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Scalable Parallel Direct Volume Renderingfor Nonrectilinear Computational GridsJudith Ann ChallingerabstractVarious approaches to the problem of parallelizing direct volume rendering algorithmsare discussed, and a scalable approach to parallel direct volume rendering of nonrectilinearcomputational grids is presented. The algorithm is general enough to handle non-convexgrids and cells, grids with voids, grids constructed from multiple grids (multi-block grids),and embedded geometrical primitives. The algorithm is designed for a highly parallelMIMD architecture which features both local memory and shared memory with non-uniformmemory access times. It has been implemented on a BBN TC2000 and benchmarked onseveral datasets. An analysis of the speedup and e�ciency of the algorithm is given and anysources of ine�ciency are identi�ed. The trade-o� between load balancing requirements andthe loss of coherence due to the image-space task decomposition is examined. A variationof the algorithm which provides fast image updates for a changing transfer function is alsopresented. A distributed approach to controlling the execution of the volume render is usedand the graphical user interface designed for this purpose is brie
y described.Keywords: volume rendering, parallel processing, scienti�c visualization
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11. IntroductionThere is a major shift in paradigm underway in the area of supercomputing. Thepowerful vector processors epitomized by the Cray series of supercomputers will graduallybe replaced with massively parallel systems of hundreds or thousands of processors andextremely large, scalable memories. This trend towards a new architectural approach toachieving high performance is being driven from above by the performance requirementsof the so-called grand challenge problems, and from below by engineering, physics, andeconomic factors which make the cost of computation less on mass-produced VLSI singlechip processors.With the advent of extremely powerful supercomputers and massively parallel systems,numerical simulations of physical systems are being done in three spatial dimensions, andat increasingly higher levels of resolution and complexity. Tools which provide for the visualanalysis of the results of such simulations are extremely important.A volumetric dataset is a collection of scalar data in which each datum has an associatedlocation in three-dimensional space. Many numerical models of physical systems are basedupon such scalar �elds. Direct volume rendering is a powerful, but computationally inten-sive, computer graphics technique for rendering volumetric datasets that has been shownto be useful for the visual analysis of the results of scienti�c computations.The extremely large size of the results of the numerical simulations can make it di�cultand time consuming to extract useful visualizations of the data. Typically the scientistproducing the result is located remotely from the massively parallel machine. A commonapproach has been to move the data set to a local graphics workstation and render it there.This can be problematic for very large data sets, and especially so if the simulation ofinterest is unsteady (time-varying). One motivation for this research is to provide a powerfulinteractive tool for the visual analysis of the results of simulations. In this context, it isdesirable for the analysis tool (volume renderer) to be made available on the same machinethat the simulation is running on. This will facilitate closer coupling of scienti�c simulationsand visualization tools in the future, ultimately leading to the ability to interactively steerscienti�c computations based on visual feedback. As the trend towards putting largescienti�c simulation applications on massively parallel machines continues, it is essentialthat similar research is conducted on the parallelization of visualization techniques.This thesis addresses the e�cient parallel implementation of direct volume renderingalgorithms on highly parallel MIMD architectures. Of primary interest are architectureswhich exhibit non-uniform memory access latency (i.e. those in which the access time fora memory location depends on its location relative to the requesting processor.) This classof architectures covers a wide range of MIMD systems, including strictly message passingarchitectures which implement some type of virtual shared memory. Several approaches toparallel direct volume rendering are discussed in chapter 4, and a new parallel algorithm fordirect volume rendering is presented in chapter 5. The algorithm is general enough to handleall of the commonly used complex computational grids: curvilinear, multi-block, tetrahedral�nite element, hexahedral �nite element, etc. Each approach has been implemented andbenchmarked on several test datasets.



2For computational models which can execute a single (or a few) time steps at near in-teractive speeds, the close coupling of volume rendering for visualization with the executingcomputational model will provide a powerful exploratory tool for scientists. The design andimplementation of the rendering algorithms is done in such a way as to allow such a closecoupling. A distributed graphical user interface has been developed in order to demonstratethe remote interactive use of the parallel rendering software.An overview of volume rendering is given next, followed by a survey of related work inchapter 2. Chapter 3 describes highly parallel architectures and section 3.2 discusses thespeci�c parallel machine used for this work. General issues with regard to the parallelizationof direct volume rendering algorithms are covered in chapter 4, along with some earlyresearch results and the rationale behind the speci�c focus of this thesis. The algorithmsand data structures for parallel direct volume rendering that have been developed for thisresearch are described in chapter 5. A description of the datasets and images used as testcases for benchmarking purposes is given in chapter 6, followed by benchmarking resultsand discussion. Conclusions are presented in chapter 7.1.1 Introduction to Direct Volume RenderingThis section introduces the basic forms that current direct volume rendering algorithmstake. There has been a lot of research into volume rendering algorithms; the many variationson these algorithms are covered in the next chapter.Volume rendering refers to the process of generating an image from a volumetric dataset.The dataset may have been sampled or computed over one of many distributions in <3. Inits simplest form, the dataset is arranged in regular intervals on a rectilinear lattice or grid.An example of this might be many magnetic resonance images stacked together in memoryto create a three-dimensional array of data. Each image sample has an associated implicitlocation in <3.How can such an entity be visualized so as to allow internal structure to be seenwhile preventing loss of information? This question has led researchers to a technique forrendering volumetric datasets called direct volume rendering [DCH88, UK88, Sab88, Lev88].This approach is called \direct" to di�erentiate it from other methods, such as isosurfaceextraction or volume slicing, which utilize only a subset of the data for image creation. Usingdirect volume rendering, the entire volume of data can be rendered using various levels oftransparency related to the scalar data values in order to see the interior structure. Thereare many algorithms for accomplishing this; �gure 1.1 shows how lookup tables (commonlycalled transfer functions) can be used to obtain color and opacity values for a speci�c scalardata value in the array [UK88]. In general, the sample points desired within the data arraywill not lie directly on those sample points that are given. An interpolation method will beemployed to generate the scalar data value at the desired sample point.Rendering the volumetric dataset involves sampling the entire dataset in some fashionand mapping each sampled value to a color and opacity. The contribution from each samplemust then be composited or accumulated into the image [PD84]. There are currentlyfour basic algorithms which are widely used for sampling the entire volume: raycasting,cell projection, splatting, and shear transformations. The decision on whether to support
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Figure 1.1: Volume rendering using transfer functions.parallel or perspective viewing projections can have implications for sampling and aliasing.These algorithms can also be extended to render volumetric datasets on grids of increasingcomplexity.1.1.1 Volumetric GridsVolumetric datasets which are arranged on a regular rectilinear lattice or grid are of thesimplest form. More general grids are commonly used by researchers to generate volumetricdatasets. Nomenclature for volumetric grids is hardly standardized; a brief overview of gridtypes is given in [SK90] and more detailed information can be found in [Fle88, ZT89]. Wewill call a single data point that has been sampled or computed a node. Two neighboringnodes may be said to de�ne an edge, and three or more de�ne a face. In the case wherea face is de�ned by more than three nodes, it is possible that the face will be non-planar.A cell is the space in <3 de�ned by four or more nodes. A cell may be a tetrahedron,hexahedron, degenerate hexahedron, and so on. A face that is shared by two cells is aninternal face, otherwise it is an external face.An example of a simple, rectilinear, volumetric dataset is many magnetic resonanceimages stacked together in memory to create a three-dimensional array of data. In this case,each image sample is a node and has an associated implicit location in <3. Many numericalsimulations of physical systems also produce data in this format. The grid spacing may beirregular (in a given dimension the nodes will not be evenly spaced, but will vary,) as in somecomputational 
uid dynamics (CFD) applications where portions of the space need to besampled/computed at a higher resolution than others. Or the grid may be curved to matchthe simulation geometry, as in the curvilinear grids commonly used in CFD. In this case, aregular, rectilinear, computational grid has been shaped, i.e. mapped by a smooth functionfrom <3 to <3 to give a curved shape, resulting in cells with non-planar faces in physical
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imageFigure 1.2: Volume rendering using the raycasting algorithm.space [Fle88]. These array-organized grids are also called structured grids [SK90]. Very largesimulation geometries are sometimes gridded using a multi-block approach [plo89]. In thissituation several curvilinear grids are combined in one simulation in order to represent thesolution space. These grids may overlap spatially, and cell faces belonging to two di�erentgrids may intersect. Two grids may occupy the same space, with one utilizing a �nergridding and more accurate result. Or the grids may be used to represent di�erent parts ofthe simulation space, with only their boundaries overlapping. Unstructured computationalgrids in <3 made up of a collection of tetrahedral or hexahedral cells that have been shapedare also common in computational 
uid dynamics and �nite element analysis applications[ZT89]. Typically the de�nition of these grids is given as a list of cells, de�ned by pointersinto a list of nodes. There is no regular rectilinear array of nodes in computational space, asis the case with curvilinear datasets. Thus information on shared faces and neighboring cellsis not inherent in the data structure. Finally, the volumetric dataset may not be de�ned ona grid at all, but may simply be given as a list of nodes. This type of dataset is commonlyreferred to as scattered data.1.1.2 Image-space Rendering AlgorithmsRaycasting is an image-space algorithm which involves casting a ray from the viewpointthrough each image pixel and testing for intersection with the volume [UK88, Lev89b,Sab88, GO89, Cha90, Gar90, WCA+90, Cha92, Koy92, NL92, MPS92, CM92, Gie92]. If aray intersects the volume, the contents of the volume along the ray are sampled, transformedinto color and opacity, and composited, and the resulting value is taken as the pixel contents.In essence, we are integrating along the length of the ray that is passing through the volumeof data. This process is illustrated in �gure 1.2.There are two approaches to sampling along a given ray. The �rst involves �ndingthe entry point of the ray into the volume and taking equally spaced steps along the ray,



5sampling and compositing, until the exit point from the volume is reached. Dependingon the step size, it is possible to miss very small cells using this technique. The secondapproach involves �nding the entry and exit points for each cell intersected by the ray.The contribution from each cell is then calculated, using either analytic integration or anapproximation, and composited.In this algorithm, the primary loop is through the image pixels. Each ray may beprocessed completely independently from any other ray, and the rays may be processedin any order. Compositing operations along a ray must proceed in either front-to-back orback-to-front order.Raycasting of curvilinear or unstructured grids is especially time-consuming if no e�ortis made to reduce the ray/grid intersection testing requirements. One approach to doingthis is to intersect external faces of the grid only, and then walk through the grid cell bycell [Gar90, Koy92]. Another approach is to sort the grid cells or faces in screen-space,and then test for ray intersection only with those cells or faces that are active at a givenpixel [Cha92]. These approaches may still be classi�ed as image-space algorithms since theprimary loop is through the image pixels, and the algorithm will require access to manycells for one ray.1.1.3 Object-space Rendering AlgorithmsProjection is an object-space algorithm in which each volume cell or node is sampled togive its contribution to every pixel in the image onto which the cell or node projects. Thereare two approaches to the projection method for volume rendering: cell projection [UK88,MHC90, ST90, WV91, Wil92c, SH92, Luc92, VW93] and splatting [Wes89, Wes90, Neu92,Elv92, LH91]. Both of these methods begin by creating a visibility sort of the cells or nodesin order to ensure correct ordering of compositing operations. For rectilinear datasets avisibility sort is trivial, however, it is more complex for more general grids.Cell ProjectionFor a regular, rectilinear volume, a cell is de�ned by eight neighboring scalar values inthe volumetric dataset which form the corners of a hexahedron. For a given cell we areessentially integrating across the depth of the cell to give a contribution at each pixel thecell covers. Reconstruction of samples on the cell faces or inside the cell is accomplished byinterpolating between the scalar values at the nodes of the cell. Scan conversion techniquesand principles of spatial coherence may be utilized to speed cell sampling. An illustrationof this process is given in �gure 1.3. Given interpolation and integration methods, cellprojection is equivalent to raycasting where the sample points used are the entry and exitof the ray through the cell.In this algorithm, the primary loop is through the cells of the volumetric dataset. Eachcell may be projected to the image independently, however compositing operations fromcells which project to the same pixel must be ordered. The compositing algorithm usedmay specify either front-to-back or back-to-front ordering.
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volume

imageFigure 1.4: Volume rendering using the splatting algorithm.SplattingIn splatting, the volume is processed one node at a time rather than one cell at a time.The scalar value at each node in the volume is processed with a reconstruction kernel thatspreads the \energy" present in the node over several pixels in the image. Interpolationbetween node values is not done, but is approximated by the overlapping kernels. Anillustration of this process is given in �gure 1.4.In this algorithm, the primary loop is through the nodes of the volumetric dataset.As with cell projection, each node may be splatted to the image independently, but the



7compositing operations between splats originating from nodes which vary in distance fromthe projection plane and which project to the same pixel must be ordered. Design of thereconstruction kernel may be complicated for more complex grids.1.1.4 Shear TransformationsDirect volume rendering using shear transformations is a hybrid approach, rather thanbeing either an image-space or object-space algorithm [DCH88, SS91, VFR92, KMS+92].The algorithm implements the viewing transformation as a series of one-dimensional sheartransformations and resampling of the dataset. The result gives a volume of data in memorythat is view aligned. Compositing may then be accomplished simply by striding throughthe memory. This approach has only been applied to rectilinear datasets.1.1.5 ComplexityBoth the raycasting and projection algorithms are O(n3 + s2n) where n is the numberof samples in each dimension of the volume (i.e. the volume consists of n3 samples) and sis the number of pixels in each dimension of the image (i.e. an s2 image is being created).Consider volume rendering an unrotated, n3 rectilinear dataset to an image that is s by s,and let the volume exactly �ll the image. The basic unit of work can be considered to be asingle line integration through one cell of the volume, and the compositing of the resultingcontribution into one pixel of the image.If a viewing transformation is to be applied to each grid node before rendering begins,the raycasting algorithm will perform n3 viewing transformations. A raycasting algorithmwhich does not require this step is O(s2n). The raycasting algorithm will cast s2 rays intothe volume. For more complex grids, if a z-bu�er algorithm is employed to determine the�rst intersection of the volume with a given ray, (n � 1)2 front-facing surface faces willbe scan-converted into (s=(n � 1))2 pixels. An integration and compositing step will beperformed n � 1 times for each ray. In general, this integration and compositing step willrequire access to the node values of the given cell. If we are zoomed in on part of the volumenot all of the cells will be accessed and processed, but those that are will likely be accessedmany times. If the volume does not �ll the image many of the rays will miss the volumeentirely, leading to trivial termination of the ray processing. In addition, many of the cellsmay project between pixels and will not be intersected by any ray.The projection approach will require the processing of (n � 1)3 cells. In general, theprocessing required for each cell will involve (s=(n � 1))2 integration and compositingsteps, one for each pixel covered by a cell. It is possible to utilize coherence principlesto approximate the contributions at each pixel, reducing the complexity of the integrationstep at some loss in accuracy [WV91]. The processing for each cell will require access to thenode values of the cell, as well as access to the pixels it covers. If we are zoomed in on partof the volume all of the cells will still be processed, even if only to trivially clip them. Ifthe volume does not �ll the image, cells may project to very few pixels. Some may projectbetween pixels and not make any contribution to the image.For volumes on more complex grids, the analysis is also more complex. For example,volumes on curvilinear grids may contain a few very large cells projecting to portions of theimage, and many very small cells projecting to other portions of the same image.



81.2 Motivation for Parallel Direct Volume RenderingDirect volume rendering is a computationally intensive process. A rectilinear volumetricdataset may consist of 2563 samples, or 16MB of data if the scalar data values are bytes.Multi-block curvilinear datasets with a million or more nodes are not uncommon. The timerequired to render an image from such a volume will vary greatly depending on which ofthe existing algorithms are used and the desired image resolution and quality. Achievinginteractive or near-interactive rendering rates has been the topic of much research.Researchers are actively moving their numerical simulations to highly parallel architec-tures. The increase in both computational power and memory capacity of these systemshas made it possible for scientists to increase both the spatial resolution (grid size) of theirnumerical simulations, and to extend previously 2D computations to three spatial dimen-sions. As a result, these highly parallel architectures are allowing researchers to producelarge volumetric datasets. In addition, many of the numerical simulations are unsteady(time-varying) meaning that many solutions at di�erent time steps are produced.In many cases, the most time-consuming and di�cult part of a given numerical experi-ment will be the analysis, understanding, and veri�cation of the contents of the voluminousresults of the computation [WCH+87, SS89b]. The most useful visualization tools allow aresearcher to interactively explore a dataset. Research into parallel algorithms for volumevisualization on all commonly used computational meshes will provide researchers with apowerful means of investigating the results of their three-dimensional numerical simulations.1.2.1 Scalability Is ImportantThe scalability of a parallel algorithm is generally a statement about how much fasterthat algorithm will run, given more processors and either input of the same size (for thestandard de�nition of speedup) or input of increasing size (for scaled speedup). De�nitionsof these measures are presented in section 2.2.2. Another way of looking at it is, \howe�ciently is the algorithm using the processors that are available?" Several factors mayconspire to reduce the e�ciency of a parallel algorithm. These include load imbalance, taskgeneration overhead, synchronization requirements, remote memory latency, and networkcontention, among others. It is possible to design a parallel algorithm that does verywell on a few (2 - 20) processors, and then rapidly loses e�ciency with the addition ofmore processors. In fact, when executing on many processors, such an algorithm may runmore slowly than the sequential version. These types of algorithms do not exhibit goodscalability, and will not perform well on a highly parallel architecture. Sometimes themeasured scalability of an algorithm can be improved by increasing the size of the input asthe number of processors is increased. This approach assumes that larger input is desired,and is sometimes reasonable given that highly parallel machines are capable of handlinglarger problems.Scalable algorithms are very important if they are to be of practical use in a highlyparallel environment. For su�ciently large input, users should be able to interactivelyrequest any number of processors, and get performance commensurate with the resourcesthey are using.



91.3 Context for UseThe computing paradigm in which this research has been conducted is one in which auser has large complex volumetric datasets residing on a massively parallel computer whichis located remotely from the user's site. The user works on a fairly low-end X workstationwith a 24-bit frame bu�er, with access to the remote host via a network. This researchdeals speci�cally with volumes de�ned on complex (nonrectilinear) grids in which the scalar�eld may be time-varying, or in fact the grid itself may be time-varying.Ideally, the parallel direct volume rendering algorithm is being run repeatedly withseveral possible variations. These variations could include:� A change in the viewing transformation. Rotation, especially, is extremely importantfor spatial understanding.� A change in the transfer functions. Finding a transfer function that brings out inter-esting aspects of the data is very di�cult. The possibility of interactively exploringtransfer functions (as is currently done with two-dimensional datasets) is very attrac-tive.� A change in the scalar data values of the grid. If the rendering algorithm is coupledto an executing simulation, it may be desirable to watch the scalar �eld develop overtime.� A change in the grid itself. This would be accompanied by changes in the scalar datavalues. Simulations which operate using Lagrangian methods are not uncommon.Algorithms which could provide rapid feedback given one or more of these changes wouldbe extremely useful to scientists.1.3.1 Distributed Graphical User InterfaceThe user interface designed and used for this research was motivated by the desire tohave a practical, portable system for interactively controlling volume rendering softwarerunning on a remote host. X Windows was chosen for its portability and widespread use; inparticular, Motif widgets are used wherever possible. A distributed approach was chosen inorder to make use of image compression in the transfer of rendered images from the host tothe local workstation, and in order to get good performance in highly interactive operationssuch as transfer function and viewing speci�cation modi�cations.X Windows is not particularly suitable for the transmission of images over today'snetworks, thus a distributed approach allows the images to be intelligently compressedbefore being transmitted over the socket connection to be displayed. In addition, theoperating systems of today's massively parallel hosts are not really suitable for highlyinteractive tasks such as rubberbanding a line in an X window. It is more e�cient, anda better use of the host's resources, to perform such highly interactive tasks locally andsend the necessary information to the host as it is needed. All highly interactive tasksare performed locally on the workstation, giving better performance and freeing up themassively parallel host for more intensive computations. The near-interactive, intensivetask of volume rendering a scalar �eld is done on the host; the resulting image is compressedand sent back to the local workstation for display.



10
Figure 1.5: Distributed graphical user interface.The concept of using a distributed approach as described here was inspired by a systemusing a similar approach for grid generation (also a computationally intensive process),presented at the 1992 Computational Aerosciences Conference at NASA Ames ResearchCenter [SM92]. In this work a graphical user interface and plotting software runs on alocal workstation, and a multi-block grid generation program which generates 3D grids bynumerical solution of the Poisson equations runs on a remote supercomputer.Figure 1.5 shows the main components of the graphical user interface. In the upper leftcorner is a main window which provides menus for saving and restoring rendering scripts,for establishing a host connection, and for specifying the rendering method. Buttons areavailable to pop up windows providing other functionality, and for requesting an image tobe rendered. A text box allows the user to specify a new computational grid (these arestored in Plot3D �les [plo89] on the host). Buttons along the right side are used to specifywhich scalar �eld from the solution �le is desired and the histogram of the scalar �eld isdisplayed in a window on the left. In addition to the main window, separate windows areprovided for transfer function editing, view speci�cation, and image viewing. These arepop-up windows that can be iconi�ed or closed independently. When the host reads in agrid, it sends the external nodes back to the workstation to be displayed in the view window.These are used to provide feedback to the user as the view is manipulated. The boundingbox of these nodes is also used to compute an initial zoom and translation which will displaythe entire volume in the desired image size. The simple image compression scheme usedis lossless and generally has been found to compress images by 30% to 60%. Images canbe enlarged locally (on the workstation, rather than being rerendered on the host) usingbilinear interpolation, and can be saved or restored from a local �le.



112. Related WorkThere are several areas of active research that are relevant to the work presented here.A large body of literature exists on sequential algorithms for volume rendering, includingisosurface extraction techniques, methods for integrating volumetric and geometric primi-tives, and extensions to basic direct volume rendering algorithms in order to accommodatemore complex grids. Several approaches have been presented which trade image quality forrendering speed. The use of parallel processing to speed the production of volume renderedimages began in the medical imaging and solid modeling communities. Several special-ized parallel architectures have been developed to accomplish speci�c rendering tasks. Alsorelevant are parallel architectures and algorithms that have been developed for computergraphics. Very recently, researchers have begun to utilize general-purpose parallel architec-tures to develop parallel direct volume rendering algorithms. This section brie
y surveysthese topics and outlines the various approaches that have been taken.2.1 Sequential Algorithms for Volume Rendering2.1.1 Isosurface GenerationIsosurface generation is the oldest and most well-known and studied approach to inves-tigating the contents of volumetric datasets. As early as the mid-1970s researchers weredeveloping algorithms to generate three-dimensional geometric representations by connect-ing contour lines of adjacent two-dimensional contour maps [FKU77, CS78, GD82]. In 1979an algorithm was presented that would generate a three-dimensional contour map by op-erating directly on the three-dimensional data [WH79]. More recently, the marching cubesalgorithm [LC87] generates an isosurface by examining the eight vertices of each voxel anddetermining any surface intersections. Intersections along voxel edges are approximatedusing linear interpolation and a triangle mesh for the isosurface is returned. The dividingcubes [CLL+88] algorithm works along these same lines, but approximates the isosurfacewith points by doing recursive subdivision. All of these algorithms generate a geometricrepresentation of a subset of the volumetric dataset. Closely related to the techniques forisosurface generation are those used in the generation of implicit surfaces [Nor82, WMW86,Blo88], and in specialized methods for raytracing to a contour surface [Bli82b, NHK+85].2.1.2 Direct Volume RenderingOne drawback to the use of isosurfaces as a means to visualize the contents of volumetricdatasets is the fact that this approach inherently presents a subset of the data, throwing therest of the information away. This can be minimized to some extent by the use of multiplesemi-transparent isosurfaces, but too many isosurfaces can actually impair understanding.Researchers addressed this problem by developing algorithms for direct volume rendering.Volume rendering algorithms can be classi�ed as being based on raycasting, cell pro-jection, splatting, or shear transformations as described in chapter 1. Raycasting is animage-space approach in which a ray from the eyepoint is cast through each pixel of theimage, intersected with the volume, and sampled along its length [Lev88, Lev89b, UK88,



12Sab88, GO89]. Cell projection and splatting are both object-space algorithms in which cellsor nodes are projected to the screen [UK88, Wes89, Wes90, LH91, WV91, ST90, MHC90].These methods require that the cells or nodes be sorted into a visibility ordering andprojected either front-to-back or back-to-front. Methods using shear transformations �rstrotate the volume in memory so that it is view aligned. Compositing can then be done bysimply striding through the volume [DCH88]. Approaches to direct volume rendering havealso di�ered in the techniques used to map the scalar values to color and opacity. Thissection gives an overview of several of the di�erent approaches that have been taken.In work presented by Upson and Keeler [UK88] transfer functions for both color andopacity are de�ned on the range of the volumetric scalar �eld. These are then used, alongwith gradients estimated using �nite di�erences, in shading computations. Both image-space and object-space (raycasting and projection) methods are addressed.The algorithm developed at Pixar [DCH88] was based on experiences and requirementsin the medical imaging �eld. It requires that each input value in the volume be translatedinto a set of material percentages. Materials are then given properties such as color, opacity,and density. Surface locations are estimated by looking for areas of high gradient magnitudefor density and the direction of the gradient is used in the shading calculations. Theserepresentations are combined to give a \shaded color volume" which may then be rotatedand resampled using shear transformations, and then projected using a simple compositingscheme.Sabella modi�es Kajiya's [KH84] raytracing algorithm for computational e�ciency byeliminating shadowing in order to render a scalar �eld as a varying density emitter [Sab88].In one of his rendering schemes, four values are computed for each ray cast through thevolume: the maximum value encountered along the ray, the distance to this maximumvalue, the attenuated intensity, and the center of gravity. The image is generated using themaximum value for the hue, attenuated intensity for the value, and either distance or centerof gravity for saturation.The approach taken by Marc Levoy [Lev88] is to use the dataset values to generate botha color volume and an opacity volume. A raycasting algorithm is then applied to acquirea vector of colors and opacities corresponding to the path of a ray from the view point,through a screen pixel, through the volume. These colors and opacities are composited inback-to-front order, resulting in the �nal pixel color.Researchers have also been investigating ways of emphasizing surfaces within volumes ofdata using a direct rendering approach rather than conversion to geometry. Levoy createsan opacity for each volume element as a function of the gradient �eld of the dataset. Thistechnique is used to produce both isovalue contour surfaces and region boundary surfaces[Lev88, Lev89b]. Goodsell and Olson have implemented a raycasting volume renderer whichproduces isosurfaces by comparing each sample along a ray with the previous sample,checking whether an isosurface has been crossed. If so, then the color and opacity of thesurface are composited into the contribution collected thus far for the ray [GO89]. Upsonand Keeler generate isosurfaces by using a step function in their opacity transfer function[UK88]. Drebin, Carpenter, and Hanrahan do surface extraction by computing a \surfacenormal volume" and a \surface strength volume" based on the percentages and densities ofeach material present in the volume [DCH88]. These derived volumes are then used in theshading calculations.



13Related e�orts in the modeling of natural phenomena and the synthesis of imagescontaining such models are also applicable. In particular, the attempts at rendering suchthings as clouds, fog, dust, and particle systems can be considered speci�c applicationsof volumetric rendering. Blinn utilized a volume of density values to model clouds andpresented a technique for rendering them [Bli82a]. Nelson Max extended his work in variousways [Max86] and Kajiya addressed methods for raytracing such models [KH84]. A primaryconsideration in these e�orts has been the means of solving the scattering equation foraccurate depiction of the volume based on a given lighting model.2.1.3 Integration of Rendering TechniquesRecently researchers have begun to address the integration of the new technique ofdirect volume rendering with more traditional rendering algorithms. An important questionis how to handle the direct volume rendering of a dataset that has geometrically de�nedpolygons embedded in it. For example, it may be desirable to de�ne an isosurface usinggeometrical primitives and render it embedded in the volumetric dataset. Many simulationsare done with respect to some �xed geometry (such as 
uid 
ow about an aircraft in CFD);it enhances image understanding to be able to render the geometrically de�ned objectembedded in the 
ow �eld it generates.Marc Levoy discusses two approaches in his Ph.D. dissertation [Lev89b]. The �rst is ahybrid raytracing approach in which rays are cast simultaneously into the volumetric andgeometric objects. Samples are taken from the volumetric object at equal intervals alongthe ray. Each polygon making up the geometric object is tested for intersection with the ray.All samples are sorted by depth and composited. The second approach involves shading,�ltering, and scan converting each polygon of the geometric object at the resolution of thevolumetric object to produce a second volume containing the geometry. The two volumesare then combined using volume matting. Care must be taken with the order in which thepolygons are scan converted. The resulting composite volume is then rendered using thedirect rendering algorithm. The raycasting approach was found to produce sharper polygonedges than the scan-conversion method, but at a higher cost. The algorithms were testedusing only a few large polygons embedded in a volumetric dataset; additional techniqueswould be required to reduce the ray-polygon intersection testing cost if many polygons wereto be rendered.Johnson and Mosher address this problem by adding new volumetric primitives to atraditional rendering system [JM89]. Volume point, vector, ray, and polygon primitives areincorporated into a typical 3D graphics environment. Each of these new primitives has anassociated mapping function which maps the volumetric data to a geometric primitive. Itis not clear exactly how their approach handles the integration of volumetric and geometricprimitives which occupy the same space. Their technique does provide the very usefulfeatures of arbitrary cutting planes for volumes and texture mapping using volumetric data.We have investigated how object-oriented design and implementation techniques can beused to accomplish an integrated rendering approach [Cha90]. The raycasting algorithmpresented addresses the rendering of geometrically de�ned primitives embedded in a vol-umetric dataset. Algorithms for rendering both rectilinear and nonrectilinear volumetricdatasets are given.



14Giertsen [GT92] has presented an algorithm for rendering embedded geometrical prim-itives in unstructured volumetric datasets. The algorithm is an extension of an earlierapproach [Gie92] to volume rendering which uses a scan-plane bu�er to store contributionsfrom each volume cell to the pixels of a given scanline. Geometrical primitives are handledsimilarly with the use of a multi-layer z-bu�er. All rendering proceeds in scanline order. Ateach scanline contributions are made to the scan-plane bu�er from all intersected volumecells and to the multi-layer z-bu�er from all intersection polygons. When all active elementshave been processed, the contributions from the two bu�ers are combined to form the �nalpixel values along the scanline.2.1.4 Sequential Methods for Fast Volume RenderingThe primary drawback of direct volume rendering is the amount of computation neededto produce a result. To achieve its ultimate usefulness as an exploratory tool, volumerendering must run at interactive speeds. There have been numerous approaches to speedingup the volume rendering process using sequential algorithms [Wes89, Wes90, LH91, Lev90,WV91, DH92, VW93, Mal93, TL93]. Many of these algorithms trade image quality forspeed, typically under user control.Hibbard and Santek make the case that interactivity is the most important feature in asystem for the analysis of volumetric datasets [HS89]. They have presented work towards afast approximating algorithm for rendering volumetric scalar data on a rectilinear grid as atransparent fog. They select the grid planes most perpendicular to the view direction, andrender each, in visibility order, as a set of transparent rectangular polygons.As discussed in chapter 1, the splatting algorithm estimates the contribution to the imagefrom a single grid node without requiring access to neighboring grid points or interpolationwithin cells. Compositing of overlapping splat regions is a fast approximation for the actualcontribution at points in between grid nodes. Lee Westover has published work in which thegoal of interactive rendering is pursued through the use of a splatting algorithm, along withsuccessive re�nement of images and table-driven mappings for shading and �ltering [Wes89,Wes90]. This approach has been extended by Laur & Hanrahan [LH91] to use a pyramidalrepresentation and hierarchical enumeration of the data with progressive re�nement toachieve interactivity, but with some degradation in image quality.Cell projection approaches allow more accuracy in the determination of contributionsto the image. In this case whole cells are projected rather than regions approximated fromsingle nodes as in splatting. Spatial coherence can be utilized to create e�cient projectionalgorithms. Max, Hanrahan, & Craw�s [MHC90] give an algorithm for the projection ofany collection of sortable convex polyhedra in which analytic integration is used. Theiralgorithm is applicable to irregular and scattered data sets.In addition to taking advantage of spatial coherence to create e�cient projection algo-rithms, some researchers have combined these techniques with the production of hardwarerenderable geometric primitives to further speed the rendering process by taking advantageof the fast rendering hardware available in computer graphics workstations. Shirley andTuchman [ST90] present an algorithm for e�ciently projecting tetrahedral cells in whicheach cell is represented with hardware renderable semi-transparent triangles. Laur & Han-rahan [LH91] combine a pyramidal representation with hierarchical enumeration of the data



15and the ability to rapidly generate hardware-renderable primitives to represent the projec-tion of di�erent-sized cells. The hardware-renderable primitives are scaled depending onthe level of resolution requested by the user. Progressive re�nement is utilized to obtaininteractive rates. Williams [Wil92a, Wil92b, Wil92c] explores several approximations to thealgorithm of of Shirley and Tuchman [ST90] for projecting tetrahedral cells which trade im-age quality for speed and compares the results. Wilhelms and Van Gelder [WV91] describea projection algorithm for rectilinear volumes in which a template for projection is formedand used to speed the scan conversion of cells. They also compare di�erent approaches tothe approximation of the integrals required with respect to speed and image accuracy andquality. Van Gelder and Wilhelms [VW93] have also presented techniques which extendedthis work to handle curvilinear computational grids.Raycasting approaches allow more accurate images to be generated, but tend to bemuch slower than the other algorithms due to their computational requirements. Varioustechniques can reduce these computational requirements, some of which will introduceartifacts and degradation in image quality. Levoy proposes techniques for increasing thecomputational e�ciency in the raycasting approach to volume rendering. Two of thesetechniques reduce the cost of tracing each ray: using a hierarchical enumeration of thevolumetric dataset, and adaptively terminating the ray processing based on the accumulatedopacity of the pixel [Lev90]. Another technique reduces the number of rays cast by usingan adaptive approach to determining where the greatest number of rays are required[Lev89b]. The image is subdivided into square sample regions and rays are cast at thefour corners of each region. Color di�erences are used to determine whether each regionneeds to be recursively subdivided and additional rays cast. Progressive re�nement andimage interpolation are used to generate the complete image. Levoy and Whitaker [LW90]present a raycasting algorithm in which both the number of rays and the number of samplesper ray are reduced in proportion to the distance of the ray from the focus of the user's gaze.Volumes are stored in volume pyramids in which the lowest level of the pyramid containsthe original dataset and higher levels contain lower resolution versions of the dataset. Thenumber of samples taken per ray is reduced by choosing a volume higher up the pyramidfor sampling. Danskin and Hanrahan [DH92] present and compare several approaches tospeeding the raycasting process. Several raycasting algorithms are presented using volumepyramids and allowing the user to trade image quality for speed. Sakas and Gerth givea method for creating volume pyramids based on perspective views which may then betraversed to avoid aliasing without oversampling [SG91]. Their approach to pyramidalvolume traversal makes the time to render an image dependent on the image resolution andindependent of volume resolution.Very recently, researchers have presented methods for doing direct volume rendering inthe frequency domain, rather than in the spatial domain [Mal93, TL93]. This approachis attractive because it reduces the complexity of the rendering process from O(n3) toO(n2 logn) by making use of the equivalence of the integral of a 1D signal and its spectrum.The Fourier projection slice theorem applies this in higher dimensions and is the basis ofFourier volume rendering [Mal93]. The primary drawback of Fourier volume rendering isthat occlusion is not supported, thus the resulting images are similar to x-rays. Totsukaand Levoy have presented techniques for frequency domain depth cueing and directionalshading in an e�ort to alleviate this problem [TL93].



162.1.5 Volume Rendering More Complex GridsMost of the approaches discussed so far addressed volumetric rendering of data on arectilinear grid. Researchers have recently begun to address volume rendering algorithmsfor more complex computational grids. Williams and Max [WM92] give a rigorous analysisof optical models for volume rendering and present a continuous model of volume densitywhich is particularly suitable for rendering scalar �elds on irregular grids.Many of the projection approaches for rectilinear grids can be extended to handle moregeneral grids. The visibility ordering requirements remain the same. Max, Hanrahan, &Craw�s [MHC90] give an algorithm for the projection of any collection of sortable convexpolyhedra. Shirley and Tuchman [ST90] present an algorithm for e�ciently projectingtetrahedral cells in which each cell is represented with hardware renderable semi-transparenttriangles. Williams [Wil92a, Wil92b, Wil92c] gives algorithms for visibility ordering andrendering of nonrectilinear volumes. The algorithm of Shirley and Tuchman [ST90] forprojecting tetrahedral cells is modi�ed using several di�erent approximations which tradeimage quality for speed and the results are compared. Lucas [Luc92] renders irregular gridsby visibility ordering the faces of each cell and then scan converting them in order, usinga z-bu�er to record information which allows the depth through each cell to be used inthe compositing operation. Van Gelder and Wilhelms [VW93] extend their work on fastprojection algorithms [WV91] using hardware renderable primitives to handle curvilineargrids. Several methods which trade image quality for speed are presented, along with analgorithm for visibility ordering and a technique for improving the results of using hardwarecompositing.Raycasting is also fairly easily extended to handle more complex grids. The most im-portant aspect is how to deal with the computational complexity of the ray/cell intersectiontesting requirements. Approaches taken include interpolating the grid to a rectilinear one,�nding the �rst intersection and then stepping through the cells, and techniques relatedto scanline algorithms. Wilhelms, et al. [WCA+90] investigate the tradeo�s between re-sampling a curvilinear grid to a rectilinear one before volume rendering, and direct volumerendering on the curvilinear grid using a raycasting algorithm. The direct volume renderingapproach utilizes a y-bucket sort of the cells to reduce the number of ray/cell intersectiontests required. Garrity [Gar90] presents an algorithm for volume rendering nonrectilineardatasets which requires that the data be cell-organized in memory so that shared faces areknown. A ray intersection with an exterior face is found, the face through which the rayexits that cell is determined, and the process continues stepping through the volume cellto cell. Koyamada [Koy92] presents a raycasting approach for rendering of nonrectilinearvolumes which also uses a fast cell traversal. His approach is based on tetrahedra and alsoinvolves �nding ray intersections with front-facing exterior faces and stepping through thevolume from cell to cell. In general, the approach of stepping cell to cell may require ex-pensive testing to resolve the ambiguity that results from a ray passing through an edge ornode of a cell [RW92]. An early version of the raycasting algorithm presented in this thesisperformed bucket sorts in x and y on the cells of a curvilinear grid to reduce intersectiontesting requirements [Cha92].Scan-line methods, which seem to fall somewhere between raycasting and projection ap-proaches, have recently been applied to the rendering of more complex volumetric datasets.



17Giertsen [Gie92] gives an algorithm for rendering sparse unstructured grids which utilizesa scan-plane bu�er to store contributions to each pixel from di�erent cells in the grid. Cellintersections with the scan-plane are incrementally computed, discretized, and stored in thebu�er. Intersections are stored in the bu�er at a location corresponding to their x and zcoordinates. One drawback to this approach is the aliasing in the z direction caused by thediscretization required by the use of the scan-plane bu�er. When all contributions to thescanline have been stored in the bu�er it is processed to produce the pixel values for thatscanline.2.2 Parallel Volume RenderingAn alternative to pursuing sequential algorithms that increase the speed of the directvolume rendering process, typically by accepting a decrease in the image quality andaccuracy, is to investigate parallel algorithms for direct volume rendering. This approach isespecially important in view of the fact that many of the numerical simulations that producethe volumetric datasets of interest are themselves being moved to parallel architectures.Parallel algorithms for volume visualization become even more important in the case ofhighly parallel architectures on which very large volumetric datasets may be produced. Inthese cases it may be infeasible, or at least very inconvenient, to move these datasets to aworkstation for visualization postprocessing.2.2.1 Nomenclature for Parallel ArchitecturesParallel architectures can be categorized along several dimensions. One common dis-tinction refers to the autonomy of the processors. A system in which the processors executethe same instruction stream in lockstep, but use di�erent data, is referred to as single-instruction, multiple-data (SIMD). Alternatively, if each processor executes its own instruc-tion stream the system is called multiple-instruction, multiple-data (MIMD). A system mayalso be classi�ed by its memory architecture. The memory may be completely shared by allprocessors, or it may be completely distributed and private, or some combination of these.Systems which utilize a globally-shared memory are limited by the memory bandwidth to asmall number of processors. Processors which have no shared memory must communicateby message passing over the interconnection network. Software can blur these hardwaredistinctions: message passing may be implemented on a shared-memory architecture, andlocal caching may be used to support virtual shared memory on a distributed-memory ar-chitecture. Another categorization involves the type of interconnection network used. Theprocessors and memory in a system may be connected by a bus, ring, mesh, hypercube, ormultistage switching network. An excellent description of many of these parallel architec-tures, along with a discussion of language and operating system issues, is given by Almasi& Gottlieb [AG89]. Several of the newest highly parallel MIMD architectures are describedin [Hor93].2.2.2 Measurement TechniquesIn order to assess the e�ciency and scalability of various parallel implementations,measurements of performance characteristics are made. Common measures used to analyze



18n Number of processors.T1 Serial execution time.Tn Execution time on n processors.Sn = T1=Tn Speedup on n processors.En = Sn=n E�ciency on n processors.TOTALn = Tn � n Total computational resources consumed.ri Time spent on rendering tasks on processor i.Rn =Pn�1i=0 ri Total time spent on rendering tasks.bi Time spent waiting on processor ifor other processors to �nish.Bn = (Pn�1i=0 bi)=TOTALn � 100 Percentage of total computational resourcesconsumed due to load imbalance.Table 2.1: Measures of parallel algorithm performance.the performance of parallel implementations include the execution time, speedup, ande�ciency. Let the execution time of a serial version of a given algorithm be T1, and theexecution of a parallel version of the same algorithm running on n processors be Tn. Speedupis de�ned as Sn = T1Tn ;and e�ciency is En = Snn :These measures are important in that they predict the e�ect on performance when additionalprocessing power is brought to bear on an algorithm. Ideally, speedup will be close to nand linear, implying that adding processors will have a signi�cant e�ect on execution time.In this case the algorithm is said to be scalable. Scaled speedup is an alternative to thetraditional de�nition of speedup in which the problem size is increased as processors areadded [Gus88]. It has been shown that it is possible to have speedup greater than n,although this is unusual in general [HM90]. The trend is typically shown by running agiven algorithm several times for varying n and graphing the speedup as a function of n.The total execution time over all processors (Tn � n) can be broken down into componentswhich indicate the sources of overhead that contribute to declining e�ciency (such as loadimbalance) [Whi92]. Measures used in this thesis to analyze and present results of parallelalgorithm performance are summarized in table 2.1.2.2.3 Specialized Architectures for Volume RenderingEarly e�orts to achieve interactive rates for rendering of voxel-based objects come pri-marily from the medical imaging and solid modeling communities. Specialized architectureshave been developed to speed rendering in those applications. A survey of some of thesesystems has been done by Kaufman [KBCY90]. Many of these systems were initially de-signed for rendering solid models and were later applied to medical imaging. In these casesthe system design was intended to handle voxels which are opaque if they are visible, unlike



19the semi-transparent volumetric models and rendering techniques described in the previouschapter. These architectures either do not handle semi-transparent voxels, or they do so ata performance penalty.The specialized architectures that have been proposed or developed for solid modelingapplications include: the 3DP4 [OUT85], Insight [Mea85], the PARCUM II [Jac88], andthe RayCasting Engine [EKM+91]. Architectures designed for medical imaging applica-tions include: the Voxel Processor [GRB+85], and the Cube [KB88]. All of the approachesdescribed in this section utilize MIMD architectures having either shared or distributedmemory. Two use a pipelined approach [OUT85, EKM+91] with di�erent processors as-signed to di�erent tasks in the rendering pipeline. In these cases the connections betweenmemory and processors are speci�c to the task being executed. Memory may also be spe-cialized to speed the rendering process [Jac88, KB88] by allowing simultaneous reads andwrites.For the 3DP4 [OUT85], the goal is a fast solid-model rendering system for interactiveuse. Solid models are represented by PEARYs, picture element arrays; these are simplyrectilinear volumes of voxels which are either opaque or transparent. The rendering algo-rithm is called the linear interpolating projection method. The volume is considered as ayd�zd set of lines. The projections of the starting and ending points of each line are foundby interpolating the projections of the 8 vertices which de�ne the entire PEARY. The pro-jection points of the voxels along each line are found by linear interpolation of the startingand ending points. A z-bu�er is used for hidden surface removal. The gradient is estimatedfrom the z-bu�er and used for shading (depth-only shading). A parallel architecture is pro-posed to support these algorithms. It is a MIMD architecture in which the object memoryis distributed, and the image memory is shared between two processors. The architectureis a four stage pipeline. There are 256 projection processors with one PEARY memory of643 voxels each. Each of these processors also has a frame bu�er and z-bu�er. The mergingprocessor is the next stage, it merges the 256 individual frame bu�ers into one image. Thetwo stage shading processor is next, it �rst computes the gradient from the z-bu�er andthen shades the �nal image. A software implementation of the algorithm has been done,and theoretical timing analysis indicates a throughput of 10 512x512 images per second.Meagher [Mea85] gives an overview of some of the features of Insight, a commerciallyavailable medical analysis and planning workstation. Two case studies are presented.Detailed information about the architecture is not given, but the algorithm is based onrendering an octree representation of a volumetric object to an image that is representedas a quadtree [Mea82]. The octree encoding of the volume provides a straightforwardmethod for back-to-front or front-to-back traversal of the volume for hidden surface removal.E�cient techniques for determining the intersection of an octree node (representing partof the volume) with a quadtree node (representing part of the image) are given. Thisapproach has been extended by Doctor and Torborg [DT81] to allow semitransparency ofthe volumetric object.Jack�el [Jac88] proposes the PARCUM II, an architecture that seems to be shared-memory MIMD, however the emulation system that has been built utilizes only one pro-cessor. It comes from a solid modeling perspective and uses only opaque voxels. A specialmemory architecture allows simultaneous read of a 643 bit \macro volume element" orMVE. Hidden voxel removal is done by simultaneously processing the MVE in the x, y,



20and z directions, and by using a z-bu�er. The system supports 5123 bits or 2563 7-bitvalues. Shading is done using gradients calculated from the z-bu�er. The emulation systemproduces images in 40 to 110 seconds.Ellis, et al. [EKM+91] give an overview of the RayCasting Engine, a special purposeparallel architecture for processing CSG models for rendering and other analysis. It takesa CSG model and clips it against a 2D array of rays, producing a ray-rep model wheresegments of each ray which intersects a solid are kept. A fairly large prototype has beenbuilt, but no empirical results were given. The system is a distributed-memory, MIMDarchitecture. The processors are connected in a 2D lattice. The bottom row of the arraycontains primitive classi�ers (PC). Each of these is programmed with a single half-space andsequentially clips that half-space against all the rays. The remainder of the array containsclassi�cation combiners (CC) which accept two sets of line segments and combines themusing boolean operations. The communication network is programmed to match the treestructure of the CSG model. CCs pass data to the top and left neighbor only. Large modelscan be processed by making more than one pass.Goldwasser, et al. [GRB+85] describe the Voxel Processor, a MIMD, bus-based,distributed-memory architecture with the goal of real-time (30 frames per second) gen-eration and display of volumetric medical image data. A scaled-down prototype has beenbuilt, but no empirical results are given. The full-sized design incorporates 64 processorsand is designed to handle volumes of 2563 16-bit values. The prototype has one processorand handles a 643 volume of 4-bit values. It isn't clear that the architecture is scalable andthat the full-sized version will not su�er from contention problems. The working prototypecan generate 16 frames per second. The generated image size is 512x512. The volume ofdata is distributed, a sub-volume to each processor. There is no resampling or integration,the algorithm is voxel-oriented and voxels are opaque. Table lookup is used to perform seg-mentation and windowing, and for graphics overlays. A painter's algorithm (back-to-front)is used at each processor to render its sub-cube to one of two (double-bu�ered) private framebu�ers. Intensity and depth information is maintained at each pixel. When all processorshave completed rendering, the individual images are merged (using depth information) intothe output frame bu�er.Kaufman and Bakalash [KB88] describe the Cube, a shared-memory multiprocessorarchitecture with two unique features: a skewed memory organization that allows simulta-neous access of a full beam (row) of voxels, and a multiple-write bus that allows the nearestopaque voxel to be selected in O(log n) time. The projection approach also supports ren-dering of scan converted geometry and translucency (there is a performance penalty for thelatter). The target is a 5123, 8-bit system. A 163, 8-bit prototype has been built. It isestimated that the full system will produce 16 frames per second. Memory organizationallows a full beam of voxels along any of the orthogonal viewing directions to be accessedsimultaneously. Arbitrary views required the data to be \rotated" in the memory. A ded-icated frame bu�er processor does this along with other voxblt functions. The viewingprocessor performs the real-time image projection. It consists of a processor for each voxelalong a beam. These processors each access one of the voxels in a beam, clip, map, andshade it using table lookups, and write it to the multiple-write bus. For opaque voxels, thise�ectively performs the projection of an entire beam simultaneously. For translucency, thisoperation must be repeated and the resulting values combined.



212.2.4 Parallel Direct Volume RenderingComparisons between di�erent parallel implementations for direct volume rendering haveproven to be di�cult because of the wide variety of factors that in
uence performance. Thechoice of algorithm, architecture, dataset, and image size all contribute to the e�ciencyof a particular implementation. Speci�cation of the dataset to be rendered may haveimplications in the most e�ective choice of algorithm. This is true even when consideringsequential algorithms. For example, if the dataset consists of a few large cells the bestalgorithm will e�ectively utilize spatial coherence. If, however, the dataset consists of manysmall cells in which most cells project to very few pixels, then the overhead involved inutilizing spatial coherence may reduce e�ciency rather than enhancing it. Speci�cation ofan architecture will also have rami�cations in the selection of an algorithm that will performwell. This is especially evident when one compares SIMD and MIMD implementations. Thetype of memory available (distributed, shared, hybrid) is an important factor as well.Di�erences in methods of measuring performance reported by various researchers makedirect comparisons of implementations di�cult. However, certain trends can be clearlyseen. MIMD architectures are more 
exible in terms of the variety of algorithms they cansupport, and have received more attention than SIMD architectures. E�ciency on highlyparallel systems is much more di�cult to achieve than on architectures that utilize just afew processors. Raycasting has received the most attention from researchers investigatingparallel algorithms for direct volume rendering. The basic raycasting algorithm is easilyparallelized without introducing inter-processor synchronization requirements because eachray can be processed independently from any other ray as long as the values at the nodes ofeach cell intersected by the ray are rapidly accessible to the processor. Enhancements whichspeed sequential algorithms may also limit the scalability of a highly parallel implementationif they impact the synchronization requirements.SIMDThe major drawback to SIMD architectures is that they are appropriate only for aspecial category of algorithms. SIMD architectures perform best on data parallel problemsthat can make use of nearest neighbor communications. For direct volume rendering, thismeans that SIMD architectures are most suitable for rendering rectilinear datasets thatare view-aligned in memory. All of the SIMD approaches to direct volume rendering haveaddressed rectilinear grids only. These approaches are discussed in more detail below andthe results are summarized in table 2.2.The �rst parallel algorithms for direct volume rendering on SIMD architectures uti-lized shear transformations. Schr�oder [SS91] has presented an algorithm for parallel volumerendering on the Connection Machine (CM-2) in which an important aspect is the com-munication requirements for rotating the volume in memory to match the requested view.Using 64K processors this algorithm renders a 1283 rectilinear dataset to a 2562 image in821ms. V�ezina et al. [VFR92] give a similar algorithm using shear transformations anddescribes its implementation on the MasPar MP-1. He reports performance statistics forrendering a 1283 rectilinear dataset to a 1282 image at 456ms using 16K processors.



22Machine Data Image Time in Number ofSize Size Milliseconds ProcessorsCM-2[SS91] 1283 2562 821 64KMasPar MP-1[VFR92] 1283 1282 456 16KCM-2[SS92] 1283 5122 923 16KPrinceton Engine[KMS+92] 2563 5122 500 256Table 2.2: Results reported on SIMD architectures for rectilinear datasets.More recently Schr�oder has presented another algorithm which does not rely on sheartransforms, but rather steps the rays through the volume [SS92]. In this approach, rays arecast at an angle through the volume and the projection information is passed from processorto processor. All rays are processed in parallel and move in lockstep along a major axis.This algorithm has been implemented on the CM-2 and the Princeton Engine. On theCM-2 a 1283 dataset can be rendered to a 5122 image in 923ms using 16K processors. Kabaet al. [KMS+92] discuss techniques for volume rendering on the Princeton Engine VideoSupercomputer. In their approach each yz slice is stored on a di�erent processor. Rotationabout the x axis can be simply performed using shear transformations on each processor(or direct application of the rotation transformation). For multiple axis rotation the linedrawing projection algorithm given by Schr�oder [SS92] is used. They report renderingtimes for a 5122 image and a 2563 dataset of 125ms to 250ms for x axis rotation using 1024processors and 500ms for multiple axis rotation using 256 processors.MIMDMore work has been done on parallel direct volume rendering for MIMD architectures.A wide variety of architectures have been addressed. These can be categorized as towhether they are highly parallel and scalable, or limited to a small number of processors.Implementations for highly parallel systems have been described for the Pixel-Planes 5,Stanford DASH multiprocessor, nCUBE 2, Fujitsu AP1000, and the BBN TC2000. Workon smaller systems has been reported for multiprocessor Silicon Graphics systems. Avariety of algorithms have been investigated, with the raycasting approach receiving themost attention. Two researchers have reported on parallel splatting algorithms and a fewhave addressed implementations of parallel projection algorithms on smaller multiprocessorcomputer graphics workstations. We have conducted a comparison of parallel image-spaceversus object-space rendering algorithms and the problems inherent in the two approaches[Cha91]. The results indicate that image-space decompositions may be easier to parallelizewith high e�ciency. Most of the research conducted so far has been directed towards directvolume rendering of rectilinear datasets. These approaches are examined in more detailbelow and the results are summarized in table 2.3.



23Levoy has proposed a parallelization of the raycasting approach on the Pixel-Planes 5,a parallel architecture developed for computer graphics [FPE+89, Lev89a]. Pixel-Planes5 is a MIMD architecture utilizing a ring network. There are two types of processors:32 MIMD graphics processors (GP), and 512x512 pixel processors (PP) grouped into 16independently programmable renderers. The 512x512 frame bu�er is connected to the ring.Each of the GPs and PPs has some local memory; there is no shared memory. Shading andclassi�cation volumes are to be created (and stored) on the PPs. Ray tracing is done bythe GPs. Each GP is assigned a group of rays to process, it must request the required voxelinformation from the PPs. Local caching is suggested where possible to speed renderingtime. Hierarchical spatial enumeration, adaptive sampling, and successive re�nement arealso suggested to speed rendering.Nieh and Levoy [NL92] describe the implementation of Marc Levoy's volume renderingalgorithms including optimizations of hierarchical opacity enumeration, early ray termina-tion, and adaptive image sampling, on the Stanford DASH Multiprocessor. The DASHconsists of clusters of processors connected by a scalable interconnection network. Pro-cessors can be added as required to the hierarchy. The system provides shared memoryand several levels of caching. The reported work used a 48 processor system. The basicalgorithm is a raycasting algorithm for rectilinear volumes. An approach similar to a taskadaptive technique described by Whitman [Whi92] is used for task decomposition. Thedata is distributed among the processors in an interleaved fashion. Allocating portions ofthe dataset to the processors in round-robin order prevents the formation of hot spots thatcan occur when several processors attempt to read data that is located on one processor.Rendering times do not include I/O (image or data) or preprocessing steps such as octreecreation. A typical example rendered a 256x256x226 dataset to a 4162 image using 48 pro-cessors in 700ms with a speedup of 40 and an e�ciency of 83% for nonadaptive, and 340mswith a speedup of 33 and an e�ciency of 69% for adaptive image sampling.Montani et al. [MPS92] present a parallel raytracing algorithm for rectilinear volumeson the nCUBE 2, a distributed-memory, message-passing, hypercube architecture. Theapproach groups the processing nodes into clusters. The dataset is replicated on eachcluster. Scanlines of the image are assigned to each cluster in an interleaved fashion forprocessing. Within each cluster, slabs of the dataset are distributed among the processors.Each processor accumulates contributions along a ray as it passes through the part of thevolume stored there. When a ray passes out of a local slab, it is passed as a message tothe neighboring processor containing the slab the ray is entering. When a ray has beencompletely traced, the pixel value is computed and sent to the host workstation. Specialcare has to be taken with termination detection and deadlock prevention. An adaptiveload-balancing scheme is presented in which one cluster traces a subset of pixels regularlydistributed throughout the image. The resulting timing information is used to redistributethe slabs non-uniformly. Scalability of their approach depends highly on replication of thedataset. The best results on 128 processors require the dataset to be replicated 64 times.Results reported were obtained for rendering a 97x97x116 dataset to a 350x250 image. Thebest time was 4.75 seconds on 128 nodes with the adaptive data distribution scheme (notincluding the time to determine the best data distribution). This gives a speedup of 102over the uniprocessor time of 485.24 seconds and an e�ciency of 80%. However, this wasobtained using a cluster size of 2 processors - meaning that the dataset was replicated 64



24times. On the other hand, using a cluster size of 16 processors (data replicated 8 times),rendering took 7.94 seconds for a speedup of 61 and an e�ciency of 48%.Corrie and Mackerras [CM92] have implemented a parallel ray-casting algorithm forrectilinear volumes on a 128 processor Fujitsu AP1000. This machine is an experimentaldistributed-memory architecture with three independent communication networks. Theseinclude a broadcast network, a 2D torus network, and a synchronization network. Thedataset is subdivided and distributed among the processors for storage. A distributedvirtual memory system was designed and implemented in order to provide access to thedistributed dataset to any processor. The task decomposition is done in image space,with each processor being assigned some portion of the image to render. Several taskdecomposition schemes are analyzed, the most e�cient being dynamic allocation of squareimage blocks with an adaptive technique for redistributing a task in order to minimize loadimbalance. A careful analysis of the virtual memory performance and caching behavior ispresented. Raycasting a 256x256x109 dataset to a 512x512 image takes 54 seconds using127 processors, with an e�ciency of 80-85% attained.Neumann [Neu92] describes an implementation of a parallel splatting algorithm forrectilinear data on the Pixel-Planes 5. The volume is splatted one slice at a time. TheGPs compute coe�cients for a quartic kernel. Renderers evaluate and produce the kernelwhich is then used for splatting into the current slice. The data distribution is staticallocation, with slices interleaved among the GPs in round-robin fashion. The data setis stored three times with slicing in each of the 3 dimensions to accommodate di�erentviews. Renderers are assigned square portions of the image. They receive splat instructionsfrom GPs only for voxels that project to their region. Splat instructions are ordered fromfront to back by GPs. Token passing (one per Renderer) is used to order instructions fromGPs. The performance was analyzed on a 128x128x124 dataset. The best speed achievedwas about 263ms for a 5122 image using 40 GPs and 16 Renderers. Uniprocessor speedof the algorithm, with scalability and speedup statistics, are not given. Load balancing isdi�cult and e�ciency depends on the correct number of GPs versus Renderers, which inturn depends on the image contents (especially the number of transparent voxels).Elvins [Elv92] describes a parallel implementation of the splatting algorithm for recti-linear volumes on a 64 processor nCUBE 2. A master processor is responsible for readingin the dataset, dynamically allocating slices to processors for splatting, and collecting, or-dering and compositing the contributions from each slice. Several optimizations intendedto reduce the communications overhead were implemented and benchmarked. The resultspresented indicate that the speedup for this approach peaks at about 8 processors, severelylimiting the scalability of the algorithm. The time to render a 256x256x90 dataset to a 2002image was 2 minutes 53 seconds.Sakas [SH92] presents several scanline based methods for volume rendering rectilinearvolumes and gives results of parallelization on an 8 processor Silicon Graphics 4D/380VGX. The scanline methods range from use of a fast DDA to traverse the visible volumesegment for each pixel, to the creation and use of a pyramidal volume. The hardwarecapabilities of the machine are used to speed geometric transformation and image displayand manipulation. Performance on this machine is limited by access to the shared memory;it is not clear how the algorithm would perform on a highly parallel architecture. Using thepyramidal volume sampling a 2563 dataset can be rendered to a 4002 image in 47 seconds.



25Machine Data Image Time in Number ofSize Size Milliseconds ProcessorsStanford DASH[NL92]Raycasting 256x256x226 4162 340 48nCUBE 2[MPS92]Raycasting 97x97x116 350x250 4750 128Fujitsu AP1000[CM92]Raycasting 256x256x109 5122 54000 127SGI 4D/380 VGX[SH92]Scanline 2563 4002 47000 8Pixel-Planes 5[Neu92] 40 MIMD +Splatting 128x128x124 5122 263 256K SIMDnCUBE 2[Elv92]Splatting 256x256x90 2002 173000 64Table 2.3: Results reported on MIMD architectures for rectilinear datasets.All of the above research has been directed towards rendering of rectilinear datasets.Very recently researchers have been investigating parallel direct volume rendering algorithmsfor datasets that are nonrectilinear. We have published results of an investigation ofa parallel raycasting algorithm which was implemented on the BBN TC2000 [Cha92].The BBN TC2000 is a distributed-memory architecture which provides virtual shared-memory. An image-space task decomposition was used in which each scanline of the imageconstitutes one task. The scanlines are dynamically allocated to processors for rendering.The volumetric dataset is stored in virtual shared-memory and can be accessed by anyprocessor. The dataset is interleaved over the processors to avoid hot spots. Performancewas measured on a 37,479 hexahedral-cell dataset. A 512x512 image can be rendered in 53seconds on 100 processors at an e�ciency of 72%. A 256x256 image is rendered in 16 secondson 110 processors at an e�ciency of 57%. Remote memory latency, switch contention, andload imbalance were found to be the primary ine�ciencies. This work is described in moredetail in section 4.3.2.Williams [Wil92a, Wil92c] has presented an algorithm for visibility ordering and pro-jection of nonrectilinear volumes. A parallelization of the algorithm is given and its im-plementation on a 6 processor Silicon Graphics 4D/360 VGX is discussed. The sequentialalgorithm is very fast, about 1-3 orders of magnitude faster than raycasting. This speed isobtained primarily from the use of the SGI polygon rendering hardware to render the foot-print approximations of each cell. The visibility ordering algorithm determines the order ofprojection. The 37,479 hexahedral-cell dataset is rendered in 7.8 seconds on 6 processorsat an e�ciency of 31%. Although the sequential algorithm is fast, the results presented



26indicate that its scalability when parallelized is low. In addition, much of the speed of thesequential algorithm is obtained through the use of hardware-renderable primitives. It isnot clear how the algorithm would perform on a highly parallel system that does not havehardware support for rendering.Lucas [Luc92] brie
y describes a parallel direct volume rendering algorithm for irregulargrids. The grid is partitioned on input into non-overlapping spatially connected regions.Nodes shared by more than one partition are replicated in each partition. Irregular gridsare represented as a collection of polyhedra which are the faces of the cells of the grid.The rendering algorithm proceeds in two passes. In the �rst pass, task decomposition is bydata partitions and each processor performs point and normal transformations and lightingcalculations on the nodes in the partitions assigned to it. The image is subdivided intorectangular screen patches, and in the second pass the task decomposition is by screenpatch. Each processor examines all the data partitions using a bounding box test toeliminate partitions that do not project to the current screen patch. For those partitionsthat do project to the current screen patch, all faces are examined and scan converted inback-to-front order. The visibility sort uses the centroid of faces which does not always givea correct ordering. An augmented z-bu�er algorithm is utilized in order to take the depthof each cell into account when computing a cell's contribution and compositing it. Veryfew experimental results were presented, making it di�cult to analyze the e�ciency of themethod. The machine which produced the results was not identi�ed, but an e�ciency of77% was reported for 16 processors.2.3 Parallel Computer GraphicsRelated e�orts in the parallelization of computer graphics algorithms are surveyed byBurke and Leler [BL90] and Crow [Cro90]. Several representative approaches are sum-marized here and will be described in more detail below. Fuchs proposed a techniquefor distributing the z-bu�er hidden surface removal algorithm over a distributed-memoryMIMD architecture [Fuc77]. Cleary, et al. give an algorithm for raytracing which utilizes aworld-space decomposition on a distributed-memory MIMD system [CWBV83]. The raysare represented as messages passed between the processors. Dipp�e and Swensen extend thisapproach to achieve better load balancing by using an adaptive world-space decomposition[DS84]. Parallelization of global illumination algorithms in a distributed workstation en-vironment has been addressed by Tampieri and Greenberg [TG88]. Parallelization of theraytracing algorithm on a distributed-memory MIMD architecture using an image-spacedecomposition is presented by Badouel [BP90]. This algorithm depends on an implemen-tation of shared virtual memory with local caching. Whitman explores several image-spacedecompositions and scheduling strategies on a shared-memory MIMD machine [Whi92]. Adetailed analysis of the overhead incurred in the parallelization is presented.Fuchs [Fuc77] presents an algorithm for a MIMD architecture with distributed memory.Each processor is responsible for generating some portion of the screen image and part of itslocal memory will be used for the image and z-bu�er. The image memories are dual-portedand a separate video scan converter handles the output of the image. A special processorwhich is connected to all others via a bus broadcasts each polygon in the scene to all theprocessors. Each processor performs a z-bu�er scan conversion algorithm on the polygon



27and signals when it is done. When all processors have �nished a \done" signal is presentat the control processor which initiates the broadcast of the next polygon. An interlacedmemory scheme is used to achieve load balancing. Several of today's powerful computergraphics workstations utilize a scheme very similar to this to speed the rendering process[Ake93, DN93].Cleary, et al. [CWBV83] give an algorithm for raytracing on a distributed-memoryMIMD architecture. A theoretical analysis of expected speedup was done, with softwaresimulation to verify results. Performance is compared on two topologies; a 2D lattice and a3D lattice with fast nearest neighbor communication and a slow connection to a controllinghost. A world space decomposition is used, where traced rays are messages which arepassed from processor to processor. The results indicate a less than linear speedup, withperformance on a 2D lattice better than a 3D lattice.Dipp�e and Swensen [DS84] describe an adaptive algorithm for generating raytracedimages in which object space is divided into subregions. Using a theoretical argument, thealgorithm is shown to be faster than the standard raytracing algorithm (in which everyray is tested against every object). They also describe a multiprocessing architecture ontowhich the algorithm is mapped. Three dimensional space is divided into subregions, withone or more subregions assigned to each processor. The processor containing the eye pointinitiates rendering by casting rays for each pixel. Each processor processes rays that enterits subregion by testing them against only the objects residing in that subregion. Whena ray leaves a subregion and enters a neighboring subregion it is passed as a message.When a ray terminates and becomes a leaf of the raytracing tree, a pixel message isgenerated and propagated to the processor which has access to the frame bu�er. Eachsubregion is a general hexahedron. The corner points are adaptively moved to accomplishload balancing. Neighboring regions must share load information. In the architecturedescribed each processor is only connected to six neighbors, thus load and redistributioninformation must be routed through neighboring processors. Processors on the edge of thethree-dimensional space have fewer duties, thus are assigned to handle external tasks suchas the frame bu�er, disk I/O, and the user interface. A simulator has been coded to testthese ideas, but no empirical results were presented.Tampieri and Greenberg [TG88] give an overview of global illumination algorithms(raytracing, radiosity, progressive re�nement radiosity, and monte carlo), and give results ofexperiments with execution of these algorithms in a distributed workstation environment.Message passing over an ethernet connection is used for communication. For raytracing, animage-space subdivision is used and the entire scene database is stored at every workstation.The classical radiosity algorithm does not parallelize as it uses Gauss-Seidel; the progressivere�nement radiosity algorithm is parallelized by having each workstation compute onecolumn of the form-factors. The monte carlo method uses a coarse progressive re�nementradiosity solution and then an image-space subdivision to trace rays. Demand schedulingis used for load balancing.Badouel and Priol [BP90] describe parallel raytracing on a distributed-memory, MIMDarchitecture. The key feature is the use of shared virtual memory with local caching tomake the data structures available to all processors. A task adaptive scheduling strategyis utilized. It is an image-space decomposition where each processor begins with a square



28subimage. Processors which �nish early request more work from other processors. Thespeedup is very sensitive to the size of the local cache.Franklin and Kankanhalli [FK90] present a parallel object-space hidden surface removalalgorithm which uses the uniform grid technique. In this approach a GxG grid is cast onthe eye-space scene. The polygons are sorted into any cells they cover, and are discardedif they are completely invisible. Within each cell all edges are subdivided into segments,where each segment will be completely visible or invisible. The visible regions in each cellare reconstructed from edge segments. A con
ict detection and backo� strategy is given forthe parallelization of the reconstruction step. The algorithm was implemented on a SequentBalance 21000, which has 16 processors and shared memory, with almost linear speedupachieved.Whitman [Whi92] explores several decomposition and scheduling schemes for the image-space decomposition of a scan conversion algorithm on the BBN GP1000. The decompo-sitions include static data nonadaptive, data adaptive, and task adaptive. Techniques fordetermining the components of overhead were developed and empirical results are given forseveral images. The overhead components that were measured include scheduling, memorylatency, block transfers, memory contention, algorithm adaptation, and synchronization.His conclusions were that use of local memory is important for good results, the task adap-tive approach (utilizing local memory) has the best overall performance.



293. Highly Parallel ArchitecturesThe research presented in this thesis is based on the premise that massively paral-lel architectures and operating systems will gradually become sophisticated enough thatprogrammers will not need to deal directly with the low-level details of inter-processor com-munication as is currently required on many distributed memory systems. Highly parallelarchitectures are made feasible through the use of distributed memory and scalable intercon-nection networks. Attempts to allow the programmer to view these distributed memories asa single shared address space (whether through software techniques such as shared virtualmemory or through architectural features) results in a paradigm in which accesses to mem-ory are nonuniform. Latency for memory accesses will depend on many factors includingphysical location, cache coherency, and network contention. The advantage to designinge�cient scalable algorithms that are based on a model of nonuniform memory access is thatthese algorithms may then be ported (while maintaining their e�ciency) to any systemwhich �ts this model, regardless of the underlying physical hardware or interconnectionnetwork topology.This chapter presents an overview of several highly parallel architectures from earlyattempts to provide a scalable shared-memory system to commercial and research machinesstill in development. The particular parallel machine used in this research, a BBN TC2000,is described in some detail.3.1 OverviewAlmasi and Gottlieb [AG89] describe several of the �rst highly parallel MIMD archi-tectures which utilize shared memory including the Denelcor HEP, NYU Ultracomputer,BBN Butter
y, IBM RP3, and UI Ceder. A survey of more recent highly parallel MIMDarchitectures is given by Hord [Hor93]. Several of the more well-known or interesting ar-chitectures are brie
y covered here. All of these architectures utilize physically distributedmemory.Four recent architectures which do not provide support for shared virtual memory are theIntel iPSC/2, nCUBE, Thinking Machines CM-5, and Fujitsu AP1000. The Intel iPSC/2may contain up to 128 80386/80387 processors connected in a hypercube topology. TheiPSC/2 system only provides support for message passing, however applications based onsoftware implementations of shared virtual memory have been shown to e�ciently utilize themachine [BP90]. The nCUBE may be con�gured with 8 to 8K processors. Each processor isa proprietary 64-bit VLSI chip. The interconnection network utilizes a hypercube topologywith data and control messages routed via high-speed DMA communications channelswith hardware routing. The nCUBE only supports message passing. Thinking MachinesCorporation has recently introduced the CM-5, a scalable architecture which may containup to 16K SPARC processors. A control network provides tightly coupled communicationsservices. It is used for synchronization, broadcasting, and combining operations. A datanetwork provides loosely coupled communications services for point-to-point data delivery.Only message passing is supported although the data network hardware provides a relativedestination address that gives the illusion of a contiguous address space across processing



30nodes. This feature could be used to support shared virtual memory. Fujitsu has developedthe AP1000, a distributed memory machine which utilizes from 64 to 1K SPARC processorsinterconnected using a 2D mesh topology. It also provides only message passing services,however recent work at the Australian National University has demonstrated an e�cientapplication based upon a software implementation of shared virtual memory [CM92].Four recently developed architectures which do support shared virtual memory are theIntel Paragon XP/S, Kendall Square Research KSR1, Cray T3D, and the Stanford DashMultiprocessor. The Intel Paragon XP/S can be con�gured with up to 1K processing nodes,each containing two i860 processors. The nodes are connected in a 2D mesh topology. Ateach node, one of the processors is dedicated to application processing and the other tomessage processing, freeing the application processor from all details of communicationservices. Operating system support for shared virtual memory is provided. The KSR1[Hen92] developed by Kendall Square Research supports 8 to 1088 RISC-style superscalar64-bit processors. Their innovative ALLCACHE memory system distributes the memoryphysically as local caches associated with processors. The network consists of a two-level hierarchy of uni-directional rings. The ALLCACHE search engine moves data onreference to appropriate local caches and maintains cache coherence. Currently underdevelopment at Cray Research, Inc. is the T3D [Cra92], a highly parallel machine whichcan utilize \hundreds or thousands" of DEC Alpha chips. The memory is physicallydistributed with the processors and connected via a 3D torus topology. All memory isglobally addressable and nonuniform (latency) access. The Stanford Dash Multiprocessor[LLG+92] demonstrates the feasibility of building scalable parallel architectures with asingle address space and coherent caches. A prototype based on 4 Silicon Graphics 4D/340workstations has been developed. Each 4D/340 is considered a base cluster and contains4 processors. Each processor has a cache, as well as shared memory available in each basecluster. The prototype connects the 4 base clusters in a 2D mesh, but any low-latencyinterconnection technology could be used. A single address space with coherent caches ismaintained via directory structures. Cache levels include processor, local cluster, homecluster, and remote cluster.3.2 The BBN TC2000The machine used for this research is a BBN TC2000 located at the National EnergyResearch Supercomputing Center at Lawrence Livermore National Laboratory. This partic-ular machine is con�gured with 128 processors and 2GB of main memory. The architecturalfeatures of this machine permit the extrapolation of results reported here to other MIMDarchitectures. The TC2000 provides memory that is physically distributed among the pro-cessors, but is globally addressable. Accesses to memory are nonuniform in that the latencyfor access to a remote shared-memory location is greater than for a local (on-board) memoryreference. In addition, remote memory latency may increase with heavy use of globally-shared memory due to contention for the interconnection network. Many di�erent MIMDarchitectures can be modeled as nonuniform memory access machines, from shared-memoryarchitectures to distributed-memory architectures that support shared virtual memory.



31Local Local Remote RemoteRead Write Read WriteUncached 0.550 0.600 1.913 1.889Cache hit 0.150 0.600 0.150 1.889Cache miss 0.850 1.200 2.529 4.168Table 3.1: BBN TC2000 memory access times in microseconds. The cache hit andmiss timings are for writethrough mode.3.2.1 TC2000 ArchitectureThe BBN TC2000 is a multiprocessor architecture with a distributed shared memory[BBN89]. The TC2000 processors access the shared memory through an interconnectionnetwork called the Butter
y switch. The architecture is modular and scalable and canbe con�gured to contain between 1 and 512 function boards. The main components ofeach function board include a Motorola 88100 RISC processor, a 16 kilobyte instructioncache and 88200 cache/memory management unit (CMMU), a 16 kilobyte data cache and88200 CMMU, 4 to 16 megabytes of main memory, a switch interface, and a VMEbusinterface. The 88100 is clocked at 20 MHZ, giving a manufacturer's rating of 17 MIPS and20 MFLOPS for single precision 
oating point. These components are connected by anon-board bus called the T-bus. A system physical address in the TC2000 consists of 34bits. The upper 9 bits specify one of 512 switch ports and the lower 25 address up to 32megabytes on each function board.When shared memory is allocated by an application, it can be speci�ed as uncachable,cachable with copyback, or cachable with writethrough. Table 3.1 gives nominal memoryaccess times for the system. The remote memory reference times do not include possibledelays due to contention. The TC2000 also supports interleaving of shared memory toreduce switch contention. References made to a contiguous shared address space by aprocessor will be spread over several function boards by some mapping hardware. The basicclump size is 16 bytes which is also the maximum switch message data size. Each quad-page (32 kilobytes) may be either interleaved or non-interleaved. There may be multipleinterleave pools or collections of function boards over which a given quad-page is interleaved.The 88100 has one read-modify-write instruction, xmem, which exchanges the contentsof a register with the contents of a memory location. The TC2000 is designed to honor thexmem instruction, meaning that atomic operations on memory locations can be executedover the interconnection network. When an xmem instruction references local memory,the CPU interface holds the T-bus preventing any other access until the transaction iscomplete. Likewise, an xmem instruction referencing remote memory holds the switchconnection open, and holds the T-bus on the remote function board until the transactionis complete. Thus the xmem instruction is atomic on the TC2000.Each function board contains a switch interface which is composed of a requester portand a server port. The requester port is used by the function board to request operationson remote function boards and to receive replies from those operations. The server portaccepts requests for operations on this function board from remote function boards andsends replies to these requests. The reply to a given request is sent back over the same path



32as the request arrived on. Each Butter
y switch node is an 8 by 8 crossbar switch. Theseare arranged in two columns for a con�guration with 64 function cards, or three columnsfor a con�guration with more than 64 function cards.When a requester port initiates a request, the header contains the route through theswitch. The route consists of a list containing the output port required at each switch nodeand thus speci�es a complete and exact path through the switch. At each switch node theoutput path for that node is removed from the header. If the output port is available, theconnection is established and the remainder of the message is forwarded. If the output portis not available, the message is immediately rejected. As the rejects propagate backwardsany partial connection is torn down and the switch resources freed. It is the responsibilityof the requester port to reissue the request until a connection can be made. The requesterports support several pacing (backo�) strategies in order to reduce switch contention. Itis possible to lock a switch connection and process several requests before releasing theconnection, as long as the requests can be processed within a certain period of time. Thisis enforced by the use of a connection timeout. It is possible to bypass memory lockingon a function board. For example, instruction fetch is always done in bypass mode. Thisallows instruction fetches from local memory to continue even though a remote functionboard may have the local memory locked.3.2.2 The Uniform SystemA software library called the Uniform System is provided by BBN for controlling theparallel execution and memory use of an application. This library supplies functions formemory and processor management that are callable from C, Fortran, or C++. The goaland design philosophy of the Uniform System is to provide functionality to an applicationprogram in such a way that the full bandwidth, both memory and processor, of the machineis utilized. This section brie
y presents a few of the Uniform System functions. For a fulldescription of the Uniform System the reader is referred to the TC2000 documentation[BBN88].Memory ManagementThe Uniform System implements a large virtual address space that is shared by allprocessors. This approach allows the programmer to treat all processors as identical workers.Each processor has two kinds of memory at its disposal. Process private or local memoryis used for storage of all global or static variables, the heap, and the stack. Globally-shared memory for variables is made available and managed through the use of UniformSystem functions. Functions are provided to allocate shared memory, to scatter large datastructures across several memories of the machine, and to propagate or copy process privatedata between local memories of di�erent processors. When allocating shared memory, thetype of the memory can be speci�ed as uncachable, cachable with copyback, or cachablewith writethrough. Functions which allocate globally shared memory include:� UsAlloc(Type, SizeInBytes)Allocates a block of shared memory.� UsAllocLocal(Type, SizeInBytes)



33Allocates a block of shared memory on the local processor.� UsAllocOnUsProc(Type, Processor, SizeInBytes)Allocates a block of shared memory on a given processor.� UsAllocScatterMatrix(Type, Rows, Cols, SizeInBytes)Allocates a vector of Rows pointers in shared memory, and Rows separatevectors each containing Cols elements of size SizeInBytes. The Rows vec-tors are allocated in separate memories. Scattering data structures acrossseveral memories of the machine reduce memory and switch contention whenmany processors are accessing that data.Another way to reduce switch and memory contention is to keep as much information aspossible in process private memory. Constants and frequently referenced variables that arenot changing rapidly can be replicated in each processor's local memory. Functions whichpropagate process private data to other processors include:� Share(&X)Causes the (four byte) value of X to be copied into each processors privatelocal memory prior to the execution of the �rst task worker function on thatprocessor. X must be global or static.� ShareBlk(&X, SizeInBytes)Causes the block of data beginning at &X to be propagated. The entire blockmust be global or static.� SharePtrAndBlk(&X, SizeInBytes)Causes the pointer X and the block of data pointed to by X to be propagated.The pointer X must be global or static, the block of data has typically beenallocated on the heap (via malloc).� ShareScatterMatrix(&X, Rows)Propagates the vector of pointers created by UsAllocScatterMatrix toeach processor, further reducing memory and switch contention.Processor ManagementProcessors are treated as a group of identical workers. Applications are structured intotwo parts: functions which may perform the various application tasks in parallel, and one ormore task generation functions which specify the next task for execution. Several basic taskgenerators are supplied by the Uniform System, or the application may provide a specializedone. Claimed bene�ts of this approach include:� The generator mechanism is very e�cient. It is implemented in one process perprocessor with each processor executing a tight loop of generate task - execute taskwith no context switches.� The application is insensitive to the number of processors it is being run on.� The load is balanced dynamically.Many task generators, both synchronous and asynchronous, are provided. This researchprimarily uses an index generator of the form:� GenOnIFull(Initial, Worker, Final, Arg, R, MaxProcs, Abortable)



34The processor that calls GenOnIFull() will also participate in the executionof the parallel tasks. This task generator calls the function Initial() oneach processor before beginning to execute tasks, and calls the functionFinal() on each processor before returning after all available tasks havebeen executed. Tasks are dynamically generated and are executed by callingthe function: Worker(0, i) for 0 � i < R. The Initial() and Final()functions are extremely useful in collecting performance statistics.Index generation for 2D arrays is provided using the generator:� GenOnAFull(Initial, Worker, Final, Arg, R1, R2, MaxProcs, Abortable)Generates tasks of the form Worker(0, i1, i2) for 0 � i1 < R1 and0 � i2 < R2.Asynchronous index generation is possible using the generator:� GenID =AsyncGenOnIFull(Initial, Worker, Final, Arg, R, MaxProcs, Abortable)In this case the function AsyncGenOnIFull() returns immediately to thecaller with a generator handle enabling the caller to work on other thingswhile the parallel tasks are executed by other processors. The generatorhandle may be used by the caller to wait for task completion using:WaitForTasksToFinish(GenID),or to join in completing un�nished parallel tasks using:WorkOn(GenID).It is also possible to generate a single task on each processor using the generator:� GenTaskForEachProc(Worker, Arg).Atomic operations are provided for 16-bit and 32-bit quantities by the Mach 1000 operatingsystem (i.e. atomadd32, etc.). In addition, the Uniform System provides busy wait locks.� UsLock(lock, n)� UsUnlock(lock)The variable lock is a short allocated in globally shared memory. The variable n speci�eshow long to wait between attempts to set the lock.3.2.3 Parallel Job ControlThe processors of the TC2000 at the National Energy Research Supercomputing Centeris are divided into two conceptual groups, the public cluster and the parallel cluster.Currently 18 processors are reserved for the public cluster and these support user logins,editing, compiling, and other such activities. The remaining 110 processors are designatedthe parallel gang and run under the control of a UNIX daemon called the Gang Scheduler[GB91] which provides space and time sharing of the parallel gang. It is in the parallel gangthat parallel user jobs run.The Gang Scheduler provides several modes of operation for users in order to accom-modate di�ering requirements. Time sharing and space sharing are o�ered for both batchand interactive execution. In time sharing, each user job (which will consist of severalprocesses, one per processor) is given a time slice on the processors it is using. The entirejob (processes on all processors) is started, run for its time slice, and then put to sleep toallow the next job in the queue to run. Space sharing is provided when a user job does not



35utilize all of the processors in the parallel gang. In this case a separate job may be runningsimultaneously on another set of processors in the parallel gang.In order to provide for accurate performance measurements, a benchmarking mode isprovided in which neither time nor space sharing is permitted in the parallel gang. Shortbenchmarking jobs (60 seconds or less) are allowed any time and long benchmarking jobs (2hours or less) may be run between midnight and 6 AM. During benchmarking the user jobis started and is not disturbed until the speci�ed benchmarking time has elapsed. Althoughonly the job running in benchmarking mode is executing in the parallel cluster, the publiccluster will still be running user jobs and potentially generating network tra�c. In addition,other parallel user jobs which may have been interrupted in order to run the benchmarkingjob will still be waiting to execute. These other jobs will have local memory allocated on theprocessors they are using. This may a�ect the amount of paging required in the executionof a new job. To summarize, the priority queues supported by the Gang Scheduler are:� Interactive: Time and space sharing is provided with a small time slice.� Production: Time and space sharing is provided with a large time slice (currently10 minutes). Jobs in the production queue are run when they may share space withinteractive jobs, or when there are no interactive jobs.� Standby: Jobs in the standby queue are run when there are no jobs in either theinteractive or production queues.� Benchmark: Jobs in the benchmark queue run without space or time sharing untiltermination, or until the benchmark time is exhausted. Short jobs requiring 60 secondsor less will run immediately. Longer benchmarking jobs will be queued until midnight.



364. General Issues in Parallel Volume RenderingThis chapter presents a broad overview of the issues involved in designing parallel directvolume rendering algorithms for highly parallel MIMD architectures. The focus is on MIMDarchitectures in which some form of globally-shared memory is available, either throughbuilt-in architectural features, or through a software-based virtual shared-memory approach.The underlying model assumes a non-uniform memory access machine, in which variouslevels of memory exist with varying latency. Several possible approaches are examined andanalyzed with references to existing literature. The rationale behind speci�c design choicesfor this research is made clear through examination of these issues.4.1 Parallelization IssuesParallelization of the direct volume rendering algorithms will involve decisions on twoprimary issues. The �rst is task generation, and the second is how to utilize the memory.Complicating these decisions is the fact that these two issues are related and a decisionmade in one area may a�ect the choices available in the other.4.1.1 Task GenerationTask generation is the decomposition of a large job into smaller tasks which may thenbe performed in parallel. Task generation may be done in a wide variety of ways. Thereare three basic issues:� the basis for decomposition,� how task generation is done, and� the size of tasks generated.Decisions on these three issues have a signi�cant impact on the scalability of a particularparallel algorithm.The decomposition of tasks may be done in image space where each processor takesresponsibility for generating some portion of the image. For example, each processor maygenerate one or more scanlines, or some rectangular portion of the image. Alternatively,the tasks may be based on a decomposition in object space where each processor is assignedsome collection of cells or nodes in the volumetric dataset. Another approach involvessubdividing world space. Each processor would handle those cells or nodes which fell into itsworld space (after the viewing transformation). This approach di�ers from an image-spacedecomposition by generating a 3-dimensional, rather than a 2-dimensional, decomposition.Task generation may be done statically or dynamically. Static task generation involvesdeciding up front which portions of the total task are to be assigned to each processor. Thisdecision should be based on some e�ective heuristic or this approach can lead to extremeload imbalance. Dynamic task generation means that the total work is broken up into tasksthat are typically not uniform in size and are then allocated to processors in a dynamicfashion until all tasks are complete.



37The size of the tasks generated is very important. For static task generation, thedistribution of work needs to be as uniform as possible in order to minimize load imbalance.For dynamic task generation, a small task size and many tasks will improve load balancing.However, a very small task size also means the generation of many tasks will be necessary,generally introducing a serial section of code which quickly dominates and reduces e�ciency.The optimal task size is probably a function of (at least) the size of the grid, the image size,the particular viewing transformation, and the number of processors. Coming up with anheuristic for the determination of a \good" task size at run time is an open problem.There is a tradeo� between using a static task allocation strategy (which typically willincur ine�ciencies due to load imbalance) and a distribution of data elements to eachprocessor's local memory, or using a dynamic task allocation strategy and keeping the dataelements in globally-shared memory (and paying the remote-reference penalty).4.1.2 Memory ManagementA decision must be made regarding how to store the large volumetric dataset and howto access portions of it for rendering. This decision has implications for task management.The dataset may be stored in globally-shared memory, providing access to any portion of itfrom any processor. This approach facilitates an image-space decomposition with dynamictask generation for rendering. Alternatively, the dataset may be partitioned and portionsof it stored at individual processors. This approach suggests an object-space decompositionwith static task generation and synchronization requirements for compositing the image.There are advantages and disadvantages to storing the volumetric dataset in globally-shared memory. The simplicity of this approach minimizes the complexity introduced byparallelization and increases the understandability and maintainability of the code. It mayalso be desirable for the integration of the rendering code with an executing simulation.Regardless of how the simulation code has its data partitioned, if the data structuresare available via globally-shared memory then it is probably desirable for the renderingalgorithm to execute using those data structures without requiring a lot of data movement.The primary disadvantage of the use of globally-shared memory is lower e�ciency due toremote-memory latency and contention. Access time to globally-shared memory is greaterthan for local memory. In addition, an increase in the number of processors also increasescontention for the interconnection network in order to gain access to globally-shared datastructures, adversely a�ecting the scalability of the algorithm. Interleaving or scatteringlarge data structures across the memories of the machine (as described in section 3.2) reducesmemory and switch contention when accessing globally-shared data structures. Typically,globally-shared memory can also be speci�ed as being cachable. An algorithm that takesadvantage of coherence to e�ciently utilize the caching capabilities of the system will exhibitimproved scalability over one that does not.In addition, local storage of required data structures can sometimes reduce the ine�-ciencies related to remote memory access. If the parallel algorithm moves globally-shareddata into private local memory for further reference, block transfers will be more e�cient, ingeneral, than moving a word at a time. This will be particularly true on architectures suchas those in which \globally-shared memory" is accessed via a message passing mechanism.It is conceivable that a parallel algorithm may perform a lot of preprocessing of the scalar



38dataset, the results of which may be stored locally (e.g. resampling for a given view, storingtransformed points, gradients, etc.). Care must be taken with static local storage of partialresults as performance will be greatly degraded if so much local memory is used that a givenprocessor must resort to paging o� disk.4.1.3 SynchronizationSynchronization requirements between processors can add another level of complexityand ine�ciency to parallel algorithms. For direct volume rendering in particular, thecompositing operations to a pixel must be ordered. For a raycasting approach where atask is never smaller than one complete ray there are no inter-processor synchronizationrequirements. For a projection or splatting approach, the processing of cells or nodes willneed to be ordered to ensure that the resulting compositing operations are also correctlyordered. This will lead to synchronization requirements [Cha91].4.1.4 Other IssuesThere are other issues that are important for developing parallel direct volume renderingas a useful, interactive, integrable, visualization tool for volumetric datasets:� As the time to render an image approaches interactive rates the problem of gettingthe generated image out to the screen where it can be seen will present itself. Thisis especially critical in the context of users remotely located from the site of themassively parallel host. It would useful to output the image to an X-window on theuser's workstation. Doing this in the most e�cient manner may a�ect the decisionabout how to allocate the image memory.� Also important is the ability to integrate traditional rendering algorithms based ongeometrical primitives with the volume rendering algorithm. Rendering simulationgeometry embedded in the scalar �eld, for example, greatly enhances visual under-standing of the results. Is there an e�cient approach to extending the parallel directvolume rendering algorithm to allow for embedded geometric primitives?4.2 Parallelization of Speci�c AlgorithmsIt seems somewhat intuitive that an image-space algorithm such as raycasting would bemost easily parallelized using an image-space decomposition for task generation. Likewise,an object-space algorithm such as cell projection seems to lend itself to an object-spacedecomposition for task generation. It is important to considered all the permutationshowever, even if to say that they are ine�cient or not easily realized.One important advantage of any image-space decomposition for volume rendering is theelimination of inter-processor synchronization requirements. In addition, an image-spacedecomposition with dynamic task generation results in good load balancing regardless ofthe desired viewing transformation or complexity of the grid. This is not the case for object-space decompositions where portions of the dataset are statically assigned to processors forrendering. Depending on the viewing transformation, some of these data partitions may not



39even project to the image (e.g. during a zoom, a common operation), while other partitionsmay cover much of the image.A disadvantage to the use of an image-space decomposition is that it may preclude ormake less e�cient techniques that utilize spatial coherency to speed rendering.4.2.1 Parallel Raycasting AlgorithmsAn image-space decomposition of the raycasting algorithm is very straightforward. Thebasic task can be considered to be the computation of a single pixel, and these can begrouped together as needed to generate tasks of optimal size. There are no inter-processorsynchronization requirements. This approach lends itself to the use of a distributed imagein which the image memory is distributed among the processors and is private. The pixelcontents can be accumulated in the local memory of the processor executing the raycastingtask. This implies that the image memory can easily be distributed; since the entire pixelcontents are computed by the same processor, a pixel of the image will reside in the memoryof the processor that computed it. Patterns of access to the volumetric dataset will bedependent upon the selected view, complicating the use of local memory for distribution ofthe dataset. Some sort of preprocessing or prefetching of required portions of the volumetricdataset could relieve contention, as could use of dynamic local storage mechanisms. Thevolumetric dataset is typically accessed repeatedly in a view dependent manner. Assumingthat the volumetric dataset is located in globally-shared memory, several options that couldbe considered include:� Keep the volumetric dataset in shared memory, making no attempt to do any localstorage of portions of it. This approach will result in ine�ciencies due to remotememory latency and contention. It is anticipated that this will adversely a�ect thescalability of the algorithm.� Keep the volumetric dataset in shared memory and rely on the dynamic cachingmechanisms provided by the architecture/operating system to locally cache requireddata values.� The �rst time a portion of the dataset is intersected by a given ray, explicitly storethe variables in local memory. If it required by that processor again, the local copyis used rather than the shared-memory copy. An algorithm for determining whethera cell is locally stored, and where, will be required.� Sort the volumetric dataset for a given view, determining which cells may be inter-sected by a given ray or group of rays. This information can be compiled by examiningthe projected bounding boxes of the cells. These cells can then either be distributedto the processors (requiring a static task generation approach), or the informationcan be stored and used by each processor to prefetch the cells that will be requiredfor rendering (allowing dynamic task generation). This approach is view dependent,requiring a new sort to be performed for a change in view. It will also require asigni�cant amount of shared memory to store the results of the sort, and a signi�cantamount of local memory to store the cells to be rendered. The size and shape of thetasks should minimize these additional storage requirements.



40� Sample the volumetric dataset for a given view and store the samples in local mem-ory. This approach is also view dependent, requiring that the volumetric dataset beresampled every time the viewing transformation is changed. A signi�cant amountof local memory will be required to store the samples. The sampling tasks could bedynamically generated using explicit labeling of the resampled data, the compositingtasks would be statically generated (one per processor).It is likely that some combination of these approaches will allow the desired levels ofe�ciency to be achieved when utilizing globally-shared memory.An object-space decomposition of the raycasting algorithm is in some ways the equivalentof the cell projection algorithm, when considered at the level in which each task constitutesthe rendering of one cell. The basic task might be the generation of all ray segments fora given cell. The compositing operations will need to be ordered between cells, whetherthey are processed by the same, or a di�erent, processor. This will complicate the groupingof basic tasks in order to achieve optimal task size. This approach will easily support thedistribution of the volumetric dataset among the local memories of the processors, and itcould be view independent. Pixels in the image memory will be accessed by numerousprocessors, complicating the distribution of the image. A possible solution would be togive each processor some contiguous group of cells and have each processor generate animage (using either raycasting or cell projection) of its portion of the volumetric datasetin local memory. These images will then need to be composited together (in the correctorder), requiring synchronization between processors. The grouping of cells for distributionwould need to ensure that the required ordering on the compositing operations would notbe violated.4.2.2 Parallel Projection AlgorithmsAn image-space decomposition of the projection algorithm will be achieved by assigningeach processor some part of the image, and having it scan convert (project) only thoseportions of cells which project onto that part of the image. Each processor will needto order its own operations on cells, but there will be no inter-processor synchronizationrequirements. There will be some duplication of work along boundaries of the imagedecomposition due to the fact that a given cell may project to more than one image tile.This approach is most easily implemented using globally-shared data structures for thevolumetric dataset. All of the issues just discussed for the image-space decomposition ofthe raycasting algorithm will also apply here.Object-space decomposition of the projection algorithm is conceptually straightforward,but is complicated by the synchronization requirements imposed by the ordering constraintsof the compositing operations. The projection method for direct volume rendering lends it-self to a distributed approach to volume storage, but with some tradeo�s for task generationand load balancing. The cell projection algorithm processes cells one at a time, accessingeach cell once. This implies that the distribution of cells to processors for local storageis straightforward. It has implications for task generation and load balancing, however,because storing a cell at a processor implies that it will be rendered by that processor. Thisin turn implies static task generation. The alternative is to keep the volumetric dataset inglobally-shared memory, and have the processors prefetch the cells which are dynamically



41assigned to them for rendering. Depending on the cell distribution, the contributions to agiven pixel may come from several di�erent processors. This implies the need for a sharedimage memory and synchronization of the tasks in order to prevent compositing con
icts.An alternative is to have each processor render its cells to a local image, followed by a post-processing phase where the local images are combined. Each processor will still need toorder the rendering of its own cells to preserve the ordering of the compositing operations.In addition, the distribution of cells must make it possible to composite the distributedimages without violating these ordering constraints.4.2.3 Hybrid AlgorithmsBoth the cell-by-cell raycasting and cell projection methods have an equivalent innerfunction that consists of an integration and compositing step. The existence of this identicalinner function facilitates direct comparisons between raycasting and projection algorithms.This basic unit of work is structured as follows. Given two points in a volume (the entrypoint and exit point of a ray through a cell) and the value of the scalar �eld at those points,estimate the integral across the distance between them, and use the result to generate acolor and opacity sample. This color and opacity sample will be used in the compositingstep. When structured in this way, the cell-by-cell raycasting and cell projection methodswill give identical results. When the raycasting and projection approaches are broken downto this level and made as e�cient as possible, they tend to merge and become a scanlinealgorithm.Brute force raycasting would compare each ray to every cell in the volume, an extremelyine�cient approach. One method of reducing the computational requirements of thisapproach is to examine only those cells whose image-space bounding box intersects a givenray. This information can be easily obtained using y-bucket and x-bucket sorts. To gaineven more e�ciency, intersections of the edges of the cell with the scanline can be computedand used to create the x-bucket sort. As the algorithm is modi�ed to take advantage ofspatial coherence it becomes akin to a scanline algorithm.In the cell projection algorithm, all cells must be sorted into a partial order that isdependent on the viewing transformation. Each cell is then scan converted in order andrendered to the image. To reduce the ine�ciency associated with scan converting sharedfaces and edges multiple times, the shared edges can be processed incrementally. This iseasily accomplished using a scanline algorithm. This approach has the added advantageof eliminating the requirement of a visibility sort prior to rendering as will be shown inchapter 5.Both the raycasting and projection algorithms for direct volume rendering can be im-proved by taking advantage of spatial coherence. The result of doing so is that the di�erencesbetween the two approaches become blurred; raycasting and projection merge and becomea scanline algorithm. Given an image-space decomposition, on any given processor thescanline approach is an intermediate algorithm which makes better utilization of coherencethan raycasting and does not require the ordering of polyhedra as cell projection does.



424.3 Early Research ResultsThis section presents some of my early research results which, when combined with areview of the literature, has directed the focus of the research presented in this thesis. Therationale behind several key decisions is discussed, along with the statement of several keygoals.In order to experiment with various parallel volume rendering algorithms, an object-oriented volume renderer [Cha90] was ported to the BBN TC2000. This volume rendererinitially used the raycasting algorithm as the method for rendering an image. The code wasextended to provide the projection approach as another rendering method [MHC90]. Theserial version of this volume renderer has provided a starting point for several experimentsin parallel direct volume rendering.4.3.1 Comparison of Decompositions for Rectilinear GridsSome initial investigations into parallelization techniques for volume rendering are pre-sented in [Cha91]. This work examines parallel implementations for both the raycastingand cell projection approaches to volume rendering for rectilinear grids. Only orthogonalviewing projections are considered in each case. The raycasting algorithm uses a samplingtechnique in which the entry and exit points of the ray with the volume are computed andthe contents of the volume are sampled and composited at equally-spaced points along theray segment that intersects the volume. The step size used for the sampling interval is suchthat every cell is sampled at least once. Code for the projection algorithm was providedby Nelson Max [MHC90] and performs scan conversion of the front and back faces of eachcell, and provides an analytic method of integrating color and opacity which is equivalentto the limit of compositing more and more closely spaced samples. The sequential form ofthis algorithm processes the cells one at a time, in depth-sorted order. Both algorithms useglobally-shared memory for storage of the volumetric dataset and the resulting image.The parallel raycasting algorithm employs an image-space decomposition for task gener-ation, and compares the results with two task sizes (pixel-per-task, and scanline-per-task).The tasks are allocated dynamically. The primary ine�ciencies for the scanline-per-taskapproach were found to be remote memory latency and contention, and load imbalance. Forthe pixel-per-task approach, ine�ciencies were remote memory latency and contention, andtask generation. The image-space decomposition approach could bene�t from additionaltechniques for utilizing local memory, and an heuristic for determining optimal task size.A parallel projection algorithm utilizing an object-space decomposition was studied inwhich dynamic task generation of one cell per task was used. The volumetric data andthe image memory were both located in globally-shared memory. A view dependent partialordering of the cells was used during task generation to prevent con
icts in the compositingoperations. It was found that the ordering required for the compositing operations preventedthis approach from being e�ective. The task size was too small (one cell per task), and theserial sections of code were too large (required for synchronization of the tasks), resultingin poor speedup. Repeated access to globally-shared data structures further degradedperformance.
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One face showing� Three faces showing�Two faces showing�

Figure 4.1: Three viewing cases a�ecting parallelism in the projection method.Parallelization of the Raycasting MethodTwo approaches to processor management have been implemented for parallel renderingusing the raycasting method:� Using GenOnIFull() a task is generated for each scanline of the image.� Using GenOnAFull() a task is generated for each pixel of the image.Data structures have been allocated in such a way as to minimize the memory and switchcontention. Scattering data across memories has been done whenever possible for large datastructures, and as much information as possible is kept in local memory. Data structuresin shared memory include:� The scalar data volume is scattered across the globally shared memory of the proces-sors. The data structure is scattered by z planes with each processor storing one ormore planes of constant z.� The image memory is scattered across the globally shared memory. Each processorstores one or more scanlines of the image.Data structures in process private memory:� The description of the volume to be rendered, including such things as its dimensions,the array of pointers to the z planes of the shared scalar volume, transformationmatrix, color and opacity lookup tables, etc.� The description of the image to be created including its dimensions and the array ofpointers to the locations of the scanlines in globally shared memory.� Description of world characteristics such as de�ned light sources, viewing speci�ca-tions, etc.Parallelization of the Projection MethodTask management for the projection algorithm is complicated by the fact that thecompositing operations for each pixel must be ordered. There are three viewing caseswhich will a�ect the number of cells that are available to be rendered in parallel:� One face visible: Initially an entire plane of cells will be available for rendering inparallel. Each cell rendered will a�ect the visibility of one other cell.



44� Two faces visible: One row of cells will initially be available for rendering in parallel.Each cell that is rendered will a�ect the visibility of two other cells.� Three faces visible: Initially there will be only one cell available for rendering. Eachcell rendered will a�ect the visibility of three other cells.Figure 4.1 shows these three viewing cases. Although the �gure presents the views inperspective for clarity, only orthogonal projections are being considered here. One possibleapproach to a decomposition for task management that would work for rectilinear gridswould be to use a plane or slab of data as a task. Each processor would render the cellsin its slab of data (in the correct order) to a local image. When all rendering is complete,the individual local images would be composited together (in the correct order) to form the�nal image. An approach of this type was not taken, primarily because it was desired thatthe algorithm be extensible to nonrectilinear grids. For this reason, two additional datastructures are kept in order to drive the parallelism:� The ready list is a list of cells which are currently available for rendering. Each taskremoves a single cell from this list for rendering.� The visibility graph indicates when a given cell can be transferred to the ready list.Cells are rendered from back to front. A cell can be rendered when all cells whichit obscures have been rendered. For each cell in the volume, a count is kept of thenumber of cells which are directly obscured by the given cell (i.e. are adjacent andbehind the cell). When this count reaches zero, the cell may be transferred to theready list.For the special case of a rectilinear grid, all that is required in the visibility graph arethe counts of obscured cells. The identity of the obscured cells is inherent in the structureof the grid. In a more general grid, more information will need to be kept in the visibilitygraph. In particular, pointers to obscured cells will be required, and the initialization ofthe visibility graph will be much more complex. It is important to note that the visibilitygraph depends on the viewpoint and thus must be modi�ed to re
ect changes in the viewingspeci�cations.For rectilinear grids, the viewing case is easily determined by the number of back-facingfaces. Only orthogonal projections are considered here; the visibility graph for a perspectiveview is slightly more complicated. One back-facing face corresponds to viewing case one in�gure 4.1, two back-facing faces to viewing case two, and three back-facing faces to viewingcase three. During an initialization phase each cell is initialized with a count of the numberof cells it directly obscures. One or more cells which are farthest from the viewpoint willinitially have count=0. After the counts are initialized, the ready list is initialized to includethose cells with count=0.The ready list and visibility graph are updated using atomic operations by the paralleltasks as each cell is rendered. After a cell is rendered the counts of the neighbors whichdirectly obscure it are decremented. When a count becomes 0, the cell is added to theready list. Depending on the view, from one to three counts will be decremented andchecked for zero. Decrementing a count is an atomic operation, as is the addition of cellsto the ready list. The ordering on the cells that is enforced by this process will ensure thatthe compositing operations on each pixel in the image will be appropriately ordered.



45In summary, for the parallel projection algorithm the task generator GenOnIFull() isused to generate one task for each cell in the volumetric dataset. Each task executes thefollowing operations:� Lock the ready list and attempt to remove a cell for processing. If one is not available,release the ready list, wait for a short period of time, and retry.� Render the cell that was obtained from the ready list [MHC90].� Update the visibility graph using an atomic decrement. If this updating processidenti�es cells that are ready to be added to the ready list, then that list will need tobe locked since additions to the list must also be atomic. Once updating is completedthe processor is free to acquire a new cell for rendering.Memory for the projection approach is managed in the same way as for the raycastingapproach, with the addition of the two extra data structures that are required for taskordering:� The visibility graph is scattered in shared memory in the same way as the scalarvolume. The array of pointers to the scattered visibility graph is propagated to eachprocessor's local memory.� The ready list is located in shared memory.ResultsThe volumetric dataset used to produce these benchmarks was a 100�120�16 electrondensity map for Staphylococcus Aureus Ribonuclease contributed by Dr. Chris Hill of theUniversity of York. The dataset was rendered to a 5122 image with the volume �lling500� 512 pixels. This viewing con�guration generated 512 tasks for the scanline-per-taskapproach; 262144 tasks for the pixel-per-task approach; and 176715 tasks for the cell-per-task projection approach. The measures used to analyze the performance of theseapproaches are discussed in section 2.2.2 and summarized in table 2.1. Figure 4.2 showsthe speedup graphs for all three approaches. The speedup is basically linear for lessthan 10 processors, so measurements are given beginning at 10 processors. T1 = 548seconds for the raycasting algorithms and T100 = 12 seconds. T1 = 313 seconds for theprojection approach and T100 = 26 seconds. Let ri be the total time processor i spendson rendering tasks. For the scanline-per-task approach, this is the sum of the times eachprocessor spends rendering a scanline. For the pixel-per-task approach, this is the sum ofthe times each processor spends rendering pixels. For the projection method, this is thesum of the times each processor spends projecting cells to the image, including the explicitsynchronization required for the use of the ready list and visibility graph. Then the totalrendering task time, Rn, is de�ned to be Pn�1i=0 (ri). This total speci�cally excludes loadimbalance and task generation overhead, but includes the overhead due to remote memorylatency and contention. Figure 4.3 shows the percentage increase in the total renderingtask time for increasing n. It can be seen that at 10 processors there is an increase of 82%for the raycasting approaches and 6% for the projection approach. These measurementsgive important insight into the amount and locality of remote memory accesses which inturn in
uence e�cient use of the processor caching mechanism. For all methods, the totalrendering time increases with the number of processors, re
ecting the increasing memory



46and switch contention. This contention is exacerbated by a small task size and many tasks,probably due to numerous remote memory accesses for task generation.Although the results and analysis presented here are for one volume, similar behaviorhas been seen with other datasets. For the projection method, all three viewing cases werebenchmarked with similar results. No signi�cant performance di�erences were seen betweenthe three di�erent viewing cases.Figures 4.4, 4.5, and 4.6, illustrate the execution pro�les of the three approaches forvarious numbers of processors. All measurements are given as a percentage of TOTALn(see table 2.1). States which account for under 2% of the total processing time are notshown. Thus, task generation does not appear in �gure 4.4 because it is negligible for thescanline-per-task approach. The measurements collected include:� Startup time: the sum of the times each processor spends getting started, that isfrom the time the code goes parallel to the �rst execution of a task. It is during thistime that data structures which are to be propagated to each processor's local memoryare moved. The startup time was found to be negligible for all three approaches, butmay become an important factor as the rendering approaches interactive speeds.� Load imbalance: the sum of the times each processor spends waiting after �nishingits last task, until all processors have completed their last tasks. The load imbalanceis seen to a�ect the speedup of the scanline-per-task approach for large n (see �g. 4.4).� Render time: for the scanline-per-task approach, this is the sum of the times eachprocessor spends rendering a scanline. For the pixel-per-task approach, this is the sumof the times each processor spends rendering pixels. For the projection method, thisis the sum of the times each processor spends projecting cells to the image, excludingthe explicit synchronization required for the use of the ready list and visibility graph.� Get cell synchronization: for the projection method, this is the sum of the timeseach processor spends getting a cell to render o� the ready list, including waiting ifthe list has been locked by another processor.� Update graph synchronization: for the projection method, this is the sum ofthe times each processor spends updating the visibility graph after rendering a cell,including possibly waiting for access to the ready list and moving additional cells toit.� Other overhead: for all methods, the sum of times for each processor in which thatprocessor was not in one of the above states. This is primarily the time required fortask generation, but may be a�ected by other unknown operating system ine�ciencies.In particular, it can be seen in �gure 4.5 that the GenOnAFull() task generator isextremely ine�cient for large n.ConclusionsAlthough the sequential projection algorithm is faster than the raycasting algorithm onthe particular dataset and viewing con�guration that was benchmarked, and the parallelprojection approach generates less remote memory overhead than the parallel raycastingapproach, the parallel algorithm for the projection method using a cell per task does notscale well with the number of processors. The synchronization requirements for the proper
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Figure 4.2: Speedup graphs for projection and raycasting on a rectilinear grid.
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Figure 4.4: Execution pro�le for raycasting with one scanline per task.
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Figure 4.5: Execution pro�le for raycasting with one pixel per task.
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Figure 4.6: Execution pro�le for projection with one cell per task.ordering of cell rendering generate a signi�cant amount of overhead as n increases (as shownin �gure 4.6). It is not clear why the synchronization cost decreased at 100 processors. Themain ine�ciencies for the scanline-per-task approach for the raycasting method are loadimbalance for large n, and the penalty for using globally shared memory (see �gure 4.4).The number of tasks, and therefore task size, has a signi�cant e�ect on scalability as can beseen by the ine�ciencies in task generation for raycasting with a pixel per task (�gure 4.5).The results of this research indicate that the raycasting method with an image-spacedecomposition has some advantages for parallelization on this type of architecture. Inparticular, rays (pixels) can be processed completely independently with no ordering con-straints. However, it is crucial that rays be grouped together to form a single task as neededfor e�cient processor utilization.The projection method, on the other hand, does have ordering constraints which compli-cate task generation. The techniques used for the parallelization of the projection approachrequire large amounts of memory in order to store the visibility graph, the use of locksaround critical sections of code, and atomic operations. There are two requirements formaking parallel projection viable. The task size must be increased, which implies groupingcells together to form tasks. In order to prevent compositing con
icts, these groups willneed to be convex. To ease synchronization requirements, the cells in a group should be



50connected (adjacent to each other). It is anticipated that the determination of how manyand which cells should be grouped together to form a task will be critical to the perfor-mance. For regular rectilinear volumes the decomposition may be fairly straightforward. Itwill be more complex for curvilinear and unstructured grids. The second requirement is toreduce the synchronization necessary between tasks. This problem will be eased somewhatby increasing the task size, but possibly not enough, and the larger task size may createload balancing problems. Two approaches that could be considered include:� Decouple the rendering and compositing phases between processors. Have each pro-cessor render its cells to a local image. When all rendering is complete, composite thedistributed images into one image.� Use an image-space decomposition to determine the distribution of cells to processors,and to determine the distribution of image memory. Processors will then render thecells to a local image, the image space decomposition will specify which pixels resideat any given processor.The determination of cell groupings to form tasks and the ordering of these tasks is an openproblem.The parallel raycasting method intuitively seems to be more easily extended to renderother types of volumetric datasets. For the projection method, those datasets in whichneighboring cells are not implicit (such as �nite element meshes) will require an explicitvisibility graph as opposed to the implicit one used here for a regular rectilinear dataset. Inparticular, pointers to adjacent cells will be needed in addition to the counts. For curvilinearcomputational grids, ordering constraints may need to be imposed between two cells thatare not even neighbors since the grid can be curved in <3. These complications will resultin even larger memory requirements for the storage of the visibility graph which may beprohibitive for large volumetric datasets.4.3.2 Extension of Raycasting Approach to Curvilinear GridsA technique for parallel volume rendering of curvilinear grids is described in [Cha92].The cell-by-cell raycasting approach is enhanced with an algorithm for maintaining parallelactive lists for each scanline in order to speed computation of ray/cell intersections. Thisapproach also applies to the rendering of unstructured grids where neighboring cells are notknown, without requiring the construction of an adjacency graph. Dynamic task generationis performed with a scanline per task. As with regular rectilinear volumes, remote memorylatency and contention, and load imbalance, are found to be the primary ine�ciencies.Reducing the task size and e�ciently maintaining the active lists presents a problem.A two-phase algorithm in which the intersection lists for a given viewing transformationare explicitly stored in local memory is explored. This approach decouples the samplingand compositing phases of rendering, leading to the possibility of fast image update ratesfor changing transfer functions. A similar approach has previously been utilized to speedcomputation of successive ray-traced images with changing lighting conditions and surfaceproperties [SS89a]. The performance of the two-phase algorithm is found to be comparableto that of the one-phase algorithm, with the advantage that the decoupled compositingphase takes less than a second with 100 processors.



51Algorithms for Curvilinear VolumesTwo algorithms are presented for volume rendering of curvilinear volumes (in which aregular rectilinear grid in computational space has been warped or curved in <3 to matchthe simulation geometry in physical space). Both algorithms use the raycasting approachto volume rendering, avoiding the issue of inter-processor ordering of the compositingoperations for each pixel which arises with parallelization of object-space volume renderingalgorithms [Cha91]. Only orthogonal viewing projections have been implemented, althoughthe algorithms are equally applicable to perspective projections.The algorithms presented here require that, for each ray, all intersections with cell facesbe found. The algorithm proceeds cell by cell through the volume, estimating the lineintegral of the scalar �eld. An alternative to proceeding cell by cell is to take equidistantsteps along the ray. This approach is commonly used for volume rendering regular rectilinearvolumes. Although it avoids the problem of needing all face intersections for a ray, it insteadrequires that for each point along the ray, the cell containing that point be determined. Thispoint location problem is trivial for regular rectilinear volumes, but much more complexfor curvilinear volumes. Our approach is to reduce the number of intersection calculationsrequired for each ray by utilizing the idea of a bucket sort and scanline algorithm fromcomputer graphics [FD82, HB86]. For example, a y-bucket sort lists, for each scanline,the objects which begin on that scanline, and how many scanlines they are active. Fromthis information a list of active objects (objects which may possibly be intersected) can beincrementally maintained from scanline to scanline. The algorithms presented here use ashared y-bucket sort to create private x-bucket sorts and active lists in order to reduce thenumber of intersection calculations required for each ray. A cell is considered active if itsbounding box is intersected by a ray.The volumetric dataset is stored in globally-shared memory as a cell-oriented datastructure. Data shared by multiple cells (e.g. scalar value and location in physical spaceof a node) is stored once, with each cell maintaining a pointer to the information. Bothalgorithms begin by initializing the globally-shared data structures. Each cell is instantiatedas an object and these cells are scattered across the globally-shared memory. A single cellstores three integers, (i; j; k), which identify one node of the cell. The spatial extent of thecell is de�ned by eight nodes: (i; j; k), (i; j; k+ 1), (i; j + 1; k), (i; j + 1; k+ 1), (i+ 1; j; k),(i+1; j; k+ 1), (i+ 1; j+1; k), (i+ 1; j+ 1; k+1). The bounding box of each cell in screencoordinates is computed and stored with the cell, and a pointer to the cell is added to ashared y-bucket sort whose records are also scattered across the globally-shared memory.All other data structures (transfer functions, viewing speci�cations, interpolation methods,etc.) are in private local memory.For the purposes of intersection calculation, each cell face is assumed to be comprisedof two triangles. This is because the faces of a cell are not necessarily planar. For each ray,an ordered list of intersections is determined. Each intersection determines an entry/exitpoint of the ray with a cell. For each cell on the list, a sample of the scalar �eld is obtainedat the midpoint of the ray between its entrance into and exit from the cell. The sample isobtained as a weighted sum of the eight scalar values at the nodes of the cell. If Si is theknown scalar value at grid node Pi, then S(P ) is the estimate of the scalar value at thedesired sample point P



52S(P ) = 7Xi=0wiSiIn this work, inverse distance weighted interpolation was used in which the weights for eachnode are dependent on the distance of that node from the desired sample pointwi = Q7k=0;k 6=i[dk(P )]2P7j=0Q7l=0;l6=j [dl(P )]2where dk(P ) is the Euclidean distance from the sample point P to the node Pk . Inversedistance weighted interpolation has the advantages of being fairly fast and rotationallyinvariant, but has the disadvantage that it does not have C0 continuity along interior facesof the grid [WCA+90, Ram91]. The opacity value obtained by the transfer function mappingof the scalar value to opacity is weighted by the distance along the ray through that cell.Single-phase AlgorithmThe �rst algorithm proceeds to collect samples and composite them into the image in asingle phase. Dynamic task generation is used to generate a task per scanline. The processprivate data is propagated before tasks begin. Each task executes the following initializationsteps:� Sweep through the y-bucket sort to create a list of cells active on this scanline.� Create a local x-bucket sort from this list.� Use the local x-bucket sort to create a local active cell list.Then, for each pixel on the scanline:� Generate an intersection list by testing active cells for intersection with the ray.� Sample, map, and composite into the pixel.� Incrementally update the active cell list.The y-bucket sort, which is intended to be used incrementally, must be examined for entriesfrom the �rst scanline to the current scanline by each processor. Other alternatives arepossible, for instance, a list could be kept for each scanline of all the cells intersecting thatscanline. This approach would require more memory than the y-bucket sort, but would bemore e�cient computationally. Pro�ling of the code showed that only 3% of the time torender an image using 100 processors was spent doing the y-bucket sweep. The sequentialversion of the algorithm utilizes the y-bucket sort in the traditional way, doing incrementalupdates to the list of active cells as each scanline is processed.Two-phase AlgorithmIn the second algorithm, the rendering proceeds in two phases. In the �rst phase, allthe samples are taken and stored in local memory. In the second phase, the (locally) storedscalar samples are used to generate the color and opacity for that sample which are thencomposited into the image. In this way fast update rates may be attained for a given viewof the volume, but with changing transfer functions. This would be useful for interactiveexploration of transfer functions. Finding a good transfer function (one which highlights



53areas of interest) is currently one of the hardest aspects of volume rendering and is typicallydone by experimentation.In this approach all of the intersection lists generated by the �rst phase of the algorithmare stored in local memory. As this is memory intensive, the algorithm is only intended tobe used on many processors. Use of the algorithm on too few processors will result in pagingas processors utilize more local memory than is physically present. To create an s�s image,the raycasting approach will cast s2 rays into the volume generating s2 intersection lists.For an n3 volume where s � n, the total size of the intersection lists will be comparable tothe size of the volume itself. If s > n and the volume �lls the image, the total size of theintersection lists will be larger than that of the volume. If the volume does not �ll the imagemany of the rays will contain empty intersection lists, possibly resulting in a collection ofintersection lists that require less space than the volume.Using a static decomposition, allocate one task per processor. Given n processors,processor i (where 0 � i < n) takes scanlines i, n+ i, 2n+ i, etc. The rendering is split intoa sampling phase and a compositing phase. During the sampling phase, each task performsthe sampling for each pixel on each scanline assigned to it:� Sweep the y-bucket sort.� Create an x-bucket sort.� Create an active cell list.� For each pixel on the scanline:{ Generate an intersection list by testing the ray against active cells.{ Sample, and save in local memory.{ Incrementally update the active cell list.During the compositing phase, each task performs the mapping and compositing for eachpixel on each scanline assigned to it:� For each stored sample at each pixel:{ Map sample to color and opacity.{ Composite into the pixel.Elimination of Small CellsIn either of the above algorithms it is possible to have cells which are small enoughthat their screen-space bounding boxes fall between scanlines or between pixels. This is aform of aliasing that can be reduced by stochastic sampling methods [Gla89], or by volumepyramid approaches such as those described by [SG91]. In the absence of anti-aliasing,these cells can be trivially eliminated from the bucket sorts (and thus not considered forpossible intersection with a ray). Doing this improves both the absolute time required torender the image, and the load balancing of the parallel decomposition.Task OrderThe complexity of the rendering requirements in terms of the number of cells projectingto any given part of the image can vary widely across the image. The shaping of thecurvilinear grid usually results in some areas of many small cells and other areas with



54just a few large cells. This complicates attempts at achieving good load balancing. Oneapproach is to try to ensure that the potentially larger tasks are dynamically generated�rst. During the creation of the shared y-bucket sort, it is easy to produce a sorted orderfor the processing of scanlines based on the number of cells that become active on any givenscanline. It was found that doing this somewhat improves the load balancing as the numberof processors approaches the number of scanlines being generated (i.e. generating an imagewith 256 scanlines using 100 processors). A better heuristic might be to produce a sortedtask order using the number of cells active on a scanline, rather than the number of cellsthat become active.Storage MethodThe raycasting algorithm repeatedly accesses the volumetric dataset in a view dependentmanner. Thus the determination of how the volume is stored can have a signi�cant e�ecton the performance of the algorithm. Of course the most e�cient approach would be tostore the entire volume at each processor. This is generally not feasible for large datasets. Apossible compromise that increases e�ciency on some architectures is to distribute multiplecopies of the dataset to groups of processors [MPS92]. For systems that support virtualshared memory with local caching, another form of partial dataset replication is implicitlyachieved. In this particular experiment the volume is stored in globally-shared memory. Toreduce contention and to ensure that large datasets can be handled, the volume is scatteredacross the memories associated with each processor being used. Two approaches to doingthis scattering have been examined and the results are given in the next section.ResultsThe parallel algorithms described above have been implemented on the BBN TC2000and their performance has been measured and analyzed (see table 2.1 for a summary ofmeasures). The algorithms have been benchmarked on the blunt �n data set from NASAAmes Research Center [HB85]. This dataset represents a CFD simulation of air 
ow pasta blunt �n on a grid resolution of 40� 32� 32, or 37479 cells. Images have been created atresolutions of both 2562, and 5122. Even at these resolutions, many cells are so small theyfall between pixels as described above.All of the timing results presented here represent only the rendering portion of thealgorithms described above. The time required to read the volume in and perform the viewdependent preprocessing step (creation of the shared y-bucket sort) was not measured.Single-phase Algorithm Performance: Figure 4.7 shows the time required to rendera 2562 image using the single-phase algorithm. The time went from 990 seconds on oneprocessor using all local memory, to 16 seconds on 100 processors. This represents a speedupof about 62 and an e�ciency of about 62%. The time to render a 5122 image went from3804 seconds on one processor to 53 seconds on 100 processors for a speedup of 72 and ane�ciency of 72%. Speedup graphs are shown in �gure 4.8. The speedup is basically linearfor less than 10 processors, so measurements are given beginning at 10 processors.
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Figure 4.7: Rendering time (Tn) for the single-phase algorithm on a nonrectilineargrid.The primary sources of ine�ciency are load imbalance and remote memory latencyand contention. Figure 4.9 shows the percentage of the total computational resources(TOTALn) actually spent on rendering, as opposed to waiting for a task (negligible inthis case) or waiting for other tasks to complete (load imbalance). It can be seen that loadimbalance is a signi�cant contributor to overhead.Let ri be the total time spent on rendering tasks by processor i. Figure 4.10 showsthe percentage increase in the total rendering task time (Rn) for increasing n. This graphdemonstrates the other signi�cant ine�ciencies; remote memory latency and contention foraccess to shared data structures. It was not explicitly measured in this particular study,but it is anticipated that the increase in total rendering task time will be characterized bya jump on going from one processor using local memory to two processors using globally-shared memory, followed by a gradual increase as the number of processors increases. Theinitial jump is due to remote memory latency, and the gradual increase is due to contention.Since the volumetric dataset is repeatedly accessed in a view-dependent manner duringrendering, the choice was made to store the volume in globally-shared memory. In order toreduce contention, the contents of the volume are scattered across the memories associatedwith each processor in use. Two approaches to doing the scattering have been investigated.The �rst is to scatter planes of data across the processors. Let the dimensions of thecomputational grid be described by i, j, and k. For example, the blunt �n dataset hask = 32 planes of i� j = 1; 280 nodes. In the results just presented, each of these planes wasstored at a di�erent processor. However, this means that when n > 32, some processors will
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Figure 4.8: Speedup for the single-phase algorithm on a nonrectilinear grid.
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Figure 4.11: Speedup by scatter method.
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Figure 4.12: Increase in total rendering task time (Rn) by scatter method.not have any data stored in their associated memory. An alternative approach would be tostore i� j = 1; 280 columns of k = 32 nodes at di�erent processors. This would spread thedataset more evenly across the available memories. It was expected that this would reducecontention, even for n < 32, by reducing the probability that multiple processors wouldrequire data from the same memory. Figure 4.11 shows that the approach was e�ective forless than about 80 processors. Figure 4.12 shows that the rate of increase in contentionincreased at about 60 processors for the column-scattering approach, resulting in morecontention for the column-scattering approach than for the plane-scattering approach forn > 80. It is not at all clear what factors in
uenced this.Two-phase Algorithm Performance: Using the two-phase approach, 20 seconds wererequired to complete both phases of the rendering algorithm on 110 processors, but thecompositing phase takes about 400 milliseconds.This algorithm has to perform more work than the single-phase algorithm because itmust sample every cell along every ray. In the single-phase algorithm, sampling stops when apixel becomes opaque and in many cases the entire ray need not be processed. In addition,the two-phase algorithm has a much higher use of local memory than the single-phasealgorithm, thus for small numbers of processors the performance may be much worse dueto paging of virtual memory. It was found that the implementation is sensitive to machineload (even in benchmarking mode), probably due to extensive use of local memory. It doesachieve the desired goal, however, in that the time required for the compositing phase is verysmall. For rerendering a given view after changes in the transfer function, the algorithmruns at interactive rates.
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Figure 4.13: Speedup for the two-phase algorithm.The speedup for this algorithm was computed using the serial time for the single-phasealgorithm since the serial time for the two-phase approach was very large due to paging.The graph is shown in �gure 4.13. The two-phase algorithm uses a static task decompositionwhich negatively a�ected the load balancing (see �gure 4.14). One alternative may be touse dynamic task generation to allocate sampling tasks, followed by static task generationfor the compositing phase.ConclusionsThe main ine�ciencies were found to be remote memory latency and switch contentionfor globally-shared memory, and load imbalance. Load balancing is more di�cult withcurvilinear volumes than with rectilinear volumes. There are some direct tradeo�s betweentaking advantage of image coherence, through the use of the scanline algorithm for instance,and having the ability to decompose the image arbitrarily to achieve good load balancing.The algorithms presented here will work equally well on unstructured grids such as thoseused in �nite element analysis, without requiring an adjacency graph to be constructed.The algorithms also support the inclusion of embedded geometrical primitives (polygons),leading to the ability to render the simulation geometry with the scalar �eld to obtain amore easily understood image [Cha90]. Finally, the two-phase approach gives the user thecapability to quickly explore di�erent transfer functions for rendering. This will also leadto increased understanding of the scalar �eld.
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Figure 4.14: Execution pro�le for the two-phase algorithm.4.4 Approach Chosen for Detailed InvestigationA very basic tradeo� between decomposition approaches has been identi�ed. Image-space decompositions will be view dependent, but will not have any inter-processor syn-chronization requirements. Object-space decompositions can be view independent, but willintroduce inter-processor synchronization requirements.An important goal of this research is to design an algorithm that can be e�cientlycoupled with an executing simulation. For this reason it is important to consider how theapplication may be managing its memory (i.e. where does the application have the volumestored). It may be important to be able to render from the data structures maintained bythe executing simulation, without requiring the movement of a lot of data. This will beespecially important for unsteady (time-varying) calculations, or for Lagrangian approacheswhere the grid itself may be changing. For this reason, the assumption is made that thevolumetric dataset is available to all processors via some form of globally-shared memory. Norestrictions are placed upon the distribution of the volumetric dataset, it may be interleaved,scattered, or partitioned in any way that is bene�cial to the executing simulation.A review of the literature and the initial studies discussed above have suggested the di-rection taken in this research. Key decisions include the approach to memory management,task generation, and the basic algorithm. A review of the literature shows that image-spacedecompositions for raycasting [Cha92, NL92, CM92, Luc92] have achieved better scalabil-ity and levels of performance than object-space decompositions [MPS92]. Implementationsof object-space decompositions for projection or splatting algorithms have been shown tobe limited in terms of their scalability by synchronization requirements [Cha91, Wil92c,



61Elv92]. The parallel direct volume rendering algorithm described in the next chapter uti-lizes interleaved globally-shared memory to store the volumetric dataset. This approachfacilitates the use of an image-space task decomposition with dynamic task generation, aswell as providing the ability to render from an existing application's data structures. Image-space tasks utilizing square image tiles have been shown to perform better than scanlinedecompositions due to increased cache coherence [CM92]. Rectangular image tiles form therendering tasks, improving both cache coherence and the possibilities for taking advantageof spatial coherence to speed the rendering process. Task size is easily varied by changingthe size of the image tiles. The basic algorithm executed on each processor makes use of ascanline algorithm for generating each portion of the image.The next chapter presents, in detail, the parallel scanline algorithm that has beendeveloped and analyzed in the course of this research. Chapter 6 presents benchmark resultsand analysis of the performance of the algorithm on several test datasets. In particular,the analysis answers the following questions with regard to the parallel algorithm proposedhere:� Can we reach interactive or near-interactive speeds?� What kind of speedup is attained?� How scalable is the algorithm?� What are the ine�ciencies?� Does the algorithm make e�ective use of local memory to reduce ine�ciencies?



625. A Scanline Algorithm for Parallel Volume RenderingMost parallel direct volume rendering algorithms previously presented for MIMD archi-tectures have been for rectilinear datasets, and none has produced the level of scalabilitythat is desired. The algorithm presented in this chapter focuses on the e�cient (scalable)parallel implementation of a direct volume rendering algorithm for nonrectilinear datasetson highly parallel, multiple-instruction, multiple-data (MIMD) architectures with virtualshared memory. The design of the algorithm does not preclude its use on rectilinear datasets,however it has not been optimized to take advantage of the simpler geometrical structureinherent in rectilinear datasets. The algorithm as implemented utilizes orthographic par-allel projections for viewing, although it could just as well be used to render perspectiveprojections.As the architectures and operating systems of massively parallel systems mature, virtualshared memory with non-uniform memory access times will almost certainly become asupported feature. It is likely that many applications will take advantage of this featuredue to the increased programmer productivity it provides. Scalable algorithms designedfor this type of execution environment will be portable while maintaining a high degree ofe�ciency.5.1 System OverviewThe earlier approach described in section 4.3.2 operated on the cells of the volume, ratherthan the faces, and utilized a task decomposition based on scanlines [Cha92]. The approachto be described here is faster and exhibits better scalability. The algorithm proceeds inthree distinct phases. These include processing changes to the grid, processing changes tothe view, and rendering the image. Not all phases need to be executed for each new image.For example, if the view has changed but the grid has not, then only the viewing sort andrendering phases are executed. If the transfer function is the only thing that has changed,then only the rendering phase is required. The basic algorithm represents the image as aset of image tiles. The current implementation uses square image tiles, however there isnothing inherent in the algorithm that requires square tiles. The image tiles form the basisof the task decomposition for the rendering phase in which processors dynamically acquireone image tile at a time for rendering. Figure 5.1 presents an overview of the main systemfunctions which are summarized here and discussed in detail later in this chapter:� Grid Initialization: Whenever a grid changes, the data structures that representit must be updated. The grid data structures are presented in section 5.2, and gridinitialization is discussed in section 5.3.� Parallel View Sort: A parallel view sort creates for each tile a list of pointers to cellfaces that project into that tile. This is done prior to rendering whenever the view haschanged. The creation of the view sort reduces the complexity of determining ray-faceintersections within a tile, and enhances the scalability of the rendering algorithm bylimiting the number of shared data structures that need to be accessed in order torender any given tile. The parallel view sort is discussed in section 5.4.
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Figure 5.1: Overview of main functions.� Parallel Tile Rendering: A scanline algorithm that takes advantage of spatialcoherence is applied to the faces that project to a given tile. Within each tile-renderingtask a local active list is incrementally maintained, resulting in the availability of alist of cell faces that are intersected by the ray through each pixel. The cell faceson this active list are processed, with spans across each cell face being incrementallymaintained from pixel to pixel. Edges de�ning active faces are stored in local memoryand are incrementally updated. These techniques are described in detail in section 5.5.As depicted in �gure 5.1, a master processor communicates with the user interface(described in section 1.3.1) via a socket connection to receive updates to grid, scalar,view, and transfer function speci�cations. The system has been designed in such a way(although this has not been implemented) that the master could also be communicatingwith an executing simulation. In the current implementation the grid only changes whenthe user speci�es a new grid and solution �le. If the system were coupled with an executingsimulation which utilized adaptive grid methods, the grid could change during the courseof the simulation. Currently, the user may select one of the 5 values (density, one of thethree components of velocity, or energy) provided in the Plot3D solution �le. If the systemwere coupled with an executing simulation of an unsteady 
ow, it would be possible for thescalar �eld to change at every time step. The user speci�es the view and transfer functions.The master processor is also responsible for compressing and sending images back to theuser interface. In addition to these special user interface tasks, the master participates inthe parallel tasks for grid modi�cations, viewing changes, and rendering.5.1.1 Object-Oriented Design and ImplementationThe design is object-oriented and the code is written in C++ which supports therequired object-oriented features fairly directly. The most important features used in this



64class object_base {private:public:object_base(){}virtual void new_view(matrix, view_cmds){}virtual void new_tf(float*, color*){}virtual int get_xform_groups(){}virtual void view_xform(int){}virtual int get_sort_groups(){}virtual void view_sort(int){}virtual void view_init(){}virtual void make_buckets(){}virtual int allocate_buckets(int*){}virtual void free_buckets(){}virtual void zero_buckets(){}virtual void tile_init(int, int, int){}virtual void scanline_update(int, int, int){}virtual void pixel_update(int, int){}virtual void tile_free(){}virtual boolean intersect(ray*, intersect_list*){}virtual boolean shade(world*, intersection*, pix_contribution*){}}; Figure 5.2: Base class de�nition for renderable objects.implementation are the encapsulation of data and functions via class de�nitions, derivedclasses, and virtual functions. The ability to specify small functions \inline" was alsoconsidered important. Classes may be de�ned for all types of objects that may be rendered.These include curvilinear grids, unstructured grids, rectilinear grids, geometrical primitives,etc. Each of these classes provides virtual functions which maintain active lists if required(as the algorithm to be described here does), perform intersection testing and/or updating,and do the shading computations for resulting intersections. Instances of these classes maybe generated and rendered together. Although this chapter focuses primarily on the classdesign and implementation for curvilinear grids, the design of the system is such that manytypes of geometric and volumetric objects can be de�ned and rendered by one or morerendering methods [Cha90].Renderable ObjectsThe renderable objects are the di�erent types of objects that can be speci�ed, oriented,and positioned in the world description, and then rendered to an image. All renderableobjects are derived from a base class, object base (see �gure 5.2). This mechanism providesseveral key capabilities. In particular, it allows the di�erent renderable objects to be treatedin a homogeneous fashion.For example, intersection with a ray is performed on instances of the class object base.The virtual functions for intersection provided with each renderable object derived from theclass object base ensure that appropriate intersection calculations are performed for thecurrent instance of object base. Once an intersection has been detected, the renderable



65objects can be kept on the intersection list without regard to the speci�c derived class beingdealt with. A pointer is simply maintained to the base class. Then, when this intersectionlist is processed to determine the contribution to the current pixel of each intersection,virtual shading functions ensure that the appropriate shading calculations are carried outfor each derived renderable object type.Another desirable function for renderable objects is to be able to update them on ascanline and/or pixel basis. This functionality, which may speed the rendering of certaintypes of primitives considerably, is also provided via virtual functions. For example, at eachnew scanline the rendering function can ask each renderable object to update itself andthe virtual function scanline update() ensures that this is done appropriately for eachderived object type.Many di�erent renderable objects, both geometric and volumetric, can be derived fromthis base class. For example, a single triangle could consist of the three points or vertices in<3 which de�ne it in clockwise order when viewed from the outside, along with other relevantdata. Virtual methods would be provided to test for and generate an intersection with agiven ray, or compute a shading contribution. A small triangle mesh could be representedas a collection of instances of the class for a single triangle. Data structures and methodssupplied to support a scanline algorithm could reduce the number of intersection calculationsthat must be performed for each pixel. Triangle strips in which the shared vertices ofindividual triangles are represented once could also be supported. Private variables used torepresent a rectilinear volume include the dimensions of the volume, the scalar and gradientdata, color and opacity transfer functions, and other relevant information. Virtual functionsprovide methods to intersect the volume or compute the shading contribution along a ray.Rendering MethodIt is in the rendering method that the homogeneous treatment of renderable objects isbest seen. Pseudocode describing the process is given in �gure 5.3. Before rendering begins,each renderable object is instructed to initialize itself. As each new scanline in the image isbegun, each renderable object updates any private representation. A similar call is made aseach new pixel is begun. For each pixel of the image, a ray is generated through the pixelinto the collection of objects. Each renderable object on the list tests itself for intersectionwith the ray and updates an intersection list. The intersection list is itself an object whichmaintains itself in sorted order. After all intersections have been tested for, each renderableobject on the ordered intersection list computes its shading contribution to the pixel for thegiven intersection. Pixels are objects as well and know how to composite themselves. Lessthan a page of C++ code is required to implement this functionality for any collection ofheterogeneous renderable primitives.5.2 Grid Data Structures and DistributionThe algorithm presented here is designed and optimized to handle computational gridsthat are nonrectilinear. We will call a single data point that has been sampled or computeda node. Two neighboring nodes may be said to de�ne an edge, and three or more de�ne aface. In the case where a face is de�ned by more than three nodes, it is possible that the



66/* Pseudocode for the parallel function to render one image tile.*/void render_tile(int tile){ Compute pixel extents for this tile.For each renderable object oo->tile_init();For each scanline in this tile {For each renderable object oo->scanline_update();For each pixel in this scanline {Create an empty pixel.int n_active = 0;For each renderable object on_active += o->pixel_update();if (n_active) {Allocate intersection list l for n_active intersections.For each defined renderable object oo->intersect(l);For each intersection i on list, and while not opaqueopaque = i->shade();}If not opaque, composite over background.Store pixel in the image.}}For each defined renderable object oo->tile_free();} Figure 5.3: Homogeneous treatment of renderable objects.face will be non-planar. A cell is the space in <3 de�ned by four or more nodes, and four ormore faces. A face that is shared by two cells is an internal face, otherwise it is an externalface.Grids may be curved to match the simulation geometry, as in the curvilinear gridscommonly used in CFD. A curvilinear grid is de�ned by a rectilinear computational gridthat has been shaped, resulting in cells with non-planar faces in physical space [Fle88].These array-organized grids are also called structured grids [SK90]. Computational gridsin <3 that are not array-organized (sometimes called unstructured grids [SK90]) and aremade up of tetrahedral or hexahedral cells that have been shaped are also common in



67computational 
uid dynamics and �nite element analysis applications [ZT89]. Typicallythe de�nition of these grids is given as a list of cells, de�ned by pointers into a list of nodes.Thus information on shared faces and neighboring cells is not inherent in the data structure.Information on which nodes de�ne the faces of a cell is usually implicit for structured andunstructured grids. In the case of scattered data, a Delaunay triangulation could be usedto give such a structure to the data.The algorithm presented here has been designed to be general enough to handle struc-tured or unstructured grids. The grids and cells may be non-convex, and grids may containvoids or holes. Grids may have been constructed from multiple grid de�nitions (multi-blockgrids). The multiple grid de�nitions may be spatially overlapping with intersecting faces.Information on which cells share faces is not required, which is useful in applying the al-gorithm to unstructured datasets. Embedded geometrical primitives can also be renderedby the algorithm. The remainder of this chapter describes a class de�nition for curvilinearvolumes in detail.5.2.1 Curvilinear Grid Data StructureA class de�nition for curvilinear grids is derived from the base class for renderable objects(see �gure 5.4). Multi-block grids are de�ned as several instances of curv volume, one perblock. The data structure records the grid index (for multi-block grids), grid dimensions,addresses of shared data structures, color and opacity transfer functions, transformationmatrix, and data structures for the implementation of a scanline algorithm. The grid index,grid dimensions, and addresses of shared data structures are set up once when the grid isread in from a �le. This information is propagated to all processors and stored locally.The spatial locations of the grid nodes and the solution components (data values) availableat these nodes are read in from a �le and stored in virtual shared memory. All availablePlot3D solution components (density, velocity, and energy) are stored, and an additionalpointer is maintained to the solution component the user desires to render. This allowsthe user to rapidly generate a new image using a di�erent scalar �eld. Descriptions of cellfaces de�ned by the grid are computed in parallel and stored in virtual shared memory. Theaddresses of these data structures are propagated to all processors. An array of buckets (oneper image tile) are set up and initialized to be empty. The address of these buckets is alsopropagated to all processors. The buckets will be initialized by the parallel view sort priorto rendering whenever the view has been changed. Color and opacity transfer functionsand the transformation matrix may change interactively according to user speci�cations.When this happens the a�ected data structures are updated and the changes propagatedto all processors. The data structures associated with the implementation of the scanlinealgorithm are used locally and independently on each processor.5.2.2 Node and Face StorageLinear arrays of cachable interleaved shared memory are used to store the grid nodesand scalar values. Each grid node is identi�ed by a unique index which may be used toobtain the spatial location and/or scalar values of the node. In addition, each face in thegrid is represented by an instance of class cell face. The cell face class is derived from



68class curv_volume: public object_base {friend class cell_face;friend class local_face;private:int gn; /* grid index */int xd, yd, zd; /* grid dimensions */point* grid; /* pointer to transformed grid points */point* orig_grid; /* pointer to original grid points */int* iblnk; /* pointer to iblank data */float* scalar_base; /* pointer to scalar data */float* scalar; /* pointer to desired solution component */cell_face** faces; /* pointer to groups of cell faces */color* clr_func; /* pointer to color transfer function */float* opac_func; /* pointer to opacity transfer function */matrix xform; /* composite transformation matrix */bucket* bkts; /* pointer to buckets for tiles */active_rec* y_sort; /* y-bucket sort of face records */int* y_index; /* indices into y-bucket sort */int y_n_active; /* number of active faces on scanline */int* y_active; /* list of active faces on scanline */active_rec* x_sort; /* x-bucket sort of face records */int* x_index; /* indices into x-bucket sort */int x_n_active; /* number of active faces for this pixel */int* x_active; /* list of active faces for this pixel */...public:curv_volume();virtual void new_view(matrix, view_cmds);virtual void new_tf(float*, color*);virtual int get_xform_groups(){ return xd; }virtual void view_xform(int);virtual int get_sort_groups(){ return xd+yd+zd; }virtual void view_sort(int);virtual void view_init();virtual void make_buckets();virtual int allocate_buckets(int*);virtual void free_buckets();virtual void zero_buckets();virtual void tile_init(int, int, int);virtual void scanline_update(int, int, int);virtual void pixel_update(int, int);virtual void tile_free();virtual boolean intersect(ray*, intersect_list*);...}; Figure 5.4: Class de�nition for a curvilinear volume.



69class cell_face: public object_base {friend class local_face;private:unsigned ef_cv_yminmax; /* face flag, volume index, ymin, ymax */int v[4]; /* node indices */public:cell_face(){}...virtual boolean shade(world*, intersection*, pix_contribution*);}; Figure 5.5: Class de�nition for a cell face.the base class for renderable objects. This allows intersections with cell faces to be placedon the intersection list for a pixel. For hexahedral cells (as in a curvilinear grid) four verticesor grid nodes de�ne each face. The cell face data structure contains an index into thegrid node and scalar value arrays for each vertex. It also contains a word used to storethe minimum and maximum scanline extents of the face, an index indicating which grid itbelongs to (required for multi-block grid solutions), and a 
ag indicating whether the faceis internal or external (required for handling non-convexity and voids in the grid). Thesecomponents are packed into a single integer with the face 
ag in the upper 4 bits, the indexin the next 4 bits, ymin taking the next 12 bits, and ymax in the lower 12 bits. The classde�nition for curvilinear cells is shown in �gure 5.5.The cell faces are divided up into sections called face groups by the dimensions of the grid.This division is motivated by the need to identify parallel tasks based on groups of faces.In this implementation for curvilinear grids, an xd�yd�zd grid will have xd+yd+zd facegroups. These face groups may be di�erent sizes, for example, there will be xd face groupscontaining (yd�1)�(zd�1) cell faces each, yd face groups containing (xd�1)�(zd�1) cellfaces, and zd face groups containing (xd� 1)� (yd� 1) cell faces. An array of xd+ yd+ zdpointers to cell faces is allocated. Each of the face groups is stored in cachable interleavedshared memory, the array containing the pointers to the face groups is propagated to eachprocessor to be stored locally.Curvilinear grids have a natural decomposition into this form since the grid is rectilinearin computational space. Unstructured grids such as those used in �nite element analysiswould need to be divided into groups of faces. This could be accomplished using a spatialdecomposition of the original grid. The size of each group should be constructed so as toenhance load balancing of parallel functions which operate on one group at a time. Sharedfaces need only be represented once, and no information is required concerning which cellsshare a given face.5.2.3 Bucket StorageAn array of instances of class bucket are allocated, one for each tile in the image (see�gure 5.6). The array of buckets is allocated when the curvilinear volume is read in, orwhen the number of tiles forming the image is changed. Each bucket speci�es the number



70class bucket {private:int n; /* number of pointers currently in bucket */int size; /* maximum size of bucket */cell_face** o; /* pointer to array of cell_face pointers */public:bucket(){}...}; Figure 5.6: Class de�nition for a bucket.of pointers in the bucket, the maximum size of the current bucket allocation, and a pointerto an array of cell face pointers. The buckets are allocated in interleaved shared memory,but are declared to be uncachable. This is because atomic increments to the counts will bemade as di�erent processors add pointers to the shared lists during the parallel view sort.The address of the array of buckets is propagated to all the processors.5.2.4 Summary of Shared Data StructuresTable 5.1 summarizes the shared data structures. The grid nodes and scalar values arestored as 
oats. If there are N nodes in the grid (N = xd� yd� zd), then there are slightlyless than 3N cell faces. The transformed grid nodes and the cell face descriptors requireapproximately 18N words. The original grid speci�cation and the solution require 8N words.Thus the extra memory needed to describe the volume to the rendering algorithm is 2.25times the amount of space required to store the volume itself. Determining the amount ofspace that will be required for the buckets representing the view sort is complicated andwill vary based on the characteristics of the grid and the viewing speci�cation. There is onebucket per image tile and it is �lled with a variable number of pointers to cell faces. In thesimplistic case that the image is made up of T tiles with each cell face projecting to onlyone tile, then the combined buckets will contain approximately 3N pointers. Chapter 6gives measured bucket sizes for several views of several di�erent sized datasets.5.3 Grid InitializationWhen a new grid is speci�ed by the user, the grid and solution �les are read into sharedmemory. In the current implementation the �le format supported is the Plot3D formatgenerated by CFD applications at NASA Ames Research Center [plo89]. Initialization ofthe cell faces is done in parallel. The task decomposition is by face group and these tasksare dynamically generated. This phase generates xd + yd + zd tasks during which indicesinto the grid and scalar arrays are computed and stored for each vertex of each cell face inthe group.



71Data Size of Number ofStructure One Element ElementsGrid Nodes 3 
oats xd� yd� zdTransformed Nodes 3 
oats xd� yd� zdScalars 5 
oats xd� yd� zdCell Faces 5 ints xd� (yd� 1)� (zd� 1)+yd� (xd� 1)� (zd� 1)+zd� (xd� 1)� (yd� 1)Empty Buckets 2 ints + 1 pointer TTable 5.1: Summary of shared data structures given a grid with dimensions xd byyd by zd and an image broken into T tiles.5.4 Parallel View SortThe objective of the view sort is to create a list of pointers to pertinent cell faces foreach image tile. A second important function of the view sort is to eliminate from furtherconsideration any cell face whose view-space bounding box falls entirely between two pixels,or entirely out of the image. The parallel view sort consists of four phases. These are theviewing transformation, determination of required bucket sizes and local compilation of cellface pointers, allocation of shared memory for buckets, and bucket initialization. All ofthese phases are parallel with the exception of the allocation of shared memory which issequential for reasons discussed below.5.4.1 Viewing TransformationIn the viewing transformation phase, the grid nodes are multiplied by a matrix repre-senting the viewing transformation. Each instance of curv volume maintains two separatearrays in shared memory for the grid nodes. The �rst contains the original, untransformedgrid nodes. In an environment in which the rendering code was running simultaneouslywith an executing simulation, this data structure would actually belong to the simulation.The grid nodes from this array are multiplied by the transformation matrix and placed inthe second array for use by the rendering functions. This is done in parallel with each of xdface groups constituting a task. For multi-block grids with n grid de�nitions, the numberof tasks will be Pni=1 xdi. These tasks will be dynamically generated and the appropriateclass instance will execute the viewing transformation.5.4.2 Bucket SortingDue to the ine�ciency of memory management functions for shared memory, sorting ofthe cell faces into buckets has been split into sorting and initialization phases with sequentialallocation of the shared memory for the buckets in between. In particular, allocate and freecommands are very slow for shared memory, and there is no reallocate function. In orderto minimize use of these time-consuming functions, new memory for a bucket is allocated



72only if the new size required is greater than the existing size of the bucket. The �rst timean image is rendered every bucket will need to be allocated.The sorting phase involves computing the view-space bounding box for each cell face,counting the number of cell faces in each bucket, and compiling local lists of cell face pointersfor each bucket. The task decomposition is by face group generating xd + yd + zd tasksusing dynamic task generation. For multi-block grids with n grid de�nitions, the numberof tasks will be Pni=1 (xd+ yd+ zd)i. In the �rst task executed by any given processor, alocal array of integers called counts and a local array of cell face pointers called listsare allocated, one per image tile. For each face group processed by that processor, bucketcounts and cell face pointers are compiled locally. Each cell face in the group computesits bounding box, increments the count for each image tile that the bounding box projectsto, and stores a pointer to itself in the lists for those tiles. In addition, the minimum andmaximum y extents of the face are stored in the cell face for later use during rendering.The case in which a cell face bounding box projects to a tile, but the cell face itself doesnot, is handled during tile rendering as described in section 5.5.3. Once every cell facein a given group has been processed, any non-zero local counts that were generated duringthe current task are atomically added to the shared bucket counts. When all the paralleltasks of the sorting phase are �nished, the shared buckets each contain a total count of thenumber of pointers that will need to be stored in any given bucket, and each processor hasstored in its local memory some portion of the pointers to cell faces for each tile's bucket.5.4.3 Bucket Memory AllocationA sequential portion of the code allocates the necessary amount of cachable interleavedshared memory for each bucket that is not currently large enough, and stores the pointer toit in the bucket. The shared bucket counts are then set to zero so they may be atomicallyincremented by processors doing bucket initialization in the next phase.5.4.4 Bucket Initialization and Task OrderingThe bucket initialization phase of the view sort initializes the list of pointers in eachshared bucket. A single task is statically generated on each processor. For each tile witha non-zero local count, the shared bucket count is atomically incremented and the list ofpointers accumulated locally for that bucket is copied to the shared list. When all of theshared buckets have been updated, the local counts and lists are deleted.A simple expedient for better load balancing using dynamic task generation is to orderthe tasks such that the largest tasks are handed out �rst. In this case, task size is de�nedto be the number of cell faces contained in a bucket. During the (sequential) memoryallocation phase for buckets, each renderable object is instructed to allocate the necessarybucket space and the required space is summed for each bucket. This results in an array withan entry for each image tile in which each entry represents the total size of the task for allrenderable objects. Associating a tile number with each entry and sorting the array basedon the task size gives an ordering for task generation which will be shown in chapter 6 toimprove load balancing. This ordering is stored in shared memory where it will be accessedduring the rendering phase by processors to determine the correct tile to be rendered.



73The sorting of the tasks is done in parallel with the initialization of the buckets. Duringthe bucket initialization phase, the master processor sorts the task array using a heapsort(O(n log2 n)) before performing the bucket initialization.5.5 Parallel Tile RenderingIn this section the rendering phase of the algorithm is presented. This is the mosttime-consuming phase and stands to bene�t the most from an e�cient parallelization.The design objectives have been an e�cient sequential algorithm that is scalable whenparallelized. Past experience has shown that load imbalance, remote memory latency,and switch contention have been the primary inhibitors of scalability. Load imbalanceis addressed via an adjustable tile size and task ordering. Remote memory latency andswitch contention are addressed by reducing the required number of shared-memory accessesthrough the use of the parallel view sort, local storage of face and edge information, andincremental updates. Pseudocode for the rendering phase is given in �gure 5.3.5.5.1 Task DecompositionIn the rendering phase, task decomposition is by image tiles. Since each tile contains a(possibly greatly) varying number of cell faces to be rendered, dynamic task generation isessential for good load balancing. As described in section 5.4.4, the tasks are sorted by sizeand the largest tasks are allocated �rst. When a processor obtains task i to be executedit uses this task number as an index into the shared order array to �nd the ith largesttask. Thus the tile that will be rendered will be tile = order(i). From this, and theknowledge of the tile and image size, the minimum and maximum pixel extents of the tileare computed.5.5.2 Tile Rendering AlgorithmWithin each tile, the approach taken to reduce the number of intersection calculationsrequired at each pixel utilizes the idea of a bucket sort and scanline algorithm from computergraphics [FD82, HB86]. The algorithm presented here uses a y-bucket sort followed by anx-bucket sort to create a list of active cell faces for each ray. This approach di�ers froma traditional computer graphics approach in that the cell faces, rather than the edges, areused to create and maintain the active list. The high degree of edge sharing among facesmakes it di�cult to know which face is being interpolated when an edge becomes active.An approach based on the cell faces eliminates this ambiguity. Knowing which face is beinginterpolated allows us to determine which two edges should be used for the interpolation, aswell as whether the face is external, internal, or part of a solid wall (simulation geometry).Tile InitializationGiven an image tile to be rendered and the bucket from the view sort, the �rst step isto initialize the records that will be used to create and incrementally maintain the y-bucketsort of the cell faces. This functionality is provided in the virtual function tile init().



74A record is created for every cell face speci�ed in the bucket for this tile from the viewsort and stored in y list (see �gure 5.4). These records contain the minimum scanline ofthe cell face, number of active scanlines, and a pointer to the instance of cell face thatis being represented. The records are grouped by the minimum scanline of the cell face toform the buckets of the y-bucket sort. Once these records have been initialized, a loop isentered over the scanlines of the tile.Processing at each ScanlineAt each new scanline, the y active list is updated using the y-bucket sort in y list toincrementally maintain a list of cell faces active on the current scanline. The �rst step isto decrement the scanline counts of any cell faces that are currently active. If the countbecomes zero, the cell face is deactivated and any local storage associated with the cellface is released. Next, any cell faces that become active on this scanline are added to they active list. As new cell faces become active, local storage for edge and span records isallocated and initialized as described in section 5.5.3. The intersections of the scanline withedges of each cell face active on the scanline are incrementally computed and stored. Eachcell face is represented as two triangles for the purposes of interpolation because the faces ofthe curved hexahedron are not necessarily planar. It would also be possible to estimate theclosest planar polygon to represent the cell face, however, representation of each cell face astwo triangles has the advantage that interpolation is then rotationally invariant. Each cellface is thus represented by the four edges that de�ne it plus one arbitrarily, but consistently,chosen diagonal. Each edge that is currently stored and active is incrementally updated togenerate the required values at the intersection of the edge and the current scanline. Thex, z, and scalar value at the edge intersection point are obtained this way and stored inthe edge record. The �nal step before processing at each pixel can begin is to set up thex-bucket sort based on cell faces in the y active list (those that are active somewhere onthis scanline). This process is identical to that described for the y-bucket sort. The virtualfunction scanline update() provides for all of these requirements.Processing at each PixelSimilarly to the processing of the y active list prior to each new scanline, at each newpixel the x active list must be updated using the x-bucket sort in x list to incrementallymaintain a list of cell faces active at the current pixel. This is accomplished in the virtualfunction pixel update(). The �rst step is to decrement the pixel counts of any cellfaces that are currently active. Cell faces that are no longer active are removed fromconsideration for the remainder of the scanline. Next, any cell faces that become activeon this pixel are added to the x active list. The x-bucket for the current pixel is sortedinto descending order by the minimum z value of the face on this scanline using Shell'smethod (O(n3=2)) [PFTV86]. The x-bucket is then merged with the current active list.This process maintains the active list in nearly sorted order and greatly reduces the timerequired to insert intersections on the depth-sorted intersection list when it is generated.The intersection list is a linked list that is maintained in order by ascending z values so thatcompositing may be done front-to-back. Having the active list nearly ordered by descending



75class intersection {private:float depth; /* intersection depth along ray */float scalar; /* interpolated scalar value */unsigned char ef; /* external face flag */object_base* obj; /* pointer to object generating intersection */intersection* next; /* next intersection on list */public:intersection();...};class intersect_list {private:intersection* head; /* first intersection on list */intersection* list; /* preallocated space for list */int size; /* size of preallocated list */int n; /* current number of intersections on list */struct more { /* pointer to extra space if needed */intersection* i;more* m;} *m;public:intersect_list();...}; Figure 5.7: Class de�nitions for intersections and intersection lists.z values means that most of the time an intersection is added to the intersection list, it willbe added to the head of the list.The x active list now contains pointers to all of the cell faces that are intersected bythe ray through this pixel. For each cell face on the x active list the virtual functionintersection() is called to compute the intersection by incremental update of the spansfor that cell face, and add it to a depth-sorted intersection list. Since each cell face isrepresented by two triangles, there are two spans possible (and thus two intersectionspossible) for each active cell face. The entry on the intersection list records the distancealong the ray of the intersection, the scalar value of the �eld at that point, a 
ag indicatingwhether the face containing the intersection is internal, external, or a solid wall, and apointer to the cell face containing the intersection. Table 5.7 gives the class de�nitionsfor intersections and intersection lists. Each renderable object provides an estimate of howmany intersections it may generate on any given pixel. For the algorithm described here,this estimate is the number of cell faces on the x active list. Space for the entire list ispreallocated using this estimate, greatly reducing the overhead associated with memory



76management. A method is provided to allocate extra space if the estimate falls short of theactual requirement.Creation of an intersection list, rather than performing the shading and compositingon the 
y as the x active list is processed serves several purposes. It ensures that theintersections generated by entries on the x active list are in depth-sorted order (theymay not be exactly in order on the x active list). It allows for the combination of severaldi�erent types of renderable objects, such as embedded geometrical primitives, and providesa straightforward way of supporting multi-block grids. Finally, the intersection lists maybe stored in local memory and used to rapidly update an image for a changing transferfunction as will be described in section 5.5.4.After all cell faces (and all other renderable objects) have been processed, the intersectionlist is traversed to compute the color and opacity for the pixel. For each intersection on thedepth-sorted intersection list (or until the pixel is opaque), the virtual function shade() iscalled to calculate the shading contribution and composite the computed color and opacityinto the current pixel. The shading function detects voids in the volume or executes adi�erent shading technique for solid walls by using the 
ag stored in each intersection inthe intersection list to detect these cases. For shading internal portions of the volume, theshading calculation uses the scalar value for the current intersection, the scalar value forthe next intersection on the list, and the distance between them. Let t0 be the distancealong the ray to the point of intersection with the current cell face on the intersection list,and �̂0 be the normalized optical density at that point (as determined from the transferfunction for opacity which has the range (0; 1), and is indexed by the scalar value at thepoint t0). Similarly, let t1 be the distance along the ray to the point of intersection withthe next cell face on the intersection list, and �̂1 be the associated optical density. Thenthe optical density in the range (0;1) is given by�0 = log 11� �̂0and similarly for �1. The optical density � for the cell is determined by averaging the twoas � = �0 + �12The chromaticity components are averaged in the same way, and the opacity � is given by� = 1� exp��(t1�t0)The optical density is assumed to be independent of wavelength, thus one exponential isevaluated for each cell intersected by the ray. The use of this approximation to the integralcan result in image artifacts in the case where discontinuities in the transfer functions occurinside a cell. These can be minimized by the avoidance of step functions in the transferfunction. The volume density optical model proposed by Williams and Max [WM92] solvesthis problem by providing an exact solution to the integral inside a cell for piecewise lineartransfer functions. Finally, the opacity is used to composite the contribution to the pixelusing the standard method described by Porter and Du� [PD84]. After all intersectionshave been processed, or the pixel has become opaque, the pixel is stored in the image.



77class local_face: public object_base {private:cell_face* cfp; /* pointer to remote cell_face */struct edge { /* edge records */short miny, maxy;short count;float x, delta_x;float z, delta_z;float s, delta_s;} edges[5];struct span { /* span records */short minx, maxx;short count;float z, delta_z;float s, delta_s;} spans[2];float minz; /* minimum z value of face */short xvmin, xvmax; /* min and max x of face for this scanline */public:local_face(){}...virtual boolean intersect(ray*, intersect_list*);}; Figure 5.8: Class de�nition for a locally stored face.5.5.3 Coherence and Local Face Storage for Enhanced ScalabilityScalability can be enhanced by storing repeatedly accessed shared variables in localmemory. Experience has shown that care must be taken in doing this, however. A brute-force approach would be to store all of the cell faces for a given tile in local memory beforebeginning to render. Although this reduces the remote memory references, it can requiretoo much local memory resulting in paging at selected processing nodes. This eliminatesany bene�t gained from the local storage of cell faces by increasing the processing time atthose nodes and upsetting the load balancing. The approach taken here involves locallystoring only those cell faces that are active on any given scanline. A pointer to the sharedcell face is stored with the local variables providing access to the indices used to accessnode and scalar values, the grid index, and the external face 
ag. By locally storing edgerecords and making use of spatial coherence to do incremental updates of the edges de�ninga face, it becomes possible to e�ectively cache the node and scalar values of the cell face.During the execution of scanline update(), when a cell face becomes active, a localdata structure called a local face is allocated. This data structure stores a pointer to theshared cell face, as well as edge records for the edges de�ning the face (see �gure 5.8). Theedges are initialized at the �rst scanline that the face becomes active. Spatial coherenceis used to update the edge intersections with the current scanline incrementally. Thisutilization of spatial coherence not only improves the e�ciency of the algorithm, but it hasthe added advantage of e�ectively causing the grid node and scalar values that de�ne the



78edges to be locally stored. For each cell face projecting to a given tile, the node indicesstored in the shared cell face and the grid node and scalar values are accessed once inorder to initialize the edge records stored in the local face. For each edge several variablesare computed and stored. These include the minimum and maximum y values for which theedge is active, a counter, and the x, z, and scalar value at the intersection with the scanlineand their increments. As the edge intersections are updated at each scanline, span recordsare initialized for the scanline, and the minimum and maximum x values for the face arestored and used when creating the x-bucket sort. The minimum z value of the face on thecurrent scanline is stored and used when inserting the cell face into the x active list. Thespan records are updated at each pixel and used to generate intersections. In the case wherethe bounding box of the cell face projects to the current tile, but the cell face itself doesnot, none of the edges will ever become active, the spans will not be initialized, and the cellface will not generate any intersections. The local face data structure will be deleted inscanline update() when the scanline is reached at which the face being represented is nolonger active, or after all scanlines of the tile have been rendered.Each face is de�ned by �ve edges in order to represent it as two triangles. However, allbut one of these edges are shared with one or more other faces. In the current implementa-tion, all �ve edges are stored with each cell face. However, local storage requirements couldbe further reduced by storing shared edge data structures once. Two approaches to doingthis have been explored, in both cases the time to utilize a hashing function for shared edgestorage was longer than that required to simply update multiple copies of the edges. If eachedge may be stored more than once (when it is shared by two or more faces), care mustbe taken to process multiply de�ned edges identically in order to avoid image artifacts. Inparticular, when doing incremental updates of intersection points along edges, the incre-ments should begin from the same node and proceed to the opposite node identically forall replicated copies.In one approach to shared edge storage, each curv volume maintains an edge listwhich is a two-dimensional array of pointers to lists of edge records. There is one list foreach pixel in the tile. When a face becomes active, it computes the minimum x and yvalues in the tile at which each edge becomes active and submits the edge to the edge listfor storage. The edge list uses the x and y values to determine which list may containthe edge. Since each grid node is uniquely identi�ed by an index into a linear array, eachedge is uniquely identi�ed by a pair of these indices. If the edge is already stored, a usecount is incremented and a pointer to the edge is returned to the face. If the edge is notyet stored it is inserted into the list with a use count of 1. When a face is deactivated, itdecrements the use counts for all of its edges. Each scanline when the edges are updated,edges with use counts of zero are removed and the memory released. In this approach thehash table size is dependent on the tile size (because there is an entry for each pixel in thetile) and is constant for all tiles, resulting in too many collisions to make it e�ective. Inanother approach to edge storage, each tile dynamically creates a hash table whose size isdependent on the number of cell faces in the bucket for that tile. The hash code is taken tobe the sum of the vertex indices for the edge, modulo the hash table size. This approach wasmuch faster than the �rst approach tried, but was still less e�ective than simply maintainingmultiple copies of edges where required.



79class sample_container {private:int which_tile; /* tile these samples belong to */int n_samples; /* number of pixels in tile */intersect_list** samples; /* pointer to samples */sample_container* next; /* pointer to next sample container */public:sample_container();...}; Figure 5.9: Class de�nition for a sample container.5.5.4 Local Storage of Intersection ListsA second variation of the algorithm has been implemented in which the intersectionlists are explicitly stored in local memory and retained between rendering phases. A similarapproach has previously been utilized to speed computation of successive ray-traced imageswith changing lighting conditions and surface properties [SS89a]. The basic renderingalgorithm proceeds in the same way, but sampling (intersection generation) and compositinghave been split into two phases. The motivation for doing this is to attain fast image updatesfor a changing transfer function. Finding a transfer function which brings out features ofinterest in the data can be a time-consuming process, and this approach helps to alleviatethat.The algorithm begins by dynamically allocating tasks for the sampling phase, if re-quired. The sampling phase is only necessary if the grid or viewing transformation haschanged. Task decomposition is by image tile, and these tasks are dynamically allocatedand ordered by size as described above. Each processor begins each task by allocating asample container (see �gure 5.9) for the current tile and placing it on a linked list ofsample containers stored on this processor. The processor then executes just the samplingportion of the algorithm for the tile, starting by setting up a y-bucket sort based on the cellfaces in the bucket for the tile. For every scanline in the tile, the y active list is updated,local storage for newly active cell faces is allocated, edge intersections of cell faces active onthis scanline are computed, and the x-bucket sort is set up. For each pixel in a scanline, thex active list is updated, the intersection list for the pixel is generated and placed in thesample container, and for each cell face on the x active list, intersections are computed byincremental update of the span records and added to the depth-sorted intersection list forthis pixel.The compositing phase will be executed following a sampling phase, or alone if just thetransfer function has changed. Static task generation is used (one task per processor), witheach processor computing pixels from the intersection lists in the stored sample containersfor the tiles assigned to it during the sampling phase. For each pixel of each tile resident on agiven processor the intersections on the sorted intersection list for that pixel are processedand the shading contribution is calculated and composited. When all intersections havebeen processed, or the pixel has become opaque, the pixel is stored in the image.



806. Benchmark ResultsIn this chapter the performance of the parallel direct volume rendering algorithm pre-sented in chapter 5 is analyzed. The various measures used in the analysis are discussedin section 2.2.2 and summarized in table 2.1. The particular datasets and viewing con�g-urations are presented in the next section, followed by a summary of the best renderingtimes achieved, characterizations of each image, and a summary of data structure memoryrequirements. Many variations of dataset size, image size, number of image tiles, viewingspeci�cations, and number of processors have been tested. Each con�guration has been runthree times to verify the consistency of the measurements. The statistics presented here arecompiled from over 1000 runs. Results for the rendering phase are discussed in section 6.2,with attention given to the e�ects of image and tile size and any sources of ine�ciencies.The e�ectiveness of storing intersection lists in local memory for fast image updates witha changing transfer function is examined in section 6.2.6. Finally, results for the parallelview sort are discussed in section 6.3.6.1 Description of Datasets and ImagesThe parallel direct volume rendering algorithm described in chapter 5 has been bench-marked on several volumes and for multiple views of these volumes. Four curvilinear datasets obtained from NASA Ames Research Center were used in this study. The �rst is theblunt �n dataset [HB85]. This dataset represents a CFD simulation of air 
ow past a blunt�n on a grid resolution of 40� 32� 32, or 40960 nodes de�ning 37479 cells. Images of thisdataset are presented in �gures 6.1 and 6.2. The second is the post dataset [RKK86], whichwas obtained from a numerical study of three-dimensional incompressible 
ow around mul-tiple posts and has a grid resolution of 38 � 76 � 38 giving 109744 nodes de�ning 102675cells. Three views of this dataset have been benchmarked (�gures 6.3, 6.4, and 6.5). Thethird view of the post dataset demonstrates rendering with a nonconvex grid containing avoid (�gure 6.5). The third dataset is the delta wing dataset, taken from a study of vorti-cal 
ow over a delta wing [FGH87]. It contains 91 � 51 � 51 grid nodes, or 236691 nodesde�ning 225000 cells (�gures 6.6 and 6.7). The fourth dataset is the shuttle dataset [MS90],a multi-block grid consisting of 9 grids with a total of 941159 nodes de�ning 885898 cells.This dataset represents 
ow computations of the space shuttle ascent aerodynamics. Fourviews of the shuttle dataset have been benchmarked (�gures 6.8, 6.9, 6.10, and 6.11). Thesolid walls in the grid which represent the shuttle geometry have been rendered in opaquewhite. The 9 grids represent a hemisphere surrounding half of the shuttle orbiter, externaltank, and solid rocket booster, plus attachment hardware. Three of the images renderedview the shuttle and its 
ow �eld from the side of the hemisphere at which the 
ow �elddoes not obstruct most of the shuttle geometry (�gures 6.8, 6.9, and 6.11). In �gure 6.10,the view is such that the shuttle geometry is embedded in the 
ow �eld. The transferfunctions used to create the images are shown in �gure 6.12. An overview of the renderingtimes for all images and several datset and image characteristics are discussed in the nextsection, followed by an in-depth analysis for each image.
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Figure 6.1: View 1 of the blunt �n dataset.

Figure 6.2: View 2 of the blunt �n dataset.
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Figure 6.3: View 1 of the post dataset.

Figure 6.4: View 2 of the post dataset.
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Figure 6.5: View 3 of the post dataset.

Figure 6.6: View 1 of the delta wing dataset.
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Figure 6.7: View 2 of the delta wing dataset.

Figure 6.8: View 1 of the shuttle dataset.
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Figure 6.9: View 2 of the shuttle dataset.

Figure 6.10: View 3 of the shuttle dataset.
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Figure 6.11: View 4 of the shuttle dataset.

Figure 6.12: Transfer functions used to create images: upper left for the blunt�n, upper right for the post, lower left for the delta wing, and lower right for theshuttle.



876.1.1 Image Characteristics and Dataset SizesDataset & View View Sort 2562 Image 5122 ImageBlunt �n - view 1 0.46 2.5 7.9Blunt �n - view 2 0.49 2.5 8.8Post - view 1 0.91 3.3 9.7Post - view 2 0.93 4.0 11.9Post - view 3 0.86 4.9 14.7Delta wing - view 1 1.19 3.7 10.3Delta wing - view 2 1.37 4.4 14.6Shuttle - view 1 2.44 7.1 20.4Shuttle - view 2 2.95 11.4 29.1Shuttle - view 3 2.71 10.5 32.0Shuttle - view 4 2.70 9.9 26.4Table 6.1: Best rendering times in seconds (T110) using 110 processors.Table 6.1 summarizes the best rendering times (T110) for the images using 110 processors.Execution times are given for the parallel view sort and for the rendering phases for both2562 and 5122 images. The execution times for the parallel view sort are the sum of the bestexecution times for the node transformation, bucket sort, and bucket initialization phasesusing 110 processors. Faster execution times for the parallel view sort were obtained usingfewer processors for the smaller datasets. In addition, obtaining consistent results for theparallel view sort proved di�cult. These points are discussed further in section 6.3.Table 6.2 presents some measures which characterize the complexity of each image. Thetotal number of faces in each dataset is given. The number of faces culled by the parallelview sort and the number of faces remaining (those that appear in the image) are given foreach image. The percentage of empty pixels and average depth complexity are also given.The average depth complexity is obtained by summing all of the cell face intersections inthe image and dividing by the number of non-empty pixels. These measures show thatthe parallel view sort, as well as providing each task with a list of pertinent cell faces,signi�cantly reduces the number of cell faces that must be dealt with by culling the onesthat do not project to the image. For all the images tested, approximately 40% to 90% ofthe cell faces are culled. The larger and more varied the dataset, the higher the percentageof culled cell faces for any given image.Table 6.3 presents measures which characterize the task decomposition. For each imagethe largest task size is given (measured as the largest number of cell faces to project toany one tile), as well as the number of pointers to cell faces stored in the buckets producedby the parallel view sort. The ratio of cell face pointers stored in buckets to the numberof cell faces appearing in the image (those not culled) gives an estimate of coherence lostdue to the division of the image into tiles. A value of 1.0 for this ratio would indicate thateach cell face projects to only one tile and no coherence would be lost. However, a value of



88Blunt Fin Dataset: faces faces % empty average115816 faces culled in image pixels depthView 1 41640 74176 22.8 35.6View 2 83464 32352 2.7 33.8Post Dataset: faces faces % empty average314944 faces culled in image pixels depthView 1 194792 120152 21.7 38.0View 2 140920 174024 2.8 38.0View 3 148404 166540 1.1 49.1Delta Wing Dataset: faces faces % empty average686500 faces culled in image pixels depthView 1 411223 275277 17.3 37.0View 2 538216 148284 9.0 52.8Shuttle Dataset: faces faces % empty average2711792 faces culled in image pixels depthView 1 2388412 323380 0 39.2View 2 1517138 1194654 0 66.2View 3 2021838 689954 0 89.1View 4 2023540 688252 0 96.2Table 6.2: Summary of image complexity statistics showing the total number offaces in each dataset, the number of faces culled during the view sort, the numberof faces appearing in each image, the percentage of empty pixels in each image,and the average depth complexity de�ned as the sum of the cell face intersectionsdivided by the number of non-empty pixels.2.0 would not necessarily mean that all of the cell faces project to two tiles, but only thatsome of the faces project to more than one tile. Thus the ratio is only an estimate of lostcoherence. A more precise measurement of lost coherence is given in the detailed analyseswhich follow this section.Table 6.4 summarizes the data structure sizes for each dataset. Storing the indicesfor each vertex of each cell face is the most memory-intensive requirement. However, theready availability of these cell face de�nitions provides the basis for an e�cient algorithm.In addition, most highly parallel systems have a lot of memory (the BBN TC2000 has 2gigabytes), making memory issues slightly less signi�cant than when designing codes for aworkstation environment where memory may be extremely limited. The most importantissue for these types of systems is how e�ectively the local memory on each processing nodeis utilized.



89Blunt Fin Dataset: 256 tiles 1024 tileslargest faces in bucket largest faces in buckettask buckets ratio task buckets ratioView 1 9253 125683 1.70 4310 198212 2.67View 2 2695 66766 2.10 1368 116812 3.60Post Dataset: 256 tiles 1024 tileslargest faces in bucket largest faces in buckettask buckets ratio task buckets ratioView 1 12104 199198 1.66 5234 310783 2.59View 2 11210 262275 1.51 5847 395548 2.27View 3 4492 278610 1.67 1852 435143 2.61Delta Wing Dataset: 256 tiles 1024 tileslargest faces in bucket largest faces in buckettask buckets ratio task buckets ratioView 1 14903 359930 1.31 6187 467204 1.70View 2 9111 222409 1.50 4318 320754 2.16Shuttle Dataset: 256 tiles 1024 tileslargest faces in bucket largest faces in buckettask buckets ratio task buckets ratioView 1 40468 417661 1.29 13472 543956 1.68View 2 62687 1418622 1.19 25014 1711213 1.43View 3 79360 858428 1.24 23678 1100295 1.59View 4 39553 883899 1.28 15084 1125977 1.64Table 6.3: Summary of the largest task (de�ned as the largest number of cell facesto project into a tile), total number of cell face pointers stored in buckets, and theratio of the number of cell face pointers stored in buckets to the total number ofcell faces (those not culled by the view sort) in the image.Data Set Grid Nodes Scalars Cell FacesBlunt Fin 0.47 0.78 2.65Post 1.26 2.1 7.2Delta Wing 2.7 4.5 15.7Shuttle 10.77 17.95 62.1Table 6.4: Summary of shared data structure sizes in megabytes.



906.2 Timing Results for the Tile Rendering PhaseIn this section timing results for the rendering phase are discussed. For each view ofeach dataset, measurements were collected for image sizes of 2562 and 5122, tile sizes of 162and 82 for the 2562 images (generating 256 and 1024 tasks respectively) and tile sizes of322 and 162 for the 5122 images (again generating 256 and 1024 tasks respectively). Theserendering con�gurations were run on 10, 20, 40, 60, 80, 100, and 110 processors in orderto study the scalability of the approach. Measurements of sequential rendering times wereobtained for the blunt �n, post, and delta wing datasets; the shuttle dataset is too large torender using one processing node without excessive paging invalidating the measurement.6.2.1 Blunt Fin DatasetCon�guration for 2562 image View 1 View 2Local memory, 1 tile 206.8 223.4Shared memory, 1 tile 208.4 223.6Shared memory, 256 tiles 228.2 236.6Shared memory, 1024 tiles 249.2 250.1Table 6.5: Sequential execution times (T1) for the blunt �n dataset in seconds usingvarious con�gurations in order to show the e�ect of the use of shared memory andmultiple image tiles. The times given are for a 2562 image.Breaking the image into tiles for rendering by di�erent processors introduces an ine�-ciency due to the loss of coherence. Table 6.5 gives sequential execution times (T1) for bothviews of the blunt �n dataset, for various tile sizes. The �rst row lists the time to executeon one processor using one tile and only local memory. The second row lists the time toexecute on one processor using one tile and shared memory for the data structures that arenormally shared during parallel execution. The third and fourth rows give execution timeson one processor using shared memory with the image broken up into 256 and 1024 tiles re-spectively. It can be seen that the move from local to shared memory does not signi�cantlya�ect the time required to render an image. This is due to the e�cient local storage of activecell faces as described in chapter 5. However, breaking the image up into tiles does havea signi�cant impact on the sequential rendering time. For view 1 of the blunt �n dataset,breaking the 2562 image into 256 tiles of 162 pixels causes a 10.3% increase in the sequentialrendering time, and breaking the image into 1024 tiles of 82 pixels causes a 20.5% increasein the sequential rendering time. For view 2 of the blunt �n dataset, breaking the 2562image into 256 tiles of 162 pixels causes a 5.9% increase in the sequential rendering time,and breaking the image into 1024 tiles of 82 pixels causes a 12% increase in the sequentialrendering time. View 1 shows most of the dataset, and view 2 is a closeup of the edge ofthe blunt �n. It would seem intuitive that the image having more coherence (view 2) woulddisplay a larger increase in rendering time due to loss of coherence. The fact that view 1contains roughly twice as many faces as view 2 (see table 6.2), coupled with the fairly smallamount of coherence in either image (see table 6.3), explains the counter-intuitive results.
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Figure 6.13: Speedup graph for a 2562 image of view 1 of the blunt �n dataset.
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Figure 6.14: Execution pro�le for a 2562 image of view 1 of the blunt �n dataset.
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Figure 6.15: Speedup graph for a 2562 image of view 2 of the blunt �n dataset.
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Figure 6.16: Execution pro�le for a 2562 image of view 2 of the blunt �n dataset.
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Figure 6.17: Speedup graph (relative to T10 = 765:9 using 256 tiles) for a 5122image of view 1 of the blunt �n dataset.
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Figure 6.18: Speedup graph (relative to T10884:5 using 256 tiles) for a 5122 imageof view 2 of the blunt �n dataset.



94View 1 - 2562 image - see �gure 6.1256 tiles 1024 tilesn Tn Rn Bn Sn En Tn Rn Bn Sn En2 117.1 234.2 0 1.8 88.3 127.6 255.1 0 1.6 81.010 23.7 234.4 1.2 8.7 87.3 25.5 254.9 0 8.1 81.020 12.2 234.9 3.9 17.0 84.8 12.8 255.1 0 16.2 80.840 6.4 236.3 6.9 32.3 80.8 6.5 256.8 0.7 31.8 79.560 4.5 240.4 8.8 46.0 76.6 4.4 259.5 1.4 47.0 78.380 4.4 239.0 31.5 47.0 58.8 3.4 263.2 1.8 60.8 76.0100 4.3 243.6 42.4 48.1 48.1 2.8 266.2 2.9 73.9 73.9110 4.3 247.8 46.5 48.1 43.7 2.5 268.5 3.3 82.7 75.2View 2 - 2562 image - see �gure 6.2256 tiles 1024 tilesn Tn Rn Bn Sn En Tn Rn Bn Sn En2 122.0 243.8 0 1.8 91.6 128.9 257.7 0 1.7 86.610 24.7 244.7 1.1 9.0 90.4 25.9 257.8 0.4 8.6 86.320 12.5 245.4 1.8 17.9 89.4 13.1 259.3 0.8 17.1 85.340 6.4 244.0 5.3 34.9 87.3 6.6 258.8 1.4 33.8 84.660 4.4 244.1 6.4 50.8 84.6 4.4 260.1 1.8 50.8 84.680 3.4 245.3 10.1 65.7 82.1 3.4 261.7 3.4 65.7 82.1100 2.9 247.2 15.2 77.0 77.0 2.8 263.1 4.1 79.8 79.8110 2.7 247.9 14.0 82.7 75.2 2.5 264.0 3.6 89.4 81.2Table 6.6: Rendering phase performance measurements for the blunt �n dataset fortwo di�erent tile sizes. Generated image size is 2562, n is the number of processors,Tn is the execution time in seconds, Rn is the sum of the rendering times on allprocessors in seconds, Bn is the percentage of load imbalance, Sn is the speedup,and En is the e�ciency.Table 6.6 gives performance measurements for both views of the blunt �n dataset for2562 images. Speedup graphs for view 1 are given in �gure 6.13, and for view 2 in �gure6.15. Speedup and e�ciency have been calculated using the best sequential times (obtainedusing one image tile and all local memory) of T1 = 206:8 seconds for view 1, and T1 = 223:4seconds for view 2. The results show a direct trade-o� between maximizing the utilizationof spatial coherence through the use of larger tile sizes, and promoting good scalability byminimizing load imbalance through the use of smaller tile sizes and dynamic task generation.At 110 processors the approach of using smaller tiles to reduce load imbalance is moree�ective, despite the increases due to loss of coherence. This is because the more e�ectiveload balancing provides near-linear speedup as n increases. As the execution pro�les in�gures 6.14 and 6.16 show, this is especially true for views that contain tiles that varygreatly in the number of cell faces projecting to them, and/or in their depth complexity. Inview 1, the grid has been rotated about the x and y axes, and there is some empty space atthe top and bottom of the image. This produces a large variation in the number of cell facesthat project to any given tile. The largest task contains 4310 cell faces when the image is



95View 1 - 5122 image - see �gure 6.1256 tiles 1024 tilesn Tn Rn Bn Tn Rn Bn10 77.4 765.9 1.1 80.3 803.1 020 39.6 764.1 3.5 40.3 803.4 040 20.7 767.4 7.3 20.4 807.0 0.360 14.5 774.4 10.9 13.8 812.8 1.780 11.5 777.2 15.5 10.5 819.7 2.2100 10.2 785.5 22.7 8.6 826.2 3.7110 10.0 786.2 28.6 7.9 828.6 3.8View 2 - 5122 image - see �gure 6.2256 tiles 1024 tilesn Tn Rn Bn Tn Rn Bn10 89.5 884.5 1.2 91.4 911.2 0.320 45.4 882.3 2.9 46.0 914.6 0.640 24.1 884.5 8.0 23.1 913.8 0.960 16.0 886.7 7.3 15.6 918.0 2.180 12.6 892.0 11.6 11.8 924.4 2.3100 10.0 894.9 10.6 9.6 928.8 3.5110 9.4 899.0 12.7 8.8 930.0 3.9Table 6.7: Rendering phase performance measurements for the blunt �n dataset fortwo di�erent tile sizes. Generated image size is 5122, n is the number of processors,Tn is the execution time in seconds, Rn is the sum of the rendering times on allprocessors in seconds, and Bn is the percentage of load imbalance.broken into 1024 tiles, and 9253 cell faces for 256 tiles. In view 2, the grid has been rotatedabout the x axis and has been zoomed up signi�cantly. Some cell faces will project outsidethe image and be clipped during the parallel view sort, and the remaining ones will be largerwith respect to the tile size, and more evenly distributed over the image. The largest taskin view 2 contains 1368 cell faces for an image with 1024 tiles, and 2695 cell faces for 256tiles. Although view 1 contains roughly twice as many cell faces as view 2, it also has 22.8%of its pixels empty, as opposed to 2.7% for view 2 (see table 6.2). This explains why thesequential rendering time for view 1 is larger than the sequential rendering time for view 2,even though it seems intuitive that view 2 would take less time due to fewer cell faces andmore coherence.Examination of the total time spent rendering over all processors, (Rn) in table 6.6,shows that the storage of active cell faces in local memory minimizes the increase incontention as the number of processors increases. As n goes from 2 to 110 processors,the total time spent rendering over all processors increases 5.8% and 5.3% for view 1 using256 and 1024 image tiles respectively, and 1.7% and 2.4% for view 2. Again, the particularviewing transformation has an e�ect in that the increase in contention is higher in thoseimages having larger numbers of small cell faces per tile.Table 6.7 gives performance measurements for rendering 5122 images. As sequential



96execution times (T1) could not be reliably obtained, speedup graphs are computed relativeto the execution time using 10 processors and 256 image tiles. The speedup graphs aregiven in �gures 6.17 and 6.18. Rendering statistics for the larger image size show the samecharacteristics, with the speedup for increasing n being more nearly linear when using moretasks and smaller image tiles.6.2.2 Post DatasetCon�guration for 2562 image View 1 View 2 View 3Shared memory, 1 tile 255.2 321.7 397.5Shared memory, 256 tiles 288.5 357.4 438.0Shared memory, 1024 tiles 324.5 402.6 488.2Table 6.8: Sequential execution times (T1) for the post dataset in seconds usingvarious con�gurations in order to show the e�ect of multiple image tiles. The timesgiven are for a 2562 image.Table 6.8 gives sequential execution times (T1) for all three views of the post dataset, forvarious tile sizes. This dataset is too large to be rendered using all local memory, so onlyshared memory con�gurations were measured. The �rst row lists the time to execute on oneprocessor using one tile and shared memory for the data structures that are normally sharedduring parallel execution. The second and third rows give execution times on one processorusing shared memory with the image broken up into 256 and 1024 tiles respectively. Again,breaking the image up into tiles has a signi�cant impact on the sequential rendering time.For view 1 of the post dataset, breaking the 2562 image into 256 tiles of 162 pixels causes a13.0% increase in the sequential rendering time, and breaking the image into 1024 tiles of82 pixels causes a 27.2% increase in the sequential rendering time. For view 2 of the postdataset, breaking the 2562 image into 256 tiles of 162 pixels causes a 11.1% increase in thesequential rendering time, and breaking the image into 1024 tiles of 82 pixels causes a 25.1%increase in the sequential rendering time. For view 3 of the post dataset, breaking the 2562image into 256 tiles of 162 pixels causes a 10.2% increase in the sequential rendering time,and breaking the image into 1024 tiles of 82 pixels causes a 22.8% increase in the sequentialrendering time.Table 6.9 gives the performance measurements for the post dataset. Speedup ande�ciency have been calculated using the best sequential times obtainable (one image tileusing shared memory) of T1 = 255:2 seconds for view 1, T1 = 321:7 seconds for view 2,and T1 = 397:5 seconds for view 3. Speedup graphs and execution pro�les are given in�gures 6.19 and 6.20 for view 1, �gures 6.21 and 6.22 for view 2, and �gures 6.23 and 6.24for view 3. These �gures again show the trade-o� between the ine�ciency due to lossof coherence when breaking the image into smaller tiles, and the ine�ciency due to loadimbalance as n increases when using larger tiles. Using 1024 tiles, all three views producenearly linear speedup. For smaller values of n (< 80), better execution times (Tn) resultfrom using larger image tiles. View 1 contains the entire grid, meaning that there are manysmall cell faces and some areas of empty space in the image due to the shape of the grid.This view produces the most di�cult load balancing requirements for larger image tiles. In
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Figure 6.19: Speedup graph for a 2562 image of view 1 of the post dataset.
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Figure 6.20: Execution pro�le for a 2562 image of view 1 of the post dataset.
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Figure 6.21: Speedup graph for a 2562 image of view 2 of the post dataset.
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Figure 6.22: Execution pro�le for a 2562 image of view 2 of the post dataset.
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Figure 6.23: Speedup graph for a 2562 image of view 3 of the post dataset.
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Figure 6.24: Execution pro�le for a 2562 image of view 3 of the post dataset.
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Figure 6.25: Speedup graph (relative to T10 = 925:1) using 256 tiles) for a 5122image of view 1 of the post dataset.
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Figure 6.26: Speedup graph (relative to T10 = 1141:9 using 256 tiles) for a 5122image of view 2 of the post dataset.
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Figure 6.27: Speedup graph (relative to T10 = 1429:7 using 256 tiles) for a 5122image of view 3 of the post dataset.view 2 we have zoomed in on the center of the grid. Many cell faces will be outside theimage and will be clipped during the parallel viewing transformation. In addition, there isa region of empty space in the middle, and the individual cell faces are larger relative tothe tile size. View 3 is a rotated version of view 2. The grid has been rotated about they axis to show the e�ect of rendering through a nonconvex grid with a void. The result ofthe rotation is to give a fairly consistent depth complexity over the entire image. This factis evidenced by the reduction in load imbalance over the other two views when using largerimage tiles. For an image broken into 1024 tiles, the largest task sizes are 5234 cell faces inview 1, 5847 cell faces in view 2, and 1852 cell faces in view 3. For an image broken into256 tiles, the largest tasks are 12104, 11210, and 4492, respectively.Examination of the total rendering time Rn in table 6.9 shows a minimal increase incontention as the number of processors increases. As n goes from 10 to 110 processors, thetotal time spent rendering over all processors increases 1.6% and 4.1% for view 1 with 256and 1024 image tiles respectively, 1.1% and 3.2%for view 2, and 2.7% and 3.2% for view 3.The performance measurements for 5122 images given in table 6.10 show characteristicssimilar to those for 2562 images. The speedup is more nearly linear using 1024 tiles, andthe point at which the improved load balancing o�sets the loss of coherence to producebetter execution times (Tn) happens earlier (n > 60). Since sequential execution times (T1)could not be reliably obtained, speedup graphs for 5122 images are computed relative tothe execution time using 10 processors (�gures 6.25, 6.26, and 6.27).



102View 1 - 2562 image - see �gure 6.3256 tiles 1024 tilesn Tn Rn Bn Sn En Tn Rn Bn Sn En10 30.5 299.1 1.7 8.4 83.7 33.3 331.9 0 7.7 76.720 15.2 294.0 3.4 16.8 83.9 16.7 331.3 1.0 15.3 76.440 7.9 295.6 6.4 32.3 80.8 8.5 334.5 2.0 30.0 75.160 5.5 298.0 8.9 46.4 77.3 5.8 338.6 3.0 44.0 73.380 4.9 300.0 22.7 52.1 65.1 4.4 340.9 3.5 58.0 72.5100 4.9 302.5 38.3 52.1 52.1 3.6 343.3 3.9 70.9 70.9110 4.9 303.8 43.7 52.1 47.3 3.3 345.6 4.1 77.3 70.3View 2 - 2562 image - see �gure 6.4256 tiles 1024 tilesn Tn Rn Bn Sn En Tn Rn Bn Sn En10 37.7 371.8 1.5 8.5 85.3 41.3 412.0 0.3 7.8 77.920 18.7 365.3 2.3 17.2 86.0 20.7 411.6 0.6 15.5 77.740 9.6 366.2 4.5 33.5 83.8 10.5 413.3 1.2 30.6 76.660 6.8 370.4 8.9 47.3 78.8 7.1 416.1 2.0 45.3 75.580 5.3 372.0 12.6 60.7 75.9 5.4 419.7 2.1 59.6 74.5100 4.8 374.2 22.1 67.0 67.0 4.4 423.3 2.9 73.1 73.1110 4.8 375.9 28.6 67.0 60.9 4.0 425.2 3.1 80.4 73.1View 3 - 2562 image - see �gure 6.5256 tiles 1024 tilesn Tn Rn Bn Sn En Tn Rn Bn Sn En10 45.6 451.2 1.2 8.7 87.2 49.8 495.5 0.4 8.0 79.820 22.9 445.4 2.7 17.4 86.8 25.0 495.6 0.9 15.9 79.540 11.9 445.9 6.5 33.4 83.5 12.6 496.7 1.4 31.5 78.960 8.2 449.2 8.4 48.5 80.8 8.5 499.4 2.2 46.8 77.980 6.5 454.7 12.1 61.2 76.4 6.5 503.4 2.7 61.2 76.4100 5.2 460.4 11.6 76.4 76.4 5.3 507.8 3.1 75.0 75.0110 5.0 463.2 15.6 79.5 72.3 4.9 511.2 4.5 81.1 73.7Table 6.9: Rendering phase performance measurements for the post dataset fortwo di�erent tile sizes. Generated image size is 2562, n is the number of processors,Tn is the execution time in seconds, Rn is the sum of the rendering times on allprocessors in seconds, Bn is the percentage of load imbalance, Sn is the speedup,and En is the e�ciency.



103View 1 - 5122 image - see �gure 6.3256 tiles 1024 tilesn Tn Rn Bn Tn Rn Bn10 94.7 925.1 2.3 98.6 980.9 0.520 48.0 911.7 5.0 49.6 979.0 1.240 25.2 915.0 9.0 25.2 983.9 2.360 17.3 919.5 11.1 17.1 991.1 3.280 13.1 925.1 11.4 13.0 996.9 4.2100 12.0 930.5 22.4 10.6 1003.4 5.5110 12.1 934.1 29.4 9.7 1006.3 5.4View 2 - 5122 image - see �gure 6.4256 tiles 1024 tilesn Tn Rn Bn Tn Rn Bn10 115.6 1141.9 1.3 121.7 1212.8 0.320 57.3 1128.1 1.6 60.9 1211.9 0.540 30.3 1131.8 6.6 30.8 1214.3 1.460 21.5 1138.8 11.7 20.8 1223.9 1.780 17.0 1143.5 16.0 15.7 1229.4 2.3100 13.1 1149.4 12.2 13.0 1236.3 4.9110 12.9 1153.8 18.3 11.9 1241.2 4.8View 3 - 5122 image - see �gure 6.5256 tiles 1024 tilesn Tn Rn Bn Tn Rn Bn10 145.9 1429.7 2.0 151.0 1505.2 0.320 73.4 1415.9 3.5 75.8 1506.6 0.640 38.0 1418.5 6.6 38.4 1507.6 1.860 26.7 1425.5 10.9 25.8 1518.4 2.080 20.6 1433.6 13.0 19.8 1527.9 3.2100 16.8 1442.9 14.0 15.9 1533.8 3.7110 16.0 1449.2 17.8 14.7 1537.2 4.7Table 6.10: Rendering phase performance measurements for the post dataset fortwo di�erent tile sizes. Generated image size is 5122, n is the number of processors,Tn is the execution time in seconds, Rn is the sum of the rendering times on allprocessors in seconds, and Bn is the percentage of load imbalance.



1046.2.3 Delta Wing DatasetCon�guration for 2562 image View 1 View 2Shared memory, 1 tile 317.1 384.0Shared memory, 256 tiles 336.2 405.2Shared memory, 1024 tiles 360.2 430.7Table 6.11: Sequential execution times (T1) for the delta wing dataset in secondsusing various con�gurations in order to show the e�ect of multiple image tiles.The times given are for a 2562 image.Table 6.11 gives sequential execution times (T1) for both views of the delta wing dataset,for various tile sizes. This dataset is too large to be rendered using all local memory, so onlyshared memory con�gurations were measured. The �rst row lists the time to execute on oneprocessor using one tile and shared memory for the data structures that are normally sharedduring parallel execution. The second and third rows give execution times on one processorusing shared memory with the image broken up into 256 and 1024 tiles respectively. Again,breaking the image up into tiles has a signi�cant impact on the sequential rendering time.For view 1 of the delta wing dataset, breaking the 2562 image into 256 tiles of 162 pixelscauses a 6% increase in the sequential rendering time, and breaking the image into 1024tiles of 82 pixels causes a 13.6% increase in the sequential rendering time. For view 2 ofthe delta wing dataset, breaking the 2562 image into 256 tiles of 162 pixels causes a 5.5%increase in the sequential rendering time, and breaking the image into 1024 tiles of 82 pixelscauses a 12.2% increase in the sequential rendering time.Table 6.12 gives the performance measurements for both views of the delta wing datasetfor 2562 images. Speedup and e�ciency have been calculated using the sequential times(obtained using one image tile and shared memory) of T1 = 317:1 seconds for view 1,and T1 = 384:0 seconds for view 2. Speedup graphs and execution pro�les are given in�gures 6.28 and 6.29 for view 1, and �gures 6.30 and 6.31 for view 2. Both views producenearly linear speedup using 1024 image tiles. For smaller values of n better execution times(Tn) result from using larger image tiles due to the higher utilization of coherence andreduced load balancing ine�ciencies. View 1 contains the entire grid, meaning that thereare many small cell faces and some areas of empty space in the image due to the wing shapeof the grid. This large variation in task size produces load balancing di�culties when using256 tiles as seen in �gure 6.29. In view 2, the grid has been rotated about the x axis andzoomed up to �ll the image.For an image formed of 1024 tiles, the largest task in view 1 contains 6187 cell faces, andthe largest task in view 2 contains 4318 cell faces. For an image with 256 tiles the largesttasks are 14903 and 9111 respectively. As n goes from 10 to 110 processors, the total timespent rendering over all processors (Rn) increases 8.4% and 7.2% for view 1 using 256 and1024 tiles respectively, and 2.9% and 2.2% for view 2. These �gures again re
ect the factthat the image in which the cell faces are fewer, and larger with respect to the tile size,require fewer remote memory accesses, thus reducing the rate at which contention increaseswhen processors are added.
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Figure 6.28: Speedup graph for a 2562 image of view 1 of the delta wing dataset.
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Figure 6.29: Execution pro�le for a 2562 image of view 1 of the delta wing dataset.
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Figure 6.30: Speedup graph for a 2562 image of view 2 of the delta wing dataset.
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Figure 6.31: Execution pro�le for a 2562 image of view 2 of the delta wing dataset.



107
*�

*�

Speedup�

ideal�

512x512 image, 1024 tiles�

512x512 image, 256 tiles�

70�

*�

60�

50�

100�90�80�70�60�50�40�30�20�10�

10�

20�

30�

40�

110�

80�

Processors�

90�

100�

*�

*�*�

*�*�

*�*�

*�

*�

*� *�

*�

Figure 6.32: Speedup graph (relative to T10 = 1036:7 using 256 image tiles) for a5122 image of view 1 of the delta wing dataset.
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Figure 6.33: Speedup graph (relative to T10 = 1479:9 using 256 image tiles) for a5122 image of view 2 of the delta wing dataset.



108View 1 - 2562 image - see �gure 6.6256 tiles 1024 tilesn Tn Rn Bn Sn En Tn Rn Bn Sn En10 34.5 345.1 0.1 9.2 92.0 37.2 371.9 0 8.5 85.220 17.4 346.4 0.5 18.2 91.1 18.7 373.5 0 17.0 84.840 8.8 346.6 1.7 36.0 90.0 9.4 373.9 0.2 33.7 84.360 6.8 351.2 13.8 46.6 77.7 6.4 381.6 0.4 49.5 82.680 6.9 361.1 33.8 46.0 57.4 4.9 389.6 0.9 64.7 80.1100 6.7 369.8 44.5 47.3 47.3 4.0 396.2 1.1 79.3 79.3110 6.6 374.1 48.1 48.0 43.7 3.7 398.6 1.4 85.7 77.9View 2 - 2562 image - see �gure 6.7256 tiles 1024 tilesn Tn Rn Bn Sn En Tn Rn Bn Sn En10 41.9 416.8 0.4 9.2 91.6 44.8 447.2 0.2 8.6 85.720 21.3 417.5 1.9 18.0 90.1 22.5 448.5 0.5 17.1 85.340 10.7 415.1 3.3 35.9 89.7 11.2 445.7 0.9 34.3 85.760 7.4 417.9 5.4 51.9 86.5 7.6 448.0 1.8 50.5 84.280 5.7 422.9 6.6 67.4 84.2 5.8 453.9 2.4 66.2 82.8100 5.3 426.9 19.4 72.5 72.5 4.8 458.6 3.1 80.0 80.0110 5.1 429.0 21.3 75.3 68.5 4.4 457.1 3.2 87.3 79.3Table 6.12: Rendering phase performance measurements for the delta wing datasetfor two di�erent tile sizes. Generated image size is 2562, n is the number ofprocessors, Tn is the execution time in seconds, Rn is the sum of the renderingtimes on all processors in seconds, Bn is the percentage of load imbalance, Sn isthe speedup, and En is the e�ciency.Table 6.13 gives performance measurements for rendering 5122 images. The speedupgraphs for view 1 are given in �gures 6.32, and in 6.33 for view 2. Since sequential executiontimes (T1) could not be reliably obtained, speedup graphs for 5122 images are computedrelative to the execution time using 10 processors.
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View 1 - 5122 image - see �gure 6.6256 tiles 1024 tilesn Tn Rn Bn Tn Rn Bn10 103.7 1036.7 0 108.7 1087.2 020 52.1 1039.0 0.2 54.4 1088.4 040 26.3 1035.3 1.4 27.1 1083.2 0.160 17.7 1043.2 1.7 18.2 1092.5 0.180 15.9 1054.1 17.0 13.8 1103.1 0.3100 16.0 1068.9 32.8 11.2 1114.7 0.4110 16.1 1074.5 39.2 10.3 1121.0 0.5View 2 - 5122 image - see �gure 6.7256 tiles 1024 tilesn Tn Rn Bn Tn Rn Bn10 148.4 1479.9 0.3 152.8 1525.7 0.120 75.2 1482.7 1.4 76.6 1525.9 0.440 38.3 1473.1 3.8 38.2 1514.9 1.060 26.3 1481.2 6.0 25.9 1522.7 1.980 20.9 1491.5 10.5 19.7 1531.1 2.8100 18.3 1500.7 17.9 16.1 1540.4 3.5110 18.3 1506.1 25.2 14.6 1544.9 3.9Table 6.13: Rendering phase performance measurements for the delta wing datasetfor two di�erent tile sizes. Generated image size is 5122, n is the number ofprocessors, Tn is the execution time in seconds, Rn is the sum of the renderingtimes on all processors in seconds, and Bn is the percentage of load imbalance.



1106.2.4 Shuttle DatasetThe shuttle dataset is the largest and most complex of the four datasets tested. Itis also probably most representative of the type of dataset that might be generated on amassively parallel system. Table 6.14 gives the performance measurements for all viewsof the shuttle dataset for 2562 images, and table 6.15 gives performance measurements for5122 images. Speedup graphs are given in �gures 6.34 to 6.41. Speedup and e�ciency havebeen calculated relative to T10 using 256 image tiles due to the di�culty of obtaining a validsequential execution time for such a large dataset. This di�culty also prevents the exactmeasurement of the ine�ciency associated with the loss of coherence when breaking theimage into tiles for sequential execution. However, examination of the statistics collectedshow results strikingly similar to those for the smaller datasets. In fact, the same featuresare present and intensi�ed. Load balancing is much more critical (and more di�cult) onsuch a large, complex, and widely varying dataset. The e�ects of the loss of coherence areapparent in that Rn (the sum of the rendering times over all processors) is smaller whenusing larger tiles.As for previous datasets, the results show a direct trade-o� between maximizing theutilization of spatial coherence through the use of larger tile sizes, and promoting goodscalability by minimizing load imbalance through the use of smaller tile sizes and dynamictask generation. For this dataset, even more than the others, the approach of using smallertiles to reduce load imbalance is clearly more e�ective, despite the increases due to loss ofcoherence. The time to render an image using 110 processors is two to three times fasterusing 1024 tiles than when using 256 tiles. Again, this is because the more e�ective loadbalancing provides near-linear speedup as n increases, as examination of the execution times(Tn) for both 2562 and 5122 images reveals.The image in view 1 contains the entire grid. The majority of the complexity is in thecenter section immediately surrounding the orbiter, external tank and solid rocket booster.The view is from the 
at side of the hemisphere, thus the unobstructed shuttle geometrycan be seen in the center. The largest task size for this view is 13472 cell faces when using1024 tiles and 40468 cell faces when using 256 tiles. Inspection of the execution timingsin tables 6.14 and 6.15 show that load balancing is di�cult for this view, even when using1024 tiles. Using 10 processors to generate a 2562 image, the time to render using 1024tiles is 8.1% slower than the time to render using 256 tiles. This gives an estimate of theine�ciency due to the loss of coherence when using 1024 rather than 256 image tiles. As ngoes from 10 to 110, the sum of the rendering times on all processors, Rn, increases 8.9%using 256 tiles and 18.4% using 1024 tiles.View 2 is a zoomed up and rotated version of view 1. The view is still from the 
at sideof the hemisphere, thus the unobstructed shuttle geometry can be seen. The largest tasksize for this view is 25014 cell faces when using 1024 tiles and 62687 cell faces when using256 tiles. Using 10 processors to generate a 2562 image, the time to render using 1024 tilesis 6.8% slower than the time to render using 256 tiles, giving an estimate of the ine�ciencydue to the loss of coherence. At 110 processors however, the time to render using 1024 tilesis almost half the time required using 256 tiles. As n goes from 10 to 110, the sum of therendering times on all processors, Rn, increases 6.5% using 256 tiles and 7.4% using 1024tiles.
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Figure 6.34: Speedup graph (relative to T10 = 468:1 using 256 image tiles) for a2562 image of view 1 of the shuttle dataset.
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Figure 6.35: Speedup graph (relative to T10 = 1076:6 using 256 image tiles) for a2562 image of view 2 of the shuttle dataset.



112
70�

60�

50�

100�90�80�70�60�

*�

50�40�30�20�10�

10�

20�

30�

40�

110�

80�

Processors�

90�

100�
*�

*�

Speedup�

ideal�

256x256 image, 1024 tiles�

256x256 image, 256 tiles�

*�*�

*�*�

*�

*�

*�

*�

*�

*� *� *�

*�

Figure 6.36: Speedup graph (relative to T10 = 1006:7 using 256 image tiles) for a2562 image of view 3 of the shuttle dataset.
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Figure 6.37: Speedup graph (relative to T10 = 944:1 using 256 image tiles) for a2562 image of view 4 of the shuttle dataset.
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*�*�Figure 6.38: Speedup graph (relative to T10 = 1488:5 using 256 image tiles) for a5122 image of view 1 of the shuttle dataset.
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Figure 6.39: Speedup graph (relative to T10 = 2839:3 using 256 image tiles) for a5122 image of view 2 of the shuttle dataset.
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Figure 6.40: Speedup graph (relative to T10 = 3211:7 using 256 image tiles) for a5122 image of view 3 of the shuttle dataset.
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Figure 6.41: Speedup graph (relative to T10 = 2636:4 using 256 image tiles) for a5122 image of view 4 of the shuttle dataset.



115View 1 - 2562 image - see �gure 6.8256 tiles 1024 tilesn Tn Rn Bn Tn Rn Bn10 47.0 468.1 0.4 50.7 506.4 0.120 23.7 468.6 1.0 25.4 506.4 0.240 18.9 482.0 36.1 12.9 515.5 0.460 18.8 492.4 56.2 8.7 519.3 0.880 18.9 498.8 67.0 7.1 559.0 1.3100 19.5 515.2 73.5 6.5 556.3 14.8110 17.0 509.7 72.6 7.1 599.5 23.1View 2 - 2562 image - see �gure 6.9256 tiles 1024 tilesn Tn Rn Bn Tn Rn Bn10 108.0 1076.6 0.3 115.1 1150.1 0.120 54.8 1090.5 0.6 58.5 1167.4 0.340 27.9 1097.9 1.5 29.6 1177.0 0.560 24.9 1094.3 26.6 19.8 1179.5 0.880 25.9 1130.8 45.4 15.1 1194.6 1.1100 24.9 1124.2 54.8 12.4 1222.5 1.3110 26.6 1146.1 60.7 11.4 1235.2 1.7View 3 - 2562 image - see �gure 6.10256 tiles 1024 tilesn Tn Rn Bn Tn Rn Bn10 101.2 1006.7 0.5 108.6 1085.3 0.120 51.5 1019.1 1.1 55.3 1103.4 0.240 34.1 1040.4 23.7 27.9 1109.2 0.560 34.7 1021.4 50.9 18.5 1101.6 0.780 33.9 1025.3 62.2 14.1 1115.1 0.9100 32.9 1029.8 68.6 11.5 1133.1 1.4110 32.9 1037.1 71.2 10.5 1138.7 1.4View 4 - 2562 image - see �gure 6.11256 tiles 1024 tilesn Tn Rn Bn Tn Rn Bn10 94.9 944.1 0.5 102.1 1020.6 020 48.1 955.8 0.7 51.4 1026.6 0.240 24.5 965.8 1.6 26.1 1041.4 0.460 19.3 959.8 16.9 17.4 1033.8 0.680 19.3 968.2 37.4 13.2 1045.4 0.8100 19.7 989.2 49.8 10.7 1061.1 1.2110 19.7 996.4 53.8 9.9 1068.2 1.3Table 6.14: Rendering phase performance measurements for the shuttle dataset.



116View 1 - 5122 image - see �gure 6.8256 tiles 1024 tilesn Tn Rn Bn Tn Rn Bn10 149.7 1488.5 0.6 156.0 1557.4 0.220 76.5 1515.5 1.0 79.4 1583.6 0.340 51.1 1517.6 25.7 39.7 1579.6 0.560 50.5 1510.9 50.1 27.0 1602.3 0.980 50.7 1534.3 62.1 20.6 1628.6 1.3100 50.9 1543.4 69.7 20.3 1666.0 17.8110 51.9 1554.9 72.7 20.4 1673.7 25.3View 2 - 5122 image - see �gure 6.9256 tiles 1024 tilesn Tn Rn Bn Tn Rn Bn10 285.5 2839.3 0.5 306.5 3061.5 0.120 146.2 2890.6 1.1 152.1 3037.0 0.240 75.0 2890.6 3.8 76.2 3034.9 0.460 74.6 2877.7 35.7 51.4 3061.4 0.780 75.0 2900.6 51.7 38.7 3062.4 1.0100 75.3 2932.3 61.0 31.6 3105.8 1.5110 80.5 2947.8 66.6 29.1 3123.8 2.4View 3 - 5122 image - see �gure 6.10256 tiles 1024 tilesn Tn Rn Bn Tn Rn Bn10 322.8 3211.7 0.5 336.2 3360.0 0.120 163.1 3222.4 1.2 169.1 3372.0 0.340 90.3 3262.9 9.6 85.5 3400.5 0.560 92.0 3245.6 41.2 57.6 3424.9 0.880 90.7 3255.5 55.1 43.2 3416.1 1.1100 90.7 3271.5 63.9 35.0 3445.9 1.4110 90.9 3287.1 67.1 32.0 3457.2 1.6View 4 - 5122 image - see �gure 6.11256 tiles 1024 tilesn Tn Rn Bn Tn Rn Bn10 265.4 2636.4 0.7 276.2 2760.6 0.120 133.9 2647.7 1.1 138.8 2770.4 0.240 68.0 2651.0 2.5 70.3 2798.6 0.560 57.0 2667.1 21.9 47.4 2818.1 1.080 57.0 2690.7 41.0 35.6 2812.8 1.2100 57.0 2712.8 52.3 28.9 2837.2 1.8110 57.1 2719.9 56.6 26.4 2846.5 1.9Table 6.15: Rendering phase performance measurements for the shuttle dataset.



117In view 3 the grid as positioned in view 1 has been rotated about the y axis. The 
atside of the hemisphere is now on the right, and the shuttle geometry is embedded in the
ow �eld. The majority of the complexity is on the right side of the image, immediatelysurrounding the orbiter, external tank and solid rocket booster. The largest task size forthis view is 23678 cell faces when using 1024 tiles and 79360 cell faces when using 256 tiles.Using 10 processors to generate a 2562 image, the time to render using 1024 tiles is 7.8%slower than the time to render using 256 tiles. Using 110 processors, the time to renderusing 256 tiles is more than three times slower than the time required when using 1024 tiles.As n goes from 10 to 110, the sum of the rendering times on all processors, Rn, increases3.0% using 256 tiles and 4.9% using 1024 tiles.Finally, in view 4, the grid is an even further zoomed up and rotated version of view 1.The largest task size for this view is 15084 cell faces when using 1024 tiles and 39533 cellfaces when using 256 tiles. Using 10 processors to generate a 2562 image, the time to renderusing 1024 tiles is 8.1% slower than the time to render using 256 tiles, giving an estimate ofthe ine�ciency due to the loss of coherence. At 110 processors however, the time to renderusing 1024 tiles is again half the time required using 256 tiles. As n goes from 10 to 110,the sum of the rendering times on all processors, Rn, increases 5.5% using 256 tiles and4.7% using 1024 tiles.6.2.5 Summary of Rendering Phase ResultsThe algorithm described in chapter 5 has been tested on many variations of dataset size,image size, number of image tiles, viewing speci�cations, and number of processors. Thestatistics compiled from these test cases allow several conclusions to be drawn:� The results consistently show a direct tradeo� between maximizing the utilization ofspatial coherence through the use of larger tile sizes, and promoting good scalabilityby minimizing load imbalance through the use of smaller tile sizes and dynamic taskgeneration. A larger tile size improves utilization of coherency, but also makes loadbalancing more di�cult as n increases. At 110 processors the approach of usingsmaller tiles to reduce load imbalance is clearly more e�ective, despite the increasesdue to loss of coherence. This is because the more e�ective load balancing providesnear-linear speedup as n increases.� The results show that the storage of active cell faces in local memory minimizesthe increase in contention as the number of processors increases. The design of thealgorithm is such that each remotely stored cell face projecting to an image tile willbe accessed once in order to store locally the edges de�ning the cell. This approachreduces the number of remote memory references required during a rendering task,thus enhancing the scalability of the algorithm.� As expected, the speci�c viewing transformation can have a signi�cant e�ect onperformance results. Some views of the same dataset were shown to have very di�erentload balancing requirements for instance. Zooming in on a dataset causes many cellfaces to be clipped during the parallel view sort, reducing the number of cell faces thatmust be dealt with during the rendering phase. Also, smaller increases in contentioncan be seen for images making better use of coherence by containing cell faces thatare larger with respect to tile size.



118� Also as expected, the speci�c grid can have a signi�cant e�ect of the performanceresults. Many structured and unstructured grids are nonconvex and it is quite likelythat a viewing speci�cation desired by the user will contain empty space in the image.For example, the �rst view desired may be one in which the entire grid exactly �llsthe image. Due to the nonrectilinear shape of the grid, this makes it necessary thatthere be portions of the image to which nothing projects. In addition, the largest gridscurrently in use, and the ones most likely to be in use on massively parallel systems,vary widely in their complexity. This was seen to have a signi�cant impact on loadbalancing requirements.In analyzing the performance of any parallel rendering algorithm, it is clearly very importantto measure performance on a wide variety of datasets, viewing speci�cations, and any otherrelevant con�guration parameters.6.2.6 Local Storage of Intersection ListsTable 6.16 compares execution times in seconds for the two-phase approach (describedin section 5.5.4) in which the intersection lists are locally stored, and the single-phaseapproach (described in section 5.5) in which they are not. Since this algorithm is memoryintensive and is only intended to be used on many processors, testing was performed using100 processors. Since the goal is the fastest possible image updates, only 2562 images weregenerated using 1024 image tiles. The results indicate that the primary goal of fast imageupdates for a changing transfer function are achieved, especially for the more complexdatasets where image generation using only the compositing phase is two to three timesfaster than for the single-phase algorithm.6.2.7 Reduction of Load Imbalance by Task OrderingIn all of the results given in this chapter, the tasks associated with each tile to berendered have been ordered by descending size. In this section the e�ect of ordering thetask generation by descending size is examined. Task size is de�ned to be the number of cellfaces which project to a given tile. This information is readily available after the sortingphase of the parallel view sort, and can be used to produce an ordering for the tiles indecreasing order by size. Using this ordering, the tile with the most cell faces projectingto it can be generated �rst, and so on. Table 6.17 shows the di�erence in execution time(Tn) and load imbalance (Bn) for execution of 100 processors for all of the images discussedin this chapter. It can be seen that ordering the tasks by size improves load balancingand results in lower execution time in all cases. In the cases where load balancing is mostcritical (as for the highly complex shuttle dataset), ordering the tasks by size improvesperformance considerably. It cannot make up for too large a tile size, however, as can beseen by examining the results using 256 tiles. Overall, task ordering provides a very simpleexpedient for improving load balancing.



119Blunt Fin Dataset generate composite single-phaseintersections intersections approachView 1 (�gure 6.1) T100 1.7 1.4 2.8B100 2.7 24.0 2.9View 2 (�gure 6.2) T100 1.5 1.4 2.8B100 3.9 8.8 4.1Post Dataset generate composite single-phaseintersections intersections approachView 1 (�gure 6.3) T100 2.4 1.5 3.6B100 2.5 19.1 3.9View 2 (�gure 6.4) T100 3.0 1.8 4.4B100 3.0 17.5 2.9View 3 (�gure 6.5) T100 3.6 2.2 5.3B100 8.1 8.9 3.1Delta Wing Dataset generate composite single-phaseintersections intersections approachView 1 (�gure 6.6) T100 3.0 1.5 4.0B100 1.1 17.6 1.1View 2 (�gure 6.7) T100 3.1 2.4 4.8B100 7.5 18.0 3.1Shuttle Dataset generate composite single-phaseintersections intersections approachView 1 (�gure 6.8) T100 7.6 2.2 6.5B100 26.8 32.6 14.8View 2 (�gure 6.9) T100 11.1 2.5 12.4B100 5.8 24.6 1.3View 3 (�gure 6.10) T100 10.3 4.4 11.5B100 18.3 27.1 1.4View 4 (�gure 6.11) T100 8.7 3.4 10.7B100 0.8 30.6 1.2Table 6.16: Summary of the e�ects of storing intersection lists locally in order toprovide fast image updates for changing transfer functions using 100 processors.For the two-phase approach execution time (Tn) and the percentage of load imbal-ance (Bn) are given for both the intersection generation phase and the intersectioncompositing phase. Execution times and load imbalance for the combined single-phase algorithm are also given for comparison. Execution times are in seconds.



120256 tiles 1024 tilesBlunt Fin Dataset tasks not tasks notordered ordered ordered orderedView 1 (�gure 6.1) T100 4.3 4.5 2.8 3.0B100 48.1 42.4 2.9 4.0View 2 (�gure 6.2) T100 2.9 3.9 2.8 3.2B100 15.2 34.4 4.1 13.4256 tiles 1024 tilesPost Dataset tasks not tasks notordered ordered ordered orderedView 1 (�gure 6.3) T100 4.9 5.7 3.6 3.6B100 38.3 46.4 3.9 5.0View 2 (�gure 6.4) T100 4.8 6.0 4.4 4.4B100 22.1 37.3 2.9 4.6View 3 (�gure 6.5) T100 5.2 5.8 5.3 5.3B100 11.6 20.6 3.1 3.7256 tiles 1024 tilesDelta Wing Dataset tasks not tasks notordered ordered ordered orderedView 1 (�gure 6.6) T100 6.7 6.8 4.0 4.5B100 44.5 45.8 1.1 13.2View 2 (�gure 6.7) T100 5.3 8.2 4.8 6.0B100 19.4 47.6 3.1 24.0256 tiles 1024 tilesShuttle Dataset tasks not tasks notordered ordered ordered orderedView 1 (�gure 6.8) T100 19.5 19.9 6.5 7.7B100 73.5 75.2 14.8 30.9View 2 (�gure 6.9) T100 24.9 27.8 12.4 16.6B100 54.8 60.2 1.3 27.9View 3 (�gure 6.10) T100 32.9 35.9 11.5 15.7B100 68.6 71.2 1.4 28.9View 4 (�gure 6.11) T100 19.7 21.8 10.7 11.7B100 49.8 54.9 1.2 9.5Table 6.17: Summary of the e�ects of ordering task generation by task size (de�nedas the number of cell faces which project into a given tile) on load imbalance (B100)and execution times in seconds (T100) for n = 100.



121Blunt Fin Datasetline update shade intersect pix update tile init otherView 1 35 25 16 9 6 9View 2 27 31 18 10 5 9Post Datasetline update shade intersect pix update tile init otherView 1 43 21 14 9 5 8View 2 42 21 14 10 6 7View 3 39 23 15 9 7 7Delta Wing Datasetline update shade intersect pix update tile init otherView 1 44 18 12 9 10 6View 2 33 26 17 10 7 7Shuttle Datasetline update shade intersect pix update tile init otherView 1 42 16 16 9 12 6View 2 50 9 15 13 9 4View 3 39 17 20 11 8 5View 4 36 12 29 9 9 5Table 6.18: Pro�le summary for all images. The percentage of rendering timespent on each of the most time-consuming functions is given.6.2.8 Execution Pro�leThe execution of the algorithm (described in chapter 5) on each test image has beenpro�led using gprof. The typical order of importance was:� The scanline update function which maintains the y active list and creates thex-bucket sort. The most time-consuming parts of this function are the updating ofactive edges, and setting up new edge records when faces become active.� The shade function which performs the integral approximation and compositing steps.� The intersect function which maintains the span records and generates intersections.� The pixel update function which maintains the x active list. This includes the sortof the records in each bucket of the x-bucket sort.� The tile init function sets up the y-bucket sort of the cell faces that project to thetile.� Other requirements, the largest portion of which is made up of various memorymanagement tasks.In several cases the order of importance varied slightly. For example, view 2 of the blunt�n dataset is the only test case in which shading took more time than scanline updating.In three out of four of the shuttle images, intersection generation was more time consumingthan shading. The percentages of time spent for each of these functions are summarized intable 6.18.



122View 1 - 2562 image - see �gure 6.1256 tiles 1024 tilesn xform sort init xform sort init10 0.16 0.75 0.15 0.15 0.87 0.2420 0.08 0.41 0.09 0.08 0.48 0.1440 0.06 0.26 0.06 0.09 0.26 0.160 0.18 0.25 0.08 0.12 0.2 0.1280 0.15 0.16 0.08 0.14 0.19 0.15100 0.2 0.15 0.11 0.17 0.17 0.17110 0.21 0.13 0.11 0.18 0.14 0.19View 2 - 2562 image - see �gure 6.2256 tiles 1024 tilesn xform sort init xform sort init10 0.15 0.62 0.08 0.15 0.71 0.1620 0.08 0.33 0.05 0.08 0.36 0.0940 0.09 0.18 0.05 0.05 0.21 0.0860 0.26 0.16 0.07 0.1 0.16 0.0780 0.1 0.11 0.07 0.11 0.12 0.1100 0.16 0.1 0.08 0.13 0.13 0.11110 0.13 0.1 0.16 0.2 0.2 0.16Table 6.19: Parallel view sort execution times (Tn) in seconds for the blunt �ndataset for two di�erent tile sizes. Generated image size is 2562.6.3 Timing Results for the Parallel View SortIt was found to be much more di�cult to obtain consistent measurements for the parallelview sort than for the rendering phase. This is probably due to three things: the smalltask size, the overhead of going parallel three times, and the atomic updates required forinitializing the buckets. For the smaller datasets there is not enough work in the applyingthe viewing transformation to each grid node to provide any speedup for this phase as ngets large. It could be combined with the sorting phase at the expense of transforming eachgrid node three times. Alternatively, a method of task generation in which the overhead ofgoing parallel is reduced (i.e. a \split-join" as opposed to a \fork-join" approach [PWD93,BGWW91]) would reduce the ine�ciency of having three small task phases. The sortingphase did see a speedup for all datasets, although it certainly tails o� by 110 processors andis not close to being linear. This is most likely due to the atomic updates required to theshared bucket counts, as well as the small task size. The same can be said for the bucketinitialization phase. Table 6.19 gives execution times (Tn) for each phase of the parallelview sort for both views of the blunt �n dataset, and using both 256 and 1024 image tiles.The pattern shown in these results is representative of that seen for all three of the smallerdatasets. Table 6.20 gives representative execution times (Tn) for the parallel view sort forall of the datasets tested.



123256 tiles 1024 tilesBlunt Fin Dataset xform sort init xform sort initView 1 (�gure 6.1) n = 10 0.16 0.75 0.15 0.15 0.87 0.24n = 100 0.2 0.15 0.11 0.17 0.17 0.17View 2 (�gure 6.2) n = 10 0.15 0.62 0.8 0.15 0.71 0.16n = 100 0.16 0.1 0.08 0.13 0.13 0.11256 tiles 1024 tilesPost Dataset xform sort init xform sort initView 1 (�gure 6.3) n = 10 0.44 1.79 0.28 0.39 1.85 0.36n = 100 0.41 0.28 0.15 0.46 0.33 0.29View 2 (�gure 6.4) n = 10 0.44 2.05 0.34 0.39 2.03 0.48n = 100 0.28 0.28 0.43 0.28 0.33 0.28View 3 (�gure 6.5) n = 10 0.44 1.95 0.39 0.39 2.06 0.54n = 100 0.29 0.28 0.54 0.26 0.33 0.25256 tiles 1024 tilesDelta Wing Dataset xform sort init xform sort initView 1 (�gure 6.6) n = 10 0.89 3.62 0.42 0.89 3.79 0.53n = 100 0.61 0.5 0.25 0.57 0.54 0.39View 2 (�gure 6.7) n = 10 0.89 3.31 0.27 0.88 3.5 0.39n = 100 0.23 0.61 0.53 0.23 0.66 0.78256 tiles 1024 tilesShuttle Dataset xform sort init xform sort initView 1 (�gure 6.8) n = 10 3.54 12.23 0.48 3.3 12.25 0.68n = 100 2.24 1.46 0.43 2.1 1.52 0.39View 2 (�gure 6.9) n = 10 3.35 14.84 1.64 3.39 14.74 2.0n = 100 0.53 1.55 0.41 0.68 1.6 0.69View 3 (�gure 6.10) n = 10 3.2 12.4 0.98 3.18 12.92 1.43n = 100 0.43 1.4 0.35 0.46 1.47 0.64View 4 (�gure 6.11) n = 10 3.2 12.42 1.03 3.22 12.97 1.33n = 100 0.47 1.38 0.4 0.46 1.48 0.73Table 6.20: Summary of execution times (Tn) in seconds for the parallel view sort.



1247. ConclusionsA scalable approach to parallel direct volume rendering of structured and unstructuredcomputational grids has been presented. The algorithm is general enough to handle non-convex grids and cells, grids with voids, grids constructed from multiple grids (multi-blockgrids), and embedded geometrical primitives. The algorithm is designed for a highly parallelMIMD architecture which features both local memory, and shared memory with non-uniform access times. A variation of the algorithm which provides fast image updatesfor a changing transfer function has also been presented. The scalability of the algorithmis based on the use of an image-space algorithm which does not require inter-processorsynchronization for the compositing step in the rendering process, and the e�cient localstorage of portions of the volume that are active for any given rendering task. The imageis broken into tiles and dynamic task generation is used to generate rendering tasks. Thetasks are ordered from largest to smallest, as de�ned by the number of cell faces projectingto each one, for further improvement in the load balancing. Each task makes use of ane�cient algorithm utilizing coherence and performing e�cient local storage of active cellfaces in order to reduce remote memory accesses and improve scalability.The algorithm has been tested on many variations of dataset size, image size, number ofimage tiles, viewing speci�cations, and number of processors. The statistics compiled fromthese test cases allow several conclusions to be drawn:� The results consistently show a direct tradeo� between maximizing the utilization ofspatial coherence through the use of larger tile sizes, and promoting good scalabilityby minimizing load imbalance through the use of smaller tile sizes and dynamic taskgeneration. A larger tile size improves utilization of coherency, but also makes loadbalancing more di�cult as n increases. At 110 processors the approach of usingsmaller tiles to reduce load imbalance is clearly more e�ective, despite the increasesdue to loss of coherence. This is because the more e�ective load balancing providesnear-linear speedup as n increases. It may be possible to obtain the e�ciency gainedthrough the use of large tile sizes while still maintaining good load balancing as ngrows large, using a task-adaptive approach to task generation [Whi92, NL92]. Ane�cient method of sharing a portion of a remaining task (tile to be rendered), withoutincurring any loss of coherency, would need to be developed.� The results show that the storage of active cell faces in local memory minimizesthe increase in contention as the number of processors increases. The design of thealgorithm is such that each remotely stored cell face projecting to an image tile willbe accessed once in order to store locally the edges de�ning the cell. This approachreduces the number of remote memory references required during a rendering task,thus enhancing the scalability of the algorithm.� As expected, the speci�c viewing transformation can have a signi�cant e�ect onperformance results. Some views of the same dataset were shown to have very di�erentload balancing requirements for instance. Zooming in on a dataset causes many cellfaces to be clipped during the parallel view sort, reducing the number of cell faces thatmust be dealt with during the rendering phase. Also, smaller increases in contention



125can be seen for images making better use of coherence by containing cell faces thatare larger with respect to tile size.� Also as expected, the speci�c grid can have a signi�cant e�ect of the performanceresults. Many structured and unstructured grids are nonconvex and it is quite likelythat a viewing speci�cation desired by the user will contain empty space in the image.For example, the �rst view desired may be one in which the entire grid exactly �llsthe image. Due to the nonrectilinear shape of the grid, this makes it necessary thatthere be portions of the image to which nothing projects. In addition, the largest gridscurrently in use, and the ones most likely to be in use on massively parallel systems,vary widely in their complexity. This was seen to have a signi�cant impact on loadbalancing requirements.In analyzing the performance of any parallel rendering algorithm, it is clearly very importantto measure performance on a wide variety of datasets, viewing speci�cations, and any otherrelevant con�guration parameters.A distributed graphical user interface which is used to control the remotely executingvolume renderer has also been presented. The entire system has been demonstrated to allowthe user to interactively explore very large datasets from a remote location. The design ofthe entire system is such that the volume renderer could communicate with a simultaneouslyexecuting simulation on the massively parallel host. This approach could lead to the abilityto steer a simulation based on visual feedback of its progress.There are several areas that warrant further investigation. Techniques for task genera-tion that take advantage of coherence, but can achieve good load balancing would increasethe overall e�ciency of the algorithm. General methods for doing so remain to be developed.It would be interesting to implement the algorithm presented here on a machine with higherremote memory latency and examine the performance. The ability to automatically gener-ate transfer functions based on the contents of the dataset being examined would greatlybene�t all users of volume rendering. Finding a good transfer function is currently one ofthe most di�cult tasks in utilizing a direct volume renderer to visualize the contents of adataset. By far the most exciting work left to be done is to examine the issues involved inclosely coupling a highly parallel executing simulation with a visualization algorithm suchas the one presented here. As highly parallel architectures and software evolve, I believesuch a paradigm will be the research environment of choice for computational scientists inmany �elds.
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