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2 1. Introduction1 IntroductionA new revolution in packaging technology called the multichip module (MCM) has several barechips mounted and interconnected on a substrate. By eliminating the individual chip packages,chips are placed closer together resulting in higher packaging density than the hybrid and PrintedCircuit Board (PCB). The metal linewidth on MCM are much wider than those of modern VLSIchip, so the line itself exhibits non-negligible inductance. Compared with the metal lines on PCB,those metal lines on MCM have a larger resistance per-unit-length due to a smaller cross-section.Therefore the metal lines on MCM must be treated as lossy transmission lines.The interconnection lines on multichip modules exhibit re
ections and resonances due to itstransmission line characteristics and must therefore be terminated. Di�erent layout parametersand terminations result in output waveforms of di�erent damping conditions. Figure 1.1 shows theunderdamped, critical damped, and overdamped output waveforms of a ramp-step input waveform.The overshoot of the underdamped waveform for a 5-volt input is almost one-volt and can bedestructive if it is left unterminated.
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0.00 1.00 2.00 3.00 4.00 5.00Figure 1.1: Simulation Waveforms of Di�erent Damping Conditions: The inputwaveform is shown in solid line. The under damped output waveform is shown in shortdash line. The critical damped output waveform is shown in medium dash line. Theoverdamped output waveform which has the longest delay is shown in long dash line.Usually there are two ways to cope with this problem; one is to terminate the lines with clampingdiodes and the other is to terminate with resistors. However, when a line on a multichip module



1. Introduction 3is terminated by a pair of voltage-clamping diodes to limit the positive and negative signal swings,the diode when is turned on by signal voltage overshoot conducts a huge amount of current whichcan cause an increase in power consumption and an increase in power-distribution disturbance. Ifa line on a multichip module is terminated with a resistor of appropriate value to minimize signalre
ections and resonances, the voltage divider formed by the termination resistance and the linecharacteristic impedance causes substantial and unacceptable attenuation of propagated signals. Inaddition, each resistor dissipates quiescent power when the line is at non-zero voltage. In modulescontaining thousands lines, this power dissipation can be excessive, and the problem is compoundedby the small packaging size of MCM with limited heat removal capability.Instead of terminating with diodes or resistors, the long lines on the thin-�lm multichip modulescan be structured to critically damp the signal to avoid resonances. Doing without the terminationeliminates the heat generated by the terminator and solves the heat removal problem. Beingunterminated, the long lines in the substrate are structured to exhibit a total resistance that isrelated to the source resistance of the active devices which drives the lines [6] [1]. Since voltagedoubling occurs at the end of the unterminated line due to re
ection, a controlled amount ofattenuation is tolerable. For performance reason, slightly underdamped design gives shorter signalpropagation delay with tolerable amount of overshoot [1] [7]. The structured line which is criticallydamped can transmit input signal frequency components up to the bandwidth of the line withoutany instability or attenuation. For higher frequencies, attenuation occurs but the line remainsstable [6] [3] [1]. These lines are thus called optimal self-damped lossy transmission lines [5].This paper is the �rst to identify the optimal design concept of optimizing both the maximumpath delay and the maximum damping ratio together. This minimization problem is transformedinto a least square estimation problem. The least square estimation problem is then solved usingthe e�cient algorithm of Gauss-Marquardt method. The contribution of this paper is to achieveoptimal performance completely through wire-sizing. The approaches taken will be presented inthe following sections. Section 2 will describe the interpretation of the transfer function. Section3 will formulate the optimal self-damped design problem. Section 4 will describe the optimization



42. Transfer Function, Natural Undamped Frequency, Damping Ratio, Line Width, and Signal Propagation delaymethod used. Section 5 will demonstrate the usefulness of the optimization method throughexamples. Section 6 will present the S-parameter based macro-model with the time-of-
ight fora lossy transmission line. Section 7 will describe some previous works done by other researchers.Finally, Section 8 will conclude the �ndings and contributions of this paper and proposes the futureresearch directions.2 Transfer Function, Natural Undamped Frequency, Damping Ratio, LineWidth, and Signal Propagation delayThe transfer function is de�ned as:H(s) = Voutput(s)Vinput(s) ;where s is the complex variable of the Laplace transformation, Voutput(s) is the Laplace transformof the time domain output waveform voutput(t), and Vinput(s) is the Laplace transform of the timedomain input waveform vinput(t).The transfer function H(s) also can be de�ned as [8]:H(s) = e�s� � Ĥ(s) (2.1)where � is the time-of-
ight term, and Ĥ(s) is the part of the transfer function representing thecharging curve in the output waveform starting at a delay � after the input switches at t = 0.The transfer function H(s) can be separated into two terms as in Equation (2.1). Assume asecond order approximation is applied to the charging part of the transfer function Ĥ(s), it can berewritten as: Ĥ(s) = !n2s2 + 2�!ns+ !n2 ; (2.2)where !n is the natural undamped frequency and � is the damping ratio of the transfer function



3. Formulation of the Optimal Self-Damped Design 5Ĥ(s) [7]. The natural undamped frequency !n is the sinusoidal frequency assuming there is nodamping (� = 0). � is the "ratio of the damping" compared with critical damping. The roots ofthe denominator polynomial of the transfer function Ĥ(s) are called the poles of Ĥ(s). Since thepoles of Ĥ(s) are also the poles of H(s), !n and � are also the natural undamped frequency anddamping ratio of the transfer function H(s).De�ne the representation of the poles as:s1;2 = �� � j! = ��!n � j!nq1� �2:The damping ratio � is: � = �!n = �p�2 + !2 :For a given input waveform in time domain, the three quantities of the transfer function: thetime-of-
ight � , the natural undamped frequency !n, and the damping ratio � uniquely determinethe time domain response waveform at the receiver. By the same token, the propagation delay fora signal to reach 50% of its �nal value at the receiver is also uniquely determined by these threequantities: � , !n, and �.In the next section, the damping ratio � and the propagation delay will be used together in theoptimization process. The approximate natural undamped frequency !n is a byproduct simulation.3 Formulation of the Optimal Self-Damped DesignTo illustrate the basic concept, a single-source multi-receiver network is used. It consists of aset of edges and a set of nodes. The source and the receivers are the nodes of the network graph.This design method �nds the optimal width assignment that gives the same damping criteria foreach path from source to receiver.The optimal design problem can be formulated as follows:



6 3. Formulation of the Optimal Self-Damped DesignGiven a network (N) consists of a set of edge E with �xed lengths. The width of each edgebelongs to a set of feasible widths C = fc1; c2; :::; cmaxg where (ci < ci+1; 1 � i � (max � 1)), theoptimal design is to �nd an optimal width assignment: W � � C and a mapping M : B ! W �such that every paths from root to leaves has the shortest delay and the same damping criteriaif possible. The objective is to optimize the performance which includes minimizing the signalpropagation delay for each path from source to receiver with either no overshoot or controlledamount of overshoot. The width of edge i, wi, is bound by the minimum and maximum feasiblewidth, min(wi) � wi � max(wi), where min(wi); max(wi) 2 C. The incremental di�erence, 4c,where4c = (ci+1�ci); 1 � i � (max�1), between feasible widths is depicted by process technology.The following notations are de�ned for the formulation of the optimal self-damped design.n : is the number of the edges in the network.m : is the number of the receivers (the output nodes).wi : is the width of edge i.li : is the given length of edge i.�j : is the propagation delay for a signal to reach 50% of its �nal output value transmitted alongpath from source to receiver j.�j : is the damping ratio of the lowest conditional frequency of the transfer function from sourceto receiver j.�target : is the electric damping criteria set forth by the user.The optimal self-damping design for a general network can be formulated as a general nonlinearprogramming problem as follows, LetF (w1; w2; : : : ; wn) = Maximum(�j); 1 � j � m: (3.1)G(w1; w2; : : : ; wn) = Maximum(j�j � �targetj); 1 � j � m: (3.2)Objective



4. Optimization Method for the Optimal Self-Damped Design 7Minimize 264 F (w1; w2; : : : ; wn)K �G(w1; w2; : : : ; wn) 375 ; where K is a weight constant:Constraints �j(w1; w2; : : : ; wn) � 1p2 ; wi 2 C; 1 � i � n; 1 � j � m: (3.3)gi(w1; w2; : : : ; wn) = fwi �min(wi)g � 0; wi 2 C; 1 � i � n: (3.4)hi(w1; w2; : : : ; wn) = fmax(wi)� wig � 0; wi 2 C; 1 � i � n: (3.5)The objective of optimal self-damped design is to size the wire width of each edge in order tominimize both the maximum delay shown in Equation (3.1) and the maximum of the dampingratio error shown in Equation (3.2), while maintaining that all output damping ratios satisfy theconstrain in Equation (3.3) and all edge widths satisfy the constraints in Equation (3.4) and (3.5).The way to �nd the optimal answer is to use the perturbation method, which works by perturbingeach of the design parameters �i a small amount in each direction, and �nds the right directionand distance to change �i. In this paper, the width of each edge wi is the chosen design parameterto be changed and a simulation is run at each perturbation to �nd the propagation delay and thedamping ratio. The perturbation results of the propagation delays and the damping ratios are thenused to compute the gradient matrix. Details of the optimization method is described in Section 4.4 Optimization Method for the Optimal Self-Damped DesignSection 4.1 will proof that the original optimization problem can be transformed into a least-squares estimation problem. Section 4.2 will demonstrate the detail of implementation of theleast-squares estimation optimization. The proof closely follows those used by Zhu et al. in their



8 4. Optimization Method for the Optimal Self-Damped Designtechnical report [13]. The contribution of this paper is not only to have a di�erent target functionbut also to identify a new concept where delay has to be include in the optimization objectives inorder to �nd the optimal results with the least maximum path delay.4.1 Proof of the Correctness of the Least-Squares Estimation TransformationThe optimal wire-sizing problem formulated in Equation (3.1) is a general nonlinear program-ming problem. The damping ratio error minimization and delay minimization problem can betransformed into a least-squares estimation problem. After the transformation, the resulting least-squares estimation problem can be solved using an e�cient optimization method [11] to obtainthe optimal width assignment for the original problem. The e�cient method is called the Gauss-Marquardt method. It is an improved version of Gauss-Newton method by incorporating a moree�cient way of determining the Lagrange multipier to speed up the convergence. The Gauss-Marquardt method combines the best features of the Taylor series methods and the gradient meth-ods. There are two parts in the original optimization problem. The �rst part is the minimizationof the maximum of the 50% signal propagation delay. The second part is the minimization of themaximum of the damping ratio error.The following is the proof for the �rst part. Let �j be the 50% signal propagation delay of thereceiver j (1 � j � m), wherem is the number of receivers. Let column vector � = f�1; �2; : : : ; �mgTrepresents the delay vector, where T denotes matrix transposition. The summation of all squaresof delay errors is: �(w1; w2; : : : ; wn) = �T� = mXj=1 �2j (4.1)De�ne the root-mean-square (rms) error of the delay as:' = s�m =vuut mXj=1 �2jm (4.2)



4. Optimization Method for the Optimal Self-Damped Design 9From Equation (3.1), the maximum delay is F (w1; w2; : : : ; wn) =Maximum(�j). Theorem 1 showsthe consistency of minimizing the delay and minimizing the rms delay error when optimizationproceeds.Theorem 1: Given a single-source multi-receiver network, the root-mean-square error de�ned inEquation (4.2) and maximum delay de�ned in Equation (3.1) linearly bound each other.Proof: Assume the largest delay is �max. For all �j , �j � �max, (1 � j � m), where m isthe number of receivers and it is a constant for a given network. From Equation (4.2), we have' = qPmj=1 �2j =m � qPmj=1 �2max=m = �max = F (w1; w2; : : : ; wn). On the other hand, we haveF (w1; w2; : : : ; wn) = Maximum(�j) = �max = p�max2 � qPmj=1 �2j = qm �Pmj=1 �2j =m = pm � '.So ' and F (w1; w2; : : : ; wn) linearly bound each other.The following is the proof of the second part. Let column vector 
 = fj�1 � �targetj; j�2 ��targetj; : : : ; j�m��targetjgT represents the damping ratio error vector. The summation of all squaresof damping ratio errors is:	(w1; w2; : : : ; wn) = 
T
 = mXj=1(�j � �target)2 (4.3)De�ne the root-mean-square (rms) error of the damping ratio as: = s	m =vuut mXj=1 (�j � �target)2m (4.4)From Equation (3.2), the maximum damping ratio error is G(w1; w2; : : : ; wn) = Maximum(j�j ��targetj). Theorem 2 shows the consistency of minimizing the damping ratio errors and minimizingthe rms damping ratio error when optimization proceeds.Theorem 2: Given a single-source multi-receiver network, the root-mean-square damping ratioerror de�ned in Equation (4.4) and maximum damping ratio error de�ned in Equation (3.2) linearlybound each other.Proof: Assume the largest damping ratio is �max and it deviates from �target the most, the maxi-



10 4. Optimization Method for the Optimal Self-Damped Designmum damping ratio error is j�max��targetj. (The proof can be applied to the case where the smallestdamping ratio �min deviates from �target the most. We only have to replace all �max with �min in theproof.) For all �j , j�j��targetj � j�max��targetj, (1 � j � m), wherem is the number of receivers andit is a constant for a given network. From Equation (4.4), we have  = qPmj=1 (�j � �target)2=m �qPmj=1 (�max � �target)2=m = j�max � �targetj = Maximum(j�j � �targetj) = G(w1; w2; : : : ; wn).On the other hand, we have G(w1; w2; : : : ; wn) = Maximum(j�j � �targetj) = j�max � �targetj =q(�max � �target)2 � qPmj=1 (�j � �target)2 = qm �Pmj=1 (�j � �target)2=m = pm �  . So  andG(w1; w2; : : : ; wn) linearly bound each other.From the above two theorems, we have:Theorem 3: Given a single-source multi-receiver network, minimizing the two least-squares esti-mation problem minimizes the maximum path delay F (w1; w2; : : : ; wn) de�ned in Equation (3.1) andmaximum damping ratio error G(w1; w2; : : : ; wn) de�ned in Equation (3.2) of the original nonlinearprogramming problem.4.2 Implementation of the Least-Squares Estimation OptimizationThe Gauss-Marquardt method is used to solve the least-square estimation problem. Theorem3 shows the consistency between the minimizing of the original problem and the minimizing ofthe transformed root-mean-square estimation problem. Starting with a arbitrary initial solution ofwidth assignment W (0) = fw1(0); w2(0); : : : ; wn(0)gT , based on the Gauss-Marquardt method, thewidth assignment W is optimized according to the following formula:W (k+1) = W (k) � (JTJ + ��)�1JT 264 �jW (k)
jW (k) 375 (4.5)where k is the number of iteration, �jW (k) is the column vector of delays at all the receivers at thek� th iteration, and 
jW (k) is the column vector of damping ratio errors at all the receivers at thek � th iteration. J is the 2m� n sensitivity matrix, JT is the transposition matrix of J where the



5. Experiment Results 11(i; j)th element JT (i; j) = J(j; i), � is a diagonal matrix in which the values of its diagonal elementsare the same as the diagonal elements of JT J , and � is the Lagrange Multiplier properly selected tospeed up the convergence of the optimization process [11]. Round-o� occurs when computing w(k)iso that Equation (3.4) and (3.5) are always satis�ed. The physical meaning of JT 264 �jW (k)
jW (k) 375 isthat it represents the gradient around the current width assignmentW (k). To obtain the sensitivitymatrix J , the (i; j)th element is de�ned as:J(i; j) = 8><>: @�[i]@wj ; if 1 � i � m@
[i�m]@wj ; if m+ 1 � i � 2m : (4.6)The partial derivatives are computed using central di�erence method. The optimization continuesuntil the maximum damping ratio error is less than a prescribed value, the maximum damping ratioerror cannot be further improved, the maximum delay cannot be further improved, or the iterationnumber exceeds a preset limit. The convergence to the optimal values of Gauss-Marquardt methodis proved in [11].5 Experiment ResultsThe examples tested are constructed with High Performance MCM process technologies pub-lished by Frye [4]. The important parameters of the MCM process are listed in Table 5.1. In theuniform width case, all the widths are equal to 25�m for all the examples tested. All the drivers aremodeled with a step input voltage source in series with the parallel combination of a 12
 resistorand a 4:3pF capacitor. All the receiver are modeled using a 2:5pF capacitor. The damping ratiotarget is chosen to be 0:8 or 1p2 for shorter propagation delay with a controlled amount of overshoot[1] [7].



12 5. Experiment ResultsProcess HIGH PERFORMANCEMCM-DThickness of Dielectric (�m) 5"rel 3:2Thickness of Metal (�m) 2:5R (
=�m) for typical edge width 2:4L (nH=�m) for typical edge width 2:9C (pF=�m) for typical edge width 1:39lower bound edge width (�m) 10typical edge width (�m) 25upper bound edge width (�m) 50Table 5.1: The High Performance MCM technologies: The process parameters andthe typical values of per-unit-length parasitics shown in Frye's paper. The lower and upperbound widths are used in the optimization. The typical width is used in the uniform widthassignment.5.1 Example 1: A Tree NetworkExample 1 is the tree network shown in Zhou's MCMC paper [12]. Figure 5.1 (a) shows thetopology, lengths, and widths of the optimal design of all the edges. The optimal design performanceis compared with the uniform width case. The per-unit-length R, C, and L of the uniform widthdesign are listed in Table 5.1. The simulation waveforms of the optimal design and uniform widthdesign are shown in Figure 5.1 (b). The maximum path delays, damping ratio, and the percentage
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5. Experiment Results 13of improvement are listed in Table 5.2.Maximum Maximum Percent Target Maximum MaximumPath Delay Path Delay Improvement Damping Damping Damping(Uniform) (Optimal) Ratio Ratio Ratio(nS) (nS) (%) (Uniform) (Optimal)Example 1 0.9874 0.7182 27.26 0.8000 1.0000 1.0000Example 2 1.4077 0.9934 29.43 0.8000 1.0000 1.0000Example 3 1.2378 0.8897 28.12 0.8000 1.0000 1.0000Example 4 1.2289 0.8510 30.75 0.7071 1.0000 0.8832Example 5 0.9354 0.8245 11.85 0.8000 1.0000 1.0000Table 5.2: Comparison between the Uniform Width Design and the OptimalDesign.5.2 Example 2: A General Bus Tree NetworkExample 2 is a general tree network implemented in the high performance MCM-D technology.Figure 5.2 (a) shows the topology, lengths, and widths of the optimal design of all the edges. Thesimulation waveforms of the optimal design and uniform width design are shown in Figure 5.2(b).The maximum path delays and the percentage of improvement are listed in Table 5.2.
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14 5. Experiment Results5.3 Example 3: A Daisy Chain NetworkExample 3 is the daisy chain network also shown in Zhou's MCMC paper [12]. Figure 5.3 (a)shows the topology, lengths, and widths of the optimal design of all the edges. The simulationwaveforms of the optimal design and uniform width design are shown in Figure 5.3(b). Themaximum path delays and the percentage of improvement are listed in Table 5.2.
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(a) (b)Figure 5.3: A Daisy Chain Tree Network and its Simulation Waveforms: Thetopology is shown in (a). The output waveforms of the nodes with the maximum pathdelays are shown in (b). The optimal design is better than the uniform width designbecause its maximum path delay is 28% smaller.5.4 Example 4: A Clock Tree NetworkExample 4 is a clock tree network shown in Zhu's ICCAD paper [13]. Figure 5.4 (a) shows thetopology, lengths, and widths of the optimal design of all the edges. The simulation waveformsof the optimal design and uniform width design are shown in Figure 5.4 (b). The maximum pathdelays and the percentage of improvement are listed in Table 5.2.5.5 Example 5: A Network with a LoopExample 5 is a network with a loop. Figure 5.5 (a) shows the topology, lengths, and widths of theoptimal design of all the edges. The simulation waveforms of the optimal design and uniform width
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16 6. S-Parameter Based Macro-Model with the Time-of-Flight Extraction6 S-Parameter Based Macro-Model with the Time-of-Flight ExtractionIn order to precisely analyze the lossy transmission lines on MCM substrates, the scatteringparameter (S-parameter) based macro-model [9] [10] is used to �nd the approximated transferfunction H(s). S-parameters represent the interrelationship of a set of incoming and outgoingwaves of a multiport component. Some of the advantages of using S-parameters are:1. They are easier to measure and to work with at high frequencies compared to using othertypes of parameters.2. All lumped circuit elements including short and open circuits have unique analytical S-parameter descriptions.3. They provide a very convenient means for describing distributed elements such as lossytransmission lines.The S-parameter based macro-model simulator can handle both lumped circuit elements andlossy/lossless transmission lines including loops. With the description of elements by S-parameters,an e�cient network reduction algorithm is employed to reduce the large interconnect networkinto one multi-port component together with the source and receiver circuit elements. Padeapproximation [10] or Exponential Decaying Polynomial Function approximation [9] is used toderive the macro-model.However, the delay associated with transmission line networks consists of the exponentiallycharging time and a pure propagation delay representing the �nite propagating speed of electro-magnetic signals in the dielectric medium. This propagation delay, so called time-of-
ight delayand denoted by � , is impossible to model perfectly by a �nite order of approximation. So, thetime-of-
ight � , more precisely the factor e�s� , must be extracted from the transfer function of thecircuit.The new and important improvement in the S-parameter based macro-model simulator is theextraction of the exact time-of-
ight term in transfer functions [8]. By extracting the time-of-
ight of scattering parameters for basic components, an e�ective network reduction is developed



7. Previous Work 17to compute the lower order macro-model of an interconnect system, keeping track of time-of-
ightdelay. The output responses, due to the extraction of the time-of-
ight, is greatly improved. Figure6.1 shows the simulation waveforms of SPICE, of old macro-model second order approximation,and of the new macro-model second order approximation. This macro-model has the same time-of-
ight delay as SPICE simulation and the rising edge of the signal waveform matches that of SPICEsimulation closely.
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(a) (b)Figure 6.1: Comparison of di�erent simulation output waveforms The testingcircuit is shown in (a) and the waveforms are shown in (b). The SPICE output waveformis shown in the solid line. The old macro-model second order approximation is shownin the short-dash line. The new macro-model second order simulation result waveform isshown in the long-dash line. The SPICE result and the new macro-model result are barelydistinguishable on the rising edge.7 Previous WorkThere are several papers published by Brews [1] and Frye [5] which show designing methods forthe design of critically damped point-to-point interconnections on VLSI and MCM. There is also apaper published by Cong et al. [2], which uses wire-sizing to achieve optimal design for the treenetwork based upon the distributed-RC model [2].



18 8. Concluding RemarksLater Zhou et al. presents a distributed-RLC model and a second order approximation in theirperformance-driven-layout paper [12] which extends the wire-sizing algorithm to cover transmissionlines on MCM. It is possible that the second order approximation to be used in order to keep theoptimization manageable. Zhou et al. has published a paper [12] using the second order withoutthe extraction of the time-of-
ight to formulate the performance-driven-layout.There are three problems with the performance-driven-layout described in Zhou et al. paper.� The formulation of the optimization problem with the critical damping constrains is changedto an optimization without any constrain in implementation.� The distributed-RLC model is used in the formulation but distributed-RC model is actuallyused in the optimization.� The approach used by Zhou et al. is a two-step approach, �rst step is to perform the wire-sizing to achieve shorest delay, the second step is to critically damp the output signals.The Zhou's critical damping design method consists of adding resistors in series at the receivingterminals. This adding of serial resistor at the receiver is like adding the matching serial terminationresistor at the driver, both consume power when the line is at non-zero voltage and take extra spaceto accommodate the resistors.8 Concluding RemarksThis paper is the �rst to identify the performance-driven-layout optimal objective is to minimizeboth the maximum path delay and the maximum damping ratio together. The optimal performanceis achieved entirely through wire-sizing on any general network which may contains loops. The usethe new S-parameter based macro-model which keeps track of the exact time-of-
ight helps inproducing accurate path delays. The results in Section 5 shows signi�cant improvements over theuniform typical width assignment designs.Due to the limited space and heat dissipation problem, the interconnections on multichipmodules are better left unterminated. The metal and dielectric �lm thickness commonly used



9. Acknowledgment 19in the fabrication of a multichip module is well suited for the design of optimal, self-dampedinterconnections. This optimal design method uses wire-sizing entirely which eliminating theexcessive heat dissipation that accompanies with resistive terminators.Future research includes taking cross coupling, frequency dependent models, and 3-D disconti-nuity (vias and bends) into consideration, and veri�cation of the results through measurements.9 AcknowledgmentThis work is supported in part by the National Science Foundation Presidential Young Investi-gator Award under the Grant MIP-9009945, , and in part by IBM Corp.References[1] John. R. Brews. Overshoot-controlled RLC interconnections. IEEE Trans. on Electron Device,ED-38:76{87, January 1991.[2] Jason Cong, Kwok-Shing Leung, and Dian Zhou. Performance-driven interconnect design basedon distributed RC delay model. Technical Report CSD-920043, University of Clifornia, LosAngeles, Oct. 1992.[3] R. C. Frye and K. L. Tai. Interconnection lines for wafer-scale-integrated assemblies. U. S.Patent 4,703,288, 1987.[4] Robert C. Frye. Physical scaling and interconnection delays in multichip module. To BePublished, 1993.[5] Robert C. Frye and Howard Z. Chen. High speed interconnection using self-damped lossytransmission lines. In Symposium on High Density Integration in Comunication and ComputerSystems, pages 36{37, 1991.[6] C. W. Ho, D. A. Chance, C. H. Bajorek, and R. E. Acosta. The thin-�lm module as a highperformance semiconductor package. IBM Journal Res. Develop, 26(286), 1982.[7] Benjamin C. Kuo. Automatic Control Systems. Prentice-Hall, Inc., third edition, 1975.



20 References[8] Haifang Liao and Wayne Dai. Extracting time-of-
ight from scatering-parameter based macro-model. Technical Report 93-35, University of Clifornia, Santa Cruz, 1993.[9] Haifang Liao, Wayne Dai, Rui Wang, and F. Y. Chang. Scatering-parameter basedmacro modelof distributed-lumped networks using expnontially decayed polynomial function. In Proc. of30th ACM/IEEE Design Automation Conference, pages 726{731, 1993.[10] Haifang Liao, Rui Wang, Wayne Dai, and R. Chandra. Scatering-parameter based macro modelof distributed-lumped networks using pade approximation. In Proc. of International Symposiumon Circuits and Systems, 1993.[11] D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journalof Society of Indust. Appl. Math., 11:431{441, 1963.[12] D. Zhou, F. Tsui, J. S. Cong, and D. S. Gao. A distributed-RLC model for MCM layout. InProc. of IEEE Multi-Chip Module Conference MCMC-93, pages 191{197, 1993.[13] Qing Zhu and Wayne Dai. Optimal sizing of high speed clock networks based on distributed RCand lossy transmission line models. In IEEE/ACMInternationalConferenceonComputer-AidedDesign, 1993.


