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51. IntroductionNecessity is an evil; but there is no necessity for continuing to live subject tonecessity. - Epicurius1.1 OverviewThe computational requirements of large-scale Arti�cial Intelligence (AI) applicationsdi�er considerably from those of conventional non-symbolic applications. To date, mostparallel computer systems have been designed with numeric applications in mind; thegreatest optimizations have been made in the area of numeric performance and regularinterprocessor communications. AI applications, however, are typically not numericallyintensive and may have highly irregular and variable communication patterns.An architecture optimized for the support of AI applications should provide e�cientpattern matching and set-oriented operations and allow good performance in the faceof irregular patterns of access. The Associative Processing Environment (APE),a closely-coupled distributed computing environment based on the system described in[Hughey and Roberts, 1993] is presented as a prototype for such an architecture. TheAPE provides support at the instruction-set level for the associative operations that are thecritical `inner loop' for many AI applications.The behavior of interprocessor communications (IPC) in such an environment is ex-pected to vary considerably for di�erent application domains, particularly in the case ofsystems intended to `learn' over time and with experience. IPC behavior within a singleapplication may be highly nonuniform due to levels of structure within the data beingmanipulated by the system.A standard design technique used in developing multicomputer interconnection networks(ICNs) is to assume a uniform tra�c model in which processors generate messages atrandom times with uniformly distributed destinations. We suggest that in the case ofcertain classes of AI applications, excessive reliance on the uniform tra�c assumption maylead to inappropriate design decisions.The Associative Processing Environment Simulator (APES) is presented as a facilityfor the simulation of arbitrary interconnection topologies and message tra�c distributions.APES supports the use of communication pro�les generated by trace analysis of an existingprogram, allowing the behavior of parallelized serial applications to be evaluated.A series of experiments are described that use APES to explore the IPC behavior of aparallelized AI application. The results indicate that the AI application engenders an IPCtra�c pattern that contains behaviors not modeled e�ectively by the assumption of uniformtra�c. We speculate that spatiotemporal locality in the AI program's data access patternsleads to transitory hotspots which can dramatically a�ect message latency and thus systemperformance.We conclude that patterns of activity based on semantic relatedness among objects inthe associative database give rise to communication patterns that are not modeled withcomplete e�ectiveness using a uniform message distribution. Hotspots are likely to beunavoidable, and designing ICNs in the hope that the hotspots will not have a great impact



6 1. Introductionon latency is not likely to be a good idea. Some adjunct to uniform analysis is appropriate;we suggest that simulations along the lines of those presented here are a step in the directionof a more complete design methodology.1.2 OrganizationSection 2 presents a brief overview of some important classes of AI applications anda philosophical1 overview of some high-level issues in AI research. The question of whata platform for the support of experimental AI should be is discussed in terms of allowingresearchers to concentrate on exploring algorithms by providing e�cient support for AIprimitives (i.e. as abstract data types) rather than forcing extensive implementation e�ortby shoehorning applications into inappropriate platforms.Section 3 provides a general introduction to the APE architecture at the processor andprogramming model levels. Emphasis is placed on the pattern matching and associativeprimitives provided by the massively parallel content-addressable memory array in eachprocessor; speci�c details about processor internals and instruction set are omitted in theinterest of generality. Issues involved in the design and topology of the interprocessorcommunications network are described.Section 4 describes in detail the requirements, design, and operation of the APE simu-lator. It is presented as both an analytical tool for examining communication patterns ofexisting programs and a design tool for experimenting with pro�les for new applications.A key feature of the simulator is the ability to run the same simulation using di�erentinterconnection schemes. The process of mapping instruction traces onto the simulatedarchitecture for analytical simulation is described.Section 5 describes a series of APES experiments run on a number of di�erent potentialinterconnection networks (ICNs) using trace data derived from the Morph [Levinson etal., 1992] application. Communication patterns derived from the program traces were runon each ICN and the results compared to those derived from similar experiments using auniformly distributed random tra�c model. The results were examined with respect toassessing the validity of the uniform tra�c assumption and characterizing the variations inthe application's communication behavior due to topology.In section 6 we explore several areas for further study including enhancements to thesimulator, the simulation of other applications, and the search for emergent behaviors inthe network tra�c patterns.Section 7 concludes the body of the thesis. The experimental results are summarized,and we suggest that these results are likely to be of relevance when designing an APE-basedsystem for the e�cient execution of associative-operation-intensive AI applications similarto Morph. Some areas for further work and exploration are also presented.Appendix A describes the Morph application in detail and describes the process thatwas used to develop the execution traces used in the APES experiments.1 As in Webster's [Webster, 1986] de�nition of philosophy as \a search for truth through logical reasoningrather than factual observation".



72. AI research: trends and tools2.1 Why an AI architecture?Arti�cial intelligence (AI) applications have computational requirements quite di�erentfrom those of typical numerical or simulation applications. Historically, parallel supercom-puters have been designed and optimized to run codes that are computation-intensive suchas image analysis, weather prediction, and numerical analysis [Almasi and Gottlieb, 1989].The patterns of interprocessor communication in these applications are usually well-de�nedand regular. By contrast, AI codes, especially those implementing a connectionist paradigm,tend to do little number-crunching and a large amount of irregular communication [Fahlman,1979].AI applications have been developed on all sorts of machines, and a number of special-ized architectures exist [Wah and Li, 1989, Feigenbaum and McCorduck, 1983]. At present,however, there are few `general-purpose' AI machines widely available. The Lisp machinesmarketed by Texas Instruments and Symbolics come to mind, as do massively parallel sys-tems such as Thinking Machines' CM-2 [Thi, 1990] and ICL's Distributed Array Processor[Parkinson and Litt, 1990]. They support limited programming models, and have demon-strated mixed results in some very speci�c AI areas such as neural and semantic networks[Moldovan et al., 1990, Singer, 1990]. An ideal machine would support exploratory AIprogramming at an instruction-set level while providing the 
exibility of a `conventional'programming environment.2.2 AI research tools | a (slanted) perspectiveLisp | ready for the 21st century?AI researchers tend to su�er particularly from the universal problem of \When all youhave is a hammer, everything looks like a nail." The majority of the program code thatde�nes the �eld of AI has been written in Lisp [McCarthy and others, 1962] or its variants; anumber of Lisp machines have been available to support Lisp primitives at the instruction-set level. A standard Lisp program, however, regardless of its elegance in exploiting thelist-processing programming model, su�ers from the relatively high overhead and low degreeof parallelizability of Lisp [Deering, 1984]. Many applications have thus been coded in Lisp,recoded, and recoded again in e�orts to extract the best possible performance.Parallel Lisps do not seem to have had a dramatic impact on the structure or performanceof AI programs. The data-parallel *Lisp [Hillis, 1985] encumbers the programmer withlanguage limitations and its performance is dominated by the mediocre throughput of theCM-2's global router network [Cook and L. B. Holder, 1990]. Other approaches, such asMultilisp [Jr., 1987], extend the language with awkward syntactic structures supportingonly a coarse-grained parallelism. Neither style of approach seems to have signi�cantlya�ected the design of Lisp programs themselves. While clearly an elegant syntax for thedescription of many algorithms, the Lisp programming model appears to be fundamentallyserial in nature1. While some primitives, such as mapcar, may lend themselves well toimplicit parallelism, it would appear that a truly parallel Lisp will require explicit languageextensions and/or extremely clever compilers.1 The primitive object in Lisp is a linked list of cons-cells, not an obviously parallelizable structure.



8 2. AI research: trends and toolsPrograms and paradigmsPerhaps the most popular AI applications today are production systems or so-called`expert systems.' These have their basis in work begun by Newell and Simon in thelate 1950's (described in [Newell and Simon, 1972]) and have evolved into a fairly useful(but far from general-purpose) computing paradigm. Current production systems are inuse in applications as diverse as computer system con�guration (the R1 system at DEC)and medical diagnosis (MYCIN and its descendants). In general, these systems are ableto work faster and possibly better [Gupta and Forgy, 1989] than humans in extremelylimited domains; they are quite incapable of generalizing to new situations [Shapiro, 1990].E�orts have been made to parallelize the systems, and fair speedups have been obtained onspecialized2 hardware [Gupta, 1984].Prolog [Clocksin and Mellish, 1981] emerged in the early 1980's as a candidate for aneasy-to-understand, easy-to-parallelize language for AI applications. Further research inthe area of parallel logic-based languages has been able to demonstrate good speedup incertain applications, such as the PARTHENON theorem prover reported in [Bose et al.,1992]. Some interesting parallel Prolog implementations have appeared, such as the onepresented in [Ambriola et al., 1990]. The applicability of purely logic-based approaches togeneral AI research, however, remains to be seen [Shapiro, 1990].The notion of `semantic memory' was introduced in 1968 with the publication of Quil-lian's dissertation [Quillian, 1968]. This work was in response to the problem of modelingsemantic organization in the mind, something of an obsession with early AI researchers.What Quillian observed was that memory is not so much a matter of storing data andretrieving them as it is one of traversing the many relations among stored data. The ideaof treating memory as a process of active association involving numerous potentially simul-taneous operations on many data represented an evolutionary change. Previous (and manysubsequent) applications relied on comparing tags in the data themselves to �nd similari-ties and di�erences, but in general the focus was on the data themselves rather than on therelations among them.Some relatively simple problems were run with modest results, but various shortcomingsof the model caused it to fall into relative obscurity for several years. A decade later,Fahlman presented the NETL system [Fahlman, 1979], extending the Quillian model andgeneralizing it into more concrete terms. NETL e�ectively described an architecturalabstraction of semantic memory that could be evaluated in concrete terms. The modelof data transformation as the propagation of markers (e�ectively single bit 
ags) among anetwork of nodes representing some semantic attribute or feature of the problem domainopened up the �eld of semantic networks.Semantic networks were conceived as a realizable hardware model that could actually bebuilt with existing technology rather than just as an abstract mental experiment. Fahlmanbelieved that at least a million processing elements would be necessary before his machinecould produce any `interesting' results [Fahlman, 1980]. This was well beyond the limits oftechnology, at least with respect to funding at the university research level. Other work insemantic net architectures [Moldovan et al., 1990, Hendler, 1988] has continued, popularizedin the book Parallel Distributed Processing [McClelland et al., 1986].2 The RETE algorithm [Forgy, 1982], physically embodied in the DADO and NON-VON machinesreported in [Stolfo, 1984] and [Shaw, 1985], provided speedup based on the signi�cant degree of parallelismimplicit in the serial algorithm itself.



2.2. AI research tools | a (slanted) perspective 9Fueled by a resurgence of interest, connectionism emerged as the next direction for AIresearch. Both cognitive modeling and symbolic processing approaches, as well as varioushybrids, have come to fall under the connectionist rubric. One branch of connectionism hastaken up the cause of so-called neural networks, creating mathematical models of neuron-likeentities in an attempt to re-create their functionality. This approach has shown reasonablesuccess in some speci�c domains such as the modeling of certain areas of precognitivefunction including early vision processing [Ballard et al., 1983]. These areas, however,represent a highly specialized functions; it appears unlikely that any sort of generalizedintelligence will be achieved using current neural network-style approaches.In [Ho�mann, 1990], Ho�mann uses the methods of algorithmic information theory toshow that the application of neural networks to learning problems does not (and cannot)change the amount of work that must be done to learn a given domain. Whether thework is in the form of repeated training iterations or in the clever design of the system'sarchitecture, the same information-theoretic lower bound exists on the amount of energythat must be expended to achieve a given level of performance.We suggest that this structuralist approach, while valid in information-theoretic terms,fails to capture the e�ect of representation and chunking on the learning problem; considera shape recognition task whose primitives are pixels with one that has as its underlyingrepresentation known objects such as lines and circles. The former must do all the work oflearning about what a `circle' is before it can begin to categorize objects into the `circle' class.The latter, however, bene�ting from previous knowledge encoded into its representation,can use its time learning higher-level relations. While the theoretic limitation is still true,in fact the chunking of knowledge at the representation level radically alters the meaningof the limitation.Another branch of connectionism has attempted to merge the traditional `symbolist' ver-sion of AI (canoni�ed in Simon's Physical Symbol System hypothesis3) with the spreadingactivation model spawned by Fahlman's work. Minsky has proposed a sort of connectionistschema of intelligent systems in The Society of Mind [Minsky, 1986]. His assertion is that`intelligence' is the result of many relatively independent agents acting in concert, each anexpert in some particular domain and none necessarily in charge. This approach can bevisualized as a cooperative heterarchy; a large set of `purposeful' entities, each with its ownarea of specialization, are interconnected so as to engage in a cooperative problem-solvingattack. The sum total of their e�orts is greater than the abilities of any individual agent,yet all agents contribute to the result. This model may be the closest yet to abstractingrelatively generalized cognitive functions into a computable methodology.Another approach to making state-space search more e�cient is Adaptive-PredictiveSearch (APS) [Levinson et al., 1992]. APS concerns itself with accumulating a databaseof graphlike patterns based on combinations of predicates over the state space in an e�ortto capture domain knowledge. Each pattern in the database has a weight value associatedwith it that indicates the expected degree of that pattern's contribution to the acquisition ofa goal state. The patterns are accessed by an associative search mechanism that attemptsto relate patterns by their similarity according to a subsumption relation such as more-general-than. The intention is for patterns similar to one another, and therefore implicated3 The hypothesis states that physical symbol systems, i.e. representations of physical systems, possess\: : :necessary and su�cient means for general intelligent action". If we allow the possibility that any physicalsystem can, in theory, be represented by a symbol system of arbitrary complexity, we have the basis for abelief in `strong' AI.



10 2. AI research: trends and toolsin related chunks of knowledge, to be easily accessible to one another. Generalization onthe feature space is an implicit part of this model, permitting the potentially fruitful reuseof patterns in subsequent searches over the same feature space.The associative database in an APS system represents yet another style of connectionistapproach; the collection of patterns is in e�ect a network of interacting objects whichrepresents the `knowledge' that the system has accumulated. APS is notable in its explicituse of associative primitives to access objects in the database, the lack of implicit structurein its knowledge base, and its espousal of experience-based learning in the form of theinteraction of past knowledge with the state space.We suggest that connectionist AI is an area currently undergoing a tremendous amountof exploration, and that its unique computational requirements are not well served bycurrent architectures.2.3 Some comments on the nature of AI researchThe following are several ideas about working on AI that emerge from this author'ssurvey of AI research. They are presented in an e�ort to convey some of the 
avor of theexploratory and rather open-ended nature of the �eld.Solutions to toy problems do not necessarily lead to real solutions. Building ablocks world and manipulating it, as Winograd's SHRDLU [Winograd, 1972] did, is simplyno more than a blocks world. Developing a neural net that solves a small learning problemsays little about how e�cient a bigger version will be [McClelland et al., 1986]. Morph[Levinson, 1991], a program able to learn the rudiments of chess, is unable to transfer itsknowledge to checkers. In each case, generality is lost to a combination of tailoring thesolution to the problem at hand rather than attacking the greater class of such problems,and of combinatorial explosion as domains grow larger.Working on real problems demands real resources. Almost all AI applications de-mand lots of memory and lots of computing cycles for pattern-matching and set-associativeoperations. Much of AI amounts to search in a very large state space [Rich and Knight,1991]. As clever as the search algorithms are, the bigger the state space the more resourcesare needed. It is sometimes possible, however, to leverage resources by exploiting paral-lelism both at the data level, as in the text-retrieval applications on the Connection Machine[Stan�ll and Kahle, 1986] which have shown very good performance on complex searches,and at the algorithm level as in the parallel Rete match [Forgy, 1982] which does a staticdata
ow analysis and partitions the problem among available processors for a respectablespeedup.Much implementation e�ort has gone into shoehorning inherently parallel algo-rithms into Von Neumann-style platforms. A case in point is the Morph program; atremendous amount of its development e�ort has been aimed at tuning the code to achievedecent performance [Gould and Levinson, 1991]. In e�ect, the underlying algorithms havebeen tweaked until they run reasonably on the available hardware. The re�nements to thealgorithms are thus driven less by abstract issues of theory than by hardware constraints.



2.4. Representation, search, and pattern associativity 11Whether more appropriate hardware will permit the underlying theory to be better ex-plored, or if such explorations will bear fruit, remains to be seen. After all, necessity is themother of invention...Some AI problems require an exploratory programming style. Marr distinguishes[Marr, 1990] between what he calls type 1 and type 2 theories in relation to AI problems.Type 1 theories are those that provide a `clean', decomposable (read rational) solution toa particular problem. A computational theory of type 1 not only solves a speci�c problem,but does so by exposing some fundamental underlying mechanism. That the mechanismis fundamental implies that an algorithm built around it will be solid and correct, if notnecessarily easy to implement. Numerous problems in the area of vision, for example, havelent themselves to type 1 solutions.Type 2 theories, on the other hand, are inherently non-fundamental. They are composedof many subprocesses, and no single underlying theme unites them; the theory is describedsolely by the interaction of its components. Type 2 theories, in Marr's formulation, havedominated the AI �eld. Presumably these are the `computational theories' that are commu-nicated solely via program listings, since the implementation is the theory. Marr makes thepoint that there is not necessarily any easy way to determine whether a type 1 theory existsfor a particular problem, and that the surfeit of type 2 solutions can hide an underlyingtype 1 theory.If a particular problem has no type 1 solution (and there seems no reason to believethat all high-level cognitive reasoning problems do), the only way to develop a suitable type2 solution is by exploratory programming, trying di�erent approaches until a good one isfound. By the same token, if a type 1 theory does exist, it may well be found after enoughtype 2 approaches have been tried.This author believes that a signi�cant cause underlying the preponderance of type 2solutions in AI research is that the programming tools and environments that have beenavailable fail to o�er su�cient resources to explore the space of possible solutions adequatelyenough to discover underlying type 1 solutions. Once a type 2 solution is found, it lingersuntil another comes along. The process of exploration is not as well-exercised as it mightbe. Given good throughput and a programming model that supports search and matching,it seems reasonable to assume that more type 2 solutions will be tried, presumably leadingtoward more fundamental solutions.2.4 Representation, search, and pattern associativityAI and state-space searchMany di�erent application domains have been characterized by the term `Arti�cialIntelligence;' these run the gamut from playing simple games to understanding humanlanguages and diagnosing illnesses. While a tremendous amount of e�ort and creativityhas been devoted to developing di�erent AI programs, the principles underlying almostall of them are similar: the classic AI problem is a search for some (nonempty) set ofgoal states over the state space consisting of all the possible con�gurations of the systemunder consideration. This implies several fundamental entities | a representation, whichformalizes the state space, a goal state or goal predicate which de�nes the terminationcondition of the search, and a set of operators that transform states. Additionally, an



12 2. AI research: trends and toolsomniscient entity or trainer can provide feedback on the current distance to the goal state(s)as the search progresses.The problem of searching an exponentially large state space has been attacked on manyfronts. If no feedback (in the form of a trainer) is available from the environment untilthe goal predicate is satis�ed, then little can be done besides brute-force search. Numerousinformed search methods exist, however, for exploiting the information provided by someenvironmental feedback. Well-explored techniques such as A* [Hart et al., 1968, Hart et al.,1972] are proven to converge and are able to �nd optimal solutions.One weakness of conventional informed search methods is that they tend to be relativelybrittle; they all rely on some generally �xed evaluation function that represents an estimateof the current state's distance from the goal. A small discrepancy in the evaluation of aparticular state can lead the algorithms far down unfruitful paths before �nding their wayback to the right one. Evaluation functions tend to be used to abstract as much of therepresentation as possible into a goodness value as quickly as possible. Since the evaluationfunction must be called for each state visited during the search, its computational cost mustbe minimized. This implies that it probably cannot capture much of the structure availablein the representation, even though it is precisely this structure that can best inform thesearch!Adaptive/Predictive Search and the Pattern-Weight formulationAn alternative to the model of explicit state-space search is the Pattern-Weight (PW)representation used in the Adaptive-Predictive Search (APS) approach described in section2.2. APS attempts to abstract relevant features of the state space based on experience.This would provide a potentially more e�cient search and allow for a better response in areactive environment (i.e. a situation in which the goal predicates may change).A PW consists of a graphlike pattern, which is a predicate over features of the state space,and an associated weight that indicates the expected degree of that pattern's contribution tothe acquisition of a goal state, or the system's degree of `belief' in the pattern. Weights areupdated periodically using a form of temporal-di�erence learning [Sutton, 1987], in whichperiodic feedback from the environment causes reevaluation of the sequence of patterns thatled up to the present state.A pattern is e�ectively a set of interacting features which together represent somepartitioning of the state space. Since patterns generally represent partial states, theyin e�ect generalize the state space, providing a higher level of granularity of knowledge(or `chunking') than that available to conventional search methods. The PW formulationattempts to extract whatever structure information is available in the given representationand to exploit it by creating patterns that represent `interesting' sets of features (i.e. thosethat lead toward optimal satisfaction of the goal predicates).APS and the PW formalism provides a compact and e�cient alternative to conventionalstate-space search; in e�ect the interaction of PWs and the evaluation function result inan abbreviated heuristic search. APS attempts to exploit whatever structure is available inthe underlying state-space representation.Several applications implementing APS have been implemented [Levinson et al., 1992,Levinson, 1993]. These systems all comprise the key elements of APS:



2.4. Representation, search, and pattern associativity 13� Pattern representation: a methodology for the mapping of domain features to PWs;some style of semantic network is applicable. Conceptual graphs (CGs) [Sowa, 1992]are a good candidate for a pattern representation formalism. They are compact andsemantically rich, and very e�cient algorithms exist for their manipulation. Becausethey are based on semantic rather than syntactic rules, CGs can expose underlyingstructure in the feature space.� Associative database (ADB) and pattern retrieval method: a scheme to organizeand manipulate patterns according to a subsumption relation such as more-general-than (as described in [Ellis, 1992]). Patterns are to be classi�ed into a partial orderaccording to their relationships with other patterns in the database.� Search method: strategy to select those patterns from the ADB most likely to leadto the desired result. Implemented as a hill-climbing energy-minimization search,patterns are selected using an evaluation function to provide a measure of the degreeof `goodness' or applicability of a particular pattern.� Learning algorithm: a method for the modi�cation of patterns' weights based on theresult of their application. The experience-based learning (EBL) method described in[Gould and Levinson, 1991] suggests the use of a simple form of temporal-di�erence(TD) learning [Sutton, 1987], which assigns positive or negative credit to patternscontributing to a particular experimental outcome.� Pattern generation method: a facility that creates new patterns both by integratingnew observations into the ADB and by recombining existing patterns into morepowerful or general con�gurations.Its reliance on an associative database means that the performance of an APS systemdepends heavily on implementation. Because the ADB represents only a partial order onfeature space, it cannot be e�ciently implemented by conventional key-index methodologies.The graph matching operations at the core of the required subsumption operator aretypically NP-complete and thus are typically not amenable to brute-force methods.We suggest that providing instruction-level primitives to support the associative oper-ations required to maintain an ADB is an important step toward the design of a platformthat encourages experimentation in the APS domain. This is assuming, of course, that AIresearchers would prefer to build systems that learn rather than wander the NP space ofgraph-matching algorithms.



14 3. Designing an associative processing environment3. Designing an associative processing environment3.1 An overview of associative processingWe can distinguish associative from `conventional' processing by de�ning associativeprocessing as \the manipulation of data based on their content and equivalence classes1"[Hughey and Roberts, 1993]. This is in sharp contrast to the conventional computationalmodel originally described by von Neumann [Burks et al., 1947], whose explicit intentionwas the movement of individual data items among speci�c locations using unique addresses.Given these de�nitions, we extend the conventional notions of data manipulation to includethe accessing of data by content rather than by location. Any data movement operation mayinvolve set membership or other pattern matching operations, and any `simple' operationmay a�ect the global state of a machine rather than a speci�c location.There is a fundamental assumption that can be made regarding the primitive operationsthat are required for the support of such an approach: pattern matching and setoperations must be handled as e�ciently as possible and preferably at theinstruction-set level.In the case of a system distributed over multiple processing elements and address spaces,it is necessary to assume that data accesses are at least occasionally, and in the normal caseperhaps often, nonlocal. Nonlocality of access implies that tra�c in the interprocessorconnection network may be very bursty and may have intense transitory hotspots [Kumarand P�ster, 1986]. In addition, referential nonlocality is a natural consequence of thegenerally irregular and nondeterministic behavior of large AI programs. Design choicesbased on this model of data access must be made as early as possible.Massive parallelism is appropriate to the needs of connectionist system; multiprocessingis a natural consequence of their structure, and the mapping to many-processor systems[Fahlman, 1979] is easy. In the case of marker propagation systems in particular, very largeamounts of interprocessor tra�c occur during processing [Miranker and Andrews, 1990]; itis worth noting that the size of marker messages is typically very small. Connections amongthe processors must be as fast and general as possible, and the design process must takethese factors into consideration.The Connection Machine CM-2 [Hillis, 1985] is representative of the one style of attackon the problem. Using a �ne-grained single-instruction, multiple-data (SIMD) approach toparallelism, it was originally intended to be very good at semantic network applications[Hillis, 1981]. In actual fact, the production model turned out to be quite ine�cient inthat domain due to its rather weak performance in global routing2. Well optimized localcommunication yields good performance on regularly partitioned applications. Irregularproblems, however, such as neural network simulation, have yielded relatively poor results[Singer, 1990].1 The equivalence classes in the case of an AI application would represent partitions on the feature space.2This author's experience implementing Sparse Distributed Memory on the CM-2 [Noshpitz, 1991]con�rms that signi�cant e�ort must be expended minimizing global communication in order to achievereasonable performance.
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Figure 3.1: Block diagram of an associative computing node.3.2 An associative processing architectureThe next level of abstraction for parallel computing in the SIMD style is to use theSIMD arrays as coprocessors, providing a high-powered supervising processor to controlthe arrays and do serial operations. We propose such an arrangement in the AssociativeProcessing Environment (APE), a closely-coupled multicomputing environment based onmessage-passing among a large network of powerful computing elements each equippedwith a SIMD processor array. Such a system would have the ability to execute associativeoperations as primitives in a data-parallel programming environment. The APE abstractionis based in large part on Roberts' MISC machine [Hughey and Roberts, 1993], which utilizesthese ideas in a multicomputer with support for associative-match primitives.An APE computing node consists of a conventional control processor, or supervisor,with a generous amount of local RAM, tightly coupled to a SIMD array of small processingelements. The array serves as a content-addressable memory (CAM) able to e�cientlyperform pattern-matching and set operations. The general structure of a processing node isillustrated in �gure 3.1. A fairly dense machine could be put into a small cabinet, minimizinginterprocessor wire lengths and allowing more resources to be devoted to `fattening' theinterconnects to speed communications.A full APE system would consist of some number of computing nodes joined by a fastinterconnection network. The network should provide e�cient global routing and be asresilient as possible in the face of hotspots and faults. It is probable that a dynamic load-balancing scheme would be implemented to keep hotspot contention as low as possible; one



16 3. Designing an associative processing environmentarea in which the APE simulator is expected to be used is in evaluating the cost/bene�ttradeo�s of load balancing. Marker-propagation messages tend to be short and frequent,and the migration of data structures at the process level generally involves periodic bulktransfers [Noshpitz, 1990]. A design goal, then, is for both short and large message tra�cto be handled e�ciently.The Control ProcessorThe impact of embodying the associative processing paradigm at the processor level isconsiderable. Primitive operations may have high latency since associative match couldtake several orders of magnitude longer than local memory references. Some mechanismbeyond simple pipelining is needed to mask this latency, which may be highly nonuniform.In Roberts' description of the MISC machine, the processors are similar to hybrid data
ow[Ianucci, 1988] machines, switching among several execution threads to hide the latencyinvolved in associative array or message-bound operations.Associative match instructions may need to broadcast keys to other processors andreceive match data back in an iterative fashion, implying that interprocessor communication(IPC) can be expected to occur more often than in a conventional message-passing system.The latencies due to this communication should also be masked. Since associative primitivesinvolving the local SIMD array are expected to occupy a signi�cant part of the actualexecution time, the split-phase transaction model described in the hybrid data
ow literature[Arvind and Nikhil, 1987] seems appropriate.The Associative ArrayEach control processor is bound to a SIMD array of simple processors based on a CAMcell such as the PCAM [Roberts, 1990]. Such an array is capable of performing exactmatch, k-nearest-neighbor and other associative operations (as described in [Kanerva, 1988])e�ciently. Each of the processing elements in the SIMD array contains a small local memoryas well as a grid-based message routing mechanism.The abstraction supported by the SIMD array is that of an e�cient associative-memorymodule; data are written and read like a (relatively slow) conventional memory withadditional support for fuzzy matching or associative operations. Such an array can providesupport for various implementations of associative operations, such as Kanerva's SparseDistributed Memory [Kanerva, 1988] and the K; d-tree and similar structures described in[Omohundro, 1990].Associative array operations are supported at the instruction-set level of the supervisorprocessor. The supervisor contains logic to broadcast microinstructions and data to theprocessors in the SIMD array and to collect the results of their computations, so that arrayoperations are invisible outside of the processing module. The latency of the SIMD array isgenerally proportional to its size; a simple pattern-matching operation should take the sameamount of time regardless of the number of hits. Best-match searches, however, which mayrecall some number of elements in sequence, can take a variable number of SIMD cycles.This is another point in favor of providing as many mechanisms as possible to hide latencyin the supervisor.



3.3. Why simulate an APE? 17The interconnection networkWe believe that a closely coupled network of APE computing nodes requires a verye�cient global interconnection network (ICN). An important design goal for the ICN is forthe latency of a nonlocal access to be bounded and to be within a small order of magnitudeof that of a local access. This requirement places serious demands on the network in theface of the irregularity of communication and hotspot behavior anticipated to arise in thetarget applications.The choice of which topology to use is not altogether straightforward; it is possible forimplementation and technology-related issues to overwhelm theoretical analysis in actualnetwork performance. Fat-trees [Leiserson, 1985] and multiple bus [Dai et al., 1991] systemsappear to be good candidates, as do some members of the large class of k-ary n-cubesdescribed in [Dally, 1990].Many studies of network performance have been based on a model of uniform, randomlydistributed message tra�c [Patel, 1981, Bhuyan et al., 1989]. This is in fact not a partic-ularly likely scenario in the applications described as the targets for APE. In particular,data clustering and hotspots seem quite likely to occur in the context of a semantic net andparticularly so in conjunction with dynamic load balancing.While conventional numeric and simulation applications seem to tend towards uniform,random tra�c, AI applications may not. The law of large numbers implies that a largegroup of processes interacting randomly would tend to evince a normal distribution. AIapplications, however, are expected to represent features of a structured domain. Someabstraction of this structure is likely to be re
ected in the patterns of communicationamong objects in a distributed AI system working in a `real-world' domain.3.3 Why simulate an APE?Based on this discussion, it would appear that the best that could be done in developingthe APE network topology might be an educated guess, trying for the most `general'approach that seems implementable. In fact, given a simulation tool that is e�cient andeasy to use, the chances of the guess being a good one could improve dramatically.By doing data
ow analysis on traces from an actual AI application such as the Morphproject [Levinson, 1991] and mapping it onto the simulated APE system, we have char-acterized some of the essential qualities of expected communication behaviors and theirsensitivity to topological variations.Like most existing AI applications, Morph has been heavily optimized to run on single-processor Von-Neumann-style machines. Although its implementation is deeply rooted in aconventional workstation environment, Morph makes heavy use of the associative primitivesthat are expected to be at the core of an APE system.Ultimately, it will be necessary to model application codes that do not yet exist; usingassumptions based on known codes it should be possible to generate statistical models ofmessage passing and access patterns with enough validity to exercise the simulator in wayswhich will prove useful to the system's design.



18 3. Designing an associative processing environment3.4 Design issues for distributed associative processingWe assume that at the heart of an application running in an APE is an associativedatabase (ADB) distributed across the processing nodes. We expect that interprocessorcommunication (IPC) patterns will change as relations among objects in the ADB change.This represents a key di�erence between the assumptions underlying most `scienti�c' ap-plications and the connectionist style of AI. Many scienti�c problems are described as aregular tesselation over some computational space; communication requirements are thuspredictable and regular, or at least deterministic [Almasi and Gottlieb, 1989].The temporal and spatial structure of search in an ADB is not necessarily regular;in a system implementing adaptive-predictive search (APS) no a priori structure at allis imposed on the stored patterns or their relations. Objects in the ADB represent anabstraction of the application domain's feature space, and their structure is derived fromthe system's observations about the feature space rather than from explicit rules.For some perhaps contrived problems this structure could be quite regular. In thecase of more interesting problems it may be better to assume that the structure of theknowledge base as experience builds will resemble a chaotic system; the world is a ratherchaotic place, with lots of low-level structure and order interacting at higher and higherlevels of abstraction to generate more and more complex behaviors. It is expected that thestructure of the database underlying a mechanical representation of a worldly system willnot be regular, and probably will change (perhaps dramatically) as the system's experienceevolves.Depending on the complexity of the domain, it may be very di�cult to determine aheadof time how IPC requirements will change. This emerges as a serious design issue whenimplementing a parallelized ADB because low latency is an important adjunct to the abilityto maintain very large, and therefore interesting, databases. Since search time must scalewith database size, ADB operations represent a potential performance bottleneck for largeAPS systems.Locality of access and load balancingWe suggest that there is likely to be a good deal of locality among accesses to a dis-tributed ADB. This locality takes the form of clustering patterns in parent-child relation-ships within the database hierarchy. Objects that are `similar' in feature space are expectedto be near one another in the ADB, since the ADB's classi�cation scheme is de�ned asbeing related to distance in feature space. Therefore, access to `similar' objects is likely toinvolve access to many of the same intermediate objects during search.In order to maximize processor utilization and minimize IPC, we expect that someform of dynamic or demand-driven load balancing will need to be implemented. Thegeneral thrust of the load-balancing methodology is that those objects that are most oftenin communication (i.e. compared to one another) should be in closest proximity, eithercoresident in an APE node or a minimal number of network hops away. The criteria usedto determine when to migrate or replicate an object are left to further research.3.5 Chaotic dynamics in a large connectionist systemOne key characteristic of many current AI codes, and presumably of any system at-tempting to behave in an `intelligent' fashion, is non-determinism. Given that the world is



3.5. Chaotic dynamics in a large connectionist system 19generally not a regular, orthogonal system, any system that maps the world internally to asigni�cant degree must also map its irregularities. It is anticipated that once a computersystem builds a complex enough world model, that model may begin to behave as a chaoticsystem [Gleick, 1988] rather than a strictly deterministic one.In e�ect the connectionist paradigm, which holds that knowledge in a system is a holisticproduct of some set of relations among its elements, can be viewed as a mapping of features(i.e. facts about the domain under consideration) into a very high-dimensional space whosecoordinate axes are a cross-product of all the degrees of freedom in the system. A particularknowledge item (or `memory') is in e�ect a hyperplane passing through particular points ofinterest in the knowledge space.In addition to the points of interest, however, the hyperplane is likely to pass throughmany other points that may not be relevant in themselves but which nevertheless are partof that particular assemblage of experience in the system. Therefore, the behavior of thesystem when moving among speci�c memories (i.e. locations in knowledge space) may defysimple prediction and could be expected to express chaotic qualities.Points in the knowledge space can be mapped more-or-less arbitrarily to physical lo-cations in the computer system. It then seems reasonable to assume that the inclusion ofapparently unrelated points as described above is likely to cause nonlocal connections tobe made among apparently unrelated objects. Although not bearing any direct semanticrelation, these items nevertheless share points along the hyperplane de�ning what is ine�ect a query into the knowledge database. Assuming that data are clustered in particu-lar processors according to some arbitrary structural considerations, it is possible that theobserved communication patterns will end up appearing to be chaotic as the state of thesystem evolves through time.So how does the potential for chaotic communications behavior a�ect the design of acomputer system capable of representing and manipulating such a system? We suggest thata high-throughput global communications facility is essential. The underlying structure ofthe access pattern is likely to lead to hotspots; hotspots, as described in [Kumar and P�ster,1986], can cause a network to exhibit complex nonlinear behaviors which are very di�cultto handle gracefully. It may therefore be di�cult to predict accurately any but the grossestlevels of IPC behavior. Qualitative simulations serve as an e�ective adjunct to the design,providing understanding of the behavior of the system as it evolves through time. Givensimple stochastic assumptions about program behavior, a straightforward simulation shouldbe able to capture at least some of the 
avor of the dynamical behavior of the system. Itis with this intention that the APE simulator is designed.



20 4. APES, a network tra�c simulator4. APES, a network tra�c simulator4.1 OverviewThe Associative Processing Environment Simulator (APES) presents a readily con�g-urable interface to a generic simulation of the network tra�c in a multicomputer of the styledescribed in the previous section. The simulator is designed to develop a qualitative modelof patterns of activity in the system given arbitrary topologies, routing methods and poli-cies, and code pro�les. The generic routing elements that are simulated are an abstractionof features to be found in most multicomputer systems. Simulation of tra�c on arbitrarytopologies using a variety of routing and bu�ering policies is supported. Message tra�cmay be generated according to random distributions or be derived from code pro�les ofactual programs.APES simulates the message tra�c in an arbitrarily connected packet-switched network.Each node in the network is considered to be a processing element (PE) and may contributeto message tra�c independently of other PEs. The arcs in the network correspond tocommunication links which are assumed to have a �xed capacity such that a link can carrya single message packet at a time (the width, or number of wires, in a link is thus equivalentto the number of bits in a message packet).A variety of bu�ering policies and non-adaptive routing functions are available. Statisticsabout tra�c along each communication link and in each processing element throughout thetime of the simulation are gathered. These can be analyzed for clustering and hotspotbehavior as well as processor load balance. Statistics are collected for tra�c in and out ofeach processing element (PE) as well as across each link in the network. Message latencystatistics are also collected.The simulator can be used both to analyze execution traces generated by existingapplications and to experiment with instruction pro�les for simulated applications. Tra�cand latency statistics can be used to explore clustering and hotspot behavior as well asprocessor load balance. By providing tools to examine behavior of existing applications,the simulator enables the design of a system to be tuned to known problem approaches.In addition, novel approaches involving the exploitation of the unique facilities available inthe APE can be simulated in a qualitative fashion in order to develop those approaches anddiscover architectural issues that may not be obvious otherwise.4.2 Architecture of the simulatorThe simulator consists of several interacting modules, each of which is an abstraction ofsome part of the system under study (with simpli�cations to enable qualitative evaluationsto be made without incurring prohibitively high simulation overhead). The modules arelinked together into a single executable �le. The executable takes as input a �le describingthe network topology and possibly another �le containing message events to be generatedduring the simulation run.Measurements taken include tra�c 
ow through each communication link and messagelatency. The resulting data are available both as a realtime graphical display of selectedactivity over time (for example, a moving graph of tra�c in each link) and as a summarizedstatistical report. System state at each step of the simulation can be logged to a �le.
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Figure 4.1: Block diagram of the APE simulator, its inputs, and outputs.The overall structure of the simulator is illustrated in �gure 4.1. The topology graph isa simple adjacency-list representation of the ICN to be simulated. The execution trace isproduced by instrumenting the program whose behavior is to be simulated, and is analyzedto produce a communication pro�le for the program. Behavioral parameters include thechoice of routing and bu�ering schemes, queue sizes, and operational details such as outputformat. The simulation log is a detailed trace of each step in the simulation. The tra�cand latency statistics are described in section 4.7 and can be processed with a variety ofanalytical tools. The console can be used to view the progress of the simulation, choosingamong several variables of interest such as link tra�c and queue depth in each PE.4.3 FeaturesNetwork topologyThe interconnection network (ICN) to be simulated is expressed as an arbitrarily con-nected network of processing nodes and communication links. No explicit limitations areplaced on connectivity, although the speed of simulation is polynomially related to thenumber of links in the network.
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Representation in the simulatorFigure 4.2: Representation of bus structures inside the simulator.Buses and bus-like structures such as trees are supported explicitly. They are representedinternally by virtual processors1 which arbitrate among the links connecting the PEs on eachbus (see �gure 4.2). Hierarchical buses and other hybrid bus designs are also supported bythis mechanism. For analytical purposes, the tra�c on a bus is the sum of tra�c in all thelinks connecting its constituent nodes to the virtual processor.Message injectionEach node in the network has the potential to inject messages, or generate messageevents. A message event causes some number of packets to be injected into the network.These can be created stochastically according to a statistical distribution whose parametersare speci�ed by the user or can be read directly from a user-supplied �le. In the lattercase, the �le may originate from a parallelization of code traces from existing applicationsor from other modeling approaches.Since injection of messages by a particular PE can be explicitly controlled, support existsfor treelike topologies in which interior nodes act only as routers and all processing (andmessage injection) is done at the leaves. The virtual processors that support bus arbitrationin an explicit bus simulation never inject messages of their own, but act only as forwardingagents.Routing and bu�ering policiesThere has historically been little distinction between bu�ering and routing in the ar-chitecture literature. Routing is a computational method for selecting the destination of amessage packet, while bu�ering policy is concerned with the allocation of bu�ering resourceswithin the router itself. APES provides mechanisms to implement several varieties of each.A wide variety of approaches to routing and bu�ering are described in the literature;one partitioning is the distinction between adaptive and �xed routing techniques. Adaptiverouting [Linder and Harden, 1991] may introduce some nondeterminism into the path amessage will take with the bene�t of providing better behavior in the face of networkblocking. The cost, of course, is in computational complexity. Fixed routing schemes canbe vulnerable to blocking (increasing latency) and deadlock, but are relatively e�cient toimplement. Another approach is the use of virtual channels [Dally, 1992] to split availablebandwidth into independently bu�ered data streams at the cost of increasing the expenseof bu�ers and routing logic; the cost is balanced by provably deadlock-free operation (againat the cost of some computation to route appropriately).1 These processors are not part of the explicit topology map provided by the user, and never injectmessages. They act only to arbitrate among pending bus requests and pass messages along the bus.



4.3. Features 23The philosophy implemented in APES is to provide the simplest and most general degreeof functionality possible. Therefore, only �xed routing methods are supported. Theseinclude dimension routing (described in [Hillis, 1985] and in a more general form in [Felperinet al., 1991]) which routes in �xed order along each dimension of a cube-like structure2, andan explicit routing based on the equivalent of a global routing table. The latter may requirea computationally expensive search of the ICN to determine the best paths, but this isdone only once at the start of simulation. For the future, a simple programmatic interfacepermits new routing schemes to be easily integrated.The available bu�ering policies include wormhole [Seitz and others, 1985], virtual-cut-through [Kermani and Kleinrock, 1979], and store-and-forward [Tanenbaum, 1981]. Thesespan a wide range of implementation possibilities. The observable areas in which theydi�er are in latency and blocking behaviors. Blocking behavior is a function of contentionfor network links. The question is whether a single blocked packet can rapidly propagateblocking through the network or if blocking behavior tends to be local. This depends in e�ecton the granularity of the bu�ering scheme; the �ne-grained approach of wormhole bu�eringimplies that blocking the head of a message could cause each router along the message'spath to block immediately while the coarse granularity of store-and-forward bu�ering doesnot necessarily cause any routers but the current one to block.Figure 4.3 illustrates the relative latencies of wormhole and store-and-forward bu�ering.It assumes that three routers are involved in the message's transit. Since only a single 
it3is bu�ered at a time, the head 
it in the case of wormhole bu�ering arrives at its destinationlong before its counterpart in the store-and-forward case. The latter must wait for all 
itsto reach the intermediate router before beginning to forward, engendering greater messagelatency.The wormhole approach involves minimal bu�ering at each node; a packet gets passedalong its path if the path is available, otherwise it blocks. This can cascade, blocking anypackets waiting to travel along the same path behind the blocked one. On the other hand, amessage can begin arriving at its destination as soon as its head 
it has propagated throughthe network.Store-and-forward bu�ering, by contrast, bu�ers all the packets in a message at eachrouter along the path before propagating them. This causes the entire message to block atan intermediate router until the next link is available. The additional latency engenderedby this approach can be o�set by less catastrophic blocking behavior, since fewer routersare likely to become blocked by a single link being unavailable.A third alternative, virtual-cut-through, is a hybrid of the two; it extends wormholerouting to allow several 
its to be bu�ered at a blocked router. This mitigates the unde-sirable blocking behavior of wormhole bu�ering at the expense of added bu�er space. Ifmessage lengths are variable and a bu�er is not constrained to contain an entire message(but rather a small, �xed number of 
its), this approach appears to represent a signi�cantimprovement over wormhole's blocking patterns while bounding the additional bu�eringoverhead.These policies comprise several continua of design features:2 Note that many common ICNs can be viewed as cube-like structures; see section 5.2.23 Flit stands for 
ow control digit, a small data packet. The words 
it and packet are used interchangeablyhere.
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itshave completely propagated through the network.� Blocking behavior: wormhole bu�ering can easily cause the entire network toblock if a circular wait condition arises; this is combated by clever routing techniquesincluding adaptive routing and virtual channels [Dally, 1992]. While e�ective, thesetechniques increase the cost of routing logic and bu�ering resources. Store-and-forward bu�ering is less vulnerable to deadlock, assuming bu�er sizes are su�cient ateach router.SynchronizationAll actions in the simulator are coordinated by the master simulation clock. Each tickof the master clock represents some arbitrary time slice that is assumed to be equivalent tothe time a packet takes to propagate across a link. We assume that link latency is smallerthan router latency; in e�ect it is subsumed into router latency4. As an example, taking theapproximations that light travels one foot per nanosecond and that signals propagate acrossa link at 0:1c, a one-foot link can be expected to have a propagation delay of 10ns. Assumingthat a router can propagate a message in 10 instruction cycles (perhaps optimistic), and4APES provides a facility to delay the arrival of a packet at the other end of a link for some number ofsimulation cycles. This is equivalent to making link latency some multiple of router latency, perhaps mostuseful for simulating widely distributed systems.



4.4. Functional elements 25assuming that routers operate on a clock of 50Mhz, or 20ns, we expect a router to take200ns to route a 
it. By the time the next 
it is routed, therefore, the �rst 
it will havelong since reached the other end of the link. The more general assumption is that routingtime is greater than link propagation time.A simulation cycle is started by incrementing the clock tick count and then callingsimulation routines for each of the subsystems, updating the state of all elements in thesimulated system. The state of each part of the system is computed based on its behavioralrules and current state. Once all elements are updated to their new state, the display maybe refreshed and the new global state may be written out to the log �le.4.4 Functional elementsFigure 4.4 illustrates the relationships among the various elements that comprise asimulated processing node. The routing/bu�ering logic implements whatever schemes wereselected at runtime. The master simulation clock synchronizes all operations. A router portexists for each link in contact with the PE; the number of ports could di�er among PEs inan irregular network. Each router port has a send and a receive queue to handle tra�c inand out of the associated communication link. The queue sizes are �xed at runtime, andare varied with the choice of bu�ering method. Communication links are implemented assimple FIFO bu�ers (although we assume that a link can hold only one `packet' of dataat a time). Message injection is controlled by either a communication pro�le derived fromtrace analysis or by a random variable.Processing elementsThe basic object in any multicomputer system is the processing element (PE). In thecontext of the simulator, a PE is de�ned as an entity that generates and routes messagetra�c. In any particular simulation cycle, a PE may be idle or may generate one or moremessages to be propagated through the ICN.The PE abstraction is e�ectively a �nite-state machine whose transitions are governedby some internal state | in trace analysis mode, the presence or absence of a pendingmessage event, and in stochastic mode the result of a weighted coin toss.In the former case, each PE can be independently programmed with respect to theordering of message events. The events are derived from a user-supplied �le of messageevents derived from an application pro�le.For stochastic system modeling, a set of global parameters governs the probability ofeach PE generating a message during a particular simulation cycle. The probability (drawnfrom a uniformly distributed random variable) is a user-supplied option. The length (inpackets) of each message generated can be constant or similarly controlled.RoutersProcessing elements communicate with one another via routers, which interface tothe ICN itself. Each PE contains a router, and each router contains a port for eachcommunication link impinging on the PE. Each port is comprised of a send and receivequeue whose lengths are global parameters set by the user. The queues themselves containlogic to determine full/empty status. Routing and bu�ering decisions are made by logic



26 4. APES, a network tra�c simulator
Communication

profile

Random message

generator

Routing and

buffering

logic

Message 

injection

logic

To adjacent

router ports

?

Simulator master clock

Receive queue

Send queue

Router port

Figure 4.4: The abstraction of a simulated processing node.within the router. This logic arbitrates among con
icting requests for send and receivequeues in the ports and determines where to forward messages according to the routingalgorithm.Routing decisions are made according to either a global routing table or a dimensionrouting algorithm. The latter case, though less general, does guarantee freedom from dead-lock under appropriate bu�ering conditions. A provably deadlock-free routing algorithmis useful since adaptive routing is not currently supported. The global routing table canembody an arbitrary routing map; the simulator provides a facility to create a best-�rstrouting map by searching the network graph for shortest paths.Network linksData are transferred among processing elements via the network links. Links providepoint-to-point connectivity between router ports; the router ports at each end of a link takecare of queuing messages for the link and directing them on their path.All links are assumed to have the same latency and capacity. The capacity is de�ned asone 
it's worth of data, where a 
it is a packet of �nite, arbitrary length. In e�ect, each
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Figure 4.5: The process of generating a communication pro�le from an executiontrace.link passes an entire 
it from end to end in one simulator cycle (see the discussion of timingassumptions in section 4.3).The latency of a link in the context of a simulation is de�ned as the number of simulationcycles a packet takes to be delivered end-to-end. This value is assumed to be one for alllinks, although support for a user-de�nable e�ective length is available on a per-link basis.When this value is set greater than one, delivery is delayed for the speci�ed number ofcycles.4.5 Mapping instruction traces to the simulated machineWhen the simulator is being used to analyze execution traces, it takes as input commu-nication pro�les, specially formatted �les of abstract simulator instructions generated byanalysis of the actual execution traces. Communication pro�les are generated by a seriesof separate analysis modules which abstract data movement instructions in the executiontrace into simulated message tra�c. This process is illustrated in �gure 4.5.The communication pro�le consists of a set of groups of potentially concurrent messageevents. Each group of events is delimited by synchronization barriers derived from astreamlined data dependency analysis of the application program. Since in the generalcase this is an NP-hard problem [Helmbold and McDowell, 1991], we make the simplifyingassumption that a group of read accesses not separated by a write constitute a potentiallyconcurrent segment. Although weaker than actual dependency analysis, we suggest thatthis approach abstracts enough of the application's object access behavior to constitute avalid model.Initially, the target application must be instrumented so that all data accesses that are(or may be) the cause of a communication event are written out to a trace �le. Each dataobject must have a unique label; this could be a real memory address or an arbitrary handle.Each potential event may also have a transfer size associated with it which eventually getstranslated into some number of packets in the corresponding message. The trace �le also



28 4. APES, a network tra�c simulatorcontains information regarding barrier points in the program for later creation of barriersin the communication pro�le.The data movement operations described in the trace log are parsed into sets of potentialmessage events according to the barrier points included in the trace or to user-suppliedinformation derived from analysis of the code itself. An intermediate �le is produced whichcontains barrier segments, each consisting of one or more communication events. Duringthe generation of this �le, a matrix of object relations (based on the addresses or handlessupplied in the trace log) can be built; this matrix contains a row and column for eachunique object, and the entry for each pair of objects indicates the number of contactsbetween the two objects in the trace log. This can be used for determining allocation ofobjects to processors in the next step.The object handles or addresses are then resolved into processor IDs and written asmessages to the communication pro�le. Allocation of objects to PEs can use informationin the relation matrix to place in proximity those objects most likely to communicate.The problem of optimal allocation is at least NP-hard; a `reasonable' allocation may becomputed using cluster analysis or other statistical methods. Alternatively, a randomallocation strategy can be used. In either case, the resulting �le is the communicationpro�le that is fed to the simulator. Each message event in the communication pro�lerepresents some data access in the program trace; each segment of events represents a setof potentially concurrent accesses.4.6 Stochastic simulationIn the case of a stochastic simulation, the action of each processor at each time stepas well as the destination of each message are governed by statistical distributions whoseparameters are supplied by the user. The parameters depend on the architecture of theprocessors and on assumptions about distribution of data in the system over time. Repre-sentative distributions for various applications can be generated by conducting statisticalanalysis of the application program's behavior. This simulation strategy extends the designphilosophy described in [Henessy and Patterson, 1989]. The idea is to analyze many vari-ants of a particular idea without losing the underlying abstraction and without requiringextremely detailed simulation of each processor.4.7 Simulation dataMassive amounts of data are generated during a simulation. Structures within APESitself keep track of every packet's progress; this is too �ne a degree of granularity for thequalitative analysis described as the simulator's goal. Results are therefore presented ashigher-level combinations of the available data. The most interesting of these is the questionof how `busy' communication links are during the simulation.APES tabulates the contents of each link during each simulation step. A key metricto be examined is the behavior of the load value for each link, computed by counting thenumber of packets traversing the link within a user-supplied time window and dividing bythe window size, yielding a normalized moving average of link activity. If W is the size ofthe window (in simulation steps), then the load value for the jth link at simulation step tis given by



4.7. Simulation data 29Ljt = 1W tXi=t�W T jiwhere T it = ( 1 if link i is busy at time t0 otherwiseNote that Ljt is normalized to the interval [0 : : :1]; as the window size is decreased theload average approaches unity, in accordance with the intuition that a narrower link isbusier than a wide one. As window size is increased the load value decreases as would beexpected if the link were fattened. The peak load value for each link, its greatest value overthe course of a simulation run, is a measure of the worst-case behavior of the link.The total number of packets crossing a link over the entire simulation run is anotherinteresting performance metric. This is given byT jtot = SXi=0 T jiwhere T jtot is the raw tra�c for the j-th link, S is the total number of simulation steps, andT ji is as described above.Message latency M is the number of simulation cycles a message takes to arrive at itsdestination. The simulator keeps track of M , the mean latency, and Mmax, the greatestlatency of any message.The mean and variance (over all links j) of Lji and T ji are calculated and displayedat the conclusion of a simulation run (or during the run, if interactive mode is in e�ect).For greatest 
exibility in evaluation of the result, the output format is compatible with asuite of auxiliary statistical analysis tools. These tools are used to generate normalizeddistributions which can be viewed using a tool such as Gnuplot [Williams and Kelley, 1990].In addition to statistical summaries, the simulator can output data in graphical formatduring the simulation run. Although of limited resolution due to the typically large numberof objects that must be displayed, these runtime graphs can be very useful in pinpointinghotspots and visualizing tra�c distribution over time.



30 5. Experiments5. Experiments5.1 OverviewWe describe a series of experiments conducted using the Associative Processing Envi-ronment Simulator (APES) and Morph communication pro�les prepared as described insection 4.5. The objectives of these experiments were:1. To characterize the interprocessor communication (IPC) behavior of a parallelized AIapplication on a variety of interconnection network (ICN) topologies.2. To compare the resulting IPC tra�c patterns with the behavior that would be pre-dicted by using an assumption of uniformly-distributed message tra�c.3. To characterize the relationships between ICN topology and communication behaviorfor both the parallelized application and the uniform-tra�c assumption.The experimental procedure began with selection of the target ICNs and preparationof the Morph trace data. Next, the IPC tra�c of each topology was simulated under botha communication pattern derived from the Morph trace and an assumption of uniformly-distributed message tra�c. The resulting data on link tra�c and message latency weretabulated and plotted.In all cases the cumulative tra�c through each link evinced an approximately normaldistribution. Peak link load, a performance metric described in section 4.7, was alsonormally distributed in the case of uniform tra�c. In the Morph-pro�le case we consistentlyfound a subset of heavily loaded links that dramatically increased the variance in peakload. In combination with the approximately normal distribution of total link tra�c, wesuggest that this �nding indicates the presence of transitory hotspots. We speculate thatthis hotspot behavior results from structure within the associative database (ADB) beingmapped across processor boundaries in the network being simulated.There appeared to be a clear relationship between the bisection width of a network andthe mean value of normalized link tra�c. A similar relationship was found between aspectratio (see section 5.2.2 below) and mean peak link load for the case of uniformly distributedmessage tra�c. There was also some relation between latency and aspect ratio in bothtra�c cases.5.2 Procedure5.2.1 Generating the communication pro�leWe instrumented Morph [Levinson et al., 1992], a chess-playing program that usesadaptive/predictive search (APS) techniques to learn the game. At the heart of Morph isan associative database (ADB) of pattern objects derived from game positions. Accesses tothe database were monitored over a number of execution runs, and the resulting trace dataanalyzed to create an ordered list of object access events. This list was then transformedinto a series of partial orders representing groups of potentially parallelizable events. Theordered set of such groups was then partitioned according to implicit synchronizationbarriers derived from analysis of the program code.



5.2. Procedure 31The resulting list of sets of potentially parallel object access events represents the rawmaterial of the communication pro�le to be simulated. The �nal step is the partitioning ofADB objects among the available processors. This was done on a random basis, assigningdatabase objects to simulated PEs according to a uniformly-distributed variable. We choserandom allocation because it re
ects the behavior of an actual system in the absence ofdynamic load balancing. Although an allocation scheme based on analysis of the databasecould have provided better performance, doing so would have meant making assumptionsthat were stronger than those that an actual APE system would be able to make.The result of the partitioning is a `script' of message events, or communication pro�le,representing communication among the PEs during program execution. The communicationpro�le represents a standard data set that can be run on any desired topology containingthe number of PEs selected in the partitioning step. Since the pro�le must be recreated ifa di�erent number of PEs is required, in these experiments each set of topologies with thesame number of PEs shares the same pro�le.Greater detail on the generation of the communication pro�le can be found in section4.5 and in Appendix A.5.2.2 The experimental topologiesThe topologies used in the experiments were selected from the family of k-ary n-cubes[Dally, 1990]. This class of topology is of considerable interest because isomorphisms existbetween k-ary n-cubes and a wide array of other topologies including multistage switchingnetworks, meshes, tori, and hypercubes. Because of the networks' regularity, the switchingelements required to implement routing can be designed compactly. In addition, e�cient,straightforward deadlock-free routing algorithms are available.One metric that can be used to classify k-ary n-cubes is bisection width, described in[Dally, 1990]. The bisection width B(k; n) of a k-ary n-cube network is de�ned as theminimum number of links that cross an even partitioning of the network, that is, thesmallest number of links that can be cut when the network is divided into two equal-sizedparts. Consider such a network1 embedded into a 2-dimensional plane such that n=2 of its ndimensions are assigned to each of the two planar dimensions. If there areN = kn processingnodes, there will be pN = kn=2 rows and columns in the planar network. Suppose that welook at just the internode links in the highest dimension | these are the links crossing themidpoint of the network. There are 2kn=2�1 such links in each of the pN rows (one linkpassing data in each direction per processor pair in the row), or 2pNkn=2�1 links total.The bisection width B is de�ned asB(k; n) = 2pNkn=2�1 = 2Nk = 2kn�1Bisection width is in e�ect a description of the network's capacity to move data. It isrelated to the network's dimension, but is a measure not just of diameter (equivalent todimension for k-ary n-cubes), or how far a packet may have to travel, but of capacity, thenumber of packets tht can be in transit simultaneously. For a constant link capacity, higher-dimensional networks have a higher bisection width and require more and longer wires; longwires are slower than short ones and require more power to drive. Lower-dimension networksare cheaper but may not have the routing capacity of high-dimensional networks (havingfewer dimensions means there may be more contention).1We assume for the remainder of this discussion that k, the radix of the network, is even.



32 5. ExperimentsTopology Radix Degree Size Bisection width Aspect ratiok n N B(k; n) A(k; n)2,6 cube 2 6 64 64 1.04,3 cube 4 3 64 32 0.58,2 cube 8 2 64 16 0.2516,2 cube 16 2 256 32 0.1252,8 cube 2 8 256 256 1.04,4 cube 4 4 256 128 0.58,3 cube 8 3 512 128 0.25Table 5.1: Experimental topologies and their attributes.We introduce as a further characterization of an ICN's density the aspect ratio, de�nedas the ratio of bisection width to processor count. This is given by:A(k; n) = B(k; n)N = 2kn�1kn = 2kConsider the partitioned network again; if the aspect ratio is low, many processors arewanting to use few available links to get to the other partition. If the ratio is high, thenumber of available links and the number of waiting processors is well-matched so that thenetwork can be considered to be more `e�cient'.We will present both bisection width and aspect ratio as metrics in the discussion ofthe experimental results. The particular topologies that were chosen for the experimentsrepresent a spectrum of both these metrics. Table 5.1 identi�es the characteristics of eachof the experimental topologies.5.2.3 Experimental parametersExperimental runs were done for each topology using the Morph communication pro�leand a uniformly-distributed random tra�c pattern chosen to approximate the pro�le'sprobability of message generation. Several communication pro�les were created; the initialtrace data were the same in all cases, but the mapping of objects to PEs, and therefore thepatterns of tra�c, were di�erent for each number of PEs. Each topology containing thesame number of PEs used the same pro�le. A total of three di�erent random allocationswere used in the experiments, one for each of the network sizes of 64, 256, and 512 PEs.The similarity of the peak load results (see Section 5.3.1) for each of the networks indicatesthat one random allocation is probably equivalent to another.In the uniform-tra�c studies, we assumed a constant probability of a PE generating amessage in any particular simulation cycle. This probability was determined by a roughexamination of the communication pro�le. If the pro�le contained m message events andran to completion in c simulation cycles, we assumed that the probability of a PE injectinga message was given by P ' mcWe found the value of P to be near 3 % in each case that was examined, so this value wasused in all the uniform-tra�c experiments.



5.2. Procedure 33All messages were de�ned to be 4 packets in length. It would have been simpler to makethem a single packet long, but we wanted to stress the network in an e�ort to discoverissues relating to link contention over time. Another possibility (more realistic in termsof the data structures manipulated by Morph's ADB) would have been to allow messagelengths to vary randomly on some range. Although interesting from a practical point ofview, we felt that this would further muddy the observations of link tra�c and latency dueto the additional irregularity in network usage.The routing method used was a straightforward dimension routing algorithm that guar-antees freedom from deadlock. Wormhole bu�ering was chosen as the simpler of the twoalternatives. Store-and-forward routing, in addition to its higher latency, required largebu�ers to be allocated at each node in order to avoid link starvation; the considerable over-head due to memory paging of the bu�ers led to unacceptably long simulation times for thelarger networks.5.2.4 Gathering and processing experimental dataSince we were interested in network utilization, we chose to examine statistics related tothe measurement of tra�c on each link. Simulation data were processed to obtain a recordof total tra�c and peak load for each communication link. The individual link data wereanalyzed to obtain mean and variance, and a discrete distribution function was computed.The distributions for each experimental run were then plotted and compared.The key metric we examined was the load value for each link, a normalized movingaverage of link activity described in section 4.7. The maximum or peak load value for eachlink over the course of the simulation was kept as an index of the worst-case behavior ofeach link. We used a window size of W = 75 cycles in all the experiments; the resultingpeak load values were well distributed over [0 : : :1].Since peak link load describes the greatest load on a link over some interval, if aparticular link's peak load exceeds the mean peak load we infer that that a statisticallyunusual number of messages were passed over this link in a short time at some point duringthe simulation. If clusters of objects exist such that their members tend to be accessed incloser-than-average temporal proximity, we would expect the links spanned by the clusterto exhibit high peak load.Because peak load may represent a very transitory phenomenon, we also examined thetotal tra�c (i.e. number of packets) across each link in an e�ort to characterize the hotspotbehavior. The raw tra�c �gures were normalized in each case to the total number of packetsinjected into the network over the course of the entire simulation; the resulting value repre-sents the number of packets in a given link per packet injected into the network, intuitivelythe contribution of each link toward the total tra�c in the network. We expected thatthe distribution of normalized link tra�c would be approximately uniform since whateverlocality of access existed in the original database should be evenly dispersed across the PEsdue to the random partitioning of database objects to PEs.A �nal area of network behavior that could be examined in order to characterize thee�ects of contention is message latency, de�ned as the number of simulation cycles a messagetakes to arrive at its destination. We found it impractical to collect complete latency datadue to the large number (� 105) of messages in each pro�le. The data that were collected



34 5. ExperimentsTopology Uniform TraceName Aspect Lpeak �2Lpeak Lpeak �2Lpeak2,8 cube 1.0 31.79 21 44.53 12362,6 cube 1.0 32.19 19 56.19 10864,4 cube 0.5 32.29 25 46.57 12644,3 cube 0.5 32.55 23 59.93 10158,3 cube 0.25 48.07 30 48.32 14228,2 cube 0.25 48.84 27 67.37 97616,2 cube 0.125 72.03 37 61.43 1367Table 5.2: Peak link load for uniform and Morph-derived tra�c patterns.include mean and maximum2 latency for each simulation run. Although not su�cient tocompute a distribution function, we suggest that these data may be of value in furtherdescribing IPC behavior.5.3 Results5.3.1 Peak link loadThe results of the measurements on peak link load are summarized in table 5.2. We �ndthat in each case the Morph communication pro�le engenders a large variance in peak load,indicating that some irregularity exists in the tra�c pattern.In the uniform-tra�c cases, we note that the mean peak loads fall into three clusters, eachcorresponding to a di�erent range of aspect ratio A(k; n). We suggest that this correlateswith our intuitive notion of aspect ratio as a measure of the ICN's e�ciency, in that thetopologies with the greatest value of A, such as the 2,6 cube and 4,3 cube, show generallylower peak usage than those with smaller A such as the 16,2 cube.The dependence on A is not evident for the trace-generated data; presumably theirregularity in the tra�c patterns in this case overshadows the behavior.Plotting discrete distributions for each case as illustrated in �gures 5.1 and 5.2, we seethat the uniformly-distributed random tra�c displays an approximately normal distributionof peak link load while the trace-derived tra�c shows a similar distribution with the additionof a sharp peak at the maximum-load end. We take this as an indication that a subset of linkshas undergone one or more episodes of high usage, while the remainder have experiencedapproximately uniform tra�c.5.3.2 Cumulative link tra�cWe explored measures of cumulative tra�c across links in order to further characterizeIPC behavior. The total number of packets passing over each link during a simulation runwas normalized to the total number of packets injected. This gave a measure of the amountof work each link had to do in response to each packet injected into the network. Varianceswere also computed and normalized. These values are summarized in table 5.3. Note that2 Since we use wormhole routing the minimum latency is always just the number of 
its in a message, inthis case 4.
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Figure 5.1: Probability distribution of peak link load from uniformly-distributedrandom tra�c.
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Figure 5.2: Probability distribution of peak link load for tra�c derived from theMorph communication pro�le.



36 5. ExperimentsTopology Uniforma TraceName Width Tnorm �2Tnorm Tnorm �2Tnorm8,2 cube 16 29.8 1.4 31.7 19.316,2 cube 32 13.8 0.2 15.7 27.94,3 cube 32 15.6 1.4 15.9 9.62,6 cube 64 15.5 1.2 15.9 10.54,4 cube 128 3.8 0.1 3.9 5.48,3 cube 128 3.7 0.2 3.9 6.62,8 cube 256 3.8 0.1 3.9 5.3Table 5.3: Normalized cumulative link tra�c.aNote that all measurements in this table have been scaled by 10�3 for readability
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Figure 5.3: Probability distribution of normalized link tra�c for uniformly-distributed random tra�c.in order to make the table more legible, all the actual normalized tra�c �gures were scaledby 103.Figure 5.3 illustrates the discrete probability distribution of tra�c for the uniform-tra�ccase. The distributions are narrow, indicating little variation among links, and are clusteredinto groups with common bisection width. We can conclude from the small variance thatunder uniform tra�c conditions links are loaded evenly and contention is not a major factorin network usage.Distributions for the trace-derived tra�c, shown as �gure 5.4, are quite similar to thosefor uniform tra�c. Their greater variances are visible as wider ranges of values, consistentwith the hypothesis of nonuniformity in the distribution of IPC tra�c. The groupingsaccording to B(k; n) are virtually identical to those in the uniform-tra�c case.
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Figure 5.4: Probability distribution of normalized link tra�c derived from theMorph communication pro�le.The clustering of the means evident in both the uniform and trace-generated casesappears to be due to bisection width B; the 8,2 cube, with B = 16, stands apart from the16,2 and 2,6 cubes, with B = 32 and B = 64 respectively. These in turn are apart from the2,8 and 8,3 cubes (B = 256 and B = 128). This is in accordance with the intuition thatfor a constant rate of message generation, a `denser' cross-section of the network requiresfewer packets to traverse each link.Because of the similarity between the normalized cumulative tra�c values for uniformand trace-derived tra�c, we conclude that the time-averaged behavior (i.e. average temporallocality) of link tra�c in the trace-derived case is essentially the same as the uniform case.The variances, however, di�er considerably. It appears that there is a greater degree ofspatial irregularity in the trace-derived tra�c pattern (i.e. message destinations are notdistributed altogether randomly.)We suggest that the similarity in average temporal locality indicates that the extremepeak loads seen in �gure 5.2 represent relatively transitory hotspots, causing certain linksto carry unusually high tra�c for some period of time small enough that the cumulativee�ect was too small to skew the cumulative tra�c very much.5.3.3 LatencyMessage latency data are shown in table 5.4. The column labelled MmaxM describes theratio of maximum to mean latency, a measure of the magnitude of worst-case behavior in thenetwork. The relationship of mean message latency to aspect ratio is shown for the trace-derived and uniform-tra�c cases in �gure 5.5. Note that the vertical axis is logarithmicallyscaled, and that data points have been interpolated between topologies sharing an aspectratio.



38 5. ExperimentsTopology Uniform TraceName A(k; n) M Mmax MmaxM M Mmax MmaxM16,2 cube 0.125 12.6 46 3.65 61.8 185 2.998,2 cube 0.25 7.5 23 3.07 51.5 184 3.578,3 cube 0.25 9.9 34 3.43 56.8 191 3.364,3 cube 0.5 6.3 18 2.86 43.6 180 4.134,4 cube 0.5 7.4 26 3.51 47.7 188 3.942,6 cube 1.0 6.2 17 2.74 44.1 188 4.262,8 cube 1.0 7.2 22 3.06 47.7 181 3.80Table 5.4: Message latency (in simulation cycles)
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Figure 5.5: log Message latency versus aspect ratio.Once again, we see similar behavior between the two tra�c sources, with the trace-derived latencies being about an order of magnitude greater than those due to uniformly-distributed tra�c. Both the mean and maximum latencies are presented in the plot; it isinteresting to note that in both tra�c cases, the maximum is a fairly constant factor greaterthan the mean latency. The constant factor di�ers between the two tra�c sources: it isapproximately 3.19 for uniform tra�c and 3.72 for the trace-derived tra�c. Presumablythe di�erence is due to the greater variance in load for the latter case, leading to longerwaits when messages block.We assume that the greater message latency in the trace-derived case is due to exces-sive contention during hotspot activity. The role of the ICN topology is prominent in thattopologies with lower aspect ratio, and therefore more contention for fewer available links,experience greater latency than the others. We take this as an indication that, ignoringhotspots, trace-derived message patterns are similar to those under the uniform assumption



5.4. Discussion 39(and therefore react to topology changes in a similar way). Contention due to hotspots in-creases average latency, but network topology is still the determining factor in the network'sresponse to tra�c.5.4 DiscussionThe following observations summarize the experimental results:1. In the case of uniformly-distributed random message tra�c, both peak load and linktra�c show a normal distribution.2. Peak link load is unevenly distributed for trace-derived message tra�c; in each case,a portion of the distribution is approximately normal while the rest is clustered at thehigh-load end.3. Link tra�c in the case of trace-derived message does not show the cluster of extremevalues seen in the peak load distribution. There is a greater variance than theuniform case, however, indicating that a good deal of nonuniformity is present inthe distribution of messages.4. Aspect ratio appears to be a factor in determining the e�ect of peak link load on anetwork under the assumption of uniformly-distributed tra�c. The greater the ratio,the lower the peak load tends to be. This appears to validate our intuition that aspectratio represents a measure of the network's e�ciency or grace under stress.5. Networks with greater bisection width display lower normalized link tra�c than thosewith smaller B. The more links are available to shuttle packets over, the fewer packetsneed to travel over each link.6. Message latency is much greater in the trace-derived than the uniform simulations,presumably due to a high degree of network contention.A common method of evaluating ICNs is to assume a uniform random distribution ofmessage tra�c to model IPC behavior. This approach is demonstrably valid for many`typical' parallel applications [Patel, 1981]. The experiments described here, however,indicate that the uniform communication model is not altogether valid in the case of theapplications of interest in this research.The discussion of hotspots in [Kumar and P�ster, 1986] suggests that the behaviorof an ICN in the presence of transient overloads tends to be highly unstable; in currentterminology we might consider the behavior to tend toward chaoticity. Given that chaoticbehavior in such a network can be anticipated, design choices should be made as early aspossible in order to maximize throughput and minimize unstable network behavior.The results presented here indicate that hotspots may present a signi�cant source oflatency and network congestion for the class of applications under consideration. We suggestthat tra�c simulation is a useful adjunct to analytical methods based on assumptions ofuniform tra�c.



40 6. Further work6. Further work6.1 Enhancements to the simulatorSeveral areas of the simulator could be enhanced. There are issues of both e�ciencyand capability.� Increased e�ciency | The current implementation of the simulator devotes relativelylittle attention to issues of e�ciency and performance. We estimate that optimizingthe code would speed up simulations by an order of magnitude.� Better visualizations | It would be instructive to see a rendered, animated image ofthe tra�c in the network itself as the simulation is running; the search for emergentbehaviors would be greatly facilitated by this feature.� Individual distribution parameters for each node | more detailed probabilistic simu-lations could be done if each node could be programmed independently.� Virtual-circuit bu�ering [Dally, 1992] | An adjunct to adaptive routing, support forthis bu�ering scheme would greatly expand the range of system parameters.� Adaptive routing| A number of adaptive routing algorithms with favorable behaviorsare described in the literature [Glass and Ni, , Chien and Kim, 1992, Konstantinidou,1990], particularly in conjunction with virtual-circuit bu�ering mechanisms.� Parallel implementation | The simulator is a good candidate for porting to a mas-sively parallel SIMD platform such as the Maspar MP-1 [Nickolls, 1990]. Since APEShas very regular patterns of access in its operation, it would map well to a data-parallelprogramming model.6.2 Parallelizing the applicationsAdditional work also remains in the methods of parallelization; although the schemeused in these experiments faithfully re
ects the behavior of the serial Morph application,an ADB access method designed for parallel implementation could have di�erent accesspatterns.A variety of di�erent current AI methods should be parallelized and simulated to developa better model of the underlying issues they may share.6.3 Assignment and load balancingThe problems of distributing objects among available processing elements and migratingthem as the database changes are crucial to e�cient operation of an APE system. Thecriteria used to evaluate the result of a given assignment or load-balancing policy are highlydependent on the system's architecture as well as the structure of the problem domain. Awide variety of assignment and load-balancing mechanisms and policies are possible, andexperimentation under varying assumptions about problem domain and system architecturerepresents an e�ective way to evaluate many of them.There are opportunities for exploration in terms of the allocation of objects to PEs. Therandom allocation method used here, although practical, fails to exploit the structure of thedatabase; our reasoning is that a `real' system would not have access to the database ahead



6.4. Emergent properties 41of time to decide how to allocate. Simple heuristics may exist, however, that would enableallocation to be done bottom-up in a manner more supportive of desirable IPC behavior(i.e. relatively uniform communication). Exploring simple allocation methods would be aworthwhile study that could easily be done using the facilities available in APES.6.4 Emergent propertiesComplex nonlinear systems generally exhibit high-level behaviors that are not obviouslyrelated to conditions measurable within the systems themselves [Gleick, 1988]; observationof these macrobehaviors can yield valuable insights into levels of underlying order in thesystem [Forrest, 1991].The adaptive-predictive search (APS) paradigm as described in [Levinson et al., 1992]is predicated on non-deterministic recombination of feature patterns in an e�ort to extractstructure from the underlying representation. To the extent that this process represents anonlinear transformation of problem domain into feature space it seems reasonable to expectthat emergent properties of the system implementing APS itself represent yet another levelof structure that is likely to be semantically rich.The simulator could be used as a tool to develop an understanding about patterns oforder within a complex system implementing APS. For example, consider the couplingbetween macrobehaviors of the system, such as patterns of interprocessor communication,and microbehaviors such as the degree of weight change in particular sets of graph objects.Although some relation clearly exists, it would be di�cult to predict how a given change infeature space (i.e. in the system being learned about) might re
ect on the state of the APSsystem itself. Strategies developed for observation of complex collective systems [Kephartet al., 1991] could be applied to simulation results. Learning about how experimental`intelligent' systems react to varying environmental conditions would be an invaluableadjunct to the eventual design of e�ective `real-world' systems.



42 7. Conclusion7. ConclusionA computing environment supporting a rich set of associative-processing primitives is arequisite platform for experimental research in the area of arti�cial intelligence applications.The analytical techniques that have been applied to the design of conventional computingsystems fail to completely capture the nonlinear behaviors of such applications.The simulator described in this thesis provides a 
exible and readily con�gurable plat-form for the evaluation of a wide variety of design alternatives for such a computing en-vironment. The experiments that are described use APES to compare the communicationbehaviors of a parallelized arti�cial intelligence program with those arising from an assump-tion of uniformly distributed tra�c. The simulation results indicate that although muchof the program's behavior approximates that derived from the uniform tra�c assumption,signi�cant hotspots arise and a�ect network throughput and latency.We conclude that patterns of activity based on semantic relatedness among objects in theassociative database give rise to communication patterns that are not modeled e�ectively bya uniform distribution of message tra�c. Some adjunct to uniform analysis is appropriateand we suggest that simulations along the lines of those presented here represent a step inthe direction of a more comprehensive design methodology.



43Appendix A. Modelling distributed APS using MorphA.1 OverviewIn the interest of developing a generalized model of the issues that might be importantin the design of a distributed system capable of e�ciently implementing adaptive-predictivesearch (APS), it is instructive to examine the behavior of one particular application thatincorporates the APS metaphor. Morph [Levinson et al., 1992] is a chess-playing programthat has been used as a testbed for many of the ideas underlying the APS model.We make the assumption that Morph's pattern database, which is in fact an associativedatabase (ADB), is to be distributed across a network of computing nodes supporting anassociative processing environment (APE). Each processing node is expected to maintain asubset of the entire database. When a particular node's search needs to access an objectthat is nonlocal, interprocessor communication (IPC) must occur. Because the APE nodescan execute associative-array operations e�ciently, the latency due to network tra�c amongthe processors may represent a signi�cant performance bottleneck for the system.In order to explore the behavior of IPC requirements, Morph is instrumented to producetraces over a series of execution runs. The trace data are analyzed to develop a descriptionof access patterns on the ADB. A simple parallelization is done by translating the accesspatterns into a model of IPC for a distributed ADB.Because Morph is a representative implementation of the APS approach, we suggestthat evaluation of its simulated IPC behaviors is likely to re
ect issues that are common toany distributed APS system.How Morph worksMorph was designed to learn the game of chess by playing a large number of gamesagainst an expert opponent (the GnuChess program, originally developed by John Stanback)and extracting rules and strategy from the interaction of its knowledge database with theoutcomes of the games that are played. Patterns are added to the database as Morph'sexperience grows, and the weights associated with patterns leading to winning situationsare reinforced by the method of temporal-di�erence (TD) learning.The general procedure for an iteration of Morph is as follows (note that several thousandof these iterations were required before Morph won its �rst game):1. Play a game, selecting the most applicable move at each opportunity by matchingpatterns derived from the current board con�guration against those in the patterndatabase.2. At the conclusion of the game, the weight of each pattern that contributed to themoves that were selected is re-evaluated according to the outcome of the game. Thisis a simple application of TD learning; periodic feedback from the environment in theform of win/lose status is applied to the internal knowledge base in an e�ort to rewardthose data that contributed to a positive outcome.3. As new board con�gurations are encountered, corresponding new patterns are addedto the database.



44 Appendix A. Modelling distributed APS using MorphA.2 Search in an associative databaseThe ADB interface is similar to that of a generic database; objects can be added,removed, and updated (accessed then rewritten). An ADB represents a partial order on therelation more-general-than, in contrast to a conventional database which represents a totalorder on some key. Search in an ADB is therefore a computationally demanding problemsince no simple indexing scheme can capture the entire partial order.To enable associative retrieval in the ADB, a graphlike representation such as a semanticnetwork is used to represent patterns. This in e�ect reduces search to a series of subgraphisomorphism tests. Subgraph isomorphism is a well-explored area of computer science;although it represents an NP-complete problem, Ullmann's algorithm [Ullmann, 1976]appears to make it manageable for graphs of reasonable size, and Willet and Wilson describean e�cient parallel implementation in [Willet and Wilson, 1991].A.3 Parallelizing Morph's ADBThe search method used in Morph, referred to as Method III in the APS literature[Levinson, 1991], has as its critical `inner loop' a subgraph isomorphism test. The essenceof the parallelization of APS proposed in this thesis is to use the very e�cient pattern-matching operations available in the APE's associative arrays to do the graph comparisons,thereby speeding all ADB operations.We assume that because of its size, the ADB must be spread across a number of APEcomputing nodes. An attempt to compare two objects residing in di�erent processingelements would therefore engender an IPC transaction. The structure of the ADB is suchthat any pair of objects may share many common predecessors (i.e. have much in common)and successors (i.e. be generalizations of many of the same objects). This implies that asearch for the greatest or most general common ancestor of two objects may cause numerousintermediate objects to be accessed and evaluated. We expect the high branching factorof the ADB to have considerable impact on IPC behavior, since it is improbable that theADB's partial order hierarchy can be well distributed among the available processing nodeswithout prior knowledge of its structure.A.4 Instrumenting MorphWe added code to Morph that wrote trace data to a log �le for later analysis. The codemodi�cations demanded by the instrumentation a�ected 14 of Morph's 78 program �les,adding a total of approximately 120 lines of code. No perceptible e�ect was observed onMorph's performance.All accesses to Morph's ADB are traced; any operation that accesses an object, suchas pattern evaluation or weight update (a read-modify-write cycle), leaves a record in thetrace. Each trace record therefore represents some contact with the database; some areused to create barrier synchronization points, and others cause the generation of potentialIPC message events.The primitive operation at the heart of the parallelization is graph comparison. Eachtime two ADB objects are compared, the ADB code searches the database for their commonancestors and/or descendants, causing a number of graph comparison operations to takeplace as the partial order hierarchy is traversed. Each of these comparisons represents



A.5. Analyzing the traces 45a potential IPC event. Whether a message is actually generated or not depends on theallocation of ADB objects to APE nodes; in the trace each ADB object has a unique handlethat is later resolved into a PE ID.A.5 Analyzing the tracesA considerable amount of Morph's implementation e�ort has gone into optimizing itsperformance in a conventional workstation environment. Deducing potentially paralleloperations is therefore not an altogether straightforward task. The goal is to develop apro�le of object accesses in the pattern database which maintains as much as possible ofthe behavior that a similar ADB distributed on a multiprocessor network would express.Perhaps the most basic issue in attempting to parallelize a serial application is theestablishment of synchronization barriers between sets of events. Suppose we label as an`event' any operation incorporating access to a database object (i.e. insertion, comparison,and deletion as outlined above). The trace of a program execution is then just an orderedlist of events. However, we cannot assume that all the events could have happened at thesame time! Clearly there are dependencies among events such that event A (i.e. `insertobject X') must happen before event B (i.e. `compare objects X and Y'). There are alsoevents that have no dependencies on each other so that they could happen in any order.In the general case, this sort of dependency analysis is at best an NP-hard problem[Helmbold and McDowell, 1991]. A concurrency graph must be generated which representsall possible program states during execution. Analysis of this graph then provides enoughinformation to determine which events could have occurred concurrently. These partialorders of events are then organized into barrier sections such that all events in a barriersection must have been completed before those in the next section could be completed.Without prior knowledge of the program's structure this analysis appears to be exponentialin character.Fortunately, the structure of Morph provides us with built in barrier points in theform of its higher{level operations. Since Morph plays a game one move at a time, weassume that the ADB comparisons made during evaluation of a single move are concurrent.Each move in a Morph game represents a set of events (comparisons across the databaseto select the most applicable move) that could be happening in parallel. Since Morph issimply evaluating all patterns in its database that resemble the current board con�guration,there are no constraints on which potential moves get evaluated �rst, since the ADB is notmodi�ed during this phase of operation. In actual fact, there may be some ordering in thecomparisons due to the particular details of the matching algorithm, but we claim that as a�rst approximation it is reasonable to assume that all the comparisons due to a particularmove are concurrent. Similarly, we assume that each set of comparisons leading to insertionor deletion of an ADB object is concurrent.
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