Classifying Networks:
When Can Two Anonymous
Networks
Compute The Same Vector-Valued
Functions?

Nancy E. Norris

UCSC-CRL-94-01
March 30, 1994

Baskin Center for
Computer Engineering & Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064 USA
ABSTRACT

An “anonymous network” is a computer network in which all processors run
the same algorithm during a computation. We will consider two classifications of
anonymous networks: Networks will be called “f-equivalent” if the set of vector-
valued functions each can anonymously compute is the same, and “p-equivalent” if
the set of functions each can compute is the same, “up to a permutation”. We first
give a characterization of the vector-valued functions a given network can anony-
mously compute. This extends a result in [YK88] characterizing the scalar-valued
functions a network can compute. Next, we develop algebraic and graph-theoretic
techniques for handling edge-labeled digraphs. We will use these techniques, along
with results from algebraic automata theory and permutation group theory, to
derive a polynomial-time algorithm for determining whether two networks are f-
equivalent. This will yield a polynomial-time algorithm for determining whether
two edge-labeled digraphs have the same lattice of quotient-graph isomorphisms,
and will let us conclude that classifying networks by what they can compute is
easy. Classifying networks by “p-equivalence”, on the other hand, is likely to be
a much harder problem. We will present a polynomial-time transformation of the
group-isomorphism problem to the problem of “p-equivalence”. As of this writing,
the best known algorithm solves group-isomorphism in O(n!8") time for a group
of order n.

ii

CONTENTS

Contents

Acknowledgements

1. Introduction

1.1 Why Anonymous? L e e
1.2 Summary Of The Paper o o
1.3 Related Work o . oL

2. Characterizing The Functions A Network Can Compute

2.1 Introduction L e e
2.2 The Model o e
2.2.1 Computing On A Network
2.2.2 The Graph Of A Network
2.3 Monoids and Covering Maps o oL
2.3.1 The Monoid Of A Graph
2.3.2 Covering Maps o e
2.4 Universal Covers e
2.5 Computing On Anonymous Networks
2.6 Related Work L

3. The Symmetries of a Network

3.1 Introduction L e
3.2 Universal Covers And Vertex Partitions
3.3 Quotient Graphs And Their Isomorphisms
3.4 Symmetry And Its Consequences
3.5 Networks Differing By A Permutation
3.6 Related Work L

4. Group Graphs

4.1 Introduction oL e e e
4.2 Block Systems
4.3 Group Actionso
4.4 Operator Graphs e
4.5 The Lattice Of Block-Systems And The Lattice Of Quotient-Graphs
4.6 Graph Isomorphisms And Conjugate Subgroups

4.7 Related Results e e

iv CONTENTS
5. Classifying Group Graphs 65
5.1 Introduction L L e 65
5.2 The Number Of Symmetries Of A Network 65
5.3 The Lattice Of Symmetries o 0oL 66
5.4 Generators For The Lattice Of Symmetries 72
5.5 Computing Constraints e 74
5.6 Networks Differing By A Permutation—Revisited 80
6. Classifying Monoid Graphs 82
6.1 Introduction L 82
6.2 Symmetries In Monoid Graphs o o oo 82
6.3 Complexity L 88
7. Conclusion 93
7.1 Summary Of The Paper o 93
7.2 Open Questions e e 94
List Of Symbols 95
References 98

LIST OF FIGURES v

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2

A network M and its graph Go L 2
G1 and Gy compute different functions, 3
G1 and Gy compute the same functions 4
The Link-Label Condition 9
The edge (vaw) 12
The pair {(vaw),{(wav)}ofedges 13
The graph of anetwork L oL 13
Paths and wordso L 16
Graph Covering e 17
(G,@)and U3Z 21
Computing U2 24
Computable functions L L L o 25
Mapping USZ onto G o 27
Equivalent input-vectorso L 27

Gy and Gy have identical automorphism groups but compute different sets

of functions. L 32
A graph and its c-partitionso oo 34
Example for Lemma 3.2.2 Lo oo 35
HMlustrating the “coarsest c-partition” of a graph 37
G and G/7, where m = 1,2,3/4,5,6. 38
Example for Propostition 3.3.5 part 1. L. 41
Example for Propostition 3.3.5 part 2.o 42
Gy and Gg have the same c-partitions but compute different functions. . . . 43
Networks differing by a permutation 46
A graph G and its lattice of subgroups and lattice of quotient-graphs 58
The quotient-graphs of Go 59
Lifting o e 61
Lattice of Coset-Representatives 67
The generators for £(G) are f, = (1,2)(3,4)and fr=(2,3). 76
R7 is a congruence relation 76
6 commutes with the elements of £(G) L. 77
w1 and w9 are the finest such partitions 78
Two graphs with the same lattice of symmetries 79
The graph for Example 6.2.1 o 0oL 83

Extending a partition oL 84

vi

6.3 G/II for G in Figure 6.2

LIST OF FIGURES

6.4 Finding the Coarsest Partition, 89

LIST OF FIGURES vii

Acknowledgements

This is a revised version of my dissertation, submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy in Mathematics, December, 1993.

I want to thank my advisor Manfred Warmuth for the countless engrossing conver-
sations and problem-solving sessions that led to this paper. Manfred is responsible for
alerting me to the usefulness of algebraic automata theory in this work; in particular,
for pointing out the connection between rooted universal covers and languages accepted
by finite-state machines. He is largely responsible for the the algorithm for finding the
“coarsest c-partition” of a graph, for parts of other algorithms, and for a good assortment
of other ideas in this paper. Working with Manfred has been a true delight.

I want to thank Nick Littlestone for numerous ideas and proof suggestions, now
incorporated into this paper. Nick persuaded me of the utility of universal covers in
this inquiry, and suggested that I look at edge-label maps and their relationship with
graph epimorphisms: It is due to Nick that edge-label maps frolic with isomorphisms in
these pages. Nick is also the source of the best counterexamples in the state. Finally, 1
want to thank Nick for proofreading and for consultation on notation and definitions.

I would like to thank Al Kelley and Gerhard Ringel for their very generous assistance as
readers; for the time and interesting conversations and useful feedback that they provided.
Thanks to the Santa Fe Institute for their Complex-Systems Summer School, and to the
Center for Nonlinear Studies and the T-Division of Los Alamos National Lab for their
support during the Fall of 1990. I would also like to thank the following mathematicians,
who listened to my story and pointed me to useful books and theorems: Geoff Mason,
Ralph Abraham, Susan Addington, Nick Burgoyne, Bruce Cooperstein, Peter Doyle, Sol
Freidberg, Ortwin Wohlrab, and others. I want to thank Jo Ann MacFarland, as well as
others in the math and computer-science boards, for effecting the impossible on so very
many occasions. Finally, I want to thank all and any Norris for all and everything.

1. Introduction

One year at a large philosophy conference, a group of n philosophers in
a seminar discovered that they were all named Linda. Since all had the
same name, talk turned naturally toward symmetry breaking experiments that
they might undertake. The dining philosophers problem (involving symmetry-
breaking in a ring) immediately came up, but seemed a bit old hat. Then Linda
(one of them) suggested an experiment: They would form themselves into a net-
work and attempt to distributively decide where to eat. They went outdoors to a
field, and there made 3n can telephones by connecting pairs of cans with string.
Fach philosopher picked up 6 cans. They then arranged themselves around the
field, tightened the strings, and attempted to discern the majority preference
among two eating places, by talking over their phone lines. The conversation
became rather involved. One said to another, “The Linda on my third can
said that the Linda on her second can said that the Linda on her fourth can
wants pizza. The Linda on my fourth can said that the Linda on her second
can also wants pizza. If I am going to tally their votes I need to know if these
were the same Linda or two different people”. Another philosopher wondered:
“If we were arranged in a line or a circle instead of in our current configura-
tion, would this problem be easier to solve?” Later, over lunch, conversation
turned to the more general question of the effects of symmetry on distributed
function-computation.

Consider a system of interacting agents; for instance, the molecules in a fluid, the birds
in a flock, or the neurons in a neural net. We will call such a system “anonymous” if the
agents are functionally identical. This paper examines “anonymous networks”; anonymous
systems whose agents are the processors in a connected network. For anonymous networks,
in contrast with some other anonymous systems, the coupling between agents is fixed:
Which processor is linked to which in the network does not change over time. We can
state the problem of anonymous computing briefly as follows: Consider a network of n
identical processors, each connected to one or more processors in the network by two-way
links. Suppose that all of the processors have the same id, so that none of the processors has
a distinct id. by which it can identify itself to other processors. However, each processor
can distinguish among its links and has a unique label for each link. In “anonymous
computing”, an operator, outside of the network, assigns each processor a unique name
(not available to the processors) from the set {1,...,n}. The operator gives the network
an input vector ¥ = (z1,...,2,) from a set I™: Processor 1 gets input z1, processor 2
gets x5, and so on. The task of the processors in the network is to compute a function
f(&) =9 = (y1,--.,yn), where 7 is a member of a set O™, by communicating among
themselves over their links. The network will have computed the function when processor
1 has computed y;, processor 2, yz, and so on. The network is said to “compute (a function)
anonymously” if all the processors run the same algorithm during the computation. The

2 1. Introduction

algorithm at processor i receives x; as input but not the id 7. Thus processors do not have
access to their ids unless these are given as part of the input.

We will call such a network an anonymous network, and the computational problem,
computing a vector-valued function on an anonymous network. We will use the conven-
tional graphical representation for a network: Networks will be drawn as graphs in which
vertices represent processors, and edges; two-way links between processors. An edge be-
tween processor v and processor w in a network is labeled with a pair (k,/) of “link-labels”,
where k is processor v’s name for the link and [is processor w’s name for the link. (Figure
1.1.) The “graph of a network” is an edge-labeled, directed graph which will be defined
more precisely in the next chapter.

Figure 1.1: A network A and its graph G

For instance, the network in Figure 1.1 computes the function f(z1,22,23) = (22 +
T3, T3—Tg,x3) if processor 1 compute x2+23, processor 2 computes x3—2z3, and processor 3
computes z3 whenenver processor 1 gets input z1, processor 2 gets input x5, and processor
3 gets input zs.

1.1 Why Anonymous?

There are several reasons for considering anonymous networks. Anonymous networks
can be used to investigate distributed, leaderless decision-making, and also provide a
convenient vehicle for studying the effects of network-topology on network behavior. One
might, for instance, use anonymous networks to determine the class of computations which
are impossible for a neural-net, even if its processors are universal computers running the
same program instead of the usual finite-state machines. A non-anonymous network,
if it is connected and has arbitrarily powerful processors, can compute any function. By
contrast, the set of functions an anonymous network can compute depends on the network’s
topology. We will see that highly “symmetrical” anonymous networks can compute fewer
functions than “asymmetrical” anonymous networks.

1.2, Summary Of The Paper 3

A potentially useful framework for anonymous networks is in the study of fault-tolerant
computing!. Here the fault in question is in the transmission of processor ids: One
can think of an anonymous network as a distributed system in which some or all of the
processor ids are transmitted incorrectly during computation. A network experiencing
faulty transmission of ids may not be entirely incapacitated. In some networks, depending
on the network’s topology, processors may be able to construct unique identities for
themselves even if they are not assigned unique ids. A processor accomplishes this by
making a local model of the network (by exchanging messages with other processors) and
locating itself in the model. If a network is highly symmetrical, two or more processors
may locate themselves in the same spot in their models of the network, and thus assign
themselves the same id. In this case the processors are functionally indistinguishable and
have the same behavior under any algorithm. The extent to which the global structure
of a network can be reconstructed by a processor making local queries comes heavily into
play in the study of anonymous networks.

1.2 Summary Of The Paper

This paper addresses three problems. They are:

(1) Characterizing the set of functions a given network can compute. In the next chapter
we will develop techniques that can be used to show, for instance, that the network
Gy in Figure 1.2 can compute any function from R3 to R, because each processor can
distinguish itself from the others in the network. The processors in Gy cannot distinguish
among themselves, and Gy can, it will turn out, only compute functions which satisfy:
[z, z,2) = (y,9,9), and if f(21,22,23) = (y1,92,¥3), then f(wa,23,21) = (y2,93, ¥1),
and f(x3,21,22) = (Y3, Y1, Y2)-

G1 G2

Figure 1.2: Gy and Gy compute different functions

(2) Classifying networks by what they can compute. We will consider two classifications:
For the first, we will say that two networks are “f-equivalent” if the set of functions each
can compute is the same. For the second, say that two networks are “p-equivalent” iff they

'See [FLMS85,FLPS5]

4 1. Introduction

compute the same functions “up to a permutation”. (This will be defined in Chapter 3.)
The question for each classification is: Are there features of the graphs of networks which
characterize the - and p- equivalence-classes a given graph belongs to? For example, the
networks Gy and Gy in Figure 1.3 look quite disimilar. However, the methods developed
in this paper will show that they compute the same functions. What do their graphs have
in common? (We will examine this example in greater detail in Chapter 5, in Example

Figure 1.3: Gy and Gy compute the same functions

5.5.2.)

(3) Finding a small set of graph features which correctly classify graphs according to the
two equivalence-relations above.

Chapter 2 addresses the first problem. In this chapter we will introduce the model and
some of the tools to be used later — covering graphs, universal covers, and a monoid; the
“edge-label monoid” £(G) associated with the graph G of a network. We will characterize
the set of functions computable by a network in terms of a collection of trees related to
the universal cover of the network’s graph.

Chapter 3 introduces quotient-graphs and their isomorphisms. We will find partitions
7 of the set of vertices of a graph G for which a quotient-graph G/7 is well-defined. The
second problem — that of classifying networks, will be solved in terms of these quotients:
The “characteristic graph features” we seek for distinguishing networks will be seen to be
the set of all isomorphisms of quotients of the graph of a network. Since isomorphisms

1.3. Related Work 5

are bijections between partitions, two networks can have the same set of isomorphisms of
quotients even if their graphs are not isomorphic. We will see that two networks compute
the same set of functions iff they have identical sets of quotient-graph isomorphisms, and
that two networks compute the same set of functions “up to a permutation” iff their sets
of quotient-graph isomorphisms are the same “up to a permutation”.

The third problem given above — that of finding a small set of graph features which
correctly classify graphs, can be rephrased as follows: Is there a small set of graph features
which two graphs share iff they have the same set of quotient-graph isomorphisms, or,
respectively, iff they have the same set of isomorphisms “up to a permutation”? In Chapter
5 we will see that a graph with n vertices can have O(n'8") quotients and O(n'87t1)
isomorphisms of quotients, so the quotient-graph isomorphisms themselves are not a “small
set of characteristic features”. Chapters 4 and 5 address the question of finding such
features for the case when the edge-label monoid £(G) of a graph G is a group. In Chapter
4 we will look at the relationship between subgroups of £(G) and quotient-isomorphisms
of G; finding a one-to-one map from the set of isomorphisms of quotients of G into the
set of left cosets of subgroups of £(G). We will use this correspondence in Chapter 5 to
show that the set of quotient-isomorphisms of G forms a lattice. We will find a small
set of generators for this lattice — these will be the desired “characteristic features” —
and show that finding these generators is easy. Thus, the answer to the first classification
question: “Is it easy to tell whether two graphs are f-equivalent?” — is “yes”. The other
classification problem — that of determining whether two graphs are p-equivalent, will be
found to be at least as hard as determining whether two finite permutation groups are
isomorphic.

Chapter 6 shows that the results found above for graphs in which £(G) is a group
also hold for graphs in which £(G) is an arbitrary monoid. We will see that a graph in
which £(G) is a monoid can be decomposed into a collection of graphs, all of which have
isomorphic edge-label groups. This will let us reduce the problem of classifying arbitrary
graphs to the problem discussed above, of classifying ‘group graphs’.

1.3 Related Work

Anonymous Networks: The 1972 paper by Rosentiehl, Fiskel and Hollinger ([RFH72]) on
“intelligent graphs” investigates networks of identical finite-state machines. At each time-
step on one of these networks, each processor (that is, each finite-state machine) updates
its state as a function of the states of its neighboring processors. The paper examines
various problems that such a network might attempt to solve, including the “firing squad
problem” in which a network has one “distinguished processor” and all processors attempt
to enter a given state at the same time. Some papers on cellular automata also examine
networks of finite-state machines; e.g., “Computation on Finite Networks of Automata”
by M. Tchuente ([Tch87]), addresses the question of what functions are computable on
such networks.

Angluin’s seminal paper of 1980, Local and Global Properties in Networks of Processors,
([Ang80]) addresses the question of how well a network can function if the network’s

6 1. Introduction

processors do not have global knowledge about the network, e.g., if they do not ‘know’
the graph of the network or their identities. The processors in Angluin’s networks are
arbitrarily powerful computers instead of finite-state machines which communicate with
each other by passing messages over links. Angluin assumes that all processors of the
same degree are identical. The paper considers two questions: One, the question of
characterizing networks which can distributively choose a ‘distinguished processor’ or
leader, and two, the question of how well the processors in a network can construct a model
of the network’s graph, using only the information available through message-passing.

A number of papers on anonymous computing have suceeded Angluin’s, with the ma-
jority of these considering networks having the ring topology. In Computing on an Anony-
mous Ring ([ASWS88]), Attiya, Snir and Warmuth characterize the set of (scalar-valued)
functions computable by a ring, and derive lower bounds for the message-complexity of
synchronous and asynchronous computation. They also consider network computations
other than function computation; for instance, the problem of “network orientation”, in
which all processors in a ring attempt to agree on a consistent notion of left and right; and
“start-synchronization”, in which the processors in a ring coordinate their clocks so that
all begin a computation at the same time. In Gap Theorems for Distributed Computation
(IMW93]), Moran and Warmuth show that an anonymous ring with n processors requires
Q(nlogn) messages to compute any non-constant function, and that a non-anonymous
ring has the same lower bound if the processor ids are taken from a suficiently large do-
main. In [BMW93], Bodlander, Moran and Warmuth show that this lower bound remains
even if the set of possible ids is small, i.e., is n'1¢ for positive e.

In [BBR9], Beame and Bodlander investigate the message complexity of distributed
computing The papers by Scheiber and Snir ([SS89]) and by Matias and Afek ([MA89])
show that the processors in an anonymous network can distributively compute distinct ids
for themselves by using probabalistic algorithms to break symmetry. Kranakis, Krizanc
and van den Berg ([KKvdB90]) study the bit complexity of the problem of computing
boolean functions on arbitrary anonymous networks.

Perhaps the most complete investigation of anonymous networks to date appears in the
papers of Yamashita and Kameda ([YK87b,YK87a,YKS88]). In Computing on Anonymous
Networks, Yamashita and Kameda describe the classes of networks which can distributively
solve the following problems: Choosing a unique processor as a leader, choosing a unique
edge in the network, constructing a spanning tree of the graph of the network, and
finding the graph of the network. The authors consider these problems for four levels
of information which processors in a network might have about the network: A processor
can have no information; can know an upper bound on the number of processors in the
network, can know the exact number of processors in the network, or can know the graph
of the network. The authors show, for instance, that processors in a network whose graph
is a tree can distributively compute the graph of the network, if they are given the size of
the network. In Computing Functions on Anonymous Networks, Yamashita and Kameda
characterize the set of scalar valued functions a given anonymous network can compute.
We will give a more thorough review of this paper at the end of the next chapter.

Other Related Topics: The edge-label monoid £(G) mentioned above is used extensively
in algebraic automata theory, where it plays a part in the decomposing of finite-state

1.3. Related Work 7

machines into simpler machines. We will make similar use of the monoid in this paper,
when we examine quotient graphs of networks. A more complete description of the relation
between our results and results in algebraic automata theory will be given at the ends of
Chapters 2 and 3.

The proof of Theorem 5.5.1 in Chapter 5 makes use of a result from computational
group theory, and perhaps itself belongs most correctly to that field. Computational
group theory considers questions of the form: “How hard is Problem X from group
theory?”, where Problem X might be, for instance, finding the stabilizer subgroup of
a set, or checking a permutation for membership in a permutation group given by a set of
generators. Theorem 5.5.1 discusses “isomorphisms” of the block-systems of a permutation
group, and shows that it is easy to determine whether two permutation groups have the
same set of block-system isomorphisms.

8 2. Characterizing The Functions A Network Can Compute

2. Characterizing The Functions A Network Can Compute

2.1 Introduction

The aim of this chapter is to find a characterization of the set of functions computable
by any given network. To this end, in Section 2.1 we will describe the computational model
used in the paper, explicating what we mean by ‘function computation’ and ‘anonymous
network’, and what properties we will assume of the graph of a network. In Section 2.2 we
will examine a natural monoid associated with the graph of a network and will characterize
the graph covering maps in terms of this monoid. In Section 2.3, we will introduce the
notion of a covering graph, and show that two “rooted universal covers” are isomorphic iff
they are isomorphic to a certain finite depth. Finally, in Section 2.4, we will characterize
the set of functions computable by a network in terms of a set of rooted trees related to
the universal cover.

Main Results: The main result of this chapter is a characterization of the functions
computable by a network in terms of a set of trees associated with the network (Theorem
2.5.1). In subsequent chapters we will make heavy use of Proposition 2.3.1, which defines
graph isomorphism in terms of a monoid associated with the graph.

Related Results: The “edge-label monoid”, which we introduce in this chapter, is standard
in algebraic automata theory; e.g., see [Hol82]. We also define what it means for one graph
to “cover” another graph and define the “universal cover” of a graph. These definitions
are from algebraic topology; see [Mas67]. We will review these and some results from the
anonymous computing literature at the end of the chapter.

2.2 The Model

Intuitively, a network is nothing more than a collection of processors connected by two-
way links. Processors in a network can “tell their links apart”; that is, a processor can
specify the number of the link through which it will send any given message. Thus, each
link between two processors has a pair of numbers associated with it: The first number is
the first processor’s name for the link, and the second number is the second processor’s
name for the link. This motivates the following definition:

Definition 2.2.1: A network N is a triple (Vur, Exr, par), where:
o V., the processor set, is a finite set of arbitrarily powerful processors,
e py, the processor labeling map is a bijection from V to {1,...,|Vu|}, and

e Eur, the set of links, is a subset of the set of all pairs (two element multisets)
L=A(v,1),(w,j)}, where v,w € Vy and 7,j € N.

Alink £ = {(v,17), (w, j)}is called the ith link of processor v and the jth link of processor
w. L = {(v,1),(w,7)}is said to be incident with v and w, and two processors are called
adjacent if they are incident with the same link. Two processors may share multiple links,

2.2. The Model 9

but we will require that all all processors in a network satisfy the following “link-label
condition”:
Property 1: Link-Label Condition:

For each v € N there is a nonnegative integer deg(v), where deg(v) = 0 if v has no
links. If v is incident with one or more links, then for each 1 < i < deg(v), processor v
has exactly one ith link. Processor v has no ith links for i > deg(v).

Note: deg(v) is the number of links incident with v, where a loop {(v,?),(v,7)} is
counted as being incident with v twice, and a loop {(v,%),(v,7)} is incident with v once.

ExaMPLE 2.2.1: For instance, in Figure 2.1, A7 satisfies the link-label condition, and
deg(v) = 4. N3 does not satisfy the link-label condition because v has two “first”
links £; = {(v,1),(w,1)} and Ly = {(v,1),(v,2)}, and two “second” links: L, and
L3 =A{(v,2),(w,3)}.

Figure 2.1: The Link-Label Condition

Definition 2.2.2: The number i = pyr(v) is called the id of processor v. If par(v) = i for
v € Vi we will sometimes refer to processor v as “processor ¢”.

2.2.1 Computing On A Network

Computations are performed distributively on a network, with each processor ¢ running
a deterministic algorithm A; from a set A = {Ay,..., A,}, for n = |Vy|. Initially each
algorithm A; is given deg(¢) and a letter from an input-alphabet I as input. Define a
message to be any finite-length word over an arbitrary message alphabet. A processor
begins to execute its algorithm when it either spontaneously “wakes up”, or when it
receives a message from another processor. Algorithms run in steps. During each step of
an algorithm run by a processor v, the processor may:

¢ Send messages through one or more of its links. Processor v can specify the number
i € {1,...,deg(v)} of the link that a given message is to be sent through. During a step
a processor can send at most one message out of any given link.

10 2. Characterizing The Functions A Network Can Compute

¢ Receive messages through one or more of its links. A message received through a the
jth link of a processor is given the label j. This means that a processor can tell through
which of its links a given message has come. During a step a processor receives at most
one message through any given link.

e Perform a computation based on messages received, the results of computations in

previous steps, and input. The result of a given computation may be specially marked and
called the output of the algorithm’s run on ». Each processor computes only one output,
and then terminates.
Synchronous and Asynchronous Frecutions: In a distributed system there is no central
control: No one processor is designated from the beginning as the leader or organizer
of the network (although processors can in some cases choose a leader! and there is no
global clock available to the processors for coordinating their message-sending. Processors
may make computations at different speeds or be temporarily interrupted, and the time it
takes messages to travel between any two processors can vary unpredictably, although we
agssume that all messages sent eventually do arrive in finite time. Since there is no global
clock, two executions of A from the same start-state may well be different: A given step
may take place at different times in the two executions and messages may be sent and
arrive at different times. This will perhaps motivate the following definition:

Definition 2.2.3: Let A/ be a network with n processors, let 7 be a processor in A, and
let A; be an algorithm. An execution of A; by processor i from input z; is the sequence of
steps of A; (where a step includes message-sending, message-receiving and computation,
as outlined above) together with the time that each step begins, each message is sent
or received, and each computation takes place, as measured by an external clock. Let
A = {Ay,...,A,} be a collection of algorithms. An asynchronous execution of A by N
from a given input ¥ = (21,...,2,) is the set of executions of each A; € A by processor
i(¢=1,...,n) from input 2;. An execution must satisfy the requirement that messages
arrive at a processor via a given link in the order in which they were sent, after an
unspecified but finite delay. A special case of asynchronous execution is synchronous
execution, in which all processors begin executing their algorithms at the same time, as
measured by the external clock, and each step of an algorithm occurs at some discrete
time ¢t € IN: Messages sent at time ¢ arrive at time ¢ + 1, and computations take zero

time.?

Function Computation: We will now define what it means for a network to compute a
function. We will distinguish between three kinds of functions: The “computable func-
tions” (Definition 2.2.4), the functions which are “computable by a network” (Definition

2.2.5), and the functions which are * anonymously computable by a network” (Definition
2.2.6).

Definition 2.2.4: A function is said to be computable if it can be computed on a Turing
machine.

!For instance, see [MA89] and [SS89]. The papers [YK87b,YK88] and [Ang80], along with others, also

discuss leader election.

2There are a number of alternative ways to define the synchronous execution that we could have used

here; e.g., a computation begun at time ¢ could be completed at time ¢ + 1.

2.2. The Model 11

Definition 2.2.5: Let T and O be input and output alphabets. We will assume that they
are totally ordered sets.® Let & = (21,...,2,) € I". If A is a network with n processors,
we will say that N is given input & if processor ¢ is assigned input z; for7 = 1,...,n. The
network A is said to compute § € O™ given & € I™ if there is a collection A = {A1,...,An}
of algorithms such that for any execution of A by N given input Z, algorithm A; produces
output y;, for7 = 1,...,n, in a finite number of steps. A computable function f : I* — O"
is said to be computable by N if there is a collection A of algorithms such that for each
Z € I™ and for any execution of A given input Z, the network A" computes f(&) .

ExamMpLE 2.2.2: A network with three processors will sucessfully compute the function
f(zy, 22, 23) = (21 + 2%, 23, 23/2) if processor 1 computes z1 + @3, processor 2 computes
x3, and processor 3 computes x3/2 whenever processor 1 is given zy, processor 2 is given
x4 and processor 3 is given x3 as input.

Remark 2.2.1: Suppose that there is a function f and a collection A = {Ay,...,An} of
algorithms such that A can compute f on a network only under the synchronous execution.
If such an A exists, there is always a collection A’ = {A],... A} of algorithms which
computes f on the network under any execution. That is, the set of functions computable
by a network under synchronous executions equals the set of functions computable by the
network. To show this, let A be as above, and define A’ = {A’},..., A} as follows: Initially,
all processors send a token through each of their links. Each processor ¢ then repeats the
following: After receiving a token through each of its links, processor ¢ simulates a step of
A; and then sends a token through each of its links. The collection A’ can now simulate
the synchronous execution of A.

Anonymous Computation: In this paper we will investigate computation on “anonymous
networks”, whose processors have no immediate way of distingushing among themselves.

Definition 2.2.6: A network A with n processors will be said to perform an anonymous
computation if it executes a collection A = {Aq,..., Ay} of algorithms for which A; =
Ay = --- = An. That is, in an anonymous computation, all processors in the network
run the same algorithm during any given execution. A network compute a function f
anonymously if f is computed by A via a collection of algorithms A = {Aq,...,An} for
which A = Ay =...=Ap.

We will informally refer to a network performing anonymous computations as an
“anonymous network”.

One implication of this defintion is that the algorithm running on each processor in
an anonymous computation does not have access to the processor’s id, unless this is given
as part of the input.* This means that the processors have no easy way of determining
from where a given message originated in the network. One of the chief computational
problems facing an anonymous network is that of constructing unique labels or ids for
the processors using whatever information is available locally. We will see later that the

We will actually need a stronger condition on I; that its order be a computable function (Definition
2.2.4).

*If the input to each processor i in an anonymous computation always consists of an ordered pair(i, z;)
(that is, always includes the processor id) then the network can compute any reasonable function over this

domain. This will follow from Theorem 2.5.1 in Section 2.5.

12 2. Characterizing The Functions A Network Can Compute

processors in an anonymous network can in fact construct labels for themselves, although
these labels are not usually unique. Only in networks with special network topologies will
processors be able to construct unique labels for themselves.

The synchronous execution of an algorithm is in some sense the “hardest case” for
an anonymous network. In aynchronous executions, processors may be able to make use
of the random arrival-time of messages to break symmetry and to distinguish among
themselves. (For instance, see the papers [MA89] and [SS89] in which the authors showed
that processors in an anonymous network can choose distinct id’s for themselves if they
have access to a coin-flip). In this paper we are interested in exploring the effect of a
network’s topology on its capacity for coordinated action, rather than in investigating
symmetry-breaking through randomness. For this reason we require that algorithms for
function-computation on a network work under all executions, including synchronous ones.
By Remark 2.2.1, any algorithm can simulate a synchronous execution, and so we need
only consider synchronous executions in this paper.

2.2.2 The Graph Of A Network

It will be convenient to be able to think of networks as directed graphs in the next
section, when we define the monoid of a network and begin to explore the structure of
networks as mathematical objects. Associating links in a network with directed edges in
a graph is not intended to imply that links are one-way, however — the association is
strictly for mathematical convenience.

Definition 2.2.7: A directed, edge-labeled graph G is a triple (V(G), E(G), A(G)), where:

V(G), the set of vertices, and

A(G), the set of edge-labels, are finite sets, and

E(G), the set of edges is a subset of V(G) XA(G)XV(G).
We will usually refer to directed edge-labeled graphs simply as graphs. If e = (vaw)
is an edge in G, we say that vertices v and w are adjacent and that e is an edge with label

a, directed away from v and directed towards w. (We will think of a loop (vav) as being
directed towards v and away from v.) An edge e = (va w) is incident with both v and w.

Pictoral Conventions: We will use the following shorthand in picturing graphs: An edge
(vaw) will be drawn as in Figure 2.2 below. We will usually draw the pair (vaw) and

o ©
Figure 2.2: The edge (vaw)

(wav) as a single edge with an arrow on each end (Figure 2.2.2) instead of as a pair of
edges.

2.2. The Model 13

O

Figure 2.3: The pair {(vaw), (wav)} of edges

We will use the convention that distinct letters a,b, ¢, ...in a pictured graph represent
distinct edge-labels in A(G).?

As mentioned earlier, networks are undirected, but it will be convenient to be able to
think of networks as directed objects in the next section, when we define the monoid of a
network. For this reason we will associate a network with a directed graph.

Definition 2.2.8: Let N = (Vr, Exr, par) be a network with n processors. The graph of
N is a graph G = (V(G), E(G), A(G)), with:
e V(G) ={1,...,n}. The processor-labeling map px of A" maps V,r bijectively onto
V(G);
e A(G) is a subset of NXN, and
o E(G) is the following subset of V(G)XA(G)XV(G): For each link £ =
{(v,7),(w,j)} € Exn there is a set {(v(¢,7)w),(w(j,?7)v)} of edges in E(G). (If
L ={(v,i),(v,7)}, this set has only one member; (v, (¢,7),v).)
ExampLe 2.2.3: The graph G in Figure 2.4 is the graph of a network having links
L£1=A{(1,1),(2,2)}, L2 = {(2,1),(3, 1)}, L3 = {(2,3),(2,3)}, and L4 = {(3,2),(1,2)}.

—_

Figure 2.4: The graph of a network

®We will use the letters a, b, ¢, d, e as variables taking values in A(G) (and later, for words over A(G)).
For consistency, the letters labeling the edges of a graph in a figure should also be taken to be variables.
However, since we use the convention that distinct letters take distinct values in A(G), the reader will not

be misled by imagining that the letters are actual edge-labels, instead of variables.

14 2. Characterizing The Functions A Network Can Compute

A network is called connected if its graph is connected. We will assume that any
network we consider is connected. We will usually identify a network with its graph when
this doesn’t cause confusion, and will commonly refer to a processor or vertex as “processor
v”, “processor 7, “vertex v” or “vertex ¢”, and identify links with pairs of edges.

A Condition on Fdge-Labels: In this paper we will restrict our attention to graphs
having the following edge-label property:

Property 2: For any vertex v, no two edges directed towards v have the same edge-label,
and no two edges directed away from v have the same edge-label.

Note that this is a generalization of the “link-label condition” (Property 1). All graphs
considered in this paper will satisfy Property 2, and so it should not cause confusion to
refer to graphs with this property simply as graphs.

In subsequent chapters we will find that the structure of the graph of a network is
partly dependent on the input to the network. That is, the graphs we are considering are
not only edge-labeled, they are also vertex-labeled; and the vertex-labeling changes as the
input to the network changes. This motivates the following notation:

Notation: 1If ¥ is an input-vector for a network N we will write (G, Z) for the graph G of
N with vertex i (for i € {1,...,n}) labeled with the ith component of Z.

2.3 Monoids and Covering Maps

In this section we will define a monoid, the edge-label monoid, which has a natural
association with an edge-labeled directed graph. We will make heavy use of this monoid
in Chapters 3 and 4 for describing the structure of a graph in terms of its quotient-graphs.

The main results of this section are Propositions 2.3.1, which states that the graph
covering maps are surjective maps which commute with the elements of the graph’s
monoid; and Corollary 2.3.1, which states that a covering map is determined by its action
on a single vertex.

2.3.1 The Monoid Of A Graph

An edge-label a of a graph can be thought of as inducing a partial function f, on the
vertices of the graph, where f,(v) = w whenever there is an edge (v a w) in the graph. The
collection of all such functions generates a monoid under function composition. Following
is a more complete description of this monoid.

Let A(G) be the set of edge-labels for a graph G, and let A(G)™ = {a™! : a € A(G)},
where a1 is a formal symbol. If « € A(G) UA(G)™, define (a™)~! to be a. Write A(G)*
for the set of all words over A(G) U A(G)™, including the empty word, denoted by A.

We will denote words in A(G)*, including words of length 1 in A(G) UA(G)™, by the
symbols a, b, ¢, d, e. A word a = ajay...a; € A(G)* will be said to be reduced if no two
sucessive letters in @ are of the form bb~! for b € A(G) UA(G)~.

2.3. Monoids and Covering Maps 15

Fach letter a € A(G) is associated with a partial function f, : V(G) — V(G), where
Ja(v) = w iff there is an edge (vaw) € E(G). If we append a vertex un (for “undefined”)
to V(G), we can define f, to be a total function on V(G)U{un}, as follows: f,(v) equals w
if there is an edge (vaw) € E(G), and equals un otherwise. We define the “partial inverse”
fam1 1a”t € A(G)™ similarly: f,-1(v) = w if there is an edge (wa v) € E(G), and equals un
otherwise. Define f,(un) = un for all « € A(G) UA(G)™. Let f\ be the identity function
on V(G)U{un}, where X is the empty word. The set {f, : « € A(G) UA(G)™ U{A}} then
generates a monoid, which we denote £(G), under function composition.

Definition 2.3.1: We will write £(G) for the edge-label monoid of G, and call its elements
the edge-label maps of G.

We will call G a group graph in case £(G) is a group, and a monoid graph otherwise.

Note that Property 2 insures that the maps f, € £(G) are one-to-one.

Notation: Let a = ajay...a); be a nonempty word in A(G)*. To simplify notation,® we
will write f, for the function f,, o fo, 0---0 f,,.

Remark: The relation f, f,-1 = f\ does not hold in general for £(G) since f,-1 may not
be defined on all vertices of G. Hence if b is a word in A(G)* and b’ is its reduced form, it
is not true in general that f, = fy.

Definition 2.3.2:
1. Let a # A € A(G)*. We will say that f, € £(G) is defined on v € V(G)if f,(v) # un.
We will take fy to be defined on all v € V(G).
2. If wo, v, € V(G), a path of length k from vy to vy is a string P =
Voa1V1Ag . . . Vp—1akVE, With v; € V(G) and a; € A(G)UA(G)™, such that (v;,_qa;v;) €
E(G) if a; € A(G), and (v;a;'v;_1) € E(G) if a; € A(G)™, for i = 1,...,k. A single
vertex is a path of length 0. (See Example 2.3.1 below. Note that this definition is
nonstandard: A path may contain edges directed towards or away from each other.)
If P = vpaqvias ... vp_qapv; is a path, the word of P is the string ¢ = arap_q1 ...0aq.
(See Remark 2.3.1 below.) A path P = vgajvy...v; is called a simple path if if the word
of P is reduced and nonempty, and a closed path if vg = vg. A tree is a graph with no
simple closed paths.

EXAMPLE 2.3.1: In Figure 2.5, the path P = 0a=!156712a3 is a path of length 3 from
vertex 0 to vertex 3. Its word is ab~'a~', a reduced word.

Remark 2.3.1: A path P = voayviag ... v, has word agag—y ...aq iff fo, 0, ;. 0y (v0) = vp.
For instance, in Example 2.3.1 above, f,;,—1,-1 is defined on vy and f,-1,-1(vg) = v3. In
other words, if P is a path from vy to vy having word a, then f, is defined on vy and
fa(vo) = vg. Conversely, if f,(vg) = vy for a word a € A(G)*, then there is a path from v
to vy having a as its word. That is, there is a one-to-one correspondence between the set
of paths from a vertex v € G and the set of words a € A(G)* such that f, is defined on
v. The sequence of letters in the word of a path is reversed over its sequence in the path
because we compose functions on the left.

In actuality, we are putting a relation ~ on the free semigroup over A(G)*, where a ~ b for words a
and b € A(G)* iff fo = f5. The monoid £(G) is isomorphic to the quotient of the free semigroup mod this
relation. See [Hol82]

16 2. Characterizing The Functions A Network Can Compute

Figure 2.5: Paths and words

2.3.2 Covering Maps

If Gy and G, are graphs, a surjective map from the vertices of Gy to the vertices of
Gy will be called a covering map if it preserves edges, edge-labels and orientations. More
formally, we have:
Definition 2.3.3: Let Gy = (V(Gy),E(G1),A(Gy)) and Gy = (V(Gz), E(G2),A(Gy)) be
graphs. A covering map is a surjective map ¢ : V(Gy) — V(Ggz) satisfying:
1. If (vaw) € E(Gy) then (é(v)ad(w)) € E(Gz2), and
2. If (vaw) € E(Gz) then each vertex in §~!(v) has an edge with label ‘a’ directed away
from it and each vertex in §~!(w) has an edge labeled ‘a’ directed towards it. That
is, for each vertex v/ € §71(v) there is an edge (v'ar’) € E(Gy) and for each vertex
w' € §71(w) there is an edge (r'aw’) € E(Gy).
(See Example 2.3.2.) We will call a covering map & an isomorphism if it is a bijection.
An automorphism is an isomorphism from a graph to itself. (Note that by Proposition
2.3.1 below, isomorphisms have the expected property of commuting with the edge-label
maps.)
We will say that a graph G covers a graph H if there is a covering map 5 : G — H.
Below are some examples of covering maps.

ExAMPLE 2.3.2: In Figure 2.6, the map py : Gy — Gy which takes » to r and w to s is
not a covering map because §~1(r) does not have an edge labeled ‘b’ directed away from
it.

The map py : G3 — G4 which takes u’, v’ to v and w’,r’ to w, is a covering map.

Remark 2.3.2: Note that there can be a covering map from Gy to Gy only if A(Gy) =
A(Gy).

Lemma 2.3.1: Let ¢ : Gy — Gy be a covering map. Then for all a € A(Gy)" and for
all v € V(Gy), fo € E(Gy) is defined on v iff g, € E(Gg) is defined on 6(v). In other
words, there is a path with word a from v € V(Gy) iff there is a path with word a from
6(v) € V(Gy).

Proof Leta=ajay...a; € A(Gy)*.

(1) Let f, be defined on v € V(Gy). By Remark 2.3.1 there is a path P =
VARVE—10k—1 .. .10 With word a from v to some vertex vy € V(Gy). Then 6(P) =
0(v)ard(vi—1)...a16(vg) is a path from é(v) to 6(vg) in Gz, because if a; € a is in
A(Gy) then (v;a;v;—1) € E(Gy) and so (6(v;)a;6(vi—1)) € E(Gz), and if a; € A(Gy)~ then

2.3. Monoids and Covering Maps 17

Gy Go Gs Gy

Figure 2.6: Graph Covering

(vi_1a7'v;) € E(Gy) and so (6(v;_1)a; 6(v;)) € E(Gy). Hence a is the word of a path P’
from é6(v) in Gg, and so g, is defined on 6(v).

(2) Let v € V(Gy) and suppose that g, is defined on é6(v') € V(Gz). Then there is a
path P = é(v")agvr—1agx—1 . ..a1vg from 6(v’) to some vy € V(G3). Since 6 is a covering
map, by condition (2) of the definition there is a vertex v;,_; € V(Gy) such that é(v;_;) =
v and (v ap vy ;) € E(Gy) if { 8(v')agvr—1) € E(Gy), and (v}, a;'v') € E(Gy) if
(vg—1 izt 8(v")) € E(Gy). That is, there is a path P; = v'agv}_, of length 1 in Gy such
that 6(Py1) = 6(v")ardé(v)._;) = 6(v")arvk_1 is a subpath of P from é6(v) to vi_q. Arguing
by induction over path length we see that there is a path P’ = v'agv]_jar_1 ...a10(in Gy
such that 6(P') = 6(v")ard(vj_y)ak—1...a16(v}) = P. Then f, is defined on vf, since P’

has word a. O

Let G; and Gy be graphs. We will see next that the graph covering maps from G; to
Gy are the maps which commute with elements of £(Gy) and £(Gg).
Proposition 2.3.1: Let Gy = (V(G1),E(G1),A(Gy)) and Gy = (V(G2), E(Gg),A(Gy)) b
graphs such that A(Gy) = A(Gg). Then a surjective function 6 from V(Gy) onto V(G 2)
a graph covering map iff Gy, Go and 6 satisfy:

1. For any a € A(Gy)* and for any v € V(G1), fo € E(Gy) is defined on v iff g, € £(G2)

is defined on 6(v).

2. Forall v e V(Gy), if fo € £(Gy) then 6 f,(v) = g,6(v).
Proof Suppose first that § : G; — Gy is a covering map, and let @ € A(Gy)* and
v € V(Gy). By Lemma 2.3.1, f, is defined on v iff g, is defined on é(v). By the same
lemma, f,(v) = vg iff there is a path with word a from v to vg in Gy, and there is a path
with word a from v to vy in Gy iff there is a path with word a from é6(v) to é(vg) in Ga.
That is, 6 fo(v) = 8(vg) = ¢gab(v).

Conversely, suppose that Gy, Gy and ¢ satisfy (1) and (2) above. Let (vaw) € E(Gy).
Then f,(v) = w and so by hypothesis, g, is defined on é(v) and ¢ f,(v) = g.6(v). That
is, g,6(v) = 6(w), so (6(v)ad(w)) € E(Gy). Hence condition 1 of the definition of covering

map is satisfied.

18 2. Characterizing The Functions A Network Can Compute

Let (vaw) € E(Gz). Then g,(v) = w and g,~1(w) = v. Let v € §7*(v) and
w' € §~Y(w). Then by hypothesis, f, is defined on v’ and f,—: is defined on w’. That
is, there is an edge directed away from v’ having label ¢ and an edge directed towards w’
having label a, and so é is a covering map . a

Corollary 2.3.1: Let 61 and 63 be covering maps from Gy to Gg. If 61(v) = 82(v) for
some v € V(Gy) then 61 = 83. That is, a covering map is determined by its action on a
stngle vertex.

Proof Let 61(v) = 62(v) and let w be any vertex in Gy. We will show that &;(w) = ég(w)
also. Take f, € £(Gy) such that f,(v) = w. Note that f, exists since Gy is connected.
Since there is a covering map from Gy to Gg, there is also an element g, € £(Gy), by
Remark 2.3.2. Since 6; and 6y are covering maps, we have 61(w) = 61 f,(v) = g.61(v)

= gab2(v) = b2 fu(v) = b2(w). O

2.4 Universal Covers

A “universal cover” of a graph G is a (usually infinite) tree covering G. In this section
we will explore some properties of universal covers; in particular, of “rooted universal
covers”, in which one vertex of the tree is chosen to be its root. We will make extensive
use of a set of rooted universal covers in characterizing the set of functions a network can
compute.

The main result of this section is Proposition 2.4.1, which states that two rooted
universal covers are isomorphic if they are isomorphic out to finite (small) depth. This
result is proved in greater generality in [Nor93]. Here we give a shortened proof for the
class of graphs considered in this paper.

Definition 2.4.1: The universal cover U of a graph G is a tree covering G. That is, there
is a covering map from U to G. U is infinite unless G is a finite tree.

The following results are standard in algebraic topology, for instance, see [Mas67] and
the papers [Ang80] and [Lei82].

We have:
Lemma 2.4.1:

o The universal cover of a network is unique up to isomorphism.

o [f 31 and B2 are covering maps from U to G and $1(0) = fo(w) for v and w € V(U)
then there is an automorphism o : U — U such that o(?) = w and 1 = paa.
Proof Let U; and Uy be universal covers for G. Let 81 : Uy — Gq and §3 : Uy — Gy
be covering maps and let & € V(Uy) and @ € V(Uy) be such that §1(%) = Ba2(w). We will
find an isomorphism « : Uy — Uy such that 81 = fGa, and conclude that Uy and U, are

isomorphic. If U; = Usy, the same construction yields o : U — U such that 5, = Gza.

Observe first that f, € £(Uy) is defined on @ iff §, € £(Uy) is defined on w: Since
By and By are covering maps, f, is defined on @ iff f, € E(G) is defined on v = [1(9),
and f, is defined on v iff §, is defined on any @ € 327! (v). We now construct a relation

a : V(U;) — V(Uy) as follows: a(#) = . For any f, € £(Uy) which is defined on #

2.4. Universal Covers 19

and for which @ is a reduced word, define af,(%) to be joa(?) = go(w). If 7 € V(Uy),
let f, be the unique element of £(Uy) such that f,(#) = 7 and a is reduced, and define
a(7) = afy(?) = §a(®). Then a is an isomorphism:

(1) @ is a one-to-one function: Let a(@) = a(7) for vertices @ and 7 € V(Uy). Let f,
and f, € E(Uy) map o to @ and o to 7, respectively, for a and b reduced words. Then
a(t) = go(w) and a7) = Gy(w), so §,(0) = Gs(w), and so g, = gy since Uy has no closed
paths. Then f, = f; in £(G) since Uy covers G, and so fa = fb since U; covers G. Thus
@ = 7 and « is one-to-one. A similar argument shows that « is a function.

(2) a is onto If @ € V(Uy), let §, € £(Uy) map @ to @ Then f, maps v to some i’

and a(a') =

(3) a is a covering map: Let 7 € V(Uy) and let f. € £(Uy) be defined on 7, and
fa € &(Uy) map @ to 7, where ¢ and a are reduced words. Then f.(7) = fcfa(N) and

c(F) = efa(®). Then §. is defined on a(F) if f. is defined on 7, because f.f, being
deﬁned on ¥ implies that f, f; is defined on v in G, which in turn 1mphes that §.g, is defined
on @ = a(?), since fz(w) = F1(0). The same argument shows that if §. is defined on a(F)
then f. is defined on 7. Furthermore, af.(7) = afefa(?) = §efac(D) = §efa(W®) = Gea (7).
Thus a is an isomorphism by Proposition 2.3.1.

Since 31(?) = f2a(?), we can use Corollary 2.3.1 to conclude that 51 = fza. The same
argument can be used to prove the second part of the propostion. a

Next we define the rooted universal cover of a graph:

Definition 2.4.2: Let v € V(G) and let U be the universal cover for G. We define the
rooted universal cover U, to be a triple U, = (U,?,3); where 2 € Uand f: U — Gis a
covering map such that 5(¢) = v.

U, can be thought of as the tree” U rooted at .

By Lemma 2.4.1, if 31(91) = [2(?2) = v then there is an automorphism a of U mapping
71 to ¥y such that 8y = fea. In this sense U, is unique up to isomorphism. The map 5 is
called the canonical covering map for U,; it is the unique covering map taking @ to v.

If v and w are vertices in G, we will say that U, and U, are isomorphic via an
isomorphism «, written U, ~ U, if there is an automorphism « : U — U which maps
the root © of U, to the root @ of U,. Note that by Corollary 2.3.1 there is at most one
automorphism of U which maps # to .

We will need the following notation:

Notation: Let G be a network and let V(G) = {1,...,n}. If & = (21,...,2,) is an
input for G, write U, & for the graph U, with vertices labeled with the components of ¥ as
follows: Each vertex @ in U, is labeled xg(g), where 3 is the canonical covering map for

"For definiteness we could make the following formal construction of U,: The vertex set for U, is the
set of all simple paths (that is, having reduced words) from v in G. The edges are triples (P1aP>) where if
P; = vaivs ... axvr then P; = vaivz...axviaveyr for ¢, 7 € {1,2}. The root of U, is the path P = v and
the canonical covering map takes each vertex P = vai vz ...arvr € V(Uy) to vx € V(G). This consruction
is given in [Ang80] and [Lei82].

20 2. Characterizing The Functions A Network Can Compute

U,. That is, the vertices in the set {371(i) € V(U)} are labeled with the ith component
of 7.

Definition 2.4.3: Let 5y : U, — G and 83 : U, — G be the canonical covering maps and
let # and ¢ € IT"™. We will say that U,Z and U, ¢ are isomorphic and write U, ¥ ~ U, ¢ if
U, ~ U, via an isomorphism « and if for every vertex 7 € U, the vertex-label of 7 equals
the vertex-label of (7). That is, x5, () = Yg,qa(s) for all ¥ € V(U,). (See example 2.4.1.)

The next lemma states that if U,Z and U, % are isomorphic, then so are are the trees
obtained by ‘translating’ U, & and U, % by a path with word w. (See Example 2.4.1 below.)
This result is standard; see Proposition 3.1 in [YKS88].

Lemma 2.4.2: Let G be a graph with universal cover U. If U, & ~ U,y for some ¥ and
g € I, then Uy ()@ =~ Uy)y for any fo € E(G) which is defined on v and w. In
particular, this means that if U, ~ Uy, then Ug, () = Uy ().

Proof let gy : U, — G and §9 : U, — G be the canonical covering maps and let
fa € £(G) be defined on v and w. Then f, € £(U) is defined on the roots & and @ of
U, and U, since f; and [z are covering maps . Let Uy () have root 7 and canonical
covering map (1'. Then By fo(%) = fuf1(7) = fo(v) = 51'(7), and so by Lemma 2.4.1,
there is an automorphism a; : U — U such that ay(7) = fa(ﬁ), and 38 = Biay.
If Us,(w) has root @ and canonical covering map B9’, then the same argument shows
that there is an automorphism ag : U — U such that ag(@) = f,(#) and such that
B9’ = Bya3. Let a3 be the unique automorphism of U which maps @ to w. Then we have
az(fa(?)) = foas(?) = fu(d). Let a@ = az'aza; : U — U. Then a is an automorphism
mapping 7 to %, and so Ufa(ﬁ) = U; ~ Uy = Ufa(fu) via a. Since U,¥ ~ U,¥y via
as, we have Zo,() = Yras(i) for any 2 € V(U). Hence L) = Tai(an()) = Ysran(ar (i)
= Ygan0() = Yoo a(h) for any 7 in V(U), and so, by definition, Us)® = Ug (¥ O

Definition 2.4.4: (1) The distance between two vertices v and w in a graph G is defined
to be the length of the shortest path between v and w.

(2) We will write UX for the subgraph of U, induced by the set of vertices of U, of
distance at most k from its root o.
EXAMPLE 2.4.1: Figure 2.7 pictures (G,) and U2Z for ¥ = (=, y,x,y). It can be checked
that U@ ~ Usd and Uyd ~ Uyd. Since U@ and Uyud are isomorphic, Lemma 2.4.2 says,
for instance, that Uy (9)@ = Usa@ is isomorphic to Uy, 4@ = Uy

The following is a technical lemma:
Lemma 2.4.3: Let v,w € V(G) and let k > 0. Then Ur# ~ UL 7 iff ULZ ~ UL§ and for

all a € A(G) UA(G)™ such that f, is defined on v, we have U?;&)f o~ U?;&U)g]’.

Proof One direction is immediate: If § : UF#¥ — UFy is an isomorphism, then &
restricted to ULZ is an isomorphism between UL# and UL 7, and & restricted to Uff(i)f is

an isomorphism between U?;&)f and U?a(}ﬂ)ﬁ-

2.4. Universal Covers 21

Figure 2.7: (G, %) and U3%

Conversely, if there is an isomorphism é; : ULZ — UL . then for any a € A(G)UA(G)~,

w

the element f, is defined on v iff it is defined on w. Suppose that for each a € A(G)UA(G)~

such that f, is defined on v there is an isomorphism é, from U?;&)f to U?;&U)gf. Define

a map § from UF# to U i as follows: § = 6; on ULF. For each a € A(G) UA(G)™, define
§ = 6, on each subtree of UXF rooted at f,(v) (that is, on each subgraph of UXZ induced
by fu(v) and its descendants.) It is easy to verify that ¢ is an isomorphism. O

Finally we can show:
Proposition 2.4.1: If G has n vertices and v,w € V(G), then U, & ~ U, 7 iff U2" 17 ~
Uty
Proof If U,# ~ U,% then U2"1¥ ~ U2"~l§ by restriction of the isomorphism.
Conversely, suppose that U?"~17 ~ U271 We will show that UF# ~ U* i for all k& > 0,
and the conclusion will follow from this.

For each k > 0, define an equivalence relation ~j on the set V(G) x {Z, 7} by:
(v, 7Y ~p (w,7?) for Z' and 72 € {7, ¢} iff UFZ' ~ UL 2. Write 7, for the partition
of V(G) corresponding to ~. Then 7 satisfies the following two properties:

(1) Tr11 is a refinement of 7. That is, if the pairs (v, Z1) and (w, 22) are in distinct
blocks of 73, then they are in distinct blocks of mr41.

(2) If m—1 = m for some k > 0 then T, = mpy1, and hence T, = mpy; for all j > 0.

(1) is immediate. (2) follows from Lemma 2.4.3 above; for suppose that for all
pairs (v,2Z!) and (w,z?) in V(G) x {Z,7}, we have (v,Z) ~j_1 (w,Z?) implies that

22 2. Characterizing The Functions A Network Can Compute

(v, 7YY ~p, (w,7?); that is, UF131 ~ UE=122 implies that U%z' ~ UF 22 Pick pairs
(v, 1) and (w, z%) such that v ~;_1 w and let @ € A(G)UA(G)™ be such that f, is defined

on v. Then UFZ1 ~ U* 72 and so by Lemma 2.4.3 above, we have U?;&)El ~ U?a(}ﬂ)?. By
hypothesis, U?a(v)il ~ Ugia(w)z_’z and so, again by Lemma 2.4.3, Ukt1z1 ~ Uk+132 This
proves (2).

To prove the proposition, observe first that by (1) and (2) above, 7 becomes strictly
finer as k increases, up to a point. wg has at least one block. If w1 has only one block
then 7 has only one block for all £ > 1. Suppose that 71 has at least two blocks. Then
if 713 # m; then 7y has at least three blocks, and if 73 # 7 then w3 has at least four
blocks, and so on. Since 7 can have at most 2n blocks, we must have 7o,_1 = m9n = g
for all k& > 2n. That is, U?"~1% ~ U?*~1§ implies that UFZ ~ U% i for all & > 0, and so
U@ ~ Uy,¥. O

A similar argument gives us the following:

Proposition 2.4.2: Let a graph G have n vertices. If UM1% ~ U"=1F for some & € I®
and for v,w € V(G) then UFZ ~ UL # for all k > 0.

Proof Define an equivalence relation ~j on V(G) by: v ~p w iff UF# ~ UK #. The
argument used in the proof of Proposition 2.4.1 then yields the desired conclusion. a

2.5 Computing On Anonymous Networks

As mentioned earlier, the processors in a network performing an anonymous computa-
tion do not have acess to their ids unless these are given as input. Suppose for a moment
that each processor in such a network could compute a unique label for itself, and that this
label was independent of the input to the network. Theorem 2.5.1 in this section will show
that such a network can compute any computable function f :I™ — O™. In this section
we will see that the processors in a network performing an anonymous computation can
compute labels for themselves, where the ‘label’ each processor ¢ computes for itself is
its tree U?”_lf. Depending on the network’s topology, this label will not be unique to a
processor, and of course will vary with the input to the network. For any input-vector &
we can put an equivalence-relation ~z on the processors of a network G, where i ~z j iff
processors ¢ and 7 compute the same label for themselves under input . Theorem 2.5.1
then says in part that G can compute a function only if it is invariant under this relation,
in a sense that will be defined in this section.

The main result of this section is a characterization of the set of functions computable
by anetwork (Theorem 2.5.1). The next three lemmas will be used in this characterization.
These lemmas explore the computational capacity of anonymous networks.

Lemma 2.5.1: Consider two synchronous executions of an algorithm A in anonymous
computations on a network G; the first with input ¥ and the second with input §. If
U, & ~ U, ¥ for processors v and w in G, then at each step k of the first execution, processor
v sends and receives the same messages and computes the same values as processor w does
during the kth step of the second execution of A.

2.5. Computing On Anonymous Networks 23

Proof (by induction on the steps k of A):

Suppose first that Ul# ~ Ul . Then at step 1 of A’s run on v under input # processor
» must receive the same messages from adjacent processors as processor w receives during
step 1 of A’s run on w, under input ¢. Since processors v and w run the same algorithm
A, if they receive the same messages during step 1 then each must compute the same
values and send the same messages as the other. Thus the first step of A on v with input
¥ is the same as the first step of A on w under input %.

Suppose now that the result holds for the kth step of A. By Lemma 2.4.2, there is a
bijection « between the set of vertices adjacent to v and those adjacent to w in G such
that for each vertex u adjacent to v we have U,& ~ U,(,)y. By hypothesis, by the kth
step of A, processors v and a(u) (adjacent to v and w) have sent the same messages to v
and w, respectively, in the two executions. Thus in the £ + 1st step of the two executions
processors v and w receive identical message-sets from adjacent processors, and so v and
w compute the same values and send the same messages to neighboring processors. a

Remark 2.5.1: By Proposition 2.4.1, if U2"~1% ~ U2"~1§ then U,7 ~ U,#, and the
above lemma holds.

The following lemma was proved by Yamashita and Kameda ([YK87b,YK88]). Their
proof applies to our model with few modifications.

Lemma 2.5.2: Let G be a network and let G have input ©. A processor v in G can
anonymously compute a graph isomorphic to UFZ for any k > 0.

Proof See Lemma 3.4 in [YK88]. Here we sketch an algorithm for reference.

Algorithm 2.5.1: Step 1: FEach processor v sends its input-value to adjacent processors.
A message (an input value) sent through the ith link of a processor has the value “i”
appended to it on the right, and a message received through a processor’s jth link has
the value “j”7 appended to it on the right. Each processor v waits until it has received a
message through each link, and then uses these messages to construct ULZ.

Steps 2,...,k: Each processor u sends a pair (Ul"'%,7) through its sth link, for
i=1,...,deg(u). If a processor receives such a message through its jth link, it appends
a j to the message. Fach processor v waits until it has received a message through each
of its links, and then uses these messages (with the appended link labels), together with
its input-value, to construct Ul Z. O

There are several possible procedures for constructing U #. One possibility is to append
leaves to Ulm'#. Another possiblility, which we describe here, is to choose the ‘correct’
subgraphs of each rooted universal cover of depth [— 1 belonging to adjacent processors,
and to connect all of these subgraphs at a vertex to form U Z. (See Example 2.5.1 below.)
This can be done as follows:

At step [, processor v receives Ulm1# from each adjacent processor u. From each of
these rooted universal covers processor v constructs a pair {1, T} of subtrees, as described
below. All such subtrees are then merged at the root to form U!zZ.

The two subtrees Ty and Ty of a neighoring universal cover U= are given as follows.
Suppose that Ul=1# is sent to processor v via a link {(u,i),(v,5)}. Let e; = (i, (i,7)u;)
and ey = (uy,(j,7), %) be edges adjacent to the root @ of Ul='#. Let T/ be the subgraph

24 2. Characterizing The Functions A Network Can Compute

of Ul=1# obtained by removing all edges adjacent to the root except for e;. Then T} is
the connected component of T{ containing uy. T3 is constructed similarly.

a

EXAMPLE 2.5.1: We will describe part of the construction of U2, omitting the input Z for
simplicity. At step 2, processor v receives U2 and U2. The trees T} and Ty constructed
from UZ are pictured. (To save space we have drawn the trees and universal covers
schematically, with triangles representing subtrees.) The roots of T and T5 are identified,
and the resulting graph forms part of U2.

Figure 2.8: Computing U?

The next theorem characterizes the set of functions a given network can compute
anonymously. In [YKS87a], Yamashita and Kameda obtained similar results for scalar
valued functions: See Theorem 4.1 in [YK87a], and also the related results section at the
end of this chapter.

Theorem 2.5.1: Let G be a network. Any computable function f : T" — O™ can be
computed anonymously by G iff f satisfies: For all inputs & and § and for all processors
i and j, if U;Z ~ U;§ then f(Z); = f(¥);.

Let us defer the proof of the theorem until the end of the section. We next give some

examples illustrating the theorem.

2.5. Computing On Anonymous Networks 25

ExaMmpLE 2.5.2: (Computing Processor id’s)

Let f be the constant function given by: f(Z) = (1,...,n) for all ¥ € I™. A network
which computes f has computed the id of each processor (Definition 2.2.2) in the network.
By the theorem, this function is computable by a network G if and only if U;& % U,y for
all processors ¢+ and j in G and all inputs & and §. This holds iff all processors in the
network have distinct rooted universal covers, ie, iff U; ¢ U; for any processors ¢ and j in
the network.

EXAMPLE 2.5.3: Let @ = (z,2,y,y)and §¥ = (y,y,2,2). Then for G in Figure 2.9 we have
U@ =~ Ugd’ ~ Usy ~ Uyy, so any function f which G computes must at least satisfy:

f(@h = [(@)2 = f(§)z = f(Pa-
2.9

bl

Figure 2.9: Computable functions

We now give a brief outline of the proof of Theorem 2.5.1. The “=— 7 direction,
showing that an anonymously computable function satisfies the given conditions, is easy.
Briefly; if U;# ~ U;y then processors 7 and j cannot distinguish themselves in a syn-
chronous computation with inputs # and ¥, and so must compute the same output. The
proof of the “<=" part of the theorem requires finding an algorithm which anonymously
computes f(Z); on each processor i. Before we present this algorithm we will show that
each processor can anonymously compute a particular permutation Z’ of an input-vector
Z, where 7’ is such that the set of rooted universal covers of (G, ¥) equals the set of rooted
universal covers of (G,2”). An algorithm for computing &’ is given in Lemma 2.5.3 below.
Given this result, it will be easy to show that the following procedure, run on processor ¢,
computes f(&);:

Processor ¢ first computes U?”_lf. Processor 7 then computes the permutation &’

mentioned above, and finds a vertex v in G for which U?"~13" ~ U?”_lf. Finally, processor
i computes f(Z') and outputs f(3"),.

The next task before giving a detailed proof of Theorem 2.5.1 will be to show that the
permutation Z’ discussed above is anonymously computable. It might seem at first that
computing any permutation of ¥ anonymously is impossible. Processors can exchange

26 2. Characterizing The Functions A Network Can Compute

their components of ¥ until each has a complete set, but there is no obvious way to tell
with what multiplicity each component should occur. However, consider the following two
facts:

(1) If i € V(G), the tree U?"~1# can sometimes be “mapped onto” G at a vertex v € V(G),
as follows: For each path P from the root of U?”_lf, let P’ be the path (if any) from
v in G having the same word as P. If P’ exists, map the terminal vertex w of P to the
terminal vertex w of P/, and label the vertex w € G with the vertex-label x5 of w. If every
path from the root of U?”_lf corresponds to a path from v in G, and if the resulting
vertex-labeling of G is consistent (i.e., no vertex gets two distinct labels) we will say that
U?”_lf maps onto G at v. If U?”_lf maps onto G at v then the mapping procedure labels
the vertices of G with the components of Z. That is, there is a vector ¢, whose components
equal those of #, such that the vertex- labeling obtained by the mapping equals (G, ,). We
will see that the set of rooted universal covers of (G, &) equals the set of rooted universal
covers of (G, ¢,).

(2) It does not violate anonymity to allow an algorithm running on each processor of
a network to have a copy of the graph of the network, complete with edge-labels and
processor ids, but without input ¥.

This suggests the following procedure for computing #’: Fach processor i first computes
U?”_lf, and then attempts sucessively to “map” U?”_lf onto vertex 1, vertex 2...., and
so on, of its copy of G. If » is the first vertex at which U?”_lf maps onto G, processor i
takes the vector 7, described above to be z’. In this way all processors compute the same

vector .

A more formal description of this algorithm will be given in the proof of Lemma 2.5.3.

ExampLe 2.5.4: Tt can be checked that Uy ~ Uy =~ Us, but Uy & % Uyd’ % UsZ, in Figure
2.10. For this reason U5Z can only be “mapped onto” G at vertex 2. USZ does not map
onto G at vertex 1, for instance, because under the attempted mapping, vertex 2 gets two
distinct labels — label “z” from the path from the root of U5# having word “b”, and also
label “z”, from the path with word “a”.

Definition 2.5.1: Let G be a network and let & and § be input-vectors for G. We will
say that @ and ¥ are equivalent if for each j = 1,...,n there is a vertex k € V(G) such
that U; 7 ~ Upy.

ExXaAMPLE 2.5.5: For instance, let G be as pictured in Figure 2.11. If & = (21, 22, 23, 24)
and ¥ = (23,24,%1,22) then & and ¢ are equivalent, since UiZ@ ~ Usy; Uxd ~ Uuy;
Us# =~ Uy, and Uyu@ ~ Ugy.

Remark 2.5.2: Note that & and ¢ are equivalent iff there are vertices ¢+ and j in G such
that U;# ~ U;y. This follows from Lemma 2.4.2, for suppose that U;# ~ U,y and that
v is any vertex in G. Since G is connected, there is a path with word @ from 7 to v. By
Lemma 2.4.2, U, @ ~ Uy 5@ =~ Uy (1y¥.

Lemma 2.5.3: If a network G is given input &, then each processor in G can anonymously
compute a vector &' equivalent to &, and all processors compute the same &'.

Proof We will present an algorithm for computing & and show that the algorithm is
correct. The algorithm is as follows:

2.5. Computing On Anonymous Networks 27

Figure 2.11: Equivalent input-vectors

Algorithm 2.5.2: (Run at each processor ¢, for computing a vector i’ equivalent
to &)

Step 1: Compute U?”_lf.
Step 2: For each vertex v = 1,...,n € V(G), run the procedure LABEL-G given below.

Step 8: For v the first vertex in G such that U?”_lf maps onto G at v, take &’ =

(27,...,2;), where 2. is the label of vertex j in G obtained from the procedure LABEL-
G.

Procedure LABEL-G

28 2. Characterizing The Functions A Network Can Compute

e For each simple path P from the root ¢ of U?”_lf, check for a path P’ from v in G
having the same word as P. Conversely, for each simple path P’ from v, check for a
simple path P from 7 having the same word. If no such corresponding path exists,
output: “U?”_lf does not map onto G at »”. Otherwise, label the terminal vertex
w of P" with the label x5 € {21,...,2,} of the terminal vertex of P.

o If w already has a label z; # x4, output: “U?”_lf does not map onto G at v”.

e If all simple paths from ¢ in U?”_lf have corresponding paths P’ from v and
conversely, and if no vertex in G gets two distinct labels, output: “U?”_lf maps

onto G at v”.
Od

Proof of correctness: We will show that if U?”_lf maps onto G at v and the algorithm
computes a vector ¥, then U;# ~ U,#’. That & and & are equivalent then follows from
Remark 2.5.2.

Suppose that U?”_lf maps onto G at v. Let « : U?”_l — U?"=! he the map which
takes the terminal vertex of each path P; from the root of U?”_l to the terminal vertex of
the corresponding path P, from the root of U2"~1, where P; and P, have the same word.
Since U?"~1% maps onto G at v we have that f, € £(U) is defined on the root of U, iff
fa € £(G) is defined on v. Since U, covers G, we have f, is defined on v iff f. is defined
on the root of U,. Hence « is defined everywhere. The proof of Lemma 2.4.1 shows that
« is an isomorphism. By construction, any pair of vertices 7 € U?”_l and a(7) € UZn-1
share the same vertex-label, and so U"~'# ~ U2"~1#' (Definition 2.4.3). By Proposition
24.1, U;# ~ U, 7. O

We can now give a formal proof of Theorem 2.5.1.
Proof (of Theorem 2.5.1)

(=) Suppose that f can be computed by G, that is, that there is an algorithm A
for computing f on G. Then any execution, in particular, the synchronous execution of
A, computes f on G. Suppose that &, ¥, « and j are such that U;¥ ~ U;y. Then by
Lemma 2.5.1 above, at each step of the synchronous execution of A on G with input &,
processor ¢ computes the same values that processor j produces during the same step of
the synchronous execution of A with input 3. Hence the value processor i computes for
f(&); is the same as the value that processor j computes for f(7);, and f(Z); = f(¥);.

(<=) Suppose first that f is computable and satisfies the conditions of the theorem. We
will argue that f is anonymously computable on G.
Algorithm 2.5.3: (for computing f on G)

To compute f(Z);, processor i first computes U?”_lf. Processor 7 then runs Algorithm
2.5.2 to find a vector &’ equivalent to # and a vertex v for which U?”_l ¥~ U2n=17 Finally,
processor ¢ computes f(Z') and outputs f(Z'),.

2.6. Related Work 29

By Lemma 2.5.2, any processor ¢ can compute U?”_lf. By Lemma 2.5.3 any processor
can compute &’ and all processors compute the same vector &’. The vector f(Z’) can
be computed since f is a computable function. By hypothesis, f(#); = f(&’), whenever
U, ~ U,&". By Proposition 2.4.1, we have f(Z); = f(#); whenever U?"~17 ~ U215,

and so processor ¢ computes the correct value. a

2.6 Related Work

The Fdge-Label Monoid: There is an extensive literature on the semigroups associated
with finite-state machines, usually presented under the heading of “algebraic automata
theory” (e.g., see Holcombe’s book, [Hol82]). Any finite-state machine M has associated
with it a graph G = (V(G),E(G),A(G)), where G need not satisfy Property 2. The
semigroup of M is defined to be the quotient of the free semigroup on A(G) by the relation
~, where a; ~ ay for @y and ay € A(G)* if f,,(v) = fa,(v) for all v € V(G), for f,, defined
as in Subsection 2.3.1. The edge-label monoid as we have defined it is a special case of
this, for which the functions f, are total and are one-to-one on V(G), and for which an
identity and partial inverses are given.

From combinatorial group theory we obtain the related notion of a “groupoid”. (See
[Coh89].) A groupoid is a set G together with a partial multiplication which is associative
where defined, such that any element in GG has a partial inverse. For instance, the set of
vertices of a graph G, together with the set {f, : « € A(G)} of partial edge-label functions,
forms a groupoid under partial function composition. Cohen associates a graph with a
groupoid as follows: the vertices are the partial identity elements. If an element b € G
has left and right identities e and f, respectively, then there is an edge labeled “b” from
e to f in the graph. Thus instead of completing the partial functions in our edge-label
monoid, we could have defined the “edge-label groupoid” of a graph in this paper.

Covering Maps: The definition of covering map we use is borrowed more-or-less intact
from algebraic topology (for instance, see [Mas67]). Algebraic automata theory uses a
generalization of this notion of covering. In our notation, it is given as follows: Let G
and H be edge-labeled digraphs, not necessarily satisfying Property 2. A covering map
from G to H is a pair (p,v) of maps, where p : V(G) — V(H) is a partial function and
7 : A(G) — A(H) is a function such that f,p(v) = p(fy(q)(v)) for all v € V(G) on which p
is defined. ([Hol82], page 43)

Covering maps (as we define them) are used in distributed computing to capture the
notion of two networks being “locally the same”. Angluin showed that if the graphs of
two computer networks have a common finite cover, then the behavior of the networks is
indistinguishable if the networks have a “uniform initial configuration” and if all processors
of the same degree run the same algorithm ([Ang80]). She exhibited a polynomial-time
algorithm for determining whether two networks have isomorphic rooted universal covers,
and Leighton ([Lei82]) showed that graphs having isomorphic universal covers share a
common finite cover. Fischer, Lynch and Merritt ([FLM85]) used graph covers to simplify
proofs in fault-tolerant computing. Attiya, Snir and Warmuth (JASW88]), studying rings
of anonymous processors, made extensive use of the notion of the “k-neighorhood” of a

30 2. Characterizing The Functions A Network Can Compute

vertex v in a ring. The k-neighborhood of a vertex uniquely specifies the rooted universal
cover with root », truncated at depth k.

In their paper ([YK87b]), Yamashita and Kameda introduced the notion of the “view”
of a vertex of an edge-labeled directed graph. The view T, of a vertex v in a graph G
is a rooted subgraph of U, induced by the collection of paths directed away from the
root of U,. In ([YK87b]) Yamashita and Kameda showed that the view of a processor
in an anonymous network represents what the processor can learn of the topology of its
network by exchanging messages with its neighbors. Kranakis, Krizanc and van den Berg
([KKvdB90]) made use of the view in deriving a number of results on computing boolean
functions on anonymous networks.

The view (although not called by that name) also makes an appearance in algebraic
automata theory. States sy and s, in a deterministic finite-state machine are called k-
equivalent if T , truncated at depth £, is isomorphic to T, truncated at depth k. In
1956 Moore ([Moo56]) showed that states s; and s; are n — 2 equivalent in an n state
machine iff they are k-equivalent for all positive k. An argument similar to Moore’s gives
us Proposition 2.4.1 in this paper.

Anonymous Computing: The papers [Ang80], [YK87b,YK87a,YKS88] and [KKvdB90] all
require that an algorithm which runs on an anonymous network work for any edge-labeling
of the network satisfying Property 2. This means that an algorithm must work on every
graph in the family {(G,0): 0 € ¥} of networks, where G is a graph without edge-labels
and each o € ¥ is an edge-labeling of G satisfying Property 2. As a consequence, the
conditions these papers derive for functions to be computable are more restrictive than
the conditions we derive here. The viewpoint of this paper is that a network’s edge-
labeling is an intrinsic part of the network, and we require an algorithm to work only on
a particular edge-labeling.

In [ASWSS], Attiya, Snir and Warmuth gave the following characterization of the
functions computable on a ring of n processors:

Theorem 2.6.1:
1. Let G be an “oriented” ring of n processors. That is, the links of G are
{(vlv 1)7 (7127 2)}, {(v% 1)7 (7137 2)}, R {(vn—lv 1)7 (vnv 2)}, {(vnv 1)7 (vlv 2)}
Then any function f : T% — O is computable by G iff f is invariant under cyclic
shifts of the input. (Here G is said to “compute” f(z1,...,2,) = y if each processor
i computes the same value y when given input ;.)

2. There exists an algorithm that computes f on any ring with n processors (that is,
with any edge-labeling) iff f is invariant under cyclic shifts and reversals of the input.

In [YK87a], Yamashita and Kameda generalized the second part of this result to
arbitrary anonymous networks. Asin the above, a network G is said to compute a function
f(z1,...,2,) = y if each processor i computes the same value y when given z; as input.
In our notation, Yamashita and Kameda’s characterization is as follows:

Theorem 2.6.2: (Theorem 4.1 in [YK87a])

Let G be a network with n processors. Let ~ be the equivalence-relation on the set of
all input-vectors & € T™, given as follows:

2.6. Related Work 31

T ~ § iff there exist two edge-labelings (o1 and 03) of the edges of G such that the sets
{U;& : 7 € V(G), G labeled with o1} and {U;5 : i € V(G), G labeled with o3} are equal.
Then G computes f: I" — O iff f(Z) = f(¥§) whenever & ~ .

The characterization we obtain for vector-valued functions is clearly quite similar to
this. The partition associated with the equivalence relation we give on the set of inputs
(Definition 2.5.1) is a refinement the partition from Yamsahita and Kameda’s definition,
and our Theorem 2.5.1 implies that a network G computes f : I — O iff f(¥) = f(¥)
whenever ¥ and ¥ are equivalent, by our definition of equivalence.

The anonymous computing literature explores a number of issues which we do not
address in this paper. For instance, [ASW88] and [YK88] show that certain computations
are impossible for an anonymous network if the network does not ‘know’ how many
processors it has. Most of the papers on anonymous computing consider the running
time of algorithms, which we do not, except to differentiate hard from easy problems.
Yamashita and Kameda ([YK87b,YK88]) examine a network’s capacity under various
assumptions about how much the network ‘knows’ about its topology; whereas in the
proof of Theorem 2.5.1 we assume that every processor knows the graph of the network.

32 3. The Symmetries of a Network

3. The Symmetries of a Network

3.1 Introduction

In the last chapter, we found a characterization of the set of functions that a given
network can compute. In this chapter we begin work on a pair of classification problems.
To describe these, let us say that two networks are “f-equivalent” if the set of functions
each can compute are the same, and “p-equivalent” if the set of functions are the same
“up to a permutation”, that is, if they would be the same if the vertex-labels of one graph
were changed by a permutation. We will look for a collection of topological or algebraic
features of the graphs of networks which correctly place them in their equivalence-classes
under these two relations.

What graph features might we expect to succeed at the first classification job? A
logical first choice might be the set of automorphisms of a graph: Perhaps two networks
can compute the same functions iff their automorphism groups are identical. In Chapter 5,
in fact, we will see that having identical automorphism groups is a necessary condition for
two graphs to compute the same set of functions. It is not a sufficient condition, however,
as Example 3.1.1 shows.

ExampLe 3.1.1: Tt can easily be checked that the graphs Gy and Gy in Figure 3.1 both
have the trivial automorphism group. For instance, any automorphism of G; must map
the vertex “3” to itself, and by Corollary 2.3.1, an automorphism is determined by its
action on a single vertex. In G, it can be checked that there is no automorphism mapping

G1 G2

Figure 3.1: Gy and Gg have identical automorphism groups but compute different
sets of functions.

3.2. Universal Covers And Vertex Partitions 33

vertex 1 to vertex 2, or mapping vertex 1 to vertex 3, and so on, and hence no nontrivial
automorphisms. However, if we choose inputs & = (z,2,2,y,y,y)and ¥ = (y,y,y,2,2,2),
then it can be checked by hand that, for instance, U?_lf ~ UZ_lgfin Gy but not in Gs.
By Theorem 2.5.1, this implies that Gy can compute a function that Gy cannot compute.

The graph Gy in the above example has, in a sense, more ‘symmetry’ than G,: There are
input vectors for G; under which a number of its vertices have isomorphic rooted universal
covers, but this is not true of Gy. (This can be checked using techniques developed later
in this chapter.) In general, networks which are highly “symmetrical” in this sense can
compute fewer functions than asymmetrical networks. One aim of this chapter will be
to make precise this notion of network symmetry. The graph properties that we call
“network symmetries” will turn out, in fact, to be the features we are seeking for classifying
networks.

Chapter Qutline and Main Results:

Our first step in defining the symmetries of a network G will be to describe a class of
partitions of the vertex-set of a graph which are preserved by the edge-label monoid of
the graph. If 7 is such a partition, there is a natural quotient-graph G/m, obtained by
identifying the vertices in each block of . In Section 3.2 of this chapter we will define
these “correct partitions” and explore their relationship with universal covers. We will
prove that there is a unique “coarsest” correct partition (Proposition 3.2.2.) In Section
3.3 we will define the quotient graph G/7, where 7 is a correct partition, and lay out
some of the properties of quotient-graph isomorphisms. In Section 3.4, we will define
‘network symmetry’ and what it means for a network to satisfy a symmetry, and prove the
following: (1) A network computes a function iff the function satisfies all of the network’s
symmetries (Theorem 3.4.1), and (2) Networks compute the same set of functions iff their
symmetry-sets are identical. (Theorem 3.4.2). Finally, in the last section, we will consider
networks which would compute the same set of functions if the processor id’s of one of the
networks were changed by a permutation. We will say that two such networks “differ by
a permutation”, and show that two networks differ by a permutation iff their symmetry
sets “differ by a permutation” also.

3.2 Universal Covers And Vertex Partitions

The next two sections fill in some necessary background which will be used to track
down a notion of ‘network symmetry’. In this section we will look at a family of partitions
of V(G) which are preserved by the graph monoid.

We will need the following notation:

Notation: Let G be a graph. If B = {41, 2,...,4} C V(G) and f, € £(G), we will write
fuB for the image of B under f,, i.e., for the set {f,(i1),..., fa(ix)}.

Definition 3.2.1: Let G be a graph, and Let 7 = {Bq,..., By} be a partition of V(G).
We call 7 a correct partition with respect to £(G), or c-partition for short, if it satisfies:

1. For each block B € 7, any f, € £(G) is defined on all or none of the elements of B.

34 3. The Symmetries of a Network

2. For any block B € 7 and for any f, € £(G), if f, is defined on the elements of B
then f,B € 7.

ExampLE 3.2.1: In Figure 3.2 below, the c-partitions of G are 7y = 1/2/3/4 (i.e., 1 =
{Bl, BQ, Bg, B4} where Bl = {1}, ey B4 = {4}) and Ty = 1,4/2,3

b

G

Figure 3.2: A graph and its c-partitions

Notation: 1If 7 is a partition of V(G), we will write [¢] for the block of 7 containing a
point ¢ € V(G). If 7y and 7 are two c-partitions, write [i],, for the block of 71 containing
i and [¢]-, for the block of 73 containing 7.

We will see next that the c-partitions of a graph are the partitions associated with a
certain class of equivalence relations, the ‘congruences’.
Definition 3.2.2: Let G be a graph. A congruence relation’ ~ on V(G) is an equivalence
relation satisfying:
1. For all f, € £(G) and v, w € V(G), if v ~ w then f, is defined on both or neither of
v and w.
2. For all f, € £(G) and v, w € V(G), v ~ w implies that f,(v) ~ f,(w)if f, is defined
on v and w.
The following is immediate from the definintion of c-partition:
Lemma 3.2.1: Let m be a partition of V(G) and let ~ be the equivalence relation defined
by w, ie., i~ jiff [i] = [j] in m. Then m is a c-partition iff ~ is a congruence relation.
O

The next proposition shows that all blocks of a given c-partition are the same size.
Proposition 3.2.1: If 7 is a c-partition of G then |[v]| = |[w]| for all [v] and [w] in 7.
Proof Let [v] and [w] be two blocks in 7 and let 7 € [v] and j € [w]. Since G is connected,
there is some f, € &£(G) such that f,(¢) = j. Then f,([v]) = [w], since if ¢,k € [i] and
fa(i) € [w] then f,(k) € [w], by definition of congruence relation. By Property 2 in
Chapter 2 the elements of £(G) are one-to-one on V(G), and so f, induces a bijection from
[v] to [w]. Hence |[v]| = [[w]]. O

1[B89] page 91, also [BS81]

3.2. Universal Covers And Vertex Partitions 35

The next lemma gives a relationship between graph covering maps and c-partitions. It
states that the partition induced by the inverse image of a covering map is a c-partition.

Lemma 3.2.2: Let G and H be graphs, and let 3 : G — H be a covering map. Define an
equivalence relation ~g on V(G) by: v ~g w iff B(v) = B(w). Then ~g is a congruence
and so the related partition 7z of V(G) is a c-partition.

ExampLe 3.2.2: Let 3 be the covering map taking 1 and 2 to u, and 3 and 4 to v in
Figure 3.3 below. Then 7 = 1,2/3,4 is a c-partition.

Figure 3.3: Example for Lemma 3.2.2

Proof of the lemma: Suppose first that v ~3 w and that f, € £(G) is defined on v.
Then since 3 is a covering map, g, € £(H) is defined on G(v) € H and so f, is defined on
w, by Proposition 2.3.1 in Chapter 2. Similarly, if f, is defined on w then it is defined on
v. Next, suppose that f, € £(G) is defined on vertices v and w € V(G). Then since 3 is a
covering map, we have 5f,(v) = g,0(v) and S f,(w) = ¢g.8(w) (again by Proposition 2.3.1
in Chapter 2). Since 3(v) = B(w), we have 3(f,(v)) = B(f.(w)), and so f,(v) ~g fo(w),

and ~g is a congruence. O

The next three lemmas give conditions that insure that two rooted universal covers are
isomorphic. Lemma 3.2.3 is a generalization of Lemma 2.4.1 in Chapter 2. It states that
two rooted universal covers are isomorphic if the paths from the root of one are isomorphic
to the paths from the root of the other. Lemma 3.3.3 is a corollary of Lemma 3.2.3.

Lemma 3.2.3: Let G have universal cover U and let U, and U, have roots © and w,
respectively. Suppose that each f, € E(U) is defined on v iff it is defined on w. Then there
is an isomorphism 6 : U, — U, given as follows: 5(17) = w. Fordll f, € E(U) defined on
o for which a is reduced, define § f,(7) to be the vertex f,6(%) = f (). For each 7 € V(U),
define 5(?) to be 5fa(17), where f, is the unique element of E(U) mapping v to 7 for which
a 1s reduced.

Proof The proof of Lemma 2.4.1, Chapter 2, shows that é is an isomorphism. a

Lemma 3.2.4: Let m be a c-partition of G and let i and j € V(G) be in the same block of
7. Then U; ~ U;.

36 3. The Symmetries of a Network

Proof Let i and j € V(G) be such that [i] = [j] € 7. Let U; and U; have roots i and
7, respectively, and canonical covering maps ($; and (. The conclusion will follow from
Lemma 3.2.3 if we show that f, € £(G) is defined on i iff it is defined on j. Suppose that
fa € E(U) is defined on i. Then f, € £(G) is defined on () = i since 3 is a covering
map. Since i and j are in the same block of 7, f, is defined on j, and hence f, is defined
on j since 33 is a covering map. The same argument shows that if f. € E(U) is defined
on j then it is defined on 1. a

The next lemma will be used in the proof of Proposition 3.3.5. It describes conditions
under which an isomorphism between two graphs ‘lifts’ to an isomorphism between rooted
universal covers.

Lemma 3.2.5: Let Gy and Gy have the same universal cover U and let 6 : G; — Gy be
an isomorphism such that §(v) = w for some v € V(Gy) and w € V(Gy). Then there is an
isomorphism 6:U, — U, such that ﬁgé =006 for 51 : U, — Gy and By : U, — Gy the

canonical covering maps. That is, the following diagram commutes:

)

U, —— U,

B B2

GG —— G

6
Proof Define § as in Lemma 3.2.3. We first use Lemma 3.2.3 to show that ¢ is an
isomorphism. If f, € £(U) is defined on the root # of U, then g, € £(Gy) is defined on v
since f; is a covering map. Also, h, € £(Gy) is defined on é(v) since ¢ is an isomorphism,
and so f, is defined on the root @ of U, since S, is a covering map. Similarly, a being
defined on @ implies that f, is defined on #, and so by Lemma 3.2.3, ¢ is an isomorphism.
Let 7 € V(U) and let f, be the unique element of £(U) mapping # to 7 for which a

is reduced. If gy : U, — Gy and 9 : U, — Gy are the canonical covering maps then
by Proposition 2.3.1 in Chapter 2 we have §(1(7) = 6ﬁ1fa(1§) = § fu1(?). Furthermore,
6faﬁ1(~) - 6fa() = fa () = fa()7 and ﬁ? (N) = ﬁ?fa(N) = faﬁ?(N) = fa()7 and so
§51(7) = Bab(F) Since a covering map is determined by its action on a single vertex, we

have 681 = B96. a

The last proposition in this section shows that any graph has a unique c-partition with
largest block-size. We will use this proposition in Chapter 6.

Definition 3.2.3: We will say that a partition 7 is a refinement of a partition o, written
w1 = 7o, if whenever ¢ and j are in the same block of 7; they are also in the same block
of 7.

Proposition 3.2.2: Let G be a graph. Then there is a unique “coarsest” c-partition 1l of
V(G) such that any other c-partition of V(G) is a refinement of 11. (Figure 3.4)

3.3. Quotient Graphs And Their Isomorphisms 37

ExXAMPLE 3.2.3: The graph in Figure 3.4 has “coarsest c-partition” 1l = 1,2,3/4,5,6.

Figure 3.4: Tllustrating the “coarsest c-partition” of a graph

Proof of Proposition 3.2.2 Let G have universal cover U. Put a relation ~ on V(G) by
v~ wif U, ~ Uy,. It is easy to see that ~ is an equivalence relation. An argument similar
to that used in the proof of Corollaries 3.2.4 and 3.2.5 shows that if v ~ w then f, € £(G)
is defined on v iff it is defined on w. By Lemma 2.4.2 in Chapter 2, if f, is defined on v
and v ~ w then Uy, () = Uy, (), and so fo(v) ~ fo(w). Thus ~ is a congruence relation
and the associated partition II is a c-partition. Let = be any other c-partition of G |, with
~r its associated congruence relation. If v ~, w for v, w € V(G), then by Corollary 3.2.4
above, U, ~ U,, and so v ~ w. That is, 7 is a refinement of II. a

3.3 Quotient Graphs And Their Isomorphisms

This section examines a relationship between the set of graphs covered by a graph G
and the set of c-partitions of G. In Proposition 3.3.2, we will find that these sets are in
one-to-one correspondence, that is, for every c-partition 7 there is a “quotient graph” G/=
which G covers. In Proposition 3.3.5 we will find a relationship between isomorphisms of
rooted universal covers with input and isomorphisms of quotient graphs.

Definition 3.3.1: If 7 is a c-partition of G, the quotient graph G/7 is defined as follows:
The vertices of G/m are the blocks of 7. A triple ([v]a[w]) is an edge of G/7 for [v] and
[w] € 7 iff there is an edge (vaw) € E(G) with v € [v] and w € [w].

It is easy to see that G/7 is well-defined and is a graph. (See Example 3.3.1.)
ExaMPLE 3.3.1: Graphs G and G/7 are pictured in Figure 3.5, for 7 = 1,2,3/4,5,6.

To simplify notation in future proofs, we will rephrase Proposition 2.3.1 from Chapter
2 for quotient-graphs:

38 3. The Symmetries of a Network

b b b
[A
a a

1,2,3

G G/x

Figure 3.5: G and G/7, where 7 = 1,2,3/4,5,6.

Proposition 3.3.1: Let 71 and w5 be c-partitions of a graph G. A surjective map & :
G/my — G/7mg is a covering map iff 6 satisfies both of the following:

(1) For all blocks B € w1, any f, € E(G) is defined on B iff f, is defined on 6(B).

(2) For all f, € £(G) and for all blocks B € w1 on which f, is defined, ¢ f,B = f,6(B).

Proof By construction, the maps g, € £(G/m1) and h, € £(G/72) are defined on B € 7y
and on 6(B) € 7y, respectively, iff f, € £(G) is defined on all of the elements of B and on
all of the elements of 6(B). Also, 6g,B = h,6(B) iff 6 f,B = f,6(B) by construction of the
quotient graph. The conclusion then follows from Proposition 2.3.1 in Chapter 2. a

The next proposition gives a correspondence between the c-partitions of a graph G and
the graphs covered by G.

Proposition 3.3.2: Let G and H be graphs. If 7 is a c-partition of V(G) then G covers
G/7m. Conversely, if G covers H then H ~ G/x for some c-partition © of G.

Proof Let 7 be a c-partition of G. We will show first that G covers G/7. Let
B :V(G) — V(G/7) map each vertex v € V(G) to [v] € V(G/m). Then j is a covering map:
Clearly g is onto. By definition of c-partition, f, € £(G) is defined on v € V(G) iff it is
defined on all elements of [v]. Suppose that f,(v) = w for some v € V(G) and f, € £(G).
Then by the definition of c-partition, f,[v] = [w]. By construction, 3f,(v) = f(w) = [w],
whereas f,8(v) = f,[v] = [w]. Thus ff,(v) = fu(v), and by Proposition 3.3.1 above, 3
is a covering map.

Suppose now that G covers a graph H via a covering map 5. We show that there is a
c-partition 7 such that H ~ G/7. Put a relation ~g on V(G) by: v ~g w iff g(v) = B(w).
By Lemma 3.2.2, this relation is a congruence and so the related partition 7 of V(G) is a
c-partition. Define a map § : H — G/7 by 6(w) = $187 (w) € 7, where 31 : G — G/x
maps each ¢ to [i].. It is straightforward to show that ¢ is an isomorphism. O

3.3. Quotient Graphs And Their Isomorphisms 39

Definition 3.3.2: Let 71 and 75 be c-partitions such that 7y < 79. The inclusion covering
map (3 : G/my — G/my is the map which takes each block [i] € 71 to [i] € 7.

The argument used in the first part of the proof of Proposition 3.3.2 also gives us the
following:

Lemma 3.3.1: The inclusion covering map is a covering map. That is, if 711 < 7y for
c-partitions w1 and 7y, then G/my covers G/m;.

a

The next two results are ones we would expect to hold if “isomorphism” and “covering
map” are defined correctly. The first result will be used in Chapter 5.

Proposition 3.3.3: Let ¢ : G/my — G/mo be an isomorphism, and suppose that G/my
covers G/my. Then there is a c-partition w3 of G such that G/my covers G/m3, for which
there is an isomorphism §' : G/m3 — G/my; where §' = 3263, for By : G/m1 — G/75 and
B2 : G/me — G/my the inclusion covering maps.

Proof Define a partition 73 of V(G) such that v and w are in the same block of 73 iff
B26([v]) = B26([w]). By Lemma 3.2.2, w3 is a c-partition, and 7; < 73 by construction.
By Lemma 3.3.1, G/my covers G/m3. As in Proposition 3.3.2, it is straightforward to show
that ¢’ = 3263, 7! is an isomorphism: G/73 — G/m4 for 3 and 3, the inclusion covering
maps. O

Proposition 3.3.4: Let 7,79 and w3 be c-partitions, and let é; : G/my — G/m3 and
0y : G/my — G/m3 be isomorphisms such that 61([1]r,) = 62([1]x,). Then 61 = 63 and
Ty = 2.

Proof Let 31 :G — G/my and §3 : G — G/72 be the inclusion covering maps (That
is, 81(7) = [t]x,, B2(?) = [i]r,). Then since graph covering map are determined by their
action on a single point, we have §;81(1) = 6232(1) implies that 6151 = d32. Since 61 and
0y are isomorphisms, the blocks of 71,73 and 73 are the same size. Thus if v € [1],, but
v & [1]5, then 6151(v) # 8302(v). Hence [1];, = [1]#,. Since 8151 = 6202, we can use the
same argument to show that [v];, = [v],, for any v € V(G). Thus 71 = 73 and so é; = 6.
O

We will now introduce a c-partition which is associated with an input vector.

Notation: Let @ be an input for G. Define an equivalence relation ~z on V(G) by: v ~z w
iff U,@ ~ U, &. This relation induces a partition, which we denote by 7z, on V(G).

We have:
Lemma 3.3.2: 7z is a c-partition of V(G) for any input & to G.

Proof 1Let [v] € mz and f, € £(G) be defined on v € [v]. Then for all w € [v] we have
U,% ~ U, and so f, is defined on w also, by Proposition 2.3.1 in Chapter 2. By Lemma
2.4.2 in Chapter 2, if U@ ~ U, and f, is defined on v and w then Uy ()@ =~ Uy, ()7.
Hence if f, is defined on the elements of [v] then f,([v]) € 7. |

40 3. The Symmetries of a Network

Remark: The “coarsest” c-partition Il of a graph G equals 7z, where ¥ is any input
vector, all of whose components are equal. Similarly, the finest c-partition 7 = 1/2/.../n
equals 7z, for any & with all distinct components. In general, for any c-partition = there
exist inputs & such that 7 = 7z.

Note that since 7z is a c-partition, G/7z is defined (as before) and G covers G/7z.

The last proposition in this section gives a relationship between isomorphisms of rooted
universal covers U;# and isomorphisms of quotient-graphs G/mz. This proposition will be
used to prove Theorem 3.4.1 in the next section.

Before we present the proposition, we will need a consistent notion of what it means
for an isomorphism on a quotient-graph G/7 to act on an input vector #, if 7 is a
refinement of 7z For instance, let 7y = 1,6/2,5/3,4/7,8 and 73 = 1,2/3,8/4,7/5,6,
and let 6 : {1,6} — {4,7}; {2,5} — {3,8}; {3,4} — {1,2}; and {7,8} — {5,6}. (See
Example 3.3.2.) If & = (21,22,...,2,) = (@,2,y,2,7,7,2,y) then m3 = 7z and it is
reasonable to define §(Z) to be that vector whose ith component is the 6([i])th component
of @, ie., 8(Z) = (24,23, 21, 21,23, %4,25,25) = (2,y,2,2,y,z,7,7). This motivates the
following notation:

Notation:
L. Let 7 be a c-partition of a graph and let @ be such that 7 < 7z We will write zp;
for z;, where ¢ € [i] € 7.
This is well-defined since z; = 2; whenever [¢] = [j] in 7.
2. Let 6 : G/my — G/7y be an isomorphism and let & be such that 7o < 7z We will
write 6(%) for the vector (@), .-, T5((n)- That is, 8(%) = (@iy,...,2;,) where
ij € o([5D-

We will need the following lemma:

Lemma 3.3.3: Suppose that a network G has a c-partition © and an input ¥ satisfying:
x; = x; whenever [i] = [j] in w. Then if [t] = [j] in © then U;Z@ ~ U;&, and so m < mz.

Proof Let B be a block in 7 and let ¢ and j € B. By Lemma 3.2.4, U; ~ U;. Define
an isomorphism 6 : U; — U; as Lemma 3.2.3. Let & be a vertex in U; and @ = 6(%) be a
vertex in U;. We will show that z, = z,,, and conclude that U;& ~ U;Z. Let f. € E(U)
map ¢ to . Then @ = 6(3) = §f,(1) = fu(j). Since f,(B) is a block of 7, it follows that
v and w are in the same block of 7 and so by hypothesis, =, = z,,. Hence ¥ and @ both
have the same label z,, and so U;& ~ U;y. a

We have:

Proposition 3.3.5: Let G be a network. Then:
1. If there are inputs ¥ and § and vertices ¢ and j of G such that U; & ~ Uy, then there
is an isomorphism ¢ : G/wz — G/7mz such that 6([i]) = [j] and ¥ = 6(¥).
2. If 6 : G/my — G/my is an isomorphism for c-partitions my and 79 of G, then for all
gy such that w3 < 7y, we have ™y = T5z and U;6(y) ~ U;4 for any i and j such that

8([e]) = [4]-

3.3. Quotient Graphs And Their Isomorphisms 41

ExampLE 3.3.2: Examples of this proposition are given in Figures 3.6 and 3.7 below.

|

G/7z G/7my

-

Y
z
r

a
)
b

s
v (@) ‘5 (9

a
()
b
D

a

Figure 3.6: Example for Propostition 3.3.5 part 1.

In Figure 3.6, let ¥ = (2,y,z,2,y,z,r,r)and § = (x,2,y, z,7,7,2,y). Then U1& ~ Uuy,
for instance, and the map é6: 1,6 — 4,7, 2,5 — 3,8, 3,4 — 1,2, 7,8 — 5,6 is an
isomorphism from G/7z to G/7; for which 6(7) = 7.

In Figure 3.7 take Gy, Gy, and 6 as above, and let 7y = 7z = 1,6/2,5/3,4/7,8 and
Ty =7y =1,2/3,8/4,7/5,6. Let § = (x,x,x,2,r,r,x,2). Then 6(y) = (z,2,z,2,2,2,7,7)
and, for instance, U16(¥) ~ Usy.

Proof of the proposition:

(1) Suppose that there are inputs & and § and vertices ¢ and j such that U;& ~ U,y. Let
B1:G — G/mz and By : G — G/7y be the inclusion covering maps. We will find a map

42 3. The Symmetries of a Network

e

<
T~ Y~ T
p‘Qéﬁﬁp
=

o
fa

G/ﬂ-l G/7T2

Figure 3.7: Example for Propostition 3.3.5 part 2.

6 :G/my — G/7my such that 8y = 631 and show that 6 is an isomorphism which maps [¢]
to [j]

Define a map 6 : G/mz — G/7y as follows: 6([7]) = [j] for [i] € 7z and [j] € 7z For
any f, € £(G) for which b is reduced, let ¢ fi([7]) = fo6([¢]) = fo([j]). Since G is connected,
¢ is defined on all blocks of mz. It is also well-defined: For suppose that 6([k]) = [l1] and
6([k]) = [lo] for [k] € mz and [l1] and [l3] € m7. Then there are elements f, and f, € £(G)
such that £,() = fi([1]) = [K] € 7z and fu([j]) = [], and fu([j]) = [s] € 7. By Lemma
2.4.2 in Chapter 2, if U;& ~ Uj;y then Uy @ ~ Uy, ;s and Uy, (@ =~ Uy, ;g for f, and
Jo defined on i. Since f,([i]) = fo([i]), we have Uy @ ~ Uy, ;7. By transitivity, then,
Usr.()¥ = Up5¥ and so fu([5]) = fi([j]) € my. Thus [l1] = [l2] and ¢ is well-defined.
A similar argument shows that ¢ is one-to-one. If B is any block in 7y then since G is
connected there is an element f, € £(G) such that f,([j]) = B. Then éf,([7]) = B, so
6 is onto. That é is a covering map follows from Proposition 3.3.1 above: For suppose
that fy € £(G) is defined on a block fo([¢]) € 7z Then f,f, is defined on [¢] and hence
on [j], since Uy, 5 @ = Uy, r,(;)¥ by Lemma 2.4.2 in Chapter 2. Thus f, is defined on
fa([j]) € m7. The same argument shows that if f; is defined on f,([j]) € 7y then it is
defined on f,([¢]) € m7z. The map 6 commutes with the elements of £(G) by construction,
and so by the abovementioned proposition, ¢ is a covering map. Since ys() = ap) for
l=1,...,n, we have §(7) = &. This proves (1).

) Let ¢ : G/my — G/my be an isomorphism. Let § be such that my < 7y, and write

y) = Z. Then:

1. 7y < mz This will follow from Lemma 3.3.3 if 2; = z; whenever [i] = [j] € 7.
Suppose that [¢] = [j] in 71 Then the following three facts hold:

(2
o

3.4. Symmetry And Its Consequences 43

(a) Since ¢ is an isomorphism from G/m to G/my, we have [i| = [j] € = iff
a([a]) = &([4D)-
(b) 6([i]) = 6([4]) implies that ys()) = ys((5))-
(c) Because ¥ = 8(y), we have ysq)) = ys(y iff @i = ;.
Hence z; = ; and m < 7z.

2. U;@ ~ U,y whenever 6([1]) = [j]: Suppose that 6([:]) = [j]. By Lemma 3.2.5,
U; ~ U; via an isomorphism 6 such that By6 = 83 for 51 and By the canonical
covering maps. Let & € V(U;) and let §(%) = 7. Then &([v]) = [r] and so z, =
y(g([v]) =Y = Yr- Hence Uif ~ Uj@j.

O

3.4 Symmetry And Its Consequences

We now have the machinery for finding a set of network features which classify networks
according to the functions they can compute. Let us consider again what these features
might be. We have already seen that the graph automorphisms do not reliably distinguish
between networks. Another plausible choice might be the elements of the edge-label
monoid of a graph. However, this also fails to consistently classify networks. In Chapter
5 we will give an example of two networks having distinct edge-label monoids which
nonethless can compute the same functions. It is true, however, that if two networks
have identical (not just isomorphic) edge-label monoids, that the set of functions each can
compute is the same. (See Remark 5.3.1 in Chapter 5.)

Perhaps two networks compute the same functions iff they have the same c-partitions?
Unfortunately, this is also false, as Example 3.4.1 shows.

ExaMPLE 3.4.1: The graphs Gy and Gy in Figure 3.8 share the same c-partitions, namely,
m = 1/2/3/4, 73 = 1,2/3,4, and 73 = /1,2,3,4/. However, they do not have the same
quotient-graph isomorphisms. Gy, for instance, has an automorphism 6 = (1,2, 3,4) which
Gy does not have. By Proposition 3.3.5 in the previous section, this implies (for instance)
that in Gy, Usd(Z) ~ Uy& for any #. This does not hold for Gz, so Gy can compute a
function that Gy cannot compute.

3 - @ /_\b@a@

G1 G2

Figure 3.8: Gy and Gy have the same c-partitions but compute different functions.

44 3. The Symmetries of a Network

In this section we will see that the set of distinguishing features or ‘symmetries” —
as we call them — of a graph consists of the c-partitions of the graph and its quotient-
graph isomorphisms. This section’s first theorem gives an alternate characterization of
the functions computable by a network in terms of its “symmetries”. The second theorem
shows that the set of symmetries correctly classifies networks: Two networks compute the
same functions iff they have the same symmetry set.

We define a ‘network symmetry’ to be a triple consisting of two c-partitions and the
associated quotient-graph isomorphism. More formally, we have:

Definition 3.4.1: Let G be a graph, and let ¢ : G/my — G/73 be an isomorphism of
quotient-graphs G/m; and G/my. Then é induces a bijection, which we also call ¢, between
the blocks of 71 and m2. We will call a triple (71,72, 6) a symmetry of Gif 6 : G/m1 — G/ 72
is an isomorphism. The symmetry set of a graph G is the set of symmetries of G.

We will show next that a network can compute a function f iff f “satisfies the
symmetries” of the network. What should it mean for a function to ‘satisfy a symmetry’?
Consider the network G in Example 3.3.2. The triple (7, 732,6) is a symmetry for G,
where 71,72 and ¢ are as given in the example. Let §¥ = (z,2,y,z,7,7,2,y) and 6(§) =
(z,y,z,2,y,z,7,7) as in the example. By Theorem 2.5.1, f must satisfy f(6(7)); =
TP for all & = 1,...,n, since U;é(§) = Ugqyyy for « = 1,...,n. That is, f(6(¥)) =
6 f(¥) for this for which 7 = 77 This motivates the following definition:

Definition 3.4.2: We will say that a function f : I™ — O satisfies a symmelry s =
(m1, 2, 6) if for all inputs & such that w3 < 7z, we also have w3 < 74z and f(6(%)) =

8(f())-
The clause “my < 7" insures that 6(f(Z)) is defined.
We have:

Theorem 3.4.1: A network with graph G computes a function f iff f satisfies all sym-
metries in the symmetry-set of G.

Proof Suppose first that f satisfies all symmetries of G. Let ¢,7 € V(G) and &, 7 € I be
such that U;#7 ~ U;¢. By part 1 of Proposition 3.3.5, there is a symmetry s = (77,77, 6)
with & = 6(y) and [j] = 6([¢]). Since f satisfies s, we have f(6(7)) = 6f(y). That is,
f(&); = f(¥);, and so by Theorem 2.5.1 in Chapter 2, G computes f.

Conversely, suppose that G computes f. Let s = (71, 73, 6) be a symmetry of G and
let # be an input-vector such that 7 < 7z. If [¢{] = [j] in 79 then U;& ~ U,;& (by definition
of 7z), and we have f(&); = f(&);, since G computes f (Theorem 2.5.1, Chapter 2.) By
Lemma 3.3.3, this implies that 73 = m;(#. To complete the proof that f satisfies s we
need to show that f(6(%)) = 6 f(¥), i.e., that f(é(Z)); = f(&@)s(y) for i = 1,...,n. Since
Ty = mz we have by Proposition 3.3.5 part 2 that U;6(%) ~ Us(p®. Then by Theorem
2.5.1, f must satisfy f(6(Z)); = f(Z)s([i)), since G computes f. Thus [satisfies s. O

The next lemma will be used to prove Theorem 3.4.2.

Notation: 1If Gy is a network, we will write 7! for a c-partition of Gy, and #; or j; will
denote vertices in G;. We will denote a c-partition 7z of Gy by 72.

3.4. Symmetry And Its Consequences 45

Lemma 3.4.1: Let Gy and Gy be networks with [V(Gy)| = [V(Gz2)|. Let ©' and 72 be
c-partitions of Gy and Gy, respectively, such that ' = 7%, If ' < 7L for some & then
72 < 73

— T

Proof If i, and j, are in the same block of 72 then 4; and j; are in the same block of 7!
since 7! = w2, If 4; and j; are in the same block of 7' then U, & ~ Uj, @ (since 7' < 71,

and so z; = z;. Hence if [i3] = [j,] € 7% then z; = ;. Thus by Lemma 3.3.3, 7% < 7. O

Theorem 3.4.2: Let Gy and Gy be networks and suppose that |V(Gy)| = |V(Ggz)|. Then
the sets of functions which Gy and Gg can compute are equal iff their symmetry-sets are
identical.

Proof Let Gy and Gy have symmetry-set Sy and S, respectively.

(<=) Suppose first that S; = Sy and that Gy computes a function f. We will show
that G, also computes f, by showing that f satisfies all of the symmetries in So. Let
s; = (r},x},6) € S;. We show that [satisfies s, = (72,77,8) € Sy, where 51 = s,.
Let & be an input-vector such that FZ < F%. We need to show that FZ < ﬂi(f) and that
f(6(%)) = 6 f(Z). Since 7} = 1, we have 7} < 7L, by Lemma 3.4.1. By Proposition 3.3.3
there is a symmetry s = (r}, 7, 6') € Sy, where §' = 3265, for 31 : Gy /7 — Gy /! and
By:Gy/m) — Gl/ﬂ% the inclusion covering maps. Since f satisfies all of the symmetries in
S1, it satisfies s, so 7% < ﬂ}(f) and &' f(Z) = f(6'(Z)). Since 7} < 1L, we have 7} < F}(f).
Since m} = w7, we have, again by Lemma 3.4.1, that 7/ < F?(f). That f(6(%)) = 6 f()
follows from the easily-verified fact that 6(y) = 6'(7) for all ¥ on which ¢’ is defined. In
particular, 6(Z) = ¢'(¥) and 6 f(¥) = &' f(¥), and f(6'(¥)) = &' f(¥) since f satisfies s.
Hence f satisfies so. Since S; = So, this shows that f satisfes all symmetries in Sy and
thus, by Theorem 3.4.1, that G, computes f. The same argument shows that if Gy can
compute a function f, then Gy can compute it.

(=) Conversely, suppose that G; and Gz compute the same functions. We will show
that Sy = So, where S and Sy are the symmetry-sets of G; and Gg, respectively.

Suppose on the contrary that Gy has a symmetry s = (my,73,6) that Gy does not
have. We will construct a function f which Gy can compute but Gy cannot. Now
s = (m1,m,0) ¢ Sy means that either (1) m; or my are not c-partitions of Gy, or (2) ¢
is not an isomorphism from Gy /7y to Gy/m2. Let us consider these two cases separately.

Case 1: Suppose that w1 is not a c-partition of G;. Then there is a block B € 74,
ga € £(G1), and ¢ and j € B such that either ¢,(¢) and ¢,(j) are in different blocks of 71,
or g, is defined on one but not both of {7,j}. Define a function f by f(Z); = v, for
le€{l,....,n} on which g, is defined, and f(Z); = y &€ {x1,...,2,} for [on which g, is
undefined. Then if &’ € I" is such that 2/ = 2} iff r and s are in the same block of 71,
then f(&'); # f(&'); for 7, j as above. Note that f is computable by Gy by construction,
since each processor [can request x, ;) from processor ga(l) if such exists, or output ‘y’
if g, is not defined on {. However, f is not computable by Gy: U;&’ ~ U;a" for ¢, j, and &
as above, and by Theorem 2.5.1 Gy computes f only if f(Z'); = f(&');.

46 3. The Symmetries of a Network

Case 2: Suppose now that 7y and 7y are c-partitions of Gy but that é§ is not an
isomorphism from Gy /7y to Gy /m3. Then there is a block B € 71 and an element g, € £(Gy)
such that either g, is defined on B but not on §(B), or vice-versa, or é¢,(B) # ¢,6(B).
Define f as above in Case 1. Let &’ € I™ be such that z, = z, iff 7 and s are in the same
block of m3. Then &6 f(') # fé(&7), since for each ¢ € {1,...,n} we have:

§F(F)i = { $:5([ga(i)]) for ¢ on which g, is defined

Y otherwise

J(6(7)i =

Y otherwise

{ x;aé([i]) for 6([¢]) on which g, is defined

Thus there exists ¢ € B such that xg([ga(i)]) + x;aé([i])’ by construction.

By construction, Gy can compute f; but by Theorem 2.5.1 in Chapter 2, G5 cannot. O

3.5 Networks Differing By A Permutation

Consider the graphs Gy and Gz in Figure 3.9 below.

G1 G2

Figure 3.9: Networks differing by a permutation

Go is identical to Gy, except that its first three vertex-labels have been cyclically
permuted. It would be reasonable to expect that G; and Gy would compute the same
set of functions. However, due to the way we have defined function-computation on a
network, they only ‘almost’ compute the same functions. For instance, to be computable
by Gy, a function f must satisfy f(61(Z)) = 61 f(&) for all & € I™ and for &, = (1,2,3,4,5).
A function computable by Gg, on the other hand, instead satisfies f(62(%)) = 62 f(&) for
6y = (1,4,5,2,3).

In this section we will make precise this artifact of our model. We will show that two
networks have symmetry-sets “differing by a permutation” iff the functions they compute
differ by the same permutation.

3.5. Networks Diflering By A Permutation 47

Notation: Let p be a permutation of {1,...,n}. Then p induces a map, which we also
call p, on the set I" of input-vectors for G, by p(@1,...,25) = (@ p(1);- -+, Tp(n))- That is,
p(Z); = Zyi)- Let f1 and fy be functions defined on I". We will say that fy differs from
f1 by a permutation p if pf1((Z)) = fo(&) for all & € I™.

If G is a graph and p is a permutation of {1,...,n}, write pG for G with its vertices
relabeled by p. That is, p(v) € V(pG) iff v € V(G), and (p(v)ap(w)) € E(pG) iff
(vaw) € E(G).

Let us look again at the set of functions graphs G and pG can compute. If G is given
input # and pG is given input p~!(F), then the vertex called “i” in pG is called “p~1(i)”
in G, and both vertices receive the same input-value. In pG, processor ¢ gets input T,-1()
and computes f(7),~1(;. In G, processor p~ (i) also gets input x,-1(;) and computes
f(f)p—l(i)' Thus:

Remark 3.5.1: Let G be a network, ¥ an input-vector, p a permutation of {1,...,n} and

f a function from I™ to O™. Then G computes f(Z) when given input Z iff pG computes

p~Lf(F), given input p~Y(Z). That is, G computes a function f iff pG computes p~L fp.
O

This suggests the following definition:

Definition 3.5.1: Let F; and Fy be two sets of functions: IT™ — O™. Let p be a

permutation of {1,...,n} and write p(@1,...,2,) = (T,q)s -+, Ty(n)) as before. We will

say that Fy differs by p from F, if p induces a bijection: f — p~!fp from F; to Fj.
Remark 3.5.1 then gives us the following:

Remark 3.5.2: The set of functions computable by a network G differs by p from the set

of functions computable by pG, for any permutation p of {1,...,n}.

a

Notation: Let m be a partition of {1,...,n} and let p : {1,...,n} — {1,...,n} be a
permutation. Write p(7) for the partition of {1,...,n} satisfying: If [i] = [j] € 7 then
[p(i)] = [p(j)] in prw. If § : Ty — w3 is a bijection from the blocks of 71 to the blocks of

T2, we will write pé for the bijection from p(71) to p(m3) which takes each block p(B) of
p(m1) to a block p(6(B)) of p(72).

Exampre 3.5.1: If 7y = 1,2,3/4,5,6/7,8,9 and p = (1,4,5,8)(3,7,9)

then p(m1) =2,4,7/5,6,8/1,3,9 because p(1) =4, p(2) =2, p(3) = 7, and so on.

If 7o =1,4,7/2,5,9/3,6,8 then p(72) = 4,5,9/2,3,8/1,6,7

Ifé:{1,2,3} — {1,4,7}; {4,5,6} — {2,5,9}, and {7,8,9} — {3,6,8}, then

pd :{2,4,7} — {4,5,9}; {5,6,8} — {2,3,8}, and {1,3,9} — {1,6,7}.
Notation: Suppose that networks G; and G, have symmetry-sets 57 and 99, respectively.
We will write S5 = pS7 if p induces a bijection from 57 to S such that any triple (71,72, 6)
is a symmetry in S7 iff (p(71), p(72), po d) is a symmetry in Ss.

By constuction, we have:

48 3. The Symmetries of a Network

Remark 3.5.3: A triple s = (m1,72,0) is a symmetry of G iff pS = (pm1, p7a, pd) is a
symmetry of pG.
O

Finally we can show:

Theorem 3.5.1: Let Gy and Gy be networks with symmetry-sets S1 and S9, respectively.
Then So = pSy for some permutation p iff the set of functions computable by Gy differs
by p from the set of functions computable by Go.

Proof By Remark 3.5.3, pGy has symmetry-set pSy. Suppose first that S5 = pSy. Then
by Theorem 3.4.1, pGy and Gy compute the same set of functions. By Remark 3.5.2,
the set of functions computed by Gy differs by p from the set of functions computed by
pGy, and the conclusion follows. Conversely, suppose that the functions computable by
G, differ by p from those computable by Gs. Then Gy and pGy compute the same set of
functions, so S = pSy. a

3.6 Related Work

A generalization of our “correct partition” appears in algebraic automata theory under
the name “admissible partition”. (See [Hol82]). In our notation, an admissible relation
of the states of a finite-state machine is an equivalence-relation ~ on the vertices of an
edge-labeled, directed graph G, satisfying: For all words a over A(G), if v ~ w and if f, is
defined on v and w then f,(v) ~ fy(w). A partition of V(G) is admissible if the associated
equivalence-relation is admissible. Note that all congruence-relations (as we define them)
are admissible, but not all admissible relations are congruences. There is a well-defined
quotient of G associated with each admissible partition.

49

4. Group Graphs

4.1 Introduction

In the last chapter we described a classification for networks, such that two networks

are in the same class iff the set of functions each can compute is the same. We found a
set of network features — the symmetries — having the property that each equivalence-
class of networks is uniquely specified by a set of symmetries. Our task in the remaining
three chapters is to show that classifying networks is easy. In Chapter 5 we will show
that classifying “group graphs” is easy, where a group graph is a graph whose edge-label
monoid is a group. In Chapter 6, we will show that classifying graphs with arbitrary
edge-label monoids is also easy. To show that classification is easy, we will find a small,
easily-computed subset of the set of symmetries of a graph which generates the whole
symmetry-set under certain operations. This subset can be used in place of the symmetry-
set to characterize an equivalence-class of graphs.
Chapter Summary and Main Results: This chapter develops the necessary group-and-
graph background for the classification effort. Two propositions from this chapter will
be used in Chapter 5: Proposition 4.6.5, which gives a correspondence between subgroup
conjugacy and quotient-graph isomorphism, and Proposition 4.6.6, which gives a one-to-
one correspondence between the symmetries of a graph G and certain cosets of subgroups
of £(G). Most of the rest of the chapter is preparation for these results.

In Section 4.2, we will review some facts about the block-systems of permutation
groups. In Section 4.3, we review the idea of a group acting on a set, and in Section 4.4,
use these group actions to construct graphs — “operator graphs”, of which group-graphs
are an instance. In Section 4.5 we will show that the set of graphs covered by a group-
graph G forms a lattice isomorphic with a sublattice of the lattice of subgroups of £(G).
Finally, in Section 4.6, we will find the desired relationships between graph ismorphism
and subgroup conjugacy and between cosets and symmetries.

4.2 Block Systems

In this section we will review some basic facts about “block-systems” of permutation
groups: If G is a transitive permutation group on a set 5, a block-system is a partition
of S which is preserved by G. We will find a close correspondence between block-systems
and subgroups, and between the cosets of a subgroup and the blocks of a block-system.

The results in this section are well-known; see [Jac74], [Rob82], [Sco87], and [Wei64].

Notation:
1. Write (G, 5) for a permutation group G on a finite set 5.
2. Write Sym(.9) for the symmetric group on 5.
3. Write G, for the stabilizer subgroup of G of the point v € S. That is, G, = {g € G :
g(v) = v}.

50 4. Group Graphs

Lemma 4.2.1: ([Jac7}], page 74) If (G, S) is a transitive permutation group then G, and
G, are conjugate subgroups for any v,w € S. In particular, if g(v) = w for g € G and
v, w €S then G, = gG,g7 .
Definition 4.2.1: Let (G,S) be a transitive permutation group. A subset B of S is called
a block, if for all g € G, either ¢B = B or BN ¢gB = 0.

In the sequel we will assume that all permutation groups are transitive, unless stated
otherwise.

Weilandt proves the following about blocks:
Proposition 4.2.1: (Proposition 6.2 in [Wei64])

If B is a block of a transitive permutation group G, then ¢gB is a block of G, for all
geag.

We also have:
Proposition 4.2.2: (Proposition 6.3 in [Wei64])

If B is a block of G then |B| divides |S|.
Definition 4.2.2: A block-system or system of imprimitivity for a transitive permutation
group G is a set m of blocks such that S is the disjoint union of the blocks in 7, and if
Bermand g €g, then gB € 7.
ExampLE 4.2.1: If G is a connected graph for which £(G) is a group, then the block-
systems of £(G) are the c-partitions of G.
Proposition 4.2.3: (Proposition 10.5.4 in [Sco87]) Let B be a block and 7 a collection
of blocks containing B. Then 7 is a block-system iff © is the set of all distinct blocks
{9B:g € G}

Note that:
Remark 4.2.1: A block-system is uniquely determined by a single block.

Notation: If H < G and v € S, we will write H(v) for the set {h(v):h € H}.

If we fix an element v € 5, there is a one-to-one correspondence between the blocks of
G containing » and the subgroups of G containing the stabilizer subgroup G,:
Proposition 4.2.4: (Proposition 10.5.6 in [Sco87]) There is a bijection T from the set
of all subgroups of G containing G, onto the set of all blocks of G containing v. T 1is given
by: T(H) = H(v).
Corollary 4.2.1: Let B be a block, v € B and let 'H be a subgroup such that G, < H and
H(v)=B. Then H ={g € G:gB=B}.
Proof Let J = {g € G : g(v) € B}. It is easy to verify that J is a subgroup of G.
Note that G, < J. We claim that J = H. First, H < J, and so H(v) C J(v). Since
J(v) C H(v), the blocks H(v) and J(v) are equal and so by Proposition 4.2.4, H = J.
The conclusion will follow if the sets {g : ¢B = B} and {g: g(v) € B} = H are equal.

Let g € G. If ¢B = B then ¢g(v) € B, so {g : gB = B} CH. Conversely, if h € H, then
h(v) € B and so hB = B. Thus H C {g € G : gB = B}. O

Definition 4.2.3: A permutation group G on a set 5 is called regular if it is transitive
and fixed-point free; that is, if it satisfies:

4.2. Block Systems 51

e lLor all v,w € 5 there is an element g € G such that g(v) = w

o If g(v) = v for some v € S then g is the identity element in G.

If G is regular and |S| = n then G has order n also: For fix v € 5. Then for every
w € 5 there is a unique element of G which maps v to w.

Note also that if (G,s) is regular, then G, is always trivial for any v € 9, since G

is fixed-point free. Hence if (G,S5) is regular then the blocks of S containing v» are in
one-to-one correspondence with the subgroups of G, by Proposition 4.2.4.

Since each block of a permutation group (G, 5) uniquely determines a block-system,
Proposition 4.2.4 gives a one-to-one correspondence between the subgroups of G containing
G, and the set of block-systems of G, with a subgroup H corresponding to the block-system
containing H(v). More formally, we have:

Definition 4.2.4: Fix v € §. We will call a block-system 7 the block-system correspond-

ing to subgroup 'H with respect to v, and subgroup H is called the subgroup corresponding

to ™ with respect to v if G, <H and H(v) is a block in .

EXAMPLE 4.2.2: Let G be the dihedral group Dg on the set {1,...,8} and generated by:
f2= (17 2)(374)(57 6)(77 8) and

fs =(1,8)(2,3)(4,5)(6,7).

(Refer to Example 4.5.1 for the whole group.)

Note that 7 = 1,2/3,8/4,7/5,6 is a block-system of G. Then 7 corresponds to the
subgroup H generated by f; with respect to any of the points 1,2,5, or 6, since, for
instance, (f2)(1) = {1,2} € m; (f2)(5) = {5,6} € 7, and so on.

If we fix a different point » in .5, we have the following:

Proposition 4.2.5: Let (G, 5) be a transitive permutation group. Let v,w € 9, let ™ be
a block-system for G and let H be the subgroup of G corresponding to © with respect to v.
Then the unique subgroup J corresponding to T with respect to w is J = gHg~", where
g(v) = w.

Proof Suppose that J corresponds to m with respect to w. Choose g € G such that
g(v) = w. Then gHg~ (w) = gH(v) = J(w) € 7, so by Proposition 4.2.4, 7 = gHg~!. O

We also have the following correspondence:

Proposition 4.2.6: Let G, < H < G. There is a one-to-one correspondence between the
left cosets of H and the blocks in the corresponding block-system, given by: gH — gH(v).
Proof Let p: gH — ¢gH(v). Note first that {gH(v) : g € G} is a block-system: By
Proposition 4.2.4, H(v) is a block; say, H(v) = B. By Proposition 4.2.3, {¢B : ¢ € G}
is a block-system, and so p is onto. We show that p is well-defined and one-to-one. We
have ¢1B = ¢3B iff g;'¢1B = B. By Corollary 4.2.1, H = {g: gB = B}, so g5 '¢1B = B iff
gzgl_1 € 'Hor g1 H = goH. Hence p is well-defined and one-to-one. Thus p is a bijection,
as claimed. a

Corollary 4.2.2: Let G, < H < G. Then for any left coset ¢'H of H, we have ¢'H =
{9 €9 :9H(v) =gH(v)}.

52 4. Group Graphs

Proof Let S = {g:¢H(v)=g¢H(v)}. If h € ¢"H then h'H = ¢"H and so hH(v) = ¢'H(v),
by Proposition 4.2.6, and so h € S. Thus ¢H C 5. Conversely, if ¢ € S then by
Proposition 4.2.6 we have gH = ¢"H. Thus S C ¢"H. O

In the next section we will see that G permutes the blocks of any block-system in the
same way that it permutes the left cosets of the corresponding subgroup.

4.3 Group Actions

Perhaps the most natural way to think of the edge-label group of a graph G is as a
group acting on the vertices of G, where any f, € £(G) acts on the vertices by permuting
them. In this section we will review the notion of a group action and define what it
means for two actions to be “equivalent”. The aim is to formalize the idea of a group
action for use in the next section, where we will construct graphs from groups and actions.
Again, the material in this section is review. See [Jac74] for a description of action and
equivalence and [Mas67] for a definition of equivariant maps.

Definition 4.3.1: An action of a group G on a set 5 is a mapping T : G x 5§ — §
satisfying:

(1) T(1,s) = s for all s € S (where 1 is the identity of G)

(2) T(g192,5) = T(g1,T (g2, s)) for all g1 and g2 € G and s € 5.

An action T on G x 5 is said to be transitive, and G is said to act transitively on S if
for any two points s; and sz € S there is an element g € G such that T'(g,s1) = sq.

Unless otherwise stated we will assume that G and S are finite and that G acts transitively
on 9.

ExaMpPLE 4.3.1: (Action By Left Or Right Multiplication)

Let S =G and let 1) : G X S — S be defined by: Tj(g,h) = gh. It is easy to see that
T is an action. It is called the action of G on itself by left multiplication. If we let S =G
and define T, : G x § — S by: T,(g,h) = hg™!, then T, is an action, called the action of
G on itself by right multiplication.®

If we fix a group G and a set .5, there is a one-to-one correspondence between the set of
group actions 7' : G x S — S and the set of group homomorphisms pr : G — Sym(9) (See
Proposition 1.6.5 in [Rob82]). This is given as follows: If 7" is an action: G x S — 5, then
the corresponding homomorphism pr maps each group element g € G to the permutation
s — T(g,s). That is, pr(g)(s) = T(g,s). This gives us the following definition:

Definition 4.3.2: We call the group pr(G) < Sym(S) the permutation group correspond-
ing to the action T.

EXaMPLE 4.3.2: Let G = Zy = {1, a,a% a®} act on § = {a,b} by T(1,a) = T(a?,a) = a;
T(1,b) = T(a?,b) = b, and T(a,a) = T(a?,a) = b, and T(a,b) = T(a?,b) = a. Then the
permutation group pr(G) is Zs.

'Tf T (g, h) = hg instead of hg™" then T, is not an action, since it fails condition (2) of the definition.

4.3. Group Actions 53

Suppose that G = Zz = {1, a,a?} and that G acts on a set S; = {a, b, c} by permuting
it: Ty(a,a) = b;Ty(a,b) = ¢, and T1(a,¢) = a. Suppose that G acts on a set S, = {1,2,3}
“in the same way” as it acts on S; i.e., To(a, 1) = 2;T%(a,2) = 3; and T53(a,3) = 1. Then
the actions T} and T3 are identical up to a bijection from S to 9. It will be convenient
to have a formalization of the notion of a group “acting in the same way” on two sets.
Following is such a formalization:
Definition 4.3.3: Let 17 : G x 57 — 57 and 15 : G x 53 — S5 be actions. A surjective
map p: S, — Sy is called a G—equivariant? map from T to Ty if p commutes with 7} and
Ty, that is, if pT1(g,s) = Ta(g, p(s)) for all ¢ € G and s € S;. The actions Ty and T3 are
called equivalent actions and p is called an equivalence if p is a bijective G—equivariant
map from T} to T5.

We have:

Proposition 4.3.1: Let 17 : G x 51 — 51 and Ty : G X S9 — Sy be actions. If there is a
G-equivariant map p from Ty to Ty then there is a group epimorphism from K to H, where
K and 'H are the permutation groups corresponding to Ty and Ty, respectively.
Proof We will use the following fact, which derives immediately from the second
isomorphism theorem for groups:

(*) Let G,H and K be groups, and p1 : G — K and p3 : G — H epimorphisms such
that ker(p1) < ker(pz). Then there is an epimorphism from K to H.
Proof of (*): We want an epimorphism: G/kerpy — G/kerps, because K
G/kerpy and H =~ G/kerpy. By the second isomorphism theorem, G/kerp,

(G/kerpy)/(kerpy/kerpy).

~
~

By (*) it suffices to show that ker(pr,) < ker(pr,), where pp, : G — Kand pr, : G — H
are the group epimorphisms corresponding to 77 and T3, respectively. Now g € ker(pr,) iff
Ti(g,s) = sforall s € 51. Suppose that g € ker(pr,). Then pT1(g,s) = p(s) = Ta(g, p(s)),
so g € kerpr,, since p is onto. a

The next proposition shows that a group permutes the blocks of a block-system in the
same way that it permutes the left cosets of the corresponding subgroup.

Proposition 4.3.2: Let (G, 5) be a transitive permutation group; let v € S and let 7 be
a block-system corresponding to a subgroup H of G with respect to v. Then the action of G
on the left cosets of H by left multiplication is equivalent to the action of G on the blocks
of m by left multiplication. In particular, the map p : {gH : g € G} — {B € 7} given by
p(gH) = gH(v) is an equivalence between the two actions.

Proof By Proposition 4.2.6, p is a bijection. Also, p commutes with the group actions
since p(g19H) = g1gH(v) = g1p(gH) for any g, and g € G. O

Remark: The proposition holds in particular for B the trivial block B = {v}. In this case
‘H = G, and Proposition 4.3.2 shows that G acts on the left cosets of G, in the same way
that it acts on S.

“Massey pg 255. The notion of equivalent actions is from [Jac74], page 72.

54 4. Group Graphs

4.4 Operator Graphs

Recall that a group-graph is a graph whose edge-label monoid is a group. The next
three sections examine the structure of group-graphs. A group graph G can be thought
of as a picture of the action of a group (£(G)) on a set (V(G)), with the labeled edges
representing group elements acting on the vertices. In this section we will describe a class
of graphs, the “operator graphs”, which are constructed from group actions in this way.
A well-known example of an operator graph is a Cayley graph, which is constructed from
the action of a group on itself by left (or right) multiplication. More generally, any action
specifies a graph once a generator-set for the group is chosen.

Definition 4.4.1: Let G be a group with generator-set X, let S be aset,and T : Gx .5 —
S be a transitive group action. The operator graph® of G with respect to X and 7 is a
graph G = (V(G), E(G), A(G)), given as follows:

e V(G)=5;

e A(G) = X;and

e E(G) is the set of triples (vgw), where v and w € S and g € X, and T(g,v) = w.

It is immediate that these graphs satisfy the “edge-label property” (Property 2 in
Chapter 2, since elements of G are one-to-one on 5.

Remark 4.4.1: Suppose that G is a group, T is an action and G is a corresponding
operator graph. Then £(G) is the permutation group pr(G) < Sym(S) associated with 7',
because if g € G then pr(g)(v) = T(g,v) for all v € S.

ExaMPLE 4.4.1: Let G be a graph such that £(G) is a group. Define the natural action
T of £(G) on V(G) by: T(fs,v) = fa(v). Let G’ be the operator graph of the natural
action of £(G) on V(G) with respect to the generator set X = {f, : @ € A(G)}. Then G’ is
the graph obtained from G by replacing every edge-label a in an edge in G with the label
fo € X. That is, (vaw) € E(G) iff (v f, w) € E(G’). We will usually equate G’ with G and
call G the operator graph of £(G) with respect to the natural action.

ExAaMPLE 4.4.2: (Cayley graphs) Let G be a group, X a set of generators for G, and
T : G x G — G the action of G on itself by left multiplication. The operator graph G
associated with G, X and T is called a (left) Cayley graph of G. That is, V(G) = G,
A(G) = X, and E(G) is the set of triples (g1, 92, 93) with g1 € X and g3 and g3 € G being
such that g1 = g3.

The next proposition shows that the covering maps between two quotient-graphs
G/m — G/my are precisely the £(G)-equivariant maps between the natural actions on
G/my and G/m3.

Proposition 4.4.1:

(1) Let G be a group with generator-set X, and let Ty : Gx V1 — Vy and T3 : G x V3 — V,
be actions such that there is a G-equivariant map p : Ty — Ty. Then p is a covering map
from Gy to Gg, where Gy and Go are the operator graphs with respect to X, for Ty and Ty,
respectively.

®The term “operator graph” may be due to F.R.K. Chung of Bellcore. See also [ABR8T]. Every operator
graph is isomorphic with a Schrier coset graph [Bol79], which is an operator graph in which V(G) is the
set of left cosets of a subgroup of G and G acts on the left cosets by left multiplication. (Corollary 4.4.1).

4.4. Operator Graphs 55

(2) Conversely, if Gy and Gy are graphs and if there is a covering map p : Gy — Gy then
there are actions Ty : £(G1) x V(Gy) — V(Gy) and T3 : £(G1) x V(G2) — V(Gg) such that
p is an E(Gy)-equivariant map from Ty to Ty. The graphs Gy and Gy are operator graphs
of Ty and Ty, respectively, with respect to the generator-set X = {f, : a € A(Gy1)}.

Proof

(1) Let G, Ty, T and p be as given. Note first that A(Gy) = A(Gz) = X. We will show
that p : Vi — V5 is a covering map from Gy to Gy. This follows from Proposition 2.3.1
in Chapter 2, for let « € G and write f,’ for pr,(a) € £(Gy) and f,” for pr,(a) € £(Gy).
Then:

(a) All elements of £(Gy) and £(Gy) are defined on all elements of V; and V; respec-
tively, since T7 and T, are defined on all of G x V1 and G x V,, respectively.

(b) For all v € Vy and a € G, pTi(a,v) = Ty(a,p(v)). That is, p(f'(v)) = f."p(v).
Thus by Proposition 2.3.1 in Chapter 2, p is a covering map .

(2) Let Gy and Gy be graphs and let p : G; — Gz be a covering map. Let G = £(Gy),
let Ty(fa,v) = fa(v), and let T5(fa, p(v)) = p(T1(fa,v)). Then Ty and T, are easily seen
to be actions, and the map p : Ty — T, is G-equivariant by construction. By Example
4.4.1, Gy is the operator graph of T} with respect to X. Edges in the operator graph of Ty
are of the form (p(v) fy p(w)), where p(w) = T5(f,, p(v)) = pfa(v). Since p is a covering
map, edges in Gy are also of the form (p(v)ap(w)), where p(w) = p(fu(v)). Thus Gy is
the operator graph of T3 with respect to X. a

We will show next that any operator graph is covered by a Cayley graph of the same
group.
Notation: If G is a graph and £(G) is a group, we will write “R” for the left Cayley graph
of £(G) with respect to the generator set {f, : @« € A(G)}.

Note that £(R) is a regular permutation group isomorphic to £(G).

Corollary 4.4.1: Let £(G), < H < E(G). Denote the left cosets of H in £(G) by mx and
the partition of V(G) associated with H by ©. Then R/7my ~ G/7 (and so R covers G/x).
In particular, if H = £(G), then R/my ~ G.

Proof Let T} be the action of £(G) on my by left multiplication; i.e., T4 (fa, i) = fafiH
for all blocks fyH € my. Define an action 7% of £(G) on 7 similarly, i.e., T5(f,,B) = f,B
for any B € 7. Let p: my — 7 be given by p(f,H) — f.H(v). By Proposition 4.3.2 this
is an equivalence (that is, a bijective £(G)-equivariant map) and so by Proposition 4.4.1
part 1, p is a covering map from R/7y to G/m. Since p is a bijection, it is an isomorphism.
O

Corollary 4.4.2: Let Gy and Gy be graphs. If there is a covering map: Gy — Ggo then
there is a group epimorphism: £(Gy1) — £(Gy). In particular, if Gy and Gy are isomorphic
then £(Gy) and £(Gy) are isomorphic also.

56 4. Group Graphs

Proof Suppose that there is a covering map from Gy to Gy. By Proposition 4.4.1 part
2, there is an £(Gq)-equivariant map p : T3 — 15 such that G; and Gy are the operator
graphs for 77 and T3 with respect to the generator set X ={f, € £(G1):a € A(Gy)}. By
Proposition 4.3.1, there is a group epimorphism from the permutation group associated
with 77 to the permutation group associated with 75. By Remark 4.4.1, these permutation
groups are equal to £(Gy) and £(Ggz), respectively. O

Remark 4.4.2: This section gives us a way of constructing nonisomorphic graphs which
share the same symmetries. Let T : GX S — 5 be an action of a group G on a set 5. If
Gy and Gg are operator-graphs of T with respect to two unequal generator-sets X and Y
of G, then Gy and Gs are nonisomorphic. Gy and G have the same symmetries, however,
since a symmetry is determined only by the action of G on 5, not by the set of generators
chosen for G.

4.5 The Lattice Of Block-Systems And The Lattice Of
Quotient-Graphs

If £(G) is a group, the set of subgroups of £(G) containing a stabilizer-subgroup
&(G), forms a lattice under the operations subgroup-join and intersection. The set of
block-systems of G inherits this lattice structure, since by Proposition 4.2.4, the block-
systems are in one-to-one correspondence with the subgroups containing £(G),. Since
the block-systems are also in one-to-one correspondence with the graphs covered by G
(Proposition 3.3.2 in Chapter 3), these graphs also inherit the lattice structure of the
lattice of subgroups. This section briefly describes these lattices.

We begin by defining the lattice of block-systems (that is, of c-partitions) of a graph
G.
Definition 4.5.1: Let G be a graph for which £(G) is a group and let » € V(G). Define
a lattice Lgv of block-systems of G as follows:
e The partial order on Lgv is given by m < 7y iff my is a refinement of 7.
If 71 and 7y are block-systems corresponding to subgroups Hy and Ho, respectively,
with respect to v, then
e T AT is the block-system corresponding to HiNHs, i.e., the block-system containing
the block [v] = (H1 N Hz)(v).
e T V7y is the block-system corresponding to the subgroup join (Hi,Hz) of Hy and
Hs, i.e., the block-system containing the block [v] = (Hy, Ha)(v).
The next lemma shows that Lgv is independent of the choice of v.
Lemma 4.5.1: Lgv = Lgw for all v, w € V(G).

Proof Let L, be the lattice of subgroups of £(G) containing £(G), and L,,, the lattice of
subgroups containing £(G),,. By Lemma 4.2.1, £(G), and &(G),, are conjugate via some
fa € E(G), where f,(v) = w. Then f, induces a lattice isomorphism (preserving lattice
join and meet) from L, to L, by: H — faHfa_l for all H € L,. This holds because the
inner automorphism is a group isomorphism, and so preserves subgroups, intersections,

4.5. The Lattice Of Block-Systems And The Lattice Of Quotient-Graphs 57

and joins of subgroups. By Proposition 4.2.5, if a block-system 7 corresponds to ‘H with
respect to v then it corresponds to f,Hf,~ with respect to w. Thus Lgv = Lgw. a

Since Lgv is independent of v, we will write Lg instead of Lgv in the sequel.

The next lemma will be used in Chapter 5 to show that the symmetries of a graph
form a lattice.

Lemma 4.5.2: Let G, be contained in subgroups H and J of G. Then g1 H(v)Ng2 T (v) =
(9iH N g2T)(v) for any g1,92 € G.

Proof TLet w € (¢yH N g2J)(v). Then there is an element ¢’ € gy H N g27 such that
¢'(v) = w. Thus ¢'(v) € g1H(v) N g2 T (v), and (g1 H N g2T)(v) C g1 H(v) N g2 T (v).

Now let w € g1 H(v) N g2J(v). Then there exists g1h € ¢1H and goj € ¢2J such
that g1h(v) = g25(v) = w. Since g2 J(v) is a block and since g1h maps v € J(v) to
a point in ¢27(v), it maps J(v) bijectively onto ¢37(v). By Corollary 4.2.2, ¢ =
{9 :9T(v) = g2T(v)}, and so g1h € g2 . Then w = g1h(v) € (g1 H N g2T)(v), and so
g1 H(v) N g2 T (v) C (g1H N g2 T)(v), and the two sets are equal. a

Corollary 4.5.1: The intersection of two blocks is a block.

Corollary 4.5.2: Let G, <H,J < G. If s H(v) C 92T (v) then g1 H C g2T.

Proof By Propositions 4.2.4 and 4.2.6 there is a one-to-one correspondence between
the set of left cosets of subgroups of G containing G, and the set of blocks of G, given
by: gH — gH(v). Suppose that g1 H(v) C g2 (v). By Lemma 4.5.2 we have g1 H(v) =
g H(v) N g2 T (v) = (g1H N g2 T)(v). Since g1H N g2J is a left coset of H N J we have
giH = giHN g2T, 0r g1H C 92T .]

The set of quotient graphs of G also forms a lattice Lg under the partial order “<”,
where G/m < G/my if m1 is a refinement of 73 (i.e., if G/72 is a quotient of G/71). Its join
and meet are described as follows:

o G/mNG/my = G/my ATy

e G/mVG/my = G/mVTs.

Then L inherits the lattice structure from Lg.

ExaMmPLE 4.5.1: Figure 4.1 pictures a Cayley graph of the dihedral group Dsg, its lattice of
quotient-graphs and the corresponding lattice of subgroups. Figure 4.2 shows the quotient-

graphs of G.

The elements of £(G) are as follows:

h=ud fs = (1,5)(2,6)(3,7)(4,8)
f2=0(1,2)(3,4)(5,6)(7,8) fos =(1,6)(2,5)(3,8)(4,7)
f3=10(1,3,5,7)(2,8,6,4) fr=1(1,7,5,3)(2,4,6,8)
fa=(1,4)(2,7)(3,6)(5,8) fs = (1,8)(2,3)(4,5)(6,7)
(Here “f;” denotes the group-element mapping 1 to 7. The subscript “i” is not a word

in A(G)*.)

58 4. Group Graphs

The block-systems for G and their corresponding subgroups with respect to vertex 1
are given as follows:

m=/1,2,...,8/ ~ &(G) 6 = 1,6/2,5/3,4/7,8~ (f1, f6)
Ty = 1,2,5,6/3,4,7,8N <f1,f2,f5,f6> 7 = 1,5/2,6/3,7/4,8N <f1,f5>
T3 = 1,3,5,7/2,4,6,8N <f1,f3,f5,f7> T8 = 1,4/2,3/5,8/6,7N <f1,f4>
T4 = 1,4,5,8/2,3,6,7N <f1,f4,f5,f8> Tg = 1,8/2,7/3,6/4,5N <f1,f8>
Ty = 1,2/3,8/4,7/5,6N <f1,f2> mT10 = 1/2/3/4/5/6/7/8N <f1>

£(G)

|

<f17f37f57f7>
<f17f27f57f6> <f17f47f57f8>

G is a Cayley graph of Dg, /
generated by f; and fs. (f2) (f5) (fs)

G/7T1

N e

G/m G/m3 G/m4

| The lattice of subgroups
/ \ G/xx / \

G/ms G/me G/ms G/mg

G=G/m
The lattice of quotients

Figure 4.1: A graph G and its lattice of subgroups and lattice of quotient-graphs

4.6. Graph Isomorphisms And Conjugate Subgroups 59

N\ T
=/
Cr—
=¥
()—

=
-
-

Figure 4.2: The quotient-graphs of G

4.6 Graph Isomorphisms And Conjugate Subgroups

One of our aims in the next chapter will be to find an algorithm which generates
all of the symmetries of a given network. In this section we will show that there is a
one-to-one map from the set of symmetries of a graph G (or more particularly, the set
of all isomorphisms of quotients of G) into the set of all left cosets of subgroups of £(G).
This will allow us to characterize each symmetry uniquely as a left coset of a subgroup of
&(G). We will also find a correspondence between subgroup conjugacy and quotient-graph
isomorphism.

First we need a definition:
Definition 4.6.1: If G is a permutation group on a set .5, the centralizer Cg,,,,(s)G of G

in the symmetric group Sym(S) is the set of all elements in Sym(S) which commute with
all elements of G:

60 4. Group Graphs

Csym(s)G = {h € Sym(5): hg = gh for all g € G}.
Note that:

Proposition 4.6.1: (Proposition 10.3.6 in [Sco87]) If (G,S) is a regular permutation
group then Cgyn(5)G is regular and isomorphic to G.

The next proposition is an immediate corollary of Proposition 2.3.1 in Chapter 2.

Proposition 4.6.2: If G is a graph such that £(G) is a group, then the automorphism
group of G is the centralizer in Sym(V(G)) of £(G).

Proof Let a be an automorphism of G. By Proposition 2.3.1 in Chapter 2, @ commutes
with all elements of £(G) and so is an element of the centralizer. Conversely, let & be an
element of the centralizer in Sym(V(G)) of £(G). Since £(G) is a group, any f, € £(G)
is defined on all v € V(G). Since h € Cg,,,v(G)€(G), we have hf,(v) = foh(v) for all
fa € £(G) and v € V(G). By Proposition 2.3.1 in Chapter 2, h is an automorphism of G.
a

EXAMPLE 4.6.1: In Figure 4.1, G is the left Cayley graph of Dg, generated by fo =
(1,2)(3,4)(5,6)(7,8) and fs = (1,8)(2,3)(4,5)(6,7). (See Example 4.5.1.) The automor-
phism group is the permutation group associated with Dg acting on itself, generated by
az = (1,2)(3,8)(4,7)(5,6) and ag = (1,8)(2,7)(3,6)(4,5). See Proposition 4.6.4.

We will need the following proposition from group theory:

Proposition 4.6.3: ([Koc70], page 118)

o LetG be agroup andT;:GxG — G and T, : Gx G — G the actions by left and right
maultiplication, respectively. Write G; for the permutation group pr,(G) associated
with Ty and G, for the permutation group associated with T,. Then G; = Cgyp(6)Yr
and QT = Csym(g)gl.

e G; and G, are regular permutation groups.

As a corollary of Propositions 4.6.2 and 4.6.3 we have:

Proposition 4.6.4: Let G be a graph and let R be the left Cayley graph of £(G) with
respect to the generator-set {f, : a € A(G)}. Define £(G); and £(G), as in Proposition
4.6.3 above. Then E(R) = £(G); and the automorphism group of R is £(G),.

Proof &(R) = &£(G); by the construction of left Cayley graphs. By Proposition 4.6.2,
the automorphism group of R is C'g, . vR)E(R) = Cgypv(R)E(G) = Cgyp(e(6) €(G)1-
By Proposition 4.6.3, this latter equals £(G),. O

Informally this says that £(R) is the group £(G) acting on itself by left multiplication,
and the automorphism group of R is £(G) acting on itself by right multiplication. (See
Example 4.3.1 for a definition of these actions.)

The next lemma shows that any isomorphism of quotient-graphs “lifts” to an auto-
morphism of R, where “lifting” is as defined below.

4.6. Graph Isomorphisms And Conjugate Subgroups 61

Definition 4.6.2: Let graphs Gy cover Hy via a covering map 1, let Gy cover Hy via s,
and let 61 be an isomorphism from G; to Gy and 6, be an isomorphism from H; to Hs.
We will say that é5 lifts to 61 via 31 and 3 if the following commutes:

o1

G1 _— G2

B B2

Hi —— H;

b2
EXAMPLE 4.6.2: In Figure 4.3 the automorphism é; = (r,s) lifts to the automorphism
61 = (1,2)(3,4) via covering maps 1 = f3: {1,4} — r and {2,3} — s.

Figure 4.3: Lifting

We have:
Lemma 4.6.1: Leté : G/ — G/m2 be a graph isomorphism and let H < £(G) correspond
to 1y and J < &(G) correspond to my, with respect to v € V(G). Then for any covering
maps 1 : R — G/my and By : R — G/my, there is an automorphism a of R such that §
lifts to a via By and [y, If B and [y are the inclusion covering maps then a induces a
bijection between the left cosets of H and the left cosets of J.
Proof Let 8y : R — G/m and B3 : R — G/7y be any covering maps, and let » and
w € V(R) be such that 651(v) = fa(w). Let a : R — R be an automorphism such that
a(v) = w This automorphism exists because £(R) is regular (Proposition 4.6.4).

Then fya(v) = §51(v), so faa = 631 since fya and 631 are graph epimorphisms and
hence determined by their action on a single vertex. Thus é lifts to a via #; and G5.

Suppose that 3y : R — G/my and 3 : R — G/my are the inclusion covering maps;
that is, that 81(fuh) = fiH(v) for each foh € fi'H, and (3 is defined similarly. Since
601(v) = Paa(v) for all v € V(R), the automorphism a must map cosets onto cosets. O

We will need the next two propositions in Chapter 5. Proposition 4.6.5 (next) shows
that there is a close correspondence between quotient-graph isomorphisms and subgroup
conjugacy.

62 4. Group Graphs

Proposition 4.6.5: Let H correspond to w1 with respect to a vertex v and let [J corre-
spond to wo with respect to v. Then:
1. If 6 : G/my — G/my is an isomorphism and §(H(v)) = f,J(v) for some f, € £(G)
then Hf, = fuJ
2. Conversely, if Hfa = fuJ for some f, € E(G) then there is an isomorphism
6:G/my — G/my such that 6(H(v)) = foJ(v).
In particular, H and J are conjugate in £(G) iff G/m1 and G/7y are isomorphic.

EXAMPLE 4.6.3: In Example 4.5.1, the block-system 7y = 1,2/3,8/4,7/5,6 corresponds
to the subgroup H generated by f;, and 7o = 1,6/2,5/3,4/7,8 corresponds to the
subgroup J generated by fs. Here H and J are conjugate: Hfs ~ f37. The quotient-
graphs G/m; and G/my are isomorphic via the isomorphism ¢ : {1,2} — {3,4}; {3,8} —
{2,5}; {4,7} — {1,6}, and {5,6} — {7,8}.
Proof (of Proposition 4.6.5) Suppose first that ¢ : G/7y — G/73 is an isomorphism
and that 6(H(v)) = foJ(v) for some f, € £(G). By Lemma 4.6.1 above, é lifts to an
automorphism « of R via the inclusion covering maps 1 and 3. By construction, a maps
H to f,J7. By Proposition 4.6.4, a is an element f,~' of £(G) acting on £(G) by right
multiplication: If & maps H to f,J then Hfy = f,J. Then f, = f,j for some 53 € J, and
so Hfy = Hfug = fuT, ot Hfu = fuT

Conversely, suppose that Hf, = f,J for some f, € £(G). By Proposition 4.6.4, f,7,
viewed as an element of £(G) acting on £(G) by right multiplication, is an automorphism
of R. In fact, f,7! induces a bijection o between the left cosets of H and the left cosets of
J by a(fiH) = fifa = fofoJ. Let 81 : R — G/m; and fz : R — G/73 be the inclusion
covering maps and define § = Bya8; 7! : G/m; — G/7my. Then 6 is well-defined and is easily
seen to be an isomorphism. By construction, 6(H(v)) = foJ(v). 0

Finally, we have:

Proposition 4.6.6: G,R as before. Fiz v € V(G). There is an injective map p from the
set of all isomorphisms of quotients of G into the set of left cosets of the subgroups of £(G)
which contain £(G),. This is given as follows:

Let 6 : G/my — G/7mg be an isomorphism and let my correspond to H and 7y correspond
to J with respect to v. Then p maps 6 to f,J, where Hf, = foJ and f,J(v) = 6(H(v)).
That is, if 6([v]x,) = [W]r,, then p: 6 — [T where f,T(v) = [W],.
EXAMPLE 4.6.4: In Example 4.6.3, § corresponds to f37 = {fs, fa}. We have f37(1) =
{3,4}. Indeed, 6({1,2}) = {3,4}.
Proof of Proposition 4.6.6 Let p, §, H and J be as given. We will show that p is
well-defined on the set of all isomorphisms of quotients of G, and that it is one-to-one. Let
B1:R— G/m and 33 : R — G/7m2 be the inclusion covering maps. By Lemma 4.6.1, 6 lifts
to an automorphism « of R via 31 and 3, and a maps the left cosets of H bljectlvely onto
the left cosets of J. By definition of lifting, 6(H(v)) = 661(h) = Bea(h) = foTJ(v) for
some f, € £(G) and h € H, and so p is defined on ¢. If f,T(v) = foJ(v) for some f, and
v € £(G) then f,J = foJ by Proposition 4.2.6, and so p is well-defined. By Proposition
4.6.5, if p maps 6 to f,J then Hf, = f,J. Finally, p is one-to-one, for suppose that p
maps two isomorphisms to the same left coset:

4.7. Related Results 63

01(Hi(v)) = faJ (v) and
02(Ha(v)) = foJ(v) also. By Proposition 4.6.5, Hy fo = Hofo = fuT, s0 H1 = Hy =
foT f7", and & = é&. O

4.7 Related Results

Operator Graphs: The term “operator graph” may have been coined by F.R.K. Chung
of Bellcore. An older name for operator graph is “group action graph”; see [ABR87] and
[BRI1]. As mentioned in the footnote in Section 4.4, any operator graph of G is isomorphic
with a Schrier coset graph of a group G, which is an operator graph of the action of G on
the left cosets of a subgroup of G. See [Bol79].

An operator graph is a special case of a “G-graph”, defined in [Coh89]. If G is a group,
a “G-graph” is a graph G such that G acts on V(G) and E(G) in such a way that the
orientations and inverses of the edges are preserved. If we let G be an operator graph of
a group G with respect to an action 77 on V(G), and let 75 : G x E(G) — E(G) be the
identity action which maps each edge to itself, then G is a G-graph.

An operator graph is also a special case of a “voltage graph”. The term wvoltage graph

was coined by J Gross ([GT87]) and refers to a digraph G whose edges are given “plus” and
“minus” directions, together with a map from the plus-directed edges into a permutation
group. Voltage graphs are used in [GT87] to compute covering graphs for given graphs;
that is, for reconstructing a graph from one of its quotients.
The lattices of quotient graphs and of subgroups: In [B89], Biichi derives related results
for “k-algebras”. A k-algebrais a tuple A = (A, F, f1,..., fi), where A is a set of “states”,
E € A is the “start state”, and each f; for ¢+ = 1,...,k is a function from A to A.
A k-algebra A is associated in a natural way with a graph G: Let V(G) = A and let
(v fi w) € E(G) whenever f;(v) = w. A k-algebra is called reduced if its associated graph
is strongly connected.

A congruence relation ~ on a k-algebra A is an equivalence relation on A such that
v~ wiff fi(v) ~ fi(w) for e = 1,..., k. Congruence relations induce quotient algebras in
the usual way. Biichi proves the following;:

Theorem 4.7.1: (Theorem 4 in [B89]) The lattice of quotients of a reduced k-algebra
A is anti-isomorphic to the lattice of all congruences on A, where the anti-isomorphism
maps each quotient A/ ~ to the congruence ~.

The order relation on the lattice of quotients is “homomorphism”, where a homomor-
phism from a k-algebra A = (A, E, f1,..., fr) to a k-algebra B = (B, F,¢1,...,9%) is a
map a from A onto B such that g;a(v) = af;(v) for ¢ = 1,...,k and for all v € A.
(Notice the similarity between Biichi’s definition of homomorphism and our definition of
covering map.) As might be expected, there is a one-to-one correspondence between the
homomorphims from an algebra A and the congruence relations on A.

Biichi also shows the following for a family «; of congruences on a k-algebra A:
Theorem 4.7.2: (Theorem 4 part 2 in [B8Y])

A/(Na;) is isomorphic to Q(A/a;), where {1\’ is the meet-operator on the lattice of

K3
congruences and ‘Q’ is the “reduced direct sum”;

64 4. Group Graphs

A/(Ue;) is isomorphic to N(A/a;), where U’ is the join-operator on the lattice of
K3 K3

congruences, and <)\’ is the meet-operator on the lattice of quotients.

65

5. Classifying Group Graphs

5.1 Introduction

How hard is it to classify networks? This chapter addresses the question for the two
classifications described previously, in which networks were called “f-equivalent” if the set
of functions each can compute is the same, and “p-equivalent” if the set of functions each
can compute is the same up to a permutation. In light of Theorems 3.4.2 and 3.5.1 in
Chapter 3, the question of how hard it is to classify networks can be rephrased as follows:
Is there a small, easily-computed set of graph-features which two graphs share in common
iff they have the same set of quotient-graph isomorphisms (or, respectively, iff their sets of
isomorphisms differ by a permutation)? The answer to the first question is “yes” — the
first classification task is relatively easy. The second classification problem will turn out to
be at least as hard as determining whether two finite permutation groups are isomorphic.

Chapter Summary and Main Results: The first four sections of this chapter address
the first classification question. In Section 5.2 we will show that a graph can have
a subexponential number of symmetries, and conclude that checking two graphs for
equivalence by comparing their symmetry-sets is potentially slow. In Section 5.3 we will
see that the symmetry-set of a graph forms a lattice, and in Section 5.4, will find a small
generator-set, the “constraint-set”, for the lattice of symmetries. We will show that two
networks compute the same set of functions iff they have the same constraint-set. Section
5.5 gives an algorithm polynomial in the number of edges of a graph for finding the graph’s
constraints, and concludes the examination of the first classification question. Section 5.6
addresses the second classification problem, and gives a polynomial-time transformation
of this problem to the group-isomorphism problem. Since we are only concerned with the
tractability of problems, we will aim for algorithms which are easy to understand, rather
than optimally fast.

This chapter concerns itself only with group-graphs. In the final chapter we will see
that the results obtained for group-graphs also hold for arbitrary monoid-graphs.

5.2 The Number Of Symmetries Of A Network

In this section we will count the number of block-systems and symmetries of a network.
We will see that a network can have a subexponential number of both block-systems and
symmetries.

The following proposition is folklore in computational group theory. It may be due to
Tarjan (See [Mil78]).

Proposition 5.2.1: A group G of order n has O(n'8") subgroups. G is generated by a set
of size no bigger than lgn.

Proof sketch Adding one element to a set of generators of a subgroup of G at least

doubles the size of the subgroup generated. Therefore G has a generator-set of size less

than or equal to lgn. There are Z}f:nl (Z) subsets of G of size less than or equal to Ign

66 5. Classifying Group Graphs

and hence no more than Z}f:nl (3) subgroups. The conclusion follows from the well-known
fact that 371 (1) < n™ + 1. O

A similar argument gives us the following:

Proposition 5.2.2: Let (G, 5) be a transitive permutation group, with |S| = n. Then G
has O(n'8™) block-systems.

Proof of the proposition: Let G, be the stabilizer subgroup of a point v € 5. We show
that G has O(nlg”) subgroups containing G,. The conclusion then follows from Proposition
4.2.4 in Chapter 4, which says that there is a one-to-one correspondence between block-
systems and subgroups containing G, .

Let J be a subgroup of G containing G,, but not containing a given left coset gG,
of G,. Then the subgroup (¢G,,J) generated by gG, and J contains at least twice as
many left cosets of G, as J contains. Recall that |G|/|G,| = n for any transitive group G.
(See Proposition 1.6.1 in [Rob82].) Therefore, there is a collection of no more than lgn
left cosets of G, which generates G (that is, G is generated by the set of group-elements
comprising these cosets). The same argument shows that any subgroup J of G containing
G, is generated by a set of no more than Ign left cosets of G,. Since there are at most

Lg:nl () = O(n'8™) sets of left cosets of G, of size less than or equal to lgn, there are
O(n'8") subgroups of G containing G,. O

Corollary 5.2.1: If |V(G)| = n and &(G) is a group then G has O(n'8"™) c-partitions.
a

Estimate of the number of symmetries of a network:

Let G be a network with n vertices. By Proposition 4.6.6 in Chapter 4, each block of
E(G) represents at most one symmetry, so we will count the number of blocks of £(G).
By Proposition 5.2.2, £(G) has O(n'8™) block-systems. Fach block-system has at most n

blocks, so G has at most O(n'8"+1) blocks, and hence O(n'8"+!) symmetries.

87 symmetries. For instance, a Cayley

Remark 5.2.1: There exist graphs having nearly n
graph of the group Z% = Zy x - - - X Zy has roughly n'8" symmetries, since Z3 has roughly
n'e™ subgroups. Each subgroup is associated with a quotient graph and each quotient
graph has at least the identity automorphism, so there is at least one symmetry for each

subgroup.

5.3 The Lattice Of Symmetries

In this section we will show that the set of symmetries of a network G forms a lattice,
the lattice of symmetries of G. We saw that the lattice of symmetries of a network with n
vertices can be large, but we will see that it has a subset, the “constraint-set”, which has at
most n elements and generates the lattice of symmetries under the lattice-join operation.
Since the constraint set generates the lattice of symmetries, it completely determines the
behavior of the network vis-a-vis function-computation. That is, two networks compute
the same set of functions iff they have identical constraint-sets.

5.3. The Lattice Of Symmetries 67

By Propostition 4.6.6 in Chapter 4 there is an injective map from the set of isomor-
phisms of quotients of G into the set of left cosets of subgroups of £(G). This gives us the
following definition:

Definition 5.3.1: Fix v € V(G) and let s = (mq, 72, §) be a symmetry of G. By
Proposition 4.6.6 of Chapter 4 there are subgroups H and J of £(G) and f, € &(G)
such that Hf, = f,J and f,J(v) = 6([v]r,). We will call the left-coset f,J the coset

representative of the symmetry s with respect to v.

We will show next that there are meet- and join- operations which make the set of
coset-representatives of a graph into a lattice. This induces a lattice structure on the set
of symmetries of G in a natural way. We will make use of the following proposition from
lattice theory:

Proposition 5.3.1: (Corollary 2.17 in [DP90]) Let X be a set and L a family of subsets
of X, ordered by inclusion, such that

1. XelL

2. Nie1 As € L for every non-empty family {A;};c1 C L.

Then L is a lattice with meet and join operations given as follows: A;ANA; = A; NA;,
for A; and A]‘ e L. AZ'\/A]‘ = ﬂ{A € |_|AZ U A]‘ - A}

O

Proposition 5.3.2: Let G be a network and let C, be the set of coset-representatives for
G with respect to a vertexr v. Then C, adjoin the empty set forms a lattice under the
inclusion order, with the meet and join operations as in Proposition 5.3.1 above.

ExaMPLE 5.3.1: For G as in Figure 5.1, £(G) is generated by f, = (1,2)(3,4) and
f» = (2,3) and has group elements f,, fi, fo = (1,3,4,2), fa = (1,2,4,3), fo. = (1,3)(2,4),
fr=1(1,4)(2,3),and f, = (1,4).

Cs

/

L.v

Figure 5.1: Lattice of Coset-Representatives

Choose v = 1. Then the symmetries and their corresponding coset-representatives are
as follows:

68 5. Classifying Group Graphs

s1=(1/2/3/4, 1/2/3/4, 61 = id) with coset representative Cy = £(G), = {id, fp},
sy = (1/2/3/4, 1/2/3/4/, 62 = (1,4)(2,3)) with coset representative Cy =
Fr8(G)o =S5 frho} = {5 fy}s

s3 = (1,4/2,3, 1,4/2,3, 85 = id) with coset representative Cs = J = (id, f, ft, [4),
sy = (1,4/2,3,1,4/2,3, 64 = ({1,4},{2,3})) with coset representative Cy = f,J =
{Uas fes fas I}

e s5=(/1,2,3,4/, /1,2,3,4/, 65 = id) with coset representative C5 = £(G).

The lattice L.v of coset-representatives is pictured.

Proof of the proposition: This will follow from Proposition 5.3.1 above if C, U is
closed under intersection. Let sy = (71, 7s,61) and sy = (72, T4, 02) be two symmetries,
where 71, T3, T3 and 74 correspond, respectively, to subgroups Hy, Ha, Hs and Hy of £(G);
and f,Hs and fy’H, are the coset-representatives of s; and sy with respect to a vertex
v € V(G). We will show that if f,HsN fyHa # 0 then fyHsN fyH4 is a coset-representative

with respect to v, and conclude that C, U@ is closed under intersection.

Suppose that f,Hs N fyHs # 0. Then foHs 0 fyHy is a left coset, say f.(Hs N Ha),
of H3 N 'H4. By Proposition 4.6.5 of Chapter 4, H1f, = f.Hs and Hofy = fiH4, and so
Hifo N Hofy = fuHs 0 fyHe # 0. The set Hy f, N Hofy is a right coset of Hy N Hy; say,
Hifo O Hafy = (H1 NH3) fa for some fy € £(G). So we have:

(H1 N Ha)fa = fe(Hs N'Hy). This implies that Hy N Hz and Hz N Hy are conjugate;
in fact, (Hl N Hz)fc = fc(H3 N H4) (If (Hl N Hz)fd = fc(H3 N H4) then f; = f.h for
some h € Hs N Hy. Hence (H1 N Hz)fh = fo(Hs N Hy), or (H1 NHa)fe = fo(Ha N Ha)k
= fo(Hs N Hy).) Since £(G), < Hy N Hy and Hs N Ha, we have by Proposition 4.6.5 in
Chapter 4 that f.(Hs N Hy4) is a coset-representative for G with respect to v. a

Notation: We will write L.v for the lattice of coset-representatives of a graph with respect
to a vertex v.

The Lattice of Symmetries: The lattice structure of L.v induces a lattice structure on the
symmetries of G, as follows: Let symmetries s; and sy have coset-representatives Cy and
(5, respectively. Then s < s9 if C'f C Cy; s1Vsg is the symmetry with coset representative
C1VvCsy, and s1Asg is the symmetry with coset-representative C7ACH.

Notation: We will write Lgv for the lattice of symmetries of a network with respect to a
vertex v.

In Chapter 4 we saw that the lattice of block-systems is independent of the choice of a
vertex v € V(G). This also holds for the lattice of symmetries, as Proposition 5.3.3 below
shows. First we will need two lemmas:

Lemma 5.3.1: Let fy(v) = w for v and w € V(G) and fy € £(G). Then if f,H is
the coset representative for a symmetry s with respect to v, then fy fyHf ™! is the coset-
representative for s with respect to w.

5.3. The Lattice Of Symmetries 69

Proof Let s = (m,m2,8). We will show that &([w]) = fofuHfo " (w). Since § is
an isomorphism, we have 6([w]) = 6fp([v]) = fu6([v]) (Proposition 3.3.1). Since f,’H
is the coset-representative of s with respect to v, we have 6([v]) = f,H(v). Hence
8([w]) = fo6([v]) = fufaH S~ f5(v) = fofaH Sy~ (w). Note that fy fuHfy ' is a left coset
of fyHfy ™t namely, fufuHfo ' = fofufs ' fHf ™! By Proposition 4.2.5 in Chapter 4,
fyHf, 7! is the subgroup corresponding to mo with respect to w. a

Lemma 5.3.2: L.v ~ L.w for any v and w € V(G).

Proof Suppose that w = fy(v) for some f, € £(G). Define o : Lov — Low by: a(foH) —
fofaHfy ™! for each fuH € Lov. By Lemma 5.3.1, if f,{ is the coset-representative of a
symmetry s with respect to v then a(f,H) is the coset-representative of s with respect to
w. Hence « is a bijection. It remains to show that a preserves the lattice meet- and join
operations. We recall a proposition from lattice theory:

1: (Theorem 2.3 in [BS81]). A bijective map o between lattices is a lattice isomorphism
iff both a and o™ are order-preserving.

But this is immediate, for if f,H C f.7 then fo f,Hf, ™t C fofoT f 71, and conversely. O

Proposition 5.3.3: Lgv = Lgw for any v and w € V(G), where Lsv and Lsw are the
lattices of symmetries with respect to v and w, respectively.

Proof By Lemma 5.3.2, L.v ~ L.w via an isomorphism «. By construction, Lgv ~ L.v
and Lgw ~ L.w, so Lgv ~ Lgw. By Lemma 5.3.1, if f,’H is the coset-representative of a
symmetry s with respect to v then a(f,H) is the coset-representative of s with respect to
w. Hence Lgv = Lgw. a

Notation: In light of Proposition 5.3.3, we will write Lg for the lattice of symmetries of

G.

The following proposition shows that the lattice of symmetries is reasonably well-

behaved.!

Proposition 5.3.4: Let sy = (w1, 73,061) and s; = (w3, T4, 02) be symmetries in Lg. Then
81 = s9 iff 1 = w9 and w3 =X w4 and by lifts to 61 via the inclusion covering maps
B1: G/my — G/my and By @ G/ms — G/7my4. In particular, this means that sy < sy iff
(2] € 62([0]y) Jor any v € V(G).

Proof Let m; correspond to 'H; with respect to » for ¢ = 1,...,4; and let s have coset-
representative f,Hs and sy have coset-representative fyH,4. Suppose first that s; < so.
Then by definition, f,Hs C fiH4 and so ‘Hs < H4. Since Hs corresponds to w3 and
H4 corresponds to w4 this gives us w3 < m4. Note that 62_1ﬁ261([w]m) € m, for all
w € V(G), and is a covering map, for f; the canonical covering map: G/73 — G/m4.
Hence 7y < my. If 31 is the canonical covering map: G/7m; — G/7 then by definition we

have (1(H1(v)) = Ha(v) and Sao(faHs(v)) = fiHa(v), and so 6281(Hi(v)) = fiHa(v) =

Tt is not entirely well-behaved. In particular, there is not always an isomorphism &' such that s; Vs, =

(m1V72, m3Vms, 8'). (For instance, consider s;Vs, in Figure 5.1.)

70 5. Classifying Group Graphs

B261(H1(v)). Since covering maps are determined by their action on a single point, this
implies that G261 = 6204.

Conversely, suppose that 6y lifts to é; via fy and f3. Then 6361([v]) = fiHa(v)
= B261([v]) = BafaHs(v), and so fyHs(v) C fyHa(v). By Corollary 4.5.2 in Chapter 4, we
have f,H3 C fi'H4, and so s1 =< so.]

Remark 5.3.1: The discussion so far yields the following two observations:

(1) If £(Gy) and &£(Gg) are identical then Gy and Gy compute the same set of functions,
since they then have the same set of symmetries.

(2) The converse is false. To find an example of graphs which compute the same functions
but have different edge-label semigroups, we can look for permutation groups (G, 5) and
(H,S) which have no subgroups between G and G, and between H and H,,, respectively, for
some v € 5, so that the two corresponding operator graphs have only the trivial symmetry.
For instance, let G; and Gy be as follows: V(Gy) = V(Gg) = {u,v,w,r}; £(Gy) =
Sym(V(G)), and £(Gy) = Ay. Then &£(Gy), is the symmetric group on three letters and
E(Gg)y = A3 = Z3, and Gy and Gy have the same symmetries sq = (1/2/3/4, 1/2/3/4, id)
and sy = (/1,2,3,4/, /1,2,3,4/, id).

This example also shows that networks can have different lattices of coset representa-
tives but share the same lattice of symmetries. That is, L.v and £(G) over-determine the
network.

The definition of lattice-join as it is given above has a disadvantage: s;Vsg can be
computed only if all of Lg is known. In the next section we will need a definition of join
which depends only on s; and s3. How might such a definition be given? Consider the
following example. Let s; = (71, 73, 61) and sy = (72, 74, 62), and s1Vsy = (75, 76, 03),
where

T = T3 = mg = 1,2/3,8/4,7/5,6; 7o = 3,4/2,5/1,6/7,8, and 6, : {1,2} — {5,6};
{3,8} — {4,7};{4,7} — {3,8}; {5,6} — {1,2}; and

0y {3,4} —{1,2};{2,5} — {3,8}; {1,6} — {4,7}, and {7,8} — {5,6}.

By Proposition 5.3.4, 65 lifts to é; and é; via the inclusion covering maps. This means,
for instance, that since 6;({1,2}) = {5,6} and 82({1,6}) = {4, 7}, that 63 must map {1, 2}
to {5,6} and map {1,6} to {4,7}. That is, é3 must map a block containing {1,2,6}
to a block containing {5,6,4,7}. Similarly, since é;({3,8}) N 8,({1,6}) # 0, é3 must
map a block containing {1,6,3,8} to a block containing {4,7} = 61({3,8}) U 82({1,6}).
Continuing with the same line of reasoning, we find that 75 = 7 = /1,2,---,8/ and that
03 is the identity map.

This suggests a definition:

Definition 5.3.2: Let s; = (my, w3, 61) and let s; = (mg, w4, 63). Define s1V'sy =
(75, Tg, 03) as follows:
e ¢ and j are in the same block of 75 if any of the following three conditions hold: (1)
i and j are in the same block of 71 or in the same block of 7g, (2) [i]x, N [j]r, # 0,
o1 (3) 61([ilr,) (1 62([]rs) # 0.
e ¢ and j are in the same block of 7 if any of the following three conditions hold: (4)
i and j are in the same block of 73 or in the same block of 74, or (5) [i]x, N [j]x, # 0,

or (6) 67 ([ilr,) N &3 ([7]=) # 0.

5.3. The Lattice Of Symmetries 71

e Define 63 = ﬁgélﬁfl, where 81 : 71 — 75 and f3 : 73 — 7w are the inclusion maps.
We can now show the following:
Proposition 5.3.5: s1Vsy = s1V'sy for any s; and sy € Lg.
Proof Let s1Vsy = (m,,m,0). We will show first that sqV’'sy is a symmetry, and then
that s;V/sy = s1Vss.
First, 75 is a c-partition: Let f, € £(G) and choose points ¢ and j in a block of .
Assume first that one of the conditions 1, 2, 3 from the definition holds for the pair (¢, j).
If condition 1 holds then f,(¢) and f,(7) arein the same block of 71 (or m2) and so are in the
same block of 75. If condition (2) holds then [f,(¢)]r, N[fu(4)]r, # 0, and so f,(i) and f,(j)
are in the same block of 5. If condition (3) holds then f,(61([i]r,) N é2([j]r,)) # 0. Since
61 and &, are isomorphisms, they commute with f,, and so (61(fo[7])r,) N 02(falj])=,)) # 0,
and f,(i) and f,(7) are in the same block of 5. If ¢ and j do not satisfy any of conditions
1, 2, or 3 then there is a sequence ¢ = 11, i9,...,1; = j of points in C such that each pair
(i1,9141) for I = 1,...,k — 1 satisfies one of conditions 1, 2 or 3. Then by the above, for
each pair (¢, 441) in a block of 75, the pair (f.(7), fo(7)) is in the same block of 75, and
75 is a c-partition.

The same argument shows that mg is a c-partition.

03 is an isomorphism: First, 63 commutes with the elements of £(G) since 31, 82, and
61 do. That is, 63 is a covering map. By construction, ds lifts to 6;. Note also that
ﬁgélﬁfl = ﬁ462ﬁ2_1, where betay : G/my — G/ms and fy4 : G/7q4 — G/mg are the inclusion
covering maps. To show this, choose [i] € 7 and [j] € w3 such that [{]., N [j]., # 0.
Then 7 and j are in the same block C of 75 by condition (3) of the definition of 75, and
B361371(C) = B46235 1(C) by condition (6). That is, &5 lifts to 8, also.

It remains to show that 63 is well-defined and is a bijection. To show that ¢3 is one-
to-one, suppose that d3(By) = é3(Bz) = C for blocks By and By € 75 and C € wg. If a pair
of vertices i and j in C satisfies one of conditions 4, 5, or 6 in the definition then 65 *([4])s
and 65 *([j]) are the same block of 75 by construction. If 63([¢i]) and 63([j]) do not satisfy
any of conditions 4, 5, or 6 then there is a sequence ¢ = ¢q, i2,...,¢ = j of points in C
such that each pair (65 ([i1]), 83 ([i141]) for l = 1,...,k— 1 satisfies one of conditions 4, 5
or 6. Then each pair (4,4;41) is in the same block of 75, so 7 and j are in the same block
of 75 also, by transitivity. That is, any two vertices in C pull back via é3 to the same
block, so By = Bs.

A similar argument shows that é3 is well-defined. By construction, é5 is onto. Since
83 lifts to both ¢; and d; we can use Proposition 5.3.4 to conclude that s; < s1V’sy and
So j Sl\//SQ.

It remains to argue that s;V’sy = s1Vsy. This holds by construction, for since § € s1Vsy
lifts to 61 and 3, we must have s1Vsy satisfying the conditions 1 — 6 of the definition of
s1V'sg. Thus, if [i],, = [j]x, then [i];, = [jlr., and if [{]x, = [j]r then []r, = [J]x,; 1-e.
5 = T, and mg = 7, and 3([i]r,) € 8([¢]r,) for all ¢ € V(G). Hence ¢ lifts to 3. By
Proposition 5.3.4 this implies that s1V’sy < s1Vsg, and so by the definition of the lattice
join, the two symmetries are equal. a

The definition of s1Vsy given above does not depend on £(G) or, for that matter, on
G, but only on s; and sy. Therefore we have the following corollary to Proposition 5.3.5:

72 5. Classifying Group Graphs

Corollary 5.3.1: Lets! = s2 and s} = s} for symmetries s’ and s} of a graph Gy and s?
and s} of a graph Gy. Then slvs! = s2vs?.
O

5.4 Generators For The Lattice Of Symmetries

Although the lattice of symmetries of a network can be large, it contains a small subset,
the “constraint set”, which generates Lg under the lattice join-operation. In this section
we will describe the constraint-set and show the following: (1) The constraint-set has at
most |V(G)| members, and (2) Two networks have identical symmetry sets iff they have
identical constraint-sets. Thus the constraint-set can be used in place of the symmetry-set
in classifying networks.

Definition 5.4.1: For i = {1,...,n}, the minimal coset representative of i in the lattice
L.v of coset-representatives is the smallest coset f,H € L.v such that i € f,H(v). The
minimal symmetry or constraint of ¢ is the corresponding symmetry. The constraint-set of
G with respect to v is the collection of all of the minimal symmetries (constraints) in Lg.

ExaMPLE 5.4.1: For instance, in Example 5.3.1, the minimal symmetry of the vertex 4
with respect to vertex 1is sy = (1/2/3/4, 1/2/3/4, 6 = (1,4)(2,3)), since f;&(G), is the
smallest coset representative containing the vertex 4. The constraint-set of G with respect
to vertex 1 in Example 5.3.1 is {sy,s9,84}.

Proposition 5.4.1: If G has n vertices, its constraint-set has at most n elements. The
constraint-set of G with respect to a vertex v generates the lattice of symmetries under the
lattice join.

Proof First of all, for each ¢ € V(G), the minimal coset-representative C;, and hence
the minimal symmetry of ¢, is unique: For if ¢ € f,H(v) and ¢ € f,J(v) then i €
foH(v) N foJ(v), which equals (f,H N f37)(v) by Corollary 4.5.2 in Chapter 4. By
Proposition 5.3.2, fH N fyJ € L.v. Thus the constraint-set has at most n elements.

We next show that L.v is generated by the set of minimal coset-representatives under
lattice join. From this it follows that Lg is generated by the set of minimal symmetries
under lattice join.

Let f,H € L.v and suppose that f,H(v) = {i1,12,...,7%}. We will show that f,H =
Jay HaV ...V fo, Hy, where f, H; is the minimal coset-representative of i; for j = 1,..., k.
First, f,,H; € foH since f,,H; is the smallest coset such that i; € f, H;(v), and so
Jo,Hj 0 foH = fo;H;. This implies that f,, H1V ...V fy, Hx C foH. Now let g € fuH.
Then g¢(v) = ¢ for some 7 € {i,...,14}, that is, g(v) € f,,;Hi(v) for some f,,/H; €
{foxH1,. .., fo, Hr}. Since H;(v) and f,,H;(v) are blocks in the same block-system,
we must have gH;(v) = f,, Hi(v). Hence g € f,,;H; by Proposition 4.2.6 in Chapter
4, and so foH C fo,, HaV .. .Vf,, Hi. Hence f,H = f,, HiV ...V f,, Hk, and the set
{fasH1,. .., fo, Hi} generates L.v under lattice-join. a

ExXaMPLE 5.4.2: Referring back to example 4.5.1 in Chapter 4:

Let G be the Cayley graph of Dg acting on itself by left multiplication, with generators
J2 and fs, for f2 = (172)(374)(576)(778) and fs = (178)(273)(475)(677)

5.4. Generators For The Lattice Of Symmetries 73

Then for instance if s = (1,2/3,8/4,7/5,6 1,6/2,5/3,4/7,8, §) with 6 : {1,2} —
{3,4}; {3,8} —{2,5}; {4,7} — {1,6} and {5,6} — {7, 8}, then s has coset representative
fa(id, fs) with respect to vertex 1,

and s = s1Vsy, where

s1 = (m, 7,61 =(1,3,5,7)(2,4,6,8)) with coset representative f3{id}

and

sy = (m, m, b3 = (1,4)(2,3)(5,8)(6, 7)) with coset representative fy{id},

where 7 = 1/2/3/4/5/6/7/8.

The next lemma shows that the minimal symmetries of G can be characterized without
reference to the coset representatives.

Lemma 5.4.1: Lets = (w1, 72, 6) be a symmetry of G. Then s is the minimal symmetry
of w with respect to v iff w € §([v]x,) and for all symmetries s’ = (w3, 74, 6") for which
s’ <sinlg, ifwe §([v],,) thens’ =s.
Proof Let s be a symmetry having coset representative f,’H with respect to v. Suppose
first that s is the minimal symmetry of w with respect to v, so that f,’H is the smallest coset
representative of a symmetry of G for which w € f,H(v). Let 8’ <'s for s’ = (w3, 74, 6');
let s’ have coset representative f,J with respect to v, and suppose that w € 6'([v],) =
T (v). Since s’ < s we have f,J C f,H, by definition. Since f,H is the smallest coset
representative for which w € f,H(v), we have f, 7 = f,H and s’ = s.

Conversely, suppose that for all symmetries s’ = (73, 74, 6') for which s’ < s, if
w € §'([v]r,) then s’ = s. Let s’ be one such symmetry, having coset representative
fpJ with respect to v. Then if w € f,J(v) then fJ = f,H by hypothesis. Thus f,H is
the smallest coset representative for which w € f,H(v), and so s is the minimal symmetry
of w with respect to v. a

The next proposition shows that the constraint set, like the lattice of symmetries, is
independent of the choice of vertex v.

Proposition 5.4.2: For any v,w € V(G), the constraint-set of G with respect to v equals
the constraint-set of G with respect to w.

Proof Let s = (w1, m2, §) be the minimal symmetry of a vertex u with respect to v,
and let f.(v) = w. We claim that s is the minimal symmetry of f.(u) with respect to w.
By Lemma 5.3.2, if f,H is the coset representative of s with respect to v then f.f, Hf*
is the coset representative of s with respect to w. Now s being the minimal symmetry of
u with respect to v means that there is an element h € H for which fyh(v) = u. Then
fefahfTHw) = fo(u), so fo(u) € fofaHfTH(w). Tt is easy to see that f.f,Hf ! is the
smallest coset representative of f.(u) with respect to w. Thus s is the minimal symmetry
of f.(u) with respect to w, as claimed. Since f. is a bijection on V(G), it induces a bijection
between the constraints of G with respect to » and the constraints of G with respect to w.
O

Corollary 5.4.1: Two networks have identical symmetry-sets iff they have identical
constraint-sets. Hence two networks compute the same functions iff they have the same
constraint-sets.

74 5. Classifying Group Graphs

Proof Let G; and Gy be networks. By Corollary 5.3.1, if s} = s and s} = s} for
symmetries sl and s} of Gy and s2 and s? of Gy, then slvs! = sZvs?. Hence if G; and
G2 have the same constraint-sets then they generate the same lattice of symmetries under

the lattice join.

Conversely, suppose that Gy and Gy have identical symmetry-sets. Let s = (71, 72, 6)
amd s’ = (73, T4, 6') be symmetries of both Gy and Gy. By Proposition 5.3.4, s’ < s iff
6([v]r,) C 8'([v]5,) for all v € V(Gy) = V(Gz). Hence s’ <'s for s’ and s in the symmetry-
set of Gy iff 8’ < s for 8’ and s in the symmetry-set of Go. By Proposition 5.4.2, s is the
minimal symmetry of w with respect to v in Gy (respectively, Gy) if for all symmetries s’
of Gy (respectively, of Gy) for which 8’ <'s, if w € §'([v]:,) then s’ = s. Since Gy and Gg
have the same symmetries this means that s is the minimal symmetry of w with respect
to v in Gy iff it is the minimal symmetry of w with respect to v in Gs. a

Remark 5.4.1: As a corollary of the above we can conclude that if two networks compute
the same set of functions then they have isomorphic automorphism groups, since the
symmetries (71, T, 6) in which 6 is an automorphism of G are always constraints of G.

5.5 Computing Constraints

In this section we will give an algorithm for computing the constraints of a network.
The algorithm runs in time polynomial in the number of edges of a network, so in light of
Corollary 5.4.1 above, two networks can be checked for f-equivalence in polynomial time.
The algorithm makes use of M. D. Atkinson’s algorithm for finding the smallest block of
a block-system of a group containing a pair of points. For reference, we give Atkinson’s
algorithm below. Atkinson’s algorithm is polynomial in |X| for a permutation group G
with generator-set X acting on a set {1,...,n}.

Let G = (X) be a permutation group on {1,...,n}, and let {v,w} C {1,...,n}.

Algorithm 5.5.1: (Atkinson’s Algorithm) 2 Given a finite permutation group G on
aset {1,...,n};a pair (v,w):v,w €{l,...,n}, and a set of generators X for G, find the
block-system with the smallest block containing » and w, as follows:

Use the “orbit finding procedure” described below to find a relation A on {1,...,n},
where (7, 7) € A iff there is an element ¢ € G such that g(v) = 7 and ¢g(w) = j. Construct a
graph G from A such that V(G) = {1,...,n} and E(G) = {(¢,7) € A}. Then the connected
components of G form a block-system, in fact, the block-system with the smallest block
containing {v, w}.

Procedure for finding A: Given a set X of generators for G and the pair (v, w), find
A=A{(g(v),g(w): g € G}:

Find the orbit of the pair (v, w) under the action of G on the set of all pairsin{1,...,n},

as follows:

o A1 ={(v,w)}.

?Eugene Luks attributes this algorithm to C. C. Sims, in [Luk90]. The version of the algorithm we use
is from [Luk90].

5.5. Computing Constraints 75

e For ¢ =2 until A;_1 = A;;
A= A1 U{(g(r),g(s)): (r,s) € A1 and g € X}.
o A, = A
a

Theorem 5.5.1: Fiz a vertex v € V(G). There is an algorithm polynomial in the number
m of edges of G for finding the minimal symmetry in L.v of a vertex w, given V(G) and
the set {fo : @ € A(G)} of generators for E(G) as input.

The idea behind the algorithm is fairly simple: We first construct a relation A on V(G)
which is the “closest possible approximation” to an automorphism: G — G taking v to
w. A pair (7,) of vertices is in A if the proposed automorphism maps i to j. Next, we
construct block-systems w; and w5 such that A induces a bijection ¢ between the blocks
of mand 3. Then (71,72, 6) is the desired minimal symmetry.

How are A, 7y, and w9 constructed? If there did exist an automorphism é : G — G
mapping v to w, it would satisfy: 8 f,(v) = f.6(v) = fo(w) for all f, € £(G). Hence A
must contain all pairs {(f.(v), fo(w)) : fo € £(G)}. If A is to induce a bijection between
miand w9, it must map each block of 71 to a block of w5. For this to hold, 71 must satisfy:
If (4,k) and (j,k) € A then ¢ and j are in the same block of 71. In the same way A must
“preserve” the blocks of 7q, so if (k,7) and (k,j) € A then ¢ and j must be in the same
block of ws.

Notice that the relation A consisting of all pairs { f,(v), fa(w) : fo € E(G)} is precisely
the relation A from Atkinson’s algorithm. The relations By = {(7,j): (¢, k) and (j, k) € A}
and Ry = {(¢,7) : (k,i) and (k,j) € A} used to construct 7y and 7, are easily derived
from A.

More formally, we have:

Algorithm 5.5.2: (For finding the minimal symmetry of a vertex w with respect to a
vertex v:)

Step 1: Run the procedure in Atkinson’s algorithm for finding the relation A =
{(fa(v), fa(w)) : fo € E(G)} given the pair (v, w) and the generator-set {f, : a« € A(G)
for £(G).

Step 2: Construct relations Ry and Ry from A as follows: (i,7) € Ry iff (¢,k) and
(j, k) € A for some k € V(G), and (¢,7) € Ry iff (k,4) and (k,j) € A for some k € V(G).
Step 3: Construct partitions m; and 72 of V(G) from Ry and R; as follows: If (¢,7) € Ry
then 7 and j are in the same block of 71; and if (¢,j) € Ry then ¢ and j are in the same
block of ws.

Step 4: Let 6 : 1y — w3 be defined by: 6(B;) = C; if there are vertices ¢ € B; and j € C;
such that (¢,7) € A.

Then (71, w3,) is the desired minimal symmetry. O
ExaAMPLE 5.5.1: Referring back to Examples 5.3.1 and 5.4.1 again:

Take v = 1 and w = 2. Using the procedure for finding 4 in Atkinson’s algorithm,
we find that A includes the pairs (1,2), (2,1) = (f.(1), fa(2)), (1,3) = (fo(1), fo(2)),
(2,4) = (fu(1), fa(3)), (3,1) = (fu(2), fo(1)), and so on. This gives us

o A= {(1,2),(3,1).(1,3),(2,4),(4,2), (3,4), (4,3)),

76 5. Classifying Group Graphs

o Ry =4(1,1),(2,2),(3,3),(4,4),(1,4),(4,1),(2,3),(3,2)} = Ry,
e 6 maps {1,4} to {2,3} and {2,3} to {1,4}.
(See Figure 5.2.)

Figure 5.2: The generators for £(G) are f, = (1,2)(3,4) and f, = (2,3).

Proof of Theorem 5.5.1:
1 The Algorithm Is Correct:

We will show: (1) that m; and 7, are block-systems, (2) that ¢ is an isomorphism:

G/m — G/m2 mapping [v] to [w], and (3) that S = (71, 73, 6) is the minimal symmetry
for w with respect to v.
(1) m and 7y are block-systems: Let R} and R3 be the transitive closures of Ry and
Ry, respectively. It is easy to verify that R} and R} are equivalence relations defined on
all of V(G). By construction, 7y and w3 are the partitions associated with R} and R3.
To show that m is a block-system, it suffices to show that R} is a congruence, i.e., that
for all (z,7) € R} and for all f, € £(G), the pair (f,(7), fo(j)) is in R}. Now (¢,7) € Ry
iff there is a vertex k and elements f, and f. in £(G) such that f.(v) = ¢, fo(v) = j and
fo(w) = fo(w) = k. (Figure 5.3

)
a E a

b ! b c
Figure 5.3: R} is a congruence relation

Then
fafc(v) = fa(i); fafb(v) = fa(]) and fafc(w) = fafb(w) = fa(k)v S0 (fa(l)vfa(])) € Ry.

5.5. Computing Constraints 77

If (i,7) € R} then there are pairs {(i, k1), (k1,k2), ..., (ki—1, k1), (k1,7)} € R1. We showed
that {(fa(2), fa(k1)), (fa(k1), fa(J))} € Ry, and so (fu(?), fa(J)) € R} by transitivity.

The proof that 75 is a block-system is the same.

(2) §:G/m1 — G/7mq is an isomorphism and 6([v]) = [w] for [v] € 71 and [w] € 7y

(a) 6([v]) = [w]: Since id(v) = v and id(w) = w for the identity element id of £(G),
we have (v, w) € A, and so 6([v]) = [w].

(b) 6 is defined on all blocks of m1: Let i € V(G) and let f, € £(G) map v to ¢. Then
(7, fo(w)) € A. Hence 6 is defined on [i] € 7y.

(c) 6 is well-defined: Suppose that §(B) = C; and 6(B) = C; for B € 7y and for Cy
and Cy € m3. Then there are pairs (7,k) and (r,l) € A such that ¢, € B and k € Cq, and
[€ Cy. Since i and r € B there are pairs {(i, k1), (k1,k2), ..., (kp—1,kn), (kn,7)} € Ry and
hence elements {l;} € V(G) such that A contains all of the following pairs:

{0 k), (3, 00), (B, 1), (kis o), (K2, 00), -y (Ree1s Bn)s (Bis 1), (Rky i), (75 D), (D)}

Then R contains the following pairs:

{(k, 1), (L, 1), (U2, 13), s (Tps lpgr)s (g, D}

By transitivity, (k,{) € R5. That is, k and [are in the same block of 72, and so
C1 - C2.

(d) 6 is a bijection: A very similar argument to that used in (c) shows that ¢ is one-to-
one. To show that ¢ is onto, let [j] € 5. Then since G is connected, there is an element
fa € E(G) such that f,(w) = j. Hence there is a pair (¢,7) in A with ¢ = f,(v), and 6 is
onto.

(e) 6 commutes with the elements of £(G): Suppose that 6([¢]) = [j] for [i] € 7y and
[7] € 2. Let f, € £(G). By the construction of ¢ there is an element f, € £(G) such that
A([o) = [and fy(fw]) = [} Then fuf([0]) = fu([i]) and fuful[w]) = fu([j]), 50 there
exists i1 € fo([i]) and ji € fo([j]) such that (i1,71) € A. Then 6 f,([i]) = 6([i1]) = [1] =
fa([7]) = fa6([7]), and é commute with the elements of £(G). (Figure 5.4)

Hence ¢ is an isomorphism.

D W
)

()

b b

()

Figure 5.4: 6 commutes with the elements of £(G)

(3) w1, 72 are the finest partitions having an isomorphism ¢ : [v], — [w]:,: Suppose that
there are partitions 7’ and 75’ having blocks D, and F,,, respectively, with v € D,, C [v],
and w € F,, C [w]y,. If Fy, # [w], then there is a pair (i,j) € Ry such that 7 is in F,

78 5. Classifying Group Graphs

but j € [w], \ Fyu. Since (¢,7) € Ry and since 8([v],) = [w],,, there are elements f, and
fr € £(G) and k € [v],, such that f,(v) = fo(v) =k and f,(w) =1 and fy(w) = j. (Figure
5.5) Since F, is a block, f3F,, is a block not equal to F,, and f,F,, = F.

Figure 5.5: m; and 73 are the finest such partitions

If k£ € D, then there is no isomorphism which maps D, to F,,, since there is no function
6 which both maps D, to F,, and satisfies 6(f;D,) = 6(D,) = f26(D,). If k € [v], \ D,
then there is no isomorphism which maps D, to F,,, since there is no function 6 which
both maps D, to F, and satisfies 6(f,D,) = f,6(D,) = 6(D,). Hence F,, = [w];, and
D, = [U]ﬁ'

This concludes the proof of correctness.

II The algorithm runs in time polynomial in m: The relation A can be computed
using Atkinson’s algorithm in time polynomial in m. The relations Ry and Ry can be
constructed from A in n® steps each: There are n? pairs (7,7) to check for membership,
and each pair can be checked in n steps. The blocks of 7y are the connected components
of an undirected graph ?, where V(?) ={1,...,n} and E(?) = R;. Since 7 has n vertices
and does not have parallel edges, these components can be found in O(n?) steps. (For
instance, use a depth-first search algorithm to find a spanning tree of 7 in O(n?) steps,
where 7 has at most n? edges.) The same argument shows that the blocks of 75 can be
computed in O(n?) steps. The map § can be computed in O(n?) steps also: In n steps
the algorithm can choose a representative from each block of 7. For each representative
i, the algorithm can find a pair (7,7) € A in n steps and can identify the block that j
belongs to in n steps.

Since n < m, the algorithm can be executed in p(m) steps for p a polynomial. O

Corollary 5.5.1: Let Gy and Gy be networks with |V(Gy)| = |V(G2)| = n, and let m =
max{|E(G1)l|, |E(G2)|}, the mazimum number of edges in Gy and Gy. There is an algorithm
polynomial in m for determining whether Gy and Gy compute the same set of functions.

Proof By Corollary 5.4.1, two networks have identical constraint-sets iff they have
identical symmetry-sets. By Theorem 3.4.2 in Chapter 3, two networks compute the same

5.5. Computing Constraints 79

functions iff their symmetry-sets are identical. The constraint-sets of Gy and Gy can be
found in time polynomial in m and compared for equality in time polynomial in m. O

EXAMPLE 5.5.2: In the first chapter the claim was made that the graphs G; and Gy in
Figure 5.6 below compute the same set of functions. We are now in a position to prove
that claim, by showing that G; and Gy have identical constraint sets.

22(1 8
3,3

Gy
Figure 5.6: Two graphs with the same lattice of symmetries
Using the orbit-finding procedure in Atkinson’s algorithm one can show, for instance,

that if v = 1 and w = 4, that the relations A for G; and Gy are equal and consist of the
following pairs:

A= {(1,4),(4,1),(1,5), (5,1),(2,6), (6,2),(3,7), (7,3), (4,8),
(8,4),(5,8),(8,5),(6,7), (7,6),(2,3),(3,2)}
Hence
Ry =Ry ={(1,1),(2,2),...,(8,8),(4,5), (5,4),(3,6), (6,3),(2,7), (7,2), (1,8), (8,1)}.
This yields partitions = = m = 1,8/2,7/3,6/4,5 and isomorphism 6 =

({1,8},{4,5})({2,7},{3,6}). Thus the minimal symmetry for the vertex w = 4 is
(71, 71, 0), for this 71 and 6.

80 5. Classifying Group Graphs

The same sort of calculations give us the following minimal symmetries for Gy and Gj:
1 — 1: ¢ = the identity permutation of the partition 1/2/.../8.
1—2,1—=3,1—=6and1—7:6=({1,4,5,8},{2,3,6,7}).

l—4dand 1 —5:6=({1,8}{4,5})({2,7},{3,6}).

5.6 Networks Differing By A Permutation—Revisited

This last section considers a slightly more general classification scheme for networks
than the one previously considered. Call two networks Gy and Go “p-equivalent” if there
is a permutation p such that the functions computable by Gy differ from those computable
by Gy by p (Section 3.5 In Chapter 3.) Determining whether two networks are p-equivalent
under this relation seems to be harder than deciding whether they can compute the
same set of functions. In fact, Theorem 5.6.1 will show that it is at least as hard as
determining whether two finite permutation groups are isomorphic. As of this writing
the best algorithm for the group-isomorphism problem runs in O(nlg”) time for groups of
order n.

We will need the following lemma:
Lemma 5.6.1: If£(G) is regular on V(G) then the automorphism group of G is isomorphic
to £(G) and the constraints of G are precisely the automorphisms of G. That is, (71, 73, 6)

is a constraint of G with respect to a vertex v iff 1 = my = 1/2/.../n and § is an
automorphism of G.

Proof If (£(G),V(G)) is regular then by Propositon 4.6.1, the centralizer of £(G) in
Sym(V(G)) is isomorphic to £(G). By Proposition 4.6.2 the centralizer is the auto-
morphism group of G. Hence the automorphism group has n elements. Since all au-
tomorphisms are constraints (Remark 5.4.1) and since G has at most n constraints, the
constraint-set of G equals its automorphism group. a

For instance, if G is a Cayley graph of a group G then the constraints of G are its
automorphisms.

The group isomorphism problem is the following:

Problem: Group Isomorphism
Given: Groups Gy and G, of order n, given as group tables.
Question: Are Gy and Gy isomorphic?

Proposition 5.6.1: (From [Mil78])

Group isomorphism can be solved in O(nlog”"'o(l)) steps.
We have:

Theorem 5.6.1: There is a polynomial-time transformation of the group-isomorphism
problem to the problem of determining if two networks are p-equivalent.

5.6. Networks Differing By A Permutation—Revisited 81

Proof

Let Gy and G, be groups of order n given by group-tables. We will construct Cayley
graphs Gy and Gy for G; and G, and then rename the vertices and edge-labels so that
V(Gl) = V(GQ) and A(Gl) = A(Gz)

Define bijections p1 : G1 — {1,...,n} and p2 : G2 — {1,...,n}, where pi(g) =i if g
is the ith entry in the group-table for Gy, and ps is defined similarly. Construct graphs
Gy and Gy from Gy and G as follows: V(Gy) = V(Gg) = {1,...,n} and A(Gy) = A(Gy) =
{1,...,n}. A triple (4,4, k) with ¢,7,k € {1,...,n} is an edge in Gy if p;71(j) - p171() =
p1 1 (k). Gg is defined similarly, i.e., (¢,7,k) € E(Ga) if p271(j) - p271(3) = p27 1 (k). Gy
and Gy can be constructed in O(nz) steps each since the group-tables for Gy and G each
have n? elements.

Then Gy and Gy are the left Cayley graphs for Gy and Go, with the vertices and edge-
labels renamed. Hence £(Gy) and £(Gy) are regular permutation groups, and so by Lemma
5.6.1 above, a constraint of Gy (respectively, of G3) is a triple (7,7, ¢) wheremr = 1/2/.../n
and ¢ is a graph automorphism of Gy (respectively, G). By Proposition 4.6.4 in Chapter
4, the automorphism group of Gy is isomorphic to G; and the automorphism group of Gg
is isomorphic to Gy. Thus the constraint sets of Gy and Gy differ by a permutation iff G;
and Gy are isomorphic. O

82 6. Classifying Monoid Graphs

6. Classifying Monoid Graphs

6.1 Introduction

In this chapter we will look again at the problem of classifying graphs by their
symmetry-sets, this time extending our investigation to arbitrary monoid graphs. As
before, we seek a small set of graph properties which characterize the set of graphs having
the same symmetries. In Section 6.2 we will show that every monoid graph G has asso-
ciated with it a group-graph Gg whose symmetries partly specify the symmetries of G:
Every symmetry of Gg “extends” uniquely to a symmetry of G, and every symmetry of G,
“restricted to” Gg, is a symmetry of Gg. This means that the constraints of Gg, together
with instructions for extending them, completely specify the symmetries of G. In Section
6.3 we will show that finding Gg and the extensions of its constraints to symmetries of
G is not hard. We conclude that classifying monoid graphs by their symmetries is not a
hard problem. As in the previous chapter, the algorithms we present here are intended to
be transparent, rather than optimally fast.

6.2 Symmetries In Monoid Graphs

The aim of this section is to find conditions under which two monoid graphs have
the same symmetries. Suppose that a graph G has unique “coarsest” c-partition II (cf.
Proposition 3.2.2 Chapter 3). We will show the following:

1. If B is a block in II then the edge-label monoid £(G), “restricted” to B, is a group,
denoted by &£(G)|g. (This restriction is defined below.) &(G)|g, and &(G)|g, are
isomorphic groups for any blocks By and B in II.

2. Any isomorphism of quotients of G maps each block of 11 to itself. In particular, the
only automotphism of G/II is the identity automorphism.

3. Let Gg be the operator graph of £(G)|g on B with respect to some generator-set.
Then the symmetries of Gg are in one-to-one correspondence with the symmetries
of G. In fact, each symmetry of Gg extends uniquely to a symmetry of G.

Since Gg is a group-graph, the symmetries of Gg are generated by its constraints, as
in Chapter 5. The last theorem of the section uses this fact to give conditions under which
two graphs have the same symmetries.

We first define the “restriction of £(G) to a block”:

Definition 6.2.1: Let £(G) be the edge-label monoid of a graph G and let 7 be a c-
partition of V(G). If B is a block of 7, the stabilizer submonoid of B, written £(G)g, is
the set {g € £(G) : gis defined on B and gB = B}. It is straightforward to verify that
E(G)g is a monoid. The restriction of £(G) to B, written £(G)|g, is the monoid on B
whose elements are the functions in £(G)g restricted to domain B.

EXAMPLE 6.2.1: For G asin Figure 6.1, £(G) is generated by f, : 1 — 2;2 — 3;3 — 1l and
fo:1—4;2—5 and 3 — 6. The “coarsest partition” is Il = 1,2,3/4,5,6 = {By, Bz }.
Here £(G)g, = (fa) and £(G)|g, = ((1,2,3)). One can show that £(G)g, = (fsfafs '),
where f, f, f5~! maps 4 to 5, 5 to 6, and 6 to 4; and that E(G)Ig, = ((4,5,6)).

6.2. Symmetries In Monoid Graphs 83

Figure 6.1: The graph for Example 6.2.1

Proposition 6.2.1 (following) shows that £(G)|g is a group, and Proposition 6.2.2 shows
that £(G)|g, and £(G)|g, are isomorphic for any blocks By and By € II. We have:
Proposition 6.2.1: Let G be a (connected) graph and let © be a c-partition of V(G). Then
for any B € @, £(G)|R is a transitive permutation group on B.

Proof By definition of c-partition, if f, € £(G) is defined on any element of B then
it is defined on all of B. Since the elements of £(G)|g are one-to-one on B, they are
permutations of the elements of B, and so £(G)|g is a group. Since G is connected, for
every v, w € B there is an element f, € £(G) such that f,(v) = w. Hence since B is a

block, the restriction of f, to B is an element of £(G)|g. Thus £(G)|g is transitive on B.
a

Proposition 6.2.2: Let G be a graph and let 1 = {By,...,Br} be a c-partition of V(G).
If f. : By — By is an element of £(G), define a map f, 1 E(G)|g, — £(G)[, by falgp) = he
iff fagr(v) = hefa(v) for allv in By. Then fa is a group isomorphism: E(G)Ig, — £(G)|p,-
EXAMPLE 6.2.2: In Example 6.2.1. f;B; = By, and so, for instance, fb(fa) = fifufs?
since fyfo = fofufs™ fi-

Proof of Proposition 6.2.2 We will show first that f, is well-defined. Suppose that
fa(gb) = h. and fa(gb) = hg; that is, that fogs(v) = hefa(v) and fogs(v) = haf.(v) for
all v € B, for g, € £(G)|g, and for h. and hy € £(G)|g,. Then h.fu(v) = hqfu(v) for
all v € By. That is, hefo /7 (w) = hafaf7H(w) for all w € By, so h.(v) = hy(v) for all
v € By. Thus h. = hyg and f, is well-defined. Next, f, is a homomorphism: For suppose
that fu(gs) = ha, and fu(ge) = he, so that fu(gs)fa(ge) = hahe. Then fugy(v) = hafa(v)
and ,g.(0) = he fu(v) for all v € By, and 0 fogh(gu(0)) = hafs(ge(0)) = hhe fy(2) Tor al
v € By. Hence fa(gbgc) = hghe. f. also preserves inverses; for suppose that fa(gb) = h.
and fo(g;") = hg. Then fogp(v) = hefu(v) and fog; '(v) = hafa(v) for all v € By. Hence
he = fagnfu™" and by = fug; fu™0 on By, or hehy = fagnfu™ fugy ' fa™ = id on By, so
hg = hZ'. Thus f, is a homomorphism. Finally, f, is a bijection; for if g € &(G)|g, then
the restriction of flgyf, to By is an element of E(G)|g,- Then Lol g f)(0) = gp fa(v)
for all » € By, and so fa(fa_lgbfa) = gy, and f, is onto. f, is one-to-one since f, is. Thus
f.is a group isomorphism, as claimed. a

84 6. Classifying Monoid Graphs

Let 7 be a c-partition of G. The next proposition shows that a c-partition of a block
of © extends uniquely to a c-partition of G. First we will show, in the following lemma,
that a c-partition of one block of 7 “extends” to a c-partition of another block of 7.

Lemma 6.2.1: Let G have c-partition 7 = {B1,Bq,...,Bi} and let 7" = {C4,Cy,...,C;}
be a c-partition of By with respect to £(G)|g,. Then if f, € £(G) maps By to By, then
{faCuy- oy [uCy} is a c-partition of By with respect to £(G)|g, -

Proof Let C € 7'. We show that f,C is preserved by all g, € £(G)|g,. Let g, € £(G)|p,
and let h. be the restriction of f; gy f, to By. Then h. € E(G)Ig, and fohe(v) = gpfa(v)
on all points v in By. Since 7’ is a c-partition of By, either ~.C = C or C N A.C = 0.
Since gy(w) = fohof71(w) for all w € By, we have ¢,f,C N f,C = fohf71f.C N f.C
= fuh.CN f,C = fo(h.CN C) because f, is a bijection: By — By. Hence g, f,C N f,C is
empty iff h.CN Cis empty, and equals f,Ciff h.CNC = C. Since h.CN Cis either empty
or equal to C, this implies that g, f,C N f,C is either empty or equal to f,C; that is, that
f2C is a block. a

Proposition 6.2.3: Let G be a graph and let 1 = {By,...,Br} be a c-partition of V(G).
If ' = {Cy,Cq,...,C;} is a c-partition of By with respect to £(G)|g, then w' extends
uniquely to a refinement of 7.

EXAMPLE 6.2.3: For the graph G in Figure 6.2 we have Il = 1,2,3,4/5,6,7,8 = {By, B3 }.
Then 7' = 1,2/3,4is a c-partition of £(G)|g,, and 7’ extends uniquely to the c-partition
1,2/3,4/5,6/7,8 of G.

Figure 6.2: Extending a partition

Proof of Proposition 6.2.3 We have seen that any f, € £(G) which maps By to B;
also maps 7’ to a c-partition 7' = {f,Cq,..., fuC;} of Ba. We want to show that any
f» € £(G) which maps By to By maps 7’ to the same partition 7. Let f,C € f,7’. Since
71 f, maps By to By, it must preserve «’. In particular, f, 7! f,C is a block C’ € 7/, and
f.C = £, € fur'. That is, f,7' and fpw’ share a block in common. Since a block-system
is determined by a single block this means that f,7’ = fyr'. O

6.2. Symmetries In Monoid Graphs 85

By Propostion 3.2.2 in Chapter 3, any graph G has a unique “coarsest” c-partition
IT such that all other c-partitions of G are refinements of II. Suppose that B is a block
of this partition, and let Gg be an operator graph of £(G)|g with respect to the natural
action on B. Proposition 6.2.4 will show that any symmetry of Gg extends uniquely to a
symmetry of G, and that any symmetry of G, restricted to B, is a symmetry of Gg. The
next two results are preludes to this.

We have:

Lemma 6.2.2: Let G be a graph such that £(G) is a monoid but not a group, and let 11
be the unique coarsest c-partition of V(G). For any By # By € 1l there exists g, € £(G)
such that g,B1 = By but g, is undefined on Bs.

Proof We will need the following fact:

(*) Let G be a connected graph, and let v,w € V(G) be such that for all g, € £(G), if
gq is defined on v then g, is defined on w. Then any g, € £(G) is defined on v iff ¢, is
defined on w.

Proof of (*): If v = w then (*) is immediate. Suppose that v # w and let g, € £(G)
map v to w. Then g, is defined on v and so, by hypothesis, on w; and so g7 is defined
on v and so also on w. Continuing this argument, for any k£ > 1, gé“ is defined on » and
w. Since G is finite and g¢; is one-to-one on its domain there is a number & > 1 such that
gF(v) = v and gf(w) = w. Now suppose that g. € £(G) is defined on w. Then g.g; is
defined on v, and so g.g, is defined on w also. Then g.¢7 is defined on v and hence w.
Repeating this argument, we see that gcgf_1 is defined on w and so gcgé“ is defined on wv.
Now g.gf(v) = g.(v), s0 g. is defined on v if it is defined on w. This proves (*).

Proof of the lemma Suppose that there are blocks By and By in II such that for all
ga € E(G) which map By to By, if g, is defined on By then g, is defined on By. Pick ¢,
such that ¢,B; = B, and suppose that g, € £(G) is defined on By. Then gagb_lgb maps
B, to By, and so gagb_lgb, and hence g, is defined on By. By (*) this implies that for any
gy € £(G), gy is defined on v € By iff it is defined on w € By. By Lemma 3.2.3 in Chapter
3, this implies that U, ~ U, for any v € By and w € By. Thus » and w are in the same
block of 1I, by its construction. That is, By = Bs. a

Corollary 6.2.1: Let 11 be the coarsest c-partition of a graph G, let 71 and 73 be c-
partitions of G and let 6 : G/my — G/my be an isomorphism. Then for any block C € 7y
there is a block B € 11 such that C C B and §(C) C B. In particular, the only automorphism
of G/1L is the identity automorphism.

EXAMPLE 6.2.4: In Example 6.2.3,11 = 1,2,3,4/5,6,7,8 and G/Il is as pictured in Figure
6.3. The only automorphism of the quotient is the identity automorphism.

Proof of Corollary 6.2.1 Let § : G/my — G/m2 be a map. Suppose that §(C) = D
for blocks C € 7y and D € w3, and suppose that C and D are in two different blocks By
and By of II. By Lemma 6.2.2 there is an element f, € £(G) which maps By to By but is
undefined on By. Then ¢ cannot be an isomorphism, since f, is defined on C but not on

6(C).]

86 6. Classifying Monoid Graphs

Figure 6.3: G/II for G in Figure 6.2

The next proposition shows that the symmetries of G are in one-to-one correspondence
with the symmetries of any operator graph of £(G)|g under its natural action on B. We
will use the following notation:

Notation: Let B € 11, and let X C £(G)|g be a set of generators for £(G)|g. Write GgX
for the operator graph with respect to X of the natural action of £(G)|g on B.

Recall that GgX and GgY have the same symmetries for any generator-sets X and
Y of £(G)|g (Remark 4.4.2 in Chapter 4). The symmetries of an operator graph of a
group do not depend on the generators chosen for the group, but only on the group and
its action on a set. With this in mind, we will omit the specification of a generator-set X
of £(G)|g, and will write “Gg” for GgX.

We have the following;:

Proposition 6.2.4: Let Il be the coarsest c-partition of G, let B € 1I, and let Gg be an
operator graph of the natural action of £(G)|g on B. Then:
1. Any graph isomorphism from one quotient of Gg to another extends uniquely to an
isomorphism of one quotient of G to another.
2. For any isomorphism & from one quotient of G to another, there is an isomorphism
from one quotient of Gg to another that extends uniquely to 6.
Proof
Proof of (1): Let m’ and 7wy’ be c-partitions of Gg. By Proposition 6.2.3, 71" extends
uniquely to a c-partition 71, and 7' extends uniquely to a c-partition 7 of G. Let
6 : Gg/mi’ — Gg/my be an isomorphism. We will show that there is a unique isomorphism

6 : G/m; — G/my such that é equals 6 on B.

Construct 6 as follows: For each B’ € II, pick an element f, € &(G) which maps B to
B’. Define § : V(G/m1) — V(G/73) such that for each B, the restriction of § to B’ equals
faéfa_1 on the restriction of m; to B’. By the construction of the extensions 7y and my
(Proposition 6.2.3), 6 maps each block of m|g, to a block of m3|g,. Then:

(i) For each B € 11, the definition 0f5|B, is independent of the choice of f, € £(G) which
maps B to B':

For suppose that f, € £(G) also maps B to B’. Then f,~'f, maps B to itself.
Since 6 is an isomorphism, 6f, "' fy = f.7 fi6 on 7w, or £, N (fu6f. ") fy = 6. That
is, f46f,~" = f.6f,~" on B/, so the definition of § on B’ is independent of the choice of
element f, : B — B’.

(ii) & restricted to B equals 6:

6.2. Symmetries In Monoid Graphs 87

Let f, map B to itself. Then since ¢ is an isomorphism, we have f,6 = 6 f, on B, or
dg = fu o f, = 6.

(iii) & is an isomorphism: G/my — G/my:

First note that 6 maps each block B’ € II to itself, and so:

(a) If fp is defined on C € 7y then f; is defined on the block B’ € Tl which contains C.
Hence f; is defined on Ciff f, is defined on ¢(C).

(b) Suppose that f; is defined on C € 7y and that C C B’ € TI. Let f, € £(G) map B
to B, so that 5|B' = f,6f,7". Then on the block f,B’ € II, we have § = fy f.6f, " f, ™"
Since f,(C) C f,B', we have that 8(f,C) = fofad fa ' i fo(C) = fofa6 f7H(C) = £8(C),
so 6 commutes with the elements of £(G). Hence ¢ is an isomorphism.

(iv) & is the unique extension of 6:

This holds since 5|B = 6 and since an isomorphism is determined by its action on a
single vertex (or block).

This proves (1).

Proof of (2): To prove the second part of the theorem, let 6 : G/m — G/my be an
isomorphism, and write 7’ for 71|g and w3’ for m3|g. By Corollary 6.2.1, 6 maps each

block of II onto itself, and so if we define 6 = 5|B then 6 is an isomorphism from Gg/my’
to Gg/m2'. O

The last theorem in the section gives conditions under which two graphs have the same
symmetries. If G is a graph, we will write Il for the coarsest c-partition of G. We have:

Theorem 6.2.1: Let G and H be graphs. Then G and H have the same symmetries iff all
of the following hold:

1. lIg = {B1,By,...,Bx} = IIy.
2. GB1 and HB1 have the same constraints.

3. For each B; € {B1,Ba,...,Bx}, if g: € £(G) and h; € E(H) both map By to B;, then
for each constraint (71, 72,) of Gg, and Hg, , we have g;m1 = him1, gima = hima,
and giégi_l = hiéhi_l on g;m = hymy.

Proof (This is a corollary of Proposition 6.2.4.)

Suppose first that G and H have the same symmetries. Then (1) holds since
(Ilg,Ilg, id) and (IIy,Ily, ¢d) are symmetries, where id is the identity automorphism.
(2) holds since the symmetries of G and H, restricted to Gg, and Hg, are symmetries of
Gg, and Hp . Similarly, the symmetries (and hence the block-systems) of Gg, must equal
the symmetries of Hg for each ¢« =1,...,n. By Proposition 6.2.3, any block system m; of
Gp, extends uniquely to a block-system 7 = {71, 9271, ..., 9571} of G, where g; : By — B;.
Thus we have ¢g;m = h;m1 and g;72 = h;ms for 71, 2, ¢; and h; as given in condition (3).
By part 1 of Proposition 6.2.4, any constraint ¢ of Gg, (or of HBl) extends uniquely to a
symmetry of G (respectively, of H), where ¢ extends to an isomorphism on a block B; by
giégi_l or hiéhi_l, respectively, for ¢;B; = B; and h;By = B;. Hence (3) must hold.

88 6. Classifying Monoid Graphs

Conversely, suppose that conditions 1-3 hold. Let s be a symmetry of G. We will show
that it is a symmetry of H. Note first that the symmetry-set of Gg, equals the symmetry-
set of Hg, since both graphs have the same constraint-set (Corollary 5.4.1 in Chapter 5).
Secondly, by part 2 of Propositon 6.2.4, the restriction s’ of s to Gg, is a symmetry of
Gg, and hence of Hg . Since (3) holds, s’ extends to s in both G and H, by the proof of
part 1 of Proposition 6.2.4. a

6.3 Complexity

The last task of the chapter is to show that the symmetry-sets of two monoid graphs
can be checked for equality in time polynomial in the number of edges of the graphs. In
light of Theorem 6.2.1, this involves finding polynomial-time algorithms for each of the
following:

(1) Constructing the coarsest c-partitions IIg and Iy of graphs G and H, and checking
II and Iy for equality.

(2) Finding generators for £(G)|g for a block B € I, and generators for £(H)|g for
B e IIy.

(3) Finding the constraints of Gg and Hpg (that is, of £(G)|g and £(H)|g), and and

(4) Checking whether conditions 1 — 3 in Theorem 6.2.1 hold.

Theorem 5.5.1 in Chapter 5 shows that the constraints of Gg and Hg can be found in
polynomial time, given generators for £(G)|g and £(H)|g. Proposition 6.3.1 (next) gives
an algorithm for finding the coarsest partition II of a graph G.

Propostion 6.3.1 uses a modification of a DFA minimization algorithm (Page 68 in
[HU79]) to find II. Recall that vertices » and w are in the same block of I iff U, ~ U,
(Proposition 3.2.2 in Chapter 3). Recall also that U, ~ U, iff Ur~!" ~ US~!, where
n = |V(G)| (Proposition 2.4.2 in Chapter 2). The algorithm for finding Il will put sucessive
equivalence-relations ~j on V(G), where v ~y, w iff U¥ ~ U%. Tt halts for the first k such
that ~y=~_1. By the proof of Proposition 2.4.1, U, ~ U, iff UF ~ U* for this k.
Proposition 6.3.1: There is an algorithm polynomial in m = |E(G)| for finding the
coarsest c-partition 11 of V(G).

Algorithm 6.3.1: for finding II:
e Put an equivalence-relation ~q on V(G) by: v ~q w iff for all « € A(G) UA(G)™ we
have f, defined on v iff it is defined on w.
e For b = 2 until ~;,_1 =~j: Construct an equivalence-relation ~j on V(G) by
v ~p w iff v ~p_y w, and for each @ € A(G) UA(G)™, if f, is defined on v then
fa(v) ~p—1 fa(w).
o Let j be the smallest integer such that ~; =~;_4. Let m; be the partition of V(G)

associated with ~;. Then 7; = II.
Od

EXAMPLE 6.3.1: For the graph G in Figure 6.4, the partitions associated with the
equivalence-relations ~; are as follows:

m=1,2,3,4/5

6.3. Complexity 89

T =1,2,3/4/5
T3 = 1,2/3/4/5, and
II = T4 = Ty = 1/2/3/4/5

a a/‘\ a a
O——)— ;
G

Figure 6.4: Finding the Coarsest Partition

Proof of correctness:

By Lemma 2.4.3 in Chapter 2, for each positive k we have v ~j w iff UF ~ Uk,
The proof of Proposition 2.4.2 in Chapter 2 shows that as k increases, the partition 7
associated with ~j becomes strictly finer, up to a point. That is, if 7;_; = 7; for some
j then 7; = m;4; for all positive /. Hence if ~;_;=~;, then ~;=~,4, for all positive [;
and so v ~; w iff U, ~ U,,. Since [v] = [w] in Il iff U, ~ U, (Proposition 3.2.2), we have
T = II. O
Time to compute 11: Computing each equivalence-relation ~, takes O(n*m) steps: There
are O(n?) unordered pairs {v, w} of vertices and |A(G)UA(G)™| < m elements {f, € £(G)}
to check for definition on each pair. By Proposition 2.4.2, 7 < n — 1, and so finding the
equivalence-relations ~q, ~g,...,~; takes O(n*m) steps.

2

More sophisticated algorithms can be designed by transforming G into a deterministic
finite automaton and using a DFA-minimization algorithm, which runs in O(n?*m) steps.

([HU79]) O

Our next task is to find an algorithm for constructing £(G)|g, given a block B € II.
Once we have £(G)pg (the stabilizer submonoid of £(G) on B), it will be easy to find £(G)|Rg,
since the elements of £(G)|g are just the elements of £(G)g restricted to B. By definition,
E(G)R counsists of all the elements of £(G) which map B to itself. That is, £(G)g = {fu :
w is the word of a closed path through B in G/I1}.

Since every element in £(G)pg is defined on all vertices of B, the relation f,-1 f,(v) = v
for f, € £(G)g holds for all @ € A(G) UA(G)™ and for all v € B. That is, if a word
w € A(G)* has reduced form w’ then f,, = f,» on B. From this we can conclude that
E(G)Ig = {fuwlp : fuw € E(G) and w is the word of a reduced closed path through B in
G/1I1}.

We will look for the following:

(1) An algorithm for finding G/II

(2) A subset P of the set of reduced closed paths through a block B € II which generates
the set under path concatenation with cancellation (to be defined later). We will give a
method for computing P and show that P indeed generates the whole set of paths.

G/l is easy to construct. We have:

90 6. Classifying Monoid Graphs

Lemma 6.3.1: There is an algorithm polynomial in m = |E(G)| for finding G/11, given
G and 1I.

Algorithm 6.3.2: for finding G/II For each edge (vaw) € E(G):

¢ Find the blocks of Il containing v and w.

e Add ([v]a[w]) to a set E (the edges of G/II) if ([v]a[w]) is not already in E.
a

G/IL can be computed in time polynomial in m: The construction of II (Algorithm 6.3.1)
can include the following: (1) Assigning a name to each block; and (2) constructing a map
which takes each element of V(G) to the name of its block. If this map is available then
it takes O(1) steps to construct ([v]a[w]) from (vaw). Thus G/II can be constructed in
time polynomial in m. a

To construct the set P defined above we will make use of a result which is presented
in the literature on combinatorial group theory as follows:

Proposition 6.3.2: (Corollary 1, page 128 in [Coh89]. See also Theorem 5.2 in
[Mas67].)

Let G be a connected graph and let T be a spanning tree of G with root v. Then the
fundamental group 7(G,v) of G at v is free, with one basis element for each edge e = {(u a w)
not in T'. The basis element is the path class of the path pe = plepz_l, where py and ps
are paths in T having initial vertex v and terminal vertices u and w, respectively.

We will restate this result for graphs and give an elementary proof. First we will need
to define the inverse of a path and the operation “path concatenation with cancellation”:

Definition 6.3.1:

o Let p1 = vgaqvy ... vp—1arv; and py = vgagyy ... v, be paths in a graph. Write p1p,
for the concatenation v,aq ...05_10;VE0E+1 - . .V, Of p1 and po.

o Let p = vgayvias...vi_1a;v; be a path. The inverse of p, written p~!, is the path
vkalzlvk_l .. .aglvlal_lvo.

e Let P’ be the set of all closed paths through a vertex v in G. Define an operation
— “concatenation with cancellation”, on P’ as follows: If p; € P’ has word w; and
p2 € P’ has word wy then p; - py is the path through v with word w, where w is the
reduced form of wyws.

Let G be a graph and let T be a spanning tree of G with root ». For each edge
e = (waw) not in T, define a reduced closed path pe through v in G and containing e,
by pe = plepz_l, where p; and py are paths from the root in T" having terminal vertices u
and w, respectively. Let P = {pe,ps':e & T}.

We have the following;:

Proposition 6.3.3:
1. For any graph G, the set P defined above can be computed in time polynomial in
m = |E(G)|.
2. P generates the set of reduced closed paths through v in G under concatenation with
cancellation.

6.3. Complexity 91

Proof of (1): Use a graph traversal algorithm (e.g., a depth-first tree algorithm as
in [AHU74]) to find 7 in O(m) steps. For each edge e = (vaw) not in T, use a graph
traversal algorithm to find the (unique) reduced paths p; and py in T from v to u and
from v to w, in O(m) steps. o

To prove part 2 of the propostion we will make use of the following lemma:

Lemma 6.3.2: Let G be a graph and v € V(G), and let P be a set of reduced closed paths
through v which generates the set of reduced closed paths through v under concatenation
with cancellation. Construct a (connected) graph G' from G by adding an edge e = (v aw)
(where w or w may or may not be vertices of G). Let p' be a reduced closed path through
v in G’ containing one instance of e. Then the set P U {p',(p')~'} generates the set of
reduced closed paths through v in G'.

Proof We will prove the lemma by induction on the number of instances of e; € {e,e™!}
in a reduced closed path p through ».

Base case: lLet e = (uaw) and let p = pyepy be a reduced closed path through v, where
v is the initial vertex of p; and the terminal vertex of po, and p; and py do not contain e.
We will show that p is a product of paths in P U {p/,(p')7'}. Let p = q1eq. Since e is
not an edge in ¢; or ¢ we have by hypothesis that the reduced forms of the paths plql_l
and p2q2_1 are products of paths in P. Then p = pqulqlquqz_lpg is a product of paths in
PU{p,(p))~'}. If instead p is a path containing one instance of e™! (and no instances of
e) then p~! contains one instance of e, and the above argument shows that p is a product
of paths in P U {p,(p’)~'}. This proves the base case.

Induction case: Let p = preypaesy...prerpr+1 be a reduced closed path through v in G,
where the p; are paths not containing e or e™!; the initial vertex of p; and the terminal
vertex of ppyy is v, and e; € {e,e”!} for s = 1,..., k. Suppose first that e; = e, and
let p’ = ¢q1eqq, as above. By the induction hypothesis, the reduced forms of the paths
Pe = preqy and py, = q;'pa...exprpy1 are products of paths in P U {p/,(p)}, and so
P = paps is, also. If e, = e~ ! then let p, = ple_lql_1 and pp = ¢1p2 ... Pr+1, and argue as
above. a

Proof of part 2 of Proposition 6.3.3 We prove the proposition by induction on the
number of edges in G.

Base case: If G has one edge e = (vav) then P = {e,e”'} and the result is clear. If
e = (vaw) with v # w then P is empty and G has no nontrivial reduced closed paths
through wv.

Induction case: Suppose that the result holds for a graph G: P generates all reduced
closed paths through v in G. Form a connected graph G’ from G by adding an edge
e = (vaw). If either v or w is not a vertex of G then there is no reduced path through v
containing e in G’. Otherwise, let p’ = pe, where pe is as given in the definition of P. Let
p be any reduced closed path through v in G’. If p does not contain e or e~! then it is a
reduced closed path through » in G, and so by the induction hypothesis, is a product of
paths in P. If p contains k edges from the set {e,e~'}, then by Lemma 6.3.2 above, p is
a product of paths in the set P U {p/, (p)71}. O

92 6. Classifying Monoid Graphs

Corollary 6.3.1: A set of generators for £(G)|g can be computed in time polynomial in
m = |E(G)|.

Proof Let P be a set of paths through B in G/II, defined as above. By Proposition 6.3.3
P generates all educed closed paths through B under concatenation-with-cancellation.
Hence the set {f, € £(G)|g : wis a word of a path in P} generates £(G)|R. o

We can now show that arbitrary monoid graphs can be checked for f-equivalence in
polynomial time. We have the following:
Theorem 6.3.1: Let G and H be graphs having the same number of vertices and having mq
and msy edges, respectively. Then there is an algorithm polynomial in m = max{my, ms}
for determining whether G and H have the same symmetry-sets.

Proof Referring back to Theorem 6.2.1, we need to check three things:
1. Ig = IIy = {B1,By,...,Bx}.
2. GB1 and Hg have the same constraints, and

3. For each block B; € {By,Bg,...,B}, for each f, € £(G) and hy, € E(H) which
map By to B;, and for each constraint (mq, w2,) of GB17 we have f,m1 = hpmy and
famo = hpmy, and fL6f,7 ! = hbéhb_l on By.

Note that if f,, and f,, in £(G) both map By to B;, then by the proof of Propostition

6.2.4, f,, 6 a_11 = fa, 6fa_21, where defined, for each constraint 6 of Gg . This lets us restate
condition (3) as follows:
(3°) Let Fy = {fay,..., fa,} and Fo = {hp,,..., hp,} be sets of elements of £(G) and of
E(H) such that for each block B; € {By,B3,...,Br}, fo,B1 = B; and hy,B; = B;. Then
for all constraints § = (w1, g, 6) of GB1 and HB1 we have f,.m1 = hy,m1; fo, T2 = Iy, T2,
and faiéfa_i1 = hbiéhb_il, where defined, for e =1,..., k.

By Proposition 6.3.1 we can find II and Il in time polynomial in m. By Corollary
6.3.1 we can find generator-sets for Gg, and Hg in time polynomial in m. Theorem 5.5.1
in Chapter 5 shows that we can check the equality of the constraint-sets of Gg, and Hpg,
in time polynomial in m.

The sets F; and F3 can be found in time polynomial in m as follows: From each block
B; € {B1,Bg,...,By} pick an element v; (e.g., the smallest element in the block), and
find a path p in G from vy to v;, by using a graph traversal algorithm ([AHU74]). Then
Ja, = fuw € E(G), where w is the word of p. F} is constructed in the same way. Gg and Hg,
have at most n < m constraints, and F; and F, each has at most n elements, and so for each
constraint (71, w2, §) the sets {faiéfa_i1 :t=1,...,n} and {hbiéhb_il :t=1,...,n} can be
computed in time polynomial in m. Furthermore, the action of each function faiéfa_i1 on
fa;m1 can be computed in time polynomial in m steps, and so in time polynomial in m it
can be determined whether faiéfa_i1 equals hbiéhb_il, fori=1,...,n. a

93

7. Conclusion

7.1 Summary Of The Paper

This paper addressed three questions: (1) What characterizes the set of vector-valued
functions a given network can compute? (2) How hard is it to tell whether two networks
can compute the same set of functions?, and (3) How hard is it to tell if two networks
can compute the same functions “up to a permutation”? The second and third questions
pose graph classification problems: We called two graphs “f-equivalent” if the set of
functions each can compute is the same, and “p-equivalent” if the set of functions each can
compute is the same up to a permutation. We sought graph features which would correctly
classify graphs into their f- and p-equivalence-classes, and found that the desired graph
features are the quotient-graph isomorphisms: Two graphs are f-equivalent iff their sets of
quotient-graph isomorphisms are identical, and p-equivalent iff their sets of quotient-graph
isomorphisms differ by a permutation. The second and third questions mentioned above
were then couched as questions in graph theory; namely, “How hard is it to determine
whether two graphs have the same set of quotient-graph isomorphisms? How hard is it to
determine if they have the same set of quotient-graph isomorphisms, up to a permutation?”
Chapter-By-Chapter Summary: In Chapter 2 we found a characterization of the functions
a given network can compute. We saw that a network computes precisely those functions
which “respect” its rooted universal covers. More precisely, G computes f iff for all ¥ and
¢in I"; U, ~ U,y implies that f(Z); = f(¥);. In Chapter 3 we showed that a network G
computes exactly those functions which “satisfy the symmetries” of the network, where a
symmetry of G is an isomorphism of quotients of G. We saw that two networks compute
the same functions iff they have identical symmetry sets, and that two networks compute
the same functions “up to a permutation” iff their symmetry-sets are identical “up to
a permutation”. In Chapter 4 we developed the notion of an “operator graph”, whose
vertices are the elements of a set and whose edges correspond to elements of a group
acting on the set. We also found a one-to-one map from the set of cosets of subgroups of
the edge-label group of a graph to the set of quotient-graph isomorphisms of the graph.

Chapters 4 and 5 examined “group-graphs”; graphs whose edge-label monoids are
groups, and Chapter 6 extended the results in Chapter 5 to graphs with arbitrary edge-
label monoids. In Chapter 5 we showed that the set of quotient-graph isomorphisms (“sym-
metries”) of a group-graph form a lattice. We found a small subset—the “constraints”—of
this lattice which generates the lattice under lattice-join, and concluded that two graphs
have the same lattice of symmetries iff they have identical “constraints”. Hence two net-
works compute the same functions iff they have the same constraint-set. We showed that
finding the constraint-set of a graph is easy, and concluded that classifying graphs by their
symmetries is not a hard problem. Chapter 6 extended these results to arbitrary “monoid
graphs”. We showed that every graph G has a unique coarsest c-partition Il of its vertices,
such that £(G)|g, the edge-label monoid of G restricted to a block B of II, is a group.
We saw that £(G)|g, ~ £(G)|g, for any blocks By and By € II, and that any symmetry
of the operator graph of 5(G)|B1 on By extends uniquely to a symmetry of G. We found
algorithms for computing Il and £(G)|g, and concluded that classifying arbitrary monoid

94 7. Conclusion

graphs by their symmetries is also easy. Finally, we showed that determining whether
two graphs compute the same functions “up to a permutation” is at least as hard as
determining whether two groups, given as group tables, are isomorphic.

7.2 Open Questions

There are several extensions of this work which might be worth investigating. We
could, for instance, drop the requirement that links be two-way. In this case, processors
may not be able to compute their rooted universal covers, but each processor v can
compute a subgraph T, of U, induced by the path in U, directed towards the root.
The characterization of the functions computable by a network (Theorem 2.5.1) probably
extends to directed networks if the following conjecture holds:

Conjecture 7.2.1: Let G be a strongly connected, edge-labeled digraph, let v € V(G), and
let T, be the subraph of U, induced by the set of edges in U, directed towards the root. If
T, ~ Ty, then U, ~ U,.

More generally we could ask: What subgraphs of U, determine U,, if G is, say, strongly
connected; not strongly connected; edge-labeled; not edge-labeled, and so on?

For another extension of this work, we could drop the edge-label condition we imposed
and allow two edges directed towards a vertex or two edges directed away from a vertex
to have the same edge-label. It is not unreasonable to allow two edges directed towards
a vertex in a computer network to have the same label. If the edge-label condition were
dropped, edge-label functions would become edge-label relations. Graphs with edge-label
relations are well-studied in algebraic automata theory (e.g., see [Hol82]), and some of the
results of that field might transfer to this case. In particular, the definition of “covering
map” found in algebraic automata theory extends the definition we gave to graphs with
edge-label relations.

Finally, we would like to know if there is polynomial-time transformation of the
problem: “Computes the same functions up to a permutation” (Section 5.6 in Chapter 5)
to the problem of group isomorphism. Are these two problems polynomially equivalent?

95

List Of Symbols

Chapter 2

Section 2.2

o N = (Vu, Ex, pa) denotes a network, where
Vs denotes the processor set of N,
pn- denotes the processor labeling map of N, and
En denotes the set of links of NV.

o L=A{(v,1),(w,j)}is a link.

o deg(v)is the number of links incident with v.

Subsection 2.2.1

e I and O denote the input alphabet and the output alphabet, respectively.
Subsection 2.2.2

o G=(V(G), E(G), A(G)) denotes a directed, edge-labeled graph, where
V(G) denotes the set of vertices of G,
E(G) denotes the set of edges of G, and
A(G) denotes the set of edge-labels of G.
e G and H are graphs.
o u,v,w,T,s,10,7, k all represent vertices.
e a,b,c,d, e all represent edge-labels.
e (vaw) is an edge with vertices v and w and edge-label a.
¢ (G,7), denotes a graph G with input 7.
Section 2.3
o £(G) denotes the edge-label monoid of a graph G.
A(G) ={at:a e A(G)}.
A(G)* denotes the set of words over A(G) U A(G)™.
A denotes the empty word.

un is the “undefined vertex”.

Fas fos o fasr Gas Gu—1, and so on, are elements of E(G).
Subsection 2.3.2

e 6,6,a,0 denote covering maps.
Section 2.4

o U denotes the universal cover of a graph.

e U, denotes the rooted universal cover of a graph.

e U, ~U,: “U, and U, are isomorphic”.

e U,% denotes a rooted universal cover with input ¥.

e UF denotes a rooted universal cover truncated at depth k.
Chapter 3

Section 3.2
o f,B denotes the set {f,(ix) : ix € B}.

96

List Of Symbols

e 7 denotes a c-partition.
U502, ooy 0k Th1s - o585/ oo U, 041, - s &y, denotes a c-partition of the set
{i1,%2, .., U}, with blocks {i1,..., %}, {ig+1,-- .,i]‘}, R T S

e [i] denotes the block of a partition containing the vertex i.
[7] denotes the block of © containing 4.

o m <X mo: “ my is a refinement of w7,
Section 3.3

o II denotes the “coarsest c-partition” of a graph.
e G/m denotes a quotient graph of G by .

e ~; is an equivalence-relation on V(G).

e z[;) denotes x;, where i € [i] € 7.

o (&) is the vector (Ts([1]), - - - Ts([n]))-

Section 3.4

o (m1, M2, 6) denotes a symmetry of a network.
Section 3.5

e pG, denotes a graph G with its vertices relabeled by a permutation p.
e p(m) denotes the “permutation” of = by p.

Chapter 4

Section 4.2
e (G,5) denotes a permutation group G on a set S.
e Sym(S5) denotes the symmetric group on .

e G, denotes the stabilizer subgroup of v € 5.

e H(v) denotes the set {h(v):h € H}.
Section 4.3

e pr(G) denotes the permutation group corresponding to the action T
Section 3.5

e 1R denotes the left Cayley graph of £(G) with respect to the generator-set {g, : a €

A(G)}.

Section 4.5
o Lgv or Lg denote the lattice of block-systems.

e A and V denote the lattice meet- and join-operations.
Section 4.6

¢ Coynm(s)¥ denotes the centralizer of a group G.

Chapter 5

Section 5.3

o L.v denotes the lattice of coset-representatives of a graph with respect to a vertex
V.

Lsv denotes the lattice of symmetries with respect to v, and

Ls denotes the lattice of symmetries.

Chapter 6

Section 6.2

o £(G)R deontes the stabilizer submonoid of a block.
o £(G)|R denotes the restriction of £(G) to B.
e GgX and Gg denote the operator graph of £(G) on X.

97

98 References

References

[ABR87] Fred Annextein, Marc Baumslag, and Arnold Rosenberg. Group action graphs
and parallel architectures. Technical Report COINS Technical Report 87-133,
Department of Computer and Information Science, University of Massachusetts
at Ambherst, 1987.

[AHU74] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer
Algorithms. Addison Wesley, 1974.

[Ang80] D. Angluin. Local and global properties in networks of processors. In ACM
Symposium on the Theory of Computing, pages 82-93, 1980.

[ASWS88] H. Attiya, M. Snir, and M. Warmuth. Computing on an anonymous ring. .J.
ACM, 35:845-875, 1988.

[BQQ] J. Richard Biichi. Finite Automata, Their Algebras and Grammars. Springer
Verlag, 1989.

[BB89] Paul Beame and Hans L. Bodlaender. Distributed computing on transitive
networks: The torus. In Proceedings of The Siazth Annual Symposium on
Theoretical Aspects of Computer Science, Springer Verlag Lecture Notes in
Computer Science, pages 294-303, Heidelberg, 1989.

[BMW93] H.L. Bodlaender, S. Moran, and M. Warmuth. The distributed bit-complexity
of the ring: From the anonymous to the non-anonymous case. To appear in
Journal of Information and Computation, 1993.

[Bol79] Béla Bollobés. Graph Theory, An Introductory Course. Springer Verlag, 1979.

[BRI1] Marc Baumslag and Arnold Rosenberg. Processor-time tradeoffs for Cayley
graph interconection networks. In Proc. of the Sixzth Distributed Memory
Computing Conference, pages 630-636, 1991.

[BS81] Stanley Burris and H. P. Sankappanavar. Algebraic Topology: An Introduction.
Springer Verlag, 1981.

[Coh89] Daniel E. Cohen. Combinatorial Group Theory: A Topological Approach.
London Mathematical Society, Cambridge University Press, 1989.

[DP90] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 1990.

[FLM8&5] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossiblilty proofs for
distributed consensus problems. In Proceedings of The Fourth Annual ACM
Symp. on Principles of Distributed Computing, pages 59-70, Minaki, Ontario,
1985.

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Patterson. Impossiblity of distributed
consensus with one faulty processor. J. ACM, 32:374-382, 1985.

[GT87] J. Gross and T. Tucker. Topological Graph Theory. Wiley Interscience, 1987.

[Hol82] W. M. L. Holcombe. Algebraic Automata Theory. Cambridge Studies in
Advanced Mathematics, Cambridge University Press, 1982.

[HU79] J. E.Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, 1979.

References

[JacT4]
[KKvdB90]

[Koc70]
[Lei82]

[Luk90]

[MASY]

[Mas67]
[Mil78]

[Mo056]
[MW93]
[Nor93]

[REHT2]

[Rob82]

[Sco87]
[SS89]

[Tch87]

[Wei64]
[YKS7a]

[YKS87b]

99

Nathan Jacobson. Basic Algebra I. W. H. Freeman, 1974.

E. Kranakis, D. Krizanc, and J. van den Berg. Computing boolean functions
on anonymous networks. In Proceedings of The International Conference on
Algorithms, Languages and Programming, pages 254-267, 1990.

R. Kochendorffer. Group Theory. McGraw-Hill, 1970.

F. Thomas Leighton. Finite covers of graphs. Journal of Combinatorial Theory
b, 33:231-238, 1982.

Eugene Luks. Lectures in polynomial-time computation in groups. Technical
Report CIS-TR-90-21, Department of Computer and Information Science,
University of Oregon, Eugene, OR, 1990.

Y. Matias and Y. Afek. Simple and efficient election algorithms for anonymous
networks. In J. C. Bermond and M. Raynal, editors, Third International Work-
shop on Distributed Algorithms, Springer Verlag Lecture Notes in Computer
Science, volume 392, pages 183-194, Heidelberg, 1989.

W. S. Massey. Algebraic Topology: An Introduction. Springer Verlag, 1967.

Gary Miller. On the n'8" isomorphism technique. In Proceedings of the Tenth
ACM Symposium on the Theory of Computing, pages 51-58, 1978.

E. F. Moore. Gedanken-experiments on sequential machines. Annals of Math-
ematics Studies, 34:129-153, 1956.

S. Moran and M. Warmuth. Gap theorems for distributed computation. To
appear in STAM Journal on Computing, 1993.

Nancy Norris. Universal covers of graphs: Isomorphism to depth n — 1 implies
isomorphism to all depths. To appear in Discrete Applied Mathematics, 1993.
P. Rosenstiehl, J. R. Fiskel, and A. Hollinger. Intelligent graphs: Networks of
finite automata capable of solving graph problems. In Ronald Read, editor,
Graph Theory and Computing, pages 219 — 265. Academic Press, 1972.

Derek J. S. Robinson. A Course in the Theory of Groups. Springer Verlag,
1982.

W. R. Scott. Group Theory. Dover Publications, 1987.

B. Schieber and M. Snir. Calling names on nameless networks. In Fighth
Annual ACM Symposium on the Principles of Distributed Computation, pages
319-328, 1989.

Maurice Tchuente. Computation on a finite network of automata. In C. Chof-
frut, editor, Automata Networks, pages 53 — 67. Springer Verlag Lecture Notes
In Computer Science, 1987.

Helmut Weilandt. Finite Permutation Groups. Academic Press, 1964.
M. Yamashita and T. Kameda. Computing functions on an anonymous net-

work. Technical Report LCCR 87-16, Simon Fraser University, Vancouver,
Vancouver, British Columbia, 1987.
M. Yamashita and T. Kameda. Computing on an anonymous network. Tech-

nical Report LCCR 87-15, Simon Fraser University, Vancouver, Vancouver,
British Columbia, 1987.

100 References

[YK88] M. Yamashita and T. Kameda. Computing on anonymous networks. In
Proc. Tth ACM Symp. on Principles of Distributed Computing, pages 117-131,
Ontario, 1988.

