Learning Binary Relations Using Weighted
Majority Voting

Sally A. Goldman*
Manfred K. Warmuth'

UCSC-CRL-93-51
December 29, 1993

Baskin Center for
Computer Engineering & Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064 USA

ABSTRACT

In this paper we apply a weighted majority voting algorithm to the problem of
learning a binary relation between two sets of objects. When using exponentially
many weights, the mistake bound of the algorithm is essentially optimal. We
present a construction where a number of copies of our algorithm divide the problem
amongst themselves and learn the relation cooperatively. In this construction the
total number of weights is polynomial. The mistake bounds are non-optimal (at
least when compared to the best bound obtainable when computational resources
are ignored) but significantly improve previous mistake bound bounds achieved by
polynomial algorithms. Moreover our method can handle noise, which widens the
applicability of the results.

*Net address: sg@cs.wustl.edu. Mailing address: Department of Computer Science, Washington Univer-
sity, St. Louis, Missouri 63130. This author was supported in part by NSF grant CCR-91110108.

TNet address: manfred@cs.ucsc.edu. Mailing address: Department of Computer Science, University of
California, Santa Cruz, California 95064. This author was supported by ONR grant NO0014-91-J-1162 and
NSF grant TRI-9123692.

1. Introduction 1
1 Introduction

In this paper we demonstrate how weighted majority voting can be applied to ob-
tain robust algorithms for learning binary relations. Following Goldman, Rivest and
Schapire [GRS93], a binary relation is defined between two sets of objects, one of cardi-
nality n and the other of cardinality m. For all possible pairings of objects, there is a
predicate relating the two sets of variables that is either true (1) or false (0). The relation is
represented as an n X m matrix M of bits, whose (r,j) entry is 1 if and only if the relation
holds between the corresponding elements of the two sets. Furthermore, there are a limited
number of object types. Namely, the matrix M is restricted to have at most k distinct row
types amongst its n rows. (Two rows are of the same type if they agree in all columns.)
This restriction is satisfied whenever there are only k types of objects in the set of n objects
being considered in the relation.

We shall study the problem of learning binary relations under the standard on-line (or
incremental) learning model [Lit89, Lit88]. The learning session consists of a sequence of
trials. In each trial, the learner must predict the value of some unknown matrix entry that
has been selected by the adversary!. After predicting the learner receives the value of the
matrix entry in question as feedback. If the prediction disagrees with the feedback, then we
say the learner has made a mistake. The learning session continues until the learner has
predicted each matrix entry. The goal of the learner is to make as few mistakes as possible.

Since the number of binary relations is at most 2¥7k" the standard halving algo-
rithm [BF72, Lit88, Ang88] makes at most km + nlg k mistakes?. Observe that the halving
algorithm can be viewed as keeping 2¥™ k™ weights, one weight per possible binary relation.
Initially, all weights start at 1, and whenever a binary relation becomes inconsistent with
the current partial matrix its weight is set to 0. To make a prediction for a given matrix
entry, each binary relation votes according to its bit in that entry. Finally, the halving
algorithm predicts according to the majority of consistent relations (i.e. those with weight
1), and thus each mistakes halves the total weight in the system. Since the initial weight is
2k and the final weight is at least 1, at most km + nlgk mistakes can occur.

Observe that the time used to make each prediction is linear in the number of weights.
Thus we are interested in algorithms that use a small number of weights in representing
their hypotheses. The algorithms we present update the weights according to a variant of
the weighted majority algorithm of Littlestone and Warmuth [LW89] called WMG. We view
WMG as a node that is connected to each of its inputs by a weighted edge. The inputs are
in the interval [0,1]. An input z of weight w votes with 2w for 1 and (1 — 2)w for 0. The
node “combines” the votes of the inputs by determining the total weight ¢o (respectively
¢1) placed on 0 (respectively 1) and predicts with the bit corresponding to the larger of the
two totals (and for the sake of discreteness with 1 in case of a tie). After receiving feedback
of what the prediction should have been, then for each input the fraction of the weight
placed on the wrong bit is multiplied by 3, where g € [0,1). Thus the weight w of an input
x becomes (1 — 2 4+ zf)w if the feedback is 0 and ((1 — 2)f 4 z)w if the feedback is 1. If
3 = 0 then the total weight halves in each trial in which the node makes a mistake and we
obtain an analysis like that of the halving algorithm.

'The adversary, who tries to maximize the learner’s mistakes, knows the learner’s algorithm and has
unlimited computing power.

2Throughout this paper we let lg denote the base 2 logarithm and In the natural logarithm.

2 2. Our Constructions For Applying WMG

The remainder of this paper is organized as follows. In Section 2 we present our two
different constructions for applying WMG to the problem of learning a binary relation. In
Section 3 we define an important generalization of the problem of learning binary relations
with noisy data and show how the robust nature of WMG can be exploited to handle
such noise. In Section 4 we present our main result. Namely, we provide a technique that
enables us to prove an upper bound on the number of mistakes made by our polynomial-
time algorithm to learn binary relations even when noise is present. Finally, in Section 5
we end with some concluding remarks.

2 Our Constructions For Applying WMG

In this section we describe two different methods for applying WMG to the problem of
learning a binary relation. The first construction uses one node and k™ weights. Thus the
number of weights is still exponential but significantly lower than the number of weights
of the halving algorithm (2*7k"). For this case, the analysis is straightforward and for
the noise-free case the bounds achieved are essentially optimal with respect to the known
information-theoretic lower bound. The purpose of this construction is to show what is
possible when computational resources are cheap. In the second construction we use one
node for each of the n rows and one weight for each pair of rows (i.e. (3) weights). Proving
bounds for the second construction is much more involved and is the focus of the paper.
The bounds obtained are non-optimal when compared to those obtained when computation
time is not a concern. However, our bounds are significantly better than previous bounds
obtained by a polynomial algorithm.

In the first construction we use one weight per partition of the n rows into at most k row
types (i.e. k™ weights). Initially all weights are set to 1. To make a prediction for a new
matrix entry, each partition (with non-zero weight) votes as follows: If a column of the row
type to which the new entry belongs has already been set then vote with the value of this
bit, otherwise, vote with 1/2 causing the weight to be split between the votes of 0 and 1.
Our algorithm predicts according to the weighted majority of these votes (see Figure 2.1).
Recall that after receiving the feedback WMG multiplies the fractions of the weights that
were placed on the wrong bit by 3. By selecting # = 0, the weight of partitions that predict
incorrectly (and are thus inconsistent with the partial matrix) are set to zero and the weights
of all partitions that split their vote are halved. After all entries of the target matrix are
known, the correct partition has weight at least 2-*™
and split its vote at most km times. Since the initial weight is k™, we obtain the mistake
bound of km 4 nlgk just as for the halving algorithm. (Actually, one can show that when
B = 0 then the first construction simulates the halving algorithm with £" weights instead of
2Fm " weights). Note that the mistake bound of this algorithm is essentially optimal since
Goldman et al. [GRS93] prove an information-theoretic lower bound of km 4 (n — k)|lg k|
mistakes. While this construction has assumed that an upper bound on & is known, if no

since it never predicted incorrectly,

such bound is provided the standard doubling trick can be applied.

In the second construction one weighted majority node is used per row of the matrix,
and one edge between each pair of nodes. Thus, unlike the first construction, no knowledge
of k is needed. Let e, (and e,,) denote the (undirected) edge between the node for row r
and the node for row 7/, and let w(e) to denote the weight of edge e. The node for row r
dictates the predictions for all entries in row 7. So the nodes, in some sense, partition the
learning problem amongst themselves. Assume M, ; is the next value to predict. To make

3. A Generalization: Non-Pure Relations 5

Learn-Relation(y)
For all r, 7" such that (r # ') initialize w(e,») =1
In each trial do the following four parts:
1. Receive a matrix entry M,; for prediction
2. Produce a prediction as follows
For each row ' # r such that w(e,.,) > 0
If M,:; is not known then row r’ predicts that M,; = 1/2
If M,; =1 then row 7’ predicts that M,; =1
If M,/; =0 then row r predicts that M,; =0
Let Rg contain rows that predict M,; =0
Let Ry contain the algorithms that predict M,; =1
If 3", ep, wiem) > Y uep, w(er,) predict 1
Else predict 0
3. Receive correct value for M, ;
4. If the prediction of the algorithm was wrong then update the weights as follows
For each 7' # r such that w(e,./) >0
If row " made a correct prediction then let w(e,./) — (2 — y)w(e,,)
Flse if row r’ predicted incorrectly then let w(e,.) — yw(e,)

Figure 2.3: Our polynomial prediction algorithm for learning binary relations.

3 A Generalization: Non-Pure Relations

A key contribution of this paper is showing how the robust nature of WMG enables us
to solve an important generalization of the problem of learning binary relations with noisy
data. To motivate this problem we briefly review the allergist example given by Goldman
et al. [GRS93]. Consider an allergist with a set of patients to be tested for a given set of
allergens. Fach patient is either highly allergic, mildly allergic, or not allergic to any given
allergen. The allergist may use either an epicutaneous (scratch) test in which the patient is
given a fairly low dose of the allergen, or an intradermal (under the skin) test in which the
patient is given a larger dose of the allergen. What options does the allergist have in testing
a patient for a given allergen? He/she could just perform the intradermal test (option 0).
Another option (option 1) is to perform an epicutaneous test, and if it is not conclusive,
then perform an intradermal test. Which option is best? If the patient has no allergy or a
mild allergy to the given allergen, then option 0 is best, since the patient need not return
for the second test. However, if the patient is highly allergic to the given allergen, then
option 1 is best, since the patient does not experience a bad reaction. The allergist’s goal
here is to minimize the number of prediction mistakes in choosing the option to test each
patient for each allergen. Although Goldman et al. explore several possible methods for the
selection of the presentation order, here we only consider the standard worst-case model in
which an adversary determines the order in which the patient/allergen pairs are presented.

While this example is generally convincing, there is an assumption that is a clear
oversimplification. Namely, they assume that there are a common set of “allergy types” that
occur often and that most people fit into one of these allergy types. Thus the allergy types

6 3. A Generalization: Non-Pure Relations

become the row types of the matrix. However, while it is true that often people have very
similar allergies, there are not really pure allergy types. In other words, it is unreasonable
to assume that all rows of the same “type” are identical but rather they are just close to
each other. Without this flexibility one may be required to have most patient’s allergies
correspond to a distinct allergy type. Henceforth, we shall refer to original formulation of
the problem of learning binary relations in which all row types are “pure” as learning pure
relations.

We propose the following generalization of this problem. For any set column ¢ of bits
and let My(c) be the number of zeros in ¢. Likewise, let Aq(¢) be the number of ones in c.
Suppose that the rows of the matrix are partitioned into a set of k clusters p = {51, ..., §%1.
Let S;: denote the jth column of the cluster (or submatrix) S%. For each cluster we define
a distance measure .

d(s") = Zmin{No(S;),Nl(S})}

J=1

In other words, think of defining a center point for partition S° by letting the value of
column j in this center be the majority vote of the entries in 55. Then d(5") is just the sum
over all rows s in 57 of the Hamming distance between s and this center point.

For the whole partition p we define the noise a;, as) gic, d(S?), and the size k, as the
number of clusters in partition p. We refer to this problem as learning non-pure relations.
Due to the robust nature of WMG, we can use both constructions to learn non-pure relations
by simply using a non-zero update factor 3.

We now discuss both constructions when applied to the problem of learning non-pure
relations and give bounds for each. The key to our approach is to view minor discrepancies
between the row templates and the actual rows as noise. This greatly reduces the mistake
bounds that one can obtain when using the original formulation of Goldman et al. [GRS93]
by reducing the number of row types. The robust nature of the weighted majority algorithm
enables us to handle noise.

To demonstrate our basic approach, we now show that our first construction (i.e. the
one using k™ weights) can learn a non-pure relation by making at most

(3.1)

nlnk—l—apln%}
1

min {kpm + a, + 5

14
mistakes in the worst case, where the minimum is taken over all partitions p of size at most
k and k, denotes the size and «, the noise of partition p.

In the noisy case the first construction still uses a single copy of the weighted majority
algorithm with one weight for each of the £ partitions. Assume M, ; is the next value to
predict. Then a particular partition predicts with the majority of all already set entries
from column j whose rows have the same type as row r in the partition. In case of a tie the
partition predicts with 1/2. A partition with weight w and prediction x votes with zw for
1 and (1 — 2)w for 0. The Algorithm WMG totals the votes for 0 and for 1 and predicts
with the bit of the larger total (with 1 in case of a tie).

When a partition predicts incorrectly, its weight is multiplied by 3. A partition that
splits its vote has its weight multiplied by (14 £)/2. (Half of its weight remains unchanged
and the other half is multiplied by 5.) We claim that a partition p predicts incorrectly at
most a, times and splits its vote at most kym + a, times. To see this consider the case

3. A Generalization: Non-Pure Relations 7

when the matrix consists of one column and we have just one row type. If a is the number
of occurences of the minority bit in the column then the number of wrong predictions is at
most a and the number of ties at most @ + 1. Now the arbitrary partition case follows by
summing over all columns and row types.

From the above it follows that the final weight in the system is at least 5» (#)
Since the initial weight in the system is £™ and for each trial in which a mistake occurs the
total weight after the trial is at most (1 + 3)/2 times the total weight before the trial, we
get the following inequality for the total number of mistake p:

() (1)

kpm4op

Solving for p gives the above bound (3.1).

Finally, by applying the results of Cesa-Bianchi et al. [CBFHT93]) we can tune 3 as a
function of an upper bound « on the noise.
Lemma 1: [CBFH" 93] For any real value z > 0

14+ zIn L 1
S <V
thm n

where g(z) = 1 — 214221 4nd ¢(0) = 0.
Theorem 1: For any positive integers k and «a, the first construction with $ = g(—1-r)
makes at most

min {kpm + 3a, +2vVanlnk 4+ nlg k}

mistakes, where the minimum is taken over all partitions p whose size ky, is at most k and
whose noise ay, is at most a.

Proof: Since a, < a and the function (ln %) / (ln ﬁ) is decreasing over the range
0 < 3 <1 and approaches 2 as 3 — 1, it follows that

nlnk—l—apln% nln k ln%
—— = st 2oy | —5 -2
In 55 In 475 7
In L
< nlnzk %, 4 a g B)
In 175 In 775
+ -2 Jpd
= 2nlnk nlnk2 p + 20y, — 2a
thm

So by applying Lemma 1 with » = — and = g(2) we obtain a worst-case mistake
bound? of

le k&
min {kpm—l—ap—l—Q (ap—l—\/anlnk—l— n;g)} = min {kpm—|—3ap—|—2\/anlnk—|—nlgk}

for our first construction, where the minimum is taken over all partitions p of size at most
k with noise at most a and k, denotes the size and a,, the noise of partition p. [|

*We also can get 1id of the factor 2 in the first formulation of the bound by either letting the algorithm
predict probabilistically in {0, 1} or deterministically in the interval [0, 1] [CBFHT 93, KW93].

8 4. Construction Two: A Polynomial-time Algorithm

For the above tuning we needed an upper bound for both the size and the noise of the
partition. If an upper bound for only one the two is known, then a standard doubling trick
can be used to guess the other. This causes only a slight increase in the mistake bound (See
Cesa-Bianchi et al. [CBFH'93].) Note that in the above mistake bound there is a subtle
tradeoff between the noise a, and size k, of a partition p.

We recall that when this first construction is applied in the noise-free case that it essen-
tially matches the information-theoretic lower bound. An interesting question is whether
or not it can be shown to be essentially optimal in the case of learning non-pure relations.

As we show in the next section (Theorem 3), when using the second construction for
learning non-pure relations, we show that our algorithm makes at most

min § k,m + \l Imn?lg k + 4a,mn (1 - &) + mn¢24om (1 - &) Ink:peP
mn mn

mistakes in the worst case, where the minimum is taken over all partitions p and %k, denotes
the size and a, the noise of partition p where £, < k and a, < a.

4 Construction Two: A Polynomial-time Algorithm

In this section we discuss the algorithm Learn-Relation (see Figure 2.3) obtained by our
second construction that uses one weighted majority node per row. The mistake bound
of Theorem 2 obtained for this algorithm is larger than the mistake bound of the first
construction. However this algorithm uses only (g) weights as opposed to exponentially
many.

We begin by giving an update that is equivalent to the one used in WMG [LW89]. Recall
that in WMG if z is the prediction of an input with weight w, then if the feedback is the
bit p then w is multiplied by 1 — (1 — 3)|z — p| for 3 € [0,1). If 3 =~/(2—~), then for our
application the update of WMG can be summarized as follows

e If a node predicts correctly (so, |z — p| = 0) its weight is not changed.

e If a node makes a prediction of 1/2 then its weight is multiplied by 1/(2 — 7).

e If a node predicts incorrectly (so, |z —p| = 1) then its weight is multiplied by v/(2—7).
In the new update all factors in the above construction are simply multiplied by (2 — 7).
This update is used in our Algorithm Learn-Relation(y) (see Figure 2.3) since it leads to
simpler proofs. Because voting is performed by a weighted majority vote, the predictions
made by the two schemes are identical. In order to use the analysis technique of Littlestone
and Warmuth we must obtain a lower bound for the final weight in the system. However,
using WMG the weight in the system is decreased by nodes that do not predict, and thus
we would have to compute an upper bound on the total number of times that this occurs.
Thus to simplify the analysis, we have modified the update scheme (i.e. at each step we
multiplied all weights by (2 — 7)) so that the weights of nodes that do not predict remain
unchanged.

4.1 The Analysis

We now compute an upper bound on the number of mistakes made by Learn-Relation.

4. Construction Two: A Polynomial-time Algorithm 9

We begin with some preliminaries. A function f : ® — R is concave (respectively
convex) over an interval D of R if for all z € D, fr(z) <0 (fyz(z) > 0). In our analysis we
repeatedly use the following variants of Jensen’s inequality. Let f be a function from R to
§ that is concave over some interval D of R. Let ¢ € N, and let 21, 23,...,2, € D. Then

sz—U = Zf) < qf(U/q).

Furthermore, if f is monotonically increasing over the interval D then the following holds:

Z%SU = Zf) < af(U/q).

Likewise, let f be a function from R to R that is convex over some interval D of . Let
q €N, and let 2q,25,...,2, € D. Then

q q

Nowi=U = > fx) > qf(U/q).

We also use Jensen’s inequality when applied to a function over two variables. A function
f R X RN — RNis concave over an interval D, x D, of R x RN if for all x € D, and y € D,,
Jow <0, fuy <0, and fupfyy — (fuy)? > 0. Let f be a function from R x R to R that is
concave over some interval D, x D, of ® x R. Let ¢ € N, and let 24, 29,...,2, € D, and
Y1,Y25+--»Yqg € Dy. Then

q q q
Stai=Usand Yy = Uy = > fei, i) < af(Us/q. Uyl).

=1 =1 =1

We now give an overview of the proof of our main result along with several key lemmas
that are used in the proof. Let p be any partition of size £, and noise a,. Let u to denote
the total number of mistakes made by the learner, and let u; will denote the number of
mistakes that occur when the learner is predicting an entry in a row of cluster ¢. (Thus,
Zfﬁl p; = p.) Let n; be the number of rows in cluster 7. (Son = fﬁl n;.) Let A be all (3)
edges and the set £ contain all edges connecting two rows of the same cluster. We further
decompose & into &1, ...,E, where & contains all edges connecting two rows in the same

cluster ¢ of p. Observe that |&;| = an’—_ll When making an erroneous prediction for M, ;,
we define the force of the mistake to be the number of rows in the same cluster as row r
for which column 7 was known when the mistake occurred. Let F; be the sum of the forces
of all mistakes made when predicting an entry in a row of cluster q.

Recall that the noise of a partition p is defined as

ap = > d(SY) =" min{Np(5%), Ni(5)}.

Siep Step

For each cluster 7 and column j, let 6, ; = min{/\fo(S}) 1(S)} and let é; = Y770, & ;

Thus observe that a, = Zfﬁl 0;.

We now define J; to be the number of times that a weight in &; is multiplied by v when
making a prediction for an entry in cluster ¢. That is, J; is the total number of times,
over all trials in the learning session in which a mistake occurs, where an entry in cluster ¢
incorrectly predicts the value of an entry in cluster ¢ (voting with all its weight).

10 4. Construction Two: A Polynomial-time Algorithm

We now give the key lemma used in our main proof. For ease of exposition, let
a=lg(2—7)=lgZ; andb:lg(z_T”) =lg 1.
Lemma 2: For each 1 <1 <k,

b
F =

a

1
Ji+ — Z lg w(e).
a e€&;

Proof: We begin by noting that, when a, = 0, then J; = 0 and the number of times some
weight in &; is multiplied by (2 —7) equals F;. Thus, in the noise-free case, it follows that
(2 =) =Tl.ee, w(e). When a, > 0, then F; is the number of times some weight in & is
multiplied by either (2 —+) or 4. Since the number of times some weight in &; is multiplied
by v is J; we have that

J;
2-y)" =2 -t (L) =]I wle).

2- 7 e€&;

Taking logarithms of both sides we obtain the stated result. [

Note that if n; = 1 then J; = |&;| = F; = 0. The proof of our main theorem uses Lemma 2
as its starting point. We first obtain (Lemma 4) a lower bound for F; that depends on the
total number of mistakes, p;, made by our algorithm when making a prediction for an entry
in cluster 7. Next we must determine the maximum amount by which the “noisy” entries
of the submatrix S* cause the weights in & to be “weakened” (i.e. multiplied by) instead
of being “strengthened” (i.e. multiplied by (2 — 7)) as desired. In Lemma 5 we show how
to J; can be upper bounded in terms of §;, the noise within cluster ¢. Finally in Lemma 7
we obtain an upper bound for the sum of the logarithms of the weights. We do this by
observing that the total weight in the system never increases and then use the convexity of
the logarithm function. The proof of our main theorem essentially combines all the lemmas
and uses and addition convexity argument for combining the contributions from all clusters.

We now obtain a lower bound for F;. In order to obtain this lower bound, it is crucial
to first obtain an upper bound on the number of mistakes for a given cluster and given
force. This quantity characterizes the rate at which the weighted-majority nodes are gaining
information.

Lemma 3: For each row type r and force f there are at most m mistakes of force f.

Proof: We use a proof by contradiction. Suppose that for cluster ¢ the learner makes
m + 1 force f mistakes. Then there must be two mistakes that occur for the same column.
Suppose the first of these mistakes occurs when predicting M, ; and the second occurs when
predicting M, ; where both rows r and 7’ are in cluster 7. However, after making a force f
mistake when predicting M, ; that entry is known and thus the force of the A,,; mistake
must be at least f + 1 giving the desired contradiction. [

We now compute a lower bound for the force of the mistakes made when predicting
entries in cluster ¢.

Lemma 4: For any partition p and for any 1 <1 <k,

2 .
Fy > max { g —m, 2~ B4
2m 2

4. Construction Two: A Polynomial-time Algorithm 11

0 0 0 0
1 1 1 1
12 [5]-2 [R]-2]2

-1 e
m[] — pi

Figure 4.1: First p; elements of the sequence (0)”(1)"(2)™

Proof: We proceed by showing that both expressions above are lower bounds for F;. Let
o; denote the sum of the first y; elements of the sequence (0)”(1)"(2)" - ... From Lemma 3
it follows that F; > o;. Thus, clearly our first lower bound

Fi>p—m

follows since all but m mistakes have force at least one.

We now compute a more sophisticated lower bound on o;. Let s(z) =Y 3_; k = ﬂxz—-l'll
Using the structure illustrated in Figure 4.1 it is easily seen that

)~ (o]) (]

F;

IV [V
AN TN 3
3= @
| N
—
~— | 3=
—~
ks TN !
- —
o3|
I|E o3
~— ——
3E
—_—
~—

pi
2m 2"

To see that the last inequality holds, first observe that if p; is a multiple of m then
we have equality. Finally, it is easily seen that when u; = ¢m + r for quotient ¢ > 0 and

. . 2 .

remainder 0 < r < m—1 that ([£] — 1) (u; — Z[4]) > J= — 4. This completes the proof

of the lemma. [
Observe that the simple linear bound is a better lower bound only for m < p; < 2m.
Next, we capture the relationship between J; and the noise within cluster ¢ of the

partition to obtain an upper bound for J,.

Lemma 5: For any partition p, and for 1 <1i < k,,

52
J; < Gimy — .
m

12 4. Construction Two: A Polynomial-time Algorithm

Proof: For ease of exposition, we assume that for each cluster ¢ and column j, the majority
of the entries in S}, are 1. Thus ¢;; is exactly the number of 0’s in S; Observe that for
every known 0 entry in .57, the quantity J; is increased by one whenever the learner makes a
prediction error when predicting the value of an enfry in 57 that is a 1. Thus, in the worst
case, each of the é; ; entries in S} that are 0 could cause J; to be incremented for each of
the n; — é; ; entries in S} that are 1. Thus,

Ji <D 6ii(ng — 6ij) = bim — Zé
7=1

Since z? is convex, it follows that Pyt 6% > fn—?. This completes the proof of the lemma. m

Next we obtain an upper bound on the sum of the logarithms of the weights of a set of
edges from A. A key observation used to prove this upper bound is that the overall weight
in the system never increases. Therefore, since the initial weight in the system is n(n—1)/2
we obtain the following lemma.

Lemma 6: Throughout the learning session for any A" C A,

n(n—1)
Z w(e) < —

ec A’

Proof: In trials where no mistake occurs the total weight of all edges)~ . 4 w(e) clearly
does not increase. Assume that a mistake occurs in the current trial. Ignore all weights
that are not updated. Of the remaining total weight W that participates in the update let
¢ be the fraction that was placed on the correct bit and 1 — ¢ be the fraction placed on the
incorrect bit. The weight placed on the correct bit is multiplied by 2 — + and the weight
placed on the incorrect bit by . Thus the total weight of all edges that participated in the
update is (¢(2 —v) 4 (1 — ¢)y)W at the end of the trial. Since the latter is increasing in ¢
and ¢ < 1/2 whenever a mistake occurs, we have that the total of all weights updated in
the current trial is at most (L+)W = W at the end of the trial. We conclude that the
total weight of all edges also does not increase in trials where a mistakes occurs. Finally
since A" C A, the result follows. [|

Lemma 7: Throughout the learning session for any A" C A,

-1
Zlgw) <A g (QA’)
ec A’ | |
Proof: This result immediately follows from Lemma 6 and the concavity of the log function.
|
We are now ready to prove our main result.

Theorem 2: For all 5 € [0,1), Algorithm Learn-Relation when using the parameter v =
% makes at most

. . %1g€+ap(n— ,?—be)lg% 3mn21gkp—|-2ap(mn—ap)lg%
min < k,m 4 min 5 , >

lg 715 I8 745

mistakes in learning a binary-relation where the outside minimum is taken over all partitions
p and k, denotes the size and oy, the noise of partition p.

4. Construction Two: A Polynomial-time Algorithm 13

Proof: Let p be any partition of size k, and noise a,. We begin by noting that for any
cluster ¢ and column j in partition p, 6; ; < n;/2 and thus §; = Z}”:l 6; ; < nym/2. Recall
that in Lemma 4 we showed that F; > u; — m. Observe that if n; = 1 then F; = 0, and
thus it follows that p; < m. Thus, without loss of generality, we will assume throughout
the remainder of this section that n; > 2 for all ¢.

As we have discussed, the base of our proof is provided by Lemma 2. We then apply
Lemmas 4, 5 and 7 to obtain an upper bound on the number of mistakes made by Learn-
Relation.

We now proceed independently with the two lower bounds for F; given in Lemma 4.
Applying Lemma 2 with the first lower bound for F; given in Lemma 4, summing over the
clusters in p, and solving for u yields,

w= ngkar ZJ—I— Zlgw (4.1)

665

2 2
From Lemma 5 we know that J; < é;n; — fn—i < bn — fn—i. It is easily verified that
2
the function né; — fn—i is concave. Thus, combining Jensen’s inequality with the fact that

kp in -
Y21 0; = a,, we obtain:

kp a2 o
Ji <na,— —2 =a (n e) . (4.2)
ZZ:; P k,m b kpym
In addition, by applying Lemma 7 with A" = £ we obtain that:

n(n—1)
> g w(e) < [Ejrpasamtay
eef 2|g|

Next observe that the function zlg ﬂ?;T—ll is concave and obtains its maximum value at

T = ﬂ%l Thus we obtain that

lge

€] lg (2|g|1) nfn—1)E5 (4.3)

Finally by combining Inequalities (4.1), (4.2), and (4.3) we obtain that:

b - 1)1 b 2]
Hﬁkpm-l-—ap(n— ap)—l— n(n)ge<km—|— ap(n— ap)_l_n_g
a

kp,m 2a kp,m 2a e

proving our first bound on pu.
We now proceed by combining Lemma 2 with the more sophisticated second lower bound
for F; given in Lemma 4 to obtain:

2
pom b
=5 S it ;1gw (4.4)

Next we apply Lemma 7 with A" = &; to obtain:

n(n—1)

Z lgw(e) < |&]|1g
e€&; 2|g|

14 4. Construction Two: A Polynomial-time Algorithm

Applying this above inequality with Inequality (4.4) yields

m 2bm 2m m2
; < = — — 1 —
e = 2 +\l a it a gg: gw +

2bm n(n—1)
— i+ =& .
= ¢ | g = 2

Next we apply Lemma 5 and the fact that |&] = n;(n; — 1)/2 < n?/2, and then sum
over the k, clusters in p to obtain:

IN

2

2bm 6 i m(n-1)
< —_—.
B> kpm—l_\/ Z bini - 2b 1g ni(m—l)

n(n—1) .
—~— 1S concave
ni(n;—1)

As shown in the appendix, the function f(6;,n;) = ¢6mi - fn—? + % Ig

for n; > 2 and 6; < n;m/2. Since Zfﬁl n; = n and Zfﬁl 0; = ap,, we can thus apply Jensen’s
inequality to obtain:

20m | a,n Al n? k2(n-1)
o < kymo+ kpy L lg =~
P PV a k2 kZm — 2kZb n—k,
2bm a n?m . k2(n—1)
= k — -z lg L 4.
pm+¢a ap(" m)"‘ a g n—k, (4.5)

Observe that n > k,, and furthermore if n = k, then at most nm mistakes can occur
and the upper bound of the theorem trivially holds Thus Without limiting the applicability
1 < kp. Thus

we can further simplify Inequality (4.5) to obtain:

po < km—|—¢3mn21gk —I—Qb—map(n %)

m

3mn?lgk, + 2a,(mn — a,)lg L
— kma P p2(p) G
lg 55
thus giving us our second bound on p.

The above analysis was performed for any partition p € P. Thus taking the minimum
over all partitions in P we get the desired result. [

As when applying the weighted majority algorithm to a noise-free setting, notice that
we obtain the best performance by selecting v = 0 (respectively 3 = 0). Thus we obtain
the following corollary for the case of learning pure relations.

Corollary 1: For the case of learning pure relations where a, = a = 0, the algorithm
Learn-Relation with v = 0 learns a pure k-binary-relation making at most

2
km + min{g—lge,n\/fimlgk}
€

mistakes in the worst-case.

4. Construction Two: A Polynomial-time Algorithm 15

We now apply the results of Cesa-Bianchi et al. [CBFH'93] to tune 3 for the more
general case in which the relation is not pure.
Theorem 3: For any positive integers k and a, Algorithm Learn-Relation when using

v = %’ where = g(z) and z = %, makes at most

kym + | 3mn?lgk + dapymn (1 - &) + mn¢24an (1 — &) Ink

mn mn

mistakes, where the minimum is taken over all partitions p whose size ky, is at most k and

whose noise oy, is at most a.
Proof: From Theorem 2 we know that for all g € [0, 1), our algorithm makes at most

min {kpm +

partitions p and %, denotes the size and a, the noise of partition p.

3mn?1g kp+2ap(mn—ayp)lg %

P } mistakes where the minimum is taken over all
T+5

Assume that the partition p has the property that £, < k and a, < a. Observe that
the function (ln %) / (ln L) is decreasing over the range 0 < # < 1 and approaches 2 as

1+8
$ — 1. Furthermore, since 2a,(mn — a,) < 2a(mn — a) for a, < a < %7, it follows that

3mn?lgk + 2a,(mn — a,)lg %

g 5
29 k In §
3771717211 + dap(mn — a,) + 2a(mn — o) (g — 2)
hl m hl m

Qa(l—%)ln%

_ 2 + 3nlnk _ _ _

= 6mn°lnk 3 da(mn — a) + day(mn — o).
2111 m

So by applying Lemma 1 with z = % and = ¢g(z) we obtain a worst-case mistake
bound® given in the theorem. [
5o for example if the optimal partition p is such that a, = n, then the number of

mistakes is at most

ky,m + \/3mn2 lg k + 4mn? + mn?v241n k.

In addition to presenting their algorithm to make at most km + ny/(k — 1)m mistakes,
Goldman et al. [GRS93] present an information-theoretic lower bound for a class of algo-
rithms that they call row-filter algorithms. They say that an algorithm A is a row-filter
algorithm if A makes its prediction for M, ; strictly as a function of j and all entries in the
set of rows consistent with row r and defined in column j. For this class of algorithms they
show a lower bound to Q(n./m) for m > n on the number of mistakes that any algorithm
must make. Recently, William Chen [Che92] has extended their proof to obtain a lower
bound of Q(ny/mlgk) for m > nlgk. Observe that Learn-Relation is not a row-filter algo-
rithm since the weights stored on the edges between the rows allows it to use the outcome
of previous predictions to aid in its prediction for the current trial. Nevertheless, a simple
modification of the projective geometry lower bound of Goldman et al. [GRS93] can be

®Again, we can get 1id of the factor 2 in this mistake bound by either letting the algorithm predict
probabilistically in {0,1} or deterministically in the interval [0,1] [CBFH*93, KW93].

16 5. Concluding Remarks

used to show an Q(n/m) lower bound for m > n on the number of prediction mistakes
by our algorithm. Chen’s extension of the projective geometry argument to incorporate k
does not extend in such a straightforward manner, however, we conjecture that his lower
bound can be generalized to prove that the mistake-bound we obtained for Learn-Relation
is asymptotically tight. Thus to obtain a better algorithm, more than pairwise information
between rows may be needed in making predictions.

5 Concluding Remarks

We have demonstrated that a weighted majority voting algorithm can be used to learn
a binary relation even when there is noise present. Qur first construction uses exponentially
many weights. In the noise-free case this construction is essentially optimal. We believe
that by proving lower bounds for the noisy case (possibly using the techniques developed
in [CBFH'93]) one can show that the tuned version of the first contruction (Theorem 1) is
close to optimal in the more general case as well.

The focus of our paper is the analysis of our second construction that uses a polynomial
number of weights and thus can make predictions in polynomial time. In this construction
a number of copies of our algorithm divide the problem amongst themselves and learn the
relation cooperatively.

It is surprising that the parallel application of on-line algorithms using multiplicative
weight updates can be used to do some non-trivial clustering with provable performance
(Theorem 3). Are there other applications where the clustering capability can be exploited?
For the problem of learning binary relations the mistake bound of the polynomial algorithm
(second construction) which uses () weights is still far away from the mistake bound of
the exponential algorithm (first construction) which uses £ weights. There seems to be a
tradeoff between efficiency (number of weights) and the quality of the mistake bound. One
of the most fascinating open problem regarding this research is the following: Is it possible to
significantly improve our mistake bound (for either learning pure or non-pure relations) by
using say O(n?) weights? Or can one prove, based on some reasonable complexity theoretic
or cryptographic assumptions, that no polynomial-time algorithm can perform significantly
better than our second construction.

Acknowledgements

We thank William Chen and David Helmbold for pointing out flaws in earlier versions
of this paper. We also thank the anonymous referees for their comments.

References

[Ang88] Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319-342,
1988.

[BF72] J. Barzdin and R. Freivald. On the prediction of general recursive functions.
Soviet Mathematics Doklady, 13:1224-1228, 1972.

[CBFHT93] Nicolo Cesa-Bianchi, Yoav Freund, David P. Helmbold, David Haussler, Robert
E.Schapire, and Manfred K. Warmuth. How to use expert advice. In Proceedings
of the Twenty Fifth Annual ACM Symposium on Theory of Computing, pages
382-391, May 1993.

References

[Che92]
[GRS93]

[KW93]
[Lit88]
[Lit89]

[LLWO1]

[LW89]

[Vov90]

17

William Chen, 1992. Personal communication.

Sally A. Goldman, Ronald L. Rivest, and Robert E. Schapire. Learning binary
relations and total orders. STAM Journal of Computing, 22:1006-1034, October
1993.

Jyrki Kivinen and Manfred K. Warmuth. Using Fzperts for Predicting Contin-
uwous Qutcomes. Furocolt 1993.

Nick Littlestone. Learning when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2:285-318, 1988.

Nicholas Littlestone. Mistake Bounds and Logarithmic Linear-threshold Learn-
ing algorithms. PhD thesis, U. C. Santa Cruz, March 1989.

Nicholas Littlestone, Philip M. Long, and Manfred K. Warmuth. On-line
learning of linear functions. In Proceedings of the Twenty Third Annual ACM
Symposium on Theory of Computing, pages 465-475, May 1991. To appear in
Journal of Computational Complezity.

Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm.
In 30th Annual Symposium on Foundations of Computer Science, pages 256-261,
October 1989. To appear in Information and Computation.

Volodimir G. Vovk. Aggregating strategies. In Proceedings of the Third Annual
Workshop on Computational Learning Theory, pages 371-383. Morgan Kauf-
mann, August 1990.

18 References

Appendix

52 n2

We now demonstrate that the function f(6;,n;) = y/é;n; — + + otlg nﬂ(Z—__llL) is concave
for n; > 2 and 6; < n;m/2.

For ease of exposition we shall let z = §; and y = n;. We must now show that f,, <0,
fyy < 07 and fxxfyy - (fxy)2 > 0.
It is easily verified that:

=y 1 1 n(n—1)
Jer = . w7 <4 o gy - 1)) =0

It can also be verified that f,, can be expressed such that the denominator of f,, is

166%(In 2)*(y — 1)*(f(z,9))?,

and the numerator is

fow = —4°(y—1)—y* —4b*2*(In2)*(y — 1)* -
4bz In 2 (y(4y2 — Ty +2)— %(mﬁ — 10y + 3)) -
n(n—1)

8b1ln 2
o1 o),
y(y—1)
It is easily shown that 2y* — 4y + 1 > 0 for y > 2. Observe that y(4y* — Ty + 2) —

Z(6y* — 10y + 3) > 0 when
y [4y —Ty+2
e < S| ST).
~ m \ 6y2 — 10y + 3

In (2@/2(2@/2 —4dy+1)+

Furthermore, for y > 2
2 _
4y Ty 4+ 2 > é S 1
6y? —10y+3 — 7 2
and thus it suffices to have < ym/2 which is the case.
Finally, it can be verified that f. f,, — (fzy)? is

y? (4y(y — 1)+ 1+bmln24 2bmyln2(y —2)+2In ﬂ—11(23/2 —dy + 1))

y(Z:l)

1662(In 2)2(y — 1)2m(f(x,y))*

>0

for y > 2.

This completes the proof that f(z,y) is concave over the desired interval.

