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1. Introduction 31 IntroductionWhile IC density is doubling roughly every 18 months, the feature size is steadily decreased.However, chip scale is steadily increased to incorporate more transistors and wirings. So,thinner and longer wire results in higher resistance of the interconnect. Also, some criticalnets such as clock net are distributed to more loadings. The signal propagation delaythrough the interconnect becomes to dominate the timing delay of the whole digital system,especially for the o�-chip communication. Indeed it has been reported that interconnectiondelay contributes up to 70% of the clock cycle in the design of dense, high-performancecircuits. According to the ideal CMOS scaling rules, decrease device dimensions by a factorof 1=� and increase the wiring area by a factor of �, then increase a global net delay by�2 ��2 but decrease a gate delay by � [10]. Thus, interconnect delay has had an increasingimpact on circuit speed. So, performance-driven layout has become critical to the design ofhigh-performance digital systems.Early work on performance driven layout focused on performance driven placement,with the usual objective being the close placement of cells in timing-critical paths as in[5, 11]. For the timing-driven routing issue, given a signal net, current existing methodsappeared in the literature, majorly try to minimize the maximum signal delay from thesource pin to any sink pin. Dunlop et al. [6] determined net priorities based on statictiming analysis, and process higher priority nets earlier. A hierarchical approach to timingdriven routing is outlined in [9]. Prastjutrakul and Kubitz �rst time constructed a routingtree based on A� search to minimize the maximum path delay from source to sinks. Cong etal. [3] proposed a algorithm to construct radius-bounded Steiner trees with total wire lengthwithin a constant factor of optimal. This tradeo� of cost-radius was similarly formulatedby [1]. Recently, Boese et al. [2] proposed methods to generate a class of Elmore delayrouting tree constructions, which iteratively add tree edges to minimize Elmore delay fromsource to sinks.In this paper, we propose a method of constructing the delay bounded minimum Steinertree. The motivation behind this is that this kind of tree can be immediately appliedon clock routing [17, 16]. Also, in leading-edge IC system design, system/logic designstage speci�es the timing requirement of the physical nets. The timing requirement isusually set by the bound of the path delay through a net. Previous performance drivenrouting methods minimize the maximum path delay but results in the penalty of wiring areaincrease. Actually, in real design, people care about if the delay bound of the critical net issatis�ed or not, then further hope to minimize the wiring area. We de�ne the performance-driven routing of a critical net as a delay bounded minimum Steiner tree problem. In thistype of tree, supposed a delay bound D is speci�ed, then all path delays from the source tosinks are limited no larger than D. While the timing bound is meet, we still minimize thetotal wiring length of this tree.While the minimum path delay Steiner tree achieves the minimization of maximum pathdelay and the minimum Steiner tree achieves the minimization of total wire length, thedelay bounded minimum Steiner tree should be a trade-o� between the above two extremeSteiner trees in terms of the largest path delay and total edge length, taking into account ofa delay bound D. Based on this observation, we presented a new algorithm of constructingthe delay bounded minimum Steiner tree.This paper is organized as follows. In Section 2, we de�ne the delay bounded minimumSteiner tree problem and the routing model we use. Then a new optimization algorithm



4 2. Overview and Routing Modelof delay bounded minimum Steiner tree is presented in Section 3. We also proposed analgorithm in Section 4 to obtain the minimum Elmore delay Steiner tree. During the treegrowing, the Elmore delay is incremently updated in constant time. The time complexitiesof our Steiner tree algorithms are analyzed in Section 5. Experimental results in Section6 compare the variations, in terms of total wire length and the longest path delay, amongthree special Steiner trees: (1) minimum Steiner tree, (2) minimum path delay Steiner tree,and (3) delay bounded minimum Steiner tree. Conclusions are summarized in Section 7.2 Overview and Routing ModelDelay-Bounded Minimum Steiner Tree Problem: Given a net consisting of asource (o), a set of sinks, and a delay bound D, construct a Steiner tree T , in which thedelay from o to every sink in T is less than D and the sum of the edge lengths of the treeis minimized.The delay bound D for a minimum Steiner tree is speci�ed by the timing requirementof this net. In [17, 16], a chip is partitioned into isochronous bins according to clock pindistribution. A local clock tree inside an isochronous bin is a delay-bounded minimumSteiner tree. The delay bound for a local clock tree is taken the deduction of the systemtolerable skew to the skew on the MCM substrate.The path delay evaluation depends on the delay model used. Some previous workshave been done in constructing zeroth-order delay (path length) bounded Steiner tree [8][3]. Boese et al. [2] proposed methods to generate a class of Elmore delay routing treeconstructions, which iteratively add tree edges to minimize Elmore delay from source tosinks. Prasitjutrakul et al. [13] constructs the minimum delay routing tree based on theRC delay model in [15].We propose a method of constructing the Elmore delay bounded minimum Steiner treebased on the trade-o� of two special trees: (1) minimum path delay Steiner tree and (2)minimum Steiner tree. Since the routing in the IC chip is usually constructed in Manhattanwirings, we use Hanan grid [7] to construct rectilinear Steiner trees. Hanan grid is derivedby extending a horizontal line and a vertical line through each sink and the source, as shownin Figure 2.1. A node in Hanan grid is the intersection of a vertical line and a horizontalline; a edge intervenes two nodes. Some of the nodes are the locations of source and sinks.A routing tree T in a Hanan grid can be modeled as an RC tree. Every edge in therouting tree is modeled as an RC line as shown in Figure 2.2(a). For an edge ei, we have edgeresistance ri = rsli, and edge capacitance ci = csli, where rs is unit length resistance and csthe unit length capacitance, and li the edge length. Each sink has a loading capacitance asshown in Figure 2.2(b). The signal input at source o is sent out by a driver with an outputresistance rd and an output capacitance cd as shown in Figure 2.2(c). The Elmore delayt(sj) from source o to a sink sj can be calculated as follows [14, 2].t(sj) = rd(cd + C0) + Xei2path(o;sj) ri(ci=2 + Ci) (2:1)where ei is the edge from node ni to its parent. C0 is the total capacitance of sinks andedges of the routing tree T . Ci is the total capacitance of sinks and edges in the subtree ofT rooted at ni.Notations of the Steiner trees used in this paper are listed as follows.
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Figure 2.1: Hanan grid of source o and 10 sinks
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Figure 2.2: model of a RC tree in chip. (a) an RC line. (b) load capacitance of aterminal. (c) a source.� Tb: delay-bounded minimum Steiner tree, i.e. the local clock tree we try to construct.{ tb: largest path delay from source to terminals in Tb{ lb: total edge ength of Tb� Td: minimum path delay Steiner tree{ td: largest path delay from source to terminals in Td{ ld: total edge length of Td� Tc: minimum edge length Steiner tree{ tc: largest path delay from source to terminals in Tc{ lc: total edge length of TcSince Tc minimizes the edge lengths while Td minimizes the path delays, Tb is a trade-o�between Tc and Td in terms of the largest path delay and total edge length, taking intoaccount of a delay bound D.



6 3. Delay-Bounded Steiner Tree Algorithm3 Delay-Bounded Steiner Tree AlgorithmAssume that the delay bound D is not less than td, the largest path delay of Td. Theconstruction of a delay-bounded Steiner tree is a two-phase optimization process. At theinitial phase, Tb = Td, such that Tb starts with a feasible solution where tb has been boundedby D. At the improvement phase, we iteratively update Tb to decrease the total edge lengthwhile maintaining tb � D. Since Tc has the least total edge length for a set of sinks anda source, we iteratively bring edges from Tc to Tb and delete some existing edges in Tb toreduce the edge length. The �nal Tb is a combination of Td and Tc with total edge lengthless than ld while the largest path delay is still bounded by D.Based on the Hanan grid de�ned by a source o and a set of sinks s1; s2; : : : ; sm, we canconstruct Tc and Td respectively. The algorithms of constructing Tc and Td are describedin the next section. We de�ne a graph Gm called reroute graph. The reroute graph Gm isobtained by superimposing Tc and Td. The edges in Gm are classi�ed into four types asfollows.� min-delay edge: edge of only Td� min-length edge: edge of only Tc� mixed edge: edge of both Td and TcAs shown in Figure 3.1, Td and Tc are for the example in Figure 2.1. Figure 3.2(a) is thereroute graph Gm obtained by mixing Td and Tc. Tb is iteratively optimized based on Gm.At starting stage, Tb = Td. So, Tb initially contains min-delay and mixed edges. To reducethe total edge length of Tb, we bring in some min-length edges in Gm to replace min-delayedges in Tb. Since mixed edges contribute not only low edge length but also small pathdelay for Tb. they are always maintained in Tb.
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Figure 3.1: (a) minimum Elmore delay Steiner tree Td. (b) minimum edge lengthSteiner tree Tc.A node may be adjacent to several types of edges in Gm. A path p from node v1 to nodev2 in Gm goes through a series of edges e1; e2; : : : ; ek. v1 and v2 are two end nodes of path
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Figure 3.2: (a) reroute graph Gm: superimposing Td and Tc. A edge with a darkensolid line is in Td, and a edge with a dash line is in Tc. (b) a set of min-length cutpaths spanning two disjoint subtrees of Tb.p, and other nodes intervened by e1; e2; : : : ; ek are internal nodes of p. A simple path is apath where each of internal node has degree two in Gm. A simple path where each edge isa min-delay edge is referred to as min-delay simple path.Usually there are several simple paths in Tb. As in Figure 3.2(a), suppose that Tb = Td,simple paths are s1s5, v1s5, v2v4, v1s5, v4s4, ov9, ov5, v5v6, v5s8, v6s6, v9v11. In adegenerated case, a min-delay simple path is a min-delay edge. The length of a simplepath is the sum of lengths of edges along this path.Property 1: Min-delay simple paths cover all min-delay edges in Tb.Our algorithm tries to delete the longest min-delay simple path in Tb which is reroutedresulting in the least total edge length, We thus have the rip-up rule for the improvementof the delay-bounded Steiner tree.Rip-Up Rule: at each stage, always select the min-delay simple path with the maximalpath length.Similarly, we de�ne a min-length path, not necessary a simple path, where each edge isa min-length edge. For example, shown in Figure 3.2(a), min-length paths are s1s2, v1v2,v3s4, s4v6, s5v10, v10v11, v9s8, s8v7, s6v8.If we delete a min-delay simple path pd from Tb, then Tb becomes two disjoint subtreesTb1 and Tb2. There are a set of min-length paths bridging Tb1 and Tb2 in Gm, as shown inFigure 3.2(b). We de�ne a set C = fmin-length paths in Gm which connects Tb1 and Tb2g. Every min-length path in C is called a min-length cut path of Tb. Let pci (1 � i � r) bea min-length cut path of Tb with end nodes v1i and v2i, where v1i 2 Tb1 and v2i 2 Tb2.Property 2: There always exists a min-length cut path which connects Tb1 and Tb2.Proof: Sinks in Tb1 and Tb2 are connected in tree Tc. So, there are some path pc in Tcconnects Tb1 and Tb2 in Gm. At initial stage Tb = Td, and later on some min-delay edges



8 3. Delay-Bounded Steiner Tree Algorithmare deleted from Tb (also deleted from Gm). So, there is no min-delay edge or mixed edgeoutside Tb. It follows that pc is a min-length path which connects Tb1 and Tb2. 2If a min-length cut path pc is added to Tb between Tb1 and Tb2, Tb becomes connectedagain. pc is called a feasible min-length cut path of Tb, if this path satis�es the followingtwo conditions: (1) this path is shorter than the path length of min-delay simple pathwhich is just deleted from Tb; (2) After adding pc, Tb still has path delays bounded by D.Among those feasible min-length cut paths, the algorithm selects the one with the shortestlength resulting in the least total edge length. We thus obtain the reroute rule for thedelay-bounded Steiner tree.Reroute Rule: at each stage, always add in Tb the feasible min-length cut path with theminimal path length.Our algorithm improve Tb by iteratively applying the above Rip-Up and Reroute rules.Note that at some stages, we may �nd no feasible min-length cut path exists after a min-delay simple path is deleted. In this case, we restore this min-delay simple path back to Tband continue to process other min-delay simple paths. If a feasible min-length cut path issuccessfully added to Tb, edges along this path are marked as mixed edges. The iterationcontinues until no longest min-delay simple path exists.Shown in Figure 3.1(a), Td has total edge length ld = 420�m and the largest path delaytd = 0:84ps; Tc has lc = 309�m and tc = 1:09ps. Figure 3.3 illustrates this algorithm forthis example to construct Tb where delay bound is D = 0:9ps. Tb starts from Td. Shown inFigure 3.3(a), a longest simple path s1s5 has been deleted from Tb and Gm, but a min-lengthpath s1s2 is added to Tb. In Figure 3.3(b), the longest min-delay simple path v1s5 is replacedby a min-length path v1v2. In Figure 3.3(c), min-delay simple path v9v11 is replaced byv10v11. In Figure 3.3(d), after min-delay path v4s4 is replaced by a min-length path v3s4,path ov4v2 becomes the longest min-delay path. But min-length path v6s4 is not a feasiblemin-length path, since the largest path delay of Tb will exceed D if path v6s4 is added toreplace path ov4v2. So, path ov4v2 is still remained in Tb. The �nal Tb is shown in Figure3.3(e), which has the total wire length lb = 309�m and the largest path delay tb = 0:87ps.tb is less than the delay bound D = 0:9ps, while lb is decreased 27% of ld which achievesthe same total wire length of Tc for this case. The delay bounded Steiner tree depends onthe speci�ed delay bound D. If we set a tighter delay bound D = 0:85ps for this example,the �nal Tb is shown in Figure 3.3(f), resulting in lb = 340�m and db = 0:85ps.The delay bounded Steiner tree algorithm is summaried in the following pseudo-code.Elmore delay bounded Steiner tree algorithmInput: a signal net N with a source o and a set of sinks, a delay bound D;Output: a delay bounded Steiner tree TbProcedure DelayBoundedSteinerTree(N;D; Tb) fTd = Minimum Elmore delay Steiner tree over N on Hanan grid;Tc = Minimum edge length Steiner tree over N on Hanan grid;Gm = Td + Tc;Tb = Td;pd = the longest min-delay simple path in Tb;while (pd 6= NULL) fDelete pd from Tb by marking edges as non-tree edges;
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Figure 3.3: Example of constructing a delay bounded minimum edge length Steinertree.



10 4. Minimum Steiner Tree Algorithmspc = the shortest feasible min-length cut path connecting two disjoint subtrees ofTb; if (pc 6= NULL)Add pc to Tb by marking edges as mixed edges;elseAdd pd to Tb by marking edges as mixed edges;pd = the longest min-delay simple path in Tb;gg The �nal Tb has tree edges with only one type of mixed edge. The next theorem showsthe correctness of this algorithm.Theorem 1: The total edge length of Tb is monotonically decreased as the iterative treeoptimization proceeds, while the largest path delay of Tb is always bounded by the delay boundD if D is speci�ed not less than the largest path delay of Td.Proof: We use the mathematical induction according to the series of iterative update of Tbwith con�gurations Tb0; Tb1; : : : ; Tbn.The basis, at the �rst stage Tb0 = Td. Since D is not less than the largest path delay ofTd, Tb0 has its largest path delay tb � D.The inductive step, T ib is updated to T i+1b after rip-up and reroute. Suppose that T ib hastotal edge length lib and the largest path delay dib � D. Based on Rip-Up rule, a longestmin-delay simple path pd is deleted from T ib . Based on Reroute rule, there are two cases:(1) a feasible min-length cut path pc is found and pc is added to T i+1b ; (2) no such a pcis found and thus pd is added back to T i+1b . In Case 1, based on de�nition of a feasiblemin-length cut path, pc has less path length than pd and T i+1b still has bounded path delays.So, T i+1b has less total edge length than T ib since other edges keep the same as T ib , and alsothe largest path delay is still bounded. In Case 2, T i+1b = T ib with no update of Tb. 24 Minimum Steiner Tree AlgorithmsThe delay bounded Steiner tree is derived based on the mixture of minimum edge lengthSteiner tree Tc and minimum Elmore delay Steiner tree Td. Obtaining Tc is an NP completeproblem. We employ an e�cient method in [12] of constructing an approximation of Tc.This method is a single partial tree growth algorithm each time a sink is connected. Thepartial tree starts at the source o and repeatedly calling Dijistra's shortest path algorithmto grow the partial tree to connect an unconnected sink. Tc is obtained until all sinks areconnected. Shown in Figure 3.1(b), Tc is obtained by using this method.We apply the single partial tree growth method on the construction of the approximationof minimum Elmore delay Steiner tree Td. Instead of total edge length minimization for Tc,we approach to Elmore-delay minimization for Td. The Elmore delay calculation, shown in(2.1), is naturally incorporated into Td growing process.To connect a sink, the algorithm expands wave frontier of a partial tree in a breadth �rstsearch until an unconnected sink is encounted. To keep track of the progress, the algorithmcolors each vertex white, gray, or black. All nodes in Hanan grid start out white and maylater become gray and then black. A node becomes gray when it is discovered the �rst timeit is encountered during the search. A gray node becomes darken when it is expanded toneighbors. Gray nodes represent the wave frontier between discovered and undiscovered



4. Minimum Steiner Tree Algorithms 11nodes. We have a priority queue Q to store all gray nodes at current stage. The priorityof a gray node is the Elmore delay estimate from the source to this node along the searchtree. Everytime we extract a gray node u from Q which has the least Elmore delay estimateamong all current gray nodes. u is then expanded to neighbors. Whenever u is expandedto neighbor v, u is the parent of v in the breadth-�rst search. Let d[u] be the the path delayestimation of u from source o in the search tree, and r[u] the sum of driver resistance rd andall resistances of ancestor edges of u in the tree. Suppose node u is expanded to v, basedon Elmore delay formula in (2.1), we can update d[v] and r[v] incrementally asd[v] = ( d[u] + (r[u] + r12 )c1 if v is not a sinkd[u] + (r[u] + r12 )c1 + (r[u] + r1)ct if v is a sink with loading capacitance ct(4:1)and r[v] = r[u] + r1 (4:2)where r1 and c1 are resistance and capacitance of edge uv. (4.1) can be calculated inconstant time resulting in no order increase of computational time during expansion. If vpreviously has been a gray node, we assign it the smaller one of new d[v] based on (4.1)and previous d[v].The search continues until an unconnected sink is encounted. At that time, startingfrom the sink, re-traversing the path from the sink to the partial tree by using the recursiverelation of parent node. Edges in this path are marked as min-delay edges and this sink isthus connected. After a sink is connected and if there are still some sinks are unconnected,we reset all nodes in the partial tree as gray nodes, and other nodes on Hanan grid aswhite nodes. Starting from the new partial tree, the algorithm expands the wave frontieragain until next unconnected sink is encountered. This partial tree expansion and growingprocess continues until all sinks are connected.The next Theorem 2 shows the optimality of the choice of the next sink to be connectedto the existing tree. We �rst prove the next lemma that shows the monotone increase ofpath delay estimation during the search expansion.Lemma 1: When a gray node u is extract from the queue Q, none of at present gray andwhite nodes will become have less path delay estimate than d[u] in the following expansion.Proof: At the time of u extracted from the queue Q, u should have the least path delayestimate d[u] among gray nodes in Q. In other word, any gray node v has d[v] � d[u]. If wis gray or white node at the time u is extracted, We can show that d[w] � d[u] forever afteru is extracted. In the continuing search expansion, suppose node w is encountered and itsd[w] is updated. w should be expanded from some node v which is a gray node when u isextracted from Q, since only gray nodes are expanded to neighbors. So, v is an ancestornode of w in the path from source o to w (see Figure 4.1) resulting in d[w] � d[v]. But weknow that d[v] � d[u], such that d[w] � d[u]. 2Theorem 2: The algorithm always connects the next new sink with the minimal pathdelay from source to unconnected sinks.Proof: When a sink is �rst time extracted from Q, it has the least path delay among allunconnected sinks. According to Lemma 1, other unconnected sinks can never have less pathdelays than the �rst extracted unconnected sink even if the search expansion continues. So,



12 5. Complexity Analysis
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Figure 4.1: w is expanded from some node v that is gray node when u is extractedfrom Q. Node o is the source.the algorithm connects the sink with the minimal path delay from source to all unconnectedsinks. 2This algorithm is distinguished from two previous methods [2, 13] as follows. Themethod of Boese, Kahng and Robins [2] is a generic algorithm also based on single partialtree growth. They are not particularly applied on rectilinear Steiner tree. Their SERTalgorithm has time complexity of O(k4), but our algorithm is improved to O(k3 lg k), wherek is the number of sinks[17]. The method of Prasitjutrakul and Kubitz is proposed forrectilinear Steiner tree by performing A� search of a routing graph (e.g. in building blockdesign) to �nd a min-delay connection from the existing tree to a new sink. However, thisalgorithm su�ers from the forced choice of next sink to be connected: the algorithm alwaysadds the sink that is closest (by Manhattan distance) to the existing tree, not based on thereal delay standard. In our algorithm, the next sink to be connected is naturally selectedbased on the search. We show in Theorem 2 that the new sink to be connected next in ouralgorithm always has the minimal path delay from source to all unconnected sinks. Morecomparison between [2] and [13] can be found in [2].5 Complexity AnalysisFor k sinks, there are n = �(k2) nodes of the Hanan grid. The minimum length Steinertree algorithm takes O(kn lg(n)) = O(k3 lg k), since it calls k times of Dijistra shortest pathalgorithm.The worst case time complexity of the minimum Elmore delay Steiner tree algorithm isalso O(k3 lg k). The priority queue Q is implemented with a binary heap. Each connectionof a sink, in the worst case, may search all n = �(k2) nodes. The extraction of the graynode with the minimal path delay estimate takes O(lgn) = O(lg k) of the binary heapoperation. The incremetal Elmore delay update shown in (4.1) is performed in constanttime. So, the connection of a sink takes O(n lgn) = O(k2 lg k). On the average, the timecomplexity is reduced much since we have no need to go through all nodes to connect asink. After a sink is connected, the calculation of Elmore delay going through the partialtree can be performed in linear time of nodes in the tree. So, the algorithm takes totally



6. Experiment Results 13O(k3 lg k) to connect k sinks. So, it is showed that the minimum Elmore delay Steiner treealgorithm has the same order of the time complexity of the minimum length Steiner treealgorithm in [12].Suppose there are Ec edges of Tc and Ed edges of Td. Tb is the mixture of Tc and Td,such that it has edge number Eb � Ec + Ed. The delay bounded Steiner tree algorithmtakes, in the worst case, O(EdEcEb) = O(EdEcmax(Ec; Ed) time complexity. The analysisis as follows. There are O(Ed) min-delay simple paths. When a min-delay simple path isrip-uped, it takes O(lgEd) to select the one with the longest path length, if we store thesemin-delay simple paths is a binary heap. There are O(Ec) min-length cut paths which maybe rerouted, each time it takes O(lgEc) to select the one with the shortest path length.When a min-length cut path is selected, it needs to be checked if it is a feasible cut path bycalculating Elmore delays to sinks in Tb. The Elmore delay calculation takes O(Eb). So, thetotal time complexity of this algorithm is O(Ed(lgEd + Ec(lgEc + Eb))) = O(EdEcEb) =O(EdEcmax(Ed; Ec)).6 Experiment ResultsThe delay bounded Steiner tree algorithm for local clock routing has been implementedin ANSI C. This algorithm has been tested both on random sink distribution and largebenchmarks. We take the electrical parameters of chip in [2], and electrical parametersof a advanced thin-�lm MCM substrate in [18]. These parameters are listed in Table 6.1.We size the driver at clock area pad resulting in two output resistances Rd = 100
 andRd = 50
 to test the e�ect of driver sizing on the Steiner tree construction.Rb(m
=�m) Cb(fF=�m) Lb(pH=�m) Rd(
) Ct(pF )Chip 30 0:352 0 100; 50 0.0153MCM 8 0:06 0:38 25 0:2Table 6.1: Electrical parameters. Rb, Cb and Lb are resistance, capacitance andinductance of unit length wire. Rd is the driver output resistance, and Ct is theloading capacitance of a terminal. The clock driver in chip (die) is sized with twooutput resistances.Table 6.2 and Table 6.3 show the comparison of three kinds of Steiner trees Td; Tc andTb for the examples of random distribution of 8, 16, 32 and 64 sinks. In these two tables,td; tb; tc are the largest path delays of Td; Tb and Tc respectively, while lc, lb and ld are thetotal edge lengths of Tc; Tb and Td respectively . D is the delay bound for Tb, which isselected between td and tc. Table 6.2 is obtained based on Rd = 100
, and Table 6.3 basedon Rd = 50
. The largest path delays are obviously shortened in Table 6.3 because of thesmaller Rd compared to Table 6.2.On the average, the minimum length Steiner tree Tc is 30% less total edge length thanminimum path delay Steiner tree Td, while Td is 78% less largest path delay than Tc. IfTc and Td are optimum, Tb should have less total edge length than Td and more total edgelength than Tc. But, since Tc is obtained based on a approximation algorithm [12], it isshowed in Table 6.2 and Table 6.3 that lb is less than lc in most examples. For all theseexamples, tb � D is satis�ed.



14 7. ConclusionLargest Path Delay (ns) Total Edge Length (mm)td tb tc lc lb ld8 sinks 4.8 4.8 (D = 5.5ns) 7.0 61.8 63.9 (D = 5.5ns) 79.816 sinks 5.05 5.06 (D = 5.06ns) 5.07 70.4 58.6 (D = 5.06ns) 83.732 sinks 6.8 6.86 (D = 6.9ns) 7.0 91.0 71.1 (D = 6.9ns) 131.064 sinks 8.2 10.97 (D = 13.4ns) 23.7 122.5 114.1 (D = 13.4ns) 163.2Table 6.2: Comparison of Steiner tree results on random distribution of 8, 16, 32and 64 sinks. The driver output resistance Rd = 100
. td; tb and tc are the largestpath delays of Td, Tb and Tc respectively . lc; lb and ld are the total wire lengthsof Tc, Tb and Td respectively . Sinks are randomly distributed in a chip size of 20x 20 mm. Largest Path Delay (ns) Total Edge Length (mm)td tb tc lc lb ld8 sinks 3.5 3.6 (D = 4.3ns) 5.9 61.8 58.3 (D = 4.3ns) 75.016 sinks 3.6 3.66 (D = 3.7ns) 3.9 70.4 59.5 (D = 3.7ns) 82.632 sinks 4.0 4.23 (D = 4.4ns) 5.2 91.0 89.4 (D = 4.4ns) 127.564 sinks 5.2 5.4 (D = 10.7ns) 21.8 122.5 117.7 (D = 10.7ns) 171.6Table 6.3: Comparison of Steiner tree results when the driver output resistanceRd = 50(
).7 ConclusionWe formulate a performance driven critical net routing as a delay bounded Steiner treeproblem. The delay bound is usually speci�ed at the system/logic design stage. The layoutmaintains this delay bound to guarantee the correct timing of the �nally implementedsystem in physical layout.We propose a new algorithm of constructing delay bounded Steiner tree. This algorithmis based on the observation that this tree can be obtained based on the trade-o� betweentwo extreme Steiner trees: (1) minimum Steiner tree and (2) minimum path delay Steinertree, taking into account of a delay bound D. The resultant tree has the path delay alwaysbounded by D.This Steiner tree algorithm has been applied on the clock routing for multi-chip modulesbased on area pad interconnection [17, 16].This algorithm can also be extended to arbitrary-angle grids instead of Hanan (rectilin-ear) grids. We expect this Steiner tree algorithm can be applied on critical nets routing forhigh-performance layout.8 AcknowledgementThis work was supported partially by Intel Corporation and partially by the NationalScience Foundation Presidential Young Investigator Award under Grant MIP-9009945. Wewant to thank Prof. Andrew Kahng and Kenneth Boese of UCLA for providing the sourcecodes of their Steiner tree algorithms in [2].
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