UNIVERSITY OF CALIFORNIA
SaANTAa CRUZ

Automated Termination Analysis for Logic Programs

A dissertation submitted in partial satisfaction
of the requirements for the degree of

DocToORrR OF PHILOSOPHY
in
COMPUTER AND INFORMATION SCIENCES
by
Kirack Sohn
December 1993

The dissertation of Kirack Sohn is approved:

Allen Van Gelder

Phokion G. Kolaitis

Al Kelly

Dean of Graduate Studies and Research

Copyright © by
Kirack Sohn
1993

Contents

Abstract

iii

Acknowledgements

1. Introduction

1.1 Why Termination Analysis
1.2 How It Works e
1.3 Outline of the Thesis

2. Logic Programming Preliminaries

2.1 Logic Programs e e e e
2.2 SLD Resolution L e e
2.3 Fixpoint Semantics L L Lo e
2.4 Deductive Databases L L e

3. Termination Detection

3.1 Basic Concepts L e
3.1.1 Predicate Dependency Graphs
3.1.2 Modular Termination Analysis
3.1.3 Bound-Free Adornments L oo
3.1.4 Rule-Goal Graphs o oL
3.1.5 Adorned Programs oL L
3.1.6 Subterm Ordering
3.1.7 Abstractions of Terms o o oL

3.2 Related Work o

3.3 Argument Size Constraints L L o

vii

viii

11
16

18

20

v

3.4 Derivation of Termination Condition
3.5 Multiple Bound Arguments
3.6 Extension to Mutual Recursion
3.6.1 Mutual Recursion 0
3.6.2 Nonmlinear Recursion 0 ..

3.7 Limitations

3.8 Extension to CLP(R)

3.9 Discussion

4. Inference of Interargument Constraints

4.1 Introduction oL e
4.2 Basic Concepts oL L e e
4.3 Transformations Corresponding to Logic Programs
4.4 Translativeness Property oo
4.5 Extreme Points of a Polycone oo oo

4.6 Summary

5. Relational Groundness Analysis

5.1 Imtroduction L
5.2 Basic Concepts L e e
5.2.1 Abstraction Lo
5.2.2 Relational Abstract Domains
5.2.3 Groundness Constraints 0oL
5.3 Simplifications and Normal Forms

5.4 Bottom-Up

5.5 Summary

6. Conclusion

Groundness Analysis o 0L oo

54

54

57

59

64

69

72

74

74

76

76

78

80

81

83

85

86

A. Fourier-Motzkin Elimination

B. Finding All Extreme Points and Rays

C. Sessions for Test Programs
C.1 Permutation L e

C.2 Expression Parser. o

D. Test input programs
D.1 Append e
D.2 Merge e
D.3 Mergesort
D.4 Permutation e e

D.5 Parser e e e

References

88

92

96

96

98

100

100

100

100

101

101

102

vi

List of Figures

1.1

2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

4.1

5.1

B.1

B.2

A logic program: permutation. oL o oo

An SLD tree via the computation rule selecting the left-most subgoal.
An SLD tree via the computation rule selecting the right-most subgoal.

SLDNF-Refutation Procedure.

A predicate dependency graph.o
A rule-goal graph for the adorned query perm®.
The first argument of append goal over execution. (a) at initial call. Termsize
= 6. (b) after one recursive call. Termsize = 4. (c) after two recursive calls.

Termsize = 2. (d) after three recursive calls. Termsize =0.
(a) tree representation of [a,b], termsize = 4 and listsize = 2. (b) tree
representation of [a,X|Y], termsize = 4+ X + Y and listsize = 2+ Y.

Nonnegative linear combination

Extension to mutual recursion. o Lo oo
Polycones after recursive transformations
Diagram of ground analysis o oL

Algorithm to find all extreme points and rays

Extreme points and extreme rays of a polycone.

14

15

17

21

25

27

Automated Termination Analysis for Logic Programs

Kirack Sohn

ABSTRACT

The question of whether logic programs with function symbols terminate in a top-down
(Prolog-like) execution is considered. Automated termination analysis is an essential tool
for generating a suitable control in modern deductive database systems, such as LDI and
NAIL!.

We describe a method of identifying a nonnegative linear combination of bound argument
sizes, which (if found) strictly decreases in a top-down execution of logic programs. Testing
a termination condition is transformed to a feasibility problem of linear inequalities using
duality theory of linear programming. For nontrivial termination proofs, we often need to
know the relationship among argument sizes of a predicate. We formalize the relationship
by a fixpoint of “recursive transformation” mimicking immediate consequence operator.
Since the transformation sometimes fails to finitely converge, we provide some practical
techniques to resolve this problem. We also need to indicate which arguments are bound
to ground terms during goal reduction. A method for deriving such binding information is
described in the framework of abstract interpretation. Positive propositional formula are
used to represent groundness dependency among arguments of a predicate.

This methodology can handle nonlinear recursion, mutual recursion, and cases in which
no specific argument is certain to decrease. Several programs that could not be shown to

terminate by earlier published methods are handled successfully.

Keywords: logic programs, deductive databases, termination, interargument constraints,

groundness analysis

viii

Acknowledgements

First of all, I would like to thank Allen Van Gelder, who is a wonderful advisor and a
source of inspiration. His unfailing sharpness of thought was a strong support. He taught
and influenced me in very many ways: a balance between theory and practice, how to
tackle problems, technical writing and presentation skills. More importantly, he supplied
me a model for a scientist.

My sincere thanks also go to Phokion Kolaitis, who provided me with a firm basis of
logic in computer science. 1 also thank David Haussler, who served for my oral exam, and
Al Kelly, who read my dissertation, and all professors in CIS/CE at UCSC, who taught me
computer sciences. [thank Lynne Sheehan for her help and advice. It has been pleasant
to ask her help and discuss problems. My colleagues, H. Yoon, T.J. Park, Kjell Post, Yumi
Tsuji, discussed my work with me and made insightful observations. They made it enjoyable
to stay here at UCSC. Thanks, guys!

The most important support came to me from my family: my wife, Hyunjoo and our
wonderful kid, Dong-Gyu, who have kept my mood high and shared the burden of my
study. Finally, my deepest appreciation goes to my parents in Korea for their incessant

encouragement and patience.

1. Introduction

Logic programming was first introduced in a seminal article of Kowalski in 1974 [Kow74].
It has been successfully used as a tool for several areas including compiler writing, expert
system design, natural language processing, hardware design, and knowledge-base design
for two decades. The power of logic programming stems from two facts: its formalism is so
simple and its semantics is based on clean mathematical logic.

Although it is more relevant in logic programming than in procedural programming,
termination analysis was a relatively neglected subject in logic programming areas in
contrast to the endeavor made for procedural languages for a long time. The last few
years have nevertheless seen a variety of proposed methods. D. De Schreye and S. Decorte
studied and collected in their reference list a total of 53 papers published on this topic since
1988 [DSD]. This proliferation is mainly motivated by the practical needs for termination
analysis, such as in the area of control generation and program verification. A major concern
in this case is automation of the termination proof process [Nai83, UVGSS, APPT89, BS89b,
DSVB90, Pli90a, P1i90b, Sagdl, SVGI1]. Another approach concerns the characterization
of terminating logic programs. It aims at the treatment of negation as finite failure or the
better understanding of decidability issues [AP90, AB91, Dev90]. These rather theoretical
works usually provides manually verifiable criteria for termination.

Undecidability of the halting problem, a classical result of theoretical computer science,
states that it is undecidable to determine whether or not any program terminates. The
proposed method of this thesis only analyzes a sufficient condition; i.e., a program may
terminate without our method detecting that fact.

This introductory chapter is organized as follows. In Section 1.1, we describe why
termination analysis has practical importance, in particular with regard to its application
to deductive databases. In Section 1.2, we briefly describe how the analysis works in general
and what treatments are needed in case of termination analysis for logic programs. In

Section 1.3, we give the organization of the thesis, serving as a short introduction to each

chapter.

1.1 Why Termination Analysis

There are a number of situations where termination analysis is useful and necessary.
One obvious contribution of termination analysis is to the development of reliable software.
Motivations for termination analysis in logic programming, however, arise from more or less
different purposes.

The well-known Kowalski’s formula [Kow79] says a logic program can be viewed as
Algorithm = Logic + Control. Since the control component of a logic program is
independent of its logic component, various control schemes tailored for the applications
can be developed. Standard Prolog interpreters, equipped with depth-first search strategy
are one example of control scheme. Unfortunately, this control scheme is unfair; that is,
we are not guaranteed to always find a success branch which is logically derivable due to a
non-terminating computation. To complement such a shortcoming, termination analysis
is useful. With the negation as finite failure rule, the requirement of having a finite
computation tree associated with a negated atom is also closely related to termination
analysis.

Let us now turn to the application of logic to databases, often called deductive databases.
Recently, many prototypes (e.g. Aditi, CORAL, EKS, LDL, LOGRES, LOLA, NAIL-
GLUE, RDL, XSB) have been demonstrated in research environments, and a number
of applications have been developed using these systems. They seem to be promising
alternatives for next generation database systems.

A deductive database is divided into two components: an extensional database (EDB),
which consists of a set of database facts, and an intensional database (IDB), which consists
of a set of rules defining how additional relations are computed. IDBs may be evaluated
either top-down or bottom-up. Bottom-up evaluation is often said to be more efficient
for logic programs with finite domains (Datalog); however, there is no corresponding

claim for general logic programs with function symbols. One of main problems in this

regard is to generate suitable evaluation strategy. Capture rules were introduced to decide
which evaluation strategy is efficiently applicable to a logic program provided with a goal
[UVGS85, Ull85, MUVGS6]. A capture rule is a statement of the form: “if the rules satisfy
such-and-such conditions, then a good evaluation method is such-and-such.” A minimal
requirement to apply top-down execution method is the guarantee of termination for any
query of interest. Ullman and Van Gelder were the first who studied termination analysis
in deductive database environments with a strong emphasis on automation of the analysis
[UVGS8S]. Later, the method was enhanced by Plimer [Pli90a, Pli90b] and Van Gelder
and Sohn [SVGI1]. Brodsky and Sagiv, who studied termination of Datalog programs, were

also main contributors along this line [BS89b, Sag91].

1.2 How It Works

In this section, we shall describe the basic structure of termination proof for logic
programs. Every termination proof is tantamount to showing the well-foundedness (no
infinitely decreasing sequence) of a computation path. Consider a simple while loop in C.
s$1: while (x > 0)
89t X =x-1;

The sources of infinite computation in procedural programs are loops. In this example, we
have a loop control construct while. The valid domain for x at sy is positive. Suppose the
initial value of x is positive, say IV, otherwise the execution will exit from the while loop by
the test x > 0 at sq1. Since the positive value satisfies the test, the value of x decrements by

1 at s3. A simple induction shows that the value of x changes over the execution as follows:
N,N-1,....,.N-K

where N — K > 0 and N — K — 1 < 0. The sequence is not infinitely decreasing, showing

termination of while loop.

Let us take one more example illustrating termination detection technique.

s$3: while (x < N)
84t XxX=x+1;
The technique used in the first example is not directly applicable here. Let us associate a
function f(2) = N —a with the while loop so that we consider the value of f(2) instead of z.
Now the domain of f(z) at s3 is positive and f(z) decreases by 1 over the execution of while
loop, since x increases by 1. Then the sequence of the values of f(z) over the execution is
finite, showing the termination. Essentially, what we should do to prove termination is to
find such a function f that its range is nonnegative and its value decreases over execution,
although the above two examples are too simple to describe detailed proof techniques.
The idea used in the above procedural programs is universal in termination proof for
any language. However, proofs are quite different in technical levels due to the differences in
the structure and the attributes of underlying languages. The following is a logic program
similar to the first C program. Note there are no loop control structures in logic programs
since recursion is the only way to iterate computation.
ri: p(0).
ror p(s(X)) - p(X).
The term s(X) denotes the successor to X, so it can be viewed as X + 1. First of all, we
can not say whether the program terminates or not without taking a call (or query) to the
procedure into account. The reason is logical variables are totally different from procedural
ones, which are always bound. Logical variables do not have any values initially but they
may be bound to values after the procedures are called. The value is permanent once it is
bound (called “single assignment”). Thus, we need to make sure the call binds the variable
X. For example, a call p(s(s(0))), which binds the logical variable X, terminates. But p(U)
does not terminate. What happens is the call p(U) does not bind X so the new call p(X)
repeats the previous call. More difficult problems of this kind arise from unification and
partially bound structures.
Another technical difficulty arises from nondeterministic behavior of logic programs.

Unlike procedural programs, there is conceptually no single thread of computation in the

ri: perm([], [1).

ro: perm(P, [X|L]) :-

To.1: append(E, [XI|F], P),
2.2 append(E, F, P1),
T9.3: perm(P1, L).

r3: append([], L, L).
rq: append([X|L1], L2, [XIL3]) :-

T4.1: append(L1, L2, L3).

Figure 1.1: A logic program: permutation.

execution of logic programs.

Termination analysis can be affected by the underlying mechanism of handling nonde-
terminism such as backtracking, rule-goal tree expansion. One alternative is to consider all
the computation threads for termination simultaneously independently of the mechanisms
used. This type of termination is called “universal termination”, taken in most published
research.

To understand the problems with respect to deriving level mapping function, let us
consider a practical logic program in Figure 1.1, which in turn will be used as an example
program in this thesis. The readers who are not familiar with the syntax and semantics of
logic programs are advised to skip or get back after reading Chapter 2. In Figure 1.1, perm
succeeds when one argument is a permutation of list elements in the other argument, and
append succeeds when its third argument is a concatenation of the first two.

We want to prove termination of a query perm with the first argument bound. As a
matter of fact, we need to prove two subgoals append in r51 and ry5 before the recursive
subgoal permin r; 3, assuming standard Prolog computation rule selecting leftmost subgoal.
The proof in either case of append goals is direct because one bound argument in the
recursive subgoal is a proper subterm of the bound argument in the same position of the head

in r4. More precisely, a proper subterm ordering is not infinitely decreasing so a sequence

of append goals is not infinitely decreasing too because the first (or third) arguments of the
goals are ordered by proper subterm ordering. However, the termination of perm cannot be
proved similarly because there is no direct relationship between P and P1.

Our approach to this problem is to infer the relationship among arguments in the
subgoals, append in this case, so as to relate P and P1. Analysis of append rules supplies the
fact that the list length of the third argument of append is equal to the sum of the length of
the first two. (List length is the number of elements in a list.) Omitting some arithmetic, we
can conclude the list length of P1 is less than the list length of P, hence proving termination
of the query perm with the first argument bound. To achieve nontrivial termination proofs,
it is essential to derive the relationship among argument sizes. Note two nonrecursive rules

r1 and r3 play no part in termination analysis.

1.3 Outline of the Thesis

In Chapter 2, we describe basic notations and concepts of logic programming used in this
thesis. It also serves as a brief introduction to logic programming and deductive databases.

We assume logic programs are executed in a top-down, left-to-right (Prolog-like) fashion.
Internal data are organized using structures in Prolog context, which are almost always
processed through recursive rules. As in earlier methods, termination of recursion on
structures can be achieved by showing a well-foundedness of goal-reduction graph.

In Chapter 3, we describe termination proof procedure based on argument sizes. This
chapter result from collaborative works with A. Van Gelder. We begin this chapter by giving
the basic concepts for termination analysis, such as predicate dependency graphs, bound-
free adornments, rule-goal graphs, well-founded ordering, and size abstraction of terms.
We then describe how to formalize termination condition and transform it to testable form
using linear programming theory.

We view argument sizes of derivable facts involving an n-ary predicate as points in the
nonnegative orthant of R™. Qur approach is to find a nonnegative linear combination of

bound argument sizes of recursive goals which decreases by at least some positive constant

in each recursive call. FExistence of such a nonnegative linear combination proves the
termination of a recursive goal, since argument sizes are constrained to nonnegativity, so is
its nonnegative combination. Qur method applies to nonlinear and mutual recursion with
a slight extension. We also discuss limitations of our method.

Local variables are logical variables which do not appear in the head, but appear
somewhere else in the rule. It is often the case that there is no direct relationship among
the argument sizes in a head and those in a recursive subgoal due to the occurrences of
local variables. Termination analysis for a certain rule may require the constraints among
argument sizes of subgoals before a chosen recursive subgoal.

In Chapter 4, we will describe how to derive those constraints, so-called “interargument
constraints” of a predicate. Interargument constraints are essentially a set of constraints
which every derivable fact with respect to a predicate satisfies. Research on this topic has
recently been studied as a separate task [BS89a, VG91, BS91]. In this thesis, the argument
sizes of derivable facts with respect to an n-ary predicate are viewed as a set of points
in R™, which are approximated by their convex hull. Such constraints are formalized by
a fixpoint of “recursive transformation” mimicking immediate consequence operator used
to define the fixpoint semantics. However, the transformation do not necessarily converge
in finitely many iterations. Approximating polycones to their affine hulls provides useful
interargument constraints in many practical programs, guaranteeing convergence.

For a class of linear recursive logic programs satisfying so-called “translativeness”
property, precise interargument constraints can be obtained via the analysis of structures
of recursive transformations.

We need to find extreme points of polycones in a certain representation to verify a
fixpoint. Finding extreme points is a time-consuming process. We investigate an efficient
method to find them by exploiting information on adjacency of extreme points.

One of the most attractive features of logic programs is that arguments may be used
bidirectionally, as input or output at run-time. Groundness analysis is a dataflow analysis

to infer whether the arguments of a call are instantiated to ground terms before the call is

made or after the call is completed.

In Chapter 5, we formalize an efficient and precise groundness analysis for logic programs
as an instance of an abstract interpretation. Aliased variables are variables which share the
same object. They are often a hindrance to precise groundness analysis. Though relational
groundness analysis can resolve globally the problems due to aliased variables, it has been
considered to be impractical since tables representing the relationship are usually very big,
hence hard to handle. In our formalism, the groundness relationships are represented in
the form of boolean OR, constraints. Since in practice such constraints are almost always in
simple computable forms, our method runs efficiently. The abstract domain is exemplified
with bottom-up abstract interpretation finding success patterns of a predicate (groundness
information after a call is completed).

This chapter is rather independent of the main research thread. In general, groundness
information is used by a compiler to effect various optimizations. However, to apply our
termination analysis to general logic programs where safety assumption does not hold,
groundness analysis is necessary.

Chapter 6 discusses further research directions and concludes the thesis.

2. Logic Programming Preliminaries

Since logic programming was introduced in Kowalski’s seminal paper in 1974 [Kow74],
logic has been successfully used as a programming language for two decades in various areas
of computer sciences, not to mention artificial intelligence and database. Its power stems
from simple formalism and rigorous mathematical framework. This chapter introduces the
basic concepts of logic programming, which will in turn be used throughout the thesis.
Since this chapter serves only a short introduction to logic programming enough to follow

the thesis, readers may consult the book by Lloyd [Llo84] for details.

2.1 Logic Programs

We first give an inductive definition of terms. Constants or variables are terms. If f is
an n-ary function symbol, and ty,...,%, are terms, then f(¢1,...,%,) is a term. If p is an
n-ary predicate symbol, and t;,...,¢, are terms, then p(t1,...,%,) is an atom. A literal is
either an atom or a negated atom. A negated atom is a negative literal; one that is not
negated is a positive literal. A clause is a disjunction of literals. A Horn clause is a clause
with at most one positive literal. A Horn clause is thus either

1. A single positive literal, e.g., p(a,b), which we regard as a fact,

2. One or more negative literals, with no positive literal, which we regard as a goal, or

3. A positive literal and one more negative literals, which is a rule.

A Horn clause of group (3) in the form of: =gy V ---V =g, V p is logically equivalent to
(n A --- A gy) — p. The latter is natural expression of an inference rule, which can be
understood as “If ¢1,..., ¢, are true, then p is true.” Following Prolog syntax, we shall use

the notation:

Pi-q1y.--5qn.

for (g1 A-+-Agq,) — p. The atom p is called the head of the rule and ¢, ..., ¢, is called the

body. A logic program (or just a program) is a finite set of rules and facts.

10

Variables appearing only in the body may be viewed as existentially quantified in the
body, while other variables are universally over the entire rule. For example, a logical rule
path with variables X, Y, and Z:

path(X, Y) :- path(X, Z), path(Z, Y).
can be understood as “For all X and Y, there is a path from X to Y if there exists Z such that
there is a path from X to Z and there is a path from Z to Y.” The predicate path defines
essentially transitive closure relation.

Following Prolog syntax, Horn clause of group (2) in the form of: =gy V ---V g, is

denoted

TG, n

It is called a goal clause, that is, a clause with no head. Fach ¢; (i = 1,...,n) is called a
subgoal of the goal clause.

Technically, an empty clause, that is, a clause with empty head and empty body is
denoted []. This clause is understood as a contradiction.

In examples, we shall use standard Edinburgh-style Prolog syntax [CMS81, SS86];
Variables are denoted by a character string starting with uppercase letters while constants,
function symbols, and predicate symbols are denoted by a character string starting with
lower case letters. The syntax [H|T] (equivalent to .’ (H,T)) denotes a list whose head is
H and tail is T. Null (or empty) list is denoted by a constant “[1” (read as “nil”). [a, b,
c] is a list of three elements. [X, Y | U] is a list with at least two elements.

In Prolog terminology, a structure is viewed as an uninterpreted function symbol with
terms as its arguments. Structures are the only object to organize data local to rules. Such
data are almost always processed through recursion (called “recursion on structure”). The
set of all rules with the predicate p in the head of the rules is called the procedure (or

definition) of p. A ground term (clause) is one without variables.
Example 2.1: Consider a simple Prolog program defining the transitive closure relation.

r1: path(X, Y) :- connected(X, Y).

11

ro: path(X, Y) :- connected(X, Z), path(Z, Y).
rg: connected(sfo, ny).

r4: connected(ny, paris).

The fact connected(sfo, ny) can be read as “there is a connection from sfo to ny .” The
rule vy and r9 say “for all X and Y, there is a path from X to Y if there is a connection from
X to Y or if there exists Z such that there is a connection from X to Z there is a path from Z
to Y”. The predicate connected defines EDB relation and the predicate path defines IDB

relation. The rules 7y, ry are the procedure of the predicate path. []

2.2 SLD Resolution

In this section, we introduce such notions as unification and SLD-resolution, which are
central to logic programming.
A substitution 8 is a finite mapping from variables to terms, and is written as a set of

variable/term pairs:
{$1/t1, .. 7$n/tn}

When the substitution is applied to a syntactic object e, it reads informally: “all occurrences
of variables #1,...,2, in e are replaced by (or are bound to) terms #1,...,%,, respectively.”
The resulting syntactic object is ef. A pair x;/t; is called a binding. Note the notation
implies the variables z1,...,z, are distinct. If a substitution # is a one-to-one and onto
mapping (i.e. permutation) from its domain and itself, it is called a renaming substitution.
A variant of an expression is obtained by applying a renaming substitution to the expression.
If all ¢1,...,1, are ground, then 8 is called a ground substitution or instantiation. For a
(ground) substitution 6, e is called a (ground) instance of e.

Example 2.2: Atom p(U,V,Z) is a variant of p(X,Y,Z), since p(U,V,Z) can be obtained
by applying a renaming substitution {X/U,Y/V,U/X,V/Y} to p(X,Y,Z). Atom p(a,b,a) is a

ground instance of p(X,Y,X).[]

12

Substitutions can be composed. Given substitutions 8§ = {&1/u1,...,2mn/ Uy} and ¢ =
{y1/v1,...,yn/vn}, the composition §o of § and o is the substitution obtained from the set
{$1/U10’, RS xm/umgv yl/vlv ce '7yn/vn}

by removing those pairs z;/u;o for which 21 = wy0 and removing any pairs y;/v; for which
y; € {z1,...,2,}. A substitution 6 is said to be more general than a substitution 7 if we
have n = 8o for some substitution o. A substitution # is a unifier of expressions A and B
if A9 and B6 are syntactically identical. A and B are unifiable if there exists a unifier. A
unifier 8 of A and B is called a most general unifier (or shortly mgu) if it is more general
than any other unifier of A and B. If A and B are unifiable, then there exists a most general
unifier mgu(A, B), which is unique up to variable renaming.
Example 2.3: Suppose we have two atoms p(X,Y) and p(a,U) and a substitution n =
{X/a, Y/b, U/b}. They are unifiable since p(X,Y) 6 = p(a,U) 6. A substitution § = {X/a,
Y/U} is more general than € since there is a substitution o = {Y/b,U/b} such that n = fo.
Indeed, @ is the most general unifier. []

Let G be the goal :-Ay,...,A4,,..., A, and C be the clause A:-By,...,B,. G’ is
derived from G and € using mgu @ if the following holds:

1. A, is an atom, called the selected atom, in G

2. 0 is an mgu of A4, and A.

3. G'is the goal := (Ay,..., A1, B1,..., By, A1, ..., Ap)b

An SLD-derivation consists of a (finite or infinite) sequence Gy = G, G, ... of goals, a
sequence (1,5, ... of variants of program clauses and a sequence 61,605, ... of mgus such
that

1. €41 has no variables in common with Gg,...,G; and

2. each G414 is derived from G; and €41 using 6;41.
A single derivation step is called SLD-resolution.

A computation rule uniquely determines which atom (called selected atom) is selected
for every goal in a derivation. The standard Prolog computation rule is to always select the

leftmost atom in a goal.

13

An SLD-derivation is finite if, for some goal GG; in the derivation, there is no next goal.
There are two cases. The SLD-derivation is successful if G; is an empty goal. In this
case, it is called an SLD-refutation for the initial goal G. The second case occurs when
the derivation is finitely failed. A derivation fails finitely if for some G no head of (the
variant of) a clause unifies with the selected atom of G;. The totality of SLD-derivations
constructed starting from G' under a certain computation rule forms a search space called
an SLD-tree. Let P be a program, G a goal and R a computation rule. The SLD-tree for
P U{G} via R is a tree of goals defined as follows:

1. The root is G.

2. Let G’ be a node in the tree and A a selected atom of G’ under R. The node G’ has
exactly one descendant for every clause C' of P such that A unifies with the head of
the variant €’ of C'. This descendant is derived from G’ and C’ using an mgu of A
and the head of C".

SLD-resolution is a refinement of the resolution inference rule given by Robinson. An
inference rule is correct or sound if only valid formulas are inferred. It is called complete if
all valid formulas can be inferred. Resolution is sound and complete for logical formulas in
clausal form. Soundness of SLD-resolution is directly implied by soundness of resolution.
While SLD-resolution is incomplete for clauses in general, it is complete for Horn-clauses
independently of computation rules. An SLD-derivation is fair if every atom that appears
in the derivation is chosen at some step. The success set of a definite program P is the set
of all A € Bp such that the queried program (P, A) has an SLD-refutation. A success set

corresponds to the least Herbrand model of model-theoretic semantics.

Example 2.4: Continuing with Example 2.1, Figure 2.1 shows a finite SLD tree for initial
goal path(sfo, D) constructed by standard Prolog computation rule (select leftmost atom).
while Figure 2.2 shows an infinite SLD tree for the same initial goal constructed by selecting
rightmost goal. In Figure 2.1 and Figure 2.2, p and ¢ stand for path and connected,
respectively. Selected atoms are underlined, and used clauses and performed substitutions

are indicated. Used rules are appropriately renamed. This example shows the choice of

14

p(sfo,D)

{X,/sfo,Y,/D} T T2 {Xy/sfo,Y,/D}

c(sfo,D) c(sfo,Zy),p(Z;,D)
{D/ny} r3 T3 {Z;/ny}
p(ny,D)

success: {D/ny}

{X3/ny,Ys3/D} r1 Ty {X4/ny,Y4/D}

c(ny,D) c(ny,Z4) ,p(Z4,D)
{D/paris} r3 T4 {Z,/paris}
p(paris,D)

success: {D/paris}

{Xs/paris,¥5/D} /71 rg N\ {X¢/paris,¥s/D}

c(paris,D) c(paris,Zg) ,p(Zg,D)

failure failure

Figure 2.1: An SLD tree via the computation rule selecting the left-most subgoal.

15

p(sfo,D)

{X,/sfo,Y,/D} T T2 {Xy/sfo,Y4/D}

c(sfo,D) c(sfo,Z3),p(Z;,D)

{D/ny} |'s {X3/2Z5,Y5/D} {X4/Z5,Y4/D}

C(SfO,ZQ) QC(229 Z4) ,p(Z4QD)

success: {D/n

1 T2

C(SfO:ZQ) :C(ZQ:D)

finite subtree infinite path
{Z5/sfo0,D/ny} r3 T4 {Z4/ny,D/paris?}

c(sfo,sfo) c(sfo,ny)

failure
T3

success: {D/paris}

Figure 2.2: An SLD tree via the computation rule selecting the right-most subgoal.

16

computation rule has a great bearing on the size and structure of the corresponding SLD-
tree. However, in both SLD trees, we find the same success set {path(sfo, ny), path(sfo,

paris)} by the independence of computation rule. []

We now turn to the problem of searching SLD-trees to find success branches. Two
well-known search strategies are depth-first and breadth-first. Depth-first search strategy
is employed in most Prolog implementations since it can be implemented very efficiently.
However, the efficiency is achieved on the sacrifice of fairness of SLD-resolution. As shown
in Figure 2.2, once we get into the infinite branch, the other success branches will never
be explored. In this thesis, SLD-resolution equipped with leftmost computation rule and
depth-first search strategy like standard Prolog system is assumed, unless explicitly stated
otherwise.

With Horn clauses we can express what is true but not what is false. That is, SLD-
resolution can not deduce negative information. There are some examples where it is
natural to require that also negative information can be deduced. One possibility to do
that is to conclude that a fact = A is true if A is not proved from a program P. This rule
is usually called “closed world assumption.” Unfortunately, it is not an effective reasoning
method, since the set of negative facts derived by closed world assumption is not necessarily
recursively enumerable. A way out of this problem is to adopt some more restrictive form
of unprovability, namely, finite failure. An SLD-tree is finitely failed if it is finite and every
branch is failure. So we conclude = A if the SLD tree associated with a ground atom A
is finitely failed. SLD-resolution together with negation as finite failure is called SLDNF-

resolution. The algorithm in Figure 2.3 describes how SLDNF-refutation works.

2.3 Fixpoint Semantics

The set of ground terms which can be constructed from the function symbols occurring
in a program P is called Herbrand Universe Up of P. The set of ground atomic formulas
which can be constructed from the predicate and function symbols occurring in P is called

the Herbrand Base Bp of P.

17

function SLDNF(query: a set of literals {L1,...,L,,}): boolean
begin
if query is empty then return TRUF
else
begin
select a literal L; from query such that
L; is a positive literal R(ty,...,t,) or a negative ground literal - P.
if L; is positive then
begin
for all data base clause R(,...,t;,) — L},....L;,
if L; and R(t},...,t],) unify then
begin
compute m.g.u. 6.
if SLDNF({L1,...,Li—y, LYyeeis Ly Ligyees Ly }0) then return TRUE
end
return FALSFE
end
else /* [; is negative ground */
if SLDNF({P}) then return FALSE
/* if the return value is TRUF, an SLDNF-refutation is found for — P,
else there is a finitely failed SLDNF-tree */
else return SLDNF({L1,....L;—1,Lit1,esLin })
end

end

Figure 2.3: SLDNF-Refutation Procedure.

18

The meaning (model) of a logic program can be obtained by a fixpoint of a certain
function Tp called “immediate consequence operator” with respect to a program P:
Tp(Ix) = Ips1
This function, which is a total mapping from the powerset of Herbrand Base to itself, is
defined as follows:
Tp(Il) = {head| (head — body) € G(P) and body is true in I}
where G/(P) is a set of ground instantiations of the rules in P.

Tp is monotone so it reaches a fixpoint by Tarski’s classical fixpoint theorem. Starting
with empty interpretation @), Tp arrives at a least fixpoint; however, depending on starting
interpretations, there exist numerous fixpoints. The transformation may need infinite
iterations before reaching a fixpoint. Details can be found in [Llo84, Hog90].

Basically, our algorithm to infer interargument constraints simulates the immediate

consequence operator Tp.

2.4 Deductive Databases

One interpretation of logic is the database interpretation. Here a logic program is
regarded as a database. We thus obtain a very natural and powerful generalization of
relational databases, which correspond to logic programs solely of ground unit clauses. The
concept of logic as a uniform language for data, programs, queries, views and integrity
constraints has great theoretical and practical potential.

In the deductive database environment, facts are usually stored in the database and
the predicate is said to define an extensional database (EDB) relation. One computed by
logical rules is called an intensional database (IDB) relation. A Datalog program is a logic
program which contains no function symbols of arity > 0.

Unlike the approach taken in logic as a programming language, in database context, we
are interested in finding all facts implied by the logical rule. Therefore, to have operations

on Datalog programs make sense, we need to make sure the relation with respect to a

19

predicate is finite. One simple way to solve the problem is to put syntactic restrictions on
rules so that no infinite relations are created. The source of infiniteness is a variable that
appears only in the head of a rule. For example, consider the following logic program:

ri1: loves(X, Y) :- subject(X).

rg: subject(Jesus).

The subject is an EDB relation, and the intended meaning of loves (X, Y) is “X loves Y.”
The rule r; defines an infinite relation since the second argument Y of love is universally
quantified and does not appear in the subgoal. That is, the relation can be interpreted as
“Jesus loves whatever is in the universe.”

A rule is defined to be safe if all variables in the head also appear in the body of the
rule. If the relation of subgoals are finite, then the relation of the predicate of the head is
also finite, since all the values for the variables in the head come from the set of values in
the variables in the subgoals, which is finite. The rule ry in the above program is not safe
since Y does not appear in the body.

Logical rules can be evaluated top-down or bottom-up. Top-down evaluation is believed
to be more efficient for logical rule with function symbols. Our research focuses on whether
or not top-down evaluation terminates. Since we are interested in finding all solutions of a
query in database environment, we need to guarantee all the branches of the SLD-tree are
finite. This type of termination is called universal termination. Note the search strategy is
irrelevant, since we examine the whole SLD-tree with respect to a given query. However,
the computation rule is important, as shown in Example 2.4. Many deductive database
implementations employ dynamic subgoal ordering. Although we assume a left-to-right
computation rule, our termination analysis technique can also be applied to an evaluation

strategy with subgoal ordering.

20

3. Termination Detection

3.1 Basic Concepts

3.1.1 Predicate Dependency Graphs

For the effective analysis of logic programs, we often need to know the way predicates
in a logic program depend on each other. To do so, we construct a digraph whose nodes
are predicates. An arc from node p to node ¢ is drawn if p is the predicate of the head of
a certain rule and ¢ is the predicate of its subgoal. Intuitively, ¢ supports the derivation,
or solution, of p. A logic program is recursive if its predicate dependency graph has one or
more cycles.

From the digraph, we can identify the strongly connected components (SCCs), and the
partial order induced upon them. A recursive subgoal is one whose predicate is in the same
SCC as the head of the rule. An SCC with more than one predicate is said to have mutual
recursion. If each rule in an SCC has at most one recursive subgoal, then the recursion in

this SCC is said to be Ilinear. In fact, most recursions in logic programs are linear.

3.1.2 Modular Termination Analysis

In general, modularity reduces the task of termination analysis significantly. To do so,
we shall analyze one SCC at a time starting from the lowest level of the partial order.
Successful termination analysis lets us march to upper levels. Usually the analysis of an
SCC requires the information on the predicates in lower SCCs, such as “interargument
constraints”.

Example 3.1: Consider a rather unmotivated example below:

ri: p(£(X)) - q(X).

ro: q(f(X)) r(X).

r3: r(£(X)) p(X), s(X).

re: s(£(X)) :- s(X).

21

SCCy

0
Y.
)

[[
[[
SCCy | s [
[[
[[

Figure 3.1: A predicate dependency graph.

rs: 8(0).

Let us draw a predicate dependency graph for this program. We have four predicates
P> 4, T, s in the program so we draw four nodes. In r1, p depends on q so we draw an
arc from p to q. By doing the same thing for other rules, we have the predicate dependency
graph for the above logical rules, as shown in Figure 3.1. Using algorithms to find SCCs,
which can be found in many algorithm textbooks, for example [CLR90], we identify two
SCCs, SCCy consisting of the predicate s, and SCCy consisting of the predicates p, q, r.
SCCy is linear recursive, while SCCy is mutually recursive. Since SCCy is in the lower level
than SCCy in the partial order induced on SCCs, we do termination analysis of SCCy before

SCCy. If it is shown to terminate, we move to SCCy, otherwise we stop there by reporting

22

“we can not show termination.” []

3.1.3 Bound-Free Adornments

Unlike procedural or functional programs, logic programs are bidirectional, that is,
arguments to a procedure may be used as input, output, or both. This bidirectional use
of arguments makes it difficult to analyze logic programs for termination (possibly various
data-flow analyses, too). In termination analysis, we are mainly interested in how input
data structures are processed during recursive calls. Therefore we need to indicate which
arguments are used as input. Since there is no precise dichotomy of input/output for
arguments, bound arguments (containing no variables) can be viewed as input. We shall
use the same notations as in [UlI89] for bound-free adornments and rule-goal graphs in the
following section.

An argument is said to be bound (or ground) if all the variables in the argument are

! Whenever we consider a goal in the execution of logic program,

bound, otherwise free.
say

p(tl, .. .,tn)

that goal is associated with a binding relation for some subset of p’s arguments so as to
indicate which arguments are bound and which are not by an adornment, or binding pattern.
The adornment is a string of b’s and f’s of length n for n-ary predicate p. If ¢-th symbol of
the adornment is b, then the ¢-th argument of pis bound. If the i-th symbol of the argument

is f, then the i-th argument is free. A class of goals whose binding pattern is «a is denoted

(o3

pe.
Suppose we have a goal append whose first and second arguments are bound and the
third free. Then its adorned predicate is denoted append”®/. Of course, we may have a goal

append with a different binding pattern, say, append”//®.

n logic programming world, the terminology “ground” is usually used instead of “bound” used in

deductive database world.

23

We also need to indicate the bound/free status of variables in a rule to construct a
rule-goal graph, which is introduced in the next section. Assuming that all the variables
in a subgoal become bound after the subgoal is processed successfully, we have two simple
rules to indicate which variables are bound and which free:

1. A variable that appears in the bound argument of the head is bound before processing

any subgoals.

2. After processing a subgoal G; during rule evaluation, a variable that appears anywhere
in GG; or was bound before processing G is bound.

Note that all the variables in a rule are bound after processing the last subgoal. Since
we concern several different situations during rule evaluation, we indicate them using
subscripted rule number. When 7; is the rule considered, the situation, before processing
any subgoals, is denoted 7;, while the situation after processing the ¢th subgoal is r;;. An
adornment for a rule indicates which variable are bound and which are free. The notation
we use for a rule adornment is a superscript of the form [Xy, ..., X,,|Y1,...,Y,], where X’s

are bound and the Y'’s are free.

Example 3.2: Consider the recursive path rule r;.
ry :path(X, Y) :- arc(X, Z), path(Z, Y)

Suppose path is called with the binding for the first argument. Then in the rule before
consideration of any subgoals, only X is bound. We represent this fact by the adorned

rule TE%%'Y’Z]. The first subgoal arc(X,Z) provides a binding for Z, so the situation after

considering the first subgoal is represented by rgﬁ’Z|Y].

3.1.4 Rule-Goal Graphs

We can represent the patterns of binding that occur in top-down evaluation by a finite
structure called a rule/goal graph. Suppose we are given a set of Horn-clause rules and a
query goal. If p is the predicate of the query, and « is the adornment that has b whenever

the query specifies a value for the corresponding argument and has f whenever no value is

24

specified, then we begin construction of the rule/goal graph for this query with the node

(o3

p.

We then consider each node in the rule/goal graph and expand it according to the
following rule. As we expand, we add goal nodes, which are adorned predicates, and rule
nodes which are nodes representing a rule and some number of the subgoals for that rule.
Using the notation described above, we have rp, with an adornment, to represent rule
r before considering any subgoals, and r;, with an adornment, to represent rule r after
considering its first ¢ subgoals.

1. A goal node with EDB predicate has no successors.

2. A goal node that is an IDB predicate p with an adornment a has a successor rule

node r; o for each rule r; whose head predicate is p.

3. Consider a rule node r;; and suppose ¢(ty,...,t;) is the ¢ 4+ 1st subgoal of r;. As
successors of the rule node r;; we draw a goal node ¢” with an appropriate adornment
B and a rule node r;;4; unless the ¢ + 1st subgoal is the last. If the goal node q°
already exists, it is simply connected as a successor.
Rule nodes are also adorned in the way we described in the previous section. Figure 3.2
shows a rule-goal graph constructed by a query goal perm®/ and a logic program perm in
Figure 1.1.

The construction of rule-goal graphs was described under the assumption that all the
variables in a subgoal become bound after the subgoal is processed successfully. This
assumption is not so realistic. The construction may be imprecise since we do not consider
the problems with respect to aliased variables. These problems can be resolved by the
groundness analysis presented in Chapter 5. The complexity of rule-goal graphs was studied
in [UV88]. Theoretically, its size is exponential of input programs, but is known to be

practically linear.

25

"o
appendffb
/ \ (PE X FIPLI]
(L[] [X,L3|L1,L2]
3.0 Ta.0

P,E,X,FP1|L
appendbbf 7‘52’ X, F,P1|L]

L X,I1,L2|L3
o A

Figure 3.2: A rule-goal graph for the adorned query perm®’.

26

3.1.5 Adorned Programs

In the previous section, we described how to construct rule-goal graphs. For termination
analysis, we will consider adorned programs which are direct translation of rule-goal graphs.
Example 3.3: Consider again a logic program perm in Figure 1.1. Its rule-goal starting
from a query goal perm’f is constructed in a way described in the previous section and is
illustrated in Figure 3.2. Annotating the predicates of a program with the binding patterns
in its rule-goal graph, we have a specialized version of the program conforming to an query
goal. The following adorned program is given by the rule-goal graph in Figure 3.2.
ri: perm’ ([1, [1).
ry: perm’ (P, [XIL]) :-

append’/*(E, [XIF], P),

append”/ (E, F, P1),

perm® (P1, L).
731 appendbbf([] , L, L).
rq: append” ([X|L1], L2, [X|L3]) :-

append”f (L1, L2, L3).
75 appendffb([], L, L).
r¢: append’/’([X|L1], L2, [XIL3]) :-

append//*(L1, L2, L3).
Procedure perm is always called with the first argument bound and the second free.
Procedure append is called in two different patterns, namely, append”/ and appendf/®, So
we have two versions of append procedure. These two versions are considered as different
procedures and separate termination proofs will be tried. The specialized version of a
program annotated with the binding patterns will be called a adorned program. Each

procedure is associated with a unique single binding pattern. []

3.1.6 Subterm Ordering

We first give some basic concepts on ordering.

27

c (] (]

Figure 3.3: The first argument of append goal over execution. (a) at initial call.
Termsize = 6. (b) after one recursive call. Termsize = 4. (c) after two recursive

calls. Termsize = 2. (d) after three recursive calls. Termsize = 0.

Definition 3.1: A partially ordered set (P, >) is a reflexive, antisymmetric, and transitive
binary relation > on a set P. A strictly partially ordered set (P,>) is an antisymmetric,
and transitive binary relation > on a set P. A partially ordered set P is totally ordered if
for any two elements @ and b in P, either @ > b or b > a. A strict partial ordering > on a
set P is well-founded if for any element s; in P, there is no infinitely decreasing sequence
81 > 89 > 83 > - -- of elements sq, 89, 83,...0f P. For example, the relation > on the set of
natural numbers N is well-founded while it is not well-founded on the set of integers Z. [

A logic program terminates if and only if the trace (proof tree or SLD tree) of the

execution of the program is finite. For example, try to prove termination of a query

28

append([a,b,c], L1, L2). As shown in Figure 3.3, the first argument reduces to nil
during the recursive call of the initial query, so the call append([], U, V) does not unify
with the recursive rule. So the trace is finite. However, one does not want to construct a
trace explicitly because the construction may be a nonterminating task and it is impossible
to handle every specific input. Instead, we consider a class of queries classified by binding
patterns. Therefore, one may show a trace must be finite by syntactic properties of clauses
that are possibly called. We usually exploit the well-foundedness of an ordering over goals.
More precisely, we show that the order associated with the states in the trace is well-
founded, and between every two consecutive states, the order decreases. As an example of
well-founded ordering, let us take (proper) subterm ordering on ground terms.
Example 3.4: Continuing with Example 3.3, consider a query append®/. Suppose
A >gupterm B if B is a subterm of A and append(Aj, Ag, A3) >append append(By, By, Bs)
if Ay >supterm B1. Clearly, subterm ordering is well-founded since there are only finite
number of proper subterms for a ground term.

In adorned procedure rs,ry for append, the first argument L1 of the recursive sub-
goal append”/ (L1, L2, L3) is a subterm of the first argument [X|L1] of the head
append®/ ([X|L1], L2, [XIL31). That is, [XIL1] >.upterm L1. By the definition of

> append s

append([XIL1], L2, [XIL3]) >,ppend append(L1l, L2, L3).

For every two consecutive goals of the SLD-tree, if append®f ([X|L1], L2, [XIL3])
is a goal, then append® (L1, L2, L3) is its immediate descendant by the unification.
Therefore, the path from the initial query append®®f to empty goal is finite, hence proving
termination of append®®’. []

Subterm ordering is enough to detect termination for many simple examples. However, it
is often the case that there is no syntactic relationship between arguments in head and those
in recursive subgoals since arguments are processed through subgoals before the recursive
ones (See Example 3.7). It is difficult and unnecessary to relate terms by subterm ordering.

By this reason, we will introduce size abstraction of terms in the following section.

29

3.1.7 Abstractions of Terms

In a logical rule, the body of the rule may contain variables that do not appear in the
head. We usually refers to them as local variables. A subterm ordering is not adequate to
detect termination of logic programs containing local variables since there is no syntactic
relationship between two terms. In this section we describe size abstractions of terms to
give ordering on ground terms.

Size abstraction is a mapping from terms to natural numbers. Ullman and Van Gelder
[UVGS8S] were the first to introduce an abstraction function for terms, motivated by the
fact that subterm ordering is incapable of handling problems due to local variables. They
used listsize abstraction as a basis for the well-founded ordering in a top-down termination

analysis, which is defined in the following.

Definition 3.2: List size is defined as follows:

1+ listsize(t,) ift= f(t1,....1n)
listsize(t) =< ¢ if ¢t is a variable

0 if ¢t is a constant

Listsize is informally the number of edges in the rightmost path in the tree representation
of a ground term. For terms containing logical variables, a real variable X constrained to
nonnegativity is associated with each logical variable X. For instance, the listsize size of
f(a,g(X),X)is 1+ X. [

Listsize abstraction is capable of detecting termination of structural recursions relying
on rightmost paths such as lists. However it often fails when tree-like data structures are

used.

Example 3.5: Consider a program visiting a binary tree in depth-first manner.
traverse(nil).

traverse(t(L, R)) :- traverse(lL), traverse(R).

t(L,R) can be thought as a binary tree whose left subtree is L and right subtree is R. Suppose

that traverse is called with its argument bound. By constructing a rule-goal graph from

30

traverse’, we know traverse is always called with its argument bound. Therefore we

can measure its listsize and compare their sizes to analyze termination. In order to show

termination of traverse’

, we have to show every pair of head and recursive subgoal has
well-founded ordering. Consider the head and the first subgoal. The listsize of the head
argument is 14+ R and the listsize of the argument in the second subgoal is R,s0 1+ R > R.
That proves the termination of the cycle from the head and the first subgoal. Now consider
the cycle from the head and the second subgoal. the listsize of the head argument is 14+ R

and the listsize of the argument of the second subgoal is I, hence no relationship between

two argument sizes. So it fails to prove termination of traverse®. []

In spite of this shortcoming shown in the above example, the basic reason why [UVGS8S]
used listsize is that their inference algorithm for interargument constraints can only handle
the relationship between two logical variables, each variable representing a listsize of an
argument. This restriction was lifted by Plimer who used a “linear norm” as abstraction
function. Later, Sohn and Van Gelder also provided a method resolving such problems

using structural term size. We will describe the method in detail in the following section.

Definition 3.3: Structural term size is defined as follows:

n+4 > v termsize(t;) ift = f(t1,....t0)
termsize(t) = ¢ ¢ if t is a variable

0 if t is a constant

It is informally the number of edges in the tree representation of a ground term. For terms
containing logical variables, a real variable X constrained to nonnegativity is associated
with each logical variable X. Note that the structural term size of such terms is a linear
polynomial of those real variables whose coefficients are positive integers. More formally,
[l
This measure is called “structural” in that every portion of a term structure contributes
to the size measure. Figure 3.4 shows the listsize and termsize of two terms.

Example 3.6: Continuing with Example 3.5, termsizes of t(L, R), LandRare2+ L+ R,

L, and R, respectively. The termsize of recursive subgoal is less than that of head since

31

N N
VRN VRN

(a) (b)

Figure 3.4: (a) tree representation of [a,b], termsize = 4 and listsize = 2. (b)

tree representation of [a,X|Y], termsize = 4 + X + Y and listsize = 2+ Y.

24 L+ R>Land 24 L+ R > R. So the goals over two cycles are well-founded, showing

termination of traverse’.

3.2 Related Work

Most termination detection methods attempted to prove that the goal reduction graph
is well-founded. In order to show termination, we sometimes need to know the relationship
among argument sizes of certain predicates. We describe several approaches developed in
earlier work.

Naish’s method [Nai83] was based on the measure of “proper subterm”, which gives
a partial order on logical terms. His idea was that if there exists a subset of bound
arguments for each predicate such that no bound argument increases and some bound
argument decreases in any recursive rule of the predicate, the recursive subgoals are well-
founded. A typical procedure for his method was one that merges two lists, maintaining
order. Depending on which rule applies at a particular step, either the first argument

decreases, or the second one does. He gave an algorithm determining whether some subset of

32

the bound arguments of each predicate existed such that each recursive call was guaranteed
to reduce one or more elements of the subset without changing others. This exponential
time algorithm was made semi-polynomial by Sagiv and Ullman [SU84].

Ullman and Van Gelder [UVGS88] proposed a method to test top-down termination with
a view of testing the applicability of top-down capture rules in a knowledge-base system.
They introduced a measure of terms called “list size”, which corresponds to the number of
edges in rightmost path in a tree representation of terms. This measure corresponds to the
length of a list; however, it is less natural for general structural terms such as binary trees,
leading to failure to detect termination. They gave an algorithm for identifying and testing
a restricted class of rules, those satisfying so-called “uniqueness” property, which guarantees
that the set of inequality constraints between two arguments is unique. Termination of such
rules could be tested in polynomial time in the number of predicate symbols and the number
of rules. The idea of using interargument constraints (in the form of inequality between
two argument positions) was first introduced. Candidates of interargument inequalities
sufficient for termination were generated, and then their validity was tested.

Brodsky and Sagiv studied inference of interargument constraints called “monotonicity
constraints” [BS89a] and termination detection [BS89b] in logic programs without function
symbols (Datalog programs) as two separate tasks.

A monotonicity constraint is a statement that one argument of a predicate is greater
than another in all derivable (or given, for EDB) facts for that predicate. Such constraints
were the backbone of their termination detection method called “argument mapping”.
Argument mappings can be viewed as monotonicity constraints between an argument in
a head and one in a subgoal, and composing argument mappings as unifications. Although
monotonicity constraints were not powerful enough to characterize the property of derivable
facts, their method could detect termination due to certain unification issues, such as “occur
check”. Their exponential-time algorithm could test necessary and sufficient condition for
termination on finite database relations, on the assumption that monotonicity constraints

were externally supplied. They also gave a sufficient condition for termination on infinite

33

database relations (Logic programs with function symbols can be simulated by Datalog
with infinite database relations). They recently proposed a method to infer inequality
constraints between two arguments in programs with function symbols [BS91].

Plimer described some extensions for rules that did not satisfy the “uniqueness”
property [Pli90a, Pli90b]. His main contribution was that certain constraints involving
more than two argument positions could be used. However, he required an “admissibility”
property on the rules. Moreover, mutual recursion presented problems for his method. He
claimed that every mutual recursion could be eliminated by “unfolding” technique, which
does not seem to terminate. His algorithm was exponential-time, since he had to guess one
inequality per predicate and the number of possible guesses was exponential in the number
of arguments in a predicate?.

Van Gelder [VG91] investigated the problem of deriving constraints among argument
sizes. His method was aimed at finding all constraints in the form of polyhedral convex
cones. Thus those constraints can be viewed at least as inequalities among linear com-
binations of any number of argument positions. His method works bottom-up; starting
from a base polyhedral cone corresponding to base cases of recursive rules, “recursive
transformations” (similar to the immediate consequence operator Tp) are applied to input
polycone until a fixpoint is reached. The recursive transformation generally needs infinitely
many iterations for reaching a fixpoint. His method showed the nature of interargument

constraints and how they could be derived naturally.

3.3 Argument Size Constraints

We begin by processing each recursive rule in the SCC separately. If the rule has several
recursive subgoals, each is processed separately. Say a rule with head p and a recursive

subgoal ¢ has been chosen. We obtain linear equations

2Pliimer assumed there were bounds on clause structures; hence claiming that the complexity is linear.

34

z=a+ A\
0=c+CA

where z is the vector of bound argument sizes in p, y is the vector of bound argument sizes
in the recursive subgoal ¢, and A is the vector of other variables that appear in constraints,
including those representing the sizes of logical variables and unbound arguments.

a,A,band B are derived directly from the rule under consideration. ¢ and ' are derived
from interargument constraints on (possibly, p, ¢, and) subgoals that precede ¢ in the rule
body. The constraints are obtained by the method in Chapter 4 (or supplied by other
external means such as [VG91, BS91]).

Example 3.7: Consider the adorned logic program perm >:

ri: perm’ ([1, [1).

ro: perm’ (P, [XIL]) :-
append//*(E, [XIF], P),
append”f (E, F, P1),

perm’/ (P1, L).

The problem is that no order relationships among pairs of arguments show that P1 < P.
That is, inference systems can derive P > E and P > F, but neither £ nor Fis > P1.
Considering the recursive rule ry, which is called with the first argument bound and the

second free, we show how Eq. 3.1 is set up for this rule.

Let A be the vector (P, X, L, E, I, P1)T. We have 2, = P, so a and A are:

- [o]

A:[100000

®This example was studied by Plimer [Pli90a]. pern®/ cannot be shown to terminate by any of the
previous methods cited. Plumer suggests that unfolding transformations on append can lead to a set of

rewritten rules that his method can handle; but no algorithm is given.

35

Similarly, y; = P1, so
b= o]

B

[000001

Two append subgoals precede the recursive subgoal in the body. We assume that analysis

of the append procedure has supplied the imported constraint:
0 = append; 4 append, — append,

Applying this to each append subgoal, and noting that the termsize of [X | F]is 24+ X+ F,
we get

O=FE+Q2+X+F)-P 0=FE+F-P1

Putting this in the array format of Eq. 3.1, gives

2
0
-1 101 1 0

0001 1 -1

Discussion of this rule continues in Example 3.8. []

3.4 Derivation of Termination Condition

For each predicate p; in the SCC, we designate a nonnegative vector a; with arity equal
to the number of bound arguments in p;. If z; is the vector of these bound arguments, then
the inner product, a z;, is the function that should decrease during recursion. Figure 3.5

illustrates the situation pictorially. Suppose we have two recursive subgoals whose sizes

T T, n

are denoted 3’ and y”. a is a nonnegative vector. Since a'z > aly’ and aTz > aTy”,
nonnegative linear combination of goal size decreases regardless of which recursive subgoal
we follow. Finally, the nonnegative linear combination will approach to zero along the

vector a over the recursive calls. That is, our goal here is to find a value for the vectors «

that guarantee this function decreases.

9

36

@\

21
!

21

(0,0)

a1

Figure 3.5: Nonnegative linear combination

Again, let p; be the predicate in the head of the rule and let p; be the predicate of the
chosen recursive subgoal that led to Eq. 3.1. To avoid excessive subscripting we shall refer
to z, a, y, and (3, rather than to z;, a;, z;, and a;.

We want to choose o and 3 to ensure that for all z, y, and A that satisfy the constraints

Eq. 3.1 we have
ate > gTy 4 6 (3.2)

where 6;; is chosen to be 0 or 1 as described in Section 3.6 for mutual recursion, but is

37
simply 1if ¢ = j.

For the moment, regard o and 3 as constants. The question then is whether
VayA (Eq. 3.1 implies Eq. 3.2) (3.3)

As is well known, this can be solved as a linear programming problem in which the objective
is

minimize: § = (a2 — §1y) (3.4)
subject to Eq. 3.1. Letting #* be the minimum of the objective function, the implication
Eq. 3.3 holds if and only if 6 > ¢;;.

Now consider the dual of the above minimization problem [PS82, Sch86]. We use for
dual variables w with the same arity as x, v with the same arity as g, and w with the
same arity as ¢. That is, one dual variable is associated with each constraint in the primal;
because these constraints are equalities, u, v, and w have unrestricted ranges. The dual is

given by

maximize:
'
(uT 0T 0Ty | g
¢

subject to:
10 4
(uTvava) 0 I -B S (aTv _ﬁTvo)

0 0 -C
By duality theory this has the same optimum, #*, as the primal, and so Eq. 3.3 is true if

and only if the dual constraints of Fq. 3.5 remain satisfiable with the addition of

38

The key observation is that a and g appear linearly in the dual constraints, so we can
regard them as variables and remain with a linear system. Lassez made essentially the

same observation, but in a more circumlocutory fashion [Las90b]. We incorporate the final

constraints,
a>0 (>0 (3.7)
Combining into one matrix, transposing, and reversing signs as appropriate gives
1 0 o1 ol 1 [o]
U
0 -1 0 0 -7 0
v
AT BT T 0 0 0
w | > (3.8)
L (0 0i;
o
0 0 0 I 0 0
B
| 0 0 0 0 rj- - | 0]

This set of constraints is very amenable to reduction by Fourier-Motzkin elimination [Sch&6,
LHMS89, Las90b]. In this technique a variable is eliminated by “cancelling” all positive
occurrences with all negative occurrences, pairwise, creating new rows (with 0 in that
variable’s column). Then all rows containing a nonzero coefficient for that variable can
be eliminated, preserving satisfiability (See Appendix A for details).

In fact, from the origin of a, A, b, and B in Eq. 3.1, we know that all entries of these
vectors and matrices are nonnegative. We can use this fact to perform Fourier-Motzkin

elimination on w and v in Eq. 3.8, giving

ct AT BT 0
w
b =T 0i;
a |2 (3.9)
0 Il 0 0
B
i 0 0 I_ i 0_

To claim a theoretical polynomial time bound, we stop with Eq. 3.8 and give the undis-
tinguished variables w unique names so they do not clash with undistinguished variables

obtained from other rule-subgoal analyses.

39

In practice, to conclude the processing of this rule-subgoal combination, we perform
Fourier-Motzkin elimination on w as well, leaving constraints that only involve the dis-
tinguished variables a; (= «a) and a; (=). If the subgoal predicate is the same as the
head, then o = 3 and constraints are appropriately simplified. Although, é;; has not been

specified yet if 7 # j, we still regard it as a constant.

Example 3.8: Continuing with Example 3.7, the constraints corresponding to Eq. 3.9 are

-1 0 1 0 0
1 0 0 0 0
0 0 0 0|, - 0
w1

1 1 00 0
w3

1 1 00 > 0
(84

0 -1 0 0 0
B

2 0 0 0|~ o1

0 0 1 0 0

0 0 0 1| 0 |

Eliminating wy and ws reduces them to

1 0 0

0 0 0

1 0 0
o

1 0 > 0
s

2 0 011

1 0 0

0 1 0

Finally, requiring o = § and setting 61 = 1 gives the single constraint 2a > 1.
Because this is the only rule and only recursive subgoal, termination can be demonstrated

using @ = 1/2. A Prolog session of termination proof for this example can be found in

Appendix C.1. []

40

In general, each combination of rule and recursive subgoal in the SCC is processed to
produce constraints on the «a;’s. A solution that satisfies all constraints simultaneously
(with 6;; chosen appropriately; see Section 3.6), proves top-down termination for the SCC.

Again, to claim the theoretical, but largely imaginary, polynomial time bound, we
observe that the size of all the constraints combined is polynomial in the size of the input
(where the imported feasibility constraints that led to matrices ¢ and C' are counted as part
of the input). The final constraints represent a feasibility problem in linear programming.

In practice, Fourier-Motzkin elimination is simple and adequate.

3.5 Multiple Bound Arguments

In recursive procedures with several bound arguments, some previously developed meth-
ods require searching through subsets of bound arguments and/or paths in the dependency
graph [Nai83, Pli90a]. One of our main motivations in using linear techniques was to
short-circuit this complicated and expensive task. Our method seeks a nonnegative linear

combination of the bound arguments that suffices for all cases.

Example 3.9: The following procedure merges two input lists [VG91]. We assume the first
and second arguments are bound and the third is free.
71 mergebbf([] , Ys, Ys).
g1 mergebbf (Xs, [1, Xs).
r3: merge® ([X | Xs1, [Y | Ys], [X | Zs]) :-
X =<Y,
mergebbf([Y | Ys], Xs, Zs).
T4t mergebbf([X | Xs], [Y | Ys], [Y | Zs]) :-
Y =< X,
mergebbf (Ys, [X | X8], Zs).
Note that there is no explicit relationship between the size of a bound argument in the head
and the size of the corresponding bound argument in the recursive subgoal. The first two

rules are nonrecursive. Now we process the third rule.

41

Let A be the vector (X, Xs,Y,Ys, Zs)T. We derive a, 4, b, and B from Eq. 3.1.

2
a =

2

1 1 0 0 0
A =

0 0 1 1 0

2
b =

0

0 0 1 1 0
B =

0 1 0 0 0

The matrices ¢ and C are empty because the subgoal X =< Y does not supply any
contribution.
By substituting these into Eq. 3.9, letting o = (a,0a2), f = «, §;; = 1, and then

eliminating redundant rows, we have the following constraints.

1 0 0

1 -1 0
aq

-1 1 > 10
Qg

0 2 1

0 1 0

By symmetry, the constraints for the fourth rule can be obtained by interchanging the first
and second columns in the above matrix.

Now combining two sets of constraints and simplifying them reduces them to a; =
ag > 1/2. The solution implies the sum of two bound arguments always decreases in every

recursive call. []

3.6 Extension to Mutual Recursion

One useful feature of our methodology is that rules with mutual recursion and nonlinear

recursion do not require much extension to the techniques already illustrated.

42

3.6.1 Mutual Recursion

Mutual recursion, wherein the SCC contains more than one predicate, arises naturally
in user-written rules, and can also be introduced by predicate splitting rule transformations
whose purpose is to make every subgoal unifiable with the head of every rule for the same-
named predicate.

In the case of mutual recursion the set of 4;; must be chosen so that, regarding them as
edge weights, every cycle in the dependency graph has positive weight. Rather than specify
this condition as a set of (possibly exponentially many) additional linear constraints, we do
the following:

1. For i # j, set 6;; = 0 when required by existing constraints in the dual; that is, when

a dual constraint in Eq. 3.9 has ¢;; as the “constant” and has only zeros in ¢t and al.
2. Set all other 6;; = 1.

3. Compute the min-plus closure (by Floyd’s algorithm) of the resulting edge-weighted
graph; check that there are no zero-weight cycles. A zero-weight cycle is strong
evidence of nontermination, and the algorithm reports it if found and halts.

Assuming all ¢;; have been chosen so that there are no zero-weight cycles, the constraints
from all rule-subgoal combinations are combined and tested for feasibility, as illustrated in
Example 3.10 below.

Although no natural examples are known, it is possible that no feasible solution exists
with nonnegative é;;, but some feasible solution does exist that includes some negative
0i;, vet has only positive cycles. Here we sketch the method of finding feasible solutions to
systems of constraints like those in Section 3.6, but without imposing an arbitrary constraint
that all 6;; > 0. Intuitively, this allows for the possibility that the critical bound subgoals
get larger before getting smaller, in such a way that they are smaller by the time a cycle
around the dependency graph has been completed. We are aware of no natural examples
of such rules.

We need to add constraints that guarantee for each simple cycle in the dependency graph

that the sum of the ¢’s around that cycle is positive. There could be exponentially many

43

such cycles, in principle. The idea of path constraints was suggested by C. H. Papadimitriou.
For each triple of predicates p;, p;, and pg in the same SCC, with k£ # 7 and k£ # j, add
the constraint 7;; < 7 + 7. The new variables 7;; represent shortest paths. Their “base
cases” are m;; < ¢;;. Positive cycles are enforced by m; > 1. Again, the polynomial time
bound may be claimed by reference to linear programming theory; in practice, our program
quietly runs Fourier-Motzkin elimination on the 7;; reducing the path inequalities to involve

only é;; and constants. These are added to other constraints as discussed in Section 3.4.

3.6.2 Nonlinear Recursion

Nonlinear recursion occurs frequently in divide-and-conquer algorithms, and many other
applications. The main point is that, when the second and subsequent recursive subgoals are
being analyzed for constraints on «; and a;, the earlier recursive subgoals must contribute
their interargument feasibility constraints to the effort. Therefore, interargument feasibility

constraints must be produced for the entire SCC before its termination analysis begins.

Example 3.10: Issues of both mutual and nonlinear recursion are illustrated with the
following rules, which specify an arithmetic expression parser. The first argument is the
list to be parsed, and is assumed bound. The second argument is the unparsed suffix (or
continuation), and is free.

e(L, T) :- t(L, [’+>] c]), e(C, T).

e(L, T)

t(L, T).

t(L, T) :- n(L, [’*>] C]), t(C, T).

t(L, T) n(L, T).

n([?C | Al , T) :- e(A, [’) | TD.

n([L | T1, T) :- z(L).

The only nonrecursive rule is the last; z is in a lower SCC. We suppose no knowledge about

z.

44

Figure 3.6: Extension to mutual recursion.

This example was studied by Plimer [Plii90a], who eliminated mutual recursion by
pushing e, n, and ¢ into the third argument of a new predicate parse(L, T, P). Intuitively,
such a syntactic change should not make a substantial difference. He had to make further
ad hoc assumptions to handle parse.

The predicate dependency graph is drawn in Figure 3.6. To apply our method to mutual

recursion, we have to make sure every simple cycle has a positive weight. That is,

Oce >0
Ot >0
Onn >0

66t ‘|’6tn ‘|‘6ne > 0

45

We shall only discuss in detail the derivation of constraints for the first rule and its e

subgoal. Recall that the form is
x=a+ A\ y=>b+ BA 0=c+CA x,y, A>0

The first point is that the t subgoal precedes the e subgoal, so should supply feasibility
constraints (values for ¢ and C' in Eq. 3.1), even though it is in the same SCC. It is not
immediately obvious what these constraints are, but they can be found by the Van Gelder’s

methods [VGI1], and are:

0:2—t1—|-t2‘|‘,u

that is, t1 > 24 t2 (p is a “slack variable”).

Let A be the vector (L, T, C,,u)T. The above equation generates

¢ = —1011]
We also have -

a = |0

A = =1-000

. :0_

B = =0-010_

Let us identify e with «, ¢t with 3, and n with v. Then the constraints corresponding to

Eq. 3.9 are (note that (AT — BT) and (a* — bT) form the second column):

-1 1 0
0 0 0
1 -1 un 0
>
1 0 « 0
4 0 bece
i 0 1] i 0]

46

Elimination of the nondistinguished wy boils this down to
dov > bee

The development for the third rule with t as the recursive subgoal is similar, yielding
46 > bt

The first rule with t as the recursive subgoal and the third rule with n as the recursive
subgoal produce the same constraints as the second and fourth rules, which are discussed
next.

The second and fourth rules are straightforward (yielding a > 3 >), but the important
point is that their constraints force é.; and 4, to be 0.

Finally, the fifth rule gives

-1 1 0

0 0 0
o

0 2 > | e
v

1 0 0

0 1 0

which does not force 6, to be 0 (because a = [2]). These constraints reduce to: v > a and
2y > bpe-

Besides self-loops, the dependency graph has edges (e,t), (t,n), and (n,e). As men-
tioned, 6.; and é;, were required to be 0. However, assigning the “weight” 6, = 1 results
in no zero-weight cycles, so the termination test is able to continue. Of course, d.. and 64

are 1. Now straightforward computation leads to

a=p3=v>1/2

so termination is proved. A Prolog session of termination proof for this example can be

found in Appendix C.2. []

47

3.7 Limitations

A set of rules may terminate in top-down execution due to the inability of certain
terms to unify, rather than because of term size reduction. Sometimes the syntactic
transformations described later clarify such situations before termination detection begins.
The argument mapping method [BS89b, BS91] pays closer attention to unification issues
than we do, and has the remarkable property of detecting certain cases where unification

fails due to the “occurs check”.
i q(X,Y) - e(X,Y).
ro: (X, E(E())) - p(XLE(E(XD)), q(X,E£(X)).

rg: q(X,E£(E(Y))) :- p(X,£(Y)).

rg: p(X,Y) - e(X,Y).

rs: p(X,f(Y)) - r(X,£(Y)), p(X,Y).

re: r(X,Y) :- e(X,Y).
rr: r(X,£(Y)) :- qX,Y), r(X,Y).

rg: r(£(X),f(X)) :- t(fX),f(X)).

ro: t(X,Y) :- e(X,Y).
ro: t(£X),£(Y)) - q(£(X),£(Y)), t(X,V).

There are several cycles in predicate dependency graphs. Consider the cycle ¢ — p —
r — t — ¢ produced by rg, s, rs, r190. No argument sizes diminish through the cycle so our
method fails to detect the termination of the cycle. Suppose initial call to ¢ unifies with q(X,
£(£(X))). Following the cycle, two new goals p(X, £(£(X))) by rp and r(X, £(£(X)))
by r5 are generated. The goal r(X, £(£(X))) fails to unify with the head r(£(X), £(X))

of rg with occur-check. Sagiv’s method can detect termination of such situation [Sag91]%.

*This example was given by Sagiv in personal communication

48

Usually, the problem regarding occur-check at one step of resolution can be resolved by
predicate splitting. For example, consider a recursive rule:

p(X, X) :- p(X, £(X)).

The subgoal does not unify with the head so we assign different predicate name, say,
pO(X, X) :- pi(X, £(X)).

However, predicate splitting is not powerful enough to capture the occur check problem due
to several steps of resolution as in Sagiv’s example.

Also, it is possible that bound arguments really do shrink during recursion, but the
interargument constraints to prove that fact are not derivable by known methods. For
instance, the feasible region may not be accurately characterized by a finite set of linear
constraints. Consider a mergesort example.
mq: mergesort([],[]1).
mgy: mergesort([X],[X]).
ms: mergesort([X,YI|Rs],Zs) :-

split([X,YIRs],Us,Vs),
mergesort(Us,Usort),
mergesort(Vs,Vsort),

merge(Usort,Vsort,Zs).

sy osplit(L1, 00, 01).

sg: split([X|Xs], [XIYs],Zs) :- split(Xs,Zs,Ys).
merge is a usual procedure to merge two sorted lists. Qur inference algorithm for

interargument constraints supplies a linear constraint:

split; = split, + splits.

Applying this constraint to the first subgoal in mj3, we have a linear constraint among
variables:

44+ X+Y + Rs=Us+ Vs.

49

This does not imply the head argument size (4 + X + Y + Rs) is greater than the recursive
subgoal argument size (Us or V's), hence failure to prove termination. There are two possible
remedies for this problem.

One approach is to get stronger interargument constraints. Since split divides the
input list (first argument) into two lists (second and third arguments) evenly, if the first
argument has more than two elements (split, > 4) then the first argument size is greater
than the other two (split; > split, and split; > split,). The split subgoal in mg
satisfies the premise. So we can conclude that termsize([X,Y|Rs]) > termsize(Us) and
termsize([X,Y|Rs]) > termsize(Vs). This proves termination of mergesort®/. However, it
is noticed many published methods to infer disjunctive constraints are practically unusable
owing to their higher complexity.

The other approach, introduced by [UVGSS], is to apply predicate splitting so that
termination behavior is better exposed. It is simple to apply the technique and adequate
to resolve the problem. The first subgoal split in mj3 does not unify with s;. The relation
split can be split into three relations, split, splitl and split2. The heads of rules with
which split([X,Y|Rs],Us,Vs) does not unify are renamed to splitl; those with which
split([X,YIRs],Us,Vs) does unify are renamed to split2. Rules for split are added:
split(X,Y,Z) :- split1(X,Y,Z) and split(X,Y,Z) :- split2(X,Y,Z). Finally, split
subgoals in the program are specialized to splitl or split2 if possible. The above example
transforms into:
mq: mergesort([],[]1).
mgy: mergesort([X],[X]).
ms: mergesort([X,YI|Rs],Zs) :-

split2([X,YIRs],Us,Vs),
mergesort(Us,Usort),
mergesort(Vs,Vsort),

merge(Usort,Vsort,Zs).

50

s1: split1(ld,0d,00).

sg: split2([X|Xs],[XIYs],Zs) :- split(Xs,Zs,Ys).

s3: split(Xs,Ys,Zs) :- spliti(Xs,Ys,Zs).

s4: split(Xs,¥s,Zs) :- split2(Xs,Ys,Zs).

Repeated application of predicate splitting terminates, essentially because rules are simply
partitioned, and no substitutions are done.

— —

Unfolding is just an application of resolution. If predicate p has k rules p(X;) — B;(X,),

— —.

then one rule in which pis a subgoal, say ¢(Y) — ..., p(Z),..., can be replaced by k rules,

—

¢(Y6;) — ..., Bi(X6;),...

where the 8; are the respective most general unifiers of XZ and 7.

Safe unfolding is a special case that applies when no rule for p has p as a subgoal. In
this case all p subgoals are replaced by unfolding, and p is thereby removed from that SCC
of the dependency graph. Continuing the above example, safe unfolding applies to split,
then to spliti, and gives:
mq: mergesort([],[]1).
mgy: mergesort([X],[X]).
ms: mergesort([X,YI|Rs],Zs) :-

split2([X,YIRs],Us,Vs),
mergesort(Us,Usort),
mergesort(Vs,Vsort),

merge(Usort,Vsort,Zs).

s1: split2([X1,[X1,01).
sg: split2([X|Xs],[XIYs],Zs) :- split2(Xs,Zs,¥s).
s3: split(Xs,Ys,Zs) :- split2(Xs,Y¥s,Zs).

sq¢: split(L],00,01).

51

If split is not referenced elsewhere, their rules may be discarded. Repeated application of
safe unfolding must terminate because SCCs shrink upon each application; hence the term
safe. So many practical cases of mutual recursion can be eliminated by this transformation
that there is sometimes the mistaken perception that all can be.
In the above program, we still notice the first subgoal split2in ms does not unify with

s1. Applying one more predicate splitting and unfolding gives:
mq: mergesort([],[]1).
mgy: mergesort([X],[X]).
ms: mergesort([X,YI|Rs],Zs) :-

split([X,YIRs],Us,Vs),

mergesort(Us,Usort),

mergesort(Vs,Vsort),

merge(Usort,Vsort,Zs).

s1: split([X1,X2],[X1],[X2]).
sg: split([X|Xs], [XIYs],Zs) :- split(Xs,Zs,Ys).

Inferring interargument constraints for the split predicate in the above program:

Splitl = 4 +A +A
split, = 2 +X\
split; = 2 +As

These equations imply that termsize([X,Y|Rs]) > 2 + termsize(Us) and termsize([X,Y|Rs])

> 2 + termsize(Vs). That shows termination of mergesort®/.

3.8 Extension to CLP(R)

In this section, we briefly discuss the extension of our method to CLP(R) programs.
Further research on this area will be investigated later.
We cannot apply our termination detection method directly to CLP(R) programs The

reason is variables in CLP(R) are real variables so they are not constrained to nonnegativity.

52

Therefore, the assumption that nonnegative combination of bound arguments (az in
Eq. 3.2) are positive does not hold.
We need to know the domain where recursive calls are satisfied. Consider the while
example in CLP(R):
while(X,Y) :-
X =<Y,
while(X+1, Y+2).
while(X,Y) :- X > Y.
Note X and Y are real variables. When both arguments of a goal are bound, the goal
terminates, because the second argument grows faster than the first, finally violating the
condition X =< Y.

Let 7 and 25 be the first argument and the second of while predicate, respectively. In
order for a goal to unify with while rule recursively, the goal must satisfy the constraint
x1 < z3, because of the subgoal X =< Y in the recursive rule. In addition to Eq. 3.3 as
termination condition, we have to ensure that 1 < 29 implies az > 0.

Let R(z) be the constraint set associated with a predicate so that a goal unifies

recursively. The following constitutes termination condition for one rule.
VayA (R(z) implies ez > 0 A Eq. 3.1 implies Eq. 3.2) (3.10)

In case of the above while example, the constraint that o must be (1,-1) is derived. How

to derive R(x) in general will be a further research topic.

3.9 Discussion

We have presented a methodology for termination detection that uses duality theory of
linear programming, and is quite general and straightforward.

This method can be fully automated and is easy to implement. We implemented the
method in Prolog. The complete system consists of 2770 lines of Prolog code. Some

performance measures are listed in Table 3.1, and the Prolog sessions for two test inputs,

53

input program perm | quicksort | mergesort | parser
cputime in milliseconds 310 400 549 1319
ratio 3.44 2.22 2.20 9.42

Table 3.1: Performance measures of termination detection

perm and parser are shown in Appendix C. The programs were tested on SUN4 sparc
station using Sicstus Prolog 2.1. The second row of Table 3.1 indicates the analysis time

and the third row indicates the ratio of analysis time to compilation time:
ratio = (analysis time) / (compilation time).

The results show the analysis is quite slow compared to the compilation of the programs.
Our broad conclusion is the termination detection together with the inference of inter-
argument constraints (See Section 4.6) can be available as an user option of Prolog compilers.
The program perm and parser are typical linear and mutually programs respectively, with
which the power of our method is shown. We have not tested our implementation with
substantial size of programs, because our program take only pure logic program (without
negation, cut, or builtin predicates) as an input. However, we conjecture that the running
time for large input is only linear of running times for our test inputs, since a practical logic
program is divided into small strongly connected components in its predicate dependency

graph.

54

4. Inference of Interargument Constraints

4.1 Introduction

Our termination detection method described in the previous chapter was built on the
basis of interargument constraints for predicates imported from lower SCCs. In this chapter,
we will describe how to infer such constraints.

Local variables are those appearing only in the body of a rule.

In many programs (see Example 3.7), it is often the case that there are no direct
relationships among the argument sizes in a head and those in a recursive subgoal due
to existence of local variables. So termination proof usually requires the relationship among
argument sizes of subgoals in order to relate the argument sizes in the head and the recursive

subgoals.

Example 4.1: Consider a recursive rule:

p(lalX]) :- p(X).

The term size of the head argument is bigger than that of the subgoal argument size,
because there are no local variables. In this case, termination proof is direct. Consider
another recursive rule:

p(X) :- a(X, Y), p(Y).

Let z,y denote the size of X and the size of Y, respectively. and a; the i-th argument size
of a. X and Y are not related to each other in this form, since Y is a local variable. By
the subgoal a, X is processed into Y somehow. If it is true that ay > ay, then we can infer
x> Y. ap > ag is called an interargument constraint for a. It can be inferred by taking the

semantics of the definition for a into account. [

We also believe the relationships among argument sizes are useful for showing safety
of queries in deductive databases, for code improvement using better memory allocation
strategies, and for deciding granularity of tasks in the parallel execution of logic programs

as well as for automatic termination proofs.

55

Interargument constraint (for short, IC) of a predicate is a set of constraints which every
derivable fact with respect to the predicate satisfies. Methods to derive ICs have been
studied recently in terms of Datalog [BS89a, BS91] or logical rules with function symbols
[VGI1]. In their methods IC is formalized by the least fixpoint of bottom-up inference
operator similar to “immediate consequence operator”. In [BS91] ICs are captured by a
disjunctive union of inequalities between two argument sizes. They show undecidability
results on interesting questions such as whether a specific procedure for computing ICs
computes a finite set of constraints. Van Gelder studied a method to derive a single
conjunctive set of constraints by taking the convex union of disjunctive sets of constraints
as an input for bottom-up inference [VGI1]. It is often the case that both methods fail to
finitely converge.

In this chapter, IC with respect to n-ary predicate is captured by a single polyhedral
convex set in the nonnegative orthant of R™, called a polycone. We formalize the derivation
of ICs in a way similar to [VG91]. This method is an instance of bottom-up abstract
interpretation based on fixpoint semantics, so correctness is guaranteed. We introduce
two new techniques to capture ICs in finite time, using afline widening and translativeness
property.

Widening polycones to affine hulls accelerates the convergence of the transformation
associated with the inference operator up to finitely many iterations, yet supplying useful
1Cs.

We characterize a class of linear recursive logic procedures satisfying translativeness
property, for which precise ICs (corresponding to Ifp of the transformation) are auto-
matically given. Whether a procedure satisfies translativeness property can be tested by
analyzing the relationship between argument sizes of the head and those of the recursive
subgoal. Many practical programs satisfy the translativeness property, and ICs which
cannot be derived by other methods can be captured.

We also investigate an efficient method to find extreme points in an affine image of a

polycone, which is essential to verifying a fixpoint of a transformation. We believe this

56

method is also useful in the implementation of CLP(R).

Overall, the main contribution of this chapter is to provide an efficient method to derive

precise 1Cs for practical logic programs.

Example 4.2: With a simple append procedure, we compare our results with others. Sagiv
and Brodsky’s method [BS91] cannot capture the IC we derive here since their IC is in the
form of inequalities between two argument positions. Van Gelder’s method [VG91] does
not converge with this example; his heuristic that “sometimes” works gives the same I1C.
However, we provide an affine widening that always works. Let us consider a version of the
usual append procedure abstracted by listsize (See Example 4.3 for rules).

append(0,t,t) — t > 0.

append(1 4 u,v,1 4+ w) — (u,v,w) > 0, append(u, v, w).

The relationship among argument sizes with respect to append is essentially an infinite set:
{append(0,z,z), append(1,z,1+), append(2,z,2+4 z),...}.

We approximate this set to the convex union of the set elements, which is append(y, z, y+x).
That implies that the size of the third argument is the sum of the size of the first and the size
of the second. It is indeed a fixpoint of our transformation supplied with affine widening,
which is derived in three steps of transformations.

The relationship can also be captured via the analysis of the structure of a transformation
since append procedure satisfies translativeness property. Recursive procedures in logic
programs usually handle structures as a backbone of recursion called recursion on structures;
that is, some elements of a structure are processed in a recursive call and the rest is passed
for the subsequent calls. Linear recursive procedures relying on “recursion on structures”

technique usually are translative. []
Section 4.2 introduces basic concepts on term size abstraction and linear constraints.

In Section 4.3 we formalize transformations to derive ICs, and introduce affine widening

to approximate the least fixpoint.

57

Section 4.4 introduces the translativeness property of a class of linear recursive logic
programs. For such a class of programs, ICs are obtained with no iterations. Linear
recursive programs relying on “recursion on structures” usually satisfy this property.

Section 4.5 concerns a method finding all extreme points of a polycone in parametric
representation. We remove nonextreme points from affine images of extreme points of a
polycone using the adjacency graph on extreme points.

Section 4.6 summaries the chapter.

4.2 Basic Concepts

Logic programs can be abstracted by the size of terms. Our method does not depend
on any specific size definition. In examples we shall use listsize [UVGS88] and structural
term size [VGI1, SVGI1]. List size and structural term size are defined informally to be
the number of edges in the rightmost path and the number of edges, resp., in the tree
that represents the ground term. For terms containing logical variables, a real variable x
constrained to nonnegativity is associated with each logical variable X. For instance, the
listsize and structural term size of £(a,g(X),X) are 1 + « and 4 4 2z, resp. A rule is
abstracted by replacing terms by their sizes. We shall call the resulting rules and programs
abstract rules and abstract programs, resp.

Example 4.3: Consider usual append procedure.

a(dl, T, T).

a([Xxl|ul, v, [XIW]) :- a(U,V,W).

Replacing terms by their structural term sizes reduces to the following CLP(R)-like
procedure.

a(0,t,1) — 1 > 0.

a24+z+u,v,2+z+w)— (z,u,v,w) > 6,a(u,v,w).

[

58

The ¢-th argument size of predicate p is denoted by p;; for example, a1 = 0,a3 = v, a3 = v
or @ = (0,v,v) in the base rule of Example 4.3. @ denotes a vector of a;’s.

A polyhedral convex set in R" is the intersection of finitely many closed half-spaces. A
polycone is a polyhedral convex set in the nonnegative orthant of R™. IC with respect to an
n-ary predicate p is captured in the form of a polycone in R™. A polycone in R" is usually

represented by an affine image of another polycone in R™; that is, represented in the form

of:

(4.1)

where p'is the vector of variables representing argument sizes, 7 is the vector of parameters,
d is a vector constant, A is a matrix, and C(&) is a set of constraints in parameter
space, containing nonnegativity constraints for parameters. Eq. 4.1 is called parametric
representation of a polycone. We sometimes use the same symbol, for example A, to
denote a polycone or its parametric representation; however, its meaning should be clear
by the context. An empty polycone is denoted by (), whose parametric representation is
inconsistent.

The parametric representation of a polycone can be generated by a tuple of a set of
points and a set of rays called a generator The polycone is a vector sum of a convex hull of
points #1,...,%, and a cone of rays #1,...,%mn; that is,

P= 20 AT+ DD Y
=1
A>00=1,....n

(4.2)

;> 0,5=1,...,m
We shall say that a polycone in Eq. 4.2 is generated by points @7, ..., 2; and rays 91, ..., Ym-
A unique minimal generator called a frame is obtained by eliminating nonextreme points
and rays from the generator. Fquivalence of two polycones can be tested by comparing their
frames. A generator and a frame of a polycone A are denoted by gen(A) and frame(A),

resp. For example, let A be a polycone corresponding to Eq. 4.2, gen(A) is ({#71,...,4.},

{A, . um})-

59

The convex union Ay U Ay of two polycones Ay and As is defined as the closure of the
set of points that are convex combinations of any two points of union of two polycones. LI
is commutative and associative. A convex union of n polycones Aq,..., A, is denoted by
U{Ay,...,A,}. The generator of U{A;...A,} is a tuple of the union of sets of points and
the union of sets of rays in the generators of A;’s, so its parametric representation can be
generated by points and rays in gen(Aq),...,gen(A,).

The affine hull afffA) of a polycone A is the smallest subspace containing A. If

gen(A) = ({x_i7 b '7$_7)’L}7 {y_i7 ctc y_)m})7 then

pr= o AT+ 3 1Y
Aff(A) = r=> 2Ky (4.3)

SSAhi=1

See [Sch86, Roc70] for details on polyhedral convex sets.

Substitution [z1/ey,...,2,/e,] is defined in an usual way; that is, a variable z; is
replaced by a linear arithmetic term e;. Using vector notation, it is denoted by [#/€].

A predicate dependency graph is a digraph with nodes of predicates and arcs from p to
q where p is a head predicate of a certain rule and ¢ is its subgoal predicate. Intuitively,
q supports the derivation, or solution, of p. We identify strongly connected components
(SCC) of this digraph, and a directed acyclic graph (DAG) whose nodes are SCCs. In the

actual derivation of ICs, we analyze each SCC at a time starting from the leaves in the

DAG. The analysis of an SCC is supported by ICs from the lower SCCs.

4.3 Transformations Corresponding to Logic Programs

Suppose there are k predicates p',...,p" in a program P, and let a(p’) denote the arity
of p'. Let Api, ..., Ak be parametric representations of polycones in R“(pl), .. .,R“(pk)
respectively, and A = (A,1,...,Ak). Let U, be the set of all convex sets in the positive
orthant of R*®) and U = Uy X -+ X Uyp. U forms a complete lattice equipped with
componentwise subset ordering C. We now introduce a transformation corresponding to

one logical rule.

60

Definition 4.1: (natural transformation) Suppose the i-th non-base abstract rule whose

head predicate is p is in the form of:

p(@) = X > 0,9(),..7(@). (4.4)
where X is a vector of variables appearing in the rule. &€= (eq,.. .,ea(p)), f: (f1,-- _hfa(q))7
e g=1(91,.. .,ga(T)) are vectors of linear arithmetic terms. Assume that every polycone is

in parametric representation. The natural transformation ¥, ;» : U — U, corresponding

to the i-th rule of predicate p is defined by:

p=e
A7/
Vepis(A) =9 (4.5)
A [7/4]
X>0
For i-th base abstract rule in the form of:
p(E&) — x>0 (4.6)
we have the following base polycone:
F=i
B<p72'> = . . (47)
A>0

O

Example 4.4: Continuing with Example 4.3, suppose we have a parametric representation
of a polycone: A = ({@ =(0,¢,¢),t > 0}). Then Vo 15(A)={d=2+24u,v,2+2+w),
vw=0v=t,w=ta>0,u>0,v>0 w>0,t>0} Forthe base rule, we have a
polycone: Bey1s = ({@ = (0,¢,t),¢>0}). [

We extend this formalism to the whole program P in a natural way.

Definition 4.2: (recursive transformation) A recursive transformation Tp : i — U associ-

ated with a program P is a direct product of Tj1,..., T k. T, is defined by a convex union

61

of [base polycones and m natural transformations associated with the rules whose head
predicate is p'.
Tr(A) = (T (A),. ., T(A))

Tpi(A) = |_|{B<pi71>, .. .,B<pi7l>, \Il<pi71>(A), .. .,\Il<pi7m>(A)}

(4.8)

[]

Natural transformation and recursive transformation are similar to those in [VG91], but
more general.

Theorem 4.1: A recursive transformation Tp is monotone.

Proof: The operations involved in Tp are essentially intersection, projection, and convex
union of polycones. These operations preserve monotonicity. [

Theorem 4.2: There exists the least fixpoint associated with Tp.

Proof: It follows from the fact that 7p is monotone and ¢ forms a complete lattice. [

Our formalism is an instance of abstract interpretation, hence correctness is guaranteed. A

fixpoint can be verified by comparing the frames of polycones in A and T'(A) componentwise.

Example 4.5: Continuing with Example 4.3, we now compute the least fixpoint of recur-
sive transformation. Since there is only one predicate a in a program, Let B, ¥, T denote
Beg1s.Veqis,Tp = Ty, resp. Note that () denotes an empty polycone. In parametric
representation we omit nonnegativity constraints of variables. How to find extreme points

and rays will be covered in Section 4.5.

1. (base polycone) B = {@ = (0,1,1)}, frame(B) = ({(0,0,0)}.{(0,1,1)})

2. (natural transformation) ¥(0)) = 0

3. (recursive transformation; convex union of B and §) frame(T(®)) = ({(0,0,0)},{(0,1,1)})
4. (verify a fixpoint) frame(()) # frame(7(0)),

so generate the parametric representation of T(()
5. (natural transformation) U(7(0)) = {@d = 2+ 2 +u,v,24+ 24 w),u=0,v =t,w = t},
frame(¥(T'(0)) = ({(0,0,0)},{(0,1,1),(1,0,1)})

62

P2, P2
1
0 p 0 p
1 1
(a) (b)
P2, P2
2
0 p 0 p
1 1
(c) (d)

Figure 4.1: Polycones after recursive transformations

6. (recursive transformation; convex union of B and ¥(7'(()))
frame(7%()) = ({(0,0,0)},{(0,1,1),(1,0,1)})
7. (verify a fixpoint) frame(T1(0)) # frame(T?(0)),
so generate the parametric representation of T%())
With one more transformation, we reach the least fixpoint. IC generated by the frame of

Ifp is {@ = (u,v,u+ v)}. In append procedure, its third argument size is equal to the sum

of its first and second. []

63

Unfortunately, recursive transformations associated with many practical programs often

fail to converge finitely, in particular if we use listsize abstraction.

Example 4.6: Consider an abstract procedure below:

p(t,t) — 1> 0.

plu, 14+ v) — (u,v) > 0, p(u,v).

In Figure 4.1, (a) shows the polycone from the base case rule. (b) and (c) shows the
polycones after one and two recursive transformations, respectively. (d) shows the polycone
after infinite transformations, which is the fixpoint of the transformation. []

Whether a recursive transformation converges finitely is believed to be undecidable!. In logic
programs data structures in input arguments are usually transferred to output arguments
even though they may be broken into smaller ones, or combined into larger ones, or the
values of elements are processed. In terms of argument sizes, the relationship among them
may be approximated by a set of equalities, that represents an affine subspace. Requiring
the least fixpoint is too much in general; however, postfixpoints ? are also a correct upper
approximation of least fixpoint by Tarski’s fixpoint theorem: T'(z) < implies lfpT < z.
The idea of using widening has already been used in the abstract interpretation of programs
in procedural languages [CH78].

We now describe what we call affine widening. To simplify notations, let us omit
subscripts concerning predicate name and suppose there is only one predicate in a program.
A; is an affine subspace w.r.t. the predicate. If A; is a postfixpoint of T, we are done
with a correct IC. Otherwise, we widen T'(4;) to its affine hull A;;1. Suppose A; is such a
postfixpoint that it is found for the first time in the computation of Ag = 0, A4,

Theorem 4.3: The sequence Ag, Aq,..., A; is finite.

!Brodsky and Sagiv studied inference of disjunction of inequalities between two argument positions.
With a transformation similar to our recursive transformation, they proved the question on convergence is
undecidable[BS91]

*If & > T(x) (¢ < T(x)), then = is a postfixpoint (prefixpoint) of 7.

64

Proof: It is enough to show the dimension of A;;; is greater than that of A; for ¢ =
0,...,1—1since A;’s are affine subspaces in R"™ where n is the arity of a predicate associated
with the recursive transformation 7. A; C T(A;) since A; is not a postfixpoint of 7" and
T(A;) C A4 since A;4q is an affine hull of T(A;). So A;41 is an affine subspace properly
including A;; that is, the dimension of A;,; is greater than that of A;. [

Although affine widening sometimes widens to “no constraints”, it provides yet useful I1C

with many practical programs.

Example 4.7: Let us consider append procedure with a constraint that all list elements
are integers.

a(dl, T, T).

a([xlul, v, [XIW]) :- integer(X), a(U,V,W).

The purpose of introducing the constraint integer(X) is to set the termsize of X to zero.
The abstracted version of the above append procedure is as follows:

a(0,t,1) — 1 > 0.

a2+ 2 4+ u,v,24 2+ w) — (x,u,0,w) > 0,2 = 0,a(u,v,w).

Using recursive transformation without affine widening, the transformation does not con-
verge finitely since it expands the input convex set inch by inch at every iteration. We now
try with affine widening. Ay = T(0) = {a1 = 0,a2 = a3} is an affine subspace, which is
one-dimensional. frame(A; U7T(A1)) = ({(0,0,0),(1,0,1)},{(0,1,1)}), so its affine hull is
Ay = {as = a; + az}, which is two-dimensional. With one more iteration, we find that A

is a postfixpoint of 7" (fortunately, a fixpoint). []

4.4 Translativeness Property

Let 7 be a vector of argument sizes in a head and];7 a vector of argument sizes in a
recursive subgoal. All nonrecursive subgoals are replaced by their ICs. Then an abstract
rule can be viewed as a polycone in R?", so this polycone can be generated by its extreme

points and rays.

65

Example 4.8: Consider the naive reverse procedure.

r([1,0D).

r([X|u],w) :- r(U,V), alVv,[X],W).

Applying listsize abstraction to the procedure, we have:

7(0,0).

(14 u,w) — (u,v,w)> 0, 7(u,v), a(v,1,w).

The analysis for a supplies an IC: a1 + az = as. Replacing a(v,1,w) by (a1 + az =
as)ai/v,az/1,as/w] reduces to the following abstract procedure.

7(0,0).

(14 u,w) — (u,v,w) >0, r(u,v), v+1=w.

Let 7 and r’ denote the argument sizes of head and recursive subgoal, resp. So we have the

following parametric representation for rq, o, 7’1, 7/5.
rm=1l4+u, rm=wri=u ry=v,v+1l=w, u>0,v>0, w>0

The parametric representation generated by the extreme points and rays is:

n = 1 +u

rg = 1 +v
ry = 0 +4u

r'y = 0 +v
u > 0

v > 0

L

Definition 4.3: (translativeness) A natural transformation ¥ associated with a linear
recursive rule is viewed as a polycone in R*" when all nonrecursive subgoal are replaced by
their ICs. Suppose the parametric representation generated by extreme points and rays of

the polycone in R*" is in the form of :

66

- B Py

ST

0 P

(
2 A
A

LS
Il

I\/ >
I\/
o

where P; and P, are permutations. Substituting p = P; 'y boils down to:

7= AN+ Bl + Py
(4.10)

=

I
e
v >

p; >0

where P is P1P2_1. If a natural transformation ¥ can be reduced to Eq. 4.10, ¥ is P-
translative.

Let Ay denote a polycone represented by:

7= AN+ Bji
Ap=4¢ YN =1 (4.11)

U(A) is indeed a vector sum of Ag and PA:
U(A)=Ag+ PA

[

Now we introduce some useful operations on polycones.

Definition 4.4: Let A, Ay, Ay be polycones in R". The vector sum, scalar multiplication,

and linear transformation of polycones are defined as follows:
1. (vector sum) Ay 4+ Ay = {a + ylo € A,y € Az}
2. (scalar multiplication) AA = {Ax]z € A}

3. (linear transformation) AA = {Az|z € A} where A is a matrix.

[

Lemma 4.1: The following equalities on polycones hold.

67

1. A(A1 4+ Ay) = AA + AN,

2. A(A1UAg) = AAL U AA,

3. A1+ (A UA3) = (A1 + Ag) LU (A1 + Aj)
U

Suppose we have k base polycones and [P-translative natural transformations. Then we

can simplify the recursive transformation 7" as follows:

T(A) = BiU---UByU(A1+ PAYU---U(A + PA)
= (BiU---UB)U((AU---UA)+ PA))

= ABH(AR—I—PA)

where Ap = By U---UBp and Ap = Ay U---UA;.

We now describe how P-translative natural transformation can be unfolded to I-
translative transformation using unfolding, where I is an identity matrix.
Definition 4.5: (Unfolding) Suppose T is P-translative transformation. T?(A) is obtained
by applying T to T'(A).

T(T(A) = ApU(Ar+ P(ApU(Agr+ PA)))
= Ap U(Ap + P*A)

where Ag: = Ag U (Agr + PAg) and Ap = Arp + PAg. U
Applying at most n unfoldings in which n is the arity of the associated predicate, we can
get [-translative transformation since P is a permutation matrix.

Theorem 4.4: Let T be a translative transformation in the form of:
T(A) =Apu (AR + A)

and the generators of Ag and Ap are:

gen(Ag) = ({u1,...,urt,{v1,...,01})
gen(AR) = ({$1, .. -7$n}7 {ylv .- 7nyL})
then

gen(lpr) = ({ulv .- '7uk}7{v17 N PRUS R R 7R /) P 7ym})

68

Proof:
T(0) = ApU(Ar+Ap)U(RRAr+ Ap)U---U(kAr+Ag)U---
= A+ (OUARU2ARU---UkARU---)
= Ap+{Az|lz € Ag, A > 0}
[

In practice, linearly recursive logic programs relying on “recursion on structures” technique
usually satisfy translativeness property. Hence their tight interargument constraints can be
found without any iterations.

Example 4.9: The following procedure is intended to divide its first argument into its
second and third argument. In order to assure balanced division of the “input” list, the last
two arguments are interchanged upon recursion.

actl, o, .

d(x | ul, X | V], W) :- integer(X), d4(U, W, V).

Applying termsize abstraction to the procedure, we have:

d(0,0,0).

A2+ u,2+ v,w) — (u,v,w)> 0, d(u,w,v).

Clearly, frame(Ag) = ({0,0,0}, {}). From the second rule, we get a P-translative

transformation:

U(A) = Ag + PA

where

Ar={d=(2,2,0)}

1 0 0
P=10 01
0 1 0

Applying an unfolding boils down to I-translative transformation:

Tz(A) = Ag/ U (AR’ + A)

69

where frame(Ap/) = ({(0,0,0),(2,2,0)},{}) and frame(Ar) = ({(4,2,2)},{}). By
Theorem 4.2,

di = Ay + 2111

dy = Ay + 11

fpT" = § ds =1y

AM+A=2

At > 0,020,020

It implies that the first argument size is the sum of the second and the third, and the
first argument size is greater than the second or the third if the first is positive, which is
important information when handling termination proofs. It is noted that Van Gelder’s
recursive transformation does not converge with this example and his heuristic does not
work [VGI1]. Sagiv and Brodsky’s method can infer only inequalities between two argument
positions [BS91]. Recursive transformation with affine widening described in the previous

section gives an IC: dy = dy + d3, which is less precise than the above. []

4.5 Extreme Points of a Polycone

Parametric representation of a polycone in R™ can be viewed as a set of constraints A

in B™ and an affine transformation ® from R™ to R™.
FT=a+ A\

o= (4.12)

Ay

Lemma 4.2: The extreme points in ®(A) are affine images of the extreme points of A:
ep(®(A)) C{a+ A7 | pe ep(A)}

where ep(.9) is the set of extreme points in 5.

The extreme rays in ®(A) are images of linear transformation of the extreme rays of A:
er(®(A)) C{AF| Feer(A)}

where er(.9) is the set of extreme rays in S. []

70

A is a polycone, so there are finite number of extreme points and rays. As there is an
algorithm to find all extreme points and rays of a polycone in [MR80, VG91], we can
effectively compute them (See Appendix B.)

The cost of computing all extreme points and rays depends on the number of parameters
and constraints. Before we compute extreme points and rays, we should be able to
eliminate redundant parameters and constraints unless the cost of elimination is expensive.
Parametric representation of a polycone usually has the constraints in the form of equalities.
Gaussian elimination procedure reduces equalities to inequalities, eliminating at most n
parameters where n is the number of equalities. By exploiting the fact that polycone is
constrained to nonnegativity, we can eliminate redundant inequalities and parameters:

1. a1z1 + asxs + ...+ apx, > b where a¢; > 0,6 < 0 is redundant.

2. a1x1 + asxo + ...+ apx, > b where a; < 0,0 = 0 forces z; with nonzero coefficient to

be zero.

3. a1x1 + asxy + ...+ a,x, > b where a; < 0,0 > 0 makes the polycone inconsistent
An implicit equality corresponds to the elimination of one parameter and one constraint.
The cost of finding an implicit equality is equivalent to that of running a linear program.
General techniques for redundancy elimination of linear constraints can be found in
[KLTZ83, LHMS89].

To verify a fixpoint of a recursive transformation 7', we need to extract extreme points
and rays from points and rays transformed from the constraint set. Suppose we have k
points pi,...,pr and [rays 7q,...,7;. A ray 7; is nonextreme if it is nonnegative linear
combination of the other rays. In other words, a ray 7; is nonextreme if the following linear

system is solvable:
=Y M g 20 (4.13)
J#i

Similarly, a point p; is nonextreme if the following system is solvable.

pi = Z/\jp_} + Z:ujr_}v Z/\] =1, /\] >0,] >0 (414)
J#i

71

Thus we can eliminate nonextreme points and rays by testing the solvability of a certain
linear system. Solvability of a linear system can be tested theoretically in polynomial time
by Khachiyan’s ellipsoid method or Karmarkar’s method [Sch86]. It also can be tested
by exponential time algorithm such as Fourier-Motzkin elimination or the first phase of
simplex method. Those polynomial time algorithms have been reported to be impractical
unless the input size is substantially large. The exponential-time algorithm will work if we
can maintain small input sizes.

Fourier-Motzkin elimination stops upon finding an inconsistent inequality while the first
phase of Simplex algorithm stops upon finding a feasible solution. Thus in case many
nonextreme points (or rays) are present, the first phase of Simplex algorithm must be used.
In any case maintaining small input sizes is a key to using exponential-time algorithms
successfully.

As we deal with polytopes in the following, we will use “vertex” instead of “extreme
point”. Affine images of vertices in a polytope may contain a high degree of redundancy.
It is the case that the number of neighbors adjacent to a vertex is usually far less than that
of vertices in polytopes. Theorem 4.5 says it is enough to show that an affine image vg is
a convex combination of only its neighbors on a graph induced by affine transformation, in
order to show that vg is not a vertex. (We are working on the extension to general polyhedral
convex sets.) Let V' = {vy,v2,...,v,} be the set of vertices and £ = {e1,eq,...,e,} the set
of edges in A. Thus G = (V,) represents the adjacency graph on vertices of a polytope.
This graph can be constructed using a variant of Simplex algorithm which finds all basic
feasible solutions rather than an optimal solution. A graph G¢ = (Vg, Eg) is one induced

by an affine transformation ®:

Vo ={®(v) [ve V]

Ep = {(®(v1), ®(v2)) | ®(v1) # B(v2), (v1,02) € £}

(4.15)

Definition 4.6: [Grii67] Let G = (V, F) be a graph, M a set of vertices of &, and v, u
two vertices of G which do not belong to M. M separates v from u provided every path

connecting v and u contains some vertex in M. []

72

Conjecture 4.1: Let v and u be two vertices in an adjacency graph G of a polytope P
separated by M C V. Then the line segment connecting v and u passes through the convex

hull of M. []
Note the following theorem is based on Conjecture 4.1.

Theorem 4.5: Suppose Conjecture 4.1 holds. Let z¢ € Vg and {y1,...,yr} be the set of

vertices adjacent to zg. Then z¢ is a vertex in ®(A) iff zg is not a convex combination of

b

Yi's.
Proof: (Sketch)
(=). Trivial.
(«<). Let {z1...21} be the set of vertices not adjacent to g in Vg (If there exist no such
z;’s, proof is trivial).

Let {p1,...,pm} be the set of vertices in V" which are transformed to z¢, and {qy,...,¢,}
the set of vertices in V' which are transformed to {y1,...,yx}, and {ry,...,7,} the set of

vertices in V' which are transformed to {z1...2,}.

Fach line segment connecting p; and r;, ¢ € {1,...,m}, 7 € {1,...,0} must pass
through ConvexHull{qy,...,q,} by Conjecture 4.1. Since affine transformation preserves
the convexity, each line segment connecting zg and z;, j € {1,...,[} must pass through

ConvexHull{yy, ..., ¥mn}. Thus xq is a vertex. []

4.6 Summary

We formalized a method of deriving constraints among argument sizes and provided an
affine widening operation to accelerate the convergence in finitely many steps, yet providing
useful interargument constraints.

We defined a class of linear recursive logic programs in terms of translativeness property.
For such a class, tight interargument constraints are automatically given via the analysis
of the structure of transformations. In practice, most of logic programs are linear recursive

and rely on “recursion on structure” technique, hence satisfying translativeness property.

73

input program append | merge | perm | mergesort | parser
cputime in milliseconds 239 499 650 1270 859
ratio 8.00 3.12 | 7.22 5.08 6.14

Table 4.1: Performance measures of inference of interargument constraints

The most costly operations in the procedure of handling linear constraints are the
projections and finding all the extreme points and rays of polycones. We presented a
method exploiting information on adjacency of extreme points, which outperforms methods
using Fourier-Motzkin variable elimination.

We implemented the method in Prolog. The complete system consists of 2297 lines
of Prolog code. Some performance measures are listed in Table 4.1. The input progrmas
are shown in Appendix D. The ratio was defined in Section 3.9. Some discussion on the
performance results also can be found in that section. The programs were tested on SUN4

sparc station.

We are working on the extension of translativeness to nonlinear recursion.

74

5. Relational Groundness Analysis

5.1 Introduction

Logic programming has been successfully used as a tool for several areas including
compiler writing, expert system design, natural language processing, hardware design, and
knowledge-base design. One of the most attractive features of Prolog is bidirectional use of
arguments for input, output, or both; however, in practical programs most procedures do
not make this sophisticated use of arguments. Using mode information allows compilers to
produce more specific code which results in substantial speedup [Mel85]. With this regard,
Warren introduced explicit mode declarations to help the compiler produce better code
[War77]. But mode declarations must be verified since wrong annotation may introduce
subtle errors in program executions.

Another approach is to infer mode declarations automatically via abstract interpretation
[Mel87, BJCB87, MUR7, DW8S|. Abstract interpretation has been used as standard means
for dataflow analysis since it was placed on a solid semantic basis by Cousot and Cousot
[CCTT] (See [CCI92] for the theory and applications to logic programming).

Early work done by Mellish [Mel81] produced erroneous results since aliasing effects
resulting from unification was not considered, which was corrected later [Mel87].

Mannila and Ukkonen [MUS87] used simple two-valued abstract domains {ground, any},
hence free mode ! cannot be inferred (ground, free, any are abstractions of ground terms,
free variables, all (ground or nonground) terms, respectively). In addition, their method
could not handle the problem with aliased variables accurately.

Bruynooghe et al. [BJCBS87] suggested multi-passes algorithm (repeat previous call
strategy) to resolve aliasing problem, which are considered to be costly if the strategy is

applied globally.

n their paper, nonground means possibly nonground, which means any

75

Debray and Warren [DW88] presented an algorithm to give a sound and efficient
treatment of aliasing. However their method produces less precise mode information since
they use conservative local analysis in which all unsafe instantiations are replaced by any.

In this chapter, we study relational abstract domains which describe possible groundness
relationships among arguments. Like [MUS7], we only analyze groundness, however, our
method provides great accuracy with respect to groundness. It is also noted that success of
correctness proofs like program termination relies on preciseness of groundness information
[UVGS8S, P1i90b, SVGI1].

Let us consider a call p(A, £(A,B)) in which we have no instantiation information
on A and B. Hence the goal is abstracted as p(any,any) in the previous cited methods.
But more careful look at the call gives us the possible combinations of call patterns
{p(0,0),p(0,1),p(1,1)} where 0 and 1 are ground and nonground respectively to keep
notations simple. That is, if the second argument is ground, then the first has no other
choice but ground. Suppose we have a clause p(U, f£(a,b)). With the call pattern
plany,any), the success pattern after the call to the clause is p(any, ground) whereas with
our call pattern, the success pattern is p(ground, ground). Preciseness of success patterns
affect the subsequent call patterns immediately. It should be mentioned that if we use a
table of possible groundness relationships among arguments as shown above, we will end
up with combinatorial blowup.

We now introduce simple boolean constraints to denote groundness relation. Roughly, a
term can be abstracted as a logical disjunction of variables occurring in the term. For
example, p(a,a V b)) is the abstraction of the goal p(4, £(4,B)) where ¢ and b are
propositional variables corresponding to A and B and V is boolean OR.

Using positive propositional formula (called domain PROP) for groundness analysis has
been studied by Marriott and Sgndergaard [MS89]. The domain was further studied by
Cortesi et al. [CFW91]. Our abstract domain is simpler than PROP since we only use
positive proposition formula forming so-called a “boolean cone”. For such formula, we can

easily find a minimal generator set which is a unique minimal representation. Therefore,

76

11
110
01 10
100
00

(a) (b) ()

Figure 5.1: Diagram of ground analysis

testing if two formula are equivalent can be done efficiently. Main contribution of our
study is to introduce novel concepts on boolean cones and develop operations to accomplish
efficiently relational groundness analysis and to provide bottom-up groundness analysis
using propositional formula.

In Section 5.2, we describe notations used through the chapter and introduce groundness
abstraction of logic programs, and concepts, properties, and operations on boolean cones.

Section 5.3 describes some simplification procedures to remove redundancy in groundness

constraints.

Section 5.4 presents bottom-up groundness analysis mimicking immediate consequence

operator.
Section 5.5 summarizes the chapter.
The framework similar to our relational bottom-up analysis has been investigated on

real arithmetic domain to derive constraints among argument sizes by Van Gelder [VG91].

5.2 Basic Concepts

5.2.1 Abstraction

7

We now describe abstraction of terms, atoms, and clauses. Logic programs can be

abstracted by groundness relationships among terms. Informally speaking, groundness
abstraction of a term carries the information that if all the variables in the term are ground,
then the term is ground. We choose the boolean value 0 to denote ground. So xz V y is the
groundness abstraction of £(X,Y). That is, if (X) and y (Y) are 0 (ground), then 2 V y
(£(X,Y)) is 0 (ground). Let vars(t) denote a set of variables in a term ¢. We shall use
lowercase letters for the boolean variables corresponding to logical variables.
Example 5.1: Figure 5.1 illustrates groundness relationships of three atoms: (a) p(a),
(b) p(U, £(U,V)), and (c) p(U, V, £(U,V)). The lattices (a), (b), and (c) in Figure 5.1
are possible relationships for unary, binary, and ternary predicate, respectively. Circled
dots represent possible relationships for the three atoms listed above. For example, for the
atom p(U, £(U,V)), both arguments can be either ground (00) or free (11), and the first
argument can be ground and the second free (01). But it is impossible to have the first free
and the second ground. [

For notational convenience, we shall use p; for a boolean variable representing groundness
abstraction of ¢-th argument of predicate p. Boolean terms are terms built from boolean
variables and connective boolean OR V. Note that we do not use NOT and AND in
boolean terms. We often use a vector notation to denote a vector of boolean terms. For
example, (a1, az)V (b1,b2) < (c1,¢2) denotes: a; V by < ¢1 and az V by < cz. Substitution
[z1/€1,...,2,]/€,] is defined in an usual way; that is, a boolean variable z; is replaced by a
boolean term e;. Using vector notation, it is denoted by [Z/é].

Definition 5.1: Let ¢ be a logical term. Then «(t) is a groundness-abstracted term.

0 if vars(t) is empty
a(t) =

Viecuars(t)® otherwise

Let p be n-ary predicate. Then groundness-abstracted atom is as follows.

a(p(ti,ta, ..., t,)) = pla(tr), alts),...,a(t,))

Abstraction of clauses is obtained by applying abstraction to each atom occurring in the

clauses. []

78

Example 5.2: Let us consider the usual append procedure.

a(ll, U, U).

a([xl|ul, v, XIW]) :- a(Uu, vV, W).

Applying groundness abstraction to each clause transforms it to groundness-abstracted
procedure.

a(0,u,u).

a(z Vu,v,2Vw)— alu,v,w).

Since terms are boolean expressions, unification must be replaced by boolean constraint

solving in the execution of the groundness-abstracted procedure. []

5.2.2 Relational Abstract Domains

We now introduce boolean cones and their constraint representation. We also examine
some operations like OR-closure as least upper bound operation and equivalence of two
boolean cones, which are useful in finding the fixpoint of a certain transformation concerning
groundness relation.

Definition 5.2: Let a,b € {0,1}". C C{0,1}"is a boolean cone if

1.oecC

2. faeC andbe C,thenavbe
O
Example 5.3: {(0,0,0),(1,1,0),(1,0,1),(1,1,1)} is a boolean cone whereas
{(0,0,0),(1,1,0),(1,0,1)} is not. []

We use the word “boolean cones” since they have the properties similar to those of convex

cones in R™. We now examine some useful properties of boolean cones.

Lemma 5.1: Intersection of two boolean cones C'; and (5 is a boolean cone (5.

79

Proof: Clearly 0 is in C'5. Suppose a and b are in ('s. Therefore a and b are in both
and Cy. Since '; and (5 are boolean cones, a V b is in both €y and (5. Then a V b is also
in Cs. [

Example 5.4: Let C; = {(0,0,0),(0,1,1),(1,0,1),(1,1,1)} and

Cy ={(0,0,0),(1,1,0),(1,1,1)}. Cy and Cy are boolean cones. Cy (1 Cz = {(0,0,0),(1,1,1)}
is also a boolean cone. []

Lemma 5.2: The projection of boolean cone in {0,1}" onto {0,1}™ where m < n is also

a boolean cone.

Proof: Trivial. [

We now introduce the concept similar to extreme rays of convex cones in R™, which

we call generators. Generator sets serve as the unique, minimal representation of boolean
cones. Therefore testing equivalence of two cones reduces to comparing two generator sets.
Boolean OR of two vectors is a vector of the results of componentwise OR.
Definition 5.3: Let C' be a boolean cone C', and a € . Then « is a generator of C' if
a # 0 and cannot be the boolean OR of any other points in C'. A minimal generator set
gen(C') of C'is a set of all generators in C'. A generator set is the set including a minimal
generator set and the points which can be generated by the minimal generator set.
Example 5.5: gen({(0,0,0),(0,1,1),(1,0,1),(1,1,1)} = {(0,1,1),(1,0,1)} [

We can get a minimal generator set from a generator set by removing non-generators. A

non-generator is a boolean OR of some generators. Testing if a point is a generator can be

done as follows. Suppose we have a generator set {yo, ¥1,..., ¥y} and we want to test if yo
is a generator. If yy is not a generator, then there must be aq,...,a, such that a; € {0,1}
and

yozal.ylv...\/an.yn‘
If 4-th component of yg is 0 and ¢-th component of y; is 1, then a; has no other choice but
zero. For other a;’s, we can assign 1’s. Then we can evaluate the above formula. If it is
true, yo is a non-generator, otherwise a generator. This test is done in linear time in terms

of the size of the generator set.

80

Lemma 5.3: There exists a unique minimal generator set gen(C') for any boolean cone C.

Proof: Suppose (G; and (5 are two generator sets for a boolean cone €' and Gy # G.
Therefore, there exists z such that z € G and « € G5. Since G5 is a generator set, z
can be a boolean OR of some points g1,...,gx in G3. Since g1, ..., gr are members of C',
they are in GG7 or boolean combinations of generators in (G;. That concludes x is a boolean
combination of generators in (¢1, which is a contradiction. []

Let U be the set of all boolean cones in {0,1}". Equipped with the subset ordering C,
U forms a complete lattice with an empty set as the least element, {0,1}" as the greatest
element, set intersection [as greatest lower bound operation, OR-closure | | as least upper

bound operation as defined below.

Definition 5.4: The OR-closure of n cones Cy,Co,...,C, is the set of points which are
the boolean OR of any points in C;’s; it is denoted by | [{C1,Cs,...,C,}. U

Lemma 5.4: Let C'y,C5,...,C, be boolean cones. | [{C,Cs,...,C,} is the set generated

by the union of the generator sets of C7,C5,...,C,.

Proof: It follows from the definition of a boolean cone and a generator set. [

Example 5.6: Let C; = {(0,0,0),(0,1,0),(0,1,1)} and C3 = {(0,0,0),(0,1,0),(1,1,0)}
and C be | [{C1,C3}. Their generator sets are gen(Cy) = {(0,1,0),(0,1,1)} and gen(Cy) =
{(0,1,0),(1,1,0)}. Their union is, gen(C') = {(0,1,0),(0,1,1),(1,1,0)}. Hence C' =
{(0,0,0),(0,1,0),(0,1,1),(1,1,0),(1,1,1)}. (I

5.2.3 Groundness Constraints

The success of relational groundness analysis relies on whether we have efficiently
computable form of relations. Groundness relationships among arguments with respect

to a predicate can be represented in the form of a set of boolean constraints.
Definition 5.5: Let & = (eq,€e3,...,€,) be boolean terms and ¢q,¢g,...,¢, boolean
equalities. Let p'= (p1,...,pn) be a vector of boolean variables corresponding to groundness

abstraction of arguments of predicate p.

81

G:{ﬁHgvclvc%"'vcm}

is called a groundness constraint for a predicate p. If m = 0, it is called a simplified

groundness constraint for p. [

Theorem 5.1: A groundness constraint defines a boolean cone.

Proof: It is enough to show that one conjunction of a groundness constraint defines a
boolean cone, since the intersection and/or projection of boolean cones is also a boolean

cone. Fach conjuction G is in the following form:
V- Vr, <mnV:--Viyy.

The model of this formula G is the set of all the satisfiable assignments. Let (vq,...,v5) be
a tuple of all the variables appearing in G'. (0,...,0)is clearly a satisfiable assignment. Let
(ai,...,a,) and (by,...,b,) be two satisfiable assignments of GG. Then (aq V b1,...,a,V bg)
is also a satisfiable assignment, since (ay V b1,..., a5 V bg) has more 1’s than (aq,...,ax) or

(by,.... b). O

5.3 Simplifications and Normal Forms

The most costly operation is to test equivalence of two groundness constraints, which
must be performed at each iteration of transformation concerning abstract interpretation.
This operation is tantamount to finding generators of projection of cones, since generators
are unique, minimal representation of cones. In most cones associated with practical
programs, generators can be obtained by the following simplification rules.

e zVyV- -V z« 0isequivalent tox < 0,y <~ 0,...,z < 0.

e If xVyV---Vz < wis a constraint and w does not appear on the left-hand side
substitute the left-hand side into every place where w appears. If w appears nowhere,

delete the constraint.

e If x appears on the same side as y in every occurrence, = can be deleted.

82

A simplified groundness constraint corresponds to a set of points including generators, which
reduces to a generator set by removing redundancy. This is explained in the following
example.

Example 5.7: Let C' = {p < (zVw,yVw,zVyVw)} be asimplified groundness constraint.
(zVw,yVw,zVyVw) < z-(1,0,1)Vy-(0,1,1)Vw-(1,1,1) where - can be viewed as scalar
multiplication and V as componentwise boolean OR. Then (1,0,1),(0,1,1), and (1,1,1)
are candidates for generators, and (1,1, 1) is redundant since (1,1,1) = (1,0,1)Vv (0,1, 1).
So gen(C') = {(0,1,1),(1,0,1)}. This example also explains how to generate groundness
constraints from generators. [

Let us turn our attention to groundness constraints which cannot be simplified by the above
simplification rules. One way to find generators is to transform equalities with boolean terms

to ones with real arithmetic terms. That is,
riVaaV...V2, >yt Vi V... VY,
can be transformed to

Y1+ a2+ ...+ T 2N

1+ a2+ ...+ Ty 2 Yo

Y1+ a2+ . T T 2 YU,
ntyet+.. o +yn >
Ntye+...+yn > 22

LT1,L2y ey Ty Y15Y25 - -5 Um € {071}

It is easy to prove that both have the same set of solutions, and extreme rays of the linear
arithmetic systems are vectors of 0 or 1’s after being normalized so that one of their positive

components is 1.

83

Theorem 5.2: If zy is a generator of a boolean cone represented by a groundness
constraint, then it is a normalized extreme ray of a convex cone represented by a linear

arithmetic constraint transformed from the groundness constraint.

Proof: Suppose zp is a generator and it is not a normalized extreme ray. Since zg is not
a normalized extreme ray, zg is a positive combination of some normalized extreme rays

Y1y« - Yn, that is,

To=aiyr+ -+ an¥n (5'1)
where a; is positive. Let us consider a sum of %, ..., y,, that is,
xo = Y1+t Y (5.2)

The value 2(; > 0 whenever zo; = 1 and the value 2(; = 0 whenever zo; = 0. Therefore

Eq. 5.1 implies Eq. 5.2. In fact, Eq. 5.2. is exactly how we compute

Since 41, ..., y, are the points in the boolean cone, 2 is not a generator. Contradiction. []

As there are well-known methods to find extreme rays of convex cones (same as finding
extreme points of convex polytopes) [VGI1, Las90a], we can find candidates for generators

for the corresponding boolean cones by removing redundancy.

5.4 Bottom-Up Groundness Analysis

In the preceding sections, we described the relational abstract domain and some useful
operations on the domain. We now give a bottom-up abstract interpretation to get success
patterns in the form of groundness constraints.

Abstract interpretation consists of abstract domain and abstract operations which
mimics base semantics faithfully. Hence bottom-up abstract interpretation mimics fixpoint
semantics. Formal framework of bottom-up abstract interpretation can be found in [CC92,

MS88].

Now we define a transformation mimicking immediate consequence operator.

84

Definition 5.6: Suppose we have k predicates whose names are p,q,...,r in an abstract
program and p; is ¢-th clause having the head predicate p and so forth. Let P,Q),..., R be
groundness constraints associated with those predicates, and ¢, the set of all boolean cones
determined by the arity of the predicate p and so forth. Let & = (U, Uy, ..., U,). Let 2 be a
vector of groundness constraints (P, (@), ..., R) € (U,,U,,...,U,). Recursive transformation

T is a mapping from ¢ to U and T, is a mapping from U to U, as given below.

—

Tyi(x) ={p < a@,Q[q/b],..., R[F/c]}

where there are m clauses having the head predicate p and the ¢-th abstract clause of the

predicate p is in the form of

-,

p(@) < q(b),...,r(¢)
O

Theorem 5.3: There exists the least fixpoint of T" and it can be reached in finite number

of iterations.

Proof: By its definition, 7}, is clearly monotone, so 7' is monotone. The domain

(Uy, Uy, ..., U,) forms a finite complete lattice, equipped with componentwise subset or-

dering. []
In practice, it is more efficient to process strongly connected components separately in

predicate dependency graphs, starting from leaves in a tree induced by SCCs.

Example 5.8: Continuing with Example 5.2,

Tl

T(0)=A{a— (0,u,u)}

T? T(Tl):U{Tl,{Ez’H(xVu,v,w\/w,UHO,vHu’,wHu’}}

= {d < (z,v,2V v}

85

input program append | merge | perm | mergesort | parser
cputime in milliseconds 40 69 60 140 120
ratio 1.33 0.43 | 0.67 0.56 0.85

Table 5.1: Performance measures of inference of success patterns

Interested readers are invited to verify 7% = T?, which is the least fixpoint of T. Note
that we only use simplification rules to reduce to simplified groundness constraints. The
resulting fixpoint shows that in the success pattern of append procedure, if the first and

second argument are ground, then the third is ground, and vice versa. [

5.5 Summary

We presented a novel relational groundness analysis in this chapter. To compute
groundness relations efficiently, we used boolean constraints forming boolean cones. We
introduced the concept of generators to facilitate the equivalence test of two sets of boolean
constraints.

We implemented the method in Prolog. Some performance measures are listed in
Table 5.1. The ratio was defined in Section 3.9. The input programs are shown in
Appendix D. The programs were tested on SUN4 sparc station. The domain PROP was
implemented by B. Le Charlier and P. Van Hentenryck [LCVH93] and by M. Codish and B.
Demoen [CD93]. Our current implementation can take programs in pure Prolog as input.
We are working on lifting this limitation. It will be interesting to compare our performance
results with their results.

Including freeness analysis and developing efficient test of cone equivalence will be future

research directions.

86

6. Conclusion

We have presented a methodology for termination analysis in logic programming
environment. OQur method is modular in that we examine one strongly connected component
by one in the predicate dependency graph of a program. Nonnegative linear combination of
bound argument sizes is used as level-mapping function. To test if this function decreases
in well-founded domain, we have transformed the test condition into solvability problem of
a linear system using duality theory of linear programming. This method is straightforward
and general. Unlike other methods, our method could be extended to nonlinear and mutual
recursion with only slight modification.

We often need to know the relationship among argument sizes of a predicate in a subgoal
to relate head argument sizes and recursive subgoal argument sizes. We have formalized a
method of deriving such relationship using transformation similar to immediate consequence
operator. The transformation acts on abstract domain where only the size of a term
is considered. This transformation, however, does not necessarily converge. Since it is
difficult and unnecessary to find the least fixpoint, we have provided an affine widening
approximation to accelerate the convergence of the transformation up to finitely many
steps.

We have also defined a class of linear recursive logic programs in terms of translativeness
property. For such a class, tight interargument constraints are automatically given via the
analysis of the structure of transformations. In practice, most of logic programs are linear
recursive and rely on “recursion on structure” technique, hence satisfying translativeness
property.

Groundness analysis plays a very important role for global optimization of Prolog
compiler. It is also required in order to apply our termination analysis method to Prolog
programs rather than knowledge-base systems. Relational groundness analysis has been
thought to be costly in published papers. We have suggested to use boolean constraints

to represent groundness relationship among arguments of a predicate. This method works

87

quite effectively with the help of simplification procedures and gives more precise analysis
since it resolves the problem due to aliased variables.

The prototype of the implementation is done in Prolog. The performance measures have
showed termination analysis is so efficient and precise that it can be practically applied to

large programs.

88

Appendix A. Fourier-Motzkin Elimination

Fourier-Motzkin elimination procedure is used to test if a system of linear constraints are
solvable. In this technique a variable is eliminated by “cancelling” all positive occurrences
with all negative occurrences, pairwise, creating new rows (with 0 in that variable’s column).
Then all rows containing a nonzero coefficient for that variable can be eliminated, preserving
solvability. If there are only positive (or negative) occurrences of the variable, all the
inequalities containing positive (or negative) occurrences are deleted. The reasoning is the
variable can have arbitrary values depending on how other variables are constrained.

Consider the following linear constraints:

201 +x9 Hr3 > 1
-1 —xy > 1

xq —x3 > 2
—x1 > 0

Using the matrix notations for denoting the system of inequalities:

The vertical line denotes >.

Try to eliminate the first column corresponding to ;. Column 1 and 3 have positive
coefficients while Column 2 and 4 have negative coefficients. So each pair of rows with
positive rows and rows with negative rows, that is Column 1 and 2, Column 1 and 4,
Column 3 and 1, Column 3 and 4, can be canceled with appropriate multiplication and
addition operations so that the coeflicient of z; is zero. For example, multiplying Row 2 by
2 and then adding Row 1 and Row 2 makes the coefficient zero. Deleting all the rows with

nonzero coefficients gives a new linear system projected on {z5, z3}-space.

89

—1 1 1

1 1|1
-1 -1 1|3
| 0 -1]2]

After eliminating x5 and z3 in the same way, we have the following matrix:

]

Since vertical bar represents >, it is indeed 0 > 4. It is contradictory, so the initial
linear system is unsolvable. This process is inherently exponential-time since it may double
the number of inequalities at each variable elimination. How big the number of inequalities
grows depends on the order of variables we choose to eliminate. For example, if we choose
x5 to eliminate instead of 1 in the initial linear system, the resulting number of inequalities
after elimination will be 3. This naive Fourier-Motzkin elimination is useless in practice.

Heuristics is used in order to minimize the growth of the number of inequalities. Let F;
and N; denote the number of positive and negative occurrences of z;, respectively. P; X N;
is the number of new inequalities introduced by eliminating z;. P; + N; is the number of
inequalities deleted by eliminating z;. Therefore, P, x N; — (P; + N;) is the difference in
the number of inequalities after eliminating z;. We choose x; as a pivot variable such that
P; x N; — (P; + N;) is minimal.

Without sophisticated redundancy check, Fourier-Motzkin elimination is almost useless
for sizable input. For example, what follows is an artificially made system of linear

inequalities.

-8 4 -1 1 -1 =210

1 1 0 -1 -2 010

Initially, it has 10 inequalities. After eliminating one, two, three, and four variables, the
number of inequalities is 24, 93, 1562, co, respectively.
However, the linear inequalities generated to test termination condition, have usually

many zero coefficients. That’s because terms contains only one or two variables. Consider

the following CLP(R) program:

p(X3 N: D) -
X = (Xpos - Xneg),
D = (N - (Xpos - Xneg)),

((Xpos - ZXneg) - N) >= 0.
p(X3 N: D) -

X

(Xpos - Xneg),
D = (N - (Xpos - Xneg)),
D >=1,

(X1pos - Xilneg) = (Xpos - Xneg) + 1,

D1 (N - (Xipos - Xlneg)),

X1

(X1pos - Xlneg),
p(X1, N, D1).

The matrix corresponds to termination condition.

0 -1 0 0 0 0 0 0 010
0o -1 -1 0 -2 -2 0 0 011
0 0 0 0 0 0 1 0 010
0 0 0 0 0 0 0 1 010
0 0 0 0 0 0 0 0 110

After eliminating one, two, three, and four variables, the number of inequalities is 14, 13,
12, 9, respectively. Our broad conclusion is that it is adequate and simple to use Fourier-

Motzkin elimination for our termination analysis.

92

Appendix B. Finding All Extreme Points and Rays

In this chapter, we describe how to modify Simplex algorithm to find all extreme points
and rays of a polycone. Simplex algorithm assumes the feasible region is bounded and visits
basic feasible solutions (extreme points) in such a way that they maximize (or minimize)
the object function.

In our setting, we need to find all basic feasible solutions (for short, BF'S). Since BFSs are
connected and we can move from BFS to BFS by pivoting operation, we can use exhaustive
graph search algorithm such as depth-first search. The question is how we can identify
extreme rays.

The simplex algorithm of linear programming can be modified to find the extreme points
and directions of a polycone. Background on this algorithm can be found in Papadimitriou
and Steiglitz [PS82, Ch. 2], and elsewhere; we review the essentials briefly. Assume we have
a linear programming problem in a standard form, except for the objective function (which

may be treated as 0). That is, we have a linear system
AE=1b £E>0 (6.2)

that describes the polycone, where A is an m X N matrix of full rank, and m < N. (This £
includes z and the slack (independent) variables of the generalized Tucker representation;
its arity is V.) Recall that a basis for the problem is a set of m linearly independent columns
of A, designated Ap(;) for 1 < i < m. B denotes the nonsingular matrix composed of the
basis columns of A. Here B is an m-element subset of {1,..., N} in a fixed sequence.
An extreme point is a nonnegative vector P such that
P, =0fork ¢B.
Pg(;y = i-th component of B~1b.
It is well known that basic feasible solutions correspond to vertices (extreme points) of the
polycone, and that they can be enumerated by pivoting from one basis to another.
Suppose a column, say Aj;, in the simplex tableau is all nonpositive. An extreme ray is

a nonnegative vector R such that

93

Phase I:

Find first feasible basis.

Try every possible combination of pivot columns

and rows until you get a feasible basis.

If you find a row whose coefficients are all nonnegative

and whose constant is negative while pivoting, or

there is no feasible basis,

then the linear system is inconsistent, stop.

Phase II:

DFS(basis, tableau)
Mark the basis visited.
Print an extreme point and rays (if any).
/* NONDETERMINISM HERE */
Pick a column (entering variable) which is not in basis
and at least one of whose members is positive.
(If the column is all nonpositive, it’s an extreme ray.)
Find rows whose # is minimum so the entering variable
guarantees new basis forms an extreme point.
If no such column and row is found, fail.
else pivot on tableau to produce new tableau.

DFS(new neighboring basis, new tableau).

Figure B.1: Algorithm to find all extreme points and rays

R; =1.
Ry=0for k#j,k¢B.
Ry = - t-th component of A;.
The reasoning is we can move from P along R indefinitely. More details can be found in

[VGO1, CHTS].

94

®
ep:(0,0) ep:(1,0) 1

Figure B.2: Extreme points and extreme rays of a polycone.

Consider the following system of linear inequalities. Suppose z1 and x5 are constrained

to nonnegativity.

—T1 S 0
—x9 < 0 (Bl)
1 —Z9 S 1

The shaded area of Figure B.2 depicts the feasible region. As shown in the picture,
we have two extreme points: (0,0) and (1,0) and two extreme rays: (0,1) and (1,1). In
what follows, we describe how to find those extreme points and rays with this example. By
adding slack variables x5, x4, and 25 and putting the system into matrix form, we have a

tableau in standard form:

95

T4 Xy Tz Ty Ts
0| -1 0 1 0 0
0 0 -1 0 1 0
1 1 -1 0 0 1

The Basis is {3, 24,25} so we find an extreme point (0,0,0,0,1). The second column is all

nonpositive so we find one extreme ray (0,1,0,1,1). This basis is marked as visited. The

underlined entry is a pivot element, so we move to a new basis {x3, 24, 21}. The important

point is Simplex method never gets back to this tableau because it always marches towards

a optimal solution while our method using DF'S gets back to explore other adjacent vertices.

So we need to keep the state of this tableau, hence big overhead.

T4 Xy Tz Ty Ts
1 0 -1 1 0 1
0 0 -1 0 1 0
1 1 -1 0 0 -1

Here we find an extreme point (1,0,1,0,0) and an extreme ray (1,1,1,1,0). By entering z5 in

the basis, we have a new basis {x5, 24, 21}.

T4 Xy Tz Ty Ts
1 0 -1 1 0 1
0 0 -1 0 1 0
0 1 0 -1 0 0

Here we find an extreme point (0,0,0,0,1) and an extreme ray (0,1,0,1,1). By entering s,

we move to a new basis {x3, 24, 21}. Since this basis is already marked, we look for another

pivot element. In this simple example, there are no other pivot elements, so we backtrack

to the previous tableau.

Finally, deleting slack variables from the extreme points and rays provides us with two

extreme points: (0,0) and (1,0) and two extreme rays: (0,1) and (1,1) for the initial linear

system.

96

Appendix C. Sessions for Test Programs

C.1 Permutation

| ?- terminate(perm(b,f),perm).

+++ Rule-Goal Graph +++

goal(perm(b,f), [perm(b,f),append(b,b,f) ,append(f,f,b)],
[rule(1,[]),rule(2, [append(f,f,b) ,append(b,b,f) ,perm(b,£)1)]1)

goal (append(b,b,f), [append(b,b,f)], [rule(3, [1),rule(4, [append(b,b,£)]1)]1)

goal (append(f,f,b), [append(f,f,b)], [rule(3, [1),rule(4, [append(f,f,b)]1)])

+++ Predicate Dependency Graph +++
adj (perm(b,f), [perm(b,f),append(b,b,f) ,append(f,f,b)])
adj (append(b,b,f), [append(b,b,£)])

adj (append(f,f,b), [append(f,f,b)])

+++ Strongly Connected Components +++

[perm(b,f)] [append(f,f,b)] [append(b,b,f)]

+++ SCC([perm(b,f)]): testing termination +++
range of delta(perm(b,f),perm(b,f)): (1.0,inf(+))
range of phi(perm(b,f),perm(b,£f)): (1.0,1.0)
range of alpha(perm(b,f),1): (0.5,inf(+))

+++ SCC([perm(b,f)]): shown to terminate +++

+++ SCC([append(f,f,b)]): testing termination +++
range of delta(append(f,f,b),append(f,f,b)): (1.0,inf(+))

range of phi(append(f,f,b),append(f,f,b)): (1.0,1.0)

97

range of alpha(append(f,f,b),1): (0.5,inf(+))

+++ SCC([append(f,f,b)]): shown to terminate +++

+++ SCC([append(b,b,f)]): testing termination +++

range of alpha(append(b,b,f),2): (0.0,inf(+))

range of delta(append(b,b,f),append(b,b,f)): (1.0,inf(+))
range of phi(append(b,b,f),append(b,b,f)): (1.0,1.0)
range of alpha(append(b,b,f),1): (0.5,inf(+))

+++ SCC([append(b,b,f)]): shown to terminate +++

| ?- statistics(runtime,T).

T = [9030,310]

98

C.2 Expression Parser

| ?- terminate(e(b,f),ent).

+++ Rule-Goal Graph +++
goal(e(b,f),[e(b,f),t(b,£)], [rule(l, [t(b,f),e(b,£)]),rule(2, [t(b,£)]1)])
goal(t(b,f),[t(b,f),n(b,f)], [rule(3, [n(b,f),t(b,£)]),rule(4, [n(b,£)1)1)
goal(n(b,f),[e(b,f),z(b)], [rule(5,[e(b,f)]),rule(6,[z(b)]1)])

goal(z(b),[], [rule(7,[]1),rule(8,[1),rule(9,[1)]1)

+++ Predicate Dependency Graph +++
adj(e(b,f),[e(b,f),t(b,£)])
adj(t(b,f),[t(b,f),n(b,£)])
adj(n(b,f), [e(b,£),z(b)])

adj(z(),[1)

+++ Strongly Connected Components +++

+++ SCC([e(b,f) ,n(b,£),t(b,f)]): testing termination +++
range of alpha(t(b,f),1): (0.5,inf(+))

range of alpha(n(b,f),1): (0.5,0.5)

range of alpha(e(b,f),1): (0.5,0.5)

range of delta(t(b,f),t(b,f)): (1.0,2.0)

range of delta(t(b,f),n(b,f)): (0.0,-0.0)

range of delta(n(b,f),e(b,f)): (1.0,1.0)

range of delta(e(b,f),t(b,f)): (0.0,-0.0)

range of phi(t(b,f),n(b,f)): (0.0,-0.0)

range of delta(e(b,f),e(b,f)): (1.0,2.0)

99

range of phi(n(b,f),e(b,f)): (1.0,1.0)
range of phi(t(b,f),t(b,f)): (1.0,1.0)
range of phi(t(b,f),e(b,f)): (1.0,1.0)
range of phi(e(b,f),t(b,f)): (0.0,-0.0)
range of phi(n(b,f),t(b,f)): (1.0,1.0)
range of phi(n(b,f),n(b,f)): (1.0,1.0)
range of phi(e(b,f),n(b,f)): (0.0,-0.0)
range of phi(e(b,f),e(b,f)): (1.0,-0.0)

+++ SCC([e(b,f),n(b,f),t(b,f)]): shown to terminate +++

| ?- statistics(runtime,T).

T = [11299,1319]

100

Appendix D. Test input programs

D.1 Append

% the third argument is a concatenation of the first two
append([],L,L).

append([H|L1],L2,[HIL3]) :- append(L1,L2,L3).

D.2 Merge

% merge U and V into W

merge(U, [1, U).

merge([], Vv, V).

merge([U | Us], [V | Vs],[U | Rsl) :- U > V, merge([V | Vs], Us, Rs).
merge([U | Us],[V | Vs],[U, V | Rs]) :- U =V, merge(Vs, Us, Rs).

merge([U | Us],[V | Vs],[V | Rsl) :- U < V, merge(Vs, [U | Us], Rs).

D.3 Mergesort

% merge sort

msort([1, [1).

msort([X], [X1).

msort([X, Y | R],Z) :-
split([X, Y | R],U,V),
msort (U, U1),
msort(V, V1),

merge (U1, V1, Z).

% split U into V and W evenly
split (L1, [, [1).

split([E | U], [E | V], W) :- split(U, W, V).

101

% merge U and V into W

merge(U, [1, U).

merge([], Vv, V).

merge([U | Us], [V | Vs],[U | Rsl) :- U > V, merge([V | Vs], Us, Rs).
merge([U | Us],[V | Vs],[U, V | Rs]) :- U =V, merge(Vs, Us, Rs).

merge([U | Us],[V | Vs],[V | Rsl) :- U < V, merge(Vs, [U | Us], Rs).

D.4 Permutation

% one argument is a permutation of the other
perm([],[1).
perm(L,[HIT]) :-
append(V, [H|U],L),
append (V,U,W),
perm(W,T).
append([],L,L).

append([H|L1],L2,[HIL3]) :- append(L1,L2,L3).

D.5 Parser

% arithmetic expression parser

z(L).

e(L, T) :- t(L, T).

e(L, T) :- t(L, [+ | ¢cI), e(C, T).
t(L, T) :- n(L, T).

t(L, T) :- n(L,[’*” | C1), t(C, T).
n([L | T], T) :- z(L).

n(D2C | Al, T) :- e(a, [’)’ | TD.

102

References

[AB91]

[AP90]

[APP+89]

[BJCBST]

[BS89a)

[BSS9b]

[BS91]

[CCT7]

[CCY2]

[CDY3]

[CFW91]

[CHTS]

[CLRYO]

[CM81]

K. R. Apt and M. Bezem. Acyclic programs. New Generation Computing,
9:335-363, 1991.

K. R. Apt and D. Pedreschi. Studies in pure Prolog: termination. In Proceedings
of Fsprit symposium on computational logic, pages 150-176, Brussels, November
1990.

F. Afrati, C. Papadimitriou, G. Papageorgiou, A. R. Roussou, Y. Sagiv, and
J. D. Ullman. On the convergence of query evaluation. Journal of Computer and
System Sciences, 38(2):341-359, 1989.

M. Bruynooghe, G. Janssens, A. Callebaut, and Demoen B. Abstract interpre-
tation: Towards the global optimisation of Prolog programs. In Proceedings of
the 1987 International Symposium on Logic Programming, IEEFE Press, 1987.

A. Brodsky and Y. Sagiv. Inference of monotonicity constraints in Datalog
programs. In Fighth ACM Symposium on Principles of Database Systems, pages
190-199, 1989.

A. Brodsky and Y. Sagiv. On termination of Datalog programs. In First
International Conference on Deductive and Object-Oriented Databases, pages
95-112, Kyoto, Japan, 1989.

A. Brodsky and Y. Sagiv. Inference of inequality constraints in logic programs.
In Tenth ACM Symposium on Principles of Database Systems, 1991.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the Jth ACM Symposium on Principles of Programming
Languages, 1977.

P. Cousot and R. Cousot. Abstract interpretation and application to logic
programs. Journal of Logic Programming, 13:103-179, 1992.

M. Codish and B. Demoen. Analysing logic programs using “prop”-ositional
logic programs and a magic wand. In D. Miller, editor, Logic Programming:
Proceedings of the 1993 International Symposium, pages 114-129, Cambridge,
Massachusetts, 1993. MIT Press.

G. Cortesi, G. File, and W. Winsborough. PROP revisited: Propositional
formula as abstract domain for groundness analysis. In Proceedings of Sizth
IEFEE Symposium on Logic In Computer Science, pages 322-327, Cambridge,
Massachusetts, 1991. IEEE Computer Society Press.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conference Record of the 5th ACM Symposium on
Principles of Programming Languages, pages 84-96, 1978.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms,
pages 488-493. MIT Press, New York, 1990.

W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag, New
York, 1981.

[Dev90]

[DSD]

[DSVBY0]

[DWSS]

[Grii67]
[Hog90]

[KLTZ83]
[Kow74]
[KowT79]

[Las90a]

[Las90b]

[LCVH93]

[LHMS8]

[Llo84]

[Mel81]

[Mel85]

[Mel87]

103

P. Devienne. Weighted graphs: a tool for studying the halting problem and
time complexity in term rewriting systems and logic programming. Theoretical
Computer Science, 75(2):157-215, 1990.

D. De Schreye and S. Decorte. Termination of logic programs: the never-ending
story. preprint.

D. De Schreye, K. Verschaetse, and M. Bruynooghe. A practical technique for
detecting non-terminating queries for a restricted class of horn clauses, using
directed, weighted graphs. In Proc. 7th Int’l Conf. on Logic Programming, pages
649-663, Jerusalem, 1990.

S. K. Debray and D. S. Warren. Automatic mode inference for logic programs.
Journal of Logic Programming, 5(3):207-229, 1988.

B. Griinbaum. Convex Polytopes. John Wiley and Sons, New York, 1967.

C. J. Hogger. Essentials of Logic Programming. Oxford University Press, New
York, 1990.

M. H. Karwan, V. Lofti, J. Telgen, and S. Zionts. Redundancy in Mathematical
Programming: A State-of-the-Art Survey. Springer-Verlag, New York, 1983.

R. A. Kowalski. Predicate logic as a programming language. In Proceedings of
IFIP’74, pages 569-574, Amsterdam, 1974. North-Holland.

R. A. Kowalski. Algorithm = logic + control. Communications of the ACM,
22:424-431, 1979.

J.-L. Lassez. Parametric queries, linear constraints and variable elimination. In
Proceedings of DISCO 90, Springer Verlag Lecture Notes in Computer Science,
1990.

J.-L. Lassez. Querying constraints. In Ninth ACM Symposium on Principles of
Database Systems, pages 288-298, 1990.

B. Le Charlier and P. Van Hentenryck. Groundness analysis for prolog: imple-
mentation and evaluation of the domain PROP. In Proceedings of Symposium
on Partial Evaluation and Semantics-based Program Manipulation, 1993.

J.-L. Lassez, H. Huynh, and K. McAloon. Simplification and elimination of
redundant linear arithmetic constraints. In North American Conf. on Logic
Programming, pages 37-51, 1989.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, New York,
1984.

C.S. Mellish. The automatic generation of mode declaration for logic programs.
Technical Report DAI Research Paper 163, Department of Artificial Intelligence,
University of Edinburgh, Scotland, 1981.

C. S. Mellish. Some global optimizations for a prolog compiler. Journal of Logic
Programming, 2(1):43-66, 1985.
C. S. Mellish. Abstract interpretation of Prolog programs. In S. Abramsky

and C. Hankin, editors, Abstract Interpretation of Declarative Languages, pages
181-198. Ellis Horword, Chichester, U.K., 1987.

[MRS0]

[MS88]

[MS89]
[MUS7]
[MUVGS6]

[Nai83]

[Plii90a]
[P1ii90b]
[PS82]
[Roc70]
[Sag91]

[Sch&6]
[SS86]

[SUS4]

[SVGO1]

[UT185]
[UT189)]
[UVSS]

[UVGS5)

104

T. H. Matheiss and D. S. Rubin. A survey and comparison of methods for finding
all vertices of convex polyhedral sets. Mathematics of Operations Research, 5:167—
185, 1980.

K. Marriott and H. Sgndergaard. Bottom-up abstract interpretation of logic
programs. In S. K. Debray and M. Hermenegildo, editors, Logic Programming:
Proceedings of the Fifth International Conference, pages 733-748, Cambridge,
Massachusetts, 1988. MIT Press.

K. Marriott and H. Sgndergaard. Notes for a tutorial on abstract interpretation
of logic programs. North American Conf. on Logic Programming, 1989.

H. Mannila and E. Ukkonen. Flow analysis of Prolog programs. In Proceedings
of the 1987 International Symposium on Logic Programming. IEEE Press, 1987.
K. Morris, J. D. Ullman, and A. Van Gelder. Design overview of the Nail! system.
In Third Int’l Conf. on Logic Programming, pages 554-568, 1986.

L. Naish. Automatic generation of control for logic programs. Technical Report
83/6, Dept. of Computer Science, University of Melbourne, Melbourne, Australia,
1983.

L. Plimer. Termination Proofs for Logic Programs, volume 446 of Lecture Notes
in Artificial Intelligence. Springer-Verlag, 1990.

L. Pliimer. Termination proofs for logic programs based on predicate inequalities.
In Proc. 7th Int’l Conf. on Logic Programming, pages 634-648, Jerusalem, 1990.
C. H. Papadimitrion and K. Steiglitz. Combinatorial Optimization. Prentice-
Hall, Englewood Cliffs, NJ, 1982.

R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ,
1970.

Y. Sagiv. A termination test for logic programs. In Proceedings of ILPS5°91, pages
160-171, San Diego, 1991. MIT Press.

A. Schrijver. Theory of Linear and Integer Programming. Wiley, New York, 1986.

L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cambridge,
Massachusetts, 1986.

Y. Sagiv and J. D. Ullman. Complexity of a top-down capture rule. Technical
Report STAN-CS-84-1009, Stanford University, 1984.

K. Sohn and A. Van Gelder. Termination detection in logic programs using
argument sizes. In Tenth ACM Symposium on Principles of Database Systems,
1991.

J. D. Ullman. Implementation of logical query languages for databases. ACM
Transactions on Database Systems, 10(3):289-321, 1985.

J. D. Ullman. Principles of Database and Knowledge-base Systems. Computer
Science Press, Rockville, MD, 1989.

J. D. Ullman and M. Y. Vardi. The complexity of ordering subgoals. In
Proceedings of Principles of Database Systems, pages 74-81, 1988.

J.D. Ullman and A. Van Gelder. Testing applicability of top-down capture rules.
Technical Report STAN-CS-85-1046, Dept. of Computer Science, Stanford
University, Stanford, CA, April 1985.

[UVGSS]

VGO

[War77]

105

J. D. Ullman and A. Van Gelder. Efficient tests for top-down termination of
logical rules. Journal of the ACM, 35(2):345-373, 1988.
A. Van Gelder. Deriving constraints among argument sizes in logic programs.

Annals of Mathematics and Artificial Intelligence, 3, 1991. Extended abstract
appears in Ninth ACM Symposium on Principles of Database Systems, 1990.

D. H. D. Warren. Implementing prolog - compiling predicate logic programs.
Technical Report DAI Research Paper 39 and 40, Department of Artificial
Intelligence, University of Edinburgh, Scotland, 1977.

