, �3 lifts to �2 also.It remains to show that �3 is well-de�ned and is a bijection. To show that �3 is one-to-one, suppose that �3(B1) = �3(B2) = C for blocks B1 and B2 2 �5 and C 2 �6. If a pairof vertices i and j in C satis�es one of conditions 4, 5, or 6 in the de�nition then ��13 ([i])iand ��13 ([j]) are the same block of �5 by construction. If �3([i]) and �3([j]) do not satisfyany of conditions 4, 5, or 6 then there is a sequence i = i1; i2; : : : ; ik = j of points in Csuch that each pair (��13 ([il]); ��13 ([il+1]) for l = 1; : : : ; k� 1 satis�es one of conditions 4, 5or 6. Then each pair (il; il+1) is in the same block of �5, so i and j are in the same blockof �5 also, by transitivity. That is, any two vertices in C pull back via �3 to the sameblock, so B1 = B2.A similar argument shows that �3 is well-de�ned. By construction, �3 is onto. Since�3 lifts to both �1 and �2 we can use Proposition 5.3.4 to conclude that s1 � s1_0s2 ands2 � s1_0s2.It remains to argue that s1_0s2 = s1_s2. This holds by construction, for since � 2 s1_s2lifts to �1 and �2, we must have s1_s2 satisfying the conditions 1 { 6 of the de�nition ofs1_0s2. Thus, if [i]�5 = [j]�5 then [i]�a = [j]�a, and if [i]�6 = [j]�6 then [i]�b = [j]�b; i.e.,�5 � �a and �6 � �b, and �3([i]�5) � �([i]�a) for all i 2 V(G). Hence � lifts to �3. ByProposition 5.3.4 this implies that s1_0s2 � s1_s2, and so by the de�nition of the latticejoin, the two symmetries are equal. 2The de�nition of s1_s2 given above does not depend on E(G) or, for that matter, onG, but only on s1 and s2. Therefore we have the following corollary to Proposition 5.3.5:



72 5. Classifying Group GraphsCorollary 5.3.1: Let s1a = s2a and s1b = s2b for symmetries s1a and s1b of a graph G1 and s2aand s2b of a graph G2. Then s1a_s1b = s2a_s2b . 25.4 Generators For The Lattice Of SymmetriesAlthough the lattice of symmetries of a network can be large, it contains a small subset,the \constraint set", which generates LS under the lattice join-operation. In this sectionwe will describe the constraint-set and show the following: (1) The constraint-set has atmost jV(G)j members, and (2) Two networks have identical symmetry sets i� they haveidentical constraint-sets. Thus the constraint-set can be used in place of the symmetry-setin classifying networks.De�nition 5.4.1: For i = f1; : : : ; ng, the minimal coset representative of i in the latticeLcv of coset-representatives is the smallest coset faH 2 Lcv such that i 2 faH(v). Theminimal symmetry or constraint of i is the corresponding symmetry. The constraint-set ofG with respect to v is the collection of all of the minimal symmetries (constraints) in LS .Example 5.4.1: For instance, in Example 5.3.1, the minimal symmetry of the vertex 4with respect to vertex 1 is s2 = h1=2=3=4; 1=2=3=4; � = (1; 4)(2; 3)i, since ffE(G)v is thesmallest coset representative containing the vertex 4. The constraint-set of G with respectto vertex 1 in Example 5.3.1 is fs1; s2; s4g.Proposition 5.4.1: If G has n vertices, its constraint-set has at most n elements. Theconstraint-set of G with respect to a vertex v generates the lattice of symmetries under thelattice join.Proof First of all, for each i 2 V(G), the minimal coset-representative Ci, and hencethe minimal symmetry of i, is unique: For if i 2 faH(v) and i 2 fbJ (v) then i 2faH(v) \ fbJ (v), which equals (faH \ fbJ )(v) by Corollary 4.5.2 in Chapter 4. ByProposition 5.3.2, faH \ fbJ 2 Lcv. Thus the constraint-set has at most n elements.We next show that Lcv is generated by the set of minimal coset-representatives underlattice join. From this it follows that LS is generated by the set of minimal symmetriesunder lattice join.Let faH 2 Lcv and suppose that faH(v) = fi1; i2; : : : ; ikg. We will show that faH =fa1H1_ : : :_fakHk , where fajHj is the minimal coset-representative of ij for j = 1; : : : ; k.First, fajHj � faH since fajHj is the smallest coset such that ij 2 fajHj(v), and sofajHj \ faH = fajHj . This implies that fa1H1_ : : :_fakHk � faH. Now let g 2 faH.Then g(v) = i for some i 2 fi1; : : : ; ikg, that is, g(v) 2 faiHi(v) for some faiHi 2ffa1H1; : : : ; fakHkg. Since Hi(v) and faiHi(v) are blocks in the same block-system,we must have gHi(v) = faiHi(v). Hence g 2 faiHi by Proposition 4.2.6 in Chapter4, and so faH � fa1H1_ : : :_fakHk . Hence faH = fa1H1_ : : :_fakHk, and the setffa1H1; : : : ; fakHkg generates Lcv under lattice-join. 2Example 5.4.2: Referring back to example 4.5.1 in Chapter 4:Let G be the Cayley graph of D8 acting on itself by left multiplication, with generatorsf2 and f8, for f2 = (1; 2)(3; 4)(5; 6)(7; 8) and f8 = (1; 8)(2; 3)(4; 5)(6; 7).



5.4. Generators For The Lattice Of Symmetries 73Then for instance if s = h1; 2=3; 8=4; 7=5; 6 1; 6=2; 5=3; 4=7; 8; �i with � : f1; 2g !f3; 4g; f3; 8g ! f2; 5g; f4; 7g! f1; 6g and f5; 6g! f7; 8g, then s has coset representativef3hid; f6i with respect to vertex 1,and s = s1_s2, wheres1 = h�; �; �1 = (1; 3; 5; 7)(2; 4; 6; 8)i with coset representative f3fidgands2 = h�; �; �2 = (1; 4)(2; 3)(5; 8)(6; 7)i with coset representative f4fidg,where � = 1=2=3=4=5=6=7=8.The next lemma shows that the minimal symmetries of G can be characterized withoutreference to the coset representatives.Lemma 5.4.1: Let s = h�1; �2; �i be a symmetry of G. Then s is the minimal symmetryof w with respect to v i� w 2 �([v]�1) and for all symmetries s0 = h�3; �4; �0i for whichs0 � s in LS, if w 2 �0([v]�3) then s0 = s.Proof Let s be a symmetry having coset representative faH with respect to v. Suppose�rst that s is the minimal symmetry of w with respect to v, so that faH is the smallest cosetrepresentative of a symmetry of G for which w 2 faH(v). Let s0 � s for s0 = h�3; �4; �0i;let s0 have coset representative fbJ with respect to v, and suppose that w 2 �0([v]�3) =fbJ (v). Since s0 � s we have fbJ � faH, by de�nition. Since faH is the smallest cosetrepresentative for which w 2 faH(v), we have fbJ = faH and s0 = s.Conversely, suppose that for all symmetries s0 = h�3; �4; �0i for which s0 � s, ifw 2 �0([v]�3) then s0 = s. Let s0 be one such symmetry, having coset representativefbJ with respect to v. Then if w 2 fbJ (v) then fbJ = faH by hypothesis. Thus faH isthe smallest coset representative for which w 2 faH(v), and so s is the minimal symmetryof w with respect to v. 2The next proposition shows that the constraint set, like the lattice of symmetries, isindependent of the choice of vertex v.Proposition 5.4.2: For any v; w 2 V(G), the constraint-set of G with respect to v equalsthe constraint-set of G with respect to w.Proof Let s = h�1; �2; �i be the minimal symmetry of a vertex u with respect to v,and let fc(v) = w. We claim that s is the minimal symmetry of fc(u) with respect to w.By Lemma 5.3.2, if faH is the coset representative of s with respect to v then fcfaHf�1cis the coset representative of s with respect to w. Now s being the minimal symmetry ofu with respect to v means that there is an element h 2 H for which fah(v) = u. Thenfcfahf�1c (w) = fc(u), so fc(u) 2 fcfaHf�1c (w). It is easy to see that fcfaHf�1c is thesmallest coset representative of fc(u) with respect to w. Thus s is the minimal symmetryof fc(u) with respect to w, as claimed. Since fc is a bijection on V(G), it induces a bijectionbetween the constraints of G with respect to v and the constraints of G with respect to w.2Corollary 5.4.1: Two networks have identical symmetry-sets i� they have identicalconstraint-sets. Hence two networks compute the same functions i� they have the sameconstraint-sets.



74 5. Classifying Group GraphsProof Let G1 and G2 be networks. By Corollary 5.3.1, if s1a = s2a and s1b = s2b forsymmetries s1a and s1b of G1 and s2a and s2b of G2, then s1a_s1b = s2a_s2b . Hence if G1 andG2 have the same constraint-sets then they generate the same lattice of symmetries underthe lattice join.Conversely, suppose that G1 and G2 have identical symmetry-sets. Let s = h�1; �2; �iamd s0 = h�3; �4; �0i be symmetries of both G1 and G2. By Proposition 5.3.4, s0 � s i��([v]�1) � �0([v]�3) for all v 2 V(G1) = V(G2). Hence s0 � s for s0 and s in the symmetry-set of G1 i� s0 � s for s0 and s in the symmetry-set of G2. By Proposition 5.4.2, s is theminimal symmetry of w with respect to v in G1 (respectively, G2) if for all symmetries s0of G1 (respectively, of G2) for which s0 � s, if w 2 �0([v]�3) then s0 = s. Since G1 and G2have the same symmetries this means that s is the minimal symmetry of w with respectto v in G1 i� it is the minimal symmetry of w with respect to v in G2. 2Remark 5.4.1: As a corollary of the above we can conclude that if two networks computethe same set of functions then they have isomorphic automorphism groups, since thesymmetries h�1; �2; �i in which � is an automorphism of G are always constraints of G.5.5 Computing ConstraintsIn this section we will give an algorithm for computing the constraints of a network.The algorithm runs in time polynomial in the number of edges of a network, so in light ofCorollary 5.4.1 above, two networks can be checked for f -equivalence in polynomial time.The algorithm makes use of M. D. Atkinson's algorithm for �nding the smallest block ofa block-system of a group containing a pair of points. For reference, we give Atkinson'salgorithm below. Atkinson's algorithm is polynomial in jX j for a permutation group Gwith generator-set X acting on a set f1; : : : ; ng.Let G = hXi be a permutation group on f1; : : : ; ng, and let fv; wg � f1; : : : ; ng.Algorithm 5.5.1: (Atkinson's Algorithm) 2 Given a �nite permutation group G ona set f1; : : : ; ng; a pair (v; w) : v; w 2 f1; : : : ; ng, and a set of generators X for G, �nd theblock-system with the smallest block containing v and w, as follows:Use the \orbit �nding procedure" described below to �nd a relation A on f1; : : : ; ng,where (i; j) 2 A i� there is an element g 2 G such that g(v) = i and g(w) = j. Construct agraph G from A such that V(G) = f1; : : : ; ng and E(G) = f(i; j) 2 Ag. Then the connectedcomponents of G form a block-system, in fact, the block-system with the smallest blockcontaining fv; wg.Procedure for �nding A: Given a set X of generators for G and the pair (v; w), �ndA = f(g(v); g(w) : g 2 Gg:Find the orbit of the pair (v; w) under the action of G on the set of all pairs in f1; : : : ; ng,as follows:� A1 = f(v; w)g.2Eugene Luks attributes this algorithm to C. C. Sims, in [Luk90]. The version of the algorithm we useis from [Luk90].



5.5. Computing Constraints 75� For i = 2 until Ai�1 = Ai;Ai = Ai�1 [ f(g(r); g(s)) : (r; s) 2 Ai�1 and g 2 Xg.� Ai = A. 2Theorem 5.5.1: Fix a vertex v 2 V(G). There is an algorithm polynomial in the numberm of edges of G for �nding the minimal symmetry in Lcv of a vertex w, given V(G) andthe set ffa : a 2 A(G)g of generators for E(G) as input.The idea behind the algorithm is fairly simple: We �rst construct a relation A on V(G)which is the \closest possible approximation" to an automorphism: G ! G taking v tow. A pair (i; j) of vertices is in A if the proposed automorphism maps i to j. Next, weconstruct block-systems �1 and �2 such that A induces a bijection � between the blocksof �1and �2. Then h�1; �2; �i is the desired minimal symmetry.How are A, �1, and �2 constructed? If there did exist an automorphism � : G ! Gmapping v to w, it would satisfy: �fa(v) = fa�(v) = fa(w) for all fa 2 E(G). Hence Amust contain all pairs f(fa(v); fa(w)) : fa 2 E(G)g. If A is to induce a bijection between�1and �2, it must map each block of �1 to a block of �2. For this to hold, �1 must satisfy:If (i; k) and (j; k) 2 A then i and j are in the same block of �1. In the same way A must\preserve" the blocks of �2, so if (k; i) and (k; j) 2 A then i and j must be in the sameblock of �2.Notice that the relation A consisting of all pairs ffa(v); fa(w) : fa 2 E(G)g is preciselythe relation A from Atkinson's algorithm. The relations R1 = f(i; j) : (i; k) and (j; k) 2 Agand R2 = f(i; j) : (k; i) and (k; j) 2 Ag used to construct �1 and �2 are easily derivedfrom A.More formally, we have:Algorithm 5.5.2: (For �nding the minimal symmetry of a vertex w with respect to avertex v:)Step 1: Run the procedure in Atkinson's algorithm for �nding the relation A =f(fa(v); fa(w)) : fa 2 E(G)g given the pair (v; w) and the generator-set ffa : a 2 A(G)gfor E(G).Step 2: Construct relations R1 and R2 from A as follows: (i; j) 2 R1 i� (i; k) and(j; k) 2 A for some k 2 V(G), and (i; j) 2 R2 i� (k; i) and (k; j) 2 A for some k 2 V(G).Step 3: Construct partitions �1 and �2 of V(G) from R1 and R2 as follows: If (i; j) 2 R1then i and j are in the same block of �1; and if (i; j) 2 R2 then i and j are in the sameblock of �2.Step 4: Let � : �1 ! �2 be de�ned by: �(Bi) = Cj if there are vertices i 2 Bi and j 2 Cjsuch that (i; j) 2 A.Then h�1; �2; �i is the desired minimal symmetry. 2Example 5.5.1: Referring back to Examples 5.3.1 and 5.4.1 again:Take v = 1 and w = 2. Using the procedure for �nding A in Atkinson's algorithm,we �nd that A includes the pairs (1; 2), (2; 1) = (fa(1); fa(2)), (1; 3) = (fb(1); fb(2)),(2; 4) = (fa(1); fa(3)), (3; 1) = (fb(2); fb(1)), and so on. This gives us� A = f(1; 2); (3; 1); (1; 3); (2; 4); (4; 2); (3; 4); (4; 3)g,



76 5. Classifying Group Graphs� R1 = f(1; 1); (2; 2); (3; 3); (4; 4); (1; 4); (4; 1); (2; 3); (3; 2)g= R2,� � maps f1; 4g to f2; 3g and f2; 3g to f1; 4g.(See Figure 5.2.) aba b2 341bGFigure 5.2: The generators for E(G) are fa = (1; 2)(3; 4) and fb = (2; 3).Proof of Theorem 5.5.1:I The Algorithm Is Correct:We will show: (1) that �1 and �2 are block-systems, (2) that � is an isomorphism:G=�1 ! G=�2 mapping [v] to [w], and (3) that S = h�1; �2; �i is the minimal symmetryfor w with respect to v.(1) �1 and �2 are block-systems: Let R�1 and R�2 be the transitive closures of R1 andR2, respectively. It is easy to verify that R�1 and R�2 are equivalence relations de�ned onall of V(G). By construction, �1 and �2 are the partitions associated with R�1 and R�2.To show that �1 is a block-system, it su�ces to show that R�1 is a congruence, i.e., thatfor all (i; j) 2 R�1 and for all fa 2 E(G), the pair (fa(i); fa(j)) is in R�1. Now (i; j) 2 R1i� there is a vertex k and elements fb and fc in E(G) such that fc(v) = i; fb(v) = j andfb(w) = fc(w) = k. (Figure 5.3) ai j kv wba ac b cFigure 5.3: R�1 is a congruence relationThenfafc(v) = fa(i); fafb(v) = fa(j) and fafc(w) = fafb(w) = fa(k), so (fa(i); fa(j)) 2 R1.



5.5. Computing Constraints 77If (i; j) 2 R�1 then there are pairs f(i; k1); (k1; k2); : : : ; (kl�1; kl); (kl; j)g 2 R1. We showedthat f(fa(i); fa(k1)); : : : ; (fa(kl); fa(j))g 2 R1, and so (fa(i); fa(j)) 2 R�1 by transitivity.The proof that �2 is a block-system is the same.(2) � : G=�1 ! G=�2 is an isomorphism and �([v]) = [w] for [v] 2 �1 and [w] 2 �2:(a) �([v]) = [w]: Since id(v) = v and id(w) = w for the identity element id of E(G),we have (v; w) 2 A, and so �([v]) = [w].(b) � is de�ned on all blocks of �1: Let i 2 V(G) and let fa 2 E(G) map v to i. Then(i; fa(w)) 2 A. Hence � is de�ned on [i] 2 �1.(c) � is well-de�ned: Suppose that �(B) = C1 and �(B) = C2 for B 2 �1 and for C1and C2 2 �2. Then there are pairs (i; k) and (r; l) 2 A such that i; r 2 B and k 2 C1, andl 2 C2. Since i and r 2 B there are pairs f(i; k1); (k1; k2); : : : ; (kh�1; kh); (kh; r)g 2 R1 andhence elements flhg 2 V(G) such that A contains all of the following pairs:f(i; k); (i; l1); (k1; l1); (k1; l2); (k2; l2); : : : ; (kh�1; lh); (kh; lh); (kh; lh+1); (r; lh+1); (r; l)g .Then R2 contains the following pairs:f(k; l1); (l1; l2); (l2; l3); : : : ; (lh; lh+1); (lh+1; l)g.By transitivity, (k; l) 2 R�2. That is, k and l are in the same block of �2, and soC1 = C2.(d) � is a bijection: A very similar argument to that used in (c) shows that � is one-to-one. To show that � is onto, let [j] 2 �2. Then since G is connected, there is an elementfa 2 E(G) such that fa(w) = j. Hence there is a pair (i; j) in A with i = fa(v), and � isonto.(e) � commutes with the elements of E(G): Suppose that �([i]) = [j] for [i] 2 �1 and[j] 2 �2. Let fa 2 E(G). By the construction of � there is an element fb 2 E(G) such thatfb([v]) = [i] and fb([w]) = [j]. Then fafb([v]) = fa([i]) and fafb([w]) = fa([j]), so thereexists i1 2 fa([i]) and j1 2 fa([j]) such that (i1; j1) 2 A. Then �fa([i]) = �([i1]) = [j1] =fa([j]) = fa�([i]), and � commute with the elements of E(G). (Figure 5.4)Hence � is an isomorphism. �i1 �b a abiv wj j1Figure 5.4: � commutes with the elements of E(G)(3) �1; �2 are the �nest partitions having an isomorphism � : [v]�1 ! [w]�2 : Suppose thatthere are partitions �10 and �20 having blocks Dv and Fw, respectively, with v 2 Dv � [v]�1and w 2 Fw � [w]�2 . If Fw 6= [w]�2 then there is a pair (i; j) 2 R2 such that i is in Fw



78 5. Classifying Group Graphsbut j 2 [w]�2 n Fw . Since (i; j) 2 R2 and since �([v]�1) = [w]�2 , there are elements fa andfb 2 E(G) and k 2 [v]�1 such that fa(v) = fb(v) = k and fa(w) = i and fb(w) = j. (Figure5.5) Since Fw is a block, fbFw is a block not equal to Fw and faFw = Fw.Fw a[w]�2[v]�1Dvvk jwia b bFigure 5.5: �1 and �2 are the �nest such partitionsIf k 2 Dv then there is no isomorphism which maps Dv to Fw, since there is no function� which both maps Dv to Fw and satis�es �(fbDv) = �(Dv) = fb�(Dv). If k 2 [v]�1 n Dvthen there is no isomorphism which maps Dv to Fw , since there is no function � whichboth maps Dv to Fw and satis�es �(faDv) = fa�(Dv) = �(Dv). Hence Fw = [w]�2 andDv = [v]�1.This concludes the proof of correctness.II The algorithm runs in time polynomial in m: The relation A can be computedusing Atkinson's algorithm in time polynomial in m. The relations R1 and R2 can beconstructed from A in n3 steps each: There are n2 pairs (i; j) to check for membership,and each pair can be checked in n steps. The blocks of �1 are the connected componentsof an undirected graph �, where V(�) = f1; : : : ; ng and E(�) = R1. Since � has n verticesand does not have parallel edges, these components can be found in O(n2) steps. (Forinstance, use a depth-�rst search algorithm to �nd a spanning tree of � in O(n2) steps,where � has at most n2 edges. ) The same argument shows that the blocks of �2 can becomputed in O(n2) steps. The map � can be computed in O(n2) steps also: In n stepsthe algorithm can choose a representative from each block of �1. For each representativei, the algorithm can �nd a pair (i; j) 2 A in n steps and can identify the block that jbelongs to in n steps.Since n � m, the algorithm can be executed in p(m) steps for p a polynomial. 2Corollary 5.5.1: Let G1 and G2 be networks with jV(G1)j = jV(G2)j = n, and let m =maxfjE(G1)j; jE(G2)jg, the maximum number of edges in G1 and G2. There is an algorithmpolynomial in m for determining whether G1 and G2 compute the same set of functions.Proof By Corollary 5.4.1, two networks have identical constraint-sets i� they haveidentical symmetry-sets. By Theorem 3.4.2 in Chapter 3, two networks compute the same



5.5. Computing Constraints 79functions i� their symmetry-sets are identical. The constraint-sets of G1 and G2 can befound in time polynomial in m and compared for equality in time polynomial in m. 2Example 5.5.2: In the �rst chapter the claim was made that the graphs G1 and G2 inFigure 5.6 below compute the same set of functions. We are now in a position to provethat claim, by showing that G1 and G2 have identical constraint sets.
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Figure 5.6: Two graphs with the same lattice of symmetriesUsing the orbit-�nding procedure in Atkinson's algorithm one can show, for instance,that if v = 1 and w = 4, that the relations A for G1 and G2 are equal and consist of thefollowing pairs:A = f(1; 4); (4; 1); (1; 5); (5; 1); (2; 6); (6; 2); (3; 7); (7; 3); (4; 8);(8; 4); (5; 8); (8; 5); (6; 7); (7; 6); (2; 3); (3; 2)g:HenceR1 = R2 = f(1; 1); (2; 2); : : : ; (8; 8); (4; 5); (5; 4); (3; 6); (6; 3); (2; 7); (7; 2); (1; 8); (8; 1)g.This yields partitions �1 = �2 = 1; 8=2; 7=3; 6=4; 5 and isomorphism � =(f1; 8g; f4; 5g)(f2; 7g; f3; 6g). Thus the minimal symmetry for the vertex w = 4 ish�1; �1; �i, for this �1 and �.



80 5. Classifying Group GraphsThe same sort of calculations give us the following minimal symmetries for G1 and G2:1! 1: � = the identity permutation of the partition 1=2= : : :=8.1! 2, 1! 3, 1! 6 and 1! 7: � = (f1; 4; 5; 8g; f2; 3; 6; 7g).1! 4 and 1! 5: � = (f1; 8g; f4; 5g)(f2; 7g; f3; 6g).5.6 Networks Di�ering By A Permutation{RevisitedThis last section considers a slightly more general classi�cation scheme for networksthan the one previously considered. Call two networks G1 and G2 \p-equivalent" if thereis a permutation � such that the functions computable by G2 di�er from those computableby G1 by � (Section 3.5 In Chapter 3.) Determining whether two networks are p-equivalentunder this relation seems to be harder than deciding whether they can compute thesame set of functions. In fact, Theorem 5.6.1 will show that it is at least as hard asdetermining whether two �nite permutation groups are isomorphic. As of this writingthe best algorithm for the group-isomorphism problem runs in O(nlgn) time for groups oforder n.We will need the following lemma:Lemma 5.6.1: If E(G) is regular on V(G) then the automorphism group of G is isomorphicto E(G) and the constraints of G are precisely the automorphisms of G. That is, h�1; �2; �iis a constraint of G with respect to a vertex v i� �1 = �2 = 1=2= : : :=n and � is anautomorphism of G.Proof If (E(G);V(G)) is regular then by Propositon 4.6.1, the centralizer of E(G) inSym(V(G)) is isomorphic to E(G). By Proposition 4.6.2 the centralizer is the auto-morphism group of G. Hence the automorphism group has n elements. Since all au-tomorphisms are constraints (Remark 5.4.1) and since G has at most n constraints, theconstraint-set of G equals its automorphism group. 2For instance, if G is a Cayley graph of a group G then the constraints of G are itsautomorphisms.The group isomorphism problem is the following:Problem: Group IsomorphismGiven: Groups G1 and G2 of order n, given as group tables.Question: Are G1 and G2 isomorphic?Proposition 5.6.1: (From [Mil78])Group isomorphism can be solved in O(nlogn+O(1)) steps.We have:Theorem 5.6.1: There is a polynomial-time transformation of the group-isomorphismproblem to the problem of determining if two networks are p-equivalent.



5.6. Networks Di�ering By A Permutation{Revisited 81ProofLet G1 and G2 be groups of order n given by group-tables. We will construct Cayleygraphs G1 and G2 for G1 and G2 and then rename the vertices and edge-labels so thatV(G1) = V(G2) and A(G1) = A(G2):De�ne bijections �1 : G1 ! f1; : : : ; ng and �2 : G2 ! f1; : : : ; ng, where �1(g) = i if gis the ith entry in the group-table for G1, and �2 is de�ned similarly. Construct graphsG1 and G2 from G1 and G2 as follows: V(G1) = V(G2) = f1; : : : ; ng and A(G1) = A(G2) =f1; : : : ; ng. A triple hi; j; ki with i; j; k 2 f1; : : : ; ng is an edge in G1 if �1�1(j) � �1�1(i) =�1�1(k). G2 is de�ned similarly, i.e., hi; j; ki 2 E(G2) if �2�1(j) � �2�1(i) = �2�1(k). G1and G2 can be constructed in O(n2) steps each since the group-tables for G1 and G2 eachhave n2 elements.Then G1 and G2 are the left Cayley graphs for G1 and G2, with the vertices and edge-labels renamed. Hence E(G1) and E(G2) are regular permutation groups, and so by Lemma5.6.1 above, a constraint of G1 (respectively, of G2) is a triple h�; �; �iwhere � = 1=2= : : :=nand � is a graph automorphism of G1 (respectively, G2). By Proposition 4.6.4 in Chapter4, the automorphism group of G1 is isomorphic to G1 and the automorphism group of G2is isomorphic to G2. Thus the constraint sets of G1 and G2 di�er by a permutation i� G1and G2 are isomorphic. 2



82 6. Classifying Monoid Graphs6. Classifying Monoid Graphs6.1 IntroductionIn this chapter we will look again at the problem of classifying graphs by theirsymmetry-sets, this time extending our investigation to arbitrary monoid graphs. Asbefore, we seek a small set of graph properties which characterize the set of graphs havingthe same symmetries. In Section 6.2 we will show that every monoid graph G has asso-ciated with it a group-graph GB whose symmetries partly specify the symmetries of G:Every symmetry of GB \extends" uniquely to a symmetry of G, and every symmetry of G,\restricted to" GB, is a symmetry of GB. This means that the constraints of GB, togetherwith instructions for extending them, completely specify the symmetries of G. In Section6.3 we will show that �nding GB and the extensions of its constraints to symmetries ofG is not hard. We conclude that classifying monoid graphs by their symmetries is not ahard problem. As in the previous chapter, the algorithms we present here are intended tobe transparent, rather than optimally fast.6.2 Symmetries In Monoid GraphsThe aim of this section is to �nd conditions under which two monoid graphs havethe same symmetries. Suppose that a graph G has unique \coarsest" c-partition � (cf.Proposition 3.2.2 Chapter 3). We will show the following:1. If B is a block in � then the edge-label monoid E(G), \restricted" to B, is a group,denoted by E(G)jB. (This restriction is de�ned below.) E(G)jB1 and E(G)jB2 areisomorphic groups for any blocks B1 and B2 in �.2. Any isomorphism of quotients of G maps each block of � to itself. In particular, theonly automotphism of G=� is the identity automorphism.3. Let GB be the operator graph of E(G)jB on B with respect to some generator-set.Then the symmetries of GB are in one-to-one correspondence with the symmetriesof G. In fact, each symmetry of GB extends uniquely to a symmetry of G.Since GB is a group-graph, the symmetries of GB are generated by its constraints, asin Chapter 5. The last theorem of the section uses this fact to give conditions under whichtwo graphs have the same symmetries.We �rst de�ne the \restriction of E(G) to a block":De�nition 6.2.1: Let E(G) be the edge-label monoid of a graph G and let � be a c-partition of V(G). If B is a block of �, the stabilizer submonoid of B, written E(G)B, isthe set fg 2 E(G) : g is de�ned on B and gB = Bg. It is straightforward to verify thatE(G)B is a monoid. The restriction of E(G) to B, written E(G)jB, is the monoid on Bwhose elements are the functions in E(G)B restricted to domain B.Example 6.2.1: For G as in Figure 6.1, E(G) is generated by fa : 1! 2; 2! 3; 3! 1 andfb : 1 ! 4; 2 ! 5, and 3 ! 6. The \coarsest partition" is � = 1; 2; 3=4; 5; 6 = fB1;B2g.Here E(G)B1 = hfai and E(G)jB1 = h(1; 2; 3)i. One can show that E(G)B2 = hfbfafb�1i,where fbfafb�1 maps 4 to 5, 5 to 6, and 6 to 4; and that E(G)jB2 = h(4; 5; 6)i.



6.2. Symmetries In Monoid Graphs 83G1 2 43 65bb ba aaFigure 6.1: The graph for Example 6.2.1Proposition 6.2.1 (following) shows that E(G)jB is a group, and Proposition 6.2.2 showsthat E(G)jB1 and E(G)jB2 are isomorphic for any blocks B1 and B2 2 �. We have:Proposition 6.2.1: Let G be a (connected) graph and let � be a c-partition of V(G). Thenfor any B 2 �, E(G)jB is a transitive permutation group on B.Proof By de�nition of c-partition, if fa 2 E(G) is de�ned on any element of B thenit is de�ned on all of B. Since the elements of E(G)jB are one-to-one on B, they arepermutations of the elements of B, and so E(G)jB is a group. Since G is connected, forevery v; w 2 B there is an element fa 2 E(G) such that fa(v) = w. Hence since B is ablock, the restriction of fa to B is an element of E(G)jB. Thus E(G)jB is transitive on B.2Proposition 6.2.2: Let G be a graph and let � = fB1; : : : ;Bkg be a c-partition of V(G).If fa : B1 ! B2 is an element of E(G), de�ne a map ~fa : E(G)jB1 ! E(G)jB2 by ~fa(gb) = hci� fagb(v) = hcfa(v) for all v in B1. Then ~fa is a group isomorphism: E(G)jB1 ! E(G)jB2.Example 6.2.2: In Example 6.2.1. fbB1 = B2, and so, for instance, ~fb(fa) = fbfafb�1since fbfa = fbfafb�1fb.Proof of Proposition 6.2.2 We will show �rst that ~fa is well-de�ned. Suppose that~fa(gb) = hc and ~fa(gb) = hd; that is, that fagb(v) = hcfa(v) and fagb(v) = hdfa(v) forall v 2 B, for gb 2 E(G)jB1 and for hc and hd 2 E(G)jB2 . Then hcfa(v) = hdfa(v) forall v 2 B1. That is, hcfaf�1a (w) = hdfaf�1a (w) for all w 2 B2, so hc(v) = hd(v) for allv 2 B1. Thus hc = hd and ~fa is well-de�ned. Next, ~fa is a homomorphism: For supposethat ~fa(gb) = hd, and ~fa(gc) = he, so that ~fa(gb) ~fa(gc) = hdhe. Then fagb(v) = hdfa(v)and fagc(v) = hefa(v) for all v 2 B1, and so fagb(gc(v)) = hdfa(gc(v)) = hdhefa(v) for allv 2 B1. Hence ~fa(gbgc) = hdhe. ~fa also preserves inverses; for suppose that ~fa(gb) = hcand ~fa(g�1b ) = hd. Then fagb(v) = hcfa(v) and fag�1b (v) = hdfa(v) for all v 2 B1. Hencehc = fagbfa�1 and hd = fag�1b fa�1 on B2, or hchd = fagbfa�1fag�1b fa�1 = id on B2, sohd = h�1c . Thus ~fa is a homomorphism. Finally, ~fa is a bijection; for if gb 2 E(G)jB2 thenthe restriction of f�1a gbfa to B1 is an element of E(G)jB1 . Then fa(f�1a gbfa)(v) = gbfa(v)for all v 2 B1, and so ~fa(fa�1gbfa) = gb, and ~fa is onto. ~fa is one-to-one since fa is. Thus~fa is a group isomorphism, as claimed. 2



84 6. Classifying Monoid GraphsLet � be a c-partition of G. The next proposition shows that a c-partition of a blockof � extends uniquely to a c-partition of G. First we will show, in the following lemma,that a c-partition of one block of � \extends" to a c-partition of another block of �.Lemma 6.2.1: Let G have c-partition � = fB1;B2; : : : ;Bkg and let �0 = fC1;C2; : : : ;Cjgbe a c-partition of B1 with respect to E(G)jB1. Then if fa 2 E(G) maps B1 to B2, thenffaC1; : : : ; faCjg is a c-partition of B2 with respect to E(G)jB2.Proof Let C 2 �0. We show that faC is preserved by all gb 2 E(G)jB2 . Let gb 2 E(G)jB2and let hc be the restriction of f�1a gbfa to B1. Then hc 2 E(G)jB1 and fahc(v) = gbfa(v)on all points v in B1. Since �0 is a c-partition of B1, either hcC = C or C \ hcC = ;.Since gb(w) = fahcf�1a (w) for all w 2 B2, we have gbfaC \ faC = fahcf�1a faC \ faC= fahcC \ faC = fa(hcC \ C) because fa is a bijection: B1 ! B2. Hence gbfaC \ faC isempty i� hcC\ C is empty, and equals faC i� hcC\ C = C. Since hcC\ C is either emptyor equal to C, this implies that gbfaC \ faC is either empty or equal to faC; that is, thatfaC is a block. 2Proposition 6.2.3: Let G be a graph and let � = fB1; : : : ;Bkg be a c-partition of V(G).If �0 = fC1;C2; : : : ;Cjg is a c-partition of B1 with respect to E(G)jB1 then �0 extendsuniquely to a re�nement of �.Example 6.2.3: For the graph G in Figure 6.2 we have � = 1; 2; 3; 4=5; 6; 7; 8 = fB1;B2g.Then �0 = 1; 2=3; 4 is a c-partition of E(G)jB1, and �0 extends uniquely to the c-partition1; 2=3; 4=5; 6=7; 8 of G. b ca b a c d cdG 854 632 7c1Figure 6.2: Extending a partitionProof of Proposition 6.2.3 We have seen that any fa 2 E(G) which maps B1 to B2also maps �0 to a c-partition �20 = ffaC1; : : : ; faCjg of B2. We want to show that anyfb 2 E(G) which maps B1 to B2 maps �0 to the same partition �02. Let faC 2 fa�0. Sincefb�1fa maps B1 to B1, it must preserve �0. In particular, fb�1faC is a block C0 2 �0, andfaC = fbC0 2 fa�0. That is, fa�0 and fb�0 share a block in common. Since a block-systemis determined by a single block this means that fa�0 = fb�0. 2



6.2. Symmetries In Monoid Graphs 85By Propostion 3.2.2 in Chapter 3, any graph G has a unique \coarsest" c-partition� such that all other c-partitions of G are re�nements of �. Suppose that B is a blockof this partition, and let GB be an operator graph of E(G)jB with respect to the naturalaction on B. Proposition 6.2.4 will show that any symmetry of GB extends uniquely to asymmetry of G, and that any symmetry of G, restricted to B, is a symmetry of GB. Thenext two results are preludes to this.We have:Lemma 6.2.2: Let G be a graph such that E(G) is a monoid but not a group, and let �be the unique coarsest c-partition of V(G). For any B1 6= B2 2 � there exists ga 2 E(G)such that gaB1 = B2 but ga is unde�ned on B2.Proof We will need the following fact:(*) Let G be a connected graph, and let v; w 2 V(G) be such that for all ga 2 E(G), ifga is de�ned on v then ga is de�ned on w. Then any ga 2 E(G) is de�ned on v i� ga isde�ned on w.Proof of (*): If v = w then (*) is immediate. Suppose that v 6= w and let gb 2 E(G)map v to w. Then gb is de�ned on v and so, by hypothesis, on w; and so g2b is de�nedon v and so also on w. Continuing this argument, for any k � 1, gkb is de�ned on v andw. Since G is �nite and gb is one-to-one on its domain there is a number k � 1 such thatgkb (v) = v and gkb (w) = w. Now suppose that gc 2 E(G) is de�ned on w. Then gcgb isde�ned on v, and so gcgb is de�ned on w also. Then gcg2b is de�ned on v and hence w.Repeating this argument, we see that gcgk�1b is de�ned on w and so gcgkb is de�ned on v.Now gcgkb (v) = gc(v), so gc is de�ned on v if it is de�ned on w. This proves (*).Proof of the lemma Suppose that there are blocks B1 and B2 in � such that for allga 2 E(G) which map B1 to B2, if ga is de�ned on B1 then ga is de�ned on B2. Pick gasuch that gaB1 = B2, and suppose that gb 2 E(G) is de�ned on B1. Then gag�1b gb mapsB1 to B2, and so gag�1b gb, and hence gb, is de�ned on B2. By (*) this implies that for anygb 2 E(G), gb is de�ned on v 2 B1 i� it is de�ned on w 2 B2. By Lemma 3.2.3 in Chapter3, this implies that Uv ' Uw for any v 2 B1 and w 2 B2. Thus v and w are in the sameblock of �, by its construction. That is, B1 = B2. 2Corollary 6.2.1: Let � be the coarsest c-partition of a graph G, let �1 and �2 be c-partitions of G and let � : G=�1 ! G=�2 be an isomorphism. Then for any block C 2 �1there is a block B 2 � such that C � B and �(C) � B. In particular, the only automorphismof G=� is the identity automorphism.Example 6.2.4: In Example 6.2.3, � = 1; 2; 3; 4=5; 6; 7; 8 and G=� is as pictured in Figure6.3. The only automorphism of the quotient is the identity automorphism.Proof of Corollary 6.2.1 Let � : G=�1 ! G=�2 be a map. Suppose that �(C) = Dfor blocks C 2 �1 and D 2 �2, and suppose that C and D are in two di�erent blocks B1and B2 of �. By Lemma 6.2.2 there is an element fa 2 E(G) which maps B1 to B2 but isunde�ned on B2. Then � cannot be an isomorphism, since fa is de�ned on C but not on�(C). 2



86 6. Classifying Monoid Graphscba dFigure 6.3: G=� for G in Figure 6.2The next proposition shows that the symmetries of G are in one-to-one correspondencewith the symmetries of any operator graph of E(G)jB under its natural action on B. Wewill use the following notation:Notation: Let B 2 �, and let X � E(G)jB be a set of generators for E(G)jB. Write GBXfor the operator graph with respect to X of the natural action of E(G)jB on B.Recall that GBX and GBY have the same symmetries for any generator-sets X andY of E(G)jB (Remark 4.4.2 in Chapter 4). The symmetries of an operator graph of agroup do not depend on the generators chosen for the group, but only on the group andits action on a set. With this in mind, we will omit the speci�cation of a generator-set Xof E(G)jB, and will write \GB" for GBX .We have the following:Proposition 6.2.4: Let � be the coarsest c-partition of G, let B 2 �, and let GB be anoperator graph of the natural action of E(G)jB on B. Then:1. Any graph isomorphism from one quotient of GB to another extends uniquely to anisomorphism of one quotient of G to another.2. For any isomorphism ~� from one quotient of G to another, there is an isomorphismfrom one quotient of GB to another that extends uniquely to ~�.ProofProof of (1): Let �10 and �20 be c-partitions of GB. By Proposition 6.2.3, �10 extendsuniquely to a c-partition �1, and �20 extends uniquely to a c-partition �2 of G. Let� : GB=�10 ! GB=�20 be an isomorphism. We will show that there is a unique isomorphism~� : G=�1 ! G=�2 such that ~� equals � on B.Construct ~� as follows: For each B0 2 �, pick an element fa 2 E(G) which maps B toB0. De�ne ~� : V(G=�1)! V(G=�2) such that for each B0, the restriction of ~� to B0 equalsfa�fa�1 on the restriction of �1 to B0. By the construction of the extensions �1 and �2(Proposition 6.2.3), � maps each block of �1jB0 to a block of �2jB0 . Then:(i) For each B0 2 �, the de�nition of ~�jB0 is independent of the choice of fa 2 E(G) whichmaps B to B0:For suppose that fb 2 E(G) also maps B to B0. Then fa�1fb maps B to itself.Since � is an isomorphism, �fa�1fb = fa�1fb� on �01, or fb�1(fa�fa�1)fb = �. Thatis, fb�fb�1 = fa�fa�1 on B0, so the de�nition of ~� on B0 is independent of the choice ofelement fa : B! B0.(ii) ~� restricted to B equals �:



6.2. Symmetries In Monoid Graphs 87Let fa map B to itself. Then since � is an isomorphism, we have fa� = �fa on B, or~�jB = fa�1�fa = �.(iii) ~� is an isomorphism: G=�1 ! G=�2:First note that ~� maps each block B0 2 � to itself, and so:(a) If fb is de�ned on C 2 �1 then fb is de�ned on the block B0 2 � which contains C.Hence fb is de�ned on C i� fb is de�ned on ~�(C).(b) Suppose that fb is de�ned on C 2 �1 and that C � B0 2 �. Let fa 2 E(G) map Bto B0, so that ~�jB0 = fa�fa�1. Then on the block fbB0 2 �, we have ~� = fbfa�fa�1fb�1.Since fb(C) � fbB0, we have that ~�(fbC) = fbfa�fa�1fb�1fb(C) = fbfa�fa�1(C) = fb~�(C),so ~� commutes with the elements of E(G). Hence ~� is an isomorphism.(iv) ~� is the unique extension of �:This holds since ~�jB = � and since an isomorphism is determined by its action on asingle vertex (or block).This proves (1).Proof of (2): To prove the second part of the theorem, let ~� : G=�1 ! G=�2 be anisomorphism, and write �10 for �1jB and �20 for �2jB. By Corollary 6.2.1, ~� maps eachblock of � onto itself, and so if we de�ne � = ~�jB then � is an isomorphism from GB=�10to GB=�20. 2The last theorem in the section gives conditions under which two graphs have the samesymmetries. If G is a graph, we will write �G for the coarsest c-partition of G. We have:Theorem 6.2.1: Let G and H be graphs. Then G and H have the same symmetries i� allof the following hold:1. �G = fB1;B2; : : : ;Bkg = �H.2. GB1 and HB1 have the same constraints.3. For each Bi 2 fB1;B2; : : : ;Bkg, if gi 2 E(G) and hi 2 E(H) both map B1 to Bi, thenfor each constraint h�1; �2; �i of GB1 and HB1 , we have gi�1 = hi�1, gi�2 = hi�2,and gi�g�1i = hi�h�1i on gi�1 = hi�1.Proof (This is a corollary of Proposition 6.2.4.)Suppose �rst that G and H have the same symmetries. Then (1) holds sinceh�G;�G; idi and h�H;�H; idi are symmetries, where id is the identity automorphism.(2) holds since the symmetries of G and H, restricted to GB1 and HB1 are symmetries ofGB1 and HB1 . Similarly, the symmetries (and hence the block-systems) of GBi must equalthe symmetries of HBi for each i = 1; : : : ; n. By Proposition 6.2.3, any block system �1 ofGB1 extends uniquely to a block-system � = f�1; g2�1; : : : ; gk�1g of G, where gi : B1 ! Bi.Thus we have gi�1 = hi�1 and gi�2 = hi�2 for �1, �2, gi and hi as given in condition (3).By part 1 of Proposition 6.2.4, any constraint � of GB1 (or of HB1) extends uniquely to asymmetry of G (respectively, of H), where � extends to an isomorphism on a block Bi bygi�g�1i or hi�h�1i , respectively, for giB1 = Bi and hiB1 = Bi. Hence (3) must hold.



88 6. Classifying Monoid GraphsConversely, suppose that conditions 1-3 hold. Let s be a symmetry of G. We will showthat it is a symmetry of H. Note �rst that the symmetry-set of GB1 equals the symmetry-set of HB1 since both graphs have the same constraint-set (Corollary 5.4.1 in Chapter 5).Secondly, by part 2 of Propositon 6.2.4, the restriction s0 of s to GB1 is a symmetry ofGB1 and hence of HB1 . Since (3) holds, s0 extends to s in both G and H, by the proof ofpart 1 of Proposition 6.2.4. 26.3 ComplexityThe last task of the chapter is to show that the symmetry-sets of two monoid graphscan be checked for equality in time polynomial in the number of edges of the graphs. Inlight of Theorem 6.2.1, this involves �nding polynomial-time algorithms for each of thefollowing:(1) Constructing the coarsest c-partitions �G and �H of graphs G and H, and checking�G and �H for equality.(2) Finding generators for E(G)jB for a block B 2 �G, and generators for E(H)jB forB 2 �H.(3) Finding the constraints of GB and HB (that is, of E(G)jB and E(H)jB), and and(4) Checking whether conditions 1 { 3 in Theorem 6.2.1 hold.Theorem 5.5.1 in Chapter 5 shows that the constraints of GB and HB can be found inpolynomial time, given generators for E(G)jB and E(H)jB. Proposition 6.3.1 (next) givesan algorithm for �nding the coarsest partition � of a graph G.Propostion 6.3.1 uses a modi�cation of a DFA minimization algorithm ( Page 68 in[HU79]) to �nd �. Recall that vertices v and w are in the same block of � i� Uv ' Uw(Proposition 3.2.2 in Chapter 3). Recall also that Uv ' Uw i� Un�1v ' Un�12 , wheren = jV(G)j (Proposition 2.4.2 in Chapter 2). The algorithm for �nding � will put sucessiveequivalence-relations �k on V(G), where v �k w i� Ukv ' Ukw. It halts for the �rst k suchthat �k=�k�1. By the proof of Proposition 2.4.1, Uv ' Uw i� Ukv ' Ukw , for this k.Proposition 6.3.1: There is an algorithm polynomial in m = jE(G)j for �nding thecoarsest c-partition � of V(G).Algorithm 6.3.1: for �nding �:� Put an equivalence-relation �1 on V(G) by: v �1 w i� for all a 2 A(G) [ A(G)� wehave fa de�ned on v i� it is de�ned on w.� For k = 2 until �k�1 =�k: Construct an equivalence-relation �k on V(G) byv �k w i� v �k�1 w, and for each a 2 A(G) [ A(G)�, if fa is de�ned on v thenfa(v) �k�1 fa(w).� Let j be the smallest integer such that �j =�j�1. Let �j be the partition of V(G)associated with �j . Then �j = �.2Example 6.3.1: For the graph G in Figure 6.4, the partitions associated with theequivalence-relations �i are as follows:�1 = 1; 2; 3; 4=5



6.3. Complexity 89�2 = 1; 2; 3=4=5�3 = 1; 2=3=4=5, and� = �4 = �5 = 1=2=3=4=5.G b1 2 3 aaaa 4 5Figure 6.4: Finding the Coarsest PartitionProof of correctness:By Lemma 2.4.3 in Chapter 2, for each positive k we have v �k w i� Ukv ' Ukw.The proof of Proposition 2.4.2 in Chapter 2 shows that as k increases, the partition �kassociated with �k becomes strictly �ner, up to a point. That is, if �j�1 = �j for somej then �j = �j+l for all positive l. Hence if �j�1=�j , then �j=�j+l for all positive l;and so v �j w i� Uv ' Uw . Since [v] = [w] in � i� Uv ' Uw (Proposition 3.2.2), we have�j = �. 2Time to compute �: Computing each equivalence-relation �k takes O(n2m) steps: Thereare O(n2) unordered pairs fv; wg of vertices and jA(G)[A(G)�j � m elements ffa 2 E(G)gto check for de�nition on each pair. By Proposition 2.4.2, j � n � 1, and so �nding theequivalence-relations �1, �2; : : : ;�j takes O(n3m) steps.More sophisticated algorithms can be designed by transforming G into a deterministic�nite automaton and using a DFA-minimization algorithm, which runs in O(n2m) steps.([HU79]) 2Our next task is to �nd an algorithm for constructing E(G)jB, given a block B 2 �.Once we have E(G)B (the stabilizer submonoid of E(G) on B), it will be easy to �nd E(G)jB,since the elements of E(G)jB are just the elements of E(G)B restricted to B. By de�nition,E(G)B consists of all the elements of E(G) which map B to itself. That is, E(G)B = ffw :w is the word of a closed path through B in G=�g.Since every element in E(G)B is de�ned on all vertices of B, the relation fa�1fa(v) = vfor fa 2 E(G)B holds for all a 2 A(G) [ A(G)� and for all v 2 B. That is, if a wordw 2 A(G)� has reduced form w0 then fw = fw0 on B. From this we can conclude thatE(G)jB = ffwjB : fw 2 E(G) and w is the word of a reduced closed path through B inG=�g.We will look for the following:(1) An algorithm for �nding G=�(2) A subset P of the set of reduced closed paths through a block B 2 � which generatesthe set under path concatenation with cancellation (to be de�ned later). We will give amethod for computing P and show that P indeed generates the whole set of paths.G=� is easy to construct. We have:



90 6. Classifying Monoid GraphsLemma 6.3.1: There is an algorithm polynomial in m = jE(G)j for �nding G=�, givenG and �.Algorithm 6.3.2: for �nding G=� For each edge hv awi 2 E(G):� Find the blocks of � containing v and w.� Add h[v]a[w]i to a set E (the edges of G=�) if h[v]a[w]i is not already in E.2G=� can be computed in time polynomial in m: The construction of � (Algorithm 6.3.1)can include the following: (1) Assigning a name to each block; and (2) constructing a mapwhich takes each element of V(G) to the name of its block. If this map is available thenit takes O(1) steps to construct h[v] a [w]i from hv awi. Thus G=� can be constructed intime polynomial in m. 2To construct the set P de�ned above we will make use of a result which is presentedin the literature on combinatorial group theory as follows:Proposition 6.3.2: (Corollary 1, page 128 in [Coh89]. See also Theorem 5.2 in[Mas67].)Let G be a connected graph and let T be a spanning tree of G with root v. Then thefundamental group �(G; v) of G at v is free, with one basis element for each edge e = hu awinot in T . The basis element is the path class of the path pe = p1ep�12 , where p1 and p2are paths in T having initial vertex v and terminal vertices u and w, respectively.We will restate this result for graphs and give an elementary proof. First we will needto de�ne the inverse of a path and the operation \path concatenation with cancellation":De�nition 6.3.1:� Let p1 = v0a1v1 : : : vk�1akvk and p2 = vkak+1 : : :vr be paths in a graph. Write p1p2for the concatenation voa1 : : : vk�1akvkak+1 : : : vr of p1 and p2.� Let p = v0a1v1a2 : : : vk�1akvk be a path. The inverse of p, written p�1, is the pathvka�1k vk�1 : : : a�12 v1a�11 v0.� Let P 0 be the set of all closed paths through a vertex v in G. De�ne an operation| \concatenation with cancellation", on P 0 as follows: If p1 2 P 0 has word w1 andp2 2 P 0 has word w2 then p1 � p2 is the path through v with word w, where w is thereduced form of w1w2.Let G be a graph and let T be a spanning tree of G with root v. For each edgee = hu awi not in T , de�ne a reduced closed path pe through v in G and containing e,by pe = p1ep�12 , where p1 and p2 are paths from the root in T having terminal vertices uand w, respectively. Let P = fpe; p�1e : e 62 Tg.We have the following:Proposition 6.3.3:1. For any graph G, the set P de�ned above can be computed in time polynomial inm = jE(G)j.2. P generates the set of reduced closed paths through v in G under concatenation withcancellation.



6.3. Complexity 91Proof of (1): Use a graph traversal algorithm (e.g., a depth-�rst tree algorithm asin [AHU74]) to �nd T in O(m) steps. For each edge e = hu awi not in T , use a graphtraversal algorithm to �nd the (unique) reduced paths p1 and p2 in T from v to u andfrom v to w, in O(m) steps. 2To prove part 2 of the propostion we will make use of the following lemma:Lemma 6.3.2: Let G be a graph and v 2 V(G), and let P be a set of reduced closed pathsthrough v which generates the set of reduced closed paths through v under concatenationwith cancellation. Construct a (connected) graph G0 from G by adding an edge e = hu awi(where u or w may or may not be vertices of G). Let p0 be a reduced closed path throughv in G0 containing one instance of e. Then the set P [ fp0; (p0)�1g generates the set ofreduced closed paths through v in G0.Proof We will prove the lemma by induction on the number of instances of ei 2 fe; e�1gin a reduced closed path p through v.Base case: Let e = hu awi and let p = p1ep2 be a reduced closed path through v, wherev is the initial vertex of p1 and the terminal vertex of p2, and p1 and p2 do not contain e.We will show that p is a product of paths in P [ fp0; (p0)�1g. Let p0 = q1eq2. Since e isnot an edge in q1 or q2 we have by hypothesis that the reduced forms of the paths p1q�11and p2q�12 are products of paths in P . Then p = p1q�11 q1eq2q�12 p2 is a product of paths inP [ fp0; (p0)�1g. If instead p is a path containing one instance of e�1 (and no instances ofe) then p�1 contains one instance of e, and the above argument shows that p is a productof paths in P [ fp; (p0)�1g. This proves the base case.Induction case: Let p = p1e1p2e2 : : : pkekpk+1 be a reduced closed path through v in G,where the pi are paths not containing e or e�1; the initial vertex of p1 and the terminalvertex of pk+1 is v, and ei 2 fe; e�1g for i = 1; : : : ; k. Suppose �rst that e1 = e, andlet p0 = q1eq2, as above. By the induction hypothesis, the reduced forms of the pathspa = p1eq2 and pb = q�12 p2 : : :ekpk+1 are products of paths in P [ fp0; (p0)g, and sop = papb is, also. If e1 = e�1 then let pa = p1e�1q�11 and pb = q1p2 : : : pk+1, and argue asabove. 2Proof of part 2 of Proposition 6.3.3 We prove the proposition by induction on thenumber of edges in G.Base case: If G has one edge e = hv a vi then P = fe; e�1g and the result is clear. Ife = hv awi with v 6= w then P is empty and G has no nontrivial reduced closed pathsthrough v.Induction case: Suppose that the result holds for a graph G: P generates all reducedclosed paths through v in G. Form a connected graph G0 from G by adding an edgee = hu awi. If either u or w is not a vertex of G then there is no reduced path through vcontaining e in G0. Otherwise, let p0 = pe, where pe is as given in the de�nition of P . Letp be any reduced closed path through v in G0. If p does not contain e or e�1 then it is areduced closed path through v in G, and so by the induction hypothesis, is a product ofpaths in P . If p contains k edges from the set fe; e�1g, then by Lemma 6.3.2 above, p isa product of paths in the set P [ fp0; (p0)�1g. 2



92 6. Classifying Monoid GraphsCorollary 6.3.1: A set of generators for E(G)jB can be computed in time polynomial inm = jE(G)j.Proof Let P be a set of paths through B in G=�, de�ned as above. By Proposition 6.3.3P generates all educed closed paths through B under concatenation-with-cancellation.Hence the set ffw 2 E(G)jB : w is a word of a path in Pg generates E(G)jB. 2We can now show that arbitrary monoid graphs can be checked for f -equivalence inpolynomial time. We have the following:Theorem 6.3.1: Let G and H be graphs having the same number of vertices and havingm1and m2 edges, respectively. Then there is an algorithm polynomial in m = maxfm1; m2gfor determining whether G and H have the same symmetry-sets.Proof Referring back to Theorem 6.2.1, we need to check three things:1. �G = �H = fB1;B2; : : : ;Bkg.2. GB1 and HB1 have the same constraints, and3. For each block Bi 2 fB1;B2; : : : ;Bkg, for each fa 2 E(G) and hb 2 E(H) whichmap B1 to Bi, and for each constraint h�1; �2; �i of GB1 , we have fa�1 = hb�1 andfa�2 = hb�2, and fa�fa�1 = hb�h�1b on B2.Note that if fa1 and fa2 in E(G) both map B1 to Bi, then by the proof of Propostition6.2.4, fa1�f�1a1 = fa2�f�1a2 , where de�ned, for each constraint � of GB1 . This lets us restatecondition (3) as follows:(3') Let F1 = ffa1 ; : : : ; fakg and F2 = fhb1 ; : : : ; hbkg be sets of elements of E(G) and ofE(H) such that for each block Bi 2 fB1;B2; : : : ;Bkg, faiB1 = Bi and hbiB1 = Bi. Thenfor all constraints � = h�1; �2; �i of GB1 and HB1 we have fai�1 = hbi�1; fai�2 = hbi�2,and fai�f�1ai = hbi�h�1bi , where de�ned, for i = 1; : : : ; k.By Proposition 6.3.1 we can �nd �G and �H in time polynomial in m. By Corollary6.3.1 we can �nd generator-sets for GB1 and HB1 in time polynomial in m. Theorem 5.5.1in Chapter 5 shows that we can check the equality of the constraint-sets of GB1 and HB1in time polynomial in m.The sets F1 and F2 can be found in time polynomial in m as follows: From each blockBi 2 fB1;B2; : : : ;Bkg pick an element vi (e.g., the smallest element in the block), and�nd a path p in G from v1 to vi, by using a graph traversal algorithm ([AHU74]). Thenfai = fw 2 E(G), where w is the word of p. F2 is constructed in the same way. GB1 and HB1have at most n � m constraints, and F1 and F2 each has at most n elements, and so for eachconstraint h�1; �2; �i the sets ffai�f�1ai : i = 1; : : : ; ng and fhbi�h�1bi : i = 1; : : : ; ng can becomputed in time polynomial in m. Furthermore, the action of each function fai�f�1ai onfai�1 can be computed in time polynomial in m steps, and so in time polynomial in m itcan be determined whether fai�f�1ai equals hbi�h�1bi , for i = 1; : : : ; n. 2



937. Conclusion7.1 Summary Of The PaperThis paper addressed three questions: (1) What characterizes the set of vector-valuedfunctions a given network can compute? (2) How hard is it to tell whether two networkscan compute the same set of functions?, and (3) How hard is it to tell if two networkscan compute the same functions \up to a permutation"? The second and third questionspose graph classi�cation problems: We called two graphs \f -equivalent" if the set offunctions each can compute is the same, and \p-equivalent" if the set of functions each cancompute is the same up to a permutation. We sought graph features which would correctlyclassify graphs into their f - and p-equivalence-classes, and found that the desired graphfeatures are the quotient-graph isomorphisms: Two graphs are f -equivalent i� their sets ofquotient-graph isomorphisms are identical, and p-equivalent i� their sets of quotient-graphisomorphisms di�er by a permutation. The second and third questions mentioned abovewere then couched as questions in graph theory; namely, \How hard is it to determinewhether two graphs have the same set of quotient-graph isomorphisms? How hard is it todetermine if they have the same set of quotient-graph isomorphisms, up to a permutation?"Chapter-By-Chapter Summary: In Chapter 2 we found a characterization of the functionsa given network can compute. We saw that a network computes precisely those functionswhich \respect" its rooted universal covers. More precisely, G computes f i� for all ~x and~y in In; Ui~x ' Uj~y implies that f(~x)i = f(~y)j . In Chapter 3 we showed that a network Gcomputes exactly those functions which \satisfy the symmetries" of the network, where asymmetry of G is an isomorphism of quotients of G. We saw that two networks computethe same functions i� they have identical symmetry sets, and that two networks computethe same functions \up to a permutation" i� their symmetry-sets are identical \up toa permutation". In Chapter 4 we developed the notion of an \operator graph", whosevertices are the elements of a set and whose edges correspond to elements of a groupacting on the set. We also found a one-to-one map from the set of cosets of subgroups ofthe edge-label group of a graph to the set of quotient-graph isomorphisms of the graph.Chapters 4 and 5 examined \group-graphs"; graphs whose edge-label monoids aregroups, and Chapter 6 extended the results in Chapter 5 to graphs with arbitrary edge-label monoids. In Chapter 5 we showed that the set of quotient-graph isomorphisms (\sym-metries") of a group-graph form a lattice. We found a small subset|the \constraints"|ofthis lattice which generates the lattice under lattice-join, and concluded that two graphshave the same lattice of symmetries i� they have identical \constraints". Hence two net-works compute the same functions i� they have the same constraint-set. We showed that�nding the constraint-set of a graph is easy, and concluded that classifying graphs by theirsymmetries is not a hard problem. Chapter 6 extended these results to arbitrary \monoidgraphs". We showed that every graph G has a unique coarsest c-partition � of its vertices,such that E(G)jB, the edge-label monoid of G restricted to a block B of �, is a group.We saw that E(G)jB1 ' E(G)jB2 for any blocks B1 and B2 2 �, and that any symmetryof the operator graph of E(G)jB1 on B1 extends uniquely to a symmetry of G. We foundalgorithms for computing � and E(G)jB, and concluded that classifying arbitrary monoid



94 7. Conclusiongraphs by their symmetries is also easy. Finally, we showed that determining whethertwo graphs compute the same functions \up to a permutation" is at least as hard asdetermining whether two groups, given as group tables, are isomorphic.7.2 Open QuestionsThere are several extensions of this work which might be worth investigating. Wecould, for instance, drop the requirement that links be two-way. In this case, processorsmay not be able to compute their rooted universal covers, but each processor v cancompute a subgraph Tv of Uv induced by the path in Uv directed towards the root.The characterization of the functions computable by a network (Theorem 2.5.1) probablyextends to directed networks if the following conjecture holds:Conjecture 7.2.1: Let G be a strongly connected, edge-labeled digraph, let v 2 V(G), andlet Tv be the subraph of Uv induced by the set of edges in Uv directed towards the root. IfTv ' Tw, then Uv ' Uw.More generally we could ask: What subgraphs of Uv determine Uv , if G is, say, stronglyconnected; not strongly connected; edge-labeled; not edge-labeled, and so on?For another extension of this work, we could drop the edge-label condition we imposedand allow two edges directed towards a vertex or two edges directed away from a vertexto have the same edge-label. It is not unreasonable to allow two edges directed towardsa vertex in a computer network to have the same label. If the edge-label condition weredropped, edge-label functions would become edge-label relations. Graphs with edge-labelrelations are well-studied in algebraic automata theory (e.g., see [Hol82]), and some of theresults of that �eld might transfer to this case. In particular, the de�nition of \coveringmap" found in algebraic automata theory extends the de�nition we gave to graphs withedge-label relations.Finally, we would like to know if there is polynomial-time transformation of theproblem: \Computes the same functions up to a permutation" (Section 5.6 in Chapter 5)to the problem of group isomorphism. Are these two problems polynomially equivalent?



95List Of SymbolsChapter 2Section 2.2� N = hVN ; EN ; �N i denotes a network, whereVN denotes the processor set of N ,�N denotes the processor labeling map of N , andEN denotes the set of links of N .� L = f(v; i); (w; j)g is a link.� deg(v) is the number of links incident with v.Subsection 2.2.1� I and O denote the input alphabet and the output alphabet, respectively.Subsection 2.2.2� G = hV(G); E(G); A(G)i denotes a directed, edge-labeled graph, whereV(G) denotes the set of vertices of G,E(G) denotes the set of edges of G, andA(G) denotes the set of edge-labels of G.� G and H are graphs.� u; v; w; r; s; i; j; k all represent vertices.� a; b; c; d; e all represent edge-labels.� hv awi is an edge with vertices v and w and edge-label a.� (G; ~x), denotes a graph G with input ~x.Section 2.3� E(G) denotes the edge-label monoid of a graph G.� A(G)� = fa�1 : a 2 A(G)g.� A(G)� denotes the set of words over A(G) [ A(G)�.� � denotes the empty word.� un is the \unde�ned vertex".� fa; fb; fc; ~fa; ga; ga�1, and so on, are elements of E(G).Subsection 2.3.2� �; ~�; �; � denote covering maps.Section 2.4� U denotes the universal cover of a graph.� Uv denotes the rooted universal cover of a graph.� Uv ' Uw: \Uv and Uw are isomorphic".� Uv~x denotes a rooted universal cover with input ~x.� Ukv denotes a rooted universal cover truncated at depth k.Chapter 3Section 3.2� faB denotes the set ffa(ik) : ik 2 Bg.



96 List Of Symbols� � denotes a c-partition.i1; i2; : : : ; ik=ik+1; : : : ; ij= : : :=il; il+1; : : : ; im denotes a c-partition of the setfi1; i2; : : : ; img, with blocks fi1; : : : ; ikg, fik+1; : : : ; ijg, : : :, fil; : : : ; img.� [i] denotes the block of a partition containing the vertex i.[i]� denotes the block of � containing i.� �1 � �2: \ �1 is a re�nement of �2".Section 3.3� � denotes the \coarsest c-partition" of a graph.� G=� denotes a quotient graph of G by �.� �~x is an equivalence-relation on V(G).� x[i] denotes xi, where i 2 [i] 2 �.� �(~x) is the vector (x�([1]); : : : ; x�([n])).Section 3.4� h�1; �2; �i denotes a symmetry of a network.Section 3.5� �G, denotes a graph G with its vertices relabeled by a permutation �.� �(�) denotes the \permutation" of � by �.Chapter 4Section 4.2� (G; S) denotes a permutation group G on a set S.� Sym(S) denotes the symmetric group on S.� Gv denotes the stabilizer subgroup of v 2 S.� H(v) denotes the set fh(v) : h 2 Hg.Section 4.3� �T (G) denotes the permutation group corresponding to the action T .Section 3.5� R denotes the left Cayley graph of E(G) with respect to the generator-set fga : a 2A(G)g.Section 4.5� LBv or LB denote the lattice of block-systems.� ^ and _ denote the lattice meet- and join-operations.Section 4.6� CSym(S)G denotes the centralizer of a group G.Chapter 5Section 5.3� Lcv denotes the lattice of coset-representatives of a graph with respect to a vertexv.LSv denotes the lattice of symmetries with respect to v, andLS denotes the lattice of symmetries.Chapter 6Section 6.2



97� E(G)B deontes the stabilizer submonoid of a block.� E(G)jB denotes the restriction of E(G) to B.� GBX and GB denote the operator graph of E(G) on X .
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