Simulating Network Traffic In An
Associative Processing
Environment

Claude S Noshpitz

UCSC-CRL-93-50
7 December 1993

Baskin Center for
Computer Engineering & Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064 USA

ABSTRACT

This thesis considers issues related to the design of a distributed computing
system optimized for research in the area of artificial intelligence applications. We
introduce the Associative Processing Environment, a computing model explicitly
designed to provide support at the machine level for systems that learn. Issues
relating to the implementation of a multicomputer based on this model are discussed
with a focus on the development of an effective processor interconnection network.
We describe APES, a software tool for the simulation of message traffic in such a
system, and present a series of experiments testing the behavior of a parallelized Al
application on several topologies. We conclude that the behavior of the application
is such that an assumption of uniformly distributed random traffic fails to capture
essential aspects of the program’s communication activity.

Keywords: interprocessor communications, computer architecture, network traffic,
artificial intelligence, simulation

CONTENTS

Contents

. Introduction

1.1 Overview . . . o e e e e

1.2 Organization L e

. Al research: trends and tools

2.2 Al research tools — a (slanted) perspective
2.3 Some comments on the nature of Al research

2.4 Representation, search, and pattern associativity

. Designing an associative processing environment

3.1 An overview of associative processing Lo
3.2 An associative processing architecture L oL
3.3 Why simulate an APE? o o
3.4 Design issues for distributed associative processing

3.5 Chaotic dynamics in a large connectionist system

. APES, a network traffic simulator

4.1 Overview e e e e e e e
4.2 Architecture of the simulator,
4.3 Features L e e e e e
4.4 Functional elements e
4.5 Mapping instruction traces to the simulated machine
4.6 Stochastic simulation e

4.7 Simulation data e

. Experiments

5.1 Overview . . . oL e e

5.2 Procedure
5.2.1 Generating the communication profile
5.2.2 The experimental topologies o L.
5.2.3 Experimental parameters o 0 0oL
5.2.4 Gathering and processing experimental data

5.3 Results. o
5.3.1 Peaklink loado oo
5.3.2 Cumulative link traffic 0 0 000
5.3.3 Latency e

5.4 DIScussion v o u e e e e e e e e e e e

10
11

14
14
15
17
18
18

6. Further work

6.1 FEnhancements to the simulator
6.2 Parallelizing the applications
6.3 Assignment and load balancing
6.4 Emergent properties L.

7. Conclusion

A. Modelling distributed APS using Morph

Al Overview oL L
A.2 Search in an associative database
A.3 Parallelizing Morph’s ADB
A4 Instrumenting Morph o000
A5 Analyzing the traces

References

CONTENTS

40

............ 40
............ 40
............ 40
............ 41

42

43

............ 43
............ 44
............ 44
............ 44
............ 45

46

LIST OF TABLES 3

List of Tables

5.1 Experimental topologies and their attributes. 32
5.2 Peak link load for uniform and Morph-derived traffic patterns. 34
5.3 Normalized cumulative link traffic. 36

5.4 Message latency (in simulation cycles) 38

4

LIST OF FIGURES

List of Figures

3.1

4.1
4.2
4.3
4.4
4.5

5.1

5.2

5.3

5.4

5.5

Block diagram of an associative computing node.

Block diagram of the APE simulator, its inputs, and outputs.
Representation of bus structures inside the simulator.
Comparison of latency for store-and-forward and wormhole buffering.
The abstraction of a simulated processing node.

The process of generating a communication profile from an execution trace.

Probability distribution of peak link load from uniformly-distributed random
traffic. . . . o

Probability distribution of peak link load for traffic derived from the Morph
communication profile. L L

Probability distribution of normalized link traffic for uniformly-distributed
random traffic.o Lo

Probability distribution of normalized link traffic derived from the Morph
communication profile. L L

log Message latency versus aspect ratio. L L.

15

21
22
24
26
27

35

35

1. Introduction

Necessity is an evil; but there is no necessity for continuing to live subject to
necessity.
- Epicurius

1.1 Overview

The computational requirements of large-scale Artificial Intelligence (Al) applications
differ considerably from those of conventional non-symbolic applications. To date, most
parallel computer systems have been designed with numeric applications in mind; the
greatest optimizations have been made in the area of numeric performance and regular
interprocessor communications. Al applications, however, are typically not numerically
intensive and may have highly irregular and variable communication patterns.

An architecture optimized for the support of Al applications should provide efficient
pattern matching and set-oriented operations and allow good performance in the face
of irregular patterns of access. The Associative Processing Environment (APE),
a closely-coupled distributed computing environment based on the system described in
[Hughey and Roberts, 1993] is presented as a prototype for such an architecture. The
APE provides support at the instruction-set level for the associative operations that are the
critical ‘inner loop’ for many Al applications.

The behavior of interprocessor communications (IPC) in such an environment is ex-
pected to vary considerably for different application domains, particularly in the case of
systems intended to ‘learn’ over time and with experience. IPC behavior within a single
application may be highly nonuniform due to levels of structure within the data being
manipulated by the system.

A standard design technique used in developing multicomputer interconnection networks
(ICNs) is to assume a uniform traffic model in which processors generate messages at
random times with uniformly distributed destinations. We suggest that in the case of
certain classes of Al applications, excessive reliance on the uniform traffic assumption may
lead to inappropriate design decisions.

The Associative Processing Environment Simulator (APES) is presented as a facility
for the simulation of arbitrary interconnection topologies and message traffic distributions.
APES supports the use of communication profiles generated by trace analysis of an existing
program, allowing the behavior of parallelized serial applications to be evaluated.

A series of experiments are described that use APES to explore the IPC behavior of a
parallelized AT application. The results indicate that the AT application engenders an IPC
traffic pattern that contains behaviors not modeled effectively by the assumption of uniform
traffic. We speculate that spatiotemporal locality in the Al program’s data access patterns
leads to transitory hotspots which can dramatically affect message latency and thus system
performance.

We conclude that patterns of activity based on semantic relatedness among objects in
the associative database give rise to communication patterns that are not modeled with
complete effectiveness using a uniform message distribution. Hotspots are likely to be
unavoidable, and designing ICNs in the hope that the hotspots will not have a great impact

6 1. Introduction

on latency is not likely to be a good idea. Some adjunct to uniform analysis is appropriate;
we suggest that simulations along the lines of those presented here are a step in the direction
of a more complete design methodology.

1.2 Organization

Section 2 presents a brief overview of some important classes of Al applications and
a philosophicall overview of some high-level issues in Al research. The question of what
a platform for the support of experimental Al should be is discussed in terms of allowing
researchers to concentrate on exploring algorithms by providing efficient support for Al
primitives (i.e. as abstract data types) rather than forcing extensive implementation effort
by shoehorning applications into inappropriate platforms.

Section 3 provides a general introduction to the APE architecture at the processor and
programming model levels. FEmphasis is placed on the pattern matching and associative
primitives provided by the massively parallel content-addressable memory array in each
processor; specific details about processor internals and instruction set are omitted in the
interest of generality. Issues involved in the design and topology of the interprocessor
communications network are described.

Section 4 describes in detail the requirements, design, and operation of the APE simu-
lator. It is presented as both an analytical tool for examining communication patterns of
existing programs and a design tool for experimenting with profiles for new applications.
A key feature of the simulator is the ability to run the same simulation using different
interconnection schemes. The process of mapping instruction traces onto the simulated
architecture for analytical simulation is described.

Section 5 describes a series of APES experiments run on a number of different potential
interconnection networks (ICNs) using trace data derived from the Morph [Levinson et
al., 1992] application. Communication patterns derived from the program traces were run
on each ICN and the results compared to those derived from similar experiments using a
uniformly distributed random traffic model. The results were examined with respect to
assessing the validity of the uniform traffic assumption and characterizing the variations in
the application’s communication behavior due to topology.

In section 6 we explore several areas for further study including enhancements to the
simulator, the simulation of other applications, and the search for emergent behaviors in
the network traffic patterns.

Section 7 concludes the body of the thesis. The experimental results are summarized,
and we suggest that these results are likely to be of relevance when designing an APE-based
system for the efficient execution of associative-operation-intensive Al applications similar
to Morph. Some areas for further work and exploration are also presented.

Appendix A describes the Morph application in detail and describes the process that
was used to develop the execution traces used in the APES experiments.

! Asin Webster’s [Webster, 1986] definition of philosophy as “a search for truth through logical reasoning
rather than factual observation”.

2. Al research: trends and tools

2.1 Why an AI architecture?

Artificial intelligence (AI) applications have computational requirements quite different
from those of typical numerical or simulation applications. Historically, parallel supercom-
puters have been designed and optimized to run codes that are computation-intensive such
as image analysis, weather prediction, and numerical analysis [Almasi and Gottlieb, 1989)].
The patterns of interprocessor communication in these applications are usually well-defined
and regular. By contrast, Al codes, especially those implementing a connectionist paradigm,
tend to do little number-crunching and a large amount of irregular communication [Fahlman,
1979].

Al applications have been developed on all sorts of machines, and a number of special-
ized architectures exist [Wah and Li, 1989, Feigenbaum and McCorduck, 1983]. At present,
however, there are few ‘general-purpose’ Al machines widely available. The Lisp machines
marketed by Texas Instruments and Symbolics come to mind, as do massively parallel sys-
tems such as Thinking Machines” CM-2 [Thi, 1990] and ICL’s Distributed Array Processor
[Parkinson and Litt, 1990]. They support limited programming models, and have demon-
strated mixed results in some very specific Al areas such as neural and semantic networks
[Moldovan et al., 1990, Singer, 1990]. An ideal machine would support exploratory Al
programming at an instruction-set level while providing the flexibility of a ‘conventional’
programming environment.

2.2 Al research tools — a (slanted) perspective

Lisp — ready for the 21st century?

AT researchers tend to suffer particularly from the universal problem of “When all you
have is a hammer, everything looks like a nail.” The majority of the program code that
defines the field of Al has been written in Lisp [McCarthy and others, 1962] or its variants; a
number of Lisp machines have been available to support Lisp primitives at the instruction-
set level. A standard Lisp program, however, regardless of its elegance in exploiting the
list-processing programming model, suffers from the relatively high overhead and low degree
of parallelizability of Lisp [Deering, 1984]. Many applications have thus been coded in Lisp,
recoded, and recoded again in efforts to extract the best possible performance.

Parallel Lisps do not seem to have had a dramatic impact on the structure or performance
of Al programs. The data-parallel *Lisp [Hillis, 1985] encumbers the programmer with
language limitations and its performance is dominated by the mediocre throughput of the
CM-2’s global router network [Cook and L. B. Holder, 1990]. Other approaches, such as
Multilisp [Jr., 1987], extend the language with awkward syntactic structures supporting
only a coarse-grained parallelism. Neither style of approach seems to have significantly
affected the design of Lisp programs themselves. While clearly an elegant syntax for the
description of many algorithms, the Lisp programming model appears to be fundamentally
L. While some primitives, such as mapcar, may lend themselves well to
implicit parallelism, it would appear that a truly parallel Lisp will require explicit language
extensions and/or extremely clever compilers.

serial in nature

! The primitive object in Lisp is a linked list of cons-cells, not an obviously parallelizable structure.

8 2. Al research: trends and tools

Programs and paradigms

Perhaps the most popular AI applications today are production systems or so-called
‘expert systems.” These have their basis in work begun by Newell and Simon in the
late 1950’s (described in [Newell and Simon, 1972]) and have evolved into a fairly useful
(but far from general-purpose) computing paradigm. Current production systems are in
use in applications as diverse as computer system configuration (the R1 system at DEC)
and medical diagnosis (MYCIN and its descendants). In general, these systems are able
to work faster and possibly better [Gupta and Forgy, 1989] than humans in extremely
limited domains; they are quite incapable of generalizing to new situations [Shapiro, 1990].
Efforts have been made to parallelize the systems, and fair speedups have been obtained on
specialized? hardware [Gupta, 1984].

Prolog [Clocksin and Mellish, 1981] emerged in the early 1980’s as a candidate for an
easy-to-understand, easy-to-parallelize language for Al applications. Further research in
the area of parallel logic-based languages has been able to demonstrate good speedup in
certain applications, such as the PARTHENON theorem prover reported in [Bose et al.,
1992]. Some interesting parallel Prolog implementations have appeared, such as the one
presented in [Ambriola et al., 1990]. The applicability of purely logic-based approaches to
general Al research, however, remains to be seen [Shapiro, 1990].

The notion of ‘semantic memory’ was introduced in 1968 with the publication of Quil-
lian’s dissertation [Quillian, 1968]. This work was in response to the problem of modeling
semantic organization in the mind, something of an obsession with early Al researchers.
What Quillian observed was that memory is not so much a matter of storing data and
retrieving them as it is one of traversing the many relations among stored data. The idea
of treating memory as a process of active association involving numerous potentially simul-
taneous operations on many data represented an evolutionary change. Previous (and many
subsequent) applications relied on comparing tags in the data themselves to find similari-
ties and differences, but in general the focus was on the data themselves rather than on the
relations among them.

Some relatively simple problems were run with modest results, but various shortcomings
of the model caused it to fall into relative obscurity for several years. A decade later,
Fahlman presented the NETL system [Fahlman, 1979], extending the Quillian model and
generalizing it into more concrete terms. NETL effectively described an architectural
abstraction of semantic memory that could be evaluated in concrete terms. The model
of data transformation as the propagation of markers (effectively single bit flags) among a
network of nodes representing some semantic attribute or feature of the problem domain
opened up the field of semantic networks.

Semantic networks were conceived as a realizable hardware model that could actually be
built with existing technology rather than just as an abstract mental experiment. Fahlman
believed that at least a million processing elements would be necessary before his machine
could produce any ‘interesting’ results [Fahlman, 1980]. This was well beyond the limits of
technology, at least with respect to funding at the university research level. Other work in
semantic net architectures [Moldovan et al., 1990, Hendler, 1988] has continued, popularized
in the book Parallel Distributed Processing [McClelland et al., 1986].

2 The RETE algorithm [Forgy, 1982], physically embodied in the DADO and NON-VON machines
reported in [Stolfo, 1984] and [Shaw, 1985], provided speedup based on the significant degree of parallelism
implicit in the serial algorithm itself.

2.2. Al research tools — a (slanted) perspective 9

Fueled by a resurgence of interest, connectionism emerged as the next direction for Al
research. Both cognitive modeling and symbolic processing approaches, as well as various
hybrids, have come to fall under the connectionist rubric. One branch of connectionism has
taken up the cause of so-called neural networks, creating mathematical models of neuron-like
entities in an attempt to re-create their functionality. This approach has shown reasonable
success in some specific domains such as the modeling of certain areas of precognitive
function including early vision processing [Ballard et al., 1983]. These areas, however,
represent a highly specialized functions; it appears unlikely that any sort of generalized
intelligence will be achieved using current neural network-style approaches.

In [Hoffmann, 1990], Hoffmann uses the methods of algorithmic information theory to
show that the application of neural networks to learning problems does not (and cannot)
change the amount of work that must be done to learn a given domain. Whether the
work is in the form of repeated training iterations or in the clever design of the system’s
architecture, the same information-theoretic lower bound exists on the amount of energy
that must be expended to achieve a given level of performance.

We suggest that this structuralist approach, while valid in information-theoretic terms,
fails to capture the effect of representation and chunking on the learning problem; consider
a shape recognition task whose primitives are pixels with one that has as its underlying
representation known objects such as lines and circles. The former must do all the work of
learning about what a ‘circle’ is before it can begin to categorize objects into the ‘circle’ class.
The latter, however, benefiting from previous knowledge encoded into its representation,
can use its time learning higher-level relations. While the theoretic limitation is still true,
in fact the chunking of knowledge at the representation level radically alters the meaning
of the limitation.

Another branch of connectionism has attempted to merge the traditional ‘symbolist’ ver-
sion of AI (canonified in Simon’s Physical Symbol System hypothesis®) with the spreading
activation model spawned by Fahlman’s work. Minsky has proposed a sort of connectionist
schema of intelligent systems in The Society of Mind [Minsky, 1986]. His assertion is that
‘intelligence’ is the result of many relatively independent agents acting in concert, each an
expert in some particular domain and none necessarily in charge. This approach can be
visualized as a cooperative heterarchy; a large set of ‘purposeful” entities, each with its own
area of specialization, are interconnected so as to engage in a cooperative problem-solving
attack. The sum total of their efforts is greater than the abilities of any individual agent,
yet all agents contribute to the result. This model may be the closest yet to abstracting
relatively generalized cognitive functions into a computable methodology.

Another approach to making state-space search more efficient is Adaptive-Predictive
Search (APS) [Levinson et al., 1992]. APS concerns itself with accumulating a database
of graphlike patterns based on combinations of predicates over the state space in an effort
to capture domain knowledge. Fach pattern in the database has a weight value associated
with it that indicates the expected degree of that pattern’s contribution to the acquisition of
a goal state. The patterns are accessed by an associative search mechanism that attempts
to relate patterns by their similarity according to a subsumption relation such as more-
general-than. The intention is for patterns similar to one another, and therefore implicated

® The hypothesis states that physical symbol systems, i.e. representations of physical systems, possess
“...necessary and sufficient means for general intelligent action”. If we allow the possibility that any physical
system can, in theory, be represented by a symbol system of arbitrary complexity, we have the basis for a
belief in ‘strong’ Al.

10 2. Al research: trends and tools

in related chunks of knowledge, to be easily accessible to one another. Generalization on
the feature space is an implicit part of this model, permitting the potentially fruitful reuse
of patterns in subsequent searches over the same feature space.

The associative database in an APS system represents yet another style of connectionist
approach; the collection of patterns is in effect a network of interacting objects which
represents the ‘knowledge’ that the system has accumulated. APS is notable in its explicit
use of associative primitives to access objects in the database, the lack of implicit structure
in its knowledge base, and its espousal of experience-based learning in the form of the
interaction of past knowledge with the state space.

We suggest that connectionist Al is an area currently undergoing a tremendous amount
of exploration, and that its unique computational requirements are not well served by
current architectures.

2.3 Some comments on the nature of AI research

The following are several ideas about working on AI that emerge from this author’s
survey of Al research. They are presented in an effort to convey some of the flavor of the
exploratory and rather open-ended nature of the field.

Solutions to toy problems do not necessarily lead to real solutions. Building a
blocks world and manipulating it, as Winograd’s SHRDLU [Winograd, 1972] did, is simply
no more than a blocks world. Developing a neural net that solves a small learning problem
says little about how efficient a bigger version will be [McClelland et al., 1986]. Morph
[Levinson, 1991], a program able to learn the rudiments of chess, is unable to transfer its
knowledge to checkers. In each case, generality is lost to a combination of tailoring the
solution to the problem at hand rather than attacking the greater class of such problems,
and of combinatorial explosion as domains grow larger.

Working on real problems demands real resources. Almost all AT applications de-
mand lots of memory and lots of computing cycles for pattern-matching and set-associative
operations. Much of Al amounts to search in a very large state space [Rich and Knight,
1991]. As clever as the search algorithms are, the bigger the state space the more resources
are needed. It is sometimes possible, however, to leverage resources by exploiting paral-
lelism both at the data level, as in the text-retrieval applications on the Connection Machine
[Stanfill and Kahle, 1986] which have shown very good performance on complex searches,
and at the algorithm level as in the parallel Rete match [Forgy, 1982] which does a static
dataflow analysis and partitions the problem among available processors for a respectable
speedup.

Much implementation effort has gone into shoehorning inherently parallel algo-
rithms into Von Neumann-style platforms. A case in point is the Morph program; a
tremendous amount of its development effort has been aimed at tuning the code to achieve
decent performance [Gould and Levinson, 1991]. In effect, the underlying algorithms have
been tweaked until they run reasonably on the available hardware. The refinements to the
algorithms are thus driven less by abstract issues of theory than by hardware constraints.

2.4. Representation, search, and pattern associativity 11

Whether more appropriate hardware will permit the underlying theory to be better ex-
plored, or if such explorations will bear fruit, remains to be seen. After all, necessity is the
mother of invention...

Some AT problems require an exploratory programming style. Marr distinguishes
[Marr, 1990] between what he calls type I and type 2 theories in relation to Al problems.
Type 1 theories are those that provide a ‘clean’, decomposable (read rational) solution to
a particular problem. A computational theory of type 1 not only solves a specific problem,
but does so by exposing some fundamental underlying mechanism. That the mechanism
is fundamental implies that an algorithm built around it will be solid and correct, if not
necessarily easy to implement. Numerous problems in the area of vision, for example, have
lent themselves to type 1 solutions.

Type 2 theories, on the other hand, are inherently non-fundamental. They are composed
of many subprocesses, and no single underlying theme unites them; the theory is described
solely by the interaction of its components. Type 2 theories, in Marr’s formulation, have
dominated the Al field. Presumably these are the ‘computational theories’ that are commu-
nicated solely via program listings, since the implementation is the theory. Marr makes the
point that there is not necessarily any easy way to determine whether a type 1 theory exists
for a particular problem, and that the surfeit of type 2 solutions can hide an underlying
type 1 theory.

If a particular problem has no type 1 solution (and there seems no reason to believe
that all high-level cognitive reasoning problems do), the only way to develop a suitable type
2 solution is by exploratory programming, trying different approaches until a good one is
found. By the same token, if a type 1 theory does exist, it may well be found after enough
type 2 approaches have been tried.

This author believes that a significant cause underlying the preponderance of type 2
solutions in Al research is that the programming tools and environments that have been
available fail to offer sufficient resources to explore the space of possible solutions adequately
enough to discover underlying type 1 solutions. Once a type 2 solution is found, it lingers
until another comes along. The process of exploration is not as well-exercised as it might
be. Given good throughput and a programming model that supports search and matching,
it seems reasonable to assume that more type 2 solutions will be tried, presumably leading
toward more fundamental solutions.

2.4 Representation, search, and pattern associativity

AT and state-space search

Many different application domains have been characterized by the term ‘Artificial
Intelligence;” these run the gamut from playing simple games to understanding human
languages and diagnosing illnesses. While a tremendous amount of effort and creativity
has been devoted to developing different Al programs, the principles underlying almost
all of them are similar: the classic Al problem is a search for some (nonempty) set of
goal states over the state space consisting of all the possible configurations of the system
under consideration. This implies several fundamental entities — a representation, which
formalizes the state space, a goal state or goal predicate which defines the termination
condition of the search, and a set of operators that transform states. Additionally, an

12 2. Al research: trends and tools

omniscient entity or ¢rainer can provide feedback on the current distance to the goal state(s)
as the search progresses.

The problem of searching an exponentially large state space has been attacked on many
fronts. If no feedback (in the form of a trainer) is available from the environment until
the goal predicate is satisfied, then little can be done besides brute-force search. Numerous
informed search methods exist, however, for exploiting the information provided by some
environmental feedback. Well-explored techniques such as A* [Hart et al., 1968, Hart et al.,
1972] are proven to converge and are able to find optimal solutions.

One weakness of conventional informed search methods is that they tend to be relatively
brittle; they all rely on some generally fixed evaluation function that represents an estimate
of the current state’s distance from the goal. A small discrepancy in the evaluation of a
particular state can lead the algorithms far down unfruitful paths before finding their way
back to the right one. Evaluation functions tend to be used to abstract as much of the
representation as possible into a goodness value as quickly as possible. Since the evaluation
function must be called for each state visited during the search, its computational cost must
be minimized. This implies that it probably cannot capture much of the structure available
in the representation, even though it is precisely this structure that can best inform the
search!

Adaptive/Predictive Search and the Pattern-Weight formulation

An alternative to the model of explicit state-space search is the Pattern-Weight (PW)
representation used in the Adaptive-Predictive Search (APS) approach described in section
2.2. APS attempts to abstract relevant features of the state space based on experience.
This would provide a potentially more efficient search and allow for a better response in a
reactive environment (i.e. a situation in which the goal predicates may change).

A PW consists of a graphlike pattern, which is a predicate over features of the state space,
and an associated weight that indicates the expected degree of that pattern’s contribution to
the acquisition of a goal state, or the system’s degree of ‘belief’ in the pattern. Weights are
updated periodically using a form of temporal-difference learning [Sutton, 1987], in which
periodic feedback from the environment causes reevaluation of the sequence of patterns that
led up to the present state.

A pattern is effectively a set of interacting features which together represent some
partitioning of the state space. Since patterns generally represent partial states, they
in effect generalize the state space, providing a higher level of granularity of knowledge
(or ‘chunking’) than that available to conventional search methods. The PW formulation
attempts to extract whatever structure information is available in the given representation
and to exploit it by creating patterns that represent ‘interesting’ sets of features (i.e. those
that lead toward optimal satisfaction of the goal predicates).

APS and the PW formalism provides a compact and efficient alternative to conventional
state-space search; in effect the interaction of PWs and the evaluation function result in
an abbreviated heuristic search. APS attempts to exploit whatever structure is available in
the underlying state-space representation.

Several applications implementing APS have been implemented [Levinson et al., 1992,
Levinson, 1993]. These systems all comprise the key elements of APS:

2.4. Representation, search, and pattern associativity 13

e Pattern representation: a methodology for the mapping of domain features to PWs;
some style of semantic network is applicable. Conceptual graphs (CGs) [Sowa, 1992]
are a good candidate for a pattern representation formalism. They are compact and
semantically rich, and very eflicient algorithms exist for their manipulation. Because
they are based on semantic rather than syntactic rules, CGs can expose underlying
structure in the feature space.

e Associative database (ADB) and pattern retrieval method: a scheme to organize
and manipulate patterns according to a subsumption relation such as more-general-
than (as described in [Ellis, 1992]). Patterns are to be classified into a partial order
according to their relationships with other patterns in the database.

e Search method: strategy to select those patterns from the ADB most likely to lead
to the desired result. Implemented as a hill-climbing energy-minimization search,
patterns are selected using an evaluation function to provide a measure of the degree
of ‘goodness’ or applicability of a particular pattern.

o Learning algorithm: a method for the modification of patterns’ weights based on the
result of their application. The experience-based learning (EBL) method described in
[Gould and Levinson, 1991] suggests the use of a simple form of temporal-difference
(TD) learning [Sutton, 1987], which assigns positive or negative credit to patterns
contributing to a particular experimental outcome.

e Pattern generation method: a facility that creates new patterns both by integrating
new observations into the ADB and by recombining existing patterns into more
powerful or general configurations.

Its reliance on an associative database means that the performance of an APS system
depends heavily on implementation. Because the ADB represents only a partial order on
feature space, it cannot be efficiently implemented by conventional key-index methodologies.
The graph matching operations at the core of the required subsumption operator are
typically NP-complete and thus are typically not amenable to brute-force methods.

We suggest that providing instruction-level primitives to support the associative oper-
ations required to maintain an ADB is an important step toward the design of a platform
that encourages experimentation in the APS domain. This is assuming, of course, that Al
researchers would prefer to build systems that learn rather than wander the NP space of
graph-matching algorithms.

14 3. Designing an associative processing environment

3. Designing an associative processing environment

3.1 An overview of associative processing

We can distinguish associative from ‘conventional’ processing by defining associative
processing as “the manipulation of data based on their content and equivalence classes!'”
[Hughey and Roberts, 1993]. This is in sharp contrast to the conventional computational
model originally described by von Neumann [Burks et al., 1947], whose explicit intention
was the movement of individual data items among specific locations using unique addresses.
Given these definitions, we extend the conventional notions of data manipulation to include
the accessing of data by content rather than by location. Any data movement operation may
involve set membership or other pattern matching operations, and any ‘simple’ operation
may affect the global state of a machine rather than a specific location.

There is a fundamental assumption that can be made regarding the primitive operations
that are required for the support of such an approach: pattern matching and set
operations must be handled as efficiently as possible and preferably at the
instruction-set level.

In the case of a system distributed over multiple processing elements and address spaces,
it is necessary to assume that data accesses are at least occasionally, and in the normal case
perhaps often, nonlocal. Nonlocality of access implies that traffic in the interprocessor
connection network may be very bursty and may have intense transitory hotspots [Kumar
and Pfister, 1986]. In addition, referential nonlocality is a natural consequence of the
generally irregular and nondeterministic behavior of large Al programs. Design choices
based on this model of data access must be made as early as possible.

Massive parallelism is appropriate to the needs of connectionist system; multiprocessing
is a natural consequence of their structure, and the mapping to many-processor systems
[Fahlman, 1979] is easy. In the case of marker propagation systems in particular, very large
amounts of interprocessor traffic occur during processing [Miranker and Andrews, 1990]; it
is worth noting that the size of marker messages is typically very small. Connections among
the processors must be as fast and general as possible, and the design process must take
these factors into consideration.

The Connection Machine CM-2 [Hillis, 1985] is representative of the one style of attack
on the problem. Using a fine-grained single-instruction, multiple-data (SIMD) approach to
parallelism, it was originally intended to be very good at semantic network applications
[Hillis, 1981]. In actual fact, the production model turned out to be quite inefficient in
that domain due to its rather weak performance in global routing?. Well optimized local
communication yields good performance on regularly partitioned applications. Irregular
problems, however, such as neural network simulation, have yielded relatively poor results
[Singer, 1990].

! The equivalence classes in the case of an Al application would represent partitions on the feature space.

2This author’s experience implementing Sparse Distributed Memory on the CM-2 [Noshpitz, 1991]
confirms that significant effort must be expended minimizing global communication in order to achieve
reasonable performance.

3.2. An associative processing architecture 15

Network interface

Routing and

ICN ICN

buffering logic

by
|

SIMD array controlla@

Supervisor processor

SIMD sy L oca
RAM

Figure 3.1: Block diagram of an associative computing node.

3.2 An associative processing architecture

The next level of abstraction for parallel computing in the SIMD style is to use the
SIMD arrays as coprocessors, providing a high-powered supervising processor to control
the arrays and do serial operations. We propose such an arrangement in the Associative
Processing Environment (APE), a closely-coupled multicomputing environment based on
message-passing among a large network of powerful computing elements each equipped
with a SIMD processor array. Such a system would have the ability to execute associative
operations as primitives in a data-parallel programming environment. The APE abstraction
is based in large part on Roberts’ MISC machine [Hughey and Roberts, 1993], which utilizes
these ideas in a multicomputer with support for associative-match primitives.

An APE computing node consists of a conventional control processor, or supervisor,
with a generous amount of local RAM, tightly coupled to a SIMD array of small processing
elements. The array serves as a content-addressable memory (CAM) able to efficiently
perform pattern-matching and set operations. The general structure of a processing node is
illustrated in figure 3.1. A fairly dense machine could be put into a small cabinet, minimizing
interprocessor wire lengths and allowing more resources to be devoted to ‘fattening’ the
interconnects to speed communications.

A full APE system would consist of some number of computing nodes joined by a fast
interconnection network. The network should provide efficient global routing and be as
resilient as possible in the face of hotspots and faults. It is probable that a dynamic load-
balancing scheme would be implemented to keep hotspot contention as low as possible; one

16 3. Designing an associative processing environment

area in which the APE simulator is expected to be used is in evaluating the cost/benefit
tradeoffs of load balancing. Marker-propagation messages tend to be short and frequent,
and the migration of data structures at the process level generally involves periodic bulk
transfers [Noshpitz, 1990]. A design goal, then, is for both short and large message traffic
to be handled efficiently.

The Control Processor

The impact of embodying the associative processing paradigm at the processor level is
considerable. Primitive operations may have high latency since associative match could
take several orders of magnitude longer than local memory references. Some mechanism
beyond simple pipelining is needed to mask this latency, which may be highly nonuniform.
In Roberts’ description of the MISC machine, the processors are similar to hybrid dataflow
[lanucci, 1988] machines, switching among several execution threads to hide the latency
involved in associative array or message-bound operations.

Associative match instructions may need to broadcast keys to other processors and
receive match data back in an iterative fashion, implying that interprocessor communication
(IPC) can be expected to occur more often than in a conventional message-passing system.
The latencies due to this communication should also be masked. Since associative primitives
involving the local SIMD array are expected to occupy a significant part of the actual
execution time, the split-phase transaction model described in the hybrid dataflow literature
[Arvind and Nikhil, 1987] seems appropriate.

The Associative Array

Each control processor is bound to a SIMD array of simple processors based on a CAM
cell such as the PCAM [Roberts, 1990]. Such an array is capable of performing exact
match, k-nearest-neighbor and other associative operations (as described in [Kanerva, 1988])
efficiently. Fach of the processing elements in the SIMD array contains a small local memory
as well as a grid-based message routing mechanism.

The abstraction supported by the SIMD array is that of an efficient associative-memory
module; data are written and read like a (relatively slow) conventional memory with
additional support for fuzzy matching or associative operations. Such an array can provide
support for various implementations of associative operations, such as Kanerva’s Sparse
Distributed Memory [Kanerva, 1988] and the K, d-tree and similar structures described in
[Omohundro, 1990].

Associative array operations are supported at the instruction-set level of the supervisor
processor. The supervisor contains logic to broadcast microinstructions and data to the
processors in the SIMD array and to collect the results of their computations, so that array
operations are invisible outside of the processing module. The latency of the SIMD array is
generally proportional to its size; a simple pattern-matching operation should take the same
amount of time regardless of the number of hits. Best-match searches, however, which may
recall some number of elements in sequence, can take a variable number of SIMD cycles.
This is another point in favor of providing as many mechanisms as possible to hide latency
in the supervisor.

3.3. Why simulate an APE? 17
The interconnection network

We believe that a closely coupled network of APE computing nodes requires a very
efficient global interconnection network (ICN). An important design goal for the ICN is for
the latency of a nonlocal access to be bounded and to be within a small order of magnitude
of that of a local access. This requirement places serious demands on the network in the
face of the irregularity of communication and hotspot behavior anticipated to arise in the
target applications.

The choice of which topology to use is not altogether straightforward; it is possible for
implementation and technology-related issues to overwhelm theoretical analysis in actual
network performance. Fat-trees [Leiserson, 1985] and multiple bus [Dai et al., 1991] systems
appear to be good candidates, as do some members of the large class of k-ary n-cubes
described in [Dally, 1990].

Many studies of network performance have been based on a model of uniform, randomly
distributed message traffic [Patel, 1981, Bhuyan et al., 1989]. This is in fact not a partic-
ularly likely scenario in the applications described as the targets for APE. In particular,
data clustering and hotspots seem quite likely to occur in the context of a semantic net and
particularly so in conjunction with dynamic load balancing.

While conventional numeric and simulation applications seem to tend towards uniform,
random traffic, Al applications may not. The law of large numbers implies that a large
group of processes interacting randomly would tend to evince a normal distribution. Al
applications, however, are expected to represent features of a structured domain. Some
abstraction of this structure is likely to be reflected in the patterns of communication
among objects in a distributed AI system working in a ‘real-world” domain.

3.3 Why simulate an APE?

Based on this discussion, it would appear that the best that could be done in developing
the APE network topology might be an educated guess, trying for the most ‘general’
approach that seems implementable. In fact, given a simulation tool that is efficient and
easy to use, the chances of the guess being a good one could improve dramatically.

By doing dataflow analysis on traces from an actual Al application such as the Morph
project [Levinson, 1991] and mapping it onto the simulated APE system, we have char-
acterized some of the essential qualities of expected communication behaviors and their
sensitivity to topological variations.

Like most existing Al applications, Morph has been heavily optimized to run on single-
processor Von-Neumann-style machines. Although its implementation is deeply rooted in a
conventional workstation environment, Morph makes heavy use of the associative primitives
that are expected to be at the core of an APE system.

Ultimately, it will be necessary to model application codes that do not yet exist; using
assumptions based on known codes it should be possible to generate statistical models of
message passing and access patterns with enough validity to exercise the simulator in ways
which will prove useful to the system’s design.

18 3. Designing an associative processing environment

3.4 Design issues for distributed associative processing

We assume that at the heart of an application running in an APE is an associative
database (ADB) distributed across the processing nodes. We expect that interprocessor
communication (IPC) patterns will change as relations among objects in the ADB change.
This represents a key difference between the assumptions underlying most ‘scientific’ ap-
plications and the connectionist style of AI. Many scientific problems are described as a
regular tesselation over some computational space; communication requirements are thus
predictable and regular, or at least deterministic [Almasi and Gottlieb, 1989].

The temporal and spatial structure of search in an ADB is not necessarily regular;
in a system implementing adaptive-predictive search (APS) no a priori structure at all
is imposed on the stored patterns or their relations. Objects in the ADB represent an
abstraction of the application domain’s feature space, and their structure is derived from
the system’s observations about the feature space rather than from explicit rules.

For some perhaps contrived problems this structure could be quite regular. In the
case of more interesting problems it may be better to assume that the structure of the
knowledge base as experience builds will resemble a chaotic system; the world is a rather
chaotic place, with lots of low-level structure and order interacting at higher and higher
levels of abstraction to generate more and more complex behaviors. It is expected that the
structure of the database underlying a mechanical representation of a worldly system will
not be regular, and probably will change (perhaps dramatically) as the system’s experience
evolves.

Depending on the complexity of the domain, it may be very difficult to determine ahead
of time how IPC requirements will change. This emerges as a serious design issue when
implementing a parallelized ADB because low latency is an important adjunct to the ability
to maintain very large, and therefore interesting, databases. Since search time must scale
with database size, ADB operations represent a potential performance bottleneck for large
APS systems.

Locality of access and load balancing

We suggest that there is likely to be a good deal of locality among accesses to a dis-
tributed ADB. This locality takes the form of clustering patterns in parent-child relation-
ships within the database hierarchy. Objects that are ‘similar’ in feature space are expected
to be near one another in the ADB, since the ADB’s classification scheme is defined as
being related to distance in feature space. Therefore, access to ‘similar’ objects is likely to
involve access to many of the same intermediate objects during search.

In order to maximize processor utilization and minimize IPC, we expect that some
form of dynamic or demand-driven load balancing will need to be implemented. The
general thrust of the load-balancing methodology is that those objects that are most often
in communication (i.e. compared to one another) should be in closest proximity, either
coresident in an APE node or a minimal number of network hops away. The criteria used
to determine when to migrate or replicate an object are left to further research.

3.5 Chaotic dynamics in a large connectionist system

One key characteristic of many current Al codes, and presumably of any system at-
tempting to behave in an ‘intelligent’ fashion, is non-determinism. Given that the world is

3.5. Chaotic dynamics in a large connectionist system 19

generally not a regular, orthogonal system, any system that maps the world internally to a
significant degree must also map its irregularities. It is anticipated that once a computer
system builds a complex enough world model, that model may begin to behave as a chaotic
system [Gleick, 1988] rather than a strictly deterministic one.

In effect the connectionist paradigm, which holds that knowledge in a system is a holistic
product of some set of relations among its elements, can be viewed as a mapping of features
(i.e. facts about the domain under consideration) into a very high-dimensional space whose
coordinate axes are a cross-product of all the degrees of freedom in the system. A particular
knowledge item (or ‘memory’) is in effect a hyperplane passing through particular points of
interest in the knowledge space.

In addition to the points of interest, however, the hyperplane is likely to pass through
many other points that may not be relevant in themselves but which nevertheless are part
of that particular assemblage of experience in the system. Therefore, the behavior of the
system when moving among specific memories (i.e. locations in knowledge space) may defy
simple prediction and could be expected to express chaotic qualities.

Points in the knowledge space can be mapped more-or-less arbitrarily to physical lo-
cations in the computer system. It then seems reasonable to assume that the inclusion of
apparently unrelated points as described above is likely to cause nonlocal connections to
be made among apparently unrelated objects. Although not bearing any direct semantic
relation, these items nevertheless share points along the hyperplane defining what is in
effect a query into the knowledge database. Assuming that data are clustered in particu-
lar processors according to some arbitrary structural considerations, it is possible that the
observed communication patterns will end up appearing to be chaotic as the state of the
system evolves through time.

So how does the potential for chaotic communications behavior affect the design of a
computer system capable of representing and manipulating such a system? We suggest that
a high-throughput global communications facility is essential. The underlying structure of
the access pattern is likely to lead to hotspots; hotspots, as described in [Kumar and Pfister,
1986], can cause a network to exhibit complex nonlinear behaviors which are very difficult
to handle gracefully. It may therefore be difficult to predict accurately any but the grossest
levels of IPC behavior. Qualitative simulations serve as an effective adjunct to the design,
providing understanding of the behavior of the system as it evolves through time. Given
simple stochastic assumptions about program behavior, a straightforward simulation should
be able to capture at least some of the flavor of the dynamical behavior of the system. It
is with this intention that the APE simulator is designed.

20 4. APES, a network traflic simulator

4. APES, a network traffic simulator

4.1 Overview

The Associative Processing Environment Simulator (APES) presents a readily config-
urable interface to a generic simulation of the network traffic in a multicomputer of the style
described in the previous section. The simulator is designed to develop a qualitative model
of patterns of activity in the system given arbitrary topologies, routing methods and poli-
cies, and code profiles. The generic routing elements that are simulated are an abstraction
of features to be found in most multicomputer systems. Simulation of traffic on arbitrary
topologies using a variety of routing and buffering policies is supported. Message traffic
may be generated according to random distributions or be derived from code profiles of
actual programs.

APES simulates the message traffic in an arbitrarily connected packet-switched network.
Fach node in the network is considered to be a processing element (PE) and may contribute
to message traffic independently of other PEs. The arcs in the network correspond to
communication links which are assumed to have a fixed capacity such that a link can carry
a single message packet at a time (the width, or number of wires, in a link is thus equivalent
to the number of bits in a message packet).

A variety of buffering policies and non-adaptive routing functions are available. Statistics
about traffic along each communication link and in each processing element throughout the
time of the simulation are gathered. These can be analyzed for clustering and hotspot
behavior as well as processor load balance. Statistics are collected for traffic in and out of
each processing element (PE) as well as across each link in the network. Message latency
statistics are also collected.

The simulator can be used both to analyze execution traces generated by existing
applications and to experiment with instruction profiles for simulated applications. Traffic
and latency statistics can be used to explore clustering and hotspot behavior as well as
processor load balance. By providing tools to examine behavior of existing applications,
the simulator enables the design of a system to be tuned to known problem approaches.
In addition, novel approaches involving the exploitation of the unique facilities available in
the APE can be simulated in a qualitative fashion in order to develop those approaches and
discover architectural issues that may not be obvious otherwise.

4.2 Architecture of the simulator

The simulator consists of several interacting modules, each of which is an abstraction of
some part of the system under study (with simplifications to enable qualitative evaluations
to be made without incurring prohibitively high simulation overhead). The modules are
linked together into a single executable file. The executable takes as input a file describing
the network topology and possibly another file containing message events to be generated
during the simulation run.

Measurements taken include traffic flow through each communication link and message
latency. The resulting data are available both as a realtime graphical display of selected
activity over time (for example, a moving graph of traffic in each link) and as a summarized
statistical report. System state at each step of the simulation can be logged to a file.

4.3. Features 21

Behavioral Interconnection Execution trace Dataflow analysis
o network of program to and partitioning Communication
parameters . !
topology graph be simulated profile

7

Simulated processing Simulated network

dements Simulation clock links

Traffic and latency ——m—=>

sttistics

Simulation
log file

%

Figure 4.1: Block diagram of the APE simulator, its inputs, and outputs.

The overall structure of the simulator is illustrated in figure 4.1. The topology graph is
a simple adjacency-list representation of the ICN to be simulated. The ezecution trace is
produced by instrumenting the program whose behavior is to be simulated, and is analyzed
to produce a communication profile for the program. Behavioral parameters include the
choice of routing and buffering schemes, queue sizes, and operational details such as output
format. The simulation log is a detailed trace of each step in the simulation. The traffic
and latency statistics are described in section 4.7 and can be processed with a variety of
analytical tools. The console can be used to view the progress of the simulation, choosing
among several variables of interest such as link traffic and queue depth in each PE.

4.3 Features

Network topology

The interconnection network (ICN) to be simulated is expressed as an arbitrarily con-
nected network of processing nodes and communication links. No explicit limitations are
placed on connectivity, although the speed of simulation is polynomially related to the
number of links in the network.

22 4. APES, a network traflic simulator

PTF T

The system being simulated Representation in the simulator

Virtual processor
<— toarhitrate bus
transactions

Figure 4.2: Representation of bus structures inside the simulator.

Buses and bus-like structures such as trees are supported explicitly. They are represented
internally by virtual processors' which arbitrate among the links connecting the PEs on each
bus (see figure 4.2). Hierarchical buses and other hybrid bus designs are also supported by
this mechanism. For analytical purposes, the traffic on a bus is the sum of traffic in all the
links connecting its constituent nodes to the virtual processor.

Message injection

Each node in the network has the potential to inject messages, or generate message
events. A message event causes some number of packets to be injected into the network.
These can be created stochastically according to a statistical distribution whose parameters
are specified by the user or can be read directly from a user-supplied file. In the latter
case, the file may originate from a parallelization of code traces from existing applications
or from other modeling approaches.

Since injection of messages by a particular PE can be explicitly controlled, support exists
for treelike topologies in which interior nodes act only as routers and all processing (and
message injection) is done at the leaves. The virtual processors that support bus arbitration
in an explicit bus simulation never inject messages of their own, but act only as forwarding
agents.

Routing and buffering policies

There has historically been little distinction between buffering and routing in the ar-
chitecture literature. Routing is a computational method for selecting the destination of a
message packet, while buffering policy is concerned with the allocation of buffering resources
within the router itself. APES provides mechanisms to implement several varieties of each.

A wide variety of approaches to routing and buffering are described in the literature;
one partitioning is the distinction between adaptive and fixed routing techniques. Adaptive
routing [Linder and Harden, 1991] may introduce some nondeterminism into the path a
message will take with the benefit of providing better behavior in the face of network
blocking. The cost, of course, is in computational complexity. Fixed routing schemes can
be vulnerable to blocking (increasing latency) and deadlock, but are relatively efficient to
implement. Another approach is the use of virtual channels [Dally, 1992] to split available
bandwidth into independently buffered data streams at the cost of increasing the expense
of buffers and routing logic; the cost is balanced by provably deadlock-free operation (again
at the cost of some computation to route appropriately).

! These processors are not part of the explicit topology map provided by the user, and never inject
messages. They act only to arbitrate among pending bus requests and pass messages along the bus.

4.3. Features 23

The philosophy implemented in APES is to provide the simplest and most general degree
of functionality possible. Therefore, only fixed routing methods are supported. These
include dimension routing (described in [Hillis, 1985] and in a more general form in [Felperin
et al., 1991]) which routes in fixed order along each dimension of a cube-like structure?, and
an explicit routing based on the equivalent of a global routing table. The latter may require
a computationally expensive search of the ICN to determine the best paths, but this is
done only once at the start of simulation. For the future, a simple programmatic interface
permits new routing schemes to be easily integrated.

The available buffering policies include wormhole [Seitz and others, 1985], virtual-cut-
through [Kermani and Kleinrock, 1979], and store-and-forward [Tanenbaum, 1981]. These
span a wide range of implementation possibilities. The observable areas in which they
differ are in latency and blocking behaviors. Blocking behavior is a function of contention
for network links. The question is whether a single blocked packet can rapidly propagate
blocking through the network or if blocking behavior tends to be local. This depends in effect
on the granularity of the buffering scheme; the fine-grained approach of wormhole buffering
implies that blocking the head of a message could cause each router along the message’s
path to block immediately while the coarse granularity of store-and-forward buffering does
not necessarily cause any routers but the current one to block.

Figure 4.3 illustrates the relative latencies of wormhole and store-and-forward buffering.
It assumes that three routers are involved in the message’s transit. Since only a single flit?
is buffered at a time, the head flit in the case of wormhole buffering arrives at its destination
long before its counterpart in the store-and-forward case. The latter must wait for all flits
to reach the intermediate router before beginning to forward, engendering greater message
latency.

The wormhole approach involves minimal buffering at each node; a packet gets passed
along its path if the path is available, otherwise it blocks. This can cascade, blocking any
packets waiting to travel along the same path behind the blocked one. On the other hand, a
message can begin arriving at its destination as soon as its head flit has propagated through
the network.

Store-and-forward buffering, by contrast, buffers all the packets in a message at each
router along the path before propagating them. This causes the entire message to block at
an intermediate router until the next link is available. The additional latency engendered
by this approach can be offset by less catastrophic blocking behavior, since fewer routers
are likely to become blocked by a single link being unavailable.

A third alternative, virtual-cut-through, is a hybrid of the two; it extends wormhole
routing to allow several flits to be buffered at a blocked router. This mitigates the unde-
sirable blocking behavior of wormhole buffering at the expense of added buffer space. If
message lengths are variable and a buffer is not constrained to contain an entire message
(but rather a small, fixed number of flits), this approach appears to represent a significant
improvement over wormhole’s blocking patterns while bounding the additional buffering
overhead.

These policies comprise several continua of design features:

2 Note that many common ICNs can be viewed as cube-like structures; see section 5.2.2

3 Flit stands for flow control digit, a small data packet. The words flit and packet are used interchangeably
here.

24 4. APES, a network traflic simulator

:D:D Store-and-forward

c
@]
7 [T TT]
o | | | | | | | | |
o T T T T T T T T T
=2
e [LILIT]
T e
| | | | | | | | |
I I I I I I I I I
Time

First packet of store-and-forward
message arrives at its destination

First packet of wormhole message
arrives at its destination

Figure 4.3: Comparison of latency for store-and-forward and wormhole buffering.

e Implementation cost as defined by required buffer size: the wormbhole approach
requires only a flit-sized buffer at each router, whereas store-and-forward demands a
buffer at least as large as the longest possible message.

e Message latency: under wormbhole-style buffering, the first flit of a message may
be available at the destination before the last flit has left the origin. In the case of
store-and-forward, the head of a message does not reach the destination until all flits
have completely propagated through the network.

¢ Blocking behavior: wormhole buffering can easily cause the entire network to
block if a circular wait condition arises; this is combated by clever routing techniques
including adaptive routing and virtual channels [Dally, 1992]. While effective, these
techniques increase the cost of routing logic and buffering resources. Store-and-
forward buffering is less vulnerable to deadlock, assuming buffer sizes are sufficient at
each router.

Synchronization

All actions in the simulator are coordinated by the master simulation clock. Each tick
of the master clock represents some arbitrary time slice that is assumed to be equivalent to
the time a packet takes to propagate across a link. We assume that link latency is smaller
than router latency; in effect it is subsumed into router latency*. As an example, taking the
approximations that light travels one foot per nanosecond and that signals propagate across
alink at 0.1¢, a one-foot link can be expected to have a propagation delay of 10 ns. Assuming
that a router can propagate a message in 10 instruction cycles (perhaps optimistic), and

*APES provides a facility to delay the arrival of a packet at the other end of a link for some number of
simulation cycles. This is equivalent to making link latency some multiple of router latency, perhaps most
useful for simulating widely distributed systems.

4.4. Functional elements 25

assuming that routers operate on a clock of 50 Mhz, or 20ns, we expect a router to take
200 ns to route a flit. By the time the next flit is routed, therefore, the first flit will have
long since reached the other end of the link. The more general assumption is that routing
time is greater than link propagation time.

A simulation cycle is started by incrementing the clock tick count and then calling
simulation routines for each of the subsystems, updating the state of all elements in the
simulated system. The state of each part of the system is computed based on its behavioral
rules and current state. Once all elements are updated to their new state, the display may
be refreshed and the new global state may be written out to the log file.

4.4 Functional elements

Figure 4.4 illustrates the relationships among the various elements that comprise a
simulated processing node. The routing/buffering logic implements whatever schemes were
selected at runtime. The master simulation clock synchronizes all operations. A router port
exists for each link in contact with the PE; the number of ports could differ among PEs in
an irregular network. Each router port has a send and a receive queue to handle traffic in
and out of the associated communication link. The queue sizes are fixed at runtime, and
are varied with the choice of buffering method. Communication links are implemented as
simple FIFO buffers (although we assume that a link can hold only one ‘packet’ of data
at a time). Message injection is controlled by either a communication profile derived from
trace analysis or by a random variable.

Processing elements

The basic object in any multicomputer system is the processing element (PE). In the
context of the simulator, a PE is defined as an entity that generates and routes message
traffic. In any particular simulation cycle, a PE may be idle or may generate one or more
messages to be propagated through the ICN.

The PE abstraction is effectively a finite-state machine whose transitions are governed
by some internal state — in trace analysis mode, the presence or absence of a pending
message event, and in stochastic mode the result of a weighted coin toss.

In the former case, each PE can be independently programmed with respect to the
ordering of message events. The events are derived from a user-supplied file of message
events derived from an application profile.

For stochastic system modeling, a set of global parameters governs the probability of
each PE generating a message during a particular simulation cycle. The probability (drawn
from a uniformly distributed random variable) is a user-supplied option. The length (in
packets) of each message generated can be constant or similarly controlled.

Routers

Processing elements communicate with one another via routers, which interface to
the ICN itself. FEach PE contains a router, and each router contains a port for each
communication link impinging on the PE. Fach port is comprised of a send and receive
queue whose lengths are global parameters set by the user. The queues themselves contain
logic to determine full/empty status. Routing and buffering decisions are made by logic

26 4. APES, a network traflic simulator

Simulator master clock

Communication Random message

profile M o generator
injection
logic
Router port
Receive queue
()
Send guetie \ /
Routing and
To adjacent buffering
router ports logic
A N

Figure 4.4: The abstraction of a simulated processing node.

within the router. This logic arbitrates among conflicting requests for send and receive
queues in the ports and determines where to forward messages according to the routing
algorithm.

Routing decisions are made according to either a global routing table or a dimension
routing algorithm. The latter case, though less general, does guarantee freedom from dead-
lock under appropriate buffering conditions. A provably deadlock-free routing algorithm
is useful since adaptive routing is not currently supported. The global routing table can
embody an arbitrary routing map; the simulator provides a facility to create a best-first
routing map by searching the network graph for shortest paths.

Network links

Data are transferred among processing elements via the network links. Links provide
point-to-point connectivity between router ports; the router ports at each end of a link take
care of queuing messages for the link and directing them on their path.

All links are assumed to have the same latency and capacity. The capacity is defined as
one flit’s worth of data, where a flit is a packet of finite, arbitrary length. In effect, each

4.5. Mapping instruction traces to the simulated machine 27

Program execution Parse objects Partition objects among
tracefile available processors
Parse event barriers Create |PC messages
Application
communication
profile

Figure 4.5: The process of generating a communication profile from an execution
trace.

link passes an entire flit from end to end in one simulator cycle (see the discussion of timing
assumptions in section 4.3).

The latency of a link in the context of a simulation is defined as the number of simulation
cycles a packet takes to be delivered end-to-end. This value is assumed to be one for all
links, although support for a user-definable effective length is available on a per-link basis.
When this value is set greater than one, delivery is delayed for the specified number of
cycles.

4.5 Mapping instruction traces to the simulated machine

When the simulator is being used to analyze execution traces, it takes as input commu-
nication profiles, specially formatted files of abstract simulator instructions generated by
analysis of the actual execution traces. Communication profiles are generated by a series
of separate analysis modules which abstract data movement instructions in the execution
trace into simulated message traffic. This process is illustrated in figure 4.5.

The communication profile consists of a set of groups of potentially concurrent message
events. FEach group of events is delimited by synchronization barriers derived from a
streamlined data dependency analysis of the application program. Since in the general
case this is an NP-hard problem [Helmbold and McDowell, 1991], we make the simplifying
assumption that a group of read accesses not separated by a write constitute a potentially
concurrent segment. Although weaker than actual dependency analysis, we suggest that
this approach abstracts enough of the application’s object access behavior to constitute a
valid model.

Initially, the target application must be instrumented so that all data accesses that are
(or may be) the cause of a communication event are written out to a trace file. Fach data
object must have a unique label; this could be a real memory address or an arbitrary handle.
Each potential event may also have a transfer size associated with it which eventually gets
translated into some number of packets in the corresponding message. The trace file also

28 4. APES, a network traflic simulator

contains information regarding barrier points in the program for later creation of barriers
in the communication profile.

The data movement operations described in the trace log are parsed into sets of potential
message events according to the barrier points included in the trace or to user-supplied
information derived from analysis of the code itself. An intermediate file is produced which
contains barrier segments, each consisting of one or more communication events. During
the generation of this file, a matrix of object relations (based on the addresses or handles
supplied in the trace log) can be built; this matrix contains a row and column for each
unique object, and the entry for each pair of objects indicates the number of contacts
between the two objects in the trace log. This can be used for determining allocation of
objects to processors in the next step.

The object handles or addresses are then resolved into processor IDs and written as
messages to the communication profile. Allocation of objects to PEs can use information
in the relation matrix to place in proximity those objects most likely to communicate.
The problem of optimal allocation is at least NP-hard; a ‘reasonable’ allocation may be
computed using cluster analysis or other statistical methods. Alternatively, a random
allocation strategy can be used. In either case, the resulting file is the communication
profile that is fed to the simulator. Fach message event in the communication profile
represents some data access in the program trace; each segment of events represents a set
of potentially concurrent accesses.

4.6 Stochastic simulation

In the case of a stochastic simulation, the action of each processor at each time step
as well as the destination of each message are governed by statistical distributions whose
parameters are supplied by the user. The parameters depend on the architecture of the
processors and on assumptions about distribution of data in the system over time. Repre-
sentative distributions for various applications can be generated by conducting statistical
analysis of the application program’s behavior. This simulation strategy extends the design
philosophy described in [Henessy and Patterson, 1989]. The idea is to analyze many vari-
ants of a particular idea without losing the underlying abstraction and without requiring
extremely detailed simulation of each processor.

4.7 Simulation data

Massive amounts of data are generated during a simulation. Structures within APES
itself keep track of every packet’s progress; this is too fine a degree of granularity for the
qualitative analysis described as the simulator’s goal. Results are therefore presented as
higher-level combinations of the available data. The most interesting of these is the question
of how ‘busy’ communication links are during the simulation.

APES tabulates the contents of each link during each simulation step. A key metric
to be examined is the behavior of the load value for each link, computed by counting the
number of packets traversing the link within a user-supplied time window and dividing by
the window size, yielding a normalized moving average of link activity. If W is the size of
the window (in simulation steps), then the load value for the jth link at simulation step ¢
is given by

4.7. Simulation data 29

, 1 & ,
Li=— > T/
W i=t—W

where

T = ;
i 0 otherwise

{ 1 if link 7 is busy at time ¢

Note that L{ is normalized to the interval [0...1]; as the window size is decreased the
load average approaches unity, in accordance with the intuition that a narrower link is
busier than a wide one. As window size is increased the load value decreases as would be
expected if the link were fattened. The peak load value for each link, its greatest value over
the course of a simulation run, is a measure of the worst-case behavior of the link.

The total number of packets crossing a link over the entire simulation run is another
interesting performance metric. This is given by

S
J o _ J
Ttot - ZTZ
1=0

where thot is the raw traffic for the j-th link, S is the total number of simulation steps, and

T/ is as described above.

Message latency M is the number of simulation cycles a message takes to arrive at its
destination. The simulator keeps track of M, the mean latency, and M,,,,, the greatest
latency of any message.

The mean and variance (over all links j) of Lf and Tg are calculated and displayed
at the conclusion of a simulation run (or during the run, if interactive mode is in effect).
For greatest flexibility in evaluation of the result, the output format is compatible with a
suite of auxiliary statistical analysis tools. These tools are used to generate normalized
distributions which can be viewed using a tool such as Gnuplot [Williams and Kelley, 1990].

In addition to statistical summaries, the simulator can output data in graphical format
during the simulation run. Although of limited resolution due to the typically large number
of objects that must be displayed, these runtime graphs can be very useful in pinpointing
hotspots and visualizing traffic distribution over time.

30 5. Experiments

5. Experiments

5.1 Overview

We describe a series of experiments conducted using the Associative Processing Fnvi-
ronment Simulator (APES) and Morph communication profiles prepared as described in
section 4.5. The objectives of these experiments were:

1. To characterize the interprocessor communication (IPC) behavior of a parallelized Al
application on a variety of interconnection network (ICN) topologies.

2. To compare the resulting [PC traffic patterns with the behavior that would be pre-
dicted by using an assumption of uniformly-distributed message traffic.

3. To characterize the relationships between ICN topology and communication behavior

for both the parallelized application and the uniform-traffic assumption.

The experimental procedure began with selection of the target ICNs and preparation
of the Morph trace data. Next, the [PC traffic of each topology was simulated under both
a communication pattern derived from the Morph trace and an assumption of uniformly-
distributed message traflic. The resulting data on link traffic and message latency were
tabulated and plotted.

In all cases the cumulative traffic through each link evinced an approximately normal
distribution. Peak link load, a performance metric described in section 4.7, was also
normally distributed in the case of uniform traffic. In the Morph-profile case we consistently
found a subset of heavily loaded links that dramatically increased the variance in peak
load. In combination with the approximately normal distribution of total link traffic, we
suggest that this finding indicates the presence of transitory hotspots. We speculate that
this hotspot behavior results from structure within the associative database (ADB) being
mapped across processor boundaries in the network being simulated.

There appeared to be a clear relationship between the bisection width of a network and
the mean value of normalized link traffic. A similar relationship was found between aspect
ratio (see section 5.2.2 below) and mean peak link load for the case of uniformly distributed
message traflic. There was also some relation between latency and aspect ratio in both
traflic cases.

5.2 Procedure

5.2.1 Generating the communication profile

We instrumented Morph [Levinson et al., 1992], a chess-playing program that uses
adaptive/predictive search (APS) techniques to learn the game. At the heart of Morph is
an associative database (ADB) of pattern objects derived from game positions. Accesses to
the database were monitored over a number of execution runs, and the resulting trace data
analyzed to create an ordered list of object access events. This list was then transformed
into a series of partial orders representing groups of potentially parallelizable events. The
ordered set of such groups was then partitioned according to implicit synchronization
barriers derived from analysis of the program code.

5.2. Procedure 31

The resulting list of sets of potentially parallel object access events represents the raw
material of the communication profile to be simulated. The final step is the partitioning of
ADB objects among the available processors. This was done on a random basis, assigning
database objects to simulated PEs according to a uniformly-distributed variable. We chose
random allocation because it reflects the behavior of an actual system in the absence of
dynamic load balancing. Although an allocation scheme based on analysis of the database
could have provided better performance, doing so would have meant making assumptions
that were stronger than those that an actual APE system would be able to make.

The result of the partitioning is a ‘script’ of message events, or communication profile,
representing communication among the PEs during program execution. The communication
profile represents a standard data set that can be run on any desired topology containing
the number of PEs selected in the partitioning step. Since the profile must be recreated if
a different number of PEs is required, in these experiments each set of topologies with the
same number of PEs shares the same profile.

Greater detail on the generation of the communication profile can be found in section
4.5 and in Appendix A.

5.2.2 The experimental topologies

The topologies used in the experiments were selected from the family of k-ary n-cubes
[Dally, 1990]. This class of topology is of considerable interest because isomorphisms exist
between k-ary n-cubes and a wide array of other topologies including multistage switching
networks, meshes, tori, and hypercubes. Because of the networks’ regularity, the switching
elements required to implement routing can be designed compactly. In addition, efficient,
straightforward deadlock-free routing algorithms are available.

One metric that can be used to classify k-ary n-cubes is bisection width, described in
[Dally, 1990]. The bisection width B(k,n) of a k-ary n-cube network is defined as the
minimum number of links that cross an even partitioning of the network, that is, the
smallest number of links that can be cut when the network is divided into two equal-sized
parts. Consider such a network! embedded into a 2-dimensional plane such that n/2 of its n
dimensions are assigned to each of the two planar dimensions. If there are N = k™ processing
nodes, there will be /N = k™/2 rows and columns in the planar network. Suppose that we
look at just the internode links in the highest dimension — these are the links crossing the
midpoint of the network. There are 2k/2~1 such links in each of the /N rows (one link
passing data in each direction per processor pair in the row), or 2/ N k™21 links total.
The bisection width B is defined as

B(k,n) = 2/ Nk"?~1 = % = 2k"~!

Bisection width is in effect a description of the network’s capacity to move data. It is
related to the network’s dimension, but is a measure not just of diameter (equivalent to
dimension for k-ary n-cubes), or how far a packet may have to travel, but of capacity, the
number of packets tht can be in transit simultaneously. For a constant link capacity, higher-
dimensional networks have a higher bisection width and require more and longer wires; long
wires are slower than short ones and require more power to drive. Lower-dimension networks
are cheaper but may not have the routing capacity of high-dimensional networks (having
fewer dimensions means there may be more contention).

!We assume for the remainder of this discussion that k, the radix of the network, is even.

32 5. Experiments

Topology || Radix | Degree | Size | Bisection width | Aspect ratio
k n N B(k,n) A(k,n)
2,6 cube 2 6 64 64 1.0
4,3 cube 4 3 64 32 0.5
8,2 cube 8 2 64 16 0.25
16,2 cube 16 2 | 256 32 0.125
2,8 cube 2 8 | 256 256 1.0
4,4 cube 4 4| 256 128 0.5
8,3 cube 8 3| 512 128 0.25

Table 5.1: Experimental topologies and their attributes.

We introduce as a further characterization of an ICN’s density the aspect ratio, defined
as the ratio of bisection width to processor count. This is given by:

k,n) 2kt

B(2
A(k,n) = N %

Consider the partitioned network again; if the aspect ratio is low, many processors are
wanting to use few available links to get to the other partition. If the ratio is high, the
number of available links and the number of waiting processors is well-matched so that the
network can be considered to be more ‘efficient’.

We will present both bisection width and aspect ratio as metrics in the discussion of
the experimental results. The particular topologies that were chosen for the experiments
represent a spectrum of both these metrics. Table 5.1 identifies the characteristics of each
of the experimental topologies.

5.2.3 Experimental parameters

Experimental runs were done for each topology using the Morph communication profile
and a uniformly-distributed random traffic pattern chosen to approximate the profile’s
probability of message generation. Several communication profiles were created; the initial
trace data were the same in all cases, but the mapping of objects to PEs, and therefore the
patterns of traffic, were different for each number of PEs. Fach topology containing the
same number of PEs used the same profile. A total of three different random allocations
were used in the experiments, one for each of the network sizes of 64, 256, and 512 PEs.
The similarity of the peak load results (see Section 5.3.1) for each of the networks indicates
that one random allocation is probably equivalent to another.

In the uniform-traffic studies, we assumed a constant probability of a PE generating a
message in any particular simulation cycle. This probability was determined by a rough
examination of the communication profile. If the profile contained m message events and
ran to completion in ¢ simulation cycles, we assumed that the probability of a PE injecting
a message was given by

m
P~ —
c

We found the value of P to be near 3 % in each case that was examined, so this value was
used in all the uniform-traffic experiments.

5.2. Procedure 33

All messages were defined to be 4 packets in length. It would have been simpler to make
them a single packet long, but we wanted to stress the network in an effort to discover
issues relating to link contention over time. Another possibility (more realistic in terms
of the data structures manipulated by Morph’s ADB) would have been to allow message
lengths to vary randomly on some range. Although interesting from a practical point of
view, we felt that this would further muddy the observations of link traffic and latency due
to the additional irregularity in network usage.

The routing method used was a straightforward dimension routing algorithm that guar-
antees freedom from deadlock. Wormhole buffering was chosen as the simpler of the two
alternatives. Store-and-forward routing, in addition to its higher latency, required large
buffers to be allocated at each node in order to avoid link starvation; the considerable over-
head due to memory paging of the buffers led to unacceptably long simulation times for the
larger networks.

5.2.4 Gathering and processing experimental data

Since we were interested in network utilization, we chose to examine statistics related to
the measurement of traffic on each link. Simulation data were processed to obtain a record
of total traffic and peak load for each communication link. The individual link data were
analyzed to obtain mean and variance, and a discrete distribution function was computed.
The distributions for each experimental run were then plotted and compared.

The key metric we examined was the load value for each link, a normalized moving
average of link activity described in section 4.7. The maximum or peak load value for each
link over the course of the simulation was kept as an index of the worst-case behavior of
each link. We used a window size of W = 75 cycles in all the experiments; the resulting
peak load values were well distributed over [0...1].

Since peak link load describes the greatest load on a link over some interval, if a
particular link’s peak load exceeds the mean peak load we infer that that a statistically
unusual number of messages were passed over this link in a short time at some point during
the simulation. If clusters of objects exist such that their members tend to be accessed in
closer-than-average temporal proximity, we would expect the links spanned by the cluster
to exhibit high peak load.

Because peak load may represent a very transitory phenomenon, we also examined the
total traffic (i.e. number of packets) across each link in an effort to characterize the hotspot
behavior. The raw traffic figures were normalized in each case to the total number of packets
injected into the network over the course of the entire simulation; the resulting value repre-
sents the number of packets in a given link per packet injected into the network, intuitively
the contribution of each link toward the total traffic in the network. We expected that
the distribution of normalized link traffic would be approximately uniform since whatever
locality of access existed in the original database should be evenly dispersed across the PEs
due to the random partitioning of database objects to PEs.

A final area of network behavior that could be examined in order to characterize the
effects of contention is message latency, defined as the number of simulation cycles a message
takes to arrive at its destination. We found it impractical to collect complete latency data
due to the large number (&~ 10°) of messages in each profile. The data that were collected

34 5. Experiments

Topology Uniform Trace
Name Aspect || Lpeak U%peak Lypeak U%peak
2,8 cube 1.0 31.79 21 || 44.53 1236
2,6 cube 1.0 32.19 19 || 56.19 1086
4.4 cube 0.5 32.29 25 || 46.57 1264
4,3 cube 0.5 32.55 23 || 59.93 1015
8,3 cube 0.25 48.07 30 || 48.32 1422
8,2 cube 0.25 48.84 27 || 67.37 976
16,2 cube 0.125 || 72.03 37 || 61.43 1367

Table 5.2: Peak link load for uniform and Morph-derived traflic patterns.

include mean and maximum? latency for each simulation run. Although not sufficient to

compute a distribution function, we suggest that these data may be of value in further
describing IPC behavior.

5.3 Results

5.3.1 Peak link load

The results of the measurements on peak link load are summarized in table 5.2. We find
that in each case the Morph communication profile engenders a large variance in peak load,
indicating that some irregularity exists in the traflic pattern.

In the uniform-traffic cases, we note that the mean peak loads fall into three clusters, each
corresponding to a different range of aspect ratio A(k,n). We suggest that this correlates
with our intuitive notion of aspect ratio as a measure of the ICN’s efficiency, in that the
topologies with the greatest value of A, such as the 2,6 cube and 4.3 cube, show generally
lower peak usage than those with smaller A such as the 16,2 cube.

The dependence on A is not evident for the trace-generated data; presumably the
irregularity in the traffic patterns in this case overshadows the behavior.

Plotting discrete distributions for each case as illustrated in figures 5.1 and 5.2, we see
that the uniformly-distributed random traffic displays an approximately normal distribution
of peak link load while the trace-derived traffic shows a similar distribution with the addition
of a sharp peak at the maximum-load end. We take this as an indication that a subset of links
has undergone one or more episodes of high usage, while the remainder have experienced
approximately uniform traffic.

5.3.2 Cumulative link traffic

We explored measures of cumulative traffic across links in order to further characterize
IPC behavior. The total number of packets passing over each link during a simulation run
was normalized to the total number of packets injected. This gave a measure of the amount
of work each link had to do in response to each packet injected into the network. Variances
were also computed and normalized. These values are summarized in table 5.3. Note that

2 Since we use wormhole routing the minimum latency is always just the number of flits in a message, in
this case 4.

5.3. Results

0.5 T T T T T T T T T
16,2 cube <—
X 2,6 cube —+--
0.45 |- i 2,8 cube -8--
7;; 4.3 cube -
) 4,4 cube -4
0.4 i 4,5 cube % - 4
A 8,2 cube -o- -
q 8,3 cube -+
0.35 ;
0.3
2
%
s 0.25
S
[on
0.2
0.15
0.1
0.05
0 g & S === s : A 8
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Peak link load

Figure 5.1: Probability distribution
random traffic.

of peak link load from uniformly-distributed

0.5 T T T T T T T T

16,2 cube <—

045 I 2,6 cube -+~

2,8 cube -3--

4,3 cube -x--
04 4,4 cube - —

8,2 cube -~

8,3 cube -o--
0.35 | x B
03 | P i
s 0.25 - J /4
S p
o K
0.2 =
0.15 B
0.1 -
0.05 N -

0 _
. 0.5 0.6 1
Peak link load

Figure 5.2: Probability distribution
Morph communication profile.

of peak link load for traffic derived from the

35

36 5. Experiments

Topology Uniform® Trace
Name Width || Thorm U%norm Trorm U%norm
8,2 cube 16 29.8 1.4 31.7 19.3
16,2 cube 32 13.8 0.2 15.7 27.9
4,3 cube 32 15.6 1.4 15.9 9.6
2,6 cube 64 15.5 1.2 15.9 10.5
4,4 cube 128 3.8 0.1 3.9 5.4
8,3 cube 128 3.7 0.2 3.9 6.6
2,8 cube 256 3.8 0.1 3.9 5.3

Table 5.3: Normalized cumulative link traffic.

“Note that all measurements in this table have been scaled by 1072 for readability

1 T T T T T T T T T
° 16,2 cube <—
2,6 cube -+--
09 B 2,8 cube -B--
L 4,3 cube -x
I 4,4 cube -4
08 | i 8,2 cube - - -
o 8,3 cube -©---
0.7 B
0.6 B
2
=
g 05t % -
o i
a P
0.4 X 4
0.3 1 B
0.2 + " \\ i
0.1+ ” | i
0 TP N - AP A W A A A R
0 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Normalized link traffic (flits per link)

Figure 5.3: Probability distribution of normalized link traffic for uniformly-
distributed random traffic.

in order to make the table more legible, all the actual normalized traffic figures were scaled
by 103.

Figure 5.3 illustrates the discrete probability distribution of traffic for the uniform-traffic
case. The distributions are narrow, indicating little variation among links, and are clustered
into groups with common bisection width. We can conclude from the small variance that
under uniform traffic conditions links are loaded evenly and contention is not a major factor
in network usage.

Distributions for the trace-derived traffic, shown as figure 5.4, are quite similar to those
for uniform traffic. Their greater variances are visible as wider ranges of values, consistent
with the hypothesis of nonuniformity in the distribution of IPC traflic. The groupings
according to B(k,n) are virtually identical to those in the uniform-traffic case.

5.3. Results 37

0.45 T T T T T T T T T
16,2 cube —
2,6 cube -----
04 | 2,8 cube ----- 4
4,3 cube
4,4 cube -~
8,2 cube ---
0.35 - 8,3 cube 1
0.3 B
2 025 i
=
]
Qo
S
o 0.2 i
0.15 B
0.1 - ! | B
0.05 - B
0 [7 LS g o LSS g Sy I

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Normalized link traffic (flits per link)

Figure 5.4: Probability distribution of normalized link traffic derived from the
Morph communication profile.

The clustering of the means evident in both the uniform and trace-generated cases
appears to be due to bisection width B; the 8.2 cube, with B = 16, stands apart from the
16,2 and 2,6 cubes, with B = 32 and B = 64 respectively. These in turn are apart from the
2,8 and 8,3 cubes (B = 256 and B = 128). This is in accordance with the intuition that
for a constant rate of message generation, a ‘denser’ cross-section of the network requires
fewer packets to traverse each link.

Because of the similarity between the normalized cumulative traffic values for uniform
and trace-derived traffic, we conclude that the time-averaged behavior (i.e. average temporal
locality) of link traffic in the trace-derived case is essentially the same as the uniform case.
The variances, however, differ considerably. It appears that there is a greater degree of
spatial irregularity in the trace-derived traffic pattern (i.e. message destinations are not
distributed altogether randomly.)

We suggest that the similarity in average temporal locality indicates that the extreme
peak loads seen in figure 5.2 represent relatively transitory hotspots, causing certain links
to carry unusually high traffic for some period of time small enough that the cumulative
effect was too small to skew the cumulative traffic very much.

5.3.3 Latency

Message latency data are shown in table 5.4. The column labelled Mmaz describes the
ratio of maximum to mean latency, a measure of the magnitude of worst-case behavior in the
network. The relationship of mean message latency to aspect ratio is shown for the trace-
derived and uniform-traffic cases in figure 5.5. Note that the vertical axis is logarithmically
scaled, and that data points have been interpolated between topologies sharing an aspect
ratio.

38 5. Experiments

Topology Uniform Trace
Name Alkyn) || M Myyy M || M My, Mas
16,2 cube 0.125 || 12.6 46 3.65 || 61.8 185 | 2.99
8,2 cube 0.25 7.5 23 3.07 || 51.5 184 | 3.57
8,3 cube 0.25 9.9 34| 3.43 | 56.8 191 3.36
4,3 cube 0.5 6.3 18 2.86 || 43.6 180 | 4.13
4,4 cube 0.5 74 26 3.51 || 47.7 188 | 3.94
2,6 cube 1.0 6.2 17 | 2.74 || 44.1 188 | 4.26
2,8 cube 1.0 7.2 22 3.06 || 47.7 181 3.80

Table 5.4: Message latency (in simulation cycles)

1000 T T T T
[Uniform mean —<—
Uniform max -+--
Trace mean -B--
Trace max -x
X
100 | 1
>
Q
S
— TEE--
© + B ettt P
(]
(=)
3 e
a B
s LT e]
(=2
o
-
10 | 1
1 ' : ' '
0 02 0.4 0.6 08 !

Aspect ratio A(K,n)

Figure 5.5: log Message latency versus aspect ratio.

Once again, we see similar behavior between the two traffic sources, with the trace-
derived latencies being about an order of magnitude greater than those due to uniformly-
distributed traffic. Both the mean and maximum latencies are presented in the plot; it is
interesting to note that in both traffic cases, the maximum is a fairly constant factor greater
than the mean latency. The constant factor differs between the two traffic sources: it is
approximately 3.19 for uniform traffic and 3.72 for the trace-derived traffic. Presumably
the difference is due to the greater variance in load for the latter case, leading to longer
waits when messages block.

We assume that the greater message latency in the trace-derived case is due to exces-
sive contention during hotspot activity. The role of the ICN topology is prominent in that
topologies with lower aspect ratio, and therefore more contention for fewer available links,
experience greater latency than the others. We take this as an indication that, ignoring
hotspots, trace-derived message patterns are similar to those under the uniform assumption

5.4. Discussion 39

(and therefore react to topology changes in a similar way). Contention due to hotspots in-
creases average latency, but network topology is still the determining factor in the network’s
response to traffic.

5.4 Discussion

The following observations summarize the experimental results:
1. In the case of uniformly-distributed random message traffic, both peak load and link
traffic show a normal distribution.

2. Peak link load is unevenly distributed for trace-derived message traffic; in each case,
a portion of the distribution is approximately normal while the rest is clustered at the

high-load end.

3. Link traffic in the case of trace-derived message does not show the cluster of extreme
values seen in the peak load distribution. There is a greater variance than the
uniform case, however, indicating that a good deal of nonuniformity is present in
the distribution of messages.

4. Aspect ratio appears to be a factor in determining the effect of peak link load on a
network under the assumption of uniformly-distributed traffic. The greater the ratio,
the lower the peak load tends to be. This appears to validate our intuition that aspect
ratio represents a measure of the network’s efficiency or grace under stress.

5. Networks with greater bisection width display lower normalized link traffic than those
with smaller B. The more links are available to shuttle packets over, the fewer packets
need to travel over each link.

6. Message latency is much greater in the trace-derived than the uniform simulations,

presumably due to a high degree of network contention.

A common method of evaluating ICNs is to assume a uniform random distribution of
message traffic to model IPC behavior. This approach is demonstrably valid for many
‘typical’ parallel applications [Patel, 1981]. The experiments described here, however,
indicate that the uniform communication model is not altogether valid in the case of the
applications of interest in this research.

The discussion of hotspots in [Kumar and Pfister, 1986] suggests that the behavior
of an ICN in the presence of transient overloads tends to be highly unstable; in current
terminology we might consider the behavior to tend toward chaoticity. Given that chaotic
behavior in such a network can be anticipated, design choices should be made as early as
possible in order to maximize throughput and minimize unstable network behavior.

The results presented here indicate that hotspots may present a significant source of
latency and network congestion for the class of applications under consideration. We suggest
that traffic simulation is a useful adjunct to analytical methods based on assumptions of
uniform traffic.

40 6. Further work

6. Further work

6.1 Enhancements to the simulator

Several areas of the simulator could be enhanced. There are issues of both efficiency
and capability.
e Increased efficiency — The current implementation of the simulator devotes relatively
little attention to issues of efficiency and performance. We estimate that optimizing
the code would speed up simulations by an order of magnitude.

e Better visualizations — It would be instructive to see a rendered, animated image of
the traffic in the network itself as the simulation is running; the search for emergent
behaviors would be greatly facilitated by this feature.

e Individual distribution parameters for each node — more detailed probabilistic simu-
lations could be done if each node could be programmed independently.

e Virtual-circuit buffering [Dally, 1992] — An adjunct to adaptive routing, support for
this buffering scheme would greatly expand the range of system parameters.

o Adaptive routing — A number of adaptive routing algorithms with favorable behaviors
are described in the literature [Glass and Ni, , Chien and Kim, 1992, Konstantinidou,

1990], particularly in conjunction with virtual-circuit buffering mechanisms.

e Parallel implementation — The simulator is a good candidate for porting to a mas-
sively parallel SIMD platform such as the Maspar MP-1 [Nickolls, 1990]. Since APES
has very regular patterns of access in its operation, it would map well to a data-parallel
programming model.

6.2 Parallelizing the applications

Additional work also remains in the methods of parallelization; although the scheme
used in these experiments faithfully reflects the behavior of the serial Morph application,
an ADB access method designed for parallel implementation could have different access
patterns.

A variety of different current AI methods should be parallelized and simulated to develop
a better model of the underlying issues they may share.

6.3 Assignment and load balancing

The problems of distributing objects among available processing elements and migrating
them as the database changes are crucial to efficient operation of an APE system. The
criteria used to evaluate the result of a given assignment or load-balancing policy are highly
dependent on the system’s architecture as well as the structure of the problem domain. A
wide variety of assignment and load-balancing mechanisms and policies are possible, and
experimentation under varying assumptions about problem domain and system architecture
represents an effective way to evaluate many of them.

There are opportunities for exploration in terms of the allocation of objects to PEs. The
random allocation method used here, although practical, fails to exploit the structure of the
database; our reasoning is that a ‘real’ system would not have access to the database ahead

6.4. FEmergent properties 41

of time to decide how to allocate. Simple heuristics may exist, however, that would enable
allocation to be done bottom-up in a manner more supportive of desirable IPC behavior
(i.e. relatively uniform communication). Exploring simple allocation methods would be a
worthwhile study that could easily be done using the facilities available in APES.

6.4 Emergent properties

Complex nonlinear systems generally exhibit high-level behaviors that are not obviously
related to conditions measurable within the systems themselves [Gleick, 1988]; observation
of these macrobehaviors can yield valuable insights into levels of underlying order in the
system [Forrest, 1991].

The adaptive-predictive search (APS) paradigm as described in [Levinson et al., 1992]
is predicated on non-deterministic recombination of feature patterns in an effort to extract
structure from the underlying representation. To the extent that this process represents a
nonlinear transformation of problem domain into feature space it seems reasonable to expect
that emergent properties of the system implementing APS itself represent yet another level
of structure that is likely to be semantically rich.

The simulator could be used as a tool to develop an understanding about patterns of
order within a complex system implementing APS. For example, consider the coupling
between macrobehaviors of the system, such as patterns of interprocessor communication,
and microbehaviors such as the degree of weight change in particular sets of graph objects.
Although some relation clearly exists, it would be difficult to predict how a given change in
feature space (i.e. in the system being learned about) might reflect on the state of the APS
system itself. Strategies developed for observation of complex collective systems [Kephart
et al., 1991] could be applied to simulation results. Learning about how experimental
‘intelligent’ systems react to varying environmental conditions would be an invaluable
adjunct to the eventual design of effective ‘real-world’ systems.

42 7. Conclusion

7. Conclusion

A computing environment supporting a rich set of associative-processing primitives is a
requisite platform for experimental research in the area of artificial intelligence applications.
The analytical techniques that have been applied to the design of conventional computing
systems fail to completely capture the nonlinear behaviors of such applications.

The simulator described in this thesis provides a flexible and readily configurable plat-
form for the evaluation of a wide variety of design alternatives for such a computing en-
vironment. The experiments that are described use APES to compare the communication
behaviors of a parallelized artificial intelligence program with those arising from an assump-
tion of uniformly distributed traffic. The simulation results indicate that although much
of the program’s behavior approximates that derived from the uniform traffic assumption,
significant hotspots arise and affect network throughput and latency.

We conclude that patterns of activity based on semantic relatedness among objects in the
associative database give rise to communication patterns that are not modeled effectively by
a uniform distribution of message traffic. Some adjunct to uniform analysis is appropriate
and we suggest that simulations along the lines of those presented here represent a step in
the direction of a more comprehensive design methodology.

43

Appendix A. Modelling distributed APS using Morph

A.1 Overview

In the interest of developing a generalized model of the issues that might be important
in the design of a distributed system capable of efficiently implementing adaptive-predictive
search (APS), it is instructive to examine the behavior of one particular application that
incorporates the APS metaphor. Morph [Levinson et al., 1992] is a chess-playing program
that has been used as a testbed for many of the ideas underlying the APS model.

We make the assumption that Morph’s pattern database, which is in fact an associative
database (ADB), is to be distributed across a network of computing nodes supporting an
associative processing environment (APE). Each processing node is expected to maintain a
subset of the entire database. When a particular node’s search needs to access an object
that is nonlocal, interprocessor communication (IPC) must occur. Because the APE nodes
can execute associative-array operations efficiently, the latency due to network traffic among
the processors may represent a significant performance bottleneck for the system.

In order to explore the behavior of IPC requirements, Morph is instrumented to produce
traces over a series of execution runs. The trace data are analyzed to develop a description
of access patterns on the ADB. A simple parallelization is done by translating the access
patterns into a model of IPC for a distributed ADB.

Because Morph is a representative implementation of the APS approach, we suggest
that evaluation of its simulated IPC behaviors is likely to reflect issues that are common to
any distributed APS system.

How Morph works

Morph was designed to learn the game of chess by playing a large number of games
against an expert opponent (the GnuChess program, originally developed by John Stanback)
and extracting rules and strategy from the interaction of its knowledge database with the
outcomes of the games that are played. Patterns are added to the database as Morph’s
experience grows, and the weights associated with patterns leading to winning situations
are reinforced by the method of temporal-difference (TD) learning.

The general procedure for an iteration of Morph is as follows (note that several thousand
of these iterations were required before Morph won its first game):

1. Play a game, selecting the most applicable move at each opportunity by matching
patterns derived from the current board configuration against those in the pattern
database.

2. At the conclusion of the game, the weight of each pattern that contributed to the
moves that were selected is re-evaluated according to the outcome of the game. This
is a simple application of TD learning; periodic feedback from the environment in the
form of win/lose status is applied to the internal knowledge base in an effort to reward
those data that contributed to a positive outcome.

3. As new board configurations are encountered, corresponding new patterns are added
to the database.

44 Appendix A. Modelling distributed APS using Morph

A.2 Search in an associative database

The ADB interface is similar to that of a generic database; objects can be added,
removed, and updated (accessed then rewritten). An ADB represents a partial order on the
relation more-general-than, in contrast to a conventional database which represents a total
order on some key. Search in an ADB is therefore a computationally demanding problem
since no simple indexing scheme can capture the entire partial order.

To enable associative retrieval in the ADB, a graphlike representation such as a semantic
network is used to represent patterns. This in effect reduces search to a series of subgraph
isomorphism tests. Subgraph isomorphism is a well-explored area of computer science;
although it represents an NP-complete problem, Ullmann’s algorithm [Ullmann, 1976]
appears to make it manageable for graphs of reasonable size, and Willet and Wilson describe
an efficient parallel implementation in [Willet and Wilson, 1991].

A.3 Parallelizing Morph’s ADB

The search method used in Morph, referred to as Method III in the APS literature
[Levinson, 1991], has as its critical ‘inner loop’ a subgraph isomorphism test. The essence
of the parallelization of APS proposed in this thesis is to use the very efficient pattern-
matching operations available in the APE’s associative arrays to do the graph comparisons,
thereby speeding all ADB operations.

We assume that because of its size, the ADB must be spread across a number of APE
computing nodes. An attempt to compare two objects residing in different processing
elements would therefore engender an IPC transaction. The structure of the ADB is such
that any pair of objects may share many common predecessors (i.e. have much in common)
and successors (i.e. be generalizations of many of the same objects). This implies that a
search for the greatest or most general common ancestor of two objects may cause numerous
intermediate objects to be accessed and evaluated. We expect the high branching factor
of the ADB to have considerable impact on IPC behavior, since it is improbable that the
ADB’s partial order hierarchy can be well distributed among the available processing nodes
without prior knowledge of its structure.

A.4 Instrumenting Morph

We added code to Morph that wrote trace data to a log file for later analysis. The code
modifications demanded by the instrumentation affected 14 of Morph’s 78 program files,
adding a total of approximately 120 lines of code. No perceptible effect was observed on
Morph’s performance.

All accesses to Morph’s ADB are traced; any operation that accesses an object, such
as pattern evaluation or weight update (a read-modify-write cycle), leaves a record in the
trace. Each trace record therefore represents some contact with the database; some are
used to create barrier synchronization points, and others cause the generation of potential
IPC message events.

The primitive operation at the heart of the parallelization is graph comparison. Each
time two ADB objects are compared, the ADB code searches the database for their common
ancestors and/or descendants, causing a number of graph comparison operations to take
place as the partial order hierarchy is traversed. Fach of these comparisons represents

A.5. Analyzing the traces 45

a potential IPC event. Whether a message is actually generated or not depends on the
allocation of ADB objects to APE nodes; in the trace each ADB object has a unique handle
that is later resolved into a PE ID.

A.5 Analyzing the traces

A considerable amount of Morph’s implementation effort has gone into optimizing its
performance in a conventional workstation environment. Deducing potentially parallel
operations is therefore not an altogether straightforward task. The goal is to develop a
profile of object accesses in the pattern database which maintains as much as possible of
the behavior that a similar ADB distributed on a multiprocessor network would express.

Perhaps the most basic issue in attempting to parallelize a serial application is the
establishment of synchronization barriers between sets of events. Suppose we label as an
‘event’ any operation incorporating access to a database object (i.e. insertion, comparison,
and deletion as outlined above). The trace of a program execution is then just an ordered
list of events. However, we cannot assume that all the events could have happened at the
same time! Clearly there are dependencies among events such that event A (i.e. ‘insert
object X’) must happen before event B (i.e. ‘compare objects X and Y’). There are also
events that have no dependencies on each other so that they could happen in any order.

In the general case, this sort of dependency analysis is at best an NP-hard problem
[Helmbold and McDowell, 1991]. A concurrency graph must be generated which represents
all possible program states during execution. Analysis of this graph then provides enough
information to determine which events could have occurred concurrently. These partial
orders of events are then organized into barrier sections such that all events in a barrier
section must have been completed before those in the next section could be completed.
Without prior knowledge of the program’s structure this analysis appears to be exponential
in character.

Fortunately, the structure of Morph provides us with built in barrier points in the
form of its higher—level operations. Since Morph plays a game one move at a time, we
assume that the ADB comparisons made during evaluation of a single move are concurrent.
Fach move in a Morph game represents a set of events (comparisons across the database
to select the most applicable move) that could be happening in parallel. Since Morph is
simply evaluating all patterns in its database that resemble the current board configuration,
there are no constraints on which potential moves get evaluated first, since the ADB is not
modified during this phase of operation. In actual fact, there may be some ordering in the
comparisons due to the particular details of the matching algorithm, but we claim that as a
first approximation it is reasonable to assume that all the comparisons due to a particular
move are concurrent. Similarly, we assume that each set of comparisons leading to insertion
or deletion of an ADB object is concurrent.

46 References

References

[Almasi and Gottlieb, 1989] George Almasi and Allan Gottlieb. Highly Parallel Computing.
Benjamin/Cummins, Redwood City, CA, 1989.

[Ambriola et al., 1990] V. Ambriola, P. Ciancarini, and M. Danelutto. Design and distributed
implementation of the parallel logic language Shared Prolog. SIGPLAN Notices, 25(3):40-
49, March 1990.

[Arvind and Nikhil, 1987] Arvind and R. S. Nikhil. Executing a program on the MIT-TTD
architecture. In de Bakker, Nijman, and Treleaven, editors, Parallel Archtiectures and
Languages Furope, volume 2, 1987.

[Ballard et al., 1983] D. H. Ballard, G.E G. E. Hinton, and T. J. Sejnowski. Parallel visual
computation. Nature, (5938):21-26, November 1983.

[Bhuyan et al., 1989] Laxmi N. Bhuyan, Qing Yang, and Dharma Agrawal. Performance of
multiprocessor interconnection networks. Computer, 22(2):25-37, February 1989.

[Bose et al., 1992] Soumitra Bose, Edmund Clarke, et al. PARTHENON: A parellel theorem
prover for non-horn clauses. Journal of Automated Reasoning, 8, 1992.

[Burks et al., 1947] Arthur Burks, Herman Goldstine, and John von Neumann. Preliminary
discussion of the logical design an electronic computing instrument. Technical report,
Institute for Advanced Study, Princeton, NJ, September 1947.

[Chien and Kim, 1992] Andrew A. Chien and Jae H. Kim. Planar-adaptive routing: Low-
cost adaptive networks for multiprocessors. In 19th International Symposium on Computer
Architecture, pages 268-277. Association for Computing Machinery, 1992.

[Clocksin and Mellish, 1981] W. F. Clocksin and C. S. Mellish. Programming in Prolog.
Springer-Verlag, Berlin, 1981.

[Cook and L. B. Holder, 1990] D. J. Cook and L.B L. B. Holder. Accelerated learning on
the connection machine. In Proceedings of the Second IEEE Symposium on Parallel and
Distributed Processing 1990, pages 448-454. IEEE Computer Society, 1990.

al et al., ayne W. Dail, Yoji Kajitani, and Yorihiko Hirata. Multiple bus networks

Dai [., 1991] W. W. Dai, Yoji Kajitani, and Yorihiko Hi Multiple b k
based on block designs. In 1991 IEFE International Symposium on Circuits and Systems,
pages 1009-1012 vol. 2. IEEE, 1991.

[Dally, 1990] William J. Dally. Performance analysis of k-ary n-cube interconnection net-
works. In Winston and Shellard, editors, Artificial Intelligence at MIT, chapter 21. MIT
Press, 1990.

[Dally, 1992] William J. Dally. Virtual-channel flow control. IFEFE Transactions on Parallel
and Distributed Systems, 3(2), Mar 1992.

[Deering, 1984] Micheal F. Deering. Hardware and software techniques for efficient Al. In
Proceedings of the National Conference on Artificial Intelligence, pages 73-78. American
Association for Artificial Intelligence, 1984.

[Ellis, 1992] Gerard Ellis. Efficient rertrieval from hierarchies of objects using lattice op-
erations. Technical report, Key Centre for Software Technology, University of Brishane,
Brishane, QLD 4072 Australia, 1992.

[Fahlman, 1979] Scott E. Fahlman. Netl: A System For Representing And Using Real-World
Knowledge. MIT Press, 1979.

References 47

[Fahlman, 1980] Scott E. Fahlman. Design sketch for a million-element netl machine. In The
First Annual Conference on Artificial Intelligence. AAATL August 1980.

[Feigenbaum and McCorduck, 1983] Edward Feigenbaum and Pamela McCorduck. The Fifth
Generation: artificial intelligence and Japan’s computer challenge to the world. Addison-
Wesley, Reading, MA, 1983.

[Felperin et al., 1991] Sergio A. Felperin, Luis Gravano, Gustavo D. Pifarré, and Jorge L.C.
Sanz. Routing techniques for massively parallel communication. Proceedings of the IEEF),
79(4):488-503, April 1991.

[Forgy, 1982] Charles L. Forgy. Rete: a fast algorithm for the many pattern/many object
pattern problem. AT Journal, 1982.

[Forrest, 1991] Stephanie Forrest. Introduction. In Stephanie Forrest, editor, Fmergent
Computation. MIT Press, 1991.

[Glass and Ni,] Christopher J. Glass and Lionel M. Ni. The turn model for adaptive routing.
In 19th International Symposium on Computer Architecture, pages 278-287. Association
for Computing Machinery.

[Gleick, 1988] James Gleick. Chaos: making a new science. Penguin Books, New York, 1988.

[Gould and Levinson, 1991] Jeffrey Gould and Robert Levinson. Method integration for
experience-based learning. Technical Report CRL-91-27, Univerity of California, Santa
Cruz, August 1991.

[Gupta and Forgy, 1989] A. Gupta and Charles L. Forgy. Static and run-time characteristics
of OPS5 production systems. Journal Of Parallel And Distributed Computing, 7(1), August
1989.

[Gupta, 1984] A. Gupta. Implementing OPS5 production systems on DADO. In Interna-
tional Conference on Parallel Processing. IEEE, 1984.

[Hart et al., 1968] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the deter-
mination of minimum cost paths. IEFE Transactions on SSC, 4:100-107, 1968.

[Hart et al., 1972] P. E. Hart, N. J. Nilsson, and B. Raphael. Corrections to a formal basis
for the determination of minimum cost paths. SIGART Newsletter, 37:28-29, 1972.

[Helmbold and McDowell, 1991] David P. Helmbold and Charlie E. McDowell. Computing
reachable states of parallel programs. SIGPLAN Notices, (12):76-84, December 1991.

[Hendler, 1988] James A. Hendler. Integrating Marker-Passing and Problem-Solving.
Lawrence Erlbaum, Hillsdale, NJ, 1988.

[Henessy and Patterson, 1989] John Henessy and David Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, San Mateo, CA, 1989.

[Hillis, 1981] W. Daniel Hillis. The Connection Machine (computer architecture for the new
wave). Technical Report AI-646, MIT, September 1981.

[Hillis, 1985] W. Daniel Hillis. The Connection Machine. MIT Press, 1985.
[Hoffmann, 1990] A.G. Hoffmann. On computational limits of neural network architectures.

In Proceedings of the Second IFEFE Symposium on Parallel and Distributed Processing,
pages 818-825. IEEE Computer Society, 1990.

[Hughey and Roberts, 1993] Richard Hughey and James D. Roberts. Architectural concepts
for a parallel associative processor. Technical Report to appear, University of California,
Santa Cruz, 1993.

[lanucci, 1988] Robert A. lanucci. Toward a dataflow / von Neumann hybrid architecture.
In Computer Architecture Symposium. IEEE, 1988.

48 References

[Jr., 1987] R. H. Halstead Jr. Overview of Concert Multilisp: a multiprocessor symbolic
computing system. Computer Architecture News, 15(1):5-14, March 1987.

[Kanerva, 1988] Pentti Kanerva. Sparse Distributed Memory. MIT Press, Cambridge, MA,
1988.

[Kephart et al., 1991] Jeffrey Kephart, Tad Hogg, and Bernardo Huberman. Collective
behavior of predictive agents. In Stephanie Forrest, editor, Fmergent Computation. MIT
Press, 1991.

[Kermani and Kleinrock, 1979] Parviz Kermani and Leonard Kleinrock. Virtual cut-
through: a new computer communications switching technique. Computer Networks,
3:267-286, 1979.

[Konstantinidou, 1990] Smaragada Konstantinidou. Adaptive, minimal routing in hyper-
cubes. In William J. Dally, editor, 6th MIT Conference on Advanced Research in VLSI,
pages 139-153, 1990.

[Kumar and Pfister, 1986] Manoj Kumar and Gregory F. Pfister. The onset of hot spot
contention. In International Conference on Parallel Processing, pages 28-34. IEEE, 1986.

[Leiserson, 1985] Charles L. Leiserson. Fat trees: Universal networks for hardware-efficient
supercomputing. IEEFE Transactions on Computers, C-34(10):892-901, 1985.

[Levinson et al., 1992] Robert Levinson, Brian Beach, Richard Snyder, Tal Dayan, and
Kirack Sohn. Adaptive-predictive game-playing programs. Journal of Experimental and
Theoretical Artificial Intelligence, 4:315-337, 1992.

[Levinson, 1991] Robert Levinson. Pattern associativity and the retrieval of semantic net-
works. Technical Report CRL-91-14, Univerity of California, Santa Cruz, August 1991.

[Levinson, 1993] Robert A. Levinson, November 1993. Personal communication.

[Linder and Harden, 1991] Daniel H. Linder and Jim C. Harden. An adaptive and fault-
tolerant wormhole routing strategy for k-ary n-cubes. IEFE Transactions on Computers,
40(1):2-12, January 1991.

[Marr, 1990] David Marr. Artificial intelligence: a personal view. In Derek Partridge and
Yorick Wills, editors, The foundations of artificial intelligence: a sourcebook. Cambridge
University Press, Cambridge, 1990.

[McCarthy and others, 1962] John McCarthy et al. LISP 1.5 Programmer’s Manual. Mas-
sachusetts Institute of Technology, Cambridge, MA, 1962.

[McClelland et al., 1986] James McClelland, David Rumelhart, et al. Parallel Distributed
Processing. MIT Press, 1986.

[Minsky, 1986] Marvin Minsky. The Society of Mind. Simon and Schuster, New York, 1986.

[Miranker and Andrews, 1990] Daniel Miranker and Archie Andrews. On balanced syn-
chronous parallel for Al. Institute of Electrical and Electronic Engineers, 1990.

[Moldovan et al., 1990] D. Moldovan, W. Lee, et al. Parallel knowledge processing on SNAP.
In International Conference on Parallel Processing. IEEE, 1990.

[Newell and Simon, 1972] Allen Newell and Herbert A. Simon. Human problem solving.
Prentice-Hall, Englewood Cliffs, NJ, 1972.

[Nickolls, 1990] John R. Nickolls. The design of the Maspar MP-1: A cost effective massively
parallel computer. In COMPCON Spring °90, pages 25-28. IEEE Computer Society,
February 1990.

[Noshpitz, 1990] Claude Noshpitz. Some design issues for process migration systems. CE220
Class Project at University of California, Santa Cruz, May 1990.

References 49

[Noshpitz, 1991] Claude Noshpitz. An efficient implementation of Kanerva’s Sparse Dis-
tributed Memory on the Connection Machine. Independent Study at University of Cali-
fornia, Santa Cruz, Mar 1991.

[Omohundro, 1990] Steven M. Omohundro. Geometric learning algorithms. Physica D,
42(1-3):307-321, June 1990.

[Parkinson and Litt, 1990] Dennis Parkinson and John Litt, editors. Massively Parallel
Computing with the DAP. The MIT Press, 1990.

[Patel, 1981] Janak H. Patel. Performance of processor-memory interconnections for multi-
processors. [KEE Transactions on Computers, C-30(10):771-780, October 1981.

[Quillian, 1968] M. Ross Quillian. Semantic memory. In Marvin Minsky, editor, Semantic
Information Processing, chapter 6. MIT Press, 1968.

[Rich and Knight, 1991] Elaine Rich and Kevin Knight. Artificial Intelligence. McGraw-Hill,
second edition, 1991.

[Roberts, 1990] J. Donald Roberts. Proximity content-addressable memory: An efficient
extension to k-nearest neighbors search. Technical Report UCSC-CRL-90-45, University
of California, Santa Cruz, 1990.

[Seitz and others, 1985] Charles L. Seitz et al. The hypercube communications chip. Tech-
nical report, Department of Computer Science, California Institute of Technology, 1985.

[Shapiro, 1990] Stuart C. Shapiro, editor. Encyclopedia of Artificial Intelligence. John Wiley
and Sons, New York, 1990.

[Shaw, 1985] David Elliot Shaw. NON-VON’s applicability to three ai task areas. In
Proceedings of the Ninth International Joint Conference on Artificial Intelligence, pages
61-72. American Association for Artificial Intelligence, 1985.

[Singer, 1990] Alexander Singer. Implementations of artifial neural networks on the Connec-
tion Machine. Parallel Computing, 14, 1990.

[Sowa, 1992] John F. Sowa. Conceptual graphs as a universal knowledge representation.
Computers and Mathematics with Applications, 23(2-5), January-March 1992.

[Stanfill and Kahle, 1986] Craig Stanfill and Brewster Kahle. Parallel free-text search on the
Connection Machine system. CACM, 29(12), December 1986.

[Stolfo, 1984] Salvatore J. Stolfo. Five parallel algorithms for production system execution on
the DADO machine. In Proceedings of the National COnference on Artificial Intelligence,
pages 300-307. American Association for Artificial Intelligence, 1984.

[Sutton, 1987] Richard S. Sutton. Learning to predict by the methods of temporal differences.
Technical Report TR87-509.1, GTE, 1987.

[Tanenbaum, 1981] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, Englewood
Cliffs, NJ, 1981.

[Thi, 1990] Thinking Machines Corporation. Connection Machine User’s Guide, 1990.

[Ullmann, 1976] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the
Association for Computing Machinery, 23(1):31-42, January 1976.

[Wah and Li, 1989] Benjamin Wah and Guo J. Li. A survey on the design of multiprocessing
systems for artificial intelligence applications. IFEFE Transactions on Systems, Man, and
Cybernetics, 19(4), August 1989.

[Webster, 1986] Daniel Webster. Webster’s 7th dictionary: Online edition, 1986.

50 References

[Willet and Wilson, 1991] Peter Willet and Terence Wilson. Atom-by-atom searching using
massive parallelism. Implementation of the Ullman subgraph isomorphism algorithm on
the Distributed Array Processor. Journal of Chemical Information and Computer Sciences,
31(2):225-233, 1991.

[Williams and Kelley, 1990] Thomas Williams and Colin Kelley. GNUPLOT: an Interactive
Plotting Program, 1990.

[Winograd, 1972] Terry Winograd. Understanding Natural Language. Academic Press, New
York, 1972.

