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for the analysis. The model provides adequate accuracy for submicron CMOS technology. It takes

into account the nonlinear nature of the active devices and yet is efficient enough to use in fast

transient interconnect analyses. Computationally, by combining MEF approximation with the new

driver model, a two order of magnitude improvement over traditional circuit simulator is demon-

strated with comparable accuracy in high speed interconnect transient analysis. The efficiency of

the algorithm makes accurate analysis of large systems practical.
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Figure 10: Voltage response of the clock network.
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alyze the circuit on a SUN Sparc 1+ workstation. Our method took only 1.9 seconds CPU times,

and most of them is for I/O process. Figure 10 shows the voltage response.

8 Conclusions

We have discussed two important issues related to transient interconnect analyses. Based on

a S-parameter macro model, a new approximation function, MEF, is introduced to accurately ana-

lyze a system of interconnects with nonlinear drivers. Our method can provide stable solution

with any degree of accuracy. We have also presented an improved nonlinear driver model suitable

Figure 8: Voltage response of the RC circuit.
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The proof of the algorithm is omitted for brevity. The complexity of the above algorithm is

, where  is the order of . Convolution of thenth order  with the current input is

also an  algorithm.

Similarly, convolution of  and  with a step or exponentially decaying function can

be computed with time domain explicit formulas or recursive formulas.

7 . Experimental Results

Two examples are given below. The first circuit is an RC circuit with floating capacitors

(See Figure 7). The driver model parameter includes maximum current ( ), threshold volt-

age ( ) and the rise time of the input signal ( ). Output voltage  computed by MEF

transient analysis method are compared with SPICE result in Figure 8. Throughout our experi-

ments, the SPICE level one MOS transistor models are used for SPICE simulations.

The second example is a grid-type clock network (See figure 9). The clock is distributed

around the periphery of a  chip. The vertical runs are on metal 1

( ,  and ) and the horizontal runs are on

metal 2 ( ,  and ). The parameters of

the driver are: maximum current , threshold voltage  and the rise time of the input

signal is . With direct convolution, SPICE3e2 took more than 200 seconds CPU times to an-
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approximation for a wide range of CMOS gates. Next section focus on how to combine this driver

model with MEF approximation of the interconnect for transient analysis.

6 . Response Function

Combined with the load, the current flowing into the interconnects driving by the current

model can be piecewisely expressed. For , the current is [6]

(30)

where  is the slope of the current wave in rising ramp section (See Figure 4(c)). Similarly,

for , the output current of the current model also can be expressed piecewisely. In other

words, the current is the overlay of step, ramp and exponentially decaying functions. The transfer

functions of the interconnects including the driving point impedance can be approximated by

MEF, .  is the sum of exponentials (See Eq. 10), and  is the exponen-

tially decayed polynomial function (See Eq. 14). The output response  is

(31)

where * represents convolution. To symbolically convolve  with the input we take the

convolution of each term in  with each term in . The effect of the rising ramp on an expo-

nential can be explicitly represented by:

(32)

The convolution of  with input can be computed by recursive formulas. For example,

the effect of the rising ramp on thenth exponentially decayed polynomial function is

(33)

with  and . Based on the Eq.

(33), we have a simple algorithm to implement the convolution process:
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used to determine if there is a grounded resistive element.

Theorem 1: An interconnect system has no grounded resistive element if and only if the

driving point s-parameter is equal to one at frequency , that is, the first moment of  is

equal to one.

Proof: Consider the relation between the scattering parameter and the impedance, we have

(24)

where  is the reference impedance. If there is no grounded resistive elements, the driving

point impedance  at , thus . On the other hand, rewrite the above equa-

tion

(25)

If , then , indicates no grounded resistive elements.

From the property of Taylor series, the second moment of the  is . The follow-

ing theorem shows that the equivalent driving point capacitance is only dependent on the second

moment of .

Theorem 2: For an interconnect system with no grounded resistive element, the equivalent

driving point capacitance is

(26)

Proof: From Eq. (25), since , there is a pole at  for driving point imped-

ance. The corresponding residue is

(27)

and the equivalent driving point capacitance is

(28)

Consequently, the pole at  makes it impossible to express the driving point impedance

in Taylor series. In this case, the function to be matched with a mixed exponential function be-

comes

(29)

We have thus completed the construction of the driver model. This new model is an accurate
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The computation is based on the following equation [8]:

(18)

In this case, the initial current value in section 4 is

(19)

Note that in this case,  is less than .

Next, we consider the computation of the time constant  used in section 4 of the model. It

is desirable to be able to compute the time constant without adjusting the process proposed in [6].

Since the initial current of section 4 is known, the exponential decay function is determined solely

by its time constant. Assume that output current in this section is

(20)

So, the charge pumped into section 4 is . The total charge in section 1, 2 and 3 are

(21)

Thus, we can determine the time constant  by

(22)

where  is the equivalent driving point capacitance. In the next section, we will describe

how to compute the equivalent driving point capacitance from the scattering parameter based

macromodel. Once the capacitance is found, time constant  can be directly determined by

Eq. (22).

5 . Computation of the Equivalent Driving Point Capacitance

For the s-parameter interconnect macromodel described earlier in this paper, we can easily

find the driving point s-parameter and then get the equivalent capacitance. Without loss of gener-

ality, assume a two port network (See Figure 6) is the result of the network reduction process. The

driving point s-parameter in frequency domain is

(23)

Before we proceed to compute the equivalent capacitance, the following theorem can be

vin tlinear( ) Vth+ vout tlinear( )=

i0
tlinear t' th−

tr t' th−
Imax=

tlinear tr

τ

iout t( ) i0e
t tlinear−( ) τ⁄−

=

i0τ

Qprev

tr t'th−( ) 2⁄ tl tr−+( ) Imax tl tr≥( )

tl t'th−( ) 2Imax 2 tr t'th−( )⁄ tl tr<( )
{=

τ
i0τ Qprev+ CeqvVDD=

Ceqv

τ

SoVo

S11 S12

S21 S22

Vin

Figure 6: A two port network.
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this current model is even more significant. In order to compensate the nonlinear current, we in-

troduce a virtual threshold point  for the linear current source model (See Figure 4 (d)). The

modified driver model does not start to conduct current until time . Note that the slope at

which the current changes is also affected by . Let charge pumped into the interconnect by cur-

rent model described by Eq. (15) be equal to the charge pumped by our linearly increasing current

model, we have

(16)

Where  is the time at which the input voltage satisfies the following condition:

(17)

Shown with dotted line in Figure 5 is the new current source model. As one can easily see,

this new current model approximates the actual current of the nonlinear driver with much im-

proved accuracy.

If the equivalent driving point capacitance is large enough, the section 2 model is employed

until the time  at which the input transition reaches its final value, then switches to section 3. If

the equivalent driving point capacitance is small, PMOS turns on in the linear region, the gate

thus enters section 4 directly. The method to determine which case will occur is by computing

output voltage  at the time  with the assumption that the load is driven by this linearly in-

creasing current model. If , PMOS is still in the saturation region, the gate operates in

section 3; otherwise, we need to compute , at which the PMOS turns on in the linear region.

Figure 5: Driver model currents vs. actual current
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governing MOS transistors. It takes into account the nonlinear effect of the driving gates and yet it

is simple enough for fast transient analyses. By lumping the input and output capacitors of the ac-

tive gates into the interconnect networks, the amplitude of the current flowing out of the gate at

any instant is the function of input and output voltages of the driver at that instant. Consider a

CMOS inverter. For a falling input voltage transition shown in Figure 4(b), the corresponding out-

put current is piece-wisely modeled in four sections[6].

As illustrated in Figure 4(c), the output current of the driver in Section 1 is equal to zero

since the source to gate voltage of the PMOS transistor is less than its threshold voltage and the

source-drain voltage of the NMOS transistor is zero. As the input voltage decreases, the source to

gate voltage of the PMOS transistor exceeds its threshold voltage, causing it to turn on in satura-

tion. The NMOS transistor starts from the linear region, enters saturation and finally, into cutoff

region. This section is modeled by a linearly increasing current source with slope ,

where  is the time when the PMOS transistor starts conducting current and is the maxi-

mum current the gate provides. Section 3 begins at , when the PMOS transistor is in the satura-

tion region and NMOS in the cutoff region. A constant current source with amplitude

represent the model. When the output voltage rises to a value such that PMOS transistor enters its

linear region, section 4 of the model takes effect. In the linear region, the transistor with the con-

stant input voltage behaves like a linear resistor. The output current is modeled by an exponential

decay function as the output voltage reaches its final value. The time constant  is initially com-

puted based on the charge which has been pumped into the loading network. This initial guess of

τ needs to be scaled so that the final voltage at the output of the gate is correct. It is assumed that

there are no grounded resistive elements in the system.

Here, we present two major improvements to the above driver model. Let’s first discuss sec-

tion 2 in detail. In this section, PMOS transistor current increases quadratically, while the NMOS

transistor current increases linearly for a while, then quadratically decreases to zero. Ignoring the

small current of the NMOS transistor, the current flowing into the interconnect should be

(15)

Using a linear current source as shown in Figure 4 (c) to approximate this quadratic current

will result in a large error, especially for a slow rising/falling input signal. The broken line in Fig-

ure 5 shows the comparison of current given by this current model and the actual current flowing

out of the gate obtained by SPICE simulation. As one can see, the linear current begins to increase

much earlier than the actual current, more charges are pumped into the load at the beginning of

the transition causing the PMOS transistor to fall out of the saturation region before the current

reaches its real final value. When the NMOS transistor current is not negligible, the inaccuracy of

Imax tr tth−( )⁄
tth Imax

tr

Imax

τ

i0
Imax

tr tth−( ) 2
t tth−( ) 2=
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4 . Driver Model

To obtain the transient response of a system of nonlinear elements connected by linear inter-

connects, the time domain transfer function of the interconnect,h(t), derived in the last section,

needs to be combined with proper driver models. The traditional simple Thevenin equivalent cir-

cuit is not adequate to describe a submicron nonlinear gate. This section is therefore, aimed to find

an accurate yet efficient model for the nonlinear gates.

A current source model is proposed in [6] to model the current output waveform of nonlin-

ear CMOS drivers (See Figure 4(a)). The model is based upon the first order analytical model

VDD

VDD Vth−
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tth tr tlinear time

time

vin

iout

Figure 4: Input voltage transition and the current source model.
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While EDPF gives a stable approximation, it is found that to obtain the same degree of accu-

racy, a higher order EDPF function is required compare to Pade approximation when stable solu-

tion can be found for the later. Hence, it is of computational advantage to choose Pade

approximation over EDPF when possible. Comparing the characteristics of Pade approximation

and EDPF, we propose a Mixed Exponential Function (MEF) approximation for the analysis of

interconnect networks. MEF is the combination of the exponential function and exponentially de-

cayed polynomial function.

We use MEF to approximate the transfer function with  moments shown in Eq. (7) in two

steps. First, a qth order exponential function  is used to match Eq. (7) in time domain with

Pade technique. Clearly,  completely matches all  moments of the transfer function . If

all poles of  are stable, the process of time domain synthesis of the transfer function is com-

pleted.

If there exist unstable poles, the corresponding terms in  are discarded. Let there be

 stable poles, then  becomes

(10)

Transfer  into frequency domain and expand it around , we have

(11)

where  is the ith moment of , and

(12)

Since unstable poles in  are not included, . Let

(13)

where . A  order EDPF function is then used to match  [3]. In

the time domain, we have:

(14)

Finally,  is the time domain synthesis of transfer function .

As pointed out earlier, MEF preserves the high accuracy of Pade approximation with guar-

anteed stable solution.
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troduced. Let

(4)

Then, aMultiplication Operation is defined as:

(5)

And aDivision Operation:

(6)

The s-parameters of all elements can be expanded into Taylor series. Thus, based on the ad-

joined merging and self merging rules with series operations, the s-parameters of the final multi-

port is derived in Taylor series. The various transfer function can be obtained from the s-parame-

ters of the macromodel.

3 . Time Domain Description of Macromodel with a Mixed Exponential Func-
tion

A frequency domain transfer function with  moments,

(7)

can be approximated with the following summation of time domain exponential functions

using thenth order Pade approximation [5]:

(8)

Where  and  are the poles and residues, respectively. The Pade approximation provides a

relatively accurate and efficient way to evaluate the response of linear interconnect systems. How-

ever, it suffers from the stability problem: unstable poles may be generated for known stable net-

works. That is,  may lie in the right half complex plane.

In order to overcome this problem, Exponentially Decayed Polynomial Functions

(EDPF)[1, 3] are used to approximate the transfer function of the macromodel. EDPF can approx-

imate the time domain transfer function with any degree of accuracy. And its corresponding fre-

quency domain function has only one repeated stable pole, so it is always stable for stable

systems. Annth order EDPF in time domain has the following form:

(9)

where  is the time constant.
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andY, the resultant  port system has the following s-parameters:

(1)

Self Merging Rule: Let X be anm port system with a self loop connected to thelth andkth

ports in X, as shown in Figure 3. After eliminating the self loop, the resultant (m - 2) port system

has the following s-parameters:

(2)

where

(3)

The network reduction process begins with merging all internal components by repeatedly

utilizing the Adjoined Merging rule for all internal nodes. The Self Merging rule is applied to

eliminate all the self loops introduced by the Adjoined Merging process. Finally, a multi-port net-

work characterized by its scattering parameters is derived.

The above reduction process does not require the network be an RC tree. Since we start with

the s-parameter description of the system, which always exists for any physically realizable sys-

tem, the formulation is completely general for any linear distributed-lumped network with scatter-

ing parameter descriptions. Another advantage is that the need for using lumped representation of

transmission lines is eliminated since lossy transmission lines can be represented in the distribut-

ed form.

In order to speed up the network reduction process, the two types of series-operation are in-
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will present an improved nonlinear driver model based on a current source model introduced in

[6]. This new driver model is used in conjunction with the interconnect macro model. Computa-

tional procedures using MEF to analyze the combined models are provided in section 6 and ex-

perimental results are presented in the last section.

2 . Scattering Parameter Based Macromodel

Given an arbitrary linear network of distributed-lumped elements, a scattering parameter

based macro model is introduced in [2]. The individual components in the network are described

by their scattering parameters, and a systematic reduction algorithm is introduced to reduce the

network with many internal nodes to a multiport macro model with user specifiable external

sources and loads of interest, as shown in Figure 1.

To obtain such a multiport representation withn external ports from an arbitrary distributed-

lumped network ofm original nodes, the network is reduced by merging the nodes into the multi-

port one at a time while keeping all user specified nodes external. There are two basic reduction

rules:

Adjoined Merging Rule: Let X andY be two adjoined multiports, withm ports andn ports

respectively. Assume portk of X is connected to portl of Y, as shown in Figure 2. After mergingX

2vin

1

n Zn

Z2

Sn n×

Z3

3

Figure 1: S-parameter based macromodel.
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Transient Analysis of Interconnects with Nonlinear
Driver Using Mixed Exponential Function

Approximation

1 . Introduction

High speed interconnect networks have been studied quite extensively[1, 4, 5, 7] because of

the ever increasing demand of high performance systems. Detailed analyses of interconnects are

usually computationally expensive due to the distributed and dispersive nature of the network.

The large number of internal nodes, which affect the external behavior of a network, adds to the

complexity of the problem. However, the detailed inner working of these nodes are usually of lit-

tle interests to the system designer and therefore, need not be explicitly represented into computa-

tional models. Similar to the idea of macro modeling the nonlinear gates to handle large designs,

interconnect macro modeling is an attractive alternative. A scattering parameter-based macro

model of distributed-lumped networks is introduced in [2]. That model handles general lumped

and distributed elements as well as arbitrary network topologies. By representing only those

nodes of interests as external ones, the size of the problem is significantly reduced.

Based on the scattering parameter macromodel, Pade technique can be used to approximate

transfer functions of the interconnect system [2]. Pade approximation provides good accuracy

with relatively little computation time, but may suffer from stability problem. In order to address

stability problem, Exponentially Decayed Polynomial Function (EPDF) is used [3]. EPDF is

guaranteed stable for a stable system, but it is computationally more expensive. In this paper, we

present a new approximation function, called Mixed Exponential Function (MEF), that integrates

the advantages of the two previously developed methods. It provides accuracy, efficiency, as well

as stability.

Despite the increasing importance of interconnects in transient analysis, nonlinear active de-

vices in a system also contribute to the system behavior significantly. However, most techniques

geared towards interconnects tend to ignore the nonlinearity of the driving gates by the use of

simple linear models for the drivers. With submicron CMOS design becoming common place,

such linear driver models are no longer adequate. On the other extreme, detailed simulation de-

vice models are overly expensive for today’s large systems. In sections 4 and 5 of this paper, we
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