
University of CaliforniaSanta CruzAutomated Termination Analysis for Logic ProgramsA dissertation submitted in partial satisfactionof the requirements for the degree ofDoctor of PhilosophyinComputer and Information SciencesbyKirack SohnDecember 1993The dissertation of Kirack Sohn is approved:Allen Van GelderPhokion G. KolaitisAl KellyDean of Graduate Studies and Research

Copyright c byKirack Sohn1993

iiiContentsAbstract viiAcknowledgements viii1. Introduction 11.1 Why Termination Analysis : 21.2 How It Works : 31.3 Outline of the Thesis : 62. Logic Programming Preliminaries 92.1 Logic Programs : 92.2 SLD Resolution : 112.3 Fixpoint Semantics : 162.4 Deductive Databases : 183. Termination Detection 203.1 Basic Concepts : 203.1.1 Predicate Dependency Graphs : 203.1.2 Modular Termination Analysis : 203.1.3 Bound-Free Adornments : 223.1.4 Rule-Goal Graphs : 233.1.5 Adorned Programs : 263.1.6 Subterm Ordering : 263.1.7 Abstractions of Terms : 293.2 Related Work : 313.3 Argument Size Constraints : 33

iv3.4 Derivation of Termination Condition : 353.5 Multiple Bound Arguments : 403.6 Extension to Mutual Recursion : 413.6.1 Mutual Recursion : 423.6.2 Nonlinear Recursion : 433.7 Limitations : 473.8 Extension to CLP(R) : 513.9 Discussion : 524. Inference of Interargument Constraints 544.1 Introduction : 544.2 Basic Concepts : 574.3 Transformations Corresponding to Logic Programs : : : : : : : : : : : : : : 594.4 Translativeness Property : 644.5 Extreme Points of a Polycone : 694.6 Summary : 725. Relational Groundness Analysis 745.1 Introduction : 745.2 Basic Concepts : 765.2.1 Abstraction : 765.2.2 Relational Abstract Domains : 785.2.3 Groundness Constraints : 805.3 Simpli�cations and Normal Forms : 815.4 Bottom-Up Groundness Analysis : 835.5 Summary : 856. Conclusion 86

vA. Fourier-Motzkin Elimination 88B. Finding All Extreme Points and Rays 92C. Sessions for Test Programs 96C.1 Permutation : 96C.2 Expression Parser : 98D. Test input programs 100D.1 Append : 100D.2 Merge : 100D.3 Mergesort : 100D.4 Permutation : 101D.5 Parser : 101References 102

viList of Figures1.1 A logic program: permutation. : 52.1 An SLD tree via the computation rule selecting the left-most subgoal. : : : 142.2 An SLD tree via the computation rule selecting the right-most subgoal. : : 152.3 SLDNF-Refutation Procedure. : 173.1 A predicate dependency graph. : 213.2 A rule-goal graph for the adorned query permbf . : : : : : : : : : : : : : : : 253.3 The �rst argument of append goal over execution. (a) at initial call. Termsize= 6. (b) after one recursive call. Termsize = 4. (c) after two recursive calls.Termsize = 2. (d) after three recursive calls. Termsize = 0. : : : : : : : : : 273.4 (a) tree representation of [a,b], termsize = 4 and listsize = 2. (b) treerepresentation of [a,X|Y], termsize = 4 +X + Y and listsize = 2 + Y . : : 313.5 Nonnegative linear combination : 363.6 Extension to mutual recursion. : 444.1 Polycones after recursive transformations : : : : : : : : : : : : : : : : : : : 625.1 Diagram of ground analysis : 76B.1 Algorithm to �nd all extreme points and rays : : : : : : : : : : : : : : : : : 93B.2 Extreme points and extreme rays of a polycone. : : : : : : : : : : : : : : : 94

Automated Termination Analysis for Logic ProgramsKirack SohnabstractThe question of whether logic programs with function symbols terminate in a top-down(Prolog-like) execution is considered. Automated termination analysis is an essential toolfor generating a suitable control in modern deductive database systems, such as LDL andNAIL!.We describe a method of identifying a nonnegative linear combination of bound argumentsizes, which (if found) strictly decreases in a top-down execution of logic programs. Testinga termination condition is transformed to a feasibility problem of linear inequalities usingduality theory of linear programming. For nontrivial termination proofs, we often need toknow the relationship among argument sizes of a predicate. We formalize the relationshipby a �xpoint of \recursive transformation" mimicking immediate consequence operator.Since the transformation sometimes fails to �nitely converge, we provide some practicaltechniques to resolve this problem. We also need to indicate which arguments are boundto ground terms during goal reduction. A method for deriving such binding information isdescribed in the framework of abstract interpretation. Positive propositional formula areused to represent groundness dependency among arguments of a predicate.This methodology can handle nonlinear recursion, mutual recursion, and cases in whichno speci�c argument is certain to decrease. Several programs that could not be shown toterminate by earlier published methods are handled successfully.Keywords: logic programs, deductive databases, termination, interargument constraints,groundness analysis

viiiAcknowledgementsFirst of all, I would like to thank Allen Van Gelder, who is a wonderful advisor and asource of inspiration. His unfailing sharpness of thought was a strong support. He taughtand inuenced me in very many ways: a balance between theory and practice, how totackle problems, technical writing and presentation skills. More importantly, he suppliedme a model for a scientist.My sincere thanks also go to Phokion Kolaitis, who provided me with a �rm basis oflogic in computer science. I also thank David Haussler, who served for my oral exam, andAl Kelly, who read my dissertation, and all professors in CIS/CE at UCSC, who taught mecomputer sciences. I thank Lynne Sheehan for her help and advice. It has been pleasantto ask her help and discuss problems. My colleagues, H. Yoon, T.J. Park, Kjell Post, YumiTsuji, discussed my work with me and made insightful observations. They made it enjoyableto stay here at UCSC. Thanks, guys!The most important support came to me from my family: my wife, Hyunjoo and ourwonderful kid, Dong-Gyu, who have kept my mood high and shared the burden of mystudy. Finally, my deepest appreciation goes to my parents in Korea for their incessantencouragement and patience.

11. IntroductionLogic programming was �rst introduced in a seminal article of Kowalski in 1974 [Kow74].It has been successfully used as a tool for several areas including compiler writing, expertsystem design, natural language processing, hardware design, and knowledge-base designfor two decades. The power of logic programming stems from two facts: its formalism is sosimple and its semantics is based on clean mathematical logic.Although it is more relevant in logic programming than in procedural programming,termination analysis was a relatively neglected subject in logic programming areas incontrast to the endeavor made for procedural languages for a long time. The last fewyears have nevertheless seen a variety of proposed methods. D. De Schreye and S. Decortestudied and collected in their reference list a total of 53 papers published on this topic since1988 [DSD]. This proliferation is mainly motivated by the practical needs for terminationanalysis, such as in the area of control generation and program veri�cation. A major concernin this case is automation of the termination proof process [Nai83, UVG88, APP+89, BS89b,DSVB90, Pl�u90a, Pl�u90b, Sag91, SVG91]. Another approach concerns the characterizationof terminating logic programs. It aims at the treatment of negation as �nite failure or thebetter understanding of decidability issues [AP90, AB91, Dev90]. These rather theoreticalworks usually provides manually veri�able criteria for termination.Undecidability of the halting problem, a classical result of theoretical computer science,states that it is undecidable to determine whether or not any program terminates. Theproposed method of this thesis only analyzes a su�cient condition; i.e., a program mayterminate without our method detecting that fact.This introductory chapter is organized as follows. In Section 1.1, we describe whytermination analysis has practical importance, in particular with regard to its applicationto deductive databases. In Section 1.2, we briey describe how the analysis works in generaland what treatments are needed in case of termination analysis for logic programs. InSection 1.3, we give the organization of the thesis, serving as a short introduction to each

2chapter.1.1 Why Termination AnalysisThere are a number of situations where termination analysis is useful and necessary.One obvious contribution of termination analysis is to the development of reliable software.Motivations for termination analysis in logic programming, however, arise from more or lessdi�erent purposes.The well-known Kowalski's formula [Kow79] says a logic program can be viewed asAlgorithm = Logic + Control. Since the control component of a logic program isindependent of its logic component, various control schemes tailored for the applicationscan be developed. Standard Prolog interpreters, equipped with depth-�rst search strategyare one example of control scheme. Unfortunately, this control scheme is unfair; that is,we are not guaranteed to always �nd a success branch which is logically derivable due to anon-terminating computation. To complement such a shortcoming, termination analysisis useful. With the negation as �nite failure rule, the requirement of having a �nitecomputation tree associated with a negated atom is also closely related to terminationanalysis.Let us now turn to the application of logic to databases, often called deductive databases.Recently, many prototypes (e.g. Aditi, CORAL, EKS, LDL, LOGRES, LOLA, NAIL-GLUE, RDL, XSB) have been demonstrated in research environments, and a numberof applications have been developed using these systems. They seem to be promisingalternatives for next generation database systems.A deductive database is divided into two components: an extensional database (EDB),which consists of a set of database facts, and an intensional database (IDB), which consistsof a set of rules de�ning how additional relations are computed. IDBs may be evaluatedeither top-down or bottom-up. Bottom-up evaluation is often said to be more e�cientfor logic programs with �nite domains (Datalog); however, there is no correspondingclaim for general logic programs with function symbols. One of main problems in this

3regard is to generate suitable evaluation strategy. Capture rules were introduced to decidewhich evaluation strategy is e�ciently applicable to a logic program provided with a goal[UVG85, Ull85, MUVG86]. A capture rule is a statement of the form: \if the rules satisfysuch-and-such conditions, then a good evaluation method is such-and-such." A minimalrequirement to apply top-down execution method is the guarantee of termination for anyquery of interest. Ullman and Van Gelder were the �rst who studied termination analysisin deductive database environments with a strong emphasis on automation of the analysis[UVG88]. Later, the method was enhanced by Pl�umer [Pl�u90a, Pl�u90b] and Van Gelderand Sohn [SVG91]. Brodsky and Sagiv, who studied termination of Datalog programs, werealso main contributors along this line [BS89b, Sag91].1.2 How It WorksIn this section, we shall describe the basic structure of termination proof for logicprograms. Every termination proof is tantamount to showing the well-foundedness (noin�nitely decreasing sequence) of a computation path. Consider a simple while loop in C.s1: while (x > 0)s2: x = x - 1;The sources of in�nite computation in procedural programs are loops. In this example, wehave a loop control construct while. The valid domain for x at s1 is positive. Suppose theinitial value of x is positive, say N , otherwise the execution will exit from the while loop bythe test x > 0 at s1. Since the positive value satis�es the test, the value of x decrements by1 at s2. A simple induction shows that the value of x changes over the execution as follows:N;N � 1; : : : ; N �Kwhere N �K > 0 and N �K � 1 � 0. The sequence is not in�nitely decreasing, showingtermination of while loop.Let us take one more example illustrating termination detection technique.

4s3: while (x < N)s4: x = x + 1;The technique used in the �rst example is not directly applicable here. Let us associate afunction f(x) = N�x with the while loop so that we consider the value of f(x) instead of x.Now the domain of f(x) at s3 is positive and f(x) decreases by 1 over the execution of whileloop, since x increases by 1. Then the sequence of the values of f(x) over the execution is�nite, showing the termination. Essentially, what we should do to prove termination is to�nd such a function f that its range is nonnegative and its value decreases over execution,although the above two examples are too simple to describe detailed proof techniques.The idea used in the above procedural programs is universal in termination proof forany language. However, proofs are quite di�erent in technical levels due to the di�erences inthe structure and the attributes of underlying languages. The following is a logic programsimilar to the �rst C program. Note there are no loop control structures in logic programssince recursion is the only way to iterate computation.r1: p(0).r2: p(s(X)) :- p(X).The term s(X) denotes the successor to X, so it can be viewed as X + 1. First of all, wecan not say whether the program terminates or not without taking a call (or query) to theprocedure into account. The reason is logical variables are totally di�erent from proceduralones, which are always bound. Logical variables do not have any values initially but theymay be bound to values after the procedures are called. The value is permanent once it isbound (called \single assignment"). Thus, we need to make sure the call binds the variableX. For example, a call p(s(s(0))), which binds the logical variable X, terminates. But p(U)does not terminate. What happens is the call p(U) does not bind X so the new call p(X)repeats the previous call. More di�cult problems of this kind arise from uni�cation andpartially bound structures.Another technical di�culty arises from nondeterministic behavior of logic programs.Unlike procedural programs, there is conceptually no single thread of computation in the

5r1: perm([], []).r2: perm(P, [X|L]) :-r2:1: append(E, [X|F], P),r2:2: append(E, F, P1),r2:3: perm(P1, L).r3: append([], L, L).r4: append([X|L1], L2, [X|L3]) :-r4:1: append(L1, L2, L3).Figure 1.1: A logic program: permutation.execution of logic programs.Termination analysis can be a�ected by the underlying mechanism of handling nonde-terminism such as backtracking, rule-goal tree expansion. One alternative is to consider allthe computation threads for termination simultaneously independently of the mechanismsused. This type of termination is called \universal termination", taken in most publishedresearch.To understand the problems with respect to deriving level mapping function, let usconsider a practical logic program in Figure 1.1, which in turn will be used as an exampleprogram in this thesis. The readers who are not familiar with the syntax and semantics oflogic programs are advised to skip or get back after reading Chapter 2. In Figure 1.1, permsucceeds when one argument is a permutation of list elements in the other argument, andappend succeeds when its third argument is a concatenation of the �rst two.We want to prove termination of a query perm with the �rst argument bound. As amatter of fact, we need to prove two subgoals append in r2:1 and r2:2 before the recursivesubgoal perm in r2:3, assuming standard Prolog computation rule selecting leftmost subgoal.The proof in either case of append goals is direct because one bound argument in therecursive subgoal is a proper subterm of the bound argument in the same position of the headin r4. More precisely, a proper subterm ordering is not in�nitely decreasing so a sequence

6of append goals is not in�nitely decreasing too because the �rst (or third) arguments of thegoals are ordered by proper subterm ordering. However, the termination of perm cannot beproved similarly because there is no direct relationship between P and P1.Our approach to this problem is to infer the relationship among arguments in thesubgoals, append in this case, so as to relate P and P1. Analysis of append rules supplies thefact that the list length of the third argument of append is equal to the sum of the length ofthe �rst two. (List length is the number of elements in a list.) Omitting some arithmetic, wecan conclude the list length of P1 is less than the list length of P, hence proving terminationof the query perm with the �rst argument bound. To achieve nontrivial termination proofs,it is essential to derive the relationship among argument sizes. Note two nonrecursive rulesr1 and r3 play no part in termination analysis.1.3 Outline of the ThesisIn Chapter 2, we describe basic notations and concepts of logic programming used in thisthesis. It also serves as a brief introduction to logic programming and deductive databases.We assume logic programs are executed in a top-down, left-to-right (Prolog-like) fashion.Internal data are organized using structures in Prolog context, which are almost alwaysprocessed through recursive rules. As in earlier methods, termination of recursion onstructures can be achieved by showing a well-foundedness of goal-reduction graph.In Chapter 3, we describe termination proof procedure based on argument sizes. Thischapter result from collaborative works with A. Van Gelder. We begin this chapter by givingthe basic concepts for termination analysis, such as predicate dependency graphs, bound-free adornments, rule-goal graphs, well-founded ordering, and size abstraction of terms.We then describe how to formalize termination condition and transform it to testable formusing linear programming theory.We view argument sizes of derivable facts involving an n-ary predicate as points in thenonnegative orthant of Rn. Our approach is to �nd a nonnegative linear combination ofbound argument sizes of recursive goals which decreases by at least some positive constant

7in each recursive call. Existence of such a nonnegative linear combination proves thetermination of a recursive goal, since argument sizes are constrained to nonnegativity, so isits nonnegative combination. Our method applies to nonlinear and mutual recursion witha slight extension. We also discuss limitations of our method.Local variables are logical variables which do not appear in the head, but appearsomewhere else in the rule. It is often the case that there is no direct relationship amongthe argument sizes in a head and those in a recursive subgoal due to the occurrences oflocal variables. Termination analysis for a certain rule may require the constraints amongargument sizes of subgoals before a chosen recursive subgoal.In Chapter 4, we will describe how to derive those constraints, so-called \interargumentconstraints" of a predicate. Interargument constraints are essentially a set of constraintswhich every derivable fact with respect to a predicate satis�es. Research on this topic hasrecently been studied as a separate task [BS89a, VG91, BS91]. In this thesis, the argumentsizes of derivable facts with respect to an n-ary predicate are viewed as a set of pointsin Rn, which are approximated by their convex hull. Such constraints are formalized bya �xpoint of \recursive transformation" mimicking immediate consequence operator usedto de�ne the �xpoint semantics. However, the transformation do not necessarily convergein �nitely many iterations. Approximating polycones to their a�ne hulls provides usefulinterargument constraints in many practical programs, guaranteeing convergence.For a class of linear recursive logic programs satisfying so-called \translativeness"property, precise interargument constraints can be obtained via the analysis of structuresof recursive transformations.We need to �nd extreme points of polycones in a certain representation to verify a�xpoint. Finding extreme points is a time-consuming process. We investigate an e�cientmethod to �nd them by exploiting information on adjacency of extreme points.One of the most attractive features of logic programs is that arguments may be usedbidirectionally, as input or output at run-time. Groundness analysis is a dataow analysisto infer whether the arguments of a call are instantiated to ground terms before the call is

8made or after the call is completed.In Chapter 5, we formalize an e�cient and precise groundness analysis for logic programsas an instance of an abstract interpretation. Aliased variables are variables which share thesame object. They are often a hindrance to precise groundness analysis. Though relationalgroundness analysis can resolve globally the problems due to aliased variables, it has beenconsidered to be impractical since tables representing the relationship are usually very big,hence hard to handle. In our formalism, the groundness relationships are represented inthe form of boolean OR constraints. Since in practice such constraints are almost always insimple computable forms, our method runs e�ciently. The abstract domain is exempli�edwith bottom-up abstract interpretation �nding success patterns of a predicate (groundnessinformation after a call is completed).This chapter is rather independent of the main research thread. In general, groundnessinformation is used by a compiler to e�ect various optimizations. However, to apply ourtermination analysis to general logic programs where safety assumption does not hold,groundness analysis is necessary.Chapter 6 discusses further research directions and concludes the thesis.

92. Logic Programming PreliminariesSince logic programming was introduced in Kowalski's seminal paper in 1974 [Kow74],logic has been successfully used as a programming language for two decades in various areasof computer sciences, not to mention arti�cial intelligence and database. Its power stemsfrom simple formalism and rigorous mathematical framework. This chapter introduces thebasic concepts of logic programming, which will in turn be used throughout the thesis.Since this chapter serves only a short introduction to logic programming enough to followthe thesis, readers may consult the book by Lloyd [Llo84] for details.2.1 Logic ProgramsWe �rst give an inductive de�nition of terms. Constants or variables are terms. If f isan n-ary function symbol, and t1; : : : ; tn are terms, then f(t1; : : : ; tn) is a term. If p is ann-ary predicate symbol, and t1; : : : ; tn are terms, then p(t1; : : : ; tn) is an atom. A literal iseither an atom or a negated atom. A negated atom is a negative literal; one that is notnegated is a positive literal. A clause is a disjunction of literals. A Horn clause is a clausewith at most one positive literal. A Horn clause is thus either1. A single positive literal, e.g., p(a,b), which we regard as a fact,2. One or more negative literals, with no positive literal, which we regard as a goal, or3. A positive literal and one more negative literals, which is a rule.A Horn clause of group (3) in the form of: :q1 _ � � � _ :qn _ p is logically equivalent to(q1 ^ � � � ^ qn) ! p. The latter is natural expression of an inference rule, which can beunderstood as \If q1; : : : ; qn are true, then p is true." Following Prolog syntax, we shall usethe notation: p :- q1; : : : ; qn:for (q1 ^ � � �^ qn)! p. The atom p is called the head of the rule and q1; : : : ; qn is called thebody. A logic program (or just a program) is a �nite set of rules and facts.

10Variables appearing only in the body may be viewed as existentially quanti�ed in thebody, while other variables are universally over the entire rule. For example, a logical rulepath with variables X, Y, and Z:path(X, Y) :- path(X, Z), path(Z, Y).can be understood as \For all X and Y, there is a path from X to Y if there exists Z such thatthere is a path from X to Z and there is a path from Z to Y." The predicate path de�nesessentially transitive closure relation.Following Prolog syntax, Horn clause of group (2) in the form of: :q1 _ � � � _ :qn isdenoted :- q1; � � � ; qn:It is called a goal clause, that is, a clause with no head. Each qi (i = 1; : : : ; n) is called asubgoal of the goal clause.Technically, an empty clause, that is, a clause with empty head and empty body isdenoted . This clause is understood as a contradiction.In examples, we shall use standard Edinburgh-style Prolog syntax [CM81, SS86];Variables are denoted by a character string starting with uppercase letters while constants,function symbols, and predicate symbols are denoted by a character string starting withlower case letters. The syntax [H|T] (equivalent to `.'(H,T)) denotes a list whose head isH and tail is T. Null (or empty) list is denoted by a constant \[]" (read as \nil"). [a, b,c] is a list of three elements. [X, Y | U] is a list with at least two elements.In Prolog terminology, a structure is viewed as an uninterpreted function symbol withterms as its arguments. Structures are the only object to organize data local to rules. Suchdata are almost always processed through recursion (called \recursion on structure"). Theset of all rules with the predicate p in the head of the rules is called the procedure (orde�nition) of p. A ground term (clause) is one without variables.Example 2.1: Consider a simple Prolog program de�ning the transitive closure relation.r1: path(X, Y) :- connected(X, Y).

11r2: path(X, Y) :- connected(X, Z), path(Z, Y).r3: connected(sfo, ny).r4: connected(ny, paris).The fact connected(sfo, ny) can be read as \there is a connection from sfo to ny ." Therule r1 and r2 say \for all X and Y, there is a path from X to Y if there is a connection fromX to Y or if there exists Z such that there is a connection from X to Z there is a path from Zto Y". The predicate connected de�nes EDB relation and the predicate path de�nes IDBrelation. The rules r1; r2 are the procedure of the predicate path.2.2 SLD ResolutionIn this section, we introduce such notions as uni�cation and SLD-resolution, which arecentral to logic programming.A substitution � is a �nite mapping from variables to terms, and is written as a set ofvariable/term pairs: fx1=t1; : : : ; xn=tng:When the substitution is applied to a syntactic object e, it reads informally: \all occurrencesof variables x1; : : : ; xn in e are replaced by (or are bound to) terms t1; : : : ; tn, respectively."The resulting syntactic object is e�. A pair xi=ti is called a binding. Note the notationimplies the variables x1; : : : ; xn are distinct. If a substitution � is a one-to-one and ontomapping (i.e. permutation) from its domain and itself, it is called a renaming substitution.A variant of an expression is obtained by applying a renaming substitution to the expression.If all t1; : : : ; tn are ground, then � is called a ground substitution or instantiation. For a(ground) substitution �, e� is called a (ground) instance of e.Example 2.2: Atom p(U,V,Z) is a variant of p(X,Y,Z), since p(U,V,Z) can be obtainedby applying a renaming substitution fX/U,Y/V,U/X,V/Yg to p(X,Y,Z). Atom p(a,b,a) is aground instance of p(X,Y,X).

12Substitutions can be composed. Given substitutions � = fx1=u1; : : : ; xm=umg and � =fy1=v1; : : : ; yn=vng, the composition �� of � and � is the substitution obtained from the setfx1=u1�; : : : ; xm=um�; y1=v1; : : : ; yn=vngby removing those pairs xi=ui� for which x1 � u1� and removing any pairs yj=vj for whichyj 2 fx1; : : : ; xmg. A substitution � is said to be more general than a substitution � if wehave � = �� for some substitution �. A substitution � is a uni�er of expressions A and Bif A� and B� are syntactically identical. A and B are uni�able if there exists a uni�er. Auni�er � of A and B is called a most general uni�er (or shortly mgu) if it is more generalthan any other uni�er of A and B. If A and B are uni�able, then there exists a most generaluni�er mgu(A, B), which is unique up to variable renaming.Example 2.3: Suppose we have two atoms p(X,Y) and p(a,U) and a substitution � =fX/a, Y/b, U/bg. They are uni�able since p(X,Y) � � p(a,U) �. A substitution � = fX/a,Y/Ug is more general than � since there is a substitution � = fY/b,U/bg such that � = ��.Indeed, � is the most general uni�er.Let G be the goal :-A1; : : : ; Am; : : : ; An and C be the clause A:-B1; : : : ; Bq. G0 isderived from G and C using mgu � if the following holds:1. Am is an atom, called the selected atom, in G2. � is an mgu of Am and A.3. G0 is the goal :- (A1; : : : ; Am�1; B1; : : : ; Bq; Am+1; : : : ; Ak)�An SLD-derivation consists of a (�nite or in�nite) sequence G0 = G;G1; : : : of goals, asequence C1; C2; : : : of variants of program clauses and a sequence �1; �2; : : : of mgus suchthat1. Ci+1 has no variables in common with G0; : : : ; Gi and2. each Gi+1 is derived from Gi and Ci+1 using �i+1.A single derivation step is called SLD-resolution.A computation rule uniquely determines which atom (called selected atom) is selectedfor every goal in a derivation. The standard Prolog computation rule is to always select theleftmost atom in a goal.

13An SLD-derivation is �nite if, for some goal Gi in the derivation, there is no next goal.There are two cases. The SLD-derivation is successful if Gi is an empty goal. In thiscase, it is called an SLD-refutation for the initial goal G. The second case occurs whenthe derivation is �nitely failed. A derivation fails �nitely if for some Gi no head of (thevariant of) a clause uni�es with the selected atom of Gi. The totality of SLD-derivationsconstructed starting from G under a certain computation rule forms a search space calledan SLD-tree. Let P be a program, G a goal and R a computation rule. The SLD-tree forP [fGg via R is a tree of goals de�ned as follows:1. The root is G.2. Let G0 be a node in the tree and A a selected atom of G0 under R. The node G0 hasexactly one descendant for every clause C of P such that A uni�es with the head ofthe variant C 0 of C. This descendant is derived from G0 and C 0 using an mgu of Aand the head of C 0.SLD-resolution is a re�nement of the resolution inference rule given by Robinson. Aninference rule is correct or sound if only valid formulas are inferred. It is called complete ifall valid formulas can be inferred. Resolution is sound and complete for logical formulas inclausal form. Soundness of SLD-resolution is directly implied by soundness of resolution.While SLD-resolution is incomplete for clauses in general, it is complete for Horn-clausesindependently of computation rules. An SLD-derivation is fair if every atom that appearsin the derivation is chosen at some step. The success set of a de�nite program P is the setof all A 2 BP such that the queried program (P;A) has an SLD-refutation. A success setcorresponds to the least Herbrand model of model-theoretic semantics.Example 2.4: Continuing with Example 2.1, Figure 2.1 shows a �nite SLD tree for initialgoal path(sfo, D) constructed by standard Prolog computation rule (select leftmost atom).while Figure 2.2 shows an in�nite SLD tree for the same initial goal constructed by selectingrightmost goal. In Figure 2.1 and Figure 2.2, p and c stand for path and connected,respectively. Selected atoms are underlined, and used clauses and performed substitutionsare indicated. Used rules are appropriately renamed. This example shows the choice of

14p(sfo,D)������	{X1/sfo,Y1/D} r1 @@@@@@R{X2/sfo,Y2/D}r2c(sfo,D) c(sfo,Z2),p(Z2,D)?{D/ny} r3 ?{Z2/ny}r3success: {D/ny} p(ny,D)������	{X3/ny,Y3/D} r1 @@@@@@R{X4/ny,Y4/D}r2c(ny,D) c(ny,Z4),p(Z4,D)?{D/paris} r3 ?{Z4/paris}r4success: {D/paris} p(paris,D)������	{X5/paris,Y5/D} r1 @@@@@@R{X6/paris,Y6/D}r2c(paris,D)failure c(paris,Z6),p(Z6,D)failureFigure 2.1: An SLD tree via the computation rule selecting the left-most subgoal.

15
p(sfo,D)������	{X1/sfo,Y1/D} r1 @@@@@@R{X2/sfo,Y2/D}r2c(sfo,D) c(sfo,Z2),p(Z2,D)?{D/ny} r3 ������������	 {X3/Z2,Y3/D} r1 @@@@@@Rr2 {X4/Z2,Y4/D}c(sfo,Z2),c(Z2,D)������	{Z2/sfo,D/ny} r3 @@@@@@Rr4 {Z4/ny,D/paris}c(sfo,sfo)failure c(sfo,ny)?r3success: {D/paris}

success: {D/ny} c(sfo,Z2),c(Z2, Z4),p(Z4,D)������	 @@@@@@Rr1 r2�nite subtree in�nite path
Figure 2.2: An SLD tree via the computation rule selecting the right-most subgoal.

16computation rule has a great bearing on the size and structure of the corresponding SLD-tree. However, in both SLD trees, we �nd the same success set fpath(sfo, ny), path(sfo,paris)g by the independence of computation rule.We now turn to the problem of searching SLD-trees to �nd success branches. Twowell-known search strategies are depth-�rst and breadth-�rst. Depth-�rst search strategyis employed in most Prolog implementations since it can be implemented very e�ciently.However, the e�ciency is achieved on the sacri�ce of fairness of SLD-resolution. As shownin Figure 2.2, once we get into the in�nite branch, the other success branches will neverbe explored. In this thesis, SLD-resolution equipped with leftmost computation rule anddepth-�rst search strategy like standard Prolog system is assumed, unless explicitly statedotherwise.With Horn clauses we can express what is true but not what is false. That is, SLD-resolution can not deduce negative information. There are some examples where it isnatural to require that also negative information can be deduced. One possibility to dothat is to conclude that a fact :A is true if A is not proved from a program P . This ruleis usually called \closed world assumption." Unfortunately, it is not an e�ective reasoningmethod, since the set of negative facts derived by closed world assumption is not necessarilyrecursively enumerable. A way out of this problem is to adopt some more restrictive formof unprovability, namely, �nite failure. An SLD-tree is �nitely failed if it is �nite and everybranch is failure. So we conclude :A if the SLD tree associated with a ground atom Ais �nitely failed. SLD-resolution together with negation as �nite failure is called SLDNF-resolution. The algorithm in Figure 2.3 describes how SLDNF-refutation works.2.3 Fixpoint SemanticsThe set of ground terms which can be constructed from the function symbols occurringin a program P is called Herbrand Universe UP of P . The set of ground atomic formulaswhich can be constructed from the predicate and function symbols occurring in P is calledthe Herbrand Base BP of P .

17function SLDNF(query: a set of literals fL1,...,Lmg): booleanbeginif query is empty then return TRUEelsebeginselect a literal Li from query such thatLi is a positive literal R(t1,...,tn) or a negative ground literal :P.if Li is positive thenbeginfor all data base clause R(t01,...,t0n) L01,...,L0pif Li and R(t01,...,t0n) unify thenbegincompute m.g.u. �.if SLDNF(fL1,...,Li�1, L01,...,L0p,Li+1,...,Lmg�) then return TRUEendreturn FALSEendelse /* Li is negative ground */if SLDNF(fPg) then return FALSE/* if the return value is TRUE, an SLDNF-refutation is found for P ,else there is a �nitely failed SLDNF-tree */else return SLDNF(fL1,...,Li�1,Li+1,...,Lmg)endend Figure 2.3: SLDNF-Refutation Procedure.

18The meaning (model) of a logic program can be obtained by a �xpoint of a certainfunction TP called \immediate consequence operator" with respect to a program P :TP (Ik) = Ik+1This function, which is a total mapping from the powerset of Herbrand Base to itself, isde�ned as follows:TP (I) = fhead j (head body) 2 G(P) and body is true in Igwhere G(P) is a set of ground instantiations of the rules in P .TP is monotone so it reaches a �xpoint by Tarski's classical �xpoint theorem. Startingwith empty interpretation ;, TP arrives at a least �xpoint; however, depending on startinginterpretations, there exist numerous �xpoints. The transformation may need in�niteiterations before reaching a �xpoint. Details can be found in [Llo84, Hog90].Basically, our algorithm to infer interargument constraints simulates the immediateconsequence operator TP .2.4 Deductive DatabasesOne interpretation of logic is the database interpretation. Here a logic program isregarded as a database. We thus obtain a very natural and powerful generalization ofrelational databases, which correspond to logic programs solely of ground unit clauses. Theconcept of logic as a uniform language for data, programs, queries, views and integrityconstraints has great theoretical and practical potential.In the deductive database environment, facts are usually stored in the database andthe predicate is said to de�ne an extensional database (EDB) relation. One computed bylogical rules is called an intensional database (IDB) relation. A Datalog program is a logicprogram which contains no function symbols of arity > 0.Unlike the approach taken in logic as a programming language, in database context, weare interested in �nding all facts implied by the logical rule. Therefore, to have operationson Datalog programs make sense, we need to make sure the relation with respect to a

19predicate is �nite. One simple way to solve the problem is to put syntactic restrictions onrules so that no in�nite relations are created. The source of in�niteness is a variable thatappears only in the head of a rule. For example, consider the following logic program:r1: loves(X, Y) :- subject(X).r2: subject(Jesus).The subject is an EDB relation, and the intended meaning of loves(X, Y) is \X loves Y."The rule r1 de�nes an in�nite relation since the second argument Y of love is universallyquanti�ed and does not appear in the subgoal. That is, the relation can be interpreted as\Jesus loves whatever is in the universe."A rule is de�ned to be safe if all variables in the head also appear in the body of therule. If the relation of subgoals are �nite, then the relation of the predicate of the head isalso �nite, since all the values for the variables in the head come from the set of values inthe variables in the subgoals, which is �nite. The rule r1 in the above program is not safesince Y does not appear in the body.Logical rules can be evaluated top-down or bottom-up. Top-down evaluation is believedto be more e�cient for logical rule with function symbols. Our research focuses on whetheror not top-down evaluation terminates. Since we are interested in �nding all solutions of aquery in database environment, we need to guarantee all the branches of the SLD-tree are�nite. This type of termination is called universal termination. Note the search strategy isirrelevant, since we examine the whole SLD-tree with respect to a given query. However,the computation rule is important, as shown in Example 2.4. Many deductive databaseimplementations employ dynamic subgoal ordering. Although we assume a left-to-rightcomputation rule, our termination analysis technique can also be applied to an evaluationstrategy with subgoal ordering.

203. Termination Detection3.1 Basic Concepts3.1.1 Predicate Dependency GraphsFor the e�ective analysis of logic programs, we often need to know the way predicatesin a logic program depend on each other. To do so, we construct a digraph whose nodesare predicates. An arc from node p to node q is drawn if p is the predicate of the head ofa certain rule and q is the predicate of its subgoal. Intuitively, q supports the derivation,or solution, of p. A logic program is recursive if its predicate dependency graph has one ormore cycles.From the digraph, we can identify the strongly connected components (SCCs), and thepartial order induced upon them. A recursive subgoal is one whose predicate is in the sameSCC as the head of the rule. An SCC with more than one predicate is said to have mutualrecursion. If each rule in an SCC has at most one recursive subgoal, then the recursion inthis SCC is said to be linear. In fact, most recursions in logic programs are linear.3.1.2 Modular Termination AnalysisIn general, modularity reduces the task of termination analysis signi�cantly. To do so,we shall analyze one SCC at a time starting from the lowest level of the partial order.Successful termination analysis lets us march to upper levels. Usually the analysis of anSCC requires the information on the predicates in lower SCCs, such as \interargumentconstraints".Example 3.1: Consider a rather unmotivated example below:r1: p(f(X)) :- q(X).r2: q(f(X)) :- r(X).r3: r(f(X)) :- p(X), s(X).r4: s(f(X)) :- s(X).

21����p����q ����r����s
��������� -AAAAAAAAK ?&%'$?

SCC2
SCC1Figure 3.1: A predicate dependency graph.r5: s(0).Let us draw a predicate dependency graph for this program. We have four predicatesp, q, r, s in the program so we draw four nodes. In r1, p depends on q so we draw anarc from p to q. By doing the same thing for other rules, we have the predicate dependencygraph for the above logical rules, as shown in Figure 3.1. Using algorithms to �nd SCCs,which can be found in many algorithm textbooks, for example [CLR90], we identify twoSCCs, SCC1 consisting of the predicate s, and SCC2 consisting of the predicates p, q, r.SCC1 is linear recursive, while SCC2 is mutually recursive. Since SCC1 is in the lower levelthan SCC2 in the partial order induced on SCCs, we do termination analysis of SCC1 beforeSCC2. If it is shown to terminate, we move to SCC2, otherwise we stop there by reporting

22\we can not show termination."3.1.3 Bound-Free AdornmentsUnlike procedural or functional programs, logic programs are bidirectional, that is,arguments to a procedure may be used as input, output, or both. This bidirectional useof arguments makes it di�cult to analyze logic programs for termination (possibly variousdata-ow analyses, too). In termination analysis, we are mainly interested in how inputdata structures are processed during recursive calls. Therefore we need to indicate whicharguments are used as input. Since there is no precise dichotomy of input/output forarguments, bound arguments (containing no variables) can be viewed as input. We shalluse the same notations as in [Ull89] for bound-free adornments and rule-goal graphs in thefollowing section.An argument is said to be bound (or ground) if all the variables in the argument arebound, otherwise free. 1 Whenever we consider a goal in the execution of logic program,say p(t1; : : : ; tn)that goal is associated with a binding relation for some subset of p's arguments so as toindicate which arguments are bound and which are not by an adornment, or binding pattern.The adornment is a string of b's and f 's of length n for n-ary predicate p. If i-th symbol ofthe adornment is b, then the i-th argument of p is bound. If the i-th symbol of the argumentis f , then the i-th argument is free. A class of goals whose binding pattern is � is denotedp�. Suppose we have a goal append whose �rst and second arguments are bound and thethird free. Then its adorned predicate is denoted appendbbf . Of course, we may have a goalappend with a di�erent binding pattern, say, appendffb.1In logic programming world, the terminology \ground" is usually used instead of \bound" used indeductive database world.

23We also need to indicate the bound/free status of variables in a rule to construct arule-goal graph, which is introduced in the next section. Assuming that all the variablesin a subgoal become bound after the subgoal is processed successfully, we have two simplerules to indicate which variables are bound and which free:1. A variable that appears in the bound argument of the head is bound before processingany subgoals.2. After processing a subgoal Gi during rule evaluation, a variable that appears anywherein Gi or was bound before processing Gi is bound.Note that all the variables in a rule are bound after processing the last subgoal. Sincewe concern several di�erent situations during rule evaluation, we indicate them usingsubscripted rule number. When rj is the rule considered, the situation, before processingany subgoals, is denoted rj:0, while the situation after processing the ith subgoal is rj:i. Anadornment for a rule indicates which variable are bound and which are free. The notationwe use for a rule adornment is a superscript of the form [X1; : : : ; XmjY1; : : : ; Yn], where X 'sare bound and the Y 's are free.Example 3.2: Consider the recursive path rule r1.r1 : path(X, Y) :- arc(X, Z), path(Z, Y)Suppose path is called with the binding for the �rst argument. Then in the rule beforeconsideration of any subgoals, only X is bound. We represent this fact by the adornedrule r[XjY;Z]1:0 . The �rst subgoal arc(X,Z) provides a binding for Z, so the situation afterconsidering the �rst subgoal is represented by r[X;ZjY]1:1 .3.1.4 Rule-Goal GraphsWe can represent the patterns of binding that occur in top-down evaluation by a �nitestructure called a rule/goal graph. Suppose we are given a set of Horn-clause rules and aquery goal. If p is the predicate of the query, and � is the adornment that has b wheneverthe query speci�es a value for the corresponding argument and has f whenever no value is

24speci�ed, then we begin construction of the rule/goal graph for this query with the nodep�.We then consider each node in the rule/goal graph and expand it according to thefollowing rule. As we expand, we add goal nodes, which are adorned predicates, and rulenodes which are nodes representing a rule and some number of the subgoals for that rule.Using the notation described above, we have r0, with an adornment, to represent ruler before considering any subgoals, and ri, with an adornment, to represent rule r afterconsidering its �rst i subgoals.1. A goal node with EDB predicate has no successors.2. A goal node that is an IDB predicate p with an adornment � has a successor rulenode rj:0 for each rule rj whose head predicate is p.3. Consider a rule node rj:i and suppose q(t1; : : : ; tk) is the i + 1st subgoal of rj . Assuccessors of the rule node rj:i we draw a goal node q� with an appropriate adornment� and a rule node rj:i+1 unless the i + 1st subgoal is the last. If the goal node q�already exists, it is simply connected as a successor.Rule nodes are also adorned in the way we described in the previous section. Figure 3.2shows a rule-goal graph constructed by a query goal permbf and a logic program perm inFigure 1.1.The construction of rule-goal graphs was described under the assumption that all thevariables in a subgoal become bound after the subgoal is processed successfully. Thisassumption is not so realistic. The construction may be imprecise since we do not considerthe problems with respect to aliased variables. These problems can be resolved by thegroundness analysis presented in Chapter 5. The complexity of rule-goal graphs was studiedin [UV88]. Theoretically, its size is exponential of input programs, but is known to bepractically linear.

25
permbf���� @@@@r[j]1:0 r[P jE;X;F;P1;L]2:0���� @@@@@@@@appendffb���� @@@@r[Lj]3:0 r[X;L3jL1;L2]4:0 r[P;E;X;F jP1;L]2:1���� @@@@r[P;E;X;F;P1jL]2:2appendbbf���� @@@@r[Lj]3:0 r[X;L1;L2jL3]4:0���

Figure 3.2: A rule-goal graph for the adorned query permbf .

263.1.5 Adorned ProgramsIn the previous section, we described how to construct rule-goal graphs. For terminationanalysis, we will consider adorned programs which are direct translation of rule-goal graphs.Example 3.3: Consider again a logic program perm in Figure 1.1. Its rule-goal startingfrom a query goal permbf is constructed in a way described in the previous section and isillustrated in Figure 3.2. Annotating the predicates of a program with the binding patternsin its rule-goal graph, we have a specialized version of the program conforming to an querygoal. The following adorned program is given by the rule-goal graph in Figure 3.2.r1: permbf([], []).r2: permbf(P, [X|L]) :-appendffb(E, [X|F], P),appendbbf(E, F, P1),permbf(P1, L).r3: appendbbf([], L, L).r4: appendbbf([X|L1], L2, [X|L3]) :-appendbbf(L1, L2, L3).r5: appendffb([], L, L).r6: appendffb([X|L1], L2, [X|L3]) :-appendffb(L1, L2, L3).Procedure perm is always called with the �rst argument bound and the second free.Procedure append is called in two di�erent patterns, namely, appendbbf and appendffb, Sowe have two versions of append procedure. These two versions are considered as di�erentprocedures and separate termination proofs will be tried. The specialized version of aprogram annotated with the binding patterns will be called a adorned program. Eachprocedure is associated with a unique single binding pattern.3.1.6 Subterm OrderingWe �rst give some basic concepts on ordering.

27. . . []a b c���	 @@@R���	 @@@R���	 @@@R(a) . . []b c���	 @@@R���	 @@@R(b). []c ���	 @@@R(c) [](d)Figure 3.3: The �rst argument of append goal over execution. (a) at initial call.Termsize = 6. (b) after one recursive call. Termsize = 4. (c) after two recursivecalls. Termsize = 2. (d) after three recursive calls. Termsize = 0.De�nition 3.1: A partially ordered set (P;�) is a reexive, antisymmetric, and transitivebinary relation � on a set P . A strictly partially ordered set (P;>) is an antisymmetric,and transitive binary relation > on a set P . A partially ordered set P is totally ordered iffor any two elements a and b in P , either a � b or b � a. A strict partial ordering > on aset P is well-founded if for any element s1 in P , there is no in�nitely decreasing sequences1 > s2 > s3 > � � � of elements s1; s2; s3; : : : of P . For example, the relation > on the set ofnatural numbers N is well-founded while it is not well-founded on the set of integers Z.A logic program terminates if and only if the trace (proof tree or SLD tree) of theexecution of the program is �nite. For example, try to prove termination of a query

28append([a,b,c], L1, L2). As shown in Figure 3.3, the �rst argument reduces to nilduring the recursive call of the initial query, so the call append([], U, V) does not unifywith the recursive rule. So the trace is �nite. However, one does not want to construct atrace explicitly because the construction may be a nonterminating task and it is impossibleto handle every speci�c input. Instead, we consider a class of queries classi�ed by bindingpatterns. Therefore, one may show a trace must be �nite by syntactic properties of clausesthat are possibly called. We usually exploit the well-foundedness of an ordering over goals.More precisely, we show that the order associated with the states in the trace is well-founded, and between every two consecutive states, the order decreases. As an example ofwell-founded ordering, let us take (proper) subterm ordering on ground terms.Example 3.4: Continuing with Example 3.3, consider a query appendbbf . SupposeA >subterm B if B is a subterm of A and append(A1; A2; A3) >append append(B1; B2; B3)if A1 >subterm B1. Clearly, subterm ordering is well-founded since there are only �nitenumber of proper subterms for a ground term.In adorned procedure r3; r4 for append, the �rst argument L1 of the recursive sub-goal appendbbf(L1, L2, L3) is a subterm of the �rst argument [X|L1] of the headappendbbf([X|L1], L2, [X|L3]). That is, [X|L1] >subterm L1. By the de�nition of>append, append([X|L1], L2, [X|L3]) >append append(L1, L2, L3):For every two consecutive goals of the SLD-tree, if appendbbf([X|L1], L2, [X|L3])is a goal, then appendbbf(L1, L2, L3) is its immediate descendant by the uni�cation.Therefore, the path from the initial query appendbbf to empty goal is �nite, hence provingtermination of appendbbf .Subterm ordering is enough to detect termination for many simple examples. However, itis often the case that there is no syntactic relationship between arguments in head and thosein recursive subgoals since arguments are processed through subgoals before the recursiveones (See Example 3.7). It is di�cult and unnecessary to relate terms by subterm ordering.By this reason, we will introduce size abstraction of terms in the following section.

293.1.7 Abstractions of TermsIn a logical rule, the body of the rule may contain variables that do not appear in thehead. We usually refers to them as local variables. A subterm ordering is not adequate todetect termination of logic programs containing local variables since there is no syntacticrelationship between two terms. In this section we describe size abstractions of terms togive ordering on ground terms.Size abstraction is a mapping from terms to natural numbers. Ullman and Van Gelder[UVG88] were the �rst to introduce an abstraction function for terms, motivated by thefact that subterm ordering is incapable of handling problems due to local variables. Theyused listsize abstraction as a basis for the well-founded ordering in a top-down terminationanalysis, which is de�ned in the following.De�nition 3.2: List size is de�ned as follows:listsize(t) = 8>>>>><>>>>>: 1 + listsize(tn) if t = f(t1; :::; tn)t if t is a variable0 if t is a constantListsize is informally the number of edges in the rightmost path in the tree representationof a ground term. For terms containing logical variables, a real variable X constrained tononnegativity is associated with each logical variable X. For instance, the listsize size off(a,g(X),X) is 1 +X .Listsize abstraction is capable of detecting termination of structural recursions relyingon rightmost paths such as lists. However it often fails when tree-like data structures areused.Example 3.5: Consider a program visiting a binary tree in depth-�rst manner.traverse(nil).traverse(t(L, R)) :- traverse(L), traverse(R).t(L,R) can be thought as a binary tree whose left subtree is L and right subtree is R. Supposethat traverse is called with its argument bound. By constructing a rule-goal graph from

30traverseb, we know traverse is always called with its argument bound. Therefore wecan measure its listsize and compare their sizes to analyze termination. In order to showtermination of traverseb, we have to show every pair of head and recursive subgoal haswell-founded ordering. Consider the head and the �rst subgoal. The listsize of the headargument is 1+R and the listsize of the argument in the second subgoal is R, so 1+R > R.That proves the termination of the cycle from the head and the �rst subgoal. Now considerthe cycle from the head and the second subgoal. the listsize of the head argument is 1 +Rand the listsize of the argument of the second subgoal is L, hence no relationship betweentwo argument sizes. So it fails to prove termination of traverseb.In spite of this shortcoming shown in the above example, the basic reason why [UVG88]used listsize is that their inference algorithm for interargument constraints can only handlethe relationship between two logical variables, each variable representing a listsize of anargument. This restriction was lifted by Pl�umer who used a \linear norm" as abstractionfunction. Later, Sohn and Van Gelder also provided a method resolving such problemsusing structural term size. We will describe the method in detail in the following section.De�nition 3.3: Structural term size is de�ned as follows:termsize(t) = 8>>>>><>>>>>: n +Pni=1 termsize(ti) if t = f(t1; :::; tn)t if t is a variable0 if t is a constantIt is informally the number of edges in the tree representation of a ground term. For termscontaining logical variables, a real variable X constrained to nonnegativity is associatedwith each logical variable X. Note that the structural term size of such terms is a linearpolynomial of those real variables whose coe�cients are positive integers. More formally,This measure is called \structural" in that every portion of a term structure contributesto the size measure. Figure 3.4 shows the listsize and termsize of two terms.Example 3.6: Continuing with Example 3.5, termsizes of t(L, R), L and R are 2+L+R,L, and R, respectively. The termsize of recursive subgoal is less than that of head since

31. . []a b���	 @@@R���	 @@@R(a)
. . Ya X���	 @@@R���	 @@@R(b)Figure 3.4: (a) tree representation of [a,b], termsize = 4 and listsize = 2. (b)tree representation of [a,X|Y], termsize = 4 +X + Y and listsize = 2 + Y .2 + L+R > L and 2 + L+R > R. So the goals over two cycles are well-founded, showingtermination of traverseb.3.2 Related WorkMost termination detection methods attempted to prove that the goal reduction graphis well-founded. In order to show termination, we sometimes need to know the relationshipamong argument sizes of certain predicates. We describe several approaches developed inearlier work.Naish's method [Nai83] was based on the measure of \proper subterm", which givesa partial order on logical terms. His idea was that if there exists a subset of boundarguments for each predicate such that no bound argument increases and some boundargument decreases in any recursive rule of the predicate, the recursive subgoals are well-founded. A typical procedure for his method was one that merges two lists, maintainingorder. Depending on which rule applies at a particular step, either the �rst argumentdecreases, or the second one does. He gave an algorithm determining whether some subset of

32the bound arguments of each predicate existed such that each recursive call was guaranteedto reduce one or more elements of the subset without changing others. This exponentialtime algorithm was made semi-polynomial by Sagiv and Ullman [SU84].Ullman and Van Gelder [UVG88] proposed a method to test top-down termination witha view of testing the applicability of top-down capture rules in a knowledge-base system.They introduced a measure of terms called \list size", which corresponds to the number ofedges in rightmost path in a tree representation of terms. This measure corresponds to thelength of a list; however, it is less natural for general structural terms such as binary trees,leading to failure to detect termination. They gave an algorithm for identifying and testinga restricted class of rules, those satisfying so-called \uniqueness" property, which guaranteesthat the set of inequality constraints between two arguments is unique. Termination of suchrules could be tested in polynomial time in the number of predicate symbols and the numberof rules. The idea of using interargument constraints (in the form of inequality betweentwo argument positions) was �rst introduced. Candidates of interargument inequalitiessu�cient for termination were generated, and then their validity was tested.Brodsky and Sagiv studied inference of interargument constraints called \monotonicityconstraints" [BS89a] and termination detection [BS89b] in logic programs without functionsymbols (Datalog programs) as two separate tasks.A monotonicity constraint is a statement that one argument of a predicate is greaterthan another in all derivable (or given, for EDB) facts for that predicate. Such constraintswere the backbone of their termination detection method called \argument mapping".Argument mappings can be viewed as monotonicity constraints between an argument ina head and one in a subgoal, and composing argument mappings as uni�cations. Althoughmonotonicity constraints were not powerful enough to characterize the property of derivablefacts, their method could detect termination due to certain uni�cation issues, such as \occurcheck". Their exponential-time algorithm could test necessary and su�cient condition fortermination on �nite database relations, on the assumption that monotonicity constraintswere externally supplied. They also gave a su�cient condition for termination on in�nite

33database relations (Logic programs with function symbols can be simulated by Datalogwith in�nite database relations). They recently proposed a method to infer inequalityconstraints between two arguments in programs with function symbols [BS91].Pl�umer described some extensions for rules that did not satisfy the \uniqueness"property [Pl�u90a, Pl�u90b]. His main contribution was that certain constraints involvingmore than two argument positions could be used. However, he required an \admissibility"property on the rules. Moreover, mutual recursion presented problems for his method. Heclaimed that every mutual recursion could be eliminated by \unfolding" technique, whichdoes not seem to terminate. His algorithm was exponential-time, since he had to guess oneinequality per predicate and the number of possible guesses was exponential in the numberof arguments in a predicate2.Van Gelder [VG91] investigated the problem of deriving constraints among argumentsizes. His method was aimed at �nding all constraints in the form of polyhedral convexcones. Thus those constraints can be viewed at least as inequalities among linear com-binations of any number of argument positions. His method works bottom-up; startingfrom a base polyhedral cone corresponding to base cases of recursive rules, \recursivetransformations" (similar to the immediate consequence operator TP) are applied to inputpolycone until a �xpoint is reached. The recursive transformation generally needs in�nitelymany iterations for reaching a �xpoint. His method showed the nature of interargumentconstraints and how they could be derived naturally.3.3 Argument Size ConstraintsWe begin by processing each recursive rule in the SCC separately. If the rule has severalrecursive subgoals, each is processed separately. Say a rule with head p and a recursivesubgoal q has been chosen. We obtain linear equations2Pl�umer assumed there were bounds on clause structures; hence claiming that the complexity is linear.

34x = a+ A�y = b+B�0 = c+ C� x; y; �� 0 (3:1)where x is the vector of bound argument sizes in p, y is the vector of bound argument sizesin the recursive subgoal q, and � is the vector of other variables that appear in constraints,including those representing the sizes of logical variables and unbound arguments.a; A; b and B are derived directly from the rule under consideration. c and C are derivedfrom interargument constraints on (possibly, p, q, and) subgoals that precede q in the rulebody. The constraints are obtained by the method in Chapter 4 (or supplied by otherexternal means such as [VG91, BS91]).Example 3.7: Consider the adorned logic program perm 3:r1: permbf([], []).r2: permbf(P, [X|L]) :-appendffb(E, [X|F], P),appendbbf(E, F, P1),permbf(P1, L).The problem is that no order relationships among pairs of arguments show that P1 < P .That is, inference systems can derive P > E and P > F , but neither E nor F is � P1.Considering the recursive rule r2, which is called with the �rst argument bound and thesecond free, we show how Eq. 3.1 is set up for this rule.Let � be the vector (P;X; L;E;F; P1)T. We have x1 = P , so a and A are:a = � 0 �A = � 1 0 0 0 0 0 �3This example was studied by Pl�umer [Pl�u90a]. permbf cannot be shown to terminate by any of theprevious methods cited. Pl�umer suggests that unfolding transformations on append can lead to a set ofrewritten rules that his method can handle; but no algorithm is given.

35Similarly, y1 = P1, so b = � 0 �B = � 0 0 0 0 0 1 �Two append subgoals precede the recursive subgoal in the body. We assume that analysisof the append procedure has supplied the imported constraint:0 = append1 + append2 � append3Applying this to each append subgoal, and noting that the termsize of [X | F] is 2+X+F ,we get 0 = E + (2 +X + F)� P 0 = E + F � P1Putting this in the array format of Eq. 3.1, givesc = 264 20 375C = 264 �1 1 0 1 1 00 0 0 1 1 �1 375Discussion of this rule continues in Example 3.8.3.4 Derivation of Termination ConditionFor each predicate pi in the SCC, we designate a nonnegative vector �i with arity equalto the number of bound arguments in pi. If xi is the vector of these bound arguments, thenthe inner product, �Ti xi, is the function that should decrease during recursion. Figure 3.5illustrates the situation pictorially. Suppose we have two recursive subgoals whose sizesare denoted y0 and y00. � is a nonnegative vector. Since �Tx > �Ty0 and �Tx > �Ty00,nonnegative linear combination of goal size decreases regardless of which recursive subgoalwe follow. Finally, the nonnegative linear combination will approach to zero along thevector � over the recursive calls. That is, our goal here is to �nd a value for the vectors �that guarantee this function decreases.

36

-

6

x1

x2

(0,0)������������
�������������

����������

���~�
BBBBBBBBBBBBBN� t~x t~y00

t~y0 t~� � ~y0 t~� � ~y00 t~� � ~xpppppppppppppppppppp p p p p p p p p p p p ppppp
Figure 3.5: Nonnegative linear combinationAgain, let pi be the predicate in the head of the rule and let pj be the predicate of thechosen recursive subgoal that led to Eq. 3.1. To avoid excessive subscripting we shall referto x, �, y, and �, rather than to xi, �i, xj , and �j .We want to choose � and � to ensure that for all x, y, and � that satisfy the constraintsEq. 3.1 we have �Tx � �Ty + �ij (3:2)where �ij is chosen to be 0 or 1 as described in Section 3.6 for mutual recursion, but is

37simply 1 if i = j.For the moment, regard � and � as constants. The question then is whether8xy� (Eq. 3.1 implies Eq. 3.2) (3:3)As is well known, this can be solved as a linear programming problem in which the objectiveis minimize: � = (�Tx� �Ty) (3:4)subject to Eq. 3.1. Letting �� be the minimum of the objective function, the implicationEq. 3.3 holds if and only if �� � �ij .Now consider the dual of the above minimization problem [PS82, Sch86]. We use fordual variables u with the same arity as x, v with the same arity as y, and w with thesame arity as c. That is, one dual variable is associated with each constraint in the primal;because these constraints are equalities, u, v, and w have unrestricted ranges. The dual isgiven by maximize:(uT; vT; wT)2666664 abc 3777775subject to:(uT; vT; wT)2666664 I 0 �A0 I �B0 0 �C 3777775 � (�T;��T; 0) (3:5)By duality theory this has the same optimum, ��, as the primal, and so Eq. 3.3 is true ifand only if the dual constraints of Eq. 3.5 remain satis�able with the addition of(uT; vT; wT)2666664 abc 3777775 � �ij (3:6)

38The key observation is that � and � appear linearly in the dual constraints, so we canregard them as variables and remain with a linear system. Lassez made essentially thesame observation, but in a more circumlocutory fashion [Las90b]. We incorporate the �nalconstraints, � � 0 � � 0 (3:7)Combining into one matrix, transposing, and reversing signs as appropriate gives26666666666666664 �I 0 0 I 00 �I 0 0 �IAT BT CT 0 0aT bT cT 0 00 0 0 I 00 0 0 0 I
3777777777777777526666666666664 uvw�� 37777777777775 � 26666666666666664 000�ij00

37777777777777775 (3:8)This set of constraints is very amenable to reduction by Fourier-Motzkin elimination [Sch86,LHM89, Las90b]. In this technique a variable is eliminated by \cancelling" all positiveoccurrences with all negative occurrences, pairwise, creating new rows (with 0 in thatvariable's column). Then all rows containing a nonzero coe�cient for that variable canbe eliminated, preserving satis�ability (See Appendix A for details).In fact, from the origin of a, A, b, and B in Eq. 3.1, we know that all entries of thesevectors and matrices are nonnegative. We can use this fact to perform Fourier-Motzkinelimination on u and v in Eq. 3.8, giving2666666664 CT AT �BTcT aT �bT0 I 00 0 I 37777777752666664 w�� 3777775 � 2666666664 0�ij00 3777777775 (3:9)To claim a theoretical polynomial time bound, we stop with Eq. 3.8 and give the undis-tinguished variables w unique names so they do not clash with undistinguished variablesobtained from other rule-subgoal analyses.

39In practice, to conclude the processing of this rule-subgoal combination, we performFourier-Motzkin elimination on w as well, leaving constraints that only involve the dis-tinguished variables �i (= �) and �j (= �). If the subgoal predicate is the same as thehead, then � = � and constraints are appropriately simpli�ed. Although, �ij has not beenspeci�ed yet if i 6= j, we still regard it as a constant.Example 3.8: Continuing with Example 3.7, the constraints corresponding to Eq. 3.9 are2666666666666666666666666664
�1 0 1 01 0 0 00 0 0 01 1 0 01 1 0 00 �1 0 02 0 0 00 0 1 00 0 0 1

37777777777777777777777777752666666664 w1w2�� 3777777775 � 2666666666666666666666666664
000000�1100
3777777777777777777777777775Eliminating w1 and w2 reduces them to266666666666666666664 1 00 01 01 02 01 00 1

377777777777777777775264 �� 375 � 266666666666666666664 0000�1100
377777777777777777775Finally, requiring � = � and setting �11 = 1 gives the single constraint 2� � 1.Because this is the only rule and only recursive subgoal, termination can be demonstratedusing � = 1=2. A Prolog session of termination proof for this example can be found inAppendix C.1.

40In general, each combination of rule and recursive subgoal in the SCC is processed toproduce constraints on the �i's. A solution that satis�es all constraints simultaneously(with �ij chosen appropriately; see Section 3.6), proves top-down termination for the SCC.Again, to claim the theoretical, but largely imaginary, polynomial time bound, weobserve that the size of all the constraints combined is polynomial in the size of the input(where the imported feasibility constraints that led to matrices c and C are counted as partof the input). The �nal constraints represent a feasibility problem in linear programming.In practice, Fourier-Motzkin elimination is simple and adequate.3.5 Multiple Bound ArgumentsIn recursive procedures with several bound arguments, some previously developed meth-ods require searching through subsets of bound arguments and/or paths in the dependencygraph [Nai83, Pl�u90a]. One of our main motivations in using linear techniques was toshort-circuit this complicated and expensive task. Our method seeks a nonnegative linearcombination of the bound arguments that su�ces for all cases.Example 3.9: The following procedure merges two input lists [VG91]. We assume the �rstand second arguments are bound and the third is free.r1: mergebbf([], Ys, Ys).r2: mergebbf(Xs, [], Xs).r3: mergebbf([X | Xs], [Y | Ys], [X | Zs]) :-X =< Y,mergebbf([Y | Ys], Xs, Zs).r4: mergebbf([X | Xs], [Y | Ys], [Y | Zs]) :-Y =< X,mergebbf(Ys, [X | Xs], Zs).Note that there is no explicit relationship between the size of a bound argument in the headand the size of the corresponding bound argument in the recursive subgoal. The �rst tworules are nonrecursive. Now we process the third rule.

41Let � be the vector (X;Xs; Y; Y s; Zs)T. We derive a, A, b, and B from Eq. 3.1.a = 264 22 375A = 264 1 1 0 0 00 0 1 1 0 375b = 264 20 375B = 264 0 0 1 1 00 1 0 0 0 375The matrices c and C are empty because the subgoal X =< Y does not supply anycontribution.By substituting these into Eq. 3.9, letting � = (�1; �2), � = �, �ij = 1, and theneliminating redundant rows, we have the following constraints.26666666666664 1 01 �1�1 10 20 1 37777777777775264 �1�2 375 � 26666666666664 00010 37777777777775By symmetry, the constraints for the fourth rule can be obtained by interchanging the �rstand second columns in the above matrix.Now combining two sets of constraints and simplifying them reduces them to �1 =�2 � 1=2. The solution implies the sum of two bound arguments always decreases in everyrecursive call.3.6 Extension to Mutual RecursionOne useful feature of our methodology is that rules with mutual recursion and nonlinearrecursion do not require much extension to the techniques already illustrated.

423.6.1 Mutual RecursionMutual recursion, wherein the SCC contains more than one predicate, arises naturallyin user-written rules, and can also be introduced by predicate splitting rule transformationswhose purpose is to make every subgoal uni�able with the head of every rule for the same-named predicate.In the case of mutual recursion the set of �ij must be chosen so that, regarding them asedge weights, every cycle in the dependency graph has positive weight. Rather than specifythis condition as a set of (possibly exponentially many) additional linear constraints, we dothe following:1. For i 6= j, set �ij = 0 when required by existing constraints in the dual; that is, whena dual constraint in Eq. 3.9 has �ij as the \constant" and has only zeros in cT and aT.2. Set all other �ij = 1.3. Compute the min-plus closure (by Floyd's algorithm) of the resulting edge-weightedgraph; check that there are no zero-weight cycles. A zero-weight cycle is strongevidence of nontermination, and the algorithm reports it if found and halts.Assuming all �ij have been chosen so that there are no zero-weight cycles, the constraintsfrom all rule-subgoal combinations are combined and tested for feasibility, as illustrated inExample 3.10 below.Although no natural examples are known, it is possible that no feasible solution existswith nonnegative �ij , but some feasible solution does exist that includes some negative�ij , yet has only positive cycles . Here we sketch the method of �nding feasible solutions tosystems of constraints like those in Section 3.6, but without imposing an arbitrary constraintthat all �ij � 0. Intuitively, this allows for the possibility that the critical bound subgoalsget larger before getting smaller, in such a way that they are smaller by the time a cyclearound the dependency graph has been completed. We are aware of no natural examplesof such rules.We need to add constraints that guarantee for each simple cycle in the dependency graphthat the sum of the �'s around that cycle is positive. There could be exponentially many

43such cycles, in principle. The idea of path constraints was suggested by C. H. Papadimitriou.For each triple of predicates pi, pj , and pk in the same SCC, with k 6= i and k 6= j, addthe constraint �ij � �ik + �jk. The new variables �ij represent shortest paths. Their \basecases" are �ij � �ij . Positive cycles are enforced by �ii � 1. Again, the polynomial timebound may be claimed by reference to linear programming theory; in practice, our programquietly runs Fourier-Motzkin elimination on the �ij reducing the path inequalities to involveonly �ij and constants. These are added to other constraints as discussed in Section 3.4.3.6.2 Nonlinear RecursionNonlinear recursion occurs frequently in divide-and-conquer algorithms, and many otherapplications. The main point is that, when the second and subsequent recursive subgoals arebeing analyzed for constraints on �i and �j , the earlier recursive subgoals must contributetheir interargument feasibility constraints to the e�ort. Therefore, interargument feasibilityconstraints must be produced for the entire SCC before its termination analysis begins.Example 3.10: Issues of both mutual and nonlinear recursion are illustrated with thefollowing rules, which specify an arithmetic expression parser. The �rst argument is thelist to be parsed, and is assumed bound. The second argument is the unparsed su�x (orcontinuation), and is free.e(L, T) :- t(L, ['+' | C]), e(C, T).e(L, T) :- t(L, T).t(L, T) :- n(L, ['*' | C]), t(C, T).t(L, T) :- n(L, T).n(['(' | A] , T) :- e(A, [')' | T]).n([L | T], T) :- z(L).The only nonrecursive rule is the last; z is in a lower SCC. We suppose no knowledge aboutz.

44
����e

����t ����n-JJJJJJJJJJJJJ]

�
&%'$-

&%'$6 &%'$?�tn �ne�et
�ee

�tt �nn
�e

�n�tFigure 3.6: Extension to mutual recursion.This example was studied by Pl�umer [Pl�u90a], who eliminated mutual recursion bypushing e, n, and t into the third argument of a new predicate parse(L, T, P). Intuitively,such a syntactic change should not make a substantial di�erence. He had to make furtherad hoc assumptions to handle parse.The predicate dependency graph is drawn in Figure 3.6. To apply our method to mutualrecursion, we have to make sure every simple cycle has a positive weight. That is,�ee > 0�tt > 0�nn > 0�et +�tn +�ne > 0

45We shall only discuss in detail the derivation of constraints for the �rst rule and its esubgoal. Recall that the form isx = a+ A� y = b+B� 0 = c+ C� x; y; �� 0The �rst point is that the t subgoal precedes the e subgoal, so should supply feasibilityconstraints (values for c and C in Eq. 3.1), even though it is in the same SCC . It is notimmediately obvious what these constraints are, but they can be found by the Van Gelder'smethods [VG91], and are: 0 = 2� t1 + t2 + �that is, t1 � 2 + t2 (� is a \slack variable").Let � be the vector (L; T; C; �)T. The above equation generatesc = � 4 �C = � �1 0 1 1 �We also have a = � 0 �A = � 1 0 0 0 �b = � 0 �B = � 0 0 1 0 �Let us identify e with �, t with �, and n with . Then the constraints corresponding toEq. 3.9 are (note that (AT �BT) and (aT � bT) form the second column):26666666666666664 �1 10 01 �11 04 00 1
37777777777777775264 w1� 375 � 26666666666666664 0000�ee0

37777777777777775

46Elimination of the nondistinguished w1 boils this down to4� � �eeThe development for the third rule with t as the recursive subgoal is similar, yielding4� � �ttThe �rst rule with t as the recursive subgoal and the third rule with n as the recursivesubgoal produce the same constraints as the second and fourth rules, which are discussednext.The second and fourth rules are straightforward (yielding � � � �), but the importantpoint is that their constraints force �et and �tn to be 0.Finally, the �fth rule gives 26666666666664 �1 10 00 21 00 1 37777777777775264 � 375 � 26666666666664 00�ne00 37777777777775which does not force �ne to be 0 (because a = [2]). These constraints reduce to: � � and2 � �ne.Besides self-loops, the dependency graph has edges (e; t), (t; n), and (n; e). As men-tioned, �et and �tn were required to be 0. However, assigning the \weight" �ne = 1 resultsin no zero-weight cycles, so the termination test is able to continue. Of course, �ee and �ttare 1. Now straightforward computation leads to� = � = � 1=2so termination is proved. A Prolog session of termination proof for this example can befound in Appendix C.2.

473.7 LimitationsA set of rules may terminate in top-down execution due to the inability of certainterms to unify, rather than because of term size reduction. Sometimes the syntactictransformations described later clarify such situations before termination detection begins.The argument mapping method [BS89b, BS91] pays closer attention to uni�cation issuesthan we do, and has the remarkable property of detecting certain cases where uni�cationfails due to the \occurs check".r1: q(X,Y) :- e(X,Y).r2: q(X,f(f(X))) :- p(X,f(f(X))), q(X,f(X)).r3: q(X,f(f(Y))) :- p(X,f(Y)).r4: p(X,Y) :- e(X,Y).r5: p(X,f(Y)) :- r(X,f(Y)), p(X,Y).r6: r(X,Y) :- e(X,Y).r7: r(X,f(Y)) :- q(X,Y), r(X,Y).r8: r(f(X),f(X)) :- t(f(X),f(X)).r9: t(X,Y) :- e(X,Y).r10: t(f(X),f(Y)) :- q(f(X),f(Y)), t(X,Y).There are several cycles in predicate dependency graphs. Consider the cycle q ! p !r ! t! q produced by r2; r5; r8; r10. No argument sizes diminish through the cycle so ourmethod fails to detect the termination of the cycle. Suppose initial call to q uni�es with q(X,f(f(X))). Following the cycle, two new goals p(X, f(f(X))) by r2 and r(X, f(f(X)))by r5 are generated. The goal r(X, f(f(X))) fails to unify with the head r(f(X), f(X))of r8 with occur-check. Sagiv's method can detect termination of such situation [Sag91]4.4This example was given by Sagiv in personal communication

48Usually, the problem regarding occur-check at one step of resolution can be resolved bypredicate splitting. For example, consider a recursive rule:p(X, X) :- p(X, f(X)).The subgoal does not unify with the head so we assign di�erent predicate name, say,p0(X, X) :- p1(X, f(X)).However, predicate splitting is not powerful enough to capture the occur check problem dueto several steps of resolution as in Sagiv's example.Also, it is possible that bound arguments really do shrink during recursion, but theinterargument constraints to prove that fact are not derivable by known methods. Forinstance, the feasible region may not be accurately characterized by a �nite set of linearconstraints. Consider a mergesort example.m1: mergesort([],[]).m2: mergesort([X],[X]).m3: mergesort([X,Y|Rs],Zs) :-split([X,Y|Rs],Us,Vs),mergesort(Us,Usort),mergesort(Vs,Vsort),merge(Usort,Vsort,Zs).s1: split([],[],[]).s2: split([X|Xs],[X|Ys],Zs) :- split(Xs,Zs,Ys).merge is a usual procedure to merge two sorted lists. Our inference algorithm forinterargument constraints supplies a linear constraint:split1 = split2 + split3:Applying this constraint to the �rst subgoal in m3, we have a linear constraint amongvariables: 4 +X + Y + Rs = Us+ V s:

49This does not imply the head argument size (4+X + Y +Rs) is greater than the recursivesubgoal argument size (Us or V s), hence failure to prove termination. There are two possibleremedies for this problem.One approach is to get stronger interargument constraints. Since split divides theinput list (�rst argument) into two lists (second and third arguments) evenly, if the �rstargument has more than two elements (split1 > 4) then the �rst argument size is greaterthan the other two (split1 > split2 and split1 > split3). The split subgoal in m3satis�es the premise. So we can conclude that termsize([X,Y|Rs]) > termsize(Us) andtermsize([X,Y|Rs]) > termsize(Vs). This proves termination of mergesortbf . However, itis noticed many published methods to infer disjunctive constraints are practically unusableowing to their higher complexity.The other approach, introduced by [UVG88], is to apply predicate splitting so thattermination behavior is better exposed. It is simple to apply the technique and adequateto resolve the problem. The �rst subgoal split in m3 does not unify with s1. The relationsplit can be split into three relations, split, split1 and split2. The heads of rules withwhich split([X,Y|Rs],Us,Vs) does not unify are renamed to split1; those with whichsplit([X,Y|Rs],Us,Vs) does unify are renamed to split2. Rules for split are added:split(X,Y,Z) :- split1(X,Y,Z) and split(X,Y,Z) :- split2(X,Y,Z). Finally, splitsubgoals in the program are specialized to split1 or split2 if possible. The above exampletransforms into:m1: mergesort([],[]).m2: mergesort([X],[X]).m3: mergesort([X,Y|Rs],Zs) :-split2([X,Y|Rs],Us,Vs),mergesort(Us,Usort),mergesort(Vs,Vsort),merge(Usort,Vsort,Zs).

50s1: split1([],[],[]).s2: split2([X|Xs],[X|Ys],Zs) :- split(Xs,Zs,Ys).s3: split(Xs,Ys,Zs) :- split1(Xs,Ys,Zs).s4: split(Xs,Ys,Zs) :- split2(Xs,Ys,Zs).Repeated application of predicate splitting terminates, essentially because rules are simplypartitioned, and no substitutions are done.Unfolding is just an application of resolution. If predicate p has k rules p(~Xi) Bi(~Xi),then one rule in which p is a subgoal, say q(~Y) : : : ; p(~Z); : : :, can be replaced by k rules,q(~Y �i) : : : ; Bi(~X�i); : : :where the �i are the respective most general uni�ers of ~Xi and ~Z.Safe unfolding is a special case that applies when no rule for p has p as a subgoal. Inthis case all p subgoals are replaced by unfolding, and p is thereby removed from that SCCof the dependency graph. Continuing the above example, safe unfolding applies to split,then to split1, and gives:m1: mergesort([],[]).m2: mergesort([X],[X]).m3: mergesort([X,Y|Rs],Zs) :-split2([X,Y|Rs],Us,Vs),mergesort(Us,Usort),mergesort(Vs,Vsort),merge(Usort,Vsort,Zs).s1: split2([X],[X],[]).s2: split2([X|Xs],[X|Ys],Zs) :- split2(Xs,Zs,Ys).s3: split(Xs,Ys,Zs) :- split2(Xs,Ys,Zs).s4: split([],[],[]).

51If split is not referenced elsewhere, their rules may be discarded. Repeated application ofsafe unfolding must terminate because SCCs shrink upon each application; hence the termsafe. So many practical cases of mutual recursion can be eliminated by this transformationthat there is sometimes the mistaken perception that all can be.In the above program, we still notice the �rst subgoal split2 in m3 does not unify withs1. Applying one more predicate splitting and unfolding gives:m1: mergesort([],[]).m2: mergesort([X],[X]).m3: mergesort([X,Y|Rs],Zs) :-split([X,Y|Rs],Us,Vs),mergesort(Us,Usort),mergesort(Vs,Vsort),merge(Usort,Vsort,Zs).s1: split([X1,X2],[X1],[X2]).s2: split([X|Xs],[X|Ys],Zs) :- split(Xs,Zs,Ys).Inferring interargument constraints for the split predicate in the above program:split1 = 4 +�1 +�2split2 = 2 +�1split3 = 2 +�2These equations imply that termsize([X,Y|Rs])� 2 + termsize(Us) and termsize([X,Y|Rs])� 2 + termsize(Vs). That shows termination of mergesortbf .3.8 Extension to CLP(R)In this section, we briey discuss the extension of our method to CLP(R) programs.Further research on this area will be investigated later.We cannot apply our termination detection method directly to CLP(R) programs Thereason is variables in CLP(R) are real variables so they are not constrained to nonnegativity.

52Therefore, the assumption that nonnegative combination of bound arguments (�x inEq. 3.2) are positive does not hold.We need to know the domain where recursive calls are satis�ed. Consider the whileexample in CLP(R):while(X,Y) :-X =< Y,while(X+1, Y+2).while(X,Y) :- X > Y.Note X and Y are real variables. When both arguments of a goal are bound, the goalterminates, because the second argument grows faster than the �rst, �nally violating thecondition X =< Y.Let x1 and x2 be the �rst argument and the second of while predicate, respectively. Inorder for a goal to unify with while rule recursively, the goal must satisfy the constraintx1 � x2, because of the subgoal X =< Y in the recursive rule. In addition to Eq. 3.3 astermination condition, we have to ensure that x1 � x2 implies �x � 0.Let R(x) be the constraint set associated with a predicate so that a goal uni�esrecursively. The following constitutes termination condition for one rule.8xy� (R(x) implies �x � 0 ^ Eq. 3.1 implies Eq. 3.2) (3:10)In case of the above while example, the constraint that � must be (1,-1) is derived. Howto derive R(x) in general will be a further research topic.3.9 DiscussionWe have presented a methodology for termination detection that uses duality theory oflinear programming, and is quite general and straightforward.This method can be fully automated and is easy to implement. We implemented themethod in Prolog. The complete system consists of 2770 lines of Prolog code. Someperformance measures are listed in Table 3.1, and the Prolog sessions for two test inputs,

53input program perm quicksort mergesort parsercputime in milliseconds 310 400 549 1319ratio 3.44 2.22 2.20 9.42Table 3.1: Performance measures of termination detectionperm and parser are shown in Appendix C. The programs were tested on SUN4 sparcstation using Sicstus Prolog 2.1. The second row of Table 3.1 indicates the analysis timeand the third row indicates the ratio of analysis time to compilation time:ratio = (analysis time) = (compilation time):The results show the analysis is quite slow compared to the compilation of the programs.Our broad conclusion is the termination detection together with the inference of inter-argument constraints (See Section 4.6) can be available as an user option of Prolog compilers.The program perm and parser are typical linear and mutually programs respectively, withwhich the power of our method is shown. We have not tested our implementation withsubstantial size of programs, because our program take only pure logic program (withoutnegation, cut, or builtin predicates) as an input. However, we conjecture that the runningtime for large input is only linear of running times for our test inputs, since a practical logicprogram is divided into small strongly connected components in its predicate dependencygraph.

544. Inference of Interargument Constraints4.1 IntroductionOur termination detection method described in the previous chapter was built on thebasis of interargument constraints for predicates imported from lower SCCs. In this chapter,we will describe how to infer such constraints.Local variables are those appearing only in the body of a rule.In many programs (see Example 3.7), it is often the case that there are no directrelationships among the argument sizes in a head and those in a recursive subgoal dueto existence of local variables. So termination proof usually requires the relationship amongargument sizes of subgoals in order to relate the argument sizes in the head and the recursivesubgoals.Example 4.1: Consider a recursive rule:p([a|X]) :- p(X).The term size of the head argument is bigger than that of the subgoal argument size,because there are no local variables. In this case, termination proof is direct. Consideranother recursive rule:p(X) :- a(X, Y), p(Y).Let x; y denote the size of X and the size of Y, respectively. and ai the i-th argument sizeof a. X and Y are not related to each other in this form, since Y is a local variable. Bythe subgoal a, X is processed into Y somehow. If it is true that a1 > a2, then we can inferx > y. a1 > a2 is called an interargument constraint for a. It can be inferred by taking thesemantics of the de�nition for a into account.We also believe the relationships among argument sizes are useful for showing safetyof queries in deductive databases, for code improvement using better memory allocationstrategies, and for deciding granularity of tasks in the parallel execution of logic programsas well as for automatic termination proofs.

55Interargument constraint (for short, IC) of a predicate is a set of constraints which everyderivable fact with respect to the predicate satis�es. Methods to derive ICs have beenstudied recently in terms of Datalog [BS89a, BS91] or logical rules with function symbols[VG91]. In their methods IC is formalized by the least �xpoint of bottom-up inferenceoperator similar to \immediate consequence operator". In [BS91] ICs are captured by adisjunctive union of inequalities between two argument sizes. They show undecidabilityresults on interesting questions such as whether a speci�c procedure for computing ICscomputes a �nite set of constraints. Van Gelder studied a method to derive a singleconjunctive set of constraints by taking the convex union of disjunctive sets of constraintsas an input for bottom-up inference [VG91]. It is often the case that both methods fail to�nitely converge.In this chapter, IC with respect to n-ary predicate is captured by a single polyhedralconvex set in the nonnegative orthant of Rn, called a polycone. We formalize the derivationof ICs in a way similar to [VG91]. This method is an instance of bottom-up abstractinterpretation based on �xpoint semantics, so correctness is guaranteed. We introducetwo new techniques to capture ICs in �nite time, using a�ne widening and translativenessproperty.Widening polycones to a�ne hulls accelerates the convergence of the transformationassociated with the inference operator up to �nitely many iterations, yet supplying usefulICs.We characterize a class of linear recursive logic procedures satisfying translativenessproperty, for which precise ICs (corresponding to lfp of the transformation) are auto-matically given. Whether a procedure satis�es translativeness property can be tested byanalyzing the relationship between argument sizes of the head and those of the recursivesubgoal. Many practical programs satisfy the translativeness property, and ICs whichcannot be derived by other methods can be captured.We also investigate an e�cient method to �nd extreme points in an a�ne image of apolycone, which is essential to verifying a �xpoint of a transformation. We believe this

56method is also useful in the implementation of CLP(R).Overall, the main contribution of this chapter is to provide an e�cient method to deriveprecise ICs for practical logic programs.Example 4.2: With a simple append procedure, we compare our results with others. Sagivand Brodsky's method [BS91] cannot capture the IC we derive here since their IC is in theform of inequalities between two argument positions. Van Gelder's method [VG91] doesnot converge with this example; his heuristic that \sometimes" works gives the same IC.However, we provide an a�ne widening that always works. Let us consider a version of theusual append procedure abstracted by listsize (See Example 4.3 for rules).append(0; t; t) t � 0:append(1 + u; v; 1+ w) (u; v; w)� ~0; append(u; v; w):The relationship among argument sizes with respect to append is essentially an in�nite set:fappend(0; x; x); append(1; x; 1+ x); append(2; x; 2+ x); : : :g:We approximate this set to the convex union of the set elements, which is append(y; x; y+x).That implies that the size of the third argument is the sum of the size of the �rst and the sizeof the second. It is indeed a �xpoint of our transformation supplied with a�ne widening,which is derived in three steps of transformations.The relationship can also be captured via the analysis of the structure of a transformationsince append procedure satis�es translativeness property. Recursive procedures in logicprograms usually handle structures as a backbone of recursion called recursion on structures;that is, some elements of a structure are processed in a recursive call and the rest is passedfor the subsequent calls. Linear recursive procedures relying on \recursion on structures"technique usually are translative.Section 4.2 introduces basic concepts on term size abstraction and linear constraints.In Section 4.3 we formalize transformations to derive ICs, and introduce a�ne wideningto approximate the least �xpoint.

57Section 4.4 introduces the translativeness property of a class of linear recursive logicprograms. For such a class of programs, ICs are obtained with no iterations. Linearrecursive programs relying on \recursion on structures" usually satisfy this property.Section 4.5 concerns a method �nding all extreme points of a polycone in parametricrepresentation. We remove nonextreme points from a�ne images of extreme points of apolycone using the adjacency graph on extreme points.Section 4.6 summaries the chapter.4.2 Basic ConceptsLogic programs can be abstracted by the size of terms. Our method does not dependon any speci�c size de�nition. In examples we shall use listsize [UVG88] and structuralterm size [VG91, SVG91]. List size and structural term size are de�ned informally to bethe number of edges in the rightmost path and the number of edges, resp., in the treethat represents the ground term. For terms containing logical variables, a real variable xconstrained to nonnegativity is associated with each logical variable X. For instance, thelistsize and structural term size of f(a,g(X),X) are 1 + x and 4 + 2x, resp. A rule isabstracted by replacing terms by their sizes. We shall call the resulting rules and programsabstract rules and abstract programs, resp.Example 4.3: Consider usual append procedure.a([], T, T).a([X|U], V, [X|W]) :- a(U,V,W).Replacing terms by their structural term sizes reduces to the following CLP(R)-likeprocedure.a(0; t; t) t � 0:a(2 + x + u; v; 2+ x+ w) (x; u; v; w)� ~0; a(u; v; w):

58The i-th argument size of predicate p is denoted by pi; for example, a1 = 0; a2 = v; a3 = vor ~a = (0; v; v) in the base rule of Example 4.3. ~a denotes a vector of ai's.A polyhedral convex set in Rn is the intersection of �nitely many closed half-spaces. Apolycone is a polyhedral convex set in the nonnegative orthant of Rn. IC with respect to ann-ary predicate p is captured in the form of a polycone in Rn. A polycone in Rn is usuallyrepresented by an a�ne image of another polycone in Rm; that is, represented in the formof: ~p = ~a+ A~xC(~x) (4:1)where ~p is the vector of variables representing argument sizes, ~x is the vector of parameters,~a is a vector constant, A is a matrix, and C(~x) is a set of constraints in parameterspace, containing nonnegativity constraints for parameters. Eq. 4.1 is called parametricrepresentation of a polycone. We sometimes use the same symbol, for example �, todenote a polycone or its parametric representation; however, its meaning should be clearby the context. An empty polycone is denoted by ;, whose parametric representation isinconsistent.The parametric representation of a polycone can be generated by a tuple of a set ofpoints and a set of rays called a generator The polycone is a vector sum of a convex hull ofpoints ~x1; : : : ; ~xn and a cone of rays ~y1; : : : ; ~ym; that is,~p =P�i ~xi +P�j ~yjP�i = 1�i � 0; i = 1; : : : ; n�j � 0; j = 1; : : : ; m (4:2)We shall say that a polycone in Eq. 4.2 is generated by points ~x1; : : : ; ~xn and rays ~y1; : : : ; ~ym.A unique minimal generator called a frame is obtained by eliminating nonextreme pointsand rays from the generator. Equivalence of two polycones can be tested by comparing theirframes. A generator and a frame of a polycone � are denoted by gen(�) and frame(�),resp. For example, let � be a polycone corresponding to Eq. 4.2, gen(�) is (f ~x1; : : : ; ~xng;f~y1; : : : ; ~ymg).

59The convex union �1 t�2 of two polycones �1 and �2 is de�ned as the closure of theset of points that are convex combinations of any two points of union of two polycones. tis commutative and associative. A convex union of n polycones �1; : : : ;�n is denoted bytf�1; : : : ;�ng. The generator of tf�1 : : :�ng is a tuple of the union of sets of points andthe union of sets of rays in the generators of �i's, so its parametric representation can begenerated by points and rays in gen(�1); : : : ; gen(�n).The a�ne hull a�(�) of a polycone � is the smallest subspace containing �. Ifgen(�) = (f ~x1; : : : ; ~xng; f~y1; : : : ; ~ymg), thena�(�) � 8><>: ~p =P�i ~xi +P�j ~yjP�i = 1 (4:3)See [Sch86, Roc70] for details on polyhedral convex sets.Substitution [x1=e1; : : : ; xn=en] is de�ned in an usual way; that is, a variable xi isreplaced by a linear arithmetic term ei. Using vector notation, it is denoted by [~x=~e].A predicate dependency graph is a digraph with nodes of predicates and arcs from p toq where p is a head predicate of a certain rule and q is its subgoal predicate. Intuitively,q supports the derivation, or solution, of p. We identify strongly connected components(SCC) of this digraph, and a directed acyclic graph (DAG) whose nodes are SCCs. In theactual derivation of ICs, we analyze each SCC at a time starting from the leaves in theDAG. The analysis of an SCC is supported by ICs from the lower SCCs.4.3 Transformations Corresponding to Logic ProgramsSuppose there are k predicates p1; : : : ; pk in a program P , and let a(pi) denote the arityof pi. Let �p1 ; : : : ;�pk be parametric representations of polycones in Ra(p1); : : : ; Ra(pk)respectively, and � = (�p1 ; : : : ;�pk). Let Upi be the set of all convex sets in the positiveorthant of Ra(pi) and U = Up1 � � � � � Upk . U forms a complete lattice equipped withcomponentwise subset ordering v. We now introduce a transformation corresponding toone logical rule.

60De�nition 4.1: (natural transformation) Suppose the i-th non-base abstract rule whosehead predicate is p is in the form of:p(~e) ~� � ~0; q(~f); : : :r(~g): (4:4)where ~� is a vector of variables appearing in the rule. ~e = (e1; : : : ; ea(p)), ~f = (f1; : : : ; fa(q)),: : : ~g = (g1; : : : ; ga(r)) are vectors of linear arithmetic terms. Assume that every polycone isin parametric representation. The natural transformation 	<p;i> : U ! Up correspondingto the i-th rule of predicate p is de�ned by:	<p;i>(�) � 8>>>>>>>>>>>><>>>>>>>>>>>>: ~p = ~e�q[~q=~f]...�r[~r=~g]~� � ~0 (4:5)For i-th base abstract rule in the form of:p(~e) ~� � ~0: (4:6)we have the following base polycone:B<p;i> � 8><>: ~p = ~e~� � ~0 (4:7)Example 4.4: Continuing with Example 4.3, suppose we have a parametric representationof a polycone: � = (f~a = (0; t; t); t � 0g). Then 	<a;1>(�) = f~a = (2+x+u; v; 2+x+w);u = 0; v = t; w = t x � 0; u � 0; v � 0; w � 0; t � 0g. For the base rule, we have apolycone: B<a;1> = (f~a = (0; t; t); t� 0g).We extend this formalism to the whole program P in a natural way.De�nition 4.2: (recursive transformation) A recursive transformation TP : U ! U associ-ated with a program P is a direct product of Tp1; : : : ; Tpk . Tpi is de�ned by a convex union

61of l base polycones and m natural transformations associated with the rules whose headpredicate is pi. TP (�) = (Tp1(�); : : : ; Tpk(�))Tpi(�) = tfB<pi ;1>; : : : ; B<pi;l>;	<pi;1>(�); : : : ;	<pi;m>(�)g (4:8)Natural transformation and recursive transformation are similar to those in [VG91], butmore general.Theorem 4.1: A recursive transformation TP is monotone.Proof: The operations involved in TP are essentially intersection, projection, and convexunion of polycones. These operations preserve monotonicity.Theorem 4.2: There exists the least �xpoint associated with TP .Proof: It follows from the fact that TP is monotone and U forms a complete lattice.Our formalism is an instance of abstract interpretation, hence correctness is guaranteed. A�xpoint can be veri�ed by comparing the frames of polycones in � and T (�) componentwise.Example 4.5: Continuing with Example 4.3, we now compute the least �xpoint of recur-sive transformation. Since there is only one predicate a in a program, Let B;	; T denoteB<a;1>;	<a;1>; TP = Ta, resp. Note that ; denotes an empty polycone. In parametricrepresentation we omit nonnegativity constraints of variables. How to �nd extreme pointsand rays will be covered in Section 4.5.1. (base polycone) B = f~a = (0; t; t)g, frame(B) = (f(0; 0; 0)g; f(0; 1; 1)g)2. (natural transformation) 	(;) = ;3. (recursive transformation; convex union ofB and ;) frame(T (;)) = (f(0; 0; 0)g; f(0; 1; 1)g)4. (verify a �xpoint) frame(;) 6= frame(T (;)),so generate the parametric representation of T (;)5. (natural transformation) 	(T (;)) = f~a = (2+x+u; v; 2+x+w); u = 0; v = t; w = tg,frame((T (;)) = (f(0; 0; 0)g; f(0; 1; 1); (1; 0; 1)g)

62
-

6
p1

p2
�������������

���
0 (a) -

6
p1

p2
�������������

�������������01 (b)
-

6
�������������

��������� p1
p2
02 (c) -

6
p1

p2
�������������

��
0 (d)Figure 4.1: Polycones after recursive transformations6. (recursive transformation; convex union of B and 	(T (;)))frame(T 2(;)) = (f(0; 0; 0)g; f(0; 1; 1); (1; 0; 1)g)7. (verify a �xpoint) frame(T 1(;)) 6= frame(T 2(;)),so generate the parametric representation of T 2(;)With one more transformation, we reach the least �xpoint. IC generated by the frame oflfp is f~a = (u; v; u+ v)g. In append procedure, its third argument size is equal to the sumof its �rst and second.

63Unfortunately, recursive transformations associated with many practical programs oftenfail to converge �nitely, in particular if we use listsize abstraction.Example 4.6: Consider an abstract procedure below:p(t; t) t � 0:p(u; 1 + v) (u; v)� ~0; p(u; v):In Figure 4.1, (a) shows the polycone from the base case rule. (b) and (c) shows thepolycones after one and two recursive transformations, respectively. (d) shows the polyconeafter in�nite transformations, which is the �xpoint of the transformation.Whether a recursive transformation converges �nitely is believed to be undecidable1 . In logicprograms data structures in input arguments are usually transferred to output argumentseven though they may be broken into smaller ones, or combined into larger ones, or thevalues of elements are processed. In terms of argument sizes, the relationship among themmay be approximated by a set of equalities, that represents an a�ne subspace. Requiringthe least �xpoint is too much in general; however, post�xpoints 2 are also a correct upperapproximation of least �xpoint by Tarski's �xpoint theorem: T (x) � x implies lfpT � x.The idea of using widening has already been used in the abstract interpretation of programsin procedural languages [CH78].We now describe what we call a�ne widening. To simplify notations, let us omitsubscripts concerning predicate name and suppose there is only one predicate in a program.Ai is an a�ne subspace w.r.t. the predicate. If Ai is a post�xpoint of T , we are donewith a correct IC. Otherwise, we widen T (Ai) to its a�ne hull Ai+1. Suppose Al is such apost�xpoint that it is found for the �rst time in the computation of A0 = ;; A1; : : :.Theorem 4.3: The sequence A0; A1; : : : ; Al is �nite.1Brodsky and Sagiv studied inference of disjunction of inequalities between two argument positions.With a transformation similar to our recursive transformation, they proved the question on convergence isundecidable[BS91]2If x � T (x) (x � T (x)), then x is a post�xpoint (pre�xpoint) of T .

64Proof: It is enough to show the dimension of Ai+1 is greater than that of Ai for i =0; : : : ; l�1 since Ai's are a�ne subspaces in Rn where n is the arity of a predicate associatedwith the recursive transformation T . Ai � T (Ai) since Ai is not a post�xpoint of T andT (Ai) � Ai+1 since Ai+1 is an a�ne hull of T (Ai). So Ai+1 is an a�ne subspace properlyincluding Ai; that is, the dimension of Ai+1 is greater than that of Ai.Although a�ne widening sometimes widens to \no constraints", it provides yet useful ICwith many practical programs.Example 4.7: Let us consider append procedure with a constraint that all list elementsare integers.a([], T, T).a([X|U], V, [X|W]) :- integer(X), a(U,V,W).The purpose of introducing the constraint integer(X) is to set the termsize of X to zero.The abstracted version of the above append procedure is as follows:a(0; t; t) t � 0:a(2 + x + u; v; 2+ x+ w) (x; u; v; w)� ~0; x = 0; a(u; v;w):Using recursive transformation without a�ne widening, the transformation does not con-verge �nitely since it expands the input convex set inch by inch at every iteration. We nowtry with a�ne widening. A1 = T (;) = fa1 = 0; a2 = a3g is an a�ne subspace, which isone-dimensional. frame(A1 t T (A1)) = (f(0; 0; 0); (1; 0; 1)g; f(0; 1; 1)g), so its a�ne hull isA2 = fa3 = a1 + a2g, which is two-dimensional. With one more iteration, we �nd that A2is a post�xpoint of T (fortunately, a �xpoint).4.4 Translativeness PropertyLet ~p be a vector of argument sizes in a head and ~p0 a vector of argument sizes in arecursive subgoal. All nonrecursive subgoals are replaced by their ICs. Then an abstractrule can be viewed as a polycone in R2n, so this polycone can be generated by its extremepoints and rays.

65Example 4.8: Consider the naive reverse procedure.r([],[]).r([X|U],W) :- r(U,V), a(V,[X],W).Applying listsize abstraction to the procedure, we have:r(0; 0):r(1 + u; w) (u; v; w)� ~0; r(u; v); a(v; 1; w):The analysis for a supplies an IC: a1 + a2 = a3. Replacing a(v; 1; w) by (a1 + a2 =a3)[a1=v; a2=1; a3=w] reduces to the following abstract procedure.r(0; 0):r(1 + u; w) (u; v; w)� ~0; r(u; v); v + 1 = w:Let ~r and ~r0 denote the argument sizes of head and recursive subgoal, resp. So we have thefollowing parametric representation for r1; r2; r01; r02.r1 = 1 + u; r2 = w; r01 = u; r02 = v; v + 1 = w; u � 0; v � 0; w � 0The parametric representation generated by the extreme points and rays is:r1 = 1 +ur2 = 1 +vr01 = 0 +ur02 = 0 +vu � 0v � 0De�nition 4.3: (translativeness) A natural transformation 	 associated with a linearrecursive rule is viewed as a polycone in R2n when all nonrecursive subgoal are replaced bytheir ICs. Suppose the parametric representation generated by extreme points and rays ofthe polycone in R2n is in the form of :

66	 � 8>>>>>>>><>>>>>>>>: 0B@ ~p~p0 1CA = 0B@ A0 1CA ~�+0B@ B0 1CA ~�+ 0B@ P1P2 1CA ~�P�i = 1�i � 0; �j � 0; �k � 0 (4:9)where P1 and P2 are permutations. Substituting � = P�12 y boils down to:	 � 8>>>>><>>>>>: ~p = A~�+B~� + P ~p0P�i = 1�i � 0; �j � 0 (4:10)where P is P1P�12 . If a natural transformation 	 can be reduced to Eq. 4.10, 	 is P -translative.Let �0 denote a polycone represented by:�0 � 8>>>>><>>>>>: ~p = A~�+ B~�P�i = 1�i � 0; �j � 0 (4:11)	(�) is indeed a vector sum of �0 and P�:	(�) = �0 + P�Now we introduce some useful operations on polycones.De�nition 4.4: Let �;�1;�2 be polycones in Rn. The vector sum, scalar multiplication,and linear transformation of polycones are de�ned as follows:1. (vector sum) �1 +�2 = fx+ yjx 2 �1; y 2 �2g2. (scalar multiplication) �� = f�xjx 2 �g3. (linear transformation) A� = fAxjx 2 �g where A is a matrix.Lemma 4.1: The following equalities on polycones hold.

671. A(�1 +�2) = A�1 +A�22. A(�1 t�2) = A�1 tA�23. �1 + (�2 t�3) = (�1 + �2) t (�1 +�3)Suppose we have k base polycones and l P -translative natural transformations. Then wecan simplify the recursive transformation T as follows:T (�) = B1 t � � � tBk t (�1 + P�) t � � � t (�l + P�)= (B1 t � � � t Bk)t ((�1 t � � � t�l) + P�))= �B t (�R + P�)where �B = B1 t � � � tBk and �R = �1 t � � � t�l .We now describe how P -translative natural transformation can be unfolded to I-translative transformation using unfolding, where I is an identity matrix.De�nition 4.5: (Unfolding) Suppose T is P -translative transformation. T 2(�) is obtainedby applying T to T (�).T (T (�)) = �B t (�R + P (�B t (�R + P�)))= �B0 t (�R0 + P 2�)where �B0 = �B t (�R + P�B) and �R0 = �R + P�R.Applying at most n unfoldings in which n is the arity of the associated predicate, we canget I-translative transformation since P is a permutation matrix.Theorem 4.4: Let T be a translative transformation in the form of:T (�) = �B t (�R +�)and the generators of �B and �R are:gen(�B) = (fu1; : : : ; ukg; fv1; : : : ; vlg)gen(�R) = (fx1; : : : ; xng; fy1; : : : ; ymg)then gen(lfpT) = (fu1; : : : ; ukg; fv1; : : : ; vl; x1; : : : ; xn; y1; : : : ; ymg)

68Proof: T1(;) = �B t (�R + �B) t (2�R + �B) t � � � t (k�R + �B) t � � �= �B + (0 t�R t 2�R t � � � t k�R t � � �)= �B + f�xjx 2 �R; � � 0gIn practice, linearly recursive logic programs relying on \recursion on structures" techniqueusually satisfy translativeness property. Hence their tight interargument constraints can befound without any iterations.Example 4.9: The following procedure is intended to divide its �rst argument into itssecond and third argument. In order to assure balanced division of the \input" list, the lasttwo arguments are interchanged upon recursion.d([], [], []).d([X | U], [X | V], W) :- integer(X), d(U, W, V).Applying termsize abstraction to the procedure, we have:d(0; 0; 0):d(2 + u; 2 + v; w) (u; v; w)� ~0; d(u; w; v):Clearly, frame(�B) = (f0; 0; 0g; fg). From the second rule, we get a P -translativetransformation: 	(�) = �R + P�where �R � f~d = (2; 2; 0)gP = 2666664 1 0 00 0 10 1 0 3777775Applying an unfolding boils down to I-translative transformation:T 2(�) = �B0 t (�R0 +�)

69where frame(�B0) = (f(0; 0; 0); (2; 2; 0)g; fg) and frame(�R0) = (f(4; 2; 2)g; fg). ByTheorem 4.2, lfpT � 8>>>>>>>>>>>><>>>>>>>>>>>>: d1 = �2 + 2�1d2 = �2 + �1d3 = �1�1 + �2 = 2�1 � 0; �2 � 0; �1 � 0It implies that the �rst argument size is the sum of the second and the third, and the�rst argument size is greater than the second or the third if the �rst is positive, which isimportant information when handling termination proofs. It is noted that Van Gelder'srecursive transformation does not converge with this example and his heuristic does notwork [VG91]. Sagiv and Brodsky's method can infer only inequalities between two argumentpositions [BS91]. Recursive transformation with a�ne widening described in the previoussection gives an IC: d1 = d2 + d3, which is less precise than the above.4.5 Extreme Points of a PolyconeParametric representation of a polycone in Rn can be viewed as a set of constraints ��in Rm and an a�ne transformation � from Rm to Rn.� � 8><>: ~x = ~a+ A~��~� (4:12)Lemma 4.2: The extreme points in �(�) are a�ne images of the extreme points of �:ep(�(�)) � f~a+A~p j ~p 2 ep(�)gwhere ep(S) is the set of extreme points in S.The extreme rays in �(�) are images of linear transformation of the extreme rays of �:er(�(�)) � fA~r j ~r 2 er(�)gwhere er(S) is the set of extreme rays in S.

70� is a polycone, so there are �nite number of extreme points and rays. As there is analgorithm to �nd all extreme points and rays of a polycone in [MR80, VG91], we cane�ectively compute them (See Appendix B.)The cost of computing all extreme points and rays depends on the number of parametersand constraints. Before we compute extreme points and rays, we should be able toeliminate redundant parameters and constraints unless the cost of elimination is expensive.Parametric representation of a polycone usually has the constraints in the form of equalities.Gaussian elimination procedure reduces equalities to inequalities, eliminating at most nparameters where n is the number of equalities. By exploiting the fact that polycone isconstrained to nonnegativity, we can eliminate redundant inequalities and parameters:1. a1x1 + a2x2 + : : :+ anxn � b where ai � 0; b � 0 is redundant.2. a1x1 + a2x2 + : : :+ anxn � b where ai � 0; b = 0 forces xi with nonzero coe�cient tobe zero.3. a1x1 + a2x2 + : : :+ anxn � b where ai � 0; b > 0 makes the polycone inconsistentAn implicit equality corresponds to the elimination of one parameter and one constraint.The cost of �nding an implicit equality is equivalent to that of running a linear program.General techniques for redundancy elimination of linear constraints can be found in[KLTZ83, LHM89].To verify a �xpoint of a recursive transformation T , we need to extract extreme pointsand rays from points and rays transformed from the constraint set. Suppose we have kpoints ~p1; : : : ; ~pk and l rays ~r1; : : : ; ~rl. A ray ~ri is nonextreme if it is nonnegative linearcombination of the other rays. In other words, a ray ~ri is nonextreme if the following linearsystem is solvable: ~ri =Xj 6=i �j ~rj ; �j � 0 (4:13)Similarly, a point ~pi is nonextreme if the following system is solvable.~pi =Xj 6=i �j ~pj +X�j ~rj; X�j = 1; �j � 0; �j � 0 (4:14)

71Thus we can eliminate nonextreme points and rays by testing the solvability of a certainlinear system. Solvability of a linear system can be tested theoretically in polynomial timeby Khachiyan's ellipsoid method or Karmarkar's method [Sch86]. It also can be testedby exponential time algorithm such as Fourier-Motzkin elimination or the �rst phase ofsimplex method. Those polynomial time algorithms have been reported to be impracticalunless the input size is substantially large. The exponential-time algorithm will work if wecan maintain small input sizes.Fourier-Motzkin elimination stops upon �nding an inconsistent inequality while the �rstphase of Simplex algorithm stops upon �nding a feasible solution. Thus in case manynonextreme points (or rays) are present, the �rst phase of Simplex algorithm must be used.In any case maintaining small input sizes is a key to using exponential-time algorithmssuccessfully.As we deal with polytopes in the following, we will use \vertex" instead of \extremepoint". A�ne images of vertices in a polytope may contain a high degree of redundancy.It is the case that the number of neighbors adjacent to a vertex is usually far less than thatof vertices in polytopes. Theorem 4.5 says it is enough to show that an a�ne image v0 isa convex combination of only its neighbors on a graph induced by a�ne transformation, inorder to show that v0 is not a vertex. (We are working on the extension to general polyhedralconvex sets.) Let V = fv1; v2; : : : ; vng be the set of vertices and E = fe1; e2; : : : ; emg the setof edges in �. Thus G = (V;E) represents the adjacency graph on vertices of a polytope.This graph can be constructed using a variant of Simplex algorithm which �nds all basicfeasible solutions rather than an optimal solution. A graph G� = (V�; E�) is one inducedby an a�ne transformation �:V� = f�(v) j v 2 V gE� = f(�(v1);�(v2)) j �(v1) 6= �(v2); (v1; v2) 2 Eg (4:15)De�nition 4.6: [Gr�u67] Let G = (V;E) be a graph, M a set of vertices of G, and v; utwo vertices of G which do not belong to M . M separates v from u provided every pathconnecting v and u contains some vertex in M .

72Conjecture 4.1: Let v and u be two vertices in an adjacency graph G of a polytope Pseparated by M � V . Then the line segment connecting v and u passes through the convexhull of M .Note the following theorem is based on Conjecture 4.1.Theorem 4.5: Suppose Conjecture 4.1 holds. Let x0 2 V� and fy1; : : : ; ykg be the set ofvertices adjacent to x0. Then x0 is a vertex in �(�) i� x0 is not a convex combination ofyi's.Proof: (Sketch)()). Trivial.((). Let fz1 : : :zlg be the set of vertices not adjacent to x0 in V� (If there exist no suchzi's, proof is trivial).Let fp1; : : : ; pmg be the set of vertices in V which are transformed to x0, and fq1; : : : ; qngthe set of vertices in V which are transformed to fy1; : : : ; ykg, and fr1; : : : ; rog the set ofvertices in V which are transformed to fz1 : : :zng.Each line segment connecting pi and rj , i 2 f1; : : : ; mg, j 2 f1; : : : ; og must passthrough ConvexHullfq1; : : : ; qng by Conjecture 4.1. Since a�ne transformation preservesthe convexity, each line segment connecting x0 and zj , j 2 f1; : : : ; lg must pass throughConvexHullfy1; : : : ; ymg. Thus x0 is a vertex.4.6 SummaryWe formalized a method of deriving constraints among argument sizes and provided ana�ne widening operation to accelerate the convergence in �nitely many steps, yet providinguseful interargument constraints.We de�ned a class of linear recursive logic programs in terms of translativeness property.For such a class, tight interargument constraints are automatically given via the analysisof the structure of transformations. In practice, most of logic programs are linear recursiveand rely on \recursion on structure" technique, hence satisfying translativeness property.

73input program append merge perm mergesort parsercputime in milliseconds 239 499 650 1270 859ratio 8.00 3.12 7.22 5.08 6.14Table 4.1: Performance measures of inference of interargument constraintsThe most costly operations in the procedure of handling linear constraints are theprojections and �nding all the extreme points and rays of polycones. We presented amethod exploiting information on adjacency of extreme points, which outperforms methodsusing Fourier-Motzkin variable elimination.We implemented the method in Prolog. The complete system consists of 2297 linesof Prolog code. Some performance measures are listed in Table 4.1. The input progrmasare shown in Appendix D. The ratio was de�ned in Section 3.9. Some discussion on theperformance results also can be found in that section. The programs were tested on SUN4sparc station.We are working on the extension of translativeness to nonlinear recursion.

745. Relational Groundness Analysis5.1 IntroductionLogic programming has been successfully used as a tool for several areas includingcompiler writing, expert system design, natural language processing, hardware design, andknowledge-base design. One of the most attractive features of Prolog is bidirectional use ofarguments for input, output, or both; however, in practical programs most procedures donot make this sophisticated use of arguments. Using mode information allows compilers toproduce more speci�c code which results in substantial speedup [Mel85]. With this regard,Warren introduced explicit mode declarations to help the compiler produce better code[War77]. But mode declarations must be veri�ed since wrong annotation may introducesubtle errors in program executions.Another approach is to infer mode declarations automatically via abstract interpretation[Mel87, BJCB87, MU87, DW88]. Abstract interpretation has been used as standard meansfor dataow analysis since it was placed on a solid semantic basis by Cousot and Cousot[CC77] (See [CC92] for the theory and applications to logic programming).Early work done by Mellish [Mel81] produced erroneous results since aliasing e�ectsresulting from uni�cation was not considered, which was corrected later [Mel87].Mannila and Ukkonen [MU87] used simple two-valued abstract domains fground; anyg,hence free mode 1 cannot be inferred (ground; free; any are abstractions of ground terms,free variables, all (ground or nonground) terms, respectively). In addition, their methodcould not handle the problem with aliased variables accurately.Bruynooghe et al. [BJCB87] suggested multi-passes algorithm (repeat previous callstrategy) to resolve aliasing problem, which are considered to be costly if the strategy isapplied globally.1In their paper, nonground means possibly nonground, which means any

75Debray and Warren [DW88] presented an algorithm to give a sound and e�cienttreatment of aliasing. However their method produces less precise mode information sincethey use conservative local analysis in which all unsafe instantiations are replaced by any.In this chapter, we study relational abstract domains which describe possible groundnessrelationships among arguments. Like [MU87], we only analyze groundness, however, ourmethod provides great accuracy with respect to groundness. It is also noted that success ofcorrectness proofs like program termination relies on preciseness of groundness information[UVG88, Pl�u90b, SVG91].Let us consider a call p(A, f(A,B)) in which we have no instantiation informationon A and B. Hence the goal is abstracted as p(any; any) in the previous cited methods.But more careful look at the call gives us the possible combinations of call patternsfp(0; 0); p(0; 1); p(1; 1)g where 0 and 1 are ground and nonground respectively to keepnotations simple. That is, if the second argument is ground, then the �rst has no otherchoice but ground. Suppose we have a clause p(U, f(a,b)). With the call patternp(any; any), the success pattern after the call to the clause is p(any; ground) whereas withour call pattern, the success pattern is p(ground; ground). Preciseness of success patternsa�ect the subsequent call patterns immediately. It should be mentioned that if we use atable of possible groundness relationships among arguments as shown above, we will endup with combinatorial blowup.We now introduce simple boolean constraints to denote groundness relation. Roughly, aterm can be abstracted as a logical disjunction of variables occurring in the term. Forexample, p(a; a _ b)) is the abstraction of the goal p(A, f(A,B)) where a and b arepropositional variables corresponding to A and B and _ is boolean OR.Using positive propositional formula (called domain PROP) for groundness analysis hasbeen studied by Marriott and S�ndergaard [MS89]. The domain was further studied byCortesi et al. [CFW91]. Our abstract domain is simpler than PROP since we only usepositive proposition formula forming so-called a \boolean cone". For such formula, we caneasily �nd a minimal generator set which is a unique minimal representation. Therefore,

76t0t1g(a) t00t01 t10t11gg g@@@@ �������� @@@@(b) t000t001 t010 t100t011 t101 t110t111gg gg@@@@ ��������@@@@ ����@@@@���� @@@@
(c)Figure 5.1: Diagram of ground analysistesting if two formula are equivalent can be done e�ciently. Main contribution of ourstudy is to introduce novel concepts on boolean cones and develop operations to accomplishe�ciently relational groundness analysis and to provide bottom-up groundness analysisusing propositional formula.In Section 5.2, we describe notations used through the chapter and introduce groundnessabstraction of logic programs, and concepts, properties, and operations on boolean cones.Section 5.3 describes some simpli�cation procedures to remove redundancy in groundnessconstraints.Section 5.4 presents bottom-up groundness analysis mimicking immediate consequenceoperator.Section 5.5 summarizes the chapter.The framework similar to our relational bottom-up analysis has been investigated onreal arithmetic domain to derive constraints among argument sizes by Van Gelder [VG91].5.2 Basic Concepts5.2.1 Abstraction

77We now describe abstraction of terms, atoms, and clauses. Logic programs can beabstracted by groundness relationships among terms. Informally speaking, groundnessabstraction of a term carries the information that if all the variables in the term are ground,then the term is ground. We choose the boolean value 0 to denote ground. So x _ y is thegroundness abstraction of f(X,Y). That is, if x (X) and y (Y) are 0 (ground), then x _ y(f(X,Y)) is 0 (ground). Let vars(t) denote a set of variables in a term t. We shall uselowercase letters for the boolean variables corresponding to logical variables.Example 5.1: Figure 5.1 illustrates groundness relationships of three atoms: (a) p(a),(b) p(U, f(U,V)), and (c) p(U, V, f(U,V)). The lattices (a), (b), and (c) in Figure 5.1are possible relationships for unary, binary, and ternary predicate, respectively. Circleddots represent possible relationships for the three atoms listed above. For example, for theatom p(U, f(U,V)), both arguments can be either ground (00) or free (11), and the �rstargument can be ground and the second free (01). But it is impossible to have the �rst freeand the second ground.For notational convenience, we shall use pi for a boolean variable representing groundnessabstraction of i-th argument of predicate p. Boolean terms are terms built from booleanvariables and connective boolean OR _. Note that we do not use NOT and AND inboolean terms. We often use a vector notation to denote a vector of boolean terms. Forexample, (a1; a2) _ (b1; b2)$ (c1; c2) denotes: a1 _ b1 $ c1 and a2 _ b2 $ c2. Substitution[x1=e1; : : : ; xn=en] is de�ned in an usual way; that is, a boolean variable xi is replaced by aboolean term ei. Using vector notation, it is denoted by [~x=~e].De�nition 5.1: Let t be a logical term. Then �(t) is a groundness-abstracted term.�(t) = 8><>: 0 if vars(t) is empty_x2vars(t)x otherwiseLet p be n-ary predicate. Then groundness-abstracted atom is as follows.�(p(t1; t2; : : : ; tn)) = p(�(t1); �(t2); : : : ; �(tn))Abstraction of clauses is obtained by applying abstraction to each atom occurring in theclauses.

78Example 5.2: Let us consider the usual append procedure.a([], U, U).a([X|U], V, [X|W]) :- a(U, V, W).Applying groundness abstraction to each clause transforms it to groundness-abstractedprocedure.a(0; u; u):a(x _ u; v; x_ w) a(u; v; w):Since terms are boolean expressions, uni�cation must be replaced by boolean constraintsolving in the execution of the groundness-abstracted procedure.5.2.2 Relational Abstract DomainsWe now introduce boolean cones and their constraint representation. We also examinesome operations like OR-closure as least upper bound operation and equivalence of twoboolean cones, which are useful in �nding the �xpoint of a certain transformation concerninggroundness relation.De�nition 5.2: Let a; b 2 f0; 1gn. C � f0; 1gn is a boolean cone if1. 0 2 C2. If a 2 C and b 2 C, then a _ b 2 CExample 5.3: f(0; 0; 0); (1; 1; 0); (1; 0; 1); (1; 1; 1)g is a boolean cone whereasf(0; 0; 0); (1; 1; 0); (1; 0; 1)g is not.We use the word \boolean cones" since they have the properties similar to those of convexcones in Rn. We now examine some useful properties of boolean cones.Lemma 5.1: Intersection of two boolean cones C1 and C2 is a boolean cone C3.

79Proof: Clearly 0 is in C3. Suppose a and b are in C3. Therefore a and b are in both C1and C2. Since C1 and C2 are boolean cones, a _ b is in both C1 and C2. Then a _ b is alsoin C3.Example 5.4: Let C1 = f(0; 0; 0); (0; 1; 1); (1; 0; 1); (1; 1; 1)g andC2 = f(0; 0; 0); (1; 1; 0); (1; 1; 1)g. C1 and C2 are boolean cones. C1TC2 = f(0; 0; 0); (1; 1; 1)gis also a boolean cone.Lemma 5.2: The projection of boolean cone in f0; 1gn onto f0; 1gm where m � n is alsoa boolean cone.Proof: Trivial.We now introduce the concept similar to extreme rays of convex cones in Rn, whichwe call generators. Generator sets serve as the unique, minimal representation of booleancones. Therefore testing equivalence of two cones reduces to comparing two generator sets.Boolean OR of two vectors is a vector of the results of componentwise OR.De�nition 5.3: Let C be a boolean cone C, and � 2 C. Then � is a generator of C if� 6= 0 and cannot be the boolean OR of any other points in C. A minimal generator setgen(C) of C is a set of all generators in C. A generator set is the set including a minimalgenerator set and the points which can be generated by the minimal generator set.Example 5.5: gen(f(0; 0; 0); (0; 1; 1); (1; 0; 1); (1; 1; 1)g= f(0; 1; 1); (1; 0; 1)gWe can get a minimal generator set from a generator set by removing non-generators. Anon-generator is a boolean OR of some generators. Testing if a point is a generator can bedone as follows. Suppose we have a generator set fy0; y1; : : : ; yng and we want to test if y0is a generator. If y0 is not a generator, then there must be a1; : : : ; an such that ai 2 f0; 1gand y0 = a1 � y1 _ � � � _ an � yn:If i-th component of y0 is 0 and i-th component of yj is 1, then aj has no other choice butzero. For other aj 's, we can assign 1's. Then we can evaluate the above formula. If it istrue, y0 is a non-generator, otherwise a generator. This test is done in linear time in termsof the size of the generator set.

80Lemma 5.3: There exists a unique minimal generator set gen(C) for any boolean cone C.Proof: Suppose G1 and G2 are two generator sets for a boolean cone C and G1 6= G2.Therefore, there exists x such that x 2 G1 and x 62 G2. Since G2 is a generator set, xcan be a boolean OR of some points g1; : : : ; gk in G2. Since g1; : : : ; gk are members of C,they are in G1 or boolean combinations of generators in G1. That concludes x is a booleancombination of generators in G1, which is a contradiction.Let U be the set of all boolean cones in f0; 1gn. Equipped with the subset ordering �,U forms a complete lattice with an empty set as the least element, f0; 1gn as the greatestelement, set intersection T as greatest lower bound operation, OR-closure F as least upperbound operation as de�ned below.De�nition 5.4: The OR-closure of n cones C1; C2; : : : ; Cn is the set of points which arethe boolean OR of any points in Ci's; it is denoted by FfC1; C2; : : : ; Cng.Lemma 5.4: Let C1; C2; : : : ; Cn be boolean cones. FfC1; C2; : : : ; Cng is the set generatedby the union of the generator sets of C1; C2; : : : ; Cn.Proof: It follows from the de�nition of a boolean cone and a generator set.Example 5.6: Let C1 = f(0; 0; 0); (0; 1; 0); (0; 1; 1)g and C2 = f(0; 0; 0); (0; 1; 0); (1; 1; 0)gand C be FfC1; C2g. Their generator sets are gen(C1) = f(0; 1; 0); (0; 1; 1)g and gen(C2) =f(0; 1; 0); (1; 1; 0)g. Their union is, gen(C) = f(0; 1; 0); (0; 1; 1); (1; 1; 0)g. Hence C =f(0; 0; 0); (0; 1; 0); (0; 1; 1); (1; 1; 0); (1; 1; 1)g.5.2.3 Groundness ConstraintsThe success of relational groundness analysis relies on whether we have e�cientlycomputable form of relations. Groundness relationships among arguments with respectto a predicate can be represented in the form of a set of boolean constraints.De�nition 5.5: Let ~e = (e1; e2; : : : ; en) be boolean terms and c1; c2; : : : ; cm booleanequalities. Let ~p = (p1; : : : ; pn) be a vector of boolean variables corresponding to groundnessabstraction of arguments of predicate p.

81G = f~p$ ~e; c1; c2; : : : ; cmgis called a groundness constraint for a predicate p. If m = 0, it is called a simpli�edgroundness constraint for p.Theorem 5.1: A groundness constraint de�nes a boolean cone.Proof: It is enough to show that one conjunction of a groundness constraint de�nes aboolean cone, since the intersection and/or projection of boolean cones is also a booleancone. Each conjuction G is in the following form:x1 _ � � � _ xn $ y1 _ � � � _ ym:The model of this formula G is the set of all the satis�able assignments. Let (v1; : : : ; vk) bea tuple of all the variables appearing in G. (0; : : : ; 0) is clearly a satis�able assignment. Let(a1; : : : ; an) and (b1; : : : ; bn) be two satis�able assignments of G. Then (a1_ b1; : : : ; an_ bk)is also a satis�able assignment, since (a1 _ b1; : : : ; ak _ bk) has more 1's than (a1; : : : ; ak) or(b1; : : : ; bk).5.3 Simpli�cations and Normal FormsThe most costly operation is to test equivalence of two groundness constraints, whichmust be performed at each iteration of transformation concerning abstract interpretation.This operation is tantamount to �nding generators of projection of cones, since generatorsare unique, minimal representation of cones. In most cones associated with practicalprograms, generators can be obtained by the following simpli�cation rules.� x _ y _ � � � _ z $ 0 is equivalent to x$ 0; y $ 0; : : : ; z $ 0.� If x _ y _ � � � _ z $ w is a constraint and w does not appear on the left-hand sidesubstitute the left-hand side into every place where w appears. If w appears nowhere,delete the constraint.� If x appears on the same side as y in every occurrence, x can be deleted.

82A simpli�ed groundness constraint corresponds to a set of points including generators, whichreduces to a generator set by removing redundancy. This is explained in the followingexample.Example 5.7: Let C = f~p$ (x_w; y_w; x_y_w)g be a simpli�ed groundness constraint.(x_w; y_w; x_y_w) $ x �(1; 0; 1)_y �(0; 1; 1)_w �(1; 1; 1) where � can be viewed as scalarmultiplication and _ as componentwise boolean OR. Then (1; 0; 1); (0; 1; 1), and (1; 1; 1)are candidates for generators, and (1; 1; 1) is redundant since (1; 1; 1) = (1; 0; 1)_ (0; 1; 1).So gen(C) = f(0; 1; 1); (1; 0; 1)g. This example also explains how to generate groundnessconstraints from generators.Let us turn our attention to groundness constraints which cannot be simpli�ed by the abovesimpli�cation rules. One way to �nd generators is to transform equalities with boolean termsto ones with real arithmetic terms. That is,x1 _ x2 _ : : :_ xn $ y1 _ y2 _ : : :_ ymcan be transformed to x1 + x2 + : : :+ xn � y1x1 + x2 + : : :+ xn � y2...x1 + x2 + : : :+ xn � ymy1 + y2 + : : :+ ym � x1y1 + y2 + : : :+ ym � x2...y1 + y2 + : : :+ ym � xnx1; x2; : : : ; xn; y1; y2; : : : ; ym 2 f0; 1gIt is easy to prove that both have the same set of solutions, and extreme rays of the lineararithmetic systems are vectors of 0 or 1's after being normalized so that one of their positivecomponents is 1.

83Theorem 5.2: If x0 is a generator of a boolean cone represented by a groundnessconstraint, then it is a normalized extreme ray of a convex cone represented by a lineararithmetic constraint transformed from the groundness constraint.Proof: Suppose x0 is a generator and it is not a normalized extreme ray. Since x0 is nota normalized extreme ray, x0 is a positive combination of some normalized extreme raysy1; : : : ; yn, that is, x0 = a1y1 + � � �+ anyn (5:1)where ai is positive. Let us consider a sum of y1; : : : ; yn, that is,x00 = y1 + � � �+ yn (5:2)The value x00i > 0 whenever x0i = 1 and the value x00i = 0 whenever x0i = 0. ThereforeEq. 5.1 implies Eq. 5.2. In fact, Eq. 5.2. is exactly how we computex0 = y1 _ � � � _ yn: (5:3)Since y1; : : : ; yn are the points in the boolean cone, x0 is not a generator. Contradiction.As there are well-known methods to �nd extreme rays of convex cones (same as �ndingextreme points of convex polytopes) [VG91, Las90a], we can �nd candidates for generatorsfor the corresponding boolean cones by removing redundancy.5.4 Bottom-Up Groundness AnalysisIn the preceding sections, we described the relational abstract domain and some usefuloperations on the domain. We now give a bottom-up abstract interpretation to get successpatterns in the form of groundness constraints.Abstract interpretation consists of abstract domain and abstract operations whichmimics base semantics faithfully. Hence bottom-up abstract interpretation mimics �xpointsemantics. Formal framework of bottom-up abstract interpretation can be found in [CC92,MS88].Now we de�ne a transformation mimicking immediate consequence operator.

84De�nition 5.6: Suppose we have k predicates whose names are p; q; : : : ; r in an abstractprogram and pi is i-th clause having the head predicate p and so forth. Let P;Q; : : :; R begroundness constraints associated with those predicates, and Up the set of all boolean conesdetermined by the arity of the predicate p and so forth. Let U = (Up;Uq; : : : ;Ur). Let x be avector of groundness constraints (P;Q; : : :; R) 2 (Up;Uq; : : : ;Ur). Recursive transformationT is a mapping from U to U and Tp is a mapping from U to Up as given below.T (x) = (Tp(x); Tq(x); : : : ; Tr(x))Tp(x) = FfTp1(x); Tp2(x); : : : ; Tpm(x)g...Tpi(x) = f~p$ ~a;Q[~q=~b]; : : : ; R[~r=~c]gwhere there are m clauses having the head predicate p and the i-th abstract clause of thepredicate p is in the form of p(~a) q(~b); : : : ; r(~c)Theorem 5.3: There exists the least �xpoint of T and it can be reached in �nite numberof iterations.Proof: By its de�nition, Tpi is clearly monotone, so T is monotone. The domain(Up;Uq; : : : ;Ur) forms a �nite complete lattice, equipped with componentwise subset or-dering.In practice, it is more e�cient to process strongly connected components separately inpredicate dependency graphs, starting from leaves in a tree induced by SCCs.Example 5.8: Continuing with Example 5.2,T 1 = T (;) = f~a$ (0; u; u)gT 2 = T (T 1) =GfT 1; f~a$ (x _ u; v; x_ w; u$ 0; v $ u0; w$ u0gg= f~a$ (x; v; x_ vg

85input program append merge perm mergesort parsercputime in milliseconds 40 69 60 140 120ratio 1.33 0.43 0.67 0.56 0.85Table 5.1: Performance measures of inference of success patternsInterested readers are invited to verify T 3 = T 2, which is the least �xpoint of T . Notethat we only use simpli�cation rules to reduce to simpli�ed groundness constraints. Theresulting �xpoint shows that in the success pattern of append procedure, if the �rst andsecond argument are ground, then the third is ground, and vice versa.5.5 SummaryWe presented a novel relational groundness analysis in this chapter. To computegroundness relations e�ciently, we used boolean constraints forming boolean cones. Weintroduced the concept of generators to facilitate the equivalence test of two sets of booleanconstraints.We implemented the method in Prolog. Some performance measures are listed inTable 5.1. The ratio was de�ned in Section 3.9. The input programs are shown inAppendix D. The programs were tested on SUN4 sparc station. The domain PROP wasimplemented by B. Le Charlier and P. Van Hentenryck [LCVH93] and by M. Codish and B.Demoen [CD93]. Our current implementation can take programs in pure Prolog as input.We are working on lifting this limitation. It will be interesting to compare our performanceresults with their results.Including freeness analysis and developing e�cient test of cone equivalence will be futureresearch directions.

866. ConclusionWe have presented a methodology for termination analysis in logic programmingenvironment. Our method is modular in that we examine one strongly connected componentby one in the predicate dependency graph of a program. Nonnegative linear combination ofbound argument sizes is used as level-mapping function. To test if this function decreasesin well-founded domain, we have transformed the test condition into solvability problem ofa linear system using duality theory of linear programming. This method is straightforwardand general. Unlike other methods, our method could be extended to nonlinear and mutualrecursion with only slight modi�cation.We often need to know the relationship among argument sizes of a predicate in a subgoalto relate head argument sizes and recursive subgoal argument sizes. We have formalized amethod of deriving such relationship using transformation similar to immediate consequenceoperator. The transformation acts on abstract domain where only the size of a termis considered. This transformation, however, does not necessarily converge. Since it isdi�cult and unnecessary to �nd the least �xpoint, we have provided an a�ne wideningapproximation to accelerate the convergence of the transformation up to �nitely manysteps.We have also de�ned a class of linear recursive logic programs in terms of translativenessproperty. For such a class, tight interargument constraints are automatically given via theanalysis of the structure of transformations. In practice, most of logic programs are linearrecursive and rely on \recursion on structure" technique, hence satisfying translativenessproperty.Groundness analysis plays a very important role for global optimization of Prologcompiler. It is also required in order to apply our termination analysis method to Prologprograms rather than knowledge-base systems. Relational groundness analysis has beenthought to be costly in published papers. We have suggested to use boolean constraintsto represent groundness relationship among arguments of a predicate. This method works

87quite e�ectively with the help of simpli�cation procedures and gives more precise analysissince it resolves the problem due to aliased variables.The prototype of the implementation is done in Prolog. The performance measures haveshowed termination analysis is so e�cient and precise that it can be practically applied tolarge programs.

88Appendix A. Fourier-Motzkin EliminationFourier-Motzkin elimination procedure is used to test if a system of linear constraints aresolvable. In this technique a variable is eliminated by \cancelling" all positive occurrenceswith all negative occurrences, pairwise, creating new rows (with 0 in that variable's column).Then all rows containing a nonzero coe�cient for that variable can be eliminated, preservingsolvability. If there are only positive (or negative) occurrences of the variable, all theinequalities containing positive (or negative) occurrences are deleted. The reasoning is thevariable can have arbitrary values depending on how other variables are constrained.Consider the following linear constraints:2x1 +x2 +x3 � 1�x1 �x2 � 1x1 �x3 � 2�x1 � 0Using the matrix notations for denoting the system of inequalities:2666666664 2 1 1�1 �1 01 0 �1�1 0 0 �������������� 1120 3777777775The vertical line denotes �.Try to eliminate the �rst column corresponding to x1. Column 1 and 3 have positivecoe�cients while Column 2 and 4 have negative coe�cients. So each pair of rows withpositive rows and rows with negative rows, that is Column 1 and 2, Column 1 and 4,Column 3 and 1, Column 3 and 4, can be canceled with appropriate multiplication andaddition operations so that the coe�cient of x1 is zero. For example, multiplying Row 2 by2 and then adding Row 1 and Row 2 makes the coe�cient zero. Deleting all the rows withnonzero coe�cients gives a new linear system projected on fx2; x3g-space.

892666666664 �1 11 1�1 �10 �1 �������������� 1132 3777777775After eliminating x2 and x3 in the same way, we have the following matrix:����� 4 �Since vertical bar represents �, it is indeed 0 � 4. It is contradictory, so the initiallinear system is unsolvable. This process is inherently exponential-time since it may doublethe number of inequalities at each variable elimination. How big the number of inequalitiesgrows depends on the order of variables we choose to eliminate. For example, if we choosex2 to eliminate instead of x1 in the initial linear system, the resulting number of inequalitiesafter elimination will be 3. This naive Fourier-Motzkin elimination is useless in practice.Heuristics is used in order to minimize the growth of the number of inequalities. Let Piand Ni denote the number of positive and negative occurrences of xi, respectively. Pi �Niis the number of new inequalities introduced by eliminating xi. Pi +Ni is the number ofinequalities deleted by eliminating xi. Therefore, Pi � Ni � (Pi + Ni) is the di�erence inthe number of inequalities after eliminating xi. We choose xi as a pivot variable such thatPi �Ni � (Pi +Ni) is minimal.Without sophisticated redundancy check, Fourier-Motzkin elimination is almost uselessfor sizable input. For example, what follows is an arti�cially made system of linearinequalities.

9026666666666666666666666666666664
1 1 �1 �1 �1 8�4 2 �1 �2 1 �1�6 2 0 0 �1 10 �1 �2 2 0 �11 �1 1 �6 0 0�1 2 �1 �1 1 01 �1 �4 1 0 �66 �2 1 1 0 0�8 4 �1 1 �1 �21 1 0 �1 �2 0

������������������������������������
1910110100
37777777777777777777777777777775Initially, it has 10 inequalities. After eliminating one, two, three, and four variables, thenumber of inequalities is 24, 93, 1562,1, respectively.However, the linear inequalities generated to test termination condition, have usuallymany zero coe�cients. That's because terms contains only one or two variables. Considerthe following CLP(R) program:p(X, N, D) :-X = (Xpos - Xneg),D = (N - (Xpos - Xneg)),((Xpos - Xneg) - N) >= 0.p(X, N, D) :-X = (Xpos - Xneg),D = (N - (Xpos - Xneg)),D >= 1,(X1pos - X1neg) = (Xpos - Xneg) + 1,D1 = (N - (X1pos - X1neg)),X1 = (X1pos - X1neg),p(X1, N, D1).The matrix corresponds to termination condition.

912664
0 0 0 0 1 0 1 0 01 0 �1 0 �1 0 0 0 0�1 0 1 0 �1 0 0 0 00 0 0 0 0 1 �1 0 00 0 1 1 0 �1 0 0 00 0 �1 �1 0 �1 0 0 01 1 0 0 0 0 0 0 10 0 0 1 0 0 0 0 �1�1 0 0 �1 0 0 0 0 00 �1 0 0 0 0 0 0 00 �1 �1 0 �2 �2 0 0 00 0 0 0 0 0 1 0 00 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 1

��
00000000001000
3775After eliminating one, two, three, and four variables, the number of inequalities is 14, 13,12, 9, respectively. Our broad conclusion is that it is adequate and simple to use Fourier-Motzkin elimination for our termination analysis.

92Appendix B. Finding All Extreme Points and RaysIn this chapter, we describe how to modify Simplex algorithm to �nd all extreme pointsand rays of a polycone. Simplex algorithm assumes the feasible region is bounded and visitsbasic feasible solutions (extreme points) in such a way that they maximize (or minimize)the object function.In our setting, we need to �nd all basic feasible solutions (for short, BFS). Since BFSs areconnected and we can move from BFS to BFS by pivoting operation, we can use exhaustivegraph search algorithm such as depth-�rst search. The question is how we can identifyextreme rays.The simplex algorithm of linear programming can be modi�ed to �nd the extreme pointsand directions of a polycone. Background on this algorithm can be found in Papadimitriouand Steiglitz [PS82, Ch. 2], and elsewhere; we review the essentials briey. Assume we havea linear programming problem in a standard form, except for the objective function (whichmay be treated as 0). That is, we have a linear systemA� = b � � 0 (6:2)that describes the polycone, where A is an m�N matrix of full rank, and m < N . (This �includes x and the slack (independent) variables of the generalized Tucker representation;its arity is N .) Recall that a basis for the problem is a set ofm linearly independent columnsof A, designated AB(i) for 1 � i � m. B denotes the nonsingular matrix composed of thebasis columns of A. Here B is an m-element subset of f1; : : : ; Ng in a �xed sequence.An extreme point is a nonnegative vector P such thatPk = 0 for k =2 B.PB(i) = i-th component of B�1b.It is well known that basic feasible solutions correspond to vertices (extreme points) of thepolycone, and that they can be enumerated by pivoting from one basis to another.Suppose a column, say Aj , in the simplex tableau is all nonpositive. An extreme ray isa nonnegative vector R such that

93Phase I:Find �rst feasible basis.Try every possible combination of pivot columnsand rows until you get a feasible basis.If you �nd a row whose coe�cients are all nonnegativeand whose constant is negative while pivoting, orthere is no feasible basis,then the linear system is inconsistent, stop.Phase II:DFS(basis, tableau)Mark the basis visited.Print an extreme point and rays (if any)./* NONDETERMINISM HERE */Pick a column (entering variable) which is not in basisand at least one of whose members is positive.(If the column is all nonpositive, it's an extreme ray.)Find rows whose � is minimum so the entering variableguarantees new basis forms an extreme point.If no such column and row is found, fail.else pivot on tableau to produce new tableau.DFS(new neighboring basis, new tableau).Figure B.1: Algorithm to �nd all extreme points and raysRj = 1.Rk = 0 for k 6= j; k =2 B.RB(i) = - i-th component of Aj .The reasoning is we can move from P along R inde�nitely. More details can be found in[VG91, CH78].

94
-

6
x1

x2
�������������

�������� er:(1,1)6er:(0,1)
t tep:(0,0) ep:(1,0)p p p p p p p p p p p p p p p p p p p pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp p

Figure B.2: Extreme points and extreme rays of a polycone.Consider the following system of linear inequalities. Suppose x1 and x2 are constrainedto nonnegativity. �x1 � 0�x2 � 0x1 �x2 � 1 (B:1)The shaded area of Figure B.2 depicts the feasible region. As shown in the picture,we have two extreme points: (0,0) and (1,0) and two extreme rays: (0,1) and (1,1). Inwhat follows, we describe how to �nd those extreme points and rays with this example. Byadding slack variables x3; x4, and x5 and putting the system into matrix form, we have atableau in standard form:

95x1 x2 x3 x4 x50 -1 0 1 0 00 0 -1 0 1 01 1 -1 0 0 1The Basis is fx3; x4; x5g so we �nd an extreme point (0,0,0,0,1). The second column is allnonpositive so we �nd one extreme ray (0,1,0,1,1). This basis is marked as visited. Theunderlined entry is a pivot element, so we move to a new basis fx3; x4; x1g. The importantpoint is Simplex method never gets back to this tableau because it always marches towardsa optimal solution while our method using DFS gets back to explore other adjacent vertices.So we need to keep the state of this tableau, hence big overhead.x1 x2 x3 x4 x51 0 -1 1 0 10 0 -1 0 1 01 1 -1 0 0 -1Here we �nd an extreme point (1,0,1,0,0) and an extreme ray (1,1,1,1,0). By entering x5 inthe basis, we have a new basis fx5; x4; x1g.x1 x2 x3 x4 x51 0 -1 1 0 10 0 -1 0 1 00 1 0 -1 0 0Here we �nd an extreme point (0,0,0,0,1) and an extreme ray (0,1,0,1,1). By entering x3,we move to a new basis fx3; x4; x1g. Since this basis is already marked, we look for anotherpivot element. In this simple example, there are no other pivot elements, so we backtrackto the previous tableau.Finally, deleting slack variables from the extreme points and rays provides us with twoextreme points: (0,0) and (1,0) and two extreme rays: (0,1) and (1,1) for the initial linearsystem.

96Appendix C. Sessions for Test ProgramsC.1 Permutation| ?- terminate(perm(b,f),perm).+++ Rule-Goal Graph +++goal(perm(b,f),[perm(b,f),append(b,b,f),append(f,f,b)],[rule(1,[]),rule(2,[append(f,f,b),append(b,b,f),perm(b,f)])])goal(append(b,b,f),[append(b,b,f)],[rule(3,[]),rule(4,[append(b,b,f)])])goal(append(f,f,b),[append(f,f,b)],[rule(3,[]),rule(4,[append(f,f,b)])])+++ Predicate Dependency Graph +++adj(perm(b,f),[perm(b,f),append(b,b,f),append(f,f,b)])adj(append(b,b,f),[append(b,b,f)])adj(append(f,f,b),[append(f,f,b)])+++ Strongly Connected Components +++[perm(b,f)] [append(f,f,b)] [append(b,b,f)]+++ SCC([perm(b,f)]): testing termination +++range of delta(perm(b,f),perm(b,f)): (1.0,inf(+))range of phi(perm(b,f),perm(b,f)): (1.0,1.0)range of alpha(perm(b,f),1): (0.5,inf(+))+++ SCC([perm(b,f)]): shown to terminate ++++++ SCC([append(f,f,b)]): testing termination +++range of delta(append(f,f,b),append(f,f,b)): (1.0,inf(+))range of phi(append(f,f,b),append(f,f,b)): (1.0,1.0)

97range of alpha(append(f,f,b),1): (0.5,inf(+))+++ SCC([append(f,f,b)]): shown to terminate ++++++ SCC([append(b,b,f)]): testing termination +++range of alpha(append(b,b,f),2): (0.0,inf(+))range of delta(append(b,b,f),append(b,b,f)): (1.0,inf(+))range of phi(append(b,b,f),append(b,b,f)): (1.0,1.0)range of alpha(append(b,b,f),1): (0.5,inf(+))+++ SCC([append(b,b,f)]): shown to terminate +++| ?- statistics(runtime,T).T = [9030,310]

98C.2 Expression Parser| ?- terminate(e(b,f),ent).+++ Rule-Goal Graph +++goal(e(b,f),[e(b,f),t(b,f)],[rule(1,[t(b,f),e(b,f)]),rule(2,[t(b,f)])])goal(t(b,f),[t(b,f),n(b,f)],[rule(3,[n(b,f),t(b,f)]),rule(4,[n(b,f)])])goal(n(b,f),[e(b,f),z(b)],[rule(5,[e(b,f)]),rule(6,[z(b)])])goal(z(b),[],[rule(7,[]),rule(8,[]),rule(9,[])])+++ Predicate Dependency Graph +++adj(e(b,f),[e(b,f),t(b,f)])adj(t(b,f),[t(b,f),n(b,f)])adj(n(b,f),[e(b,f),z(b)])adj(z(b),[])+++ Strongly Connected Components +++[e(b,f),n(b,f),t(b,f)]+++ SCC([e(b,f),n(b,f),t(b,f)]): testing termination +++range of alpha(t(b,f),1): (0.5,inf(+))range of alpha(n(b,f),1): (0.5,0.5)range of alpha(e(b,f),1): (0.5,0.5)range of delta(t(b,f),t(b,f)): (1.0,2.0)range of delta(t(b,f),n(b,f)): (0.0,-0.0)range of delta(n(b,f),e(b,f)): (1.0,1.0)range of delta(e(b,f),t(b,f)): (0.0,-0.0)range of phi(t(b,f),n(b,f)): (0.0,-0.0)range of delta(e(b,f),e(b,f)): (1.0,2.0)

99range of phi(n(b,f),e(b,f)): (1.0,1.0)range of phi(t(b,f),t(b,f)): (1.0,1.0)range of phi(t(b,f),e(b,f)): (1.0,1.0)range of phi(e(b,f),t(b,f)): (0.0,-0.0)range of phi(n(b,f),t(b,f)): (1.0,1.0)range of phi(n(b,f),n(b,f)): (1.0,1.0)range of phi(e(b,f),n(b,f)): (0.0,-0.0)range of phi(e(b,f),e(b,f)): (1.0,-0.0)+++ SCC([e(b,f),n(b,f),t(b,f)]): shown to terminate +++| ?- statistics(runtime,T).T = [11299,1319]

100Appendix D. Test input programsD.1 Append% the third argument is a concatenation of the first twoappend([],L,L).append([H|L1],L2,[H|L3]) :- append(L1,L2,L3).D.2 Merge% merge U and V into Wmerge(U, [], U).merge([], V, V).merge([U | Us], [V | Vs],[U | Rs]) :- U > V, merge([V | Vs], Us, Rs).merge([U | Us],[V | Vs],[U, V | Rs]) :- U = V, merge(Vs, Us, Rs).merge([U | Us],[V | Vs],[V | Rs]) :- U < V, merge(Vs, [U | Us], Rs).D.3 Mergesort% merge sortmsort([], []).msort([X], [X]).msort([X, Y | R],Z) :-split([X, Y | R],U,V),msort(U, U1),msort(V, V1),merge(U1, V1, Z).% split U into V and W evenlysplit([], [], []).split([E | U], [E | V], W) :- split(U, W, V).

101% merge U and V into Wmerge(U, [], U).merge([], V, V).merge([U | Us], [V | Vs],[U | Rs]) :- U > V, merge([V | Vs], Us, Rs).merge([U | Us],[V | Vs],[U, V | Rs]) :- U = V, merge(Vs, Us, Rs).merge([U | Us],[V | Vs],[V | Rs]) :- U < V, merge(Vs, [U | Us], Rs).D.4 Permutation% one argument is a permutation of the otherperm([],[]).perm(L,[H|T]) :-append(V,[H|U],L),append(V,U,W),perm(W,T).append([],L,L).append([H|L1],L2,[H|L3]) :- append(L1,L2,L3).D.5 Parser% arithmetic expression parserz(L).e(L, T) :- t(L, T).e(L, T) :- t(L, ['+' | C]), e(C, T).t(L, T) :- n(L, T).t(L, T) :- n(L,['*' | C]), t(C, T).n([L | T], T) :- z(L).n(['(' | A], T) :- e(A, [')' | T]).

102References[AB91] K. R. Apt and M. Bezem. Acyclic programs. New Generation Computing,9:335{363, 1991.[AP90] K. R. Apt and D. Pedreschi. Studies in pure Prolog: termination. In Proceedingsof Esprit symposium on computational logic, pages 150{176, Brussels, November1990.[APP+89] F. Afrati, C. Papadimitriou, G. Papageorgiou, A. R. Roussou, Y. Sagiv, andJ. D. Ullman. On the convergence of query evaluation. Journal of Computer andSystem Sciences, 38(2):341{359, 1989.[BJCB87] M. Bruynooghe, G. Janssens, A. Callebaut, and Demoen B. Abstract interpre-tation: Towards the global optimisation of Prolog programs. In Proceedings ofthe 1987 International Symposium on Logic Programming, IEEE Press, 1987.[BS89a] A. Brodsky and Y. Sagiv. Inference of monotonicity constraints in Datalogprograms. In Eighth ACM Symposium on Principles of Database Systems, pages190{199, 1989.[BS89b] A. Brodsky and Y. Sagiv. On termination of Datalog programs. In FirstInternational Conference on Deductive and Object-Oriented Databases, pages95{112, Kyoto, Japan, 1989.[BS91] A. Brodsky and Y. Sagiv. Inference of inequality constraints in logic programs.In Tenth ACM Symposium on Principles of Database Systems, 1991.[CC77] P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice model forstatic analysis of programs by construction or approximation of �xpoints. InConference Record of the 4th ACM Symposium on Principles of ProgrammingLanguages, 1977.[CC92] P. Cousot and R. Cousot. Abstract interpretation and application to logicprograms. Journal of Logic Programming, 13:103{179, 1992.[CD93] M. Codish and B. Demoen. Analysing logic programs using \prop"-ositionallogic programs and a magic wand. In D. Miller, editor, Logic Programming:Proceedings of the 1993 International Symposium, pages 114{129, Cambridge,Massachusetts, 1993. MIT Press.[CFW91] G. Cortesi, G. Fil�e, and W. Winsborough. PROP revisited: Propositionalformula as abstract domain for groundness analysis. In Proceedings of SixthIEEE Symposium on Logic In Computer Science, pages 322{327, Cambridge,Massachusetts, 1991. IEEE Computer Society Press.[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints amongvariables of a program. In Conference Record of the 5th ACM Symposium onPrinciples of Programming Languages, pages 84{96, 1978.[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms,pages 488{493. MIT Press, New York, 1990.[CM81] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag, NewYork, 1981.

103[Dev90] P. Devienne. Weighted graphs: a tool for studying the halting problem andtime complexity in term rewriting systems and logic programming. TheoreticalComputer Science, 75(2):157{215, 1990.[DSD] D. De Schreye and S. Decorte. Termination of logic programs: the never-endingstory. preprint.[DSVB90] D. De Schreye, K. Verschaetse, and M. Bruynooghe. A practical technique fordetecting non-terminating queries for a restricted class of horn clauses, usingdirected, weighted graphs. In Proc. 7th Int'l Conf. on Logic Programming, pages649{663, Jerusalem, 1990.[DW88] S. K. Debray and D. S. Warren. Automatic mode inference for logic programs.Journal of Logic Programming, 5(3):207{229, 1988.[Gr�u67] B. Gr�unbaum. Convex Polytopes. John Wiley and Sons, New York, 1967.[Hog90] C. J. Hogger. Essentials of Logic Programming. Oxford University Press, NewYork, 1990.[KLTZ83] M. H. Karwan, V. Lofti, J. Telgen, and S. Zionts. Redundancy in MathematicalProgramming: A State-of-the-Art Survey. Springer-Verlag, New York, 1983.[Kow74] R. A. Kowalski. Predicate logic as a programming language. In Proceedings ofIFIP'74, pages 569{574, Amsterdam, 1974. North-Holland.[Kow79] R. A. Kowalski. Algorithm = logic + control. Communications of the ACM,22:424{431, 1979.[Las90a] J.-L. Lassez. Parametric queries, linear constraints and variable elimination. InProceedings of DISCO 90, Springer Verlag Lecture Notes in Computer Science,1990.[Las90b] J.-L. Lassez. Querying constraints. In Ninth ACM Symposium on Principles ofDatabase Systems, pages 288{298, 1990.[LCVH93] B. Le Charlier and P. Van Hentenryck. Groundness analysis for prolog: imple-mentation and evaluation of the domain PROP. In Proceedings of Symposiumon Partial Evaluation and Semantics-based Program Manipulation, 1993.[LHM89] J.-L. Lassez, H. Huynh, and K. McAloon. Simpli�cation and elimination ofredundant linear arithmetic constraints. In North American Conf. on LogicProgramming, pages 37{51, 1989.[Llo84] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, New York,1984.[Mel81] C. S. Mellish. The automatic generation of mode declaration for logic programs.Technical Report DAI Research Paper 163, Department of Arti�cial Intelligence,University of Edinburgh, Scotland, 1981.[Mel85] C. S. Mellish. Some global optimizations for a prolog compiler. Journal of LogicProgramming, 2(1):43{66, 1985.[Mel87] C. S. Mellish. Abstract interpretation of Prolog programs. In S. Abramskyand C. Hankin, editors, Abstract Interpretation of Declarative Languages, pages181{198. Ellis Horword, Chichester, U.K., 1987.

104[MR80] T. H.Matheiss and D. S. Rubin. A survey and comparison of methods for �ndingall vertices of convexpolyhedral sets.Mathematics of OperationsResearch, 5:167{185, 1980.[MS88] K. Marriott and H. S�ndergaard. Bottom-up abstract interpretation of logicprograms. In S. K. Debray and M. Hermenegildo, editors, Logic Programming:Proceedings of the Fifth International Conference, pages 733{748, Cambridge,Massachusetts, 1988. MIT Press.[MS89] K. Marriott and H. S�ndergaard. Notes for a tutorial on abstract interpretationof logic programs. North American Conf. on Logic Programming, 1989.[MU87] H. Mannila and E. Ukkonen. Flow analysis of Prolog programs. In Proceedingsof the 1987 International Symposium on Logic Programming. IEEE Press, 1987.[MUVG86] K.Morris, J. D. Ullman, and A. VanGelder. Design overview of the Nail! system.In Third Int'l Conf. on Logic Programming, pages 554{568, 1986.[Nai83] L. Naish. Automatic generation of control for logic programs. Technical Report83/6,Dept. ofComputer Science, University ofMelbourne, Melbourne, Australia,1983.[Pl�u90a] L. Pl�umer. Termination Proofs for Logic Programs, volume 446 of Lecture Notesin Arti�cial Intelligence. Springer-Verlag, 1990.[Pl�u90b] L. Pl�umer. Termination proofs for logic programs based on predicate inequalities.In Proc. 7th Int'l Conf. on Logic Programming, pages 634{648, Jerusalem, 1990.[PS82] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization. Prentice-Hall, Englewood Cli�s, NJ, 1982.[Roc70] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ,1970.[Sag91] Y. Sagiv. A termination test for logic programs. In Proceedings of ILPS'91, pages160{171, San Diego, 1991. MIT Press.[Sch86] A. Schrijver. Theory of Linear and Integer Programming. Wiley, NewYork, 1986.[SS86] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cambridge,Massachusetts, 1986.[SU84] Y. Sagiv and J. D. Ullman. Complexity of a top-down capture rule. TechnicalReport STAN{CS{84{1009, Stanford University, 1984.[SVG91] K. Sohn and A. Van Gelder. Termination detection in logic programs usingargument sizes. In Tenth ACM Symposium on Principles of Database Systems,1991.[Ull85] J. D. Ullman. Implementation of logical query languages for databases. ACMTransactions on Database Systems, 10(3):289{321, 1985.[Ull89] J. D. Ullman. Principles of Database and Knowledge-base Systems. ComputerScience Press, Rockville, MD, 1989.[UV88] J. D. Ullman and M. Y. Vardi. The complexity of ordering subgoals. InProceedings of Principles of Database Systems, pages 74{81, 1988.[UVG85] J. D. Ullman and A. Van Gelder. Testing applicability of top-down capture rules.Technical Report STAN{CS{85{1046, Dept. of Computer Science, StanfordUniversity, Stanford, CA, April 1985.

105[UVG88] J. D. Ullman and A. Van Gelder. E�cient tests for top-down termination oflogical rules. Journal of the ACM, 35(2):345{373, 1988.[VG91] A. Van Gelder. Deriving constraints among argument sizes in logic programs.Annals of Mathematics and Arti�cial Intelligence, 3, 1991. Extended abstractappears in Ninth ACM Symposium on Principles of Database Systems, 1990.[War77] D. H. D. Warren. Implementing prolog - compiling predicate logic programs.Technical Report DAI Research Paper 39 and 40, Department of Arti�cialIntelligence, University of Edinburgh, Scotland, 1977.

