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ABSTRACT

This paper presents a simple and robust method of designing the lossy-transmission-line
interconnects in a network for multichip modules. This method uses wire-sizing entirely to
meet the electrical damping criteria to solve the problems encountered in propagating high-
speed signals through unterminated lossy transmission lines on the substrates of multichip
modules (MCM). The optimal design method is based on a new improved scattering-
parameters (S-parameters) based macro-model of distributed-lumped networks that keeps
track of the time-of-flight term in the transfer functions. The wire-sizing optimal design
concept is to relate the layout parameter (line width) and the transfer function (damping
ratio, and natural undamped frequency) to the signal propagation delay. The optimal
design method results in fast and stable signal propagation for single-source multi-receiver
networks on multichip modules without using termination resistors. Multi-receiver networks
on High Performance MCM process technologies are designed for illustration.

Keywords: Optimal Design, Self-Damped, Lossy Transmission Line, Multichip Module,
Perturbation
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2 1. Introduction

1 Introduction

A new revolution in packaging technology called the multichip module (MCM) has several bare
chips mounted and interconnected on a substrate. By eliminating the individual chip packages,
chips are placed closer together resulting in higher packaging density than the hybrid and Printed
Circuit Board (PCB). The metal linewidth on MCM are much wider than those of modern VLSI
chip, so the line itself exhibits non-negligible inductance. Compared with the metal lines on PCB,
those metal lines on MCM have a larger resistance per-unit-length due to a smaller cross-section.

Therefore the metal lines on MCM must be treated as lossy transmission lines.

The interconnection lines on multichip modules exhibit reflections and resonances due to its
transmission line characteristics and must therefore be terminated. Different layout parameters
and terminations result in output waveforms of different damping conditions. Figure 1.1 shows the
underdamped, critical damped, and overdamped output waveforms of a ramp-step input waveform.
The overshoot of the underdamped waveform for a 5-volt input is almost one-volt and can be
destructive if it is left unterminated.

Underdamped, Critical Damped, and Overdamped Waveforms
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Figure 1.1: Simulation Waveforms of Different Damping Conditions: The input
waveform is shown in solid line. The under damped output waveform is shown in short
dash line. The critical damped output waveform is shown in medium dash line. The
overdamped output waveform which has the longest delay is shown in long dash line.

Usually there are two ways to cope with this problem; one is to terminate the lines with clamping

diodes and the other is to terminate with resistors. However, when a line on a multichip module
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is terminated by a pair of voltage-clamping diodes to limit the positive and negative signal swings,
the diode when is turned on by signal voltage overshoot conducts a huge amount of current which
can cause an increase in power consumption and an increase in power-distribution disturbance. If
a line on a multichip module is terminated with a resistor of appropriate value to minimize signal
reflections and resonances, the voltage divider formed by the termination resistance and the line
characteristic impedance causes substantial and unacceptable attenuation of propagated signals. In
addition, each resistor dissipates quiescent power when the line is at non-zero voltage. In modules
containing thousands lines, this power dissipation can be excessive, and the problem is compounded

by the small packaging size of MCM with limited heat removal capability.

Instead of terminating with diodes or resistors, the long lines on the thin-film multichip modules
can be structured to critically damp the signal to avoid resonances. Doing without the termination
eliminates the heat generated by the terminator and solves the heat removal problem. Being
unterminated, the long lines in the substrate are structured to exhibit a total resistance that is
related to the source resistance of the active devices which drives the lines [6] [1]. Since voltage
doubling occurs at the end of the unterminated line due to reflection, a controlled amount of
attenuation is tolerable. For performance reason, slightly underdamped design gives shorter signal
propagation delay with tolerable amount of overshoot [1] [7]. The structured line which is critically
damped can transmit input signal frequency components up to the bandwidth of the line without
any instability or attenuation. For higher frequencies, attenuation occurs but the line remains

stable [6] [3] [1]. These lines are thus called optimal self-damped lossy transmission lines [5].

This paper is the first to identify the optimal design concept of optimizing both the maximum
path delay and the maximum damping ratio together. This minimization problem is transformed
into a least square estimation problem. The least square estimation problem is then solved using
the efficient algorithm of Gauss-Marquardt method. The contribution of this paper is to achieve
optimal performance completely through wire-sizing. The approaches taken will be presented in
the following sections. Section 2 will describe the interpretation of the transfer function. Section

3 will formulate the optimal self-damped design problem. Section 4 will describe the optimization



42. Transfer Function, Natural Undamped Frequency, Damping Ratio, Line Width, and Signal Propagation delay

method used. Section 5 will demonstrate the usefulness of the optimization method through
examples. Section 6 will present the S-parameter based macro-model with the time-of-flight for
a lossy transmission line. Section 7 will describe some previous works done by other researchers.
Finally, Section 8 will conclude the findings and contributions of this paper and proposes the future

research directions.

2 Transfer Function, Natural Undamped Frequency, Damping Ratio, Line

Width, and Signal Propagation delay

The transfer function is defined as:

Voutput ( 5)

H(s) = Viout(5)

where s is the complex variable of the Laplace transformation, V,yspyut(s) is the Laplace transform
of the time domain output waveform vyspyt(t), and Viypue(s) is the Laplace transform of the time

domain input waveform v;,p:(t).

The transfer function H(s) also can be defined as [8]:
H(s)=e"% x H(s) (2.1)

where 7 is the time-of-flight term, and ﬁ(s) is the part of the transfer function representing the

charging curve in the output waveform starting at a delay 7 after the input switches at ¢ = 0.

The transfer function H(s) can be separated into two terms as in Equation (2.1). Assume a
second order approximation is applied to the charging part of the transfer function f{(s), it can be

rewritten as:

A wnz

H =
(s) 52 4 20wps +wy?’

(2.2)

where w,, is the natural undamped frequency and ( is the damping ratio of the transfer function
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ﬁ(s) [7]. The natural undamped frequency w, is the sinusoidal frequency assuming there is no
damping (¢ = 0). ¢ is the "ratio of the damping” compared with critical damping. The roots of
the denominator polynomial of the transfer function H(s) are called the poles of H(s). Since the
poles of ﬁ(s) are also the poles of H(s), w, and ¢ are also the natural undamped frequency and

damping ratio of the transfer function H(s).

Define the representation of the poles as:

S12=—a £ jw=—(w, £ jw,\/1 — %

The damping ratio ( is:

(8% (8%

Wr, V a2 + w2

For a given input waveform in time domain, the three quantities of the transfer function: the
time-of-flight 7, the natural undamped frequency w,, and the damping ratio ¢ uniquely determine
the time domain response waveform at the receiver. By the same token, the propagation delay for
a signal to reach 50% of its final value at the receiver is also uniquely determined by these three
quantities: 7, w,, and (.

In the next section, the damping ratio  and the propagation delay will be used together in the

optimization process. The approximate natural undamped frequency w,, is a byproduct simulation.

3 Formulation of the Optimal Self-Damped Design

To illustrate the basic concept, a single-source multi-receiver network is used. It consists of a
set of edges and a set of nodes. The source and the receivers are the nodes of the network graph.
This design method finds the optimal width assignment that gives the same damping criteria for

each path from source to receiver.

The optimal design problem can be formulated as follows:
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Given a network (N) consists of a set of edge £ with fixed lengths. The width of each edge
belongs to a set of feasible widths C' = {cq, ¢, ..., ¢inax} Where (¢; < ¢i41,1 <@ < (maz — 1)), the
optimal design is to find an optimal width assignment: W* C C' and a mapping M : B — W*
such that every paths from root to leaves has the shortest delay and the same damping criteria
if possible. The objective is to optimize the performance which includes minimizing the signal
propagation delay for each path from source to receiver with either no overshoot or controlled
amount of overshoot. The width of edge ¢, w;, is bound by the minimum and maximum feasible
width, min(w;) < w; < maz(w;), where min(w;), maz(w;) € C. The incremental difference, Ac,
where Ac = (¢;41—¢;),1 <@ < (maxz—1), between feasible widths is depicted by process technology.

The following notations are defined for the formulation of the optimal self-damped design.

n : is the number of the edges in the network.

m : is the number of the receivers (the output nodes).

w; : is the width of edge 1.

l; : is the given length of edge .

7; ¢ is the propagation delay for a signal to reach 50% of its final output value transmitted along
path from source to receiver j.

¢; : is the damping ratio of the lowest conditional frequency of the transfer function from source
to receiver j.

Ctarget @ is the electric damping criteria set forth by the user.

The optimal self-damping design for a general network can be formulated as a general nonlinear

programming problem as follows, Let

F(wy,wy,...,w,) = Mazimum(r;), 1 <j<m. (3.1)

G(wy,wy,...,wy,) = Mazimum(|(; — Carget|), 1 < j < m. (3.2)

Objective
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Flwy,wy,...,wy,)
Minimize , where K is a weight constant.
K -G(wy,ws,...,w,)
Constraints
1 ) .
Cj(wlvw%"'?wn) > ﬁvwlecvlélénvléjém (33)
gi(wlvw% .. '7wn) = {wl - mln(wz)} > vai € Ca 1< < n. (34)
hi(wy, we,...,w,) = {maz(w;)—w;} > 0,w; € C,1<i<n. (3.5)

The objective of optimal self-damped design is to size the wire width of each edge in order to
minimize both the maximum delay shown in Equation (3.1) and the maximum of the damping
ratio error shown in Equation (3.2), while maintaining that all output damping ratios satisfy the

constrain in Equation (3.3) and all edge widths satisfy the constraints in Equation (3.4) and (3.5).

The way to find the optimal answer is to use the perturbation method, which works by perturbing
each of the design parameters A; a small amount in each direction, and finds the right direction
and distance to change A;. In this paper, the width of each edge w; is the chosen design parameter
to be changed and a simulation is run at each perturbation to find the propagation delay and the
damping ratio. The perturbation results of the propagation delays and the damping ratios are then

used to compute the gradient matrix. Details of the optimization method is described in Section 4.

4 Optimization Method for the Optimal Self-Damped Design

Section 4.1 will proof that the original optimization problem can be transformed into a least-
squares estimation problem. Section 4.2 will demonstrate the detail of implementation of the

least-squares estimation optimization. The proof closely follows those used by Zhu et al. in their
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technical report [13]. The contribution of this paper is not only to have a different target function
but also to identify a new concept where delay has to be include in the optimization objectives in

order to find the optimal results with the least maximum path delay.

4.1 Proof of the Correctness of the Least-Squares Estimation Transformation

The optimal wire-sizing problem formulated in Equation (3.1) is a general nonlinear program-
ming problem. The damping ratio error minimization and delay minimization problem can be
transformed into a least-squares estimation problem. After the transformation, the resulting least-
squares estimation problem can be solved using an efficient optimization method [11] to obtain
the optimal width assignment for the original problem. The efficient method is called the Gauss-
Marquardt method. It is an improved version of Gauss-Newton method by incorporating a more
efficient way of determining the Lagrange multipier to speed up the convergence. The Gauss-
Marquardt method combines the best features of the Taylor series methods and the gradient meth-
ods. There are two parts in the original optimization problem. The first part is the minimization
of the maximum of the 50% signal propagation delay. The second part is the minimization of the

maximum of the damping ratio error.

The following is the proof for the first part. Let 7; be the 50% signal propagation delay of the
receiver j (1 < j < m), where m is the number of receivers. Let column vector © = {7y, 75,..., 7}’
represents the delay vector, where T' denotes matrix transposition. The summation of all squares

of delay errors is:
D(wy, wg, ..., w,) =070 = Z 77 (4.1)
7=1

Define the root-mean-square (rms) error of the delay as:
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From Equation (3.1), the maximum delay is F'(wq, ws, ..., w,) = Mazimum(r;). Theorem 1 shows
the consistency of minimizing the delay and minimizing the rms delay error when optimization

proceeds.

Theorem 1: Given a single-source multi-receiver network, the root-mean-square error defined in

Fquation (4.2) and mazimum delay defined in Fquation (3.1) linearly bound each other.

Proof: Assume the largest delay is T4,. For all 7, 7, < Ty, (1 < j < m), where m is
the number of receivers and it is a constant for a given network. From Equation (4.2), we have
0= \/Z] 1 ]/m < \/Z] | TEuw] M = Tmaw = F(w1,we,...,w,). On the other hand, we have
Flwy,wy,...,w,) = Mammum(rj)_rmw_m<\/zj L TF \/m S THm = /m .

So ¢ and F(wy,ws,...,w,) linearly bound each other. []

The following is the proof of the second part. Let column vector © = {|¢; — thget|, |2 —
Crarget|s - - |Cm — Crarget|}T Tepresents the damping ratio error vector. The summation of all squares

of damping ratio errors is:
\Il(wl, Wy .o, W QTQ Z Ctarget (43)

Define the root-mean-square (rms) error of the damping ratio as:

_ v _ & (C - Ctar et)2
b= ﬁ R (4.4)

From Equation (3.2), the maximum damping ratio error is G(wn, ws, ..., w,) = Mazimum(|(; —

Ctarget|). Theorem 2 shows the consistency of minimizing the damping ratio errors and minimizing

the rms damping ratio error when optimization proceeds.

Theorem 2: Given a single-source multi-receiver network, the root-mean-square damping ratio
error defined in Equation (4.4) and mazimum damping ratio error defined in Fquation (3.2) linearly

bound each other.

Proof: Assume the largest damping ratio is (g, and it deviates from (s4rge¢ the most, the maxi-
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mum damping ratio error is |(ap — Ctarget|. (The proof can be applied to the case where the smallest
damping ratio (., deviates from (yqpge¢ the most. We only have to replace all (4, With (pp in the

proof.) For all (;, [(;—Ctarget] < |Cmaz—Ctarget], (1 < j < m), where m is the number of receivers and

it is a constant for a given network. From Equation (4.4), we have ¢ = \/27:1 ((; — Ctarget)?/m <

\/Z;n:l (Cmax - Ctarget)z/m = |Cmaac - Ctarget| = Mammum(K] - CtargetD = G(wlaw% .. -awn)-

On the other hand, we have G(wy,wy,...,w,) = Mazimum(|(; — Carget]) = |Cmaz — Crarget| =

\/(Cmaac - Ctarget)z < \/Z;nzl (CJ - Ctarget)z = \/m : ;n:l (CJ - Ctarget)2/m = \/ﬁ : ¢ 50 ¢ and

G(wy,ws,. .., w,) linearly bound each other. []

From the above two theorems, we have:

Theorem 3: Given a single-source multi-receiver network, minimizing the two least-squares esti-
mation problem minimizes the maximum path delay F(wy,ws, ..., w,) defined in Equation (3.1) and
mazimum damping ratio error G(wy, ws, . .., w,) defined in Equation (3.2) of the original nonlinear

programming problem.

4.2 Implementation of the Least-Squares Estimation Optimization

The Gauss-Marquardt method is used to solve the least-square estimation problem. Theorem
3 shows the consistency between the minimizing of the original problem and the minimizing of
the transformed root-mean-square estimation problem. Starting with a arbitrary initial solution of
width assignment W(© = {wl(o),wg(o), .. .,wn(o)}T, based on the Gauss-Marquardt method, the
width assignment W is optimized according to the following formula:

0
W(k-l—l) — W(k) _ (JTJ 1+ /\A)—IJT |W(k) (45)

Qe
where k is the number of iteration, O|y(x) is the column vector of delays at all the receivers at the
k — th iteration, and Q| (x) is the column vector of damping ratio errors at all the receivers at the

k — th iteration. J is the 2m X n sensitivity matrix, J7 is the transposition matrix of J where the
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(i,7)th element JT(i,5) = J(j,i), A is a diagonal matrix in which the values of its diagonal elements

are the same as the diagonal elements of J7J, and A is the Lagrange Multiplier properly selected to
(k)

speed up the convergence of the optimization process [11]. Round-off occurs when computing w;

. . . . r | @lw

so that Equation (3.4) and (3.5) are always satisfied. The physical meaning of J
o

that it represents the gradient around the current width assignment W®*). To obtain the sensitivity

matrix J, the (¢, 7)th element is defined as:

5011

J(i) B, f1<i<m (4.6)
1,7) = ’ . .
8ﬂa[iu—m]7 Tm+1<i<2m
J

The partial derivatives are computed using central difference method. The optimization continues
until the maximum damping ratio error is less than a prescribed value, the maximum damping ratio
error cannot be further improved, the maximum delay cannot be further improved, or the iteration
number exceeds a preset limit. The convergence to the optimal values of Gauss-Marquardt method

is proved in [11].

5 Experiment Results

The examples tested are constructed with High Performance MCM process technologies pub-
lished by Frye [4]. The important parameters of the MCM process are listed in Table 5.1. In the
uniform width case, all the widths are equal to 25um for all the examples tested. All the drivers are
modeled with a step input voltage source in series with the parallel combination of a 129 resistor
and a 4.3pF capacitor. All the receiver are modeled using a 2.5pF capacitor. The damping ratio

target is chosen to be 0.8 or % for shorter propagation delay with a controlled amount of overshoot

[ {7].
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6 S-Parameter Based Macro-Model with the Time-of-Flight Extraction

In order to precisely analyze the lossy transmission lines on MCM substrates, the scattering
parameter (S-parameter) based macro-model [9] [10] is used to find the approximated transfer
function H(s). S-parameters represent the interrelationship of a set of incoming and outgoing

waves of a multiport component. Some of the advantages of using S-parameters are:

1. They are easier to measure and to work with at high frequencies compared to using other

types of parameters.

2. All lumped circuit elements including short and open circuits have unique analytical S-

parameter descriptions.

3. They provide a very convenient means for describing distributed elements such as lossy

transmission lines.

The S-parameter based macro-model simulator can handle both lumped circuit elements and
lossy /lossless transmission lines including loops. With the description of elements by S-parameters,
an efficient network reduction algorithm is employed to reduce the large interconnect network
into one multi-port component together with the source and receiver circuit elements. Pade
approximation [10] or Exponential Decaying Polynomial Function approximation [9] is used to

derive the macro-model.

However, the delay associated with transmission line networks consists of the exponentially
charging time and a pure propagation delay representing the finite propagating speed of electro-
magnetic signals in the dielectric medium. This propagation delay, so called time-of-flight delay
and denoted by 7, is impossible to model perfectly by a finite order of approximation. So, the

S

time-of-flight 7, more precisely the factor €77, must be extracted from the transfer function of the

circuit.
The new and important improvement in the S-parameter based macro-model simulator is the
extraction of the exact time-of-flight term in transfer functions [8]. By extracting the time-of-

flight of scattering parameters for basic components, an effective network reduction is developed
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Later Zhou et al. presents a distributed-RLC model and a second order approximation in their
performance-driven-layout paper [12] which extends the wire-sizing algorithm to cover transmission
lines on MCM. It is possible that the second order approximation to be used in order to keep the
optimization manageable. Zhou et al. has published a paper [12] using the second order without

the extraction of the time-of-flight to formulate the performance-driven-layout.
There are three problems with the performance-driven-layout described in Zhou et al. paper.

e The formulation of the optimization problem with the critical damping constrains is changed

to an optimization without any constrain in implementation.

e The distributed-RLC model is used in the formulation but distributed-RC model is actually

used in the optimization.

e The approach used by Zhou et al. is a two-step approach, first step is to perform the wire-
sizing to achieve shorest delay, the second step is to critically damp the output signals.

The Zhou’s critical damping design method consists of adding resistors in series at the receiving

terminals. This adding of serial resistor at the receiver is like adding the matching serial termination

resistor at the driver, both consume power when the line is at non-zero voltage and take extra space

to accommodate the resistors.

8 Concluding Remarks

This paper is the first to identify the performance-driven-layout optimal objective is to minimize
both the maximum path delay and the maximum damping ratio together. The optimal performance
is achieved entirely through wire-sizing on any general network which may contains loops. The use
the new S-parameter based macro-model which keeps track of the exact time-of-flight helps in
producing accurate path delays. The results in Section 5 shows significant improvements over the

uniform typical width assignment designs.

Due to the limited space and heat dissipation problem, the interconnections on multichip

modules are better left unterminated. The metal and dielectric film thickness commonly used
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in the fabrication of a multichip module is well suited for the design of optimal, self-damped

interconnections. This optimal design method uses wire-sizing entirely which eliminating the

excessive heat dissipation that accompanies with resistive terminators.

Future research includes taking cross coupling, frequency dependent models, and 3-D disconti-

nuity (vias and bends) into consideration, and verification of the results through measurements.
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