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ABSTRACT

The timing-driven routing of a critical net can be implemented as a delay-
bounded minimum Steiner tree. This routing tree has the path delays always limited
no larger than a delay bound D, while the total wire length is minimized. The delay
bound is usually specified at the system/logic design stage. The routing maintains
this delay bound to guarantee the correct timing of the finally implemented system
in physical layout. We propose a new algorithm of constructing delay bounded
minimum Steiner tree. This algorithm is designed based on the observation that
this tree can be obtained based on the trade-off between two other special types of
Steiner tree: (1) minimum Steiner tree and (2) minimum path delay Steiner tree,
by taking into account of a delay bound D. We also proposed a new algorithm of
constructing the minimum delay Steiner tree. During the tree growing, the Elmore
delay is incremently updated in constant time. These novel Steiner tree algorithms
have been applied on a clock routing scheme for multi-chip modules based on area
pad interconnections.

Keywords: Steiner tree, performance driven layout, delay-bounded Steiner tree,
path delay, critical net
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1 Introduction

While IC density is doubling roughly every 18 months, the feature size is steadily decreased.
However, chip scale is steadily increased to incorporate more transistors and wirings. So,
thinner and longer wire results in higher resistance of the interconnect. Also, some critical
nets such as clock net are distributed to more loadings. The signal propagation delay
through the interconnect becomes to dominate the timing delay of the whole digital system,
especially for the off-chip communication. Indeed it has been reported that interconnection
delay contributes up to 70% of the clock cycle in the design of dense, high-performance
circuits. According to the ideal CMOS scaling rules, decrease device dimensions by a factor
of 1/A and increase the wiring area by a factor of «, then increase a global net delay by
A?.a? but decrease a gate delay by A [10]. Thus, interconnect delay has had an increasing
impact on circuit speed. So, performance-driven layout has become critical to the design of
high-performance digital systems.

Early work on performance driven layout focused on performance driven placement,
with the usual objective being the close placement of cells in timing-critical paths as in
[5, 11]. For the timing-driven routing issue, given a signal net, current existing methods
appeared in the literature, majorly try to minimize the maximum signal delay from the
source pin to any sink pin. Dunlop et al. [6] determined net priorities based on static
timing analysis, and process higher priority nets earlier. A hierarchical approach to timing
driven routing is outlined in [9]. Prastjutrakul and Kubitz first time constructed a routing
tree based on A* search to minimize the maximum path delay from source to sinks. Cong et
al. [3] proposed a algorithm to construct radius-bounded Steiner trees with total wire length
within a constant factor of optimal. This tradeoff of cost-radius was similarly formulated
by [1]. Recently, Boese et al. [2] proposed methods to generate a class of Elmore delay
routing tree constructions, which iteratively add tree edges to minimize Elmore delay from
source to sinks.

In this paper, we propose a method of constructing the delay bounded minimum Steiner
tree. The motivation behind this is that this kind of tree can be immediately applied
on clock routing [17, 16]. Also, in leading-edge IC system design, system/logic design
stage specifies the timing requirement of the physical nets. The timing requirement is
usually set by the bound of the path delay through a net. Previous performance driven
routing methods minimize the maximum path delay but results in the penalty of wiring area
increase. Actually, in real design, people care about if the delay bound of the critical net is
satisfied or not, then further hope to minimize the wiring area. We define the performance-
driven routing of a critical net as a delay bounded minimum Steiner tree problem. In this
type of tree, supposed a delay bound D is specified, then all path delays from the source to
sinks are limited no larger than ID. While the timing bound is meet, we still minimize the
total wiring length of this tree.

While the minimum path delay Steiner tree achieves the minimization of maximum path
delay and the minimum Steiner tree achieves the minimization of total wire length, the
delay bounded minimum Steiner tree should be a trade-off between the above two extreme
Steiner trees in terms of the largest path delay and total edge length, taking into account of
a delay bound D. Based on this observation, we presented a new algorithm of constructing
the delay bounded minimum Steiner tree.

This paper is organized as follows. In Section 2, we define the delay bounded minimum
Steiner tree problem and the routing model we use. Then a new optimization algorithm
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of delay bounded minimum Steiner tree is presented in Section 3. We also proposed an
algorithm in Section 4 to obtain the minimum Elmore delay Steiner tree. During the tree
growing, the Elmore delay is incremently updated in constant time. The time complexities
of our Steiner tree algorithms are analyzed in Section 5. Experimental results in Section
6 compare the variations, in terms of total wire length and the longest path delay, among
three special Steiner trees: (1) minimum Steiner tree, (2) minimum path delay Steiner tree,
and (3) delay bounded minimum Steiner tree. Conclusions are summarized in Section 7.

2 Overview and Routing Model

Delay-Bounded Minimum Steiner Tree Problem: Given a net consisting of a
source (0), a set of sinks, and a delay bound D, construct a Steiner tree 7, in which the
delay from o to every sink in 7T is less than D and the sum of the edge lengths of the tree
is minimized.

The delay bound D for a minimum Steiner tree is specified by the timing requirement
of this net. In [17, 16], a chip is partitioned into isochronous bins according to clock pin
distribution. A local clock tree inside an isochronous bin is a delay-bounded minimum
Steiner tree. The delay bound for a local clock tree is taken the deduction of the system
tolerable skew to the skew on the MCM substrate.

The path delay evaluation depends on the delay model used. Some previous works
have been done in constructing zeroth-order delay (path length) bounded Steiner tree [8]
[3]. Boese et al. [2] proposed methods to generate a class of Elmore delay routing tree
constructions, which iteratively add tree edges to minimize Elmore delay from source to
sinks. Prasitjutrakul et al. [13] constructs the minimum delay routing tree based on the
RC delay model in [15].

We propose a method of constructing the Flmore delay bounded minimum Steiner tree
based on the trade-off of two special trees: (1) minimum path delay Steiner tree and (2)
minimum Steiner tree. Since the routing in the IC chip is usually constructed in Manhattan
wirings, we use Hanan grid [7] to construct rectilinear Steiner trees. Hanan grid is derived
by extending a horizontal line and a vertical line through each sink and the source, as shown
in Figure 2.1. A node in Hanan grid is the intersection of a vertical line and a horizontal
line; a edge intervenes two nodes. Some of the nodes are the locations of source and sinks.

A routing tree T' in a Hanan grid can be modeled as an RC tree. Every edge in the
routing tree is modeled as an RC line as shown in Figure 2.2(a). For an edge ¢;, we have edge
resistance r; = r,l;, and edge capacitance ¢; = ¢4l;, where r; is unit length resistance and ¢;
the unit length capacitance, and I; the edge length. Fach sink has a loading capacitance as
shown in Figure 2.2(b). The signal input at source o is sent out by a driver with an output
resistance rg and an output capacitance ¢g as shown in Figure 2.2(c). The Elmore delay
t(s;) from source o to a sink s; can be calculated as follows [14, 2].

t(Sj) = Td(Cd + Co) + Z TZ'(CZ'/Q + CZ) (2.1)

ei€path(o,s;)

where e; is the edge from node n; to its parent. (y is the total capacitance of sinks and
edges of the routing tree T'. C; is the total capacitance of sinks and edges in the subtree of
T rooted at n;.

Notations of the Steiner trees used in this paper are listed as follows.
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are deleted from T3 (also deleted from G,). So, there is no min-delay edge or mixed edge
outside Tj. It follows that p. is a min-length path which connects Ty' and T2 O

If a min-length cut path p. is added to T} between Tp' and Ty?%, T}, becomes connected
again. p. is called a feasible min-length cut path of T}, if this path satisfies the following
two conditions: (1) this path is shorter than the path length of min-delay simple path
which is just deleted from Ty; (2) After adding p., T} still has path delays bounded by D.
Among those feasible min-length cut paths, the algorithm selects the one with the shortest
length resulting in the least total edge length. We thus obtain the reroute rule for the
delay-bounded Steiner tree.

Reroute Rule: at each stage, always add in T} the feasible min-length cut path with the
minimal path length.

Our algorithm improve T} by iteratively applying the above Rip-Up and Reroute rules.
Note that at some stages, we may find no feasible min-length cut path exists after a min-
delay simple path is deleted. In this case, we restore this min-delay simple path back to T
and continue to process other min-delay simple paths. If a feasible min-length cut path is
successfully added to T}, edges along this path are marked as mixed edges. The iteration
continues until no longest min-delay simple path exists.

Shown in Figure 3.1(a), Ty has total edge length {; = 420pm and the largest path delay
tqg = 0.84ps; T, has l. = 309um and t. = 1.09ps. Figure 3.3 illustrates this algorithm for
this example to construct T, where delay bound is D = 0.9ps. T} starts from 7. Shown in
Figure 3.3(a), a longest simple path s1s5 has been deleted from 7} and G, but a min-length
path sqs; is added to Ty. In Figure 3.3(b), the longest min-delay simple path vy s5 is replaced
by a min-length path v1v,. In Figure 3.3(c), min-delay simple path vgvyy is replaced by
v1ov11- In Figure 3.3(d), after min-delay path vys4 is replaced by a min-length path vssy,
path ovqvy becomes the longest min-delay path. But min-length path vgsy is not a feasible
min-length path, since the largest path delay of T, will exceed D if path vgsy is added to
replace path ovyvs. So, path ovyvs is still remained in T}. The final T} is shown in Figure
3.3(e), which has the total wire length [, = 309um and the largest path delay ¢, = 0.87ps.
1y, is less than the delay bound D = 0.9ps, while [, is decreased 27% of [; which achieves
the same total wire length of T, for this case. The delay bounded Steiner tree depends on
the specified delay bound D. If we set a tighter delay bound D = 0.85ps for this example,
the final 7} is shown in Figure 3.3(f), resulting in {, = 340pum and dy = 0.85ps.

The delay bounded Steiner tree algorithm is summaried in the following pseudo-code.

Elmore delay bounded Steiner tree algorithm
Input: a signal net N with a source o and a set of sinks, a delay bound D;

Output: a delay bounded Steiner tree T

Procedure DelayBoundedSteinerTree( N, D, T3) {
T; = Minimum Elmore delay Steiner tree over N on Hanan grid;
T. = Minimum edge length Steiner tree over N on Hanan grid;
Gp =Ta+ 1Tt
Ty = Ta;
pg = the longest min-delay simple path in Tj;
while (pq # NULL) {
Delete py from T}, by marking edges as non-tree edges;
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p. = the shortest feasible min-length cut path connecting two disjoint subtrees of
1
if (p. # NULL)
Add p. to T, by marking edges as mixed edges;
else
Add pg to T, by marking edges as mixed edges;
pg = the longest min-delay simple path in Tj;

The final Ty has tree edges with only one type of mixed edge. The next theorem shows
the correctness of this algorithm.

Theorem 1: The total edge length of T, is monotonically decreased as the iterative tree
optimization proceeds, while the largest path delay of Ty, is always bounded by the delay bound
D if D is specified not less than the largest path delay of T,.

Proof: We use the mathematical induction according to the series of iterative update of T;
with configurations 173°, T3!, ..., 1"

The basis, at the first stage 7% = 7. Since D is not less than the largest path delay of
Ty, T° has its largest path delay t, < D.

The inductive step, Tg is updated to sz'-|-1 after rip-up and reroute. Suppose that Tg has
total edge length /; and the largest path delay dj < D. Based on Rip-Up rule, a longest
min-delay simple path p; is deleted from Tg. Based on Reroute rule, there are two cases:
(1) a feasible min-length cut path p. is found and p, is added to Tg"’l; (2) no such a p,
is found and thus py is added back to TZ'H. In Case 1, based on definition of a feasible
min-length cut path, p. has less path length than py and sz'-|-1 still has bounded path delays.
So, TZ'H has less total edge length than Tg since other edges keep the same as Tg, and also
the largest path delay is still bounded. In Case 2, sz'-|-1 = Tg with no update of T}. |

4 Minimum Steiner Tree Algorithms

The delay bounded Steiner tree is derived based on the mixture of minimum edge length
Steiner tree T, and minimum Elmore delay Steiner tree T,;. Obtaining 7, is an NP complete
problem. We employ an efficient method in [12] of constructing an approximation of T..
This method is a single partial tree growth algorithm each time a sink is connected. The
partial tree starts at the source o and repeatedly calling Dijistra’s shortest path algorithm
to grow the partial tree to connect an unconnected sink. T, is obtained until all sinks are
connected. Shown in Figure 3.1(b), 7, is obtained by using this method.

We apply the single partial tree growth method on the construction of the approximation
of minimum Elmore delay Steiner tree Tj. Instead of total edge length minimization for 7,
we approach to Elmore-delay minimization for Ty. The Elmore delay calculation, shown in
(2.1), is naturally incorporated into T growing process.

To connect a sink, the algorithm expands wave frontier of a partial tree in a breadth first
search until an unconnected sink is encounted. To keep track of the progress, the algorithm
colors each vertex white, gray, or black. All nodes in Hanan grid start out white and may
later become gray and then black. A node becomes gray when it is discovered the first time
it is encountered during the search. A gray node becomes darken when it is expanded to
neighbors. Gray nodes represent the wave frontier between discovered and undiscovered
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nodes. We have a priority queue ¢ to store all gray nodes at current stage. The priority
of a gray node is the Elmore delay estimate from the source to this node along the search
tree. Everytime we extract a gray node u from ) which has the least Elmore delay estimate
among all current gray nodes. u is then expanded to neighbors. Whenever u is expanded
to neighbor v, u is the parent of v in the breadth-first search. Let d[u] be the the path delay
estimation of u from source o in the search tree, and r[u] the sum of driver resistance r4 and
all resistances of ancestor edges of w in the tree. Suppose node u is expanded to v, based
on Elmore delay formula in (2.1), we can update d[v] and 7[v] incrementally as

d[v] = dlu] + (rlu] + 5 )es if v is not a sink
v= dlu] + (rlu] + 5 )er + (r[u] + r1)e; if v is a sink with loading capacitance ¢
(4.1)
and
rlo] = rlu] + 1 (4.2)

where 71 and ¢; are resistance and capacitance of edge wv. (4.1) can be calculated in
constant time resulting in no order increase of computational time during expansion. If v
previously has been a gray node, we assign it the smaller one of new d[v] based on (4.1)
and previous d[v].

The search continues until an unconnected sink is encounted. At that time, starting
from the sink, re-traversing the path from the sink to the partial tree by using the recursive
relation of parent node. Edges in this path are marked as min-delay edges and this sink is
thus connected. After a sink is connected and if there are still some sinks are unconnected,
we reset all nodes in the partial tree as gray nodes, and other nodes on Hanan grid as
white nodes. Starting from the new partial tree, the algorithm expands the wave frontier
again until next unconnected sink is encountered. This partial tree expansion and growing
process continues until all sinks are connected.

The next Theorem 2 shows the optimality of the choice of the next sink to be connected
to the existing tree. We first prove the next lemma that shows the monotone increase of
path delay estimation during the search expansion.

Lemma 1: When a gray node w is extract from the queue ), none of at present gray and
white nodes will become have less path delay estimate than d[u] in the following expansion.

Proof: At the time of u extracted from the queue ), u should have the least path delay
estimate d[u] among gray nodes in Q. In other word, any gray node v has d[v] > d[u]. If w
is gray or white node at the time u is extracted, We can show that d[w] > d[u] forever after
u is extracted. In the continuing search expansion, suppose node w is encountered and its
d[w] is updated. w should be expanded from some node » which is a gray node when u is
extracted from (), since only gray nodes are expanded to neighbors. So, v is an ancestor
node of w in the path from source o to w (see Figure 4.1) resulting in d[w] > d[v]. But we
know that d[v] > d[u], such that d[w] > d[u]. O

Theorem 2: The algorithm always connects the next new sink with the minimal path
delay from source to unconnected sinks.

Proof: When a sink is first time extracted from @), it has the least path delay among all
unconnected sinks. According to Lemma 1, other unconnected sinks can never have less path
delays than the first extracted unconnected sink even if the search expansion continues. So,
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O(k*1g k) to connect k sinks. So, it is showed that the minimum Elmore delay Steiner tree
algorithm has the same order of the time complexity of the minimum length Steiner tree
algorithm in [12].

Suppose there are F. edges of T, and Fy edges of T;. T} is the mixture of T, and Ty,
such that it has edge number F;, < FE. 4+ Fy4. The delay bounded Steiner tree algorithm
takes, in the worst case, O(EqE.Fy) = O(EqE.mazx(FE., Fy) time complexity. The analysis
is as follows. There are O(Fy) min-delay simple paths. When a min-delay simple path is
rip-uped, it takes O(lg F4) to select the one with the longest path length, if we store these
min-delay simple paths is a binary heap. There are O(FE.) min-length cut paths which may
be rerouted, each time it takes O(lg E.) to select the one with the shortest path length.
When a min-length cut path is selected, it needs to be checked if it is a feasible cut path by
calculating Elmore delays to sinks in 73. The Elmore delay calculation takes O( Ep). So, the
total time complexity of this algorithm is O(Ey(lg Eq + E.(1g E. + Ey))) = O(EgEEy) =
O(EqE.max(Lq, L)).

6 Experiment Results

The delay bounded Steiner tree algorithm for local clock routing has been implemented
in ANSI C. This algorithm has been tested both on random sink distribution and large
benchmarks. We take the electrical parameters of chip in [2], and electrical parameters
of a advanced thin-film MCM substrate in [18]. These parameters are listed in Table 6.1.
We size the driver at clock area pad resulting in two output resistances Ry = 10082 and
R4 = 508 to test the effect of driver sizing on the Steiner tree construction.

[ [ Ro(m@um) [ G F/am) | LopH am) | Ra(@) | CipF) |
Chip 30 0.352 0 100,50 | 0.0153
MCM || 8 0.06 0.38 25 0.2

Table 6.1: Electrical parameters. Ry, Cp and L, are resistance, capacitance and
inductance of unit length wire. R4 is the driver output resistance, and C; is the
loading capacitance of a terminal. The clock driver in chip (die) is sized with two
output resistances.

Table 6.2 and Table 6.3 show the comparison of three kinds of Steiner trees Ty, T, and
Ty for the examples of random distribution of 8, 16, 32 and 64 sinks. In these two tables,
tq,ty,t. are the largest path delays of T, Ty and T, respectively, while [., [, and [; are the
total edge lengths of T.,T, and Ty respectively . D is the delay bound for T}, which is
selected between t; and t.. Table 6.2 is obtained based on Ry = 1002, and Table 6.3 based
on Ry = 5082, The largest path delays are obviously shortened in Table 6.3 because of the
smaller Ry compared to Table 6.2.

On the average, the minimum length Steiner tree T. is 30% less total edge length than
minimum path delay Steiner tree T, while T is 78% less largest path delay than T.. If
T. and Ty are optimum, 7} should have less total edge length than T; and more total edge
length than T.. But, since T, is obtained based on a approximation algorithm [12], it is
showed in Table 6.2 and Table 6.3 that [; is less than /. in most examples. For all these
examples, t, < D is satisfied.
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Largest Path Delay (ns) Total Edge Length (mm)
tq | iy | [ l. | I | {4
8 sinks || 4.8 | 4.8 (D = 5.5ns) 7.0 || 61.8 | 63.9 (D = 5.5ns) 79.8

16 sinks || 5.05 | 5.06 (D = 5.06ns) 5.07 || 70.4 | 58.6 (D = 5.06mns) 83.7
32 sinks || 6.8 | 6.86 (D = 6.9ns) 7.0 91.0 71.1 (D = 6.9ns) 131.0
64 sinks || 8.2 10.97 (D = 13.4ns) | 23.7 || 122.5 | 114.1 (D = 13.4ns) | 163.2

Table 6.2: Comparison of Steiner tree results on random distribution of 8, 16, 32
and 64 sinks. The driver output resistance Ry = 100€2. t4,t, and t. are the largest
path delays of Ty, T, and T. respectively . [.,l, and l; are the total wire lengths
of T., T, and T, respectively . Sinks are randomly distributed in a chip size of 20
x 20 mm.

Largest Path Delay (ns) Total Edge Length (mm)
tq | iy | [ l. | I | {4
8 sinks 3.5 | 3.6 (D = 4.3ns) 5.9 61.8 | 58.3 (D = 4.3ns) 75.0
16 sinks || 3.6 | 3.66 (D = 3.7ns) | 3.9 70.4 | 59.5 (D = 3.7ns) 82.6
32 sinks || 4.0 | 4.23 (D = 4.4ns) | 5.2 91.0 | 89.4 (D = 4.4ns) 127.5
64 sinks || 5.2 | 5.4 (D = 10.7ns) | 21.8 || 122.5 | 117.7 (D = 10.7ns) | 171.6

Table 6.3: Comparison of Steiner tree results when the driver output resistance

Ry = 50(Q).

7 Conclusion

We formulate a performance driven critical net routing as a delay bounded Steiner tree
problem. The delay bound is usually specified at the system/logic design stage. The layout
maintains this delay bound to guarantee the correct timing of the finally implemented
system in physical layout.

We propose a new algorithm of constructing delay bounded Steiner tree. This algorithm
is based on the observation that this tree can be obtained based on the trade-off between
two extreme Steiner trees: (1) minimum Steiner tree and (2) minimum path delay Steiner
tree, taking into account of a delay bound D. The resultant tree has the path delay always
bounded by D.

This Steiner tree algorithm has been applied on the clock routing for multi-chip modules
based on area pad interconnection [17, 16].

This algorithm can also be extended to arbitrary-angle grids instead of Hanan (rectilin-
ear) grids. We expect this Steiner tree algorithm can be applied on critical nets routing for
high-performance layout.
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