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1. Introduction 11 IntroductionIn this paper we demonstrate how weighted majority voting can be applied to ob-tain robust algorithms for learning binary relations. Following Goldman, Rivest andSchapire [GRS93], a binary relation is de�ned between two sets of objects, one of cardi-nality n and the other of cardinality m. For all possible pairings of objects, there is apredicate relating the two sets of variables that is either true (1) or false (0). The relation isrepresented as an n�m matrix M of bits, whose (r; j) entry is 1 if and only if the relationholds between the corresponding elements of the two sets. Furthermore, there are a limitednumber of object types. Namely, the matrix M is restricted to have at most k distinct rowtypes amongst its n rows. (Two rows are of the same type if they agree in all columns.)This restriction is satis�ed whenever there are only k types of objects in the set of n objectsbeing considered in the relation.We shall study the problem of learning binary relations under the standard on-line (orincremental) learning model [Lit89, Lit88]. The learning session consists of a sequence oftrials . In each trial, the learner must predict the value of some unknown matrix entry thathas been selected by the adversary1. After predicting the learner receives the value of thematrix entry in question as feedback. If the prediction disagrees with the feedback, then wesay the learner has made a mistake. The learning session continues until the learner haspredicted each matrix entry. The goal of the learner is to make as few mistakes as possible.Since the number of binary relations is at most 2kmkn the standard halving algo-rithm [BF72, Lit88, Ang88] makes at most km+n lg k mistakes2. Observe that the halvingalgorithm can be viewed as keeping 2kmkn weights, one weight per possible binary relation.Initially, all weights start at 1, and whenever a binary relation becomes inconsistent withthe current partial matrix its weight is set to 0. To make a prediction for a given matrixentry, each binary relation votes according to its bit in that entry. Finally, the halvingalgorithm predicts according to the majority of consistent relations (i.e. those with weight1), and thus each mistakes halves the total weight in the system. Since the initial weight is2kmkn and the �nal weight is at least 1, at most km+ n lg k mistakes can occur.Observe that the time used to make each prediction is linear in the number of weights.Thus we are interested in algorithms that use a small number of weights in representingtheir hypotheses. The algorithms we present update the weights according to a variant ofthe weighted majority algorithm of Littlestone and Warmuth [LW89] called WMG. We viewWMG as a node that is connected to each of its inputs by a weighted edge. The inputs arein the interval [0; 1]. An input x of weight w votes with xw for 1 and (1� x)w for 0. Thenode \combines" the votes of the inputs by determining the total weight q0 (respectivelyq1) placed on 0 (respectively 1) and predicts with the bit corresponding to the larger of thetwo totals (and for the sake of discreteness with 1 in case of a tie). After receiving feedbackof what the prediction should have been, then for each input the fraction of the weightplaced on the wrong bit is multiplied by �, where � 2 [0; 1). Thus the weight w of an inputx becomes (1 � x + x�)w if the feedback is 0 and ((1� x)� + x)w if the feedback is 1. If� = 0 then the total weight halves in each trial in which the node makes a mistake and weobtain an analysis like that of the halving algorithm.1The adversary, who tries to maximize the learner's mistakes, knows the learner's algorithm and hasunlimited computing power.2Throughout this paper we let lg denote the base 2 logarithm and ln the natural logarithm.



2 2. Our Constructions For Applying WMGThe remainder of this paper is organized as follows. In Section 2 we present our twodi�erent constructions for applying WMG to the problem of learning a binary relation. InSection 3 we de�ne an important generalization of the problem of learning binary relationswith noisy data and show how the robust nature of WMG can be exploited to handlesuch noise. In Section 4 we present our main result. Namely, we provide a technique thatenables us to prove an upper bound on the number of mistakes made by our polynomial-time algorithm to learn binary relations even when noise is present. Finally, in Section 5we end with some concluding remarks.2 Our Constructions For Applying WMGIn this section we describe two di�erent methods for applying WMG to the problem oflearning a binary relation. The �rst construction uses one node and kn weights. Thus thenumber of weights is still exponential but signi�cantly lower than the number of weightsof the halving algorithm (2kmkn). For this case, the analysis is straightforward and forthe noise-free case the bounds achieved are essentially optimal with respect to the knowninformation-theoretic lower bound. The purpose of this construction is to show what ispossible when computational resources are cheap. In the second construction we use onenode for each of the n rows and one weight for each pair of rows (i.e. �n2� weights). Provingbounds for the second construction is much more involved and is the focus of the paper.The bounds obtained are non-optimal when compared to those obtained when computationtime is not a concern. However, our bounds are signi�cantly better than previous boundsobtained by a polynomial algorithm.In the �rst construction we use one weight per partition of the n rows into at most k rowtypes (i.e. kn weights). Initially all weights are set to 1. To make a prediction for a newmatrix entry, each partition (with non-zero weight) votes as follows: If a column of the rowtype to which the new entry belongs has already been set then vote with the value of thisbit, otherwise, vote with 1=2 causing the weight to be split between the votes of 0 and 1.Our algorithm predicts according to the weighted majority of these votes (see Figure 2.1).Recall that after receiving the feedback WMG multiplies the fractions of the weights thatwere placed on the wrong bit by �. By selecting � = 0, the weight of partitions that predictincorrectly (and are thus inconsistent with the partial matrix) are set to zero and the weightsof all partitions that split their vote are halved. After all entries of the target matrix areknown, the correct partition has weight at least 2�km since it never predicted incorrectly,and split its vote at most km times. Since the initial weight is kn, we obtain the mistakebound of km+ n lg k just as for the halving algorithm. (Actually, one can show that when� = 0 then the �rst construction simulates the halving algorithm with kn weights instead of2kmkn weights). Note that the mistake bound of this algorithm is essentially optimal sinceGoldman et al. [GRS93] prove an information-theoretic lower bound of km+ (n� k)blg kcmistakes. While this construction has assumed that an upper bound on k is known, if nosuch bound is provided the standard doubling trick can be applied.In the second construction one weighted majority node is used per row of the matrix,and one edge between each pair of nodes. Thus, unlike the �rst construction, no knowledgeof k is needed. Let err0 (and er0r) denote the (undirected) edge between the node for row rand the node for row r0, and let w(e) to denote the weight of edge e. The node for row rdictates the predictions for all entries in row r. So the nodes, in some sense, partition thelearning problem amongst themselves. Assume Mrj is the next value to predict. To make
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Figure 2.1: This �gure illustrates how the voting works in our �rst construction.In this example k = 2. We use the two degrees of shading to indicate how the rowsof the matrices are partitioned. Thus on the right we have shown the partiallyknown matrix under three di�erent partitions. Just to the left of each partition weshow its vote for the unknown matrix entry. Recall that a partition voting with1=2 can be viewed as a vote of 1 with half of its weight and a vote of 0 with halfof its weight. So the overall prediction made in this example is 1 if and only ifw2=2 + � � �+ wkn � w1 + w2=2 + � � �.its prediction, the node for row r combines the votes of the n� 1 inputs from column j ofmatrix M . Each node r0 6= r votes with the weight w(err0) for the bit at Mr0j . If the bitMr0j is unknown (corresponding to its vote being 1=2) then the weight is split between thetwo votes (see Figure 2.2). If a mistake occurs then only the n � 1 weights connected tonode r are adjusted using a multiplicative weight update scheme. Thus we are running ncopies of the WMG in parallel, where in each trial only one of the copies makes a prediction.We show that this parallel composition of weighted majority style algorithm \learns" in thesense that if there are few row types in the matrix then the algorithms eventually cooperateto make few mistake altogether. This holds even if the adversary gets to choose in whatorder the entries of the matrix M are uncovered.33A version of the above algorithm following the second construction is described in detail in Figure 2.3.For the sake of simplicity it is parameterized by an update the factor  = 2�=(1 + �) instead of �. SeeSection 4 for a discussion of this algorithm called Learn-Relation().
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Figure 2.2: This �gure illustrates how predictions are made in our second construc-tion. The weighted majority node corresponding to row r (heavily shaded) is usedto predict Mrj . The predictions of the inputs coming from the nodes are shown.So for this example the shaded node predicts 1 if w1=2+w2 � w1=2+w3+w4 andpredicts 0 otherwise.In Section 4 we shall provide a technique to adapt the worst-case mistake bounds provenfor the weighted majority algorithm WMG to this parallel application. As a corollary to ourmain theorem, we show that when � = 0, our second construction obtains a mistake boundof km + minnn22e lg e; np3m lg ko using only �n2� weights. Here k is the size of the smallestpartition consistent with the whole matrix. The best previous bound for a polynomialalgorithm was km + np(k � 1)m [GRS93]. An interesting aspect of our problem besidesits parallel nature is that when node r is to predict for entry Mrj then not all other n� 1entries in the j-th column may have been uncovered. Such unknown (\sleeping") entriesare naturally set to 1=2, leading to split votes.There are many relatives of the basic weighted majority algorithm that we could usewithin our two constructions such as a probabilistic variant due to Vovk [Vov90] (see alsoCesa-Bianchi et al. [CBFH+93]). Also the Vee algorithm of Kivinen and Warmuth [KW93]handles inputs and predictions in [0,1] and the algorithm of Littlestone, Long and War-muth [LLW91] has small square loss against the best convex combination of the inputs.(Incidentally all these on-line prediction algorithms have multiplicative weight updates incommon.) We chose the simplest setting for showing the usefulness of our method: theentries of the matrix are binary and the predictions must be deterministic.



3. A Generalization: Non-Pure Relations 5Learn-Relation()For all r; r0 such that (r 6= r0) initialize w(err0) = 1In each trial do the following four parts:1. Receive a matrix entry Mrj for prediction2. Produce a prediction as followsFor each row r0 6= r such that w(err0) > 0If Mr0j is not known then row r0 predicts that Mrj = 1=2If Mr0j = 1 then row r0 predicts that Mrj = 1If Mr0j = 0 then row r predicts that Mrj = 0Let R0 contain rows that predict Mrj = 0Let R1 contain the algorithms that predict Mrj = 1If Pr02R1 w(err0) �Pr02R0 w(err0) predict 1Else predict 03. Receive correct value for Mrj4. If the prediction of the algorithm was wrong then update the weights as followsFor each r0 6= r such that w(err0) > 0If row r0 made a correct prediction then let w(err0) (2� )w(err0)Else if row r0 predicted incorrectly then let w(err0) w(err0)Figure 2.3: Our polynomial prediction algorithm for learning binary relations.3 A Generalization: Non-Pure RelationsA key contribution of this paper is showing how the robust nature of WMG enables usto solve an important generalization of the problem of learning binary relations with noisydata. To motivate this problem we briey review the allergist example given by Goldmanet al. [GRS93]. Consider an allergist with a set of patients to be tested for a given set ofallergens. Each patient is either highly allergic, mildly allergic, or not allergic to any givenallergen. The allergist may use either an epicutaneous (scratch) test in which the patient isgiven a fairly low dose of the allergen, or an intradermal (under the skin) test in which thepatient is given a larger dose of the allergen. What options does the allergist have in testinga patient for a given allergen? He/she could just perform the intradermal test (option 0).Another option (option 1) is to perform an epicutaneous test, and if it is not conclusive,then perform an intradermal test. Which option is best? If the patient has no allergy or amild allergy to the given allergen, then option 0 is best, since the patient need not returnfor the second test. However, if the patient is highly allergic to the given allergen, thenoption 1 is best, since the patient does not experience a bad reaction. The allergist's goalhere is to minimize the number of prediction mistakes in choosing the option to test eachpatient for each allergen. Although Goldman et al. explore several possible methods for theselection of the presentation order, here we only consider the standard worst-case model inwhich an adversary determines the order in which the patient/allergen pairs are presented.While this example is generally convincing, there is an assumption that is a clearoversimpli�cation. Namely, they assume that there are a common set of \allergy types" thatoccur often and that most people �t into one of these allergy types. Thus the allergy types



6 3. A Generalization: Non-Pure Relationsbecome the row types of the matrix. However, while it is true that often people have verysimilar allergies, there are not really pure allergy types. In other words, it is unreasonableto assume that all rows of the same \type" are identical but rather they are just close toeach other. Without this exibility one may be required to have most patient's allergiescorrespond to a distinct allergy type. Henceforth, we shall refer to original formulation ofthe problem of learning binary relations in which all row types are \pure" as learning purerelations .We propose the following generalization of this problem. For any set column c of bitsand let N0(c) be the number of zeros in c. Likewise, let N1(c) be the number of ones in c.Suppose that the rows of the matrix are partitioned into a set of k clusters p = fS1; : : : ; Skg.Let Sij denote the jth column of the cluster (or submatrix) Si. For each cluster we de�nea distance measure d(Si) = mXj=1minfN0(Sij);N1(Sij)gIn other words, think of de�ning a center point for partition Si by letting the value ofcolumn j in this center be the majority vote of the entries in Sij . Then d(Si) is just the sumover all rows s in Si of the Hamming distance between s and this center point.For the whole partition p we de�ne the noise �p as PSi2p d(Si), and the size kp as thenumber of clusters in partition p. We refer to this problem as learning non-pure relations .Due to the robust nature of WMG, we can use both constructions to learn non-pure relationsby simply using a non-zero update factor �.We now discuss both constructions when applied to the problem of learning non-purerelations and give bounds for each. The key to our approach is to view minor discrepanciesbetween the row templates and the actual rows as noise. This greatly reduces the mistakebounds that one can obtain when using the original formulation of Goldman et al. [GRS93]by reducing the number of row types. The robust nature of the weighted majority algorithmenables us to handle noise.To demonstrate our basic approach, we now show that our �rst construction (i.e. theone using kn weights) can learn a non-pure relation by making at mostmin(kpm+ �p + n ln k + �p ln 1�ln 21+� ) (3:1)mistakes in the worst case, where the minimum is taken over all partitions p of size at mostk and kp denotes the size and �p the noise of partition p.In the noisy case the �rst construction still uses a single copy of the weighted majorityalgorithm with one weight for each of the kn partitions. Assume Mrj is the next value topredict. Then a particular partition predicts with the majority of all already set entriesfrom column j whose rows have the same type as row r in the partition. In case of a tie thepartition predicts with 1/2. A partition with weight w and prediction x votes with xw for1 and (1 � x)w for 0. The Algorithm WMG totals the votes for 0 and for 1 and predictswith the bit of the larger total (with 1 in case of a tie).When a partition predicts incorrectly, its weight is multiplied by �. A partition thatsplits its vote has its weight multiplied by (1+�)=2. (Half of its weight remains unchangedand the other half is multiplied by �.) We claim that a partition p predicts incorrectly atmost �p times and splits its vote at most kpm + �p times. To see this consider the case



3. A Generalization: Non-Pure Relations 7when the matrix consists of one column and we have just one row type. If � is the numberof occurences of the minority bit in the column then the number of wrong predictions is atmost � and the number of ties at most � + 1. Now the arbitrary partition case follows bysumming over all columns and row types.From the above it follows that the �nal weight in the system is at least ��p �1+�2 �kpm+�p .Since the initial weight in the system is kn and for each trial in which a mistake occurs thetotal weight after the trial is at most (1 + �)=2 times the total weight before the trial, weget the following inequality for the total number of mistake �:kn �1 + �2 �� � ��p �1 + �2 �kpm+�p :Solving for � gives the above bound (3.1).Finally, by applying the results of Cesa-Bianchi et al. [CBFH+93]) we can tune � as afunction of an upper bound � on the noise.Lemma 1: [CBFH+93] For any real value z � 01 + z ln 1g(z)2 ln 21+g(z) � z +pz + 12 ln 2 ;where g(z) = 1� 2p1+z�1z and g(0) = 0.Theorem 1: For any positive integers k and �, the �rst construction with � = g( �n ln k )makes at most minnkpm+ 3�p + 2p�n ln k + n lg komistakes, where the minimum is taken over all partitions p whose size kp is at most k andwhose noise �p is at most �:Proof: Since �p � � and the function �ln 1�� = �ln 21+�� is decreasing over the range0 � � < 1 and approaches 2 as � ! 1, it follows thatn ln k + �p ln 1�ln 21+� = n ln kln 21+� + 2�p + �p ln 1�ln 21+� � 2!� n ln kln 21+� + 2�p + � ln 1�ln 21+� � 2!= 2n ln k 1 + �n lnk ln 1�2 ln 21+� !+ 2�p � 2�:So by applying Lemma 1 with z = �n lnk and � = g(z) we obtain a worst-case mistakebound4 ofmin�kpm+ �p + 2��p +p�n ln k + n lg k2 �� = min nkpm+ 3�p + 2p�n ln k + n lg kofor our �rst construction, where the minimum is taken over all partitions p of size at mostk with noise at most � and kp denotes the size and �p the noise of partition p.4We also can get rid of the factor 2 in the �rst formulation of the bound by either letting the algorithmpredict probabilistically in f0; 1g or deterministically in the interval [0; 1] [CBFH+93, KW93].



8 4. Construction Two: A Polynomial-time AlgorithmFor the above tuning we needed an upper bound for both the size and the noise of thepartition. If an upper bound for only one the two is known, then a standard doubling trickcan be used to guess the other. This causes only a slight increase in the mistake bound (SeeCesa-Bianchi et al. [CBFH+93].) Note that in the above mistake bound there is a subtletradeo� between the noise �p and size kp of a partition p.We recall that when this �rst construction is applied in the noise-free case that it essen-tially matches the information-theoretic lower bound. An interesting question is whetheror not it can be shown to be essentially optimal in the case of learning non-pure relations.As we show in the next section (Theorem 3), when using the second construction forlearning non-pure relations, we show that our algorithm makes at mostmin8><>:kpm+vuut3mn2 lg k + 4�pmn�1� �pmn�+mns24�n�1� �mn� ln k : p 2 P9>=>;mistakes in the worst case, where the minimum is taken over all partitions p and kp denotesthe size and �p the noise of partition p where kp � k and �p � �.4 Construction Two: A Polynomial-time AlgorithmIn this section we discuss the algorithm Learn-Relation (see Figure 2.3) obtained by oursecond construction that uses one weighted majority node per row. The mistake boundof Theorem 2 obtained for this algorithm is larger than the mistake bound of the �rstconstruction. However this algorithm uses only �n2� weights as opposed to exponentiallymany.We begin by giving an update that is equivalent to the one used in WMG [LW89]. Recallthat in WMG if x is the prediction of an input with weight w, then if the feedback is thebit � then w is multiplied by 1� (1� �)jx� �j for � 2 [0; 1). If � = =(2� ), then for ourapplication the update of WMG can be summarized as follows� If a node predicts correctly (so, jx� �j = 0) its weight is not changed.� If a node makes a prediction of 1=2 then its weight is multiplied by 1=(2� ).� If a node predicts incorrectly (so, jx��j = 1) then its weight is multiplied by =(2�).In the new update all factors in the above construction are simply multiplied by (2 � ).This update is used in our Algorithm Learn-Relation() (see Figure 2.3) since it leads tosimpler proofs. Because voting is performed by a weighted majority vote, the predictionsmade by the two schemes are identical. In order to use the analysis technique of Littlestoneand Warmuth we must obtain a lower bound for the �nal weight in the system. However,using WMG the weight in the system is decreased by nodes that do not predict, and thuswe would have to compute an upper bound on the total number of times that this occurs.Thus to simplify the analysis, we have modi�ed the update scheme (i.e. at each step wemultiplied all weights by (2� )) so that the weights of nodes that do not predict remainunchanged.4.1 The AnalysisWe now compute an upper bound on the number of mistakes made by Learn-Relation.



4. Construction Two: A Polynomial-time Algorithm 9We begin with some preliminaries. A function f : < ! < is concave (respectivelyconvex) over an interval D of < if for all x 2 D, fxx(x) � 0 (fxx(x) � 0). In our analysis werepeatedly use the following variants of Jensen's inequality. Let f be a function from < to< that is concave over some interval D of <. Let q 2 N , and let x1; x2; : : : ; xq 2 D. ThenqXi=1 xi = U ) qXi=1 f(xi) � qf(U=q):Furthermore, if f is monotonically increasing over the interval D then the following holds:qXi=1 xi � U ) qXi=1 f(xi) � qf(U=q):Likewise, let f be a function from < to < that is convex over some interval D of <. Letq 2 N , and let x1; x2; : : : ; xq 2 D. ThenqXi=1 xi = U ) qXi=1 f(xi) � qf(U=q):We also use Jensen's inequality when applied to a function over two variables. A functionf : <�< ! < is concave over an interval Dx �Dy of <� < if for all x 2 Dx and y 2 Dy ,fxx � 0; fyy � 0, and fxxfyy � (fxy)2 � 0. Let f be a function from < � < to < that isconcave over some interval Dx �Dy of < � <. Let q 2 N , and let x1; x2; : : : ; xq 2 Dx andy1; y2; : : : ; yq 2 Dy. ThenqXi=1 xi = Ux and qXi=1 yi = Uy ) qXi=1 f(xi; yi) � qf(Ux=q; Uy=q):We now give an overview of the proof of our main result along with several key lemmasthat are used in the proof. Let p be any partition of size kp and noise �p. Let � to denotethe total number of mistakes made by the learner, and let �i will denote the number ofmistakes that occur when the learner is predicting an entry in a row of cluster i. (Thus,Pkpi=1 �i = �.) Let ni be the number of rows in cluster i. (So n =Pkpi=1 ni.) Let A be all �n2�edges and the set E contain all edges connecting two rows of the same cluster. We furtherdecompose E into E1; : : : ; Ekp where Ei contains all edges connecting two rows in the samecluster i of p. Observe that jEij = ni(ni�1)2 . When making an erroneous prediction for Mrj ,we de�ne the force of the mistake to be the number of rows in the same cluster as row rfor which column j was known when the mistake occurred. Let Fi be the sum of the forcesof all mistakes made when predicting an entry in a row of cluster i.Recall that the noise of a partition p is de�ned as�p = XSi2pd(Si) = XSi2pminfN0(Sij);N1(Sij)g:For each cluster i and column j, let �i;j = minfN0(Sij);N1(Sij)g, and let �i = Pmj=1 �i;j .Thus observe that �p =Pkpi=1 �i.We now de�ne Ji to be the number of times that a weight in Ei is multiplied by  whenmaking a prediction for an entry in cluster i. That is, Ji is the total number of times,over all trials in the learning session in which a mistake occurs, where an entry in cluster iincorrectly predicts the value of an entry in cluster i (voting with all its weight).



10 4. Construction Two: A Polynomial-time AlgorithmWe now give the key lemma used in our main proof. For ease of exposition, leta = lg(2� ) = lg 21+� and b = lg �2� � = lg 1� .Lemma 2: For each 1 � i � kp,Fi = baJi + 1a Xe2Ei lgw(e):Proof: We begin by noting that, when �p = 0, then Ji = 0 and the number of times someweight in Ei is multiplied by (2� ) equals Fi. Thus, in the noise-free case, it follows that(2� )Fi = Qe2Ei w(e). When �p > 0, then Fi is the number of times some weight in Ei ismultiplied by either (2� ) or . Since the number of times some weight in Ei is multipliedby  is Ji we have that(2� )Fi�Ji Ji = (2� )Fi � 2� �Ji = Ye2Eiw(e):Taking logarithms of both sides we obtain the stated result.Note that if ni = 1 then Ji = jEij = Fi = 0. The proof of our main theorem uses Lemma 2as its starting point. We �rst obtain (Lemma 4) a lower bound for Fi that depends on thetotal number of mistakes, �i, made by our algorithm when making a prediction for an entryin cluster i. Next we must determine the maximum amount by which the \noisy" entriesof the submatrix Si cause the weights in Ei to be \weakened" (i.e. multiplied by ) insteadof being \strengthened" (i.e. multiplied by (2 � )) as desired. In Lemma 5 we show howto Ji can be upper bounded in terms of �i, the noise within cluster i. Finally in Lemma 7we obtain an upper bound for the sum of the logarithms of the weights. We do this byobserving that the total weight in the system never increases and then use the convexity ofthe logarithm function. The proof of our main theorem essentially combines all the lemmasand uses and addition convexity argument for combining the contributions from all clusters.We now obtain a lower bound for Fi. In order to obtain this lower bound, it is crucialto �rst obtain an upper bound on the number of mistakes for a given cluster and givenforce. This quantity characterizes the rate at which the weighted-majority nodes are gaininginformation.Lemma 3: For each row type r and force f there are at most m mistakes of force f .Proof: We use a proof by contradiction. Suppose that for cluster i the learner makesm+ 1 force f mistakes. Then there must be two mistakes that occur for the same column.Suppose the �rst of these mistakes occurs when predicting Mrj and the second occurs whenpredicting Mr0j where both rows r and r0 are in cluster i. However, after making a force fmistake when predicting Mrj that entry is known and thus the force of the Mr0j mistakemust be at least f + 1 giving the desired contradiction.We now compute a lower bound for the force of the mistakes made when predictingentries in cluster i.Lemma 4: For any partition p and for any 1 � i � kp,Fi � max(�i �m; �2i2m � �i2 ) :



4. Construction Two: A Polynomial-time Algorithm 110 0 0 � � � 01 1 1 � � � 1...��im ��2 ��im ��2 ��im ��2 � � � ��im ��2��im ��1 � � � ��im ��1 | {z }m��im �� �iFigure 4.1: First �i elements of the sequence h0imh1imh2im : : :.Proof: We proceed by showing that both expressions above are lower bounds for Fi. Let�i denote the sum of the �rst �i elements of the sequence h0imh1imh2im � � �. From Lemma 3it follows that Fi � �i. Thus, clearly our �rst lower boundFi � �i �mfollows since all but m mistakes have force at least one.We now compute a more sophisticated lower bound on �i. Let s(x) =Pxk=1 k = x(x+1)2 .Using the structure illustrated in Figure 4.1 it is easily seen thatFi � m s���im�� 1�� �m��im� � �i����im�� 1�= ���im�� 1���i � m2 ��im��� ��im � 1���i � m2 �im�= �2i2m � �i2 :To see that the last inequality holds, �rst observe that if �i is a multiple of m thenwe have equality. Finally, it is easily seen that when �i = qm + r for quotient q � 0 andremainder 0 � r � m�1 that ���im �� 1� ��i � m2 ��im �� > �2i2m � �i2 . This completes the proofof the lemma.Observe that the simple linear bound is a better lower bound only for m < �i < 2m.Next, we capture the relationship between Ji and the noise within cluster i of thepartition to obtain an upper bound for Ji.Lemma 5: For any partition p, and for 1 � i � kp;Ji � �ini � �2im:



12 4. Construction Two: A Polynomial-time AlgorithmProof: For ease of exposition, we assume that for each cluster i and column j, the majorityof the entries in Sij , are 1. Thus �i;j is exactly the number of 0's in Sij . Observe that forevery known 0 entry in Sij , the quantity Ji is increased by one whenever the learner makes aprediction error when predicting the value of an entry in Sij that is a 1. Thus, in the worstcase, each of the �i;j entries in Sij that are 0 could cause Ji to be incremented for each ofthe ni � �i;j entries in Sij that are 1. Thus,Ji � mXj=1 �i;j(ni � �i;j) = �ini � mXj=1 �2i;j :Since x2 is convex, it follows thatPmj=1 �2i;j � �2im . This completes the proof of the lemma.Next we obtain an upper bound on the sum of the logarithms of the weights of a set ofedges from A. A key observation used to prove this upper bound is that the overall weightin the system never increases. Therefore, since the initial weight in the system is n(n�1)=2we obtain the following lemma.Lemma 6: Throughout the learning session for any A0 � A,Xe2A0 w(e) � n(n � 1)2 :Proof: In trials where no mistake occurs the total weight of all edges Pe2A w(e) clearlydoes not increase. Assume that a mistake occurs in the current trial. Ignore all weightsthat are not updated. Of the remaining total weight W that participates in the update letc be the fraction that was placed on the correct bit and 1� c be the fraction placed on theincorrect bit. The weight placed on the correct bit is multiplied by 2 �  and the weightplaced on the incorrect bit by . Thus the total weight of all edges that participated in theupdate is (c(2� ) + (1� c))W at the end of the trial. Since the latter is increasing in cand c � 1=2 whenever a mistake occurs, we have that the total of all weights updated inthe current trial is at most (2�2 + 2 )W = W at the end of the trial. We conclude that thetotal weight of all edges also does not increase in trials where a mistakes occurs. Finallysince A0 � A, the result follows.Lemma 7: Throughout the learning session for any A0 � A,Xe2A0 lgw(e) � jA0j lg n(n � 1)2jA0j :Proof: This result immediately follows from Lemma 6 and the concavity of the log function.We are now ready to prove our main result.Theorem 2: For all � 2 [0; 1), Algorithm Learn-Relation when using the parameter  =2�1+� makes at mostmin8<:kpm+ min8<: n22e lg e+ �p(n� �pkm) lg 1�lg 21+� ;vuut3mn2 lg kp + 2�p(mn� �p) lg 1�lg 21+� 9=;9=;mistakes in learning a binary-relation where the outside minimum is taken over all partitionsp and kp denotes the size and �p the noise of partition p.



4. Construction Two: A Polynomial-time Algorithm 13Proof: Let p be any partition of size kp and noise �p. We begin by noting that for anycluster i and column j in partition p, �i;j � ni=2 and thus �i = Pmj=1 �i;j � nim=2. Recallthat in Lemma 4 we showed that Fi � �i �m. Observe that if ni = 1 then Fi = 0, andthus it follows that �i � m. Thus, without loss of generality, we will assume throughoutthe remainder of this section that ni � 2 for all i.As we have discussed, the base of our proof is provided by Lemma 2. We then applyLemmas 4, 5 and 7 to obtain an upper bound on the number of mistakes made by Learn-Relation.We now proceed independently with the two lower bounds for Fi given in Lemma 4.Applying Lemma 2 with the �rst lower bound for Fi given in Lemma 4, summing over theclusters in p, and solving for � yields,� = kpXi=1 �i � kpm+ ba kpXi=1 Ji + 1aXe2E lgw(e): (4:1)From Lemma 5 we know that Ji � �ini � �2im � �in � �2im . It is easily veri�ed thatthe function n�i � �2im is concave. Thus, combining Jensen's inequality with the fact thatPkpi=1 �i = �p, we obtain: kpXi=1 Ji � n�p � �2pkpm = �p  n� �pkpm! : (4:2)In addition, by applying Lemma 7 with A0 = E we obtain that:Xe2E lgw(e) � jEj lg n(n� 1)2jEj :Next observe that the function x lg n(n�1)2x is concave and obtains its maximum value atx = n(n�1)2e . Thus we obtain thatjEj lg n(n � 1)2jEj � n(n � 1) lg e2e : (4:3)Finally by combining Inequalities (4.1), (4.2), and (4.3) we obtain that:� � kpm+ ba�p n � �pkpm!+ n(n� 1)2a lg ee � kpm+ ba�p  n� �pkpm!+ n22a lg eeproving our �rst bound on �.We now proceed by combining Lemma 2 with the more sophisticated second lower boundfor Fi given in Lemma 4 to obtain:�2i2m � �i2 � baJi + 1a Xe2Ei lgw(e): (4:4)Next we apply Lemma 7 with A0 = Ei to obtain:Xe2Ei lgw(e) � jEij lg n(n� 1)2jEij :



14 4. Construction Two: A Polynomial-time AlgorithmApplying this above inequality with Inequality (4.4) yields�i � m2 +vuut2bma Ji + 2ma Xe2Ei lgw(e) + m24� m+s2bma sJi + 1b jEij lg n(n� 1)2jEij :Next we apply Lemma 5 and the fact that jEij = ni(ni � 1)=2 � n2i =2, and then sumover the kp clusters in p to obtain:� � kpm+s2bma kpXi=1s�ini � �2im + n2i2b lg n(n � 1)ni(ni � 1) :As shown in the appendix, the function f(�i; ni) = r�ini � �2im + n2i2b lg n(n�1)ni(ni�1) is concavefor ni � 2 and �i � nim=2. Since Pkpi=1 ni = n andPkpi=1 �i = �p, we can thus apply Jensen'sinequality to obtain:� � kpm+ kps2bma vuut�pnk2p � �2pk2pm + n22k2pb lg k2p(n� 1)n� kp= kpm+s2bma �p�n� �pm�+ n2ma lg k2p(n� 1)n � kp (4.5)Observe that n � kp, and furthermore if n = kp then at most nm mistakes can occurand the upper bound of the theorem trivially holds. Thus without limiting the applicabilityof our result we can assume that n � kp + 1 which in turn implies that n�1n�kp � kp. Thuswe can further simplify Inequality (4.5) to obtain:� � kpm+s3amn2 lg kp + 2bma �p(n � �pm )= kpm+vuut3mn2 lg kp + 2�p(mn� �p) lg 1�lg 21+�thus giving us our second bound on �.The above analysis was performed for any partition p 2 P . Thus taking the minimumover all partitions in P we get the desired result.As when applying the weighted majority algorithm to a noise-free setting, notice thatwe obtain the best performance by selecting  = 0 (respectively � = 0). Thus we obtainthe following corollary for the case of learning pure relations.Corollary 1: For the case of learning pure relations where �p = � = 0, the algorithmLearn-Relation with  = 0 learns a pure k-binary-relation making at mostkm+ min(n22e lg e; np3m lgk)mistakes in the worst-case.



4. Construction Two: A Polynomial-time Algorithm 15We now apply the results of Cesa-Bianchi et al. [CBFH+93] to tune � for the moregeneral case in which the relation is not pure.Theorem 3: For any positive integers k and �, Algorithm Learn-Relation when using = 2�1+� , where � = g(z) and z = 2�(1� �mn)3n lnk , makes at mostkpm+vuut3mn2 lg k + 4�pmn�1� �pmn�+mns24�n�1� �mn� ln kmistakes, where the minimum is taken over all partitions p whose size kp is at most k andwhose noise �p is at most �:Proof: From Theorem 2 we know that for all � 2 [0; 1), our algorithm makes at mostmin(kpm+s3mn2 lg kp+2�p(mn��p) lg 1�lg 21+� ) mistakes where the minimum is taken over allpartitions p and kp denotes the size and �p the noise of partition p.Assume that the partition p has the property that kp � k and �p � �. Observe thatthe function �ln 1�� = �ln 21+�� is decreasing over the range 0 � � < 1 and approaches 2 as� ! 1. Furthermore, since 2�p(mn� �p) � 2�(mn� �) for �p � � � mn2 , it follows that3mn2 lg k + 2�p(mn� �p) lg 1�lg 21+�� 3mn2 ln kln 21+� + 4�p(mn� �p) + 2�(mn� �) ln 1�ln 21+� � 2!= 6mn2 ln k0B@1 + 2�(1� �mn ) ln 1�3n lnk2 ln 21+� 1CA� 4�(mn� �) + 4�p(mn� �p):So by applying Lemma 1 with z = 2�(1� �mn )3n lnk and � = g(z) we obtain a worst-case mistakebound5 given in the theorem.So for example if the optimal partition p is such that �p = n, then the number ofmistakes is at most kpm+q3mn2 lg k + 4mn2 +mn2p24 ln k:In addition to presenting their algorithm to make at most km+ np(k � 1)m mistakes,Goldman et al. [GRS93] present an information-theoretic lower bound for a class of algo-rithms that they call row-�lter algorithms. They say that an algorithm A is a row-�lteralgorithm if A makes its prediction for Mrj strictly as a function of j and all entries in theset of rows consistent with row r and de�ned in column j. For this class of algorithms theyshow a lower bound to 
(npm) for m � n on the number of mistakes that any algorithmmust make. Recently, William Chen [Che92] has extended their proof to obtain a lowerbound of 
(npm lg k) for m � n lg k. Observe that Learn-Relation is not a row-�lter algo-rithm since the weights stored on the edges between the rows allows it to use the outcomeof previous predictions to aid in its prediction for the current trial. Nevertheless, a simplemodi�cation of the projective geometry lower bound of Goldman et al. [GRS93] can be5Again, we can get rid of the factor 2 in this mistake bound by either letting the algorithm predictprobabilistically in f0; 1g or deterministically in the interval [0; 1] [CBFH+93, KW93].



16 5. Concluding Remarksused to show an 
(npm) lower bound for m � n on the number of prediction mistakesby our algorithm. Chen's extension of the projective geometry argument to incorporate kdoes not extend in such a straightforward manner, however, we conjecture that his lowerbound can be generalized to prove that the mistake-bound we obtained for Learn-Relationis asymptotically tight. Thus to obtain a better algorithm, more than pairwise informationbetween rows may be needed in making predictions.5 Concluding RemarksWe have demonstrated that a weighted majority voting algorithm can be used to learna binary relation even when there is noise present. Our �rst construction uses exponentiallymany weights. In the noise-free case this construction is essentially optimal. We believethat by proving lower bounds for the noisy case (possibly using the techniques developedin [CBFH+93]) one can show that the tuned version of the �rst contruction (Theorem 1) isclose to optimal in the more general case as well.The focus of our paper is the analysis of our second construction that uses a polynomialnumber of weights and thus can make predictions in polynomial time. In this constructiona number of copies of our algorithm divide the problem amongst themselves and learn therelation cooperatively.It is surprising that the parallel application of on-line algorithms using multiplicativeweight updates can be used to do some non-trivial clustering with provable performance(Theorem 3). Are there other applications where the clustering capability can be exploited?For the problem of learning binary relations the mistake bound of the polynomial algorithm(second construction) which uses �n2� weights is still far away from the mistake bound ofthe exponential algorithm (�rst construction) which uses kn weights. There seems to be atradeo� between e�ciency (number of weights) and the quality of the mistake bound. Oneof the most fascinating open problem regarding this research is the following: Is it possible tosigni�cantly improve our mistake bound (for either learning pure or non-pure relations) byusing say O(n3) weights? Or can one prove, based on some reasonable complexity theoreticor cryptographic assumptions, that no polynomial-time algorithm can perform signi�cantlybetter than our second construction.AcknowledgementsWe thank William Chen and David Helmbold for pointing out aws in earlier versionsof this paper. We also thank the anonymous referees for their comments.References[Ang88] Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319{342,1988.[BF72] J. Barzdin and R. Freivald. On the prediction of general recursive functions.Soviet Mathematics Doklady, 13:1224{1228, 1972.[CBFH+93] Nicol�o Cesa-Bianchi, Yoav Freund, David P. Helmbold, David Haussler, RobertE. Schapire, andManfredK.Warmuth. Howtouse expert advice. InProceedingsof the Twenty Fifth Annual ACM Symposium on Theory of Computing, pages382{391, May 1993.
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18 ReferencesAppendixWe now demonstrate that the function f(�i; ni) = r�ini � �2im + n2i2b lg n(n�1)ni(ni�1) is concavefor ni � 2 and �i � nim=2.For ease of exposition we shall let x = �i and y = ni. We must now show that fxx � 0,fyy � 0, and fxxfyy � (fxy)2 � 0.It is easily veri�ed that:fxx = �y2(f(x; y))3 �14 + 12mb lg n(n� 1)y(y � 1)� � 0:It can also be veri�ed that fyy can be expressed such that the denominator of fyy is16b2(ln 2)2(y � 1)2(f(x; y))3;and the numerator isfyy = �4y3(y � 1)� y2 � 4b2x2(ln 2)2(y � 1)2 �4bx ln 2�y(4y2 � 7y + 2)� xm(6y2 � 10y + 3)��ln n(n� 1)y(y � 1) �2y2(2y2 � 4y + 1) + 8b ln 2m x2(y � 1)2� :It is easily shown that 2y2 � 4y + 1 � 0 for y � 2. Observe that y(4y2 � 7y + 2) �xm(6y2 � 10y + 3) � 0 when x � ym  4y2 � 7y + 26y2 � 10y + 3! :Furthermore, for y � 2 4y2 � 7y + 26y2 � 10y + 3 � 47 > 12and thus it su�ces to have x � ym=2 which is the case.Finally, it can be veri�ed that fxxfyy � (fxy)2 isy2 �4y(y � 1) + 1 + bm ln 2 + 2bmy ln 2(y � 2) + 2 ln n(n�1)y(y�1) (2y2 � 4y + 1)�16b2(ln 2)2(y � 1)2m(f(x; y))4 � 0for y � 2.This completes the proof that f(x; y) is concave over the desired interval.


