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A study of the reliability of hosts on the InternetK. B. SriramAbstractThis thesis is a study of the failure statistics of hosts on the Internet. To cross-verifyour estimates of failure rates, we measure three di�erent kinds of observations about hostson the Internet { the time interval between failure, the number of failures in a certain timeinterval, and the length of time a host has been up at an arbitrary instant of time. Theseobservations are made on di�erent samples of hosts on the Internet.We present statistical results that allow us to derive estimates about the failure statisticsof the population from these three di�erent types of observations. The estimates from thethe three experiments are slightly di�erent but comparable, providing three independentsources of evidence about the failure statistics of hosts on the Internet. We also attemptto explain the observations by modelling the statistical process with two distributions {the exponential and the Weibull distribution. The observed data are explained well (in astatistical sense) by both models, but the Weibull model �ts the observed sample better.We believe this to be evidence that the failure rates of hosts on the Internet are nearlyconstant, but with a high initial value that quickly decreases to a constant as the machinecontinues to run.



viiAcknowledgmentsI wish to thank Professor Darrell Long, my thesis advisor, for his technical contributions andsupport to this work. I am especially grateful to him for his encouragement and patienceduring times of crisis.It is my pleasure to acknowledge Phil Long, Madhukar Thakur and Yoav Freund forseveral interesting discussions on applied statistics that helped me �nd statistical tools Icould use in this thesis.This thesis was supported by seed funds from the University of California.



1Chapter 1Introduction1.1 OverviewAccording to a recent study [15], there are nearly 1.3 million hosts that are reachable onthe Internet. The Internet is used to support a number of wide area network distributedapplications. It would be useful to determine the reliability of these applications, andbe able to predict their behavior. While there have been studies about network latency,response time and path length [2] for typical operations in such applications, there has beenless work on studying the reliability of such applications on the Internet. There is also littlepublished data on measured failure statistics of hosts on the Internet. This thesis is a studyof the failure times of hosts on the Internet, and provides estimates about the failure ratesof machines which can be used to predict the reliability of wide area distributed applicationsrunning on the Internet.There are at least two other uses for this data. Systems administrators can pro�tby comparing their systems with the average to see if there is any unusual behavior intheir system. Such comparisons can also be made to test the stability of a new operatingsystem before its release. A third use, as mentioned before, is in modeling the reliabilityof distributed systems [14]. The results from our study can be used to validate the modelused, and provide estimates for the reliability of the application.Measuring the failure rate is non-trivial as much of the information necessary to de-termine this parameter is di�cult to collect anonymously over the Internet. Continuous



2monitoring of hosts to determine when they fail is infeasible for large samples, as it gener-ates a very high amount of network tra�c which slows things for other applications using theInternet. Another problem with this approach is the presence of network partitions, wherethe network fails but not the hosts themselves. Such failures are sometimes indistinguish-able from host failure. Useful observations that allow deducing failure rates almost alwaysrequire the cooperation or consent of the administrator of the machines being sampled.Gathering information this way is time consuming because of the process of contacting andobtaining permission, and does not yield enough sample points to make reliable estimates.Another factor to consider is that the sample we take from the Internet be representativeof the whole. This is easier to achieve when the measurements are made anonymously, butharder for samples obtained through contacting the person administering the machine. Arepeople who respond prone to have machines that run di�erently from the norm? Is itskewed by the way in which they are contacted? It is also necessary that the samples beindependent of one another. For instance, it is likely that hosts on the same local areanetwork would show some correlation in the times they fail { a power outage would a�ectall these machines at the same time.Our study analyzes results obtained through three di�erent observations about hostson the Internet, only one of which was made anonymously. The anonymous observationgives more sample points, but cannot be analyzed unless we make assumptions about thedistribution of the failure rates of machines. The other two observations do give results thatare not skewed through assumptions about failure rates. However, we could collect only alimited number of samples, so it is non-trivial to predict statistics about the Internet fromsuch a small collection of data. We can make more reliable estimates with a careful choiceof samples, even from limited amounts of data. If the sample population is representativeof the whole, then even small sample sizes are su�cient to derive good estimates.In this thesis, failure time is taken to be the time at which a machine stops running.Of course, a machine can stop for a variety of reasons ranging from an application freezingthe machine, to simply shutting o� the machine at the end of the day. We think this is



3a reasonable indicator of how hosts in normal circumstances behave, and is a practicalindicator of how long a machine can be expected to stay up before one of a number offactors cause it to be rebooted or halted. Such an assumption is also useful when analyzingthe behavior of a distributed database. We want to analyze its performance under \normal"circumstances, when machines can stop running for a variety of reasons.We also assume that the failure times of machines are independent of each other. Astraightforward sampling of hosts does not have this property. For instance, it is likelythat the failure times of hosts on the same LAN are correlated, since a power failure maycause all hosts on the LAN to be halted at the same time. Similarly, a common phenomenais that a �le server failing causes hosts that are using it to reboot shortly thereafter. Weattempt to preserve independence with a careful choice of sample points where possible, butit is important to note that our analysis does depend on the assumption of independencebetween hosts.The estimates presented in the study come from three observations of the Internet.The �rst is a measurement that can be made anonymously over the Internet, and yields asample of the \age" of the host, in other words, how long it has been running when themeasurement is taken. Under certain assumptions about the distribution of failure times,this enables us to estimate the average time to failure of hosts. A second is a sample of thetimes when a machine is restarted. This information cannot be gathered anonymously, andis obtained by examining records of �les that are updated on most Unix machines whenthe machine is restarted. The last measurement is sampling the number of times a machinehas failed between two points of time. This information can be gathered anonymously onmachines running a particular kind of daemon, but as it changes some data on the host, wedecided to obtain the permission of the systems administrators before collecting this data.1.2 Previous Studies and Related WorkThis work is a continuation of a study of the reliability of hosts using the Internet [6]. In thisstudy, a large population of hosts were queried to obtain a sample of uptimes of machines.



4From these observations, an estimate of time to failure was obtained. This estimate involvedassuming that the underlying data followed an exponential distribution. A hypothesis �ttingtest however showed that the data was signi�cantly di�erent (in a statistical sense) from anexponential distribution. We present some alternate analysis of similar data that derivesestimates based on the assumption that the data follows a generalization of the exponentialdistribution.Other studies about the Internet have focused on network latency, message path, networkload and the types of protocols used. For instance Pu, Korz, and Lehman [2] propose ageneral methodology to measure network routing and latency for applications over theInternet, and present some example applications of the technique. The focus of this workis on application response time, which is di�erent from our study which estimates failuretimes of hosts on the Internet. A large number of studies have been made about the typesof protocols used in typical Internet tra�c [16]. Other studies involve analyzing the usageof particular protocols to determine characteristics of the Internet. For instance, one studyanalyzes �les transferred in the File Transfer Protocol (FTP) to determine the size of �lestransferred and occurrence of duplicate �le transfers. Another study by the same groupanalyzes electronic mail tra�c to determine people with shared interests.A di�erent approach to measuring the reliability of computers was taken in a study madeby Gray [11], analyzing the performance of Tandem computers. In this study, numerousreports from customers were studied to get a breakdown of the di�erent causes of failureand their frequency. This work focuses on analyzing the kinds of failures that happen for aparticular computer, and is not based on measurements through the Internet.As examples of work where measurements made in our study can be used, Long, Carrolland Stewart [14, 3] study replicated databases, and model their reliability with failuremodels of hosts that can be validated with the results in this study. Resource discoveryprotocols have been proposed and implemented on the Internet (for instance by Schwartzand Tsirigotis [19]). Analyzing the performance of these protocols in the face of failuresof hosts can bene�t from the estimates available from our study. General techniques in



5building wide area distributed applications have also been suggested [20]. Analyses of theperformance of such systems can also use the results from our study.1.2.1 Organization of thesisChapter 2 discusses the theory behind the formulae used to estimate the average failuretimes from the observations. It places the experiments in the framework of renewal pro-cesses, and presents results from statistics that are useful in obtaining estimates aboutfailure rates from these observations.Chapter 3 describes in more detail the actual experiments that were performed, howthe observations were collected, and the data obtained through these observations. It alsodescribes the details about the distribution and the size of samples that were measured.Chapter 4 concludes the thesis by deriving estimates and drawing conclusions from thecollected data using the results presented in Chapter 2. It also suggests ways in which theseestimates can be re�ned, and suggests new directions in which this study can proceed.



6Chapter 2TheoryWe now present the statistical results used to arrive at estimates for the mean time tofailure and the mean time between reboots. A full presentation of these results from classicstatistical theory can be found in the references [18, 5, 4, 1, 9]. For the most part, thischapter con�nes itself to quoting appropriate results from various references and showinghow they are applied.Three di�erent types of observations were made about hosts on the Internet.� Observations about the time between reboots of a host,� Observations about the \age" of the host, which is the time at which the host waslast rebooted,� Observations about the number of reboots of a host in a certain interval of time.These observations di�ered in the size and distribution of the samples that were taken.The �rst section places the experiments that were conducted in the context of renewalprocesses. This is a convenient framework to describe our observations, and makes it easy toapply results from statistics to our study. The next three sections describes how the threedi�erent types of observations about renewal processes lead to di�erent methods to arriveat estimates for the interevent renewal time. The �nal section evaluates the appropriatenessof each of these estimates.



72.1 Renewal ProcessesRenewal processes have been studied for a long while [5, 4, 9] and form a convenient frame-work in which to describe our observations. Results from renewal theory apply to derivingestimates about failure rates from our observations. We �rst describe renewal processes, andshow how our observations �t into this model. Then we present key results from renewaltheory that are applicable to our study.Suppose we have a population of components whose failure time X is a continuousrandom variable with density function f(x). Suppose further that we start with a newcomponent at time zero. Suppose this component fails at time X1. Let it be immediatelyreplaced by a new component with failure time X2. Then the second failure will occurafter a total time X1 + X2. Let this process be continued, a component being replacedimmediately on failure by a new component. The failure time of the rth component is Xr,and the rth failure occurs at time Sr = X1 + : : :+Xr. If fX1; X2; : : :g are independentlyidentically distributed random variables (also referred in short as iid variables), we call thesystem an ordinary renewal process. Each replacement is called an renewal event. Thelifetime Xi of any component is called the inter-event renewal time.There are two associated random variables that are of interest to us. The �rst is the ageU of the component currently in use at some random instant of time. This is also calledthe backward occurrence variable, since it is the time since the last renewal event occurred.The second random variable is the (discrete) random variable Nt that counts the numberof renewal events in the time interval t.In the context of the experiments we conducted, the the act of restarting a machine is arenewal event. The corresponding inter-event renewal time is the time between reboots. Theact of a machine halting is another type of renewal event, and the corresponding inter-eventrenewal time is the time to failure.11This actually assumes that the interval between a machine failing and it being restarted is zero. Thetime scale in this case is really a sliced up version of real time, where the slices we consider are the timeswhen the machine is up, and we cut out the portions of time when the machine is down.



8The parameter we want to estimate in a renewal process is E[X ], the mean inter-eventrenewal time. The next three sections consider three di�erent observations we can makeabout the renewal process, and present appropriate statistics that estimate the mean inter-event renewal time. In the context of the discussion in this section, the three observationswe took are:� A random sample of observations of X , the inter-event renewal time, which is thetime between reboots of a host,� A random sample of observations of U , the backward occurrence time which are theobservations about the \age" of a host, and� A random sample of observations ofNt, the number of renewal events in a time intervalt, which is the sample about the number of reboots of a host in a certain interval.2.2 Sampling the inter-event renewal timeThis sample of the renewal process provides us with n independent observations x1; x2; : : : ; xnof the inter-event renewal time X . A good estimate for the mean inter-event renewal timeis simply the mean of the observations X = (Pni=1 xi)=n.Standard statistical results (see for instance [1, 8, 18]) show that this estimate is unbi-ased, consistent and su�cient. The following is a useful result from these references thatwe state without proof.Result 2.1 If X1; X2; : : : ; Xn are governed by a normal distribution with mean �, the ran-dom variable T = X � �S=pnfollows a Student T distribution with n � 1 degrees of freedom.Here S is the standard deviation estimator S = rPn1 (Xi�X)2n�1 . Empirical studies (see [8]for instance) suggest that if n is large, this result holds even when X di�ers considerablyfrom normal. In practice, the equation is taken to be true for n > 30 no matter what



9distribution X follows, which leads to this con�dence estimate (again from [1, 8, 18]) forthe mean.Result 2.2 A (1� �) con�dence interval for the mean � is(X � t�=2 Spn;X + t�=2 Spn)where if T is a Student T distribution with n� 1 degrees of freedom, P[T > t�=2] = �=2.This result is applicable to our experiment that samples the time intervals betweenreboots of a machine. We can compute a con�dence interval for the mean time betweenreboots using this result. Notice that we made no assumptions about the underlying dis-tribution to obtain the estimate. This is a particularly nice result to have, since it assumesnothing about the underlying distribution but still gives us con�dence intervals for theestimate.2.3 Sampling the backward occurrenceThe backward occurrence variable Ut is de�ned as follows: pick some �xed time instant t.Ut is the random variable that is the length of time measured backwards from t to the lastrenewal at or before t. If there have been no renewals before t, Ut is de�ned to be t. Weare interested in situations where t is large, in other words when the renewal process hasbeen running for a long time. The distribution of Ut is independent of t for large t [4], sowe will just refer to the distribution of U instead of Ut in the discussion that follows.In the experiments that we conducted, this sample corresponds to measuring the uptimesof machines (viz. how long it has been running) at some instant of time.We now derive results for estimates (see [4] for this approach) for the mean inter-eventarrival time given a sample of backward occurrence times. Let the random variable Udenote the age of the component in use at the present time.We �rst obtain the distribution of U in terms of the distribution of X as follows. Forconvenience, letW denote the length of the interevent time into which we enter by randomly



106 6 6 6?� -� -Xi: the occurrence of the ith renewal eventU : the backward occurrence time WU tX1 X2 Xi Xi+1Figure 2.1: Backward occurrence timepicking a time instant. Observe that the distribution of W is di�erent in general from thedistribution of X , since we are more likely to \fall into" a longer interval than a shorterone. We obtain the density fU of the random variable U in two steps. First, we obtainthe density fW for W , and compute the conditional density fU jW for U conditioned on aparticular value for W . Next, we obtain the joint density fW;U = fU jWfW , and then theunconditional density fU by integrating the joint density fW;U over all possible values ofW . We assume that the probability that our random time instant falls in an interevent gapof length w is proportional to the length of the gap w, and the frequency of such gaps,which is f(w)dw. This means fW (w)dw = wf(w)C dwwhere C is an appropriate normalizing constant that makes fW a density function. For fWto be a density function, we need Z 1�1 fW (w)dw = 1In other words,



11Z 1�1 wf(w)C dw = 1Solving for C, we get C = Z 1�1 wf(w)dwand by de�nition of the mean E[X ] of the random variable X ,C = E[X ]:Therefore the density function fW (w) for the random variableW satis�es fW (w) = wf(w)=E[X ].We obtain the conditional density fU jW for U conditioned on a particular value forW with the following argument. Let our randomly chosen observation time fall into aninterevent period of length w0. Since the observation point is randomly chosen, the ageof the component (given that we are in an interevent period of length w0) is uniformlydistributed over w0. ThusfU jW (ujw = w0) = 8><>: 1w0 0 � u � w00 otherwiseThe joint density fW;U is simply fU jW (ujw)fW (w), so substituting the values for fU jWand fW , we get fW;U(w; u) = fU jW (ujw)fW (w)= wf(w)wE[X ]; 0 � u � w <1= f(w)E[X ]; 0 � u � w <1and fW;U is 0 everywhere else.We can now obtain the density function fU by integrating fW;U over all values of w toget



12fU (u) = Z 1�1 fW;U (w; u)dw= Z 1w=u f(w)E[X ]dw= F(u)E[X ]where F(u) = P[X > u].We now derive a lemma that is used in later discussions of estimates.Lemma 2.3 E[U i] = E[Xi+1](i+1)E[X] whenever E[X ], E[X i+1] and E[U i] exist.Proof: E[U i] = Z 10 uifU(u)du= ui+1i+ 1fU (u)�����10 � Z 10 ui+1i+ 1f 0U (u)duSince fU(u) = P[X>u]E[X] , it follows that f 0U (u) = � f(u)E[X] . Therefore,E[U i] = 0 + 1(i+ 1)E[X ] Z 10 ui+1f(u)du= E[X i+1](i+ 1)E[X ]2In particular, this gives us the well-known result [18] E[U ] = E[X2]=2E[X ] as a special caseof our lemma when i = 1.The next four subsections describe four estimates for E[X ], the mean inter-event time,and the assumptions that underlie the assumptions. Of these four estimates, only one pro-vides con�dence intervals, but it makes some strong assumptions about the distribution ofthe inter-event time. The other three make slightly weaker assumptions about the distribu-tion, but don't give con�dence intervals for the estimates. These three are presented mainlybecause they are interesting alternate ways to analyze the data.



132.3.1 The Exponential modelThis method models the distribution of inter-event times as an exponential distribution. Theexponential model of failure times is a natural choice both because it is a good approximationto a lot of real world component lifetime distributions, and also for its analytical simplicity.In the exponential model, we assume that X , the variable representing the time betweenevents follows the distribution f(x) = �e��x. In the previous section we showed that U , thebackward occurrence variable follows the distribution fU(u) = F(u)E[X] . For the exponentialdistribution, E[X ] = 1=� and F(u) = e��u. Therefore, fU(u) = �e��x. This is an interest-ing result since it shows that the backward occurrence time follows the same distributionas X when X is exponentially distributed.We state without proof standard results [12] that provide con�dence intervals for themean of an exponential distribution. A (1� �) con�dence interval estimate for E[U ] is(U 2nX 22n;�=2 ; U 2nX 22n;1��=2 )where if X is a chi-squared distribution with 2n degrees of freedom, P[X > X 22n;�=2] = �=2.Since U and X are governed by identical distributions, it is also a con�dence interval forE[X ].2.3.2 The Weibull modelThe exponential distribution models a random process with a constant failure rate. TheWeibull distribution is a more general version of the exponential model that allows model-ing lifetimes with increasing or decreasing failure rates. A random variable X governed bythe Weibull distribution has the two parameter density function f(x) = ��x��1exp(��x�).For the Weibull distribution, F(u) = exp(��x�), and E[X ] = 1� 1��(1 + 1=�). From thediscussion on how the backward occurrence variable U is related to the underlying distri-bution of X , we have fU (u) = F(u)E[X] . Therefore, when X follows the Weibull distribution,we have fU(u) = exp(��x�)1� 1� �(1+1=�)



14If u1; u2; : : : ; uN are the observed samples of U , then we can derive a maximum likelihoodestimate (MLE estimate) for � and � as follows (see [1] for a treatment of the MLE techniqueto derive estimates). The following is a result we derive to obtain a maximum likelihoodestimate for � and � based in this technique.The likelihood function for this set of observations is de�ned byL = fU (u1)fU(u2) : : :fU (uN)As fU (ui) = e(��u�i )1� 1� �(1+1=�) , L = e(��PNi=1 u�i )((1=�)1=��(1 + 1=�))NTherefore, logL can be written (after some simpli�cation) aslogL = �� NXi=1 u�i +N log�� +N log �(1 + 1=�)Now using the gradient ascent to maximize logL with respect to �, we havedd� logL = � NXi=1 u�i +N=(��) = 0and solving for �, we have � = N�PNi=1 u�iSimilarly, by taking the derivative with respect to �, we have an analogous equation for �� = PNi=1 u�iPNi=1 u�i log ui (	(1 + 1=�) + log( �N NXi=1 u�i ))where 	(x) is the derivative of log �(x). The second of these equations does not yield aclosed form solution for �, but can be numerically estimated. Once � is available, � can beobtained from the �rst equation.



152.3.3 The Gamma distribution modelThe Gamma distribution is a di�erent generalization of the exponential distribution thathas the two-parameter density function �e��x(�x)��1�(�) . We use the method of moments (see[18, 1] for an explanation of this method) to obtain estimates for � and �. The methodof moments equates the sample moments with their expected values, and solves for theparameters of the model. I now derive estimates for � and � based on the method ofmoments technique.From lemma 1.3, E[U ] = E[X2]2E[X ]and E[U2] = E[X3]3E[X ]For a Gamma distribution, it is easy to derive E[X ] = �=�, E[X2] = (� + �2)=�2 andE[X3] = (�(�+ 1)(�+ 2))=�3Equating the expected values of each moment with the sample moments, and solvingfor � and � we get � = 2x3s� x2and � = 3s� 5x2x2 � 3sWe present the solution in terms of the sample mean and variance for convenience. Notethat the sample mean and variance in this case are the mean and variance for the backwardoccurrence variable.2.3.4 Histogram estimateThe last method to estimate E[X ] �rst estimates the value of fU (u) at the origin basedon the observed values of u. This estimate is interesting because it allows us to make an



16estimate that is consistent, and independent of the underlying distribution of the data.However, this method does not yield a way to obtain con�dence intervals for this estimate.This method �rst obtains an estimate for the probability density function (pdf) of U atthe origin. Observe that since fU (0) = F(0)E[X] , and F(0) = P[X > 0] = 1, fU(0) = 1=E[X ].Therefore, E[X ] = 1=fU(0). Therefore, if we obtain an estimate for the pdf of U at theorigin, its inverse is an estimate for the mean of X .We obtain an estimate for the pdf at the origin as follows:First plot a histogram of the observed samples of U . Dividing the fraction of samplesin each bin by the width of the bin gives an estimate for the probability density function(pdf) for the midpoint of the bin [12]. This histogram is an approximation of the actualpdf fU(u). In fact, the histogram is also a consistent estimator [12] of the density fU (u)at the midpoint of each bin. We locate the �rst bin so that the midpoint of the �rst binis at 0. Next, �nd out the value of fU (0) from the bin whose center is positioned on theorigin. This gives us an estimate for fU (0), and from our previous discussion, 1=fU(0) is anestimate for the mean of X .This estimate has the nice property that it makes no assumptions about the distributionof the underlying model. On the other hand, it does not provide con�dence intervals for theestimate, so it is just an interesting way of analyzing the data to compare with the otherestimates.2.3.5 Goodness of �tThree of the previous four estimates propose a distribution for the inter-event time, andproceed to arrive at estimates for the parameters for the distribution. The Kolmogorov-Smirno� test is a measure of the \goodness-of-�t" of the data with the model that is assumedto govern it. We use the Kolmogorov-Smirno� test to determine how closely the model �tsthe data.The Kolmogorov-Smirno� test measures the maximum absolute di�erence of the empiri-cal cumulative distribution function from the hypothesized cumulative distribution function.



17This allows us to come up with a test that veri�es or rejects the null hypothesis that theempirical cdf is \close" to the hypothesized cdf. The method works as follows ([18, 1]):The given random sample of observations is �rst arranged in order of magnitude so thatthe values are assumed to satisfy x1 � x2 � : : : � xn. The empirical cdf F̂n(x) is de�nedby F̂n(x) = 8>>>>><>>>>>: 0 x < x1i=n xi � x < xi+11 xn � xThe Kolmogorov-Smirno� statisticDn is then de�ned by the equationDn = supx jF̂n(x)�F0(x)j, where2 F0(x) is the hypothetical cdf of the random variable X . We reject the nullhypothesis at a level of signi�cance � if the observed value of Dn exceeds the critical valuedn;�. Values for dn;� are available from tables.2.4 Sampling the number of eventsThe status monitor experiment provides us with a sample of the number of failures in acertain period of time. In terms of renewal processes, this experiments gives us a sampleof the number of renewal events. We present results from renewal theory that allow us toestimate the mean inter-event time from a sample of the number of renewal events in a�xed interval of time.This observation of the renewal process samples the number of renewal events in a timeinterval t. The idea is that by by dividing this time period with the number of renewalevents, we get an estimate of the mean interevent time.Consider a renewal process where the inter-event time is governed by the pdf f(x).Let Nt be the number of renewal events in the time period (0; t). Let Sr be the time ofoccurrence of the rth renewal event.2supx f(x) is de�ned to be the least upper bound of f(x) for all values of x. More precisely, supx f(x) = a,where for all values of x, f(x) � a, and there is no b such that for all x, f(x) � b < a



18Observe that Sr =Pri=1Xi, where Xi is the ith inter event period. The following resultfollows directly from the Central Limit Theorem (see for instance [7]), and is stated withoutproof.Result 2.4 Sr is asymptotically normally distributed with mean r� and variance r�2, where� = E[X ] and � is the standard deviation of X. Equivalently, for every �xed y,limn!1P[Sr < �r + y�pr] = G(y)where G(y) is the cdf of a normal distribution with mean 0 and variance 1.Observe that Nt < r if and only if Sr > t. Therefore P[Nt < r] = P[Sr > t]. We can usethis to derive an asymptotic result about the distribution of Nt. Letrt = t=�+ yt�qt=�3where yt = y + �t and �t is the smallest positive value that makes rt an integer. Therefore,P[Nt < rt] = P[Srt > t]= P[Srt � rt��prt > �yt(1 + yt�pt� )�1=2]Now for any �xed y, let t approach in�nity. Observe that �t approaches 0, and (1+ yt�pt�)�1=2approaches 1. Hence limt!1P[Nt < rt] = limt!1P[Srt � rt��prt > �y]= G(y)where the last equality follows from the asymptotic normal distribution of Sr. In otherwords, Nt asymptotically approaches a normal distribution with mean t=� and variance�2t=�3. Therefore Nt=t is an estimate for �. Furthermore, Nt is approximately normal for



19large values of t. We can apply results from section 1.3.1 to get estimates and con�denceintervals about E[X ]. A more detailed analysis of Nt is shown in [4]. This analysis shows astronger result, viz. E[Nt] = t=� for all t (However, the normality assumption for Nt is stillvalid only for large values of t).This result will be used in computing estimates for the mean time between reboots fromthe observations made in the experiment that counts the number of reboots made in aparticular interval of time.2.5 Comparison of the three methodsThe method presented in section 1.2 (estimate from an actual sample of the interevent dis-tribution) is the simplest and also the most reliable one, since we obtain good estimates forthe mean, together with con�dence intervals without making any assumptions about thedistribution of the data. Unfortunately, obtaining such a sample is di�cult when makingobservations about hosts on the Internet. Such observations can only be made either bycontinuously monitoring hosts (uses a lot of network tra�c) or by contacting systems ad-ministrators willing to record and divulge information about the times a machine is startedor halted, not an easy task.The method of observing the backward occurrence is good if the real data �ts the hypo-thetical model. For any but the simplest hypothesized model however, obtaining con�denceintervals is very di�cult. This approach also su�ers from the limitation that it assumes acertain distribution about the data. The histogram method of analyzing the backward oc-currence is distribution free, but doesn't give us con�dence intervals. The advantage of thismethod is that it is relatively easy to obtain large samples anonymously over the Internet.The �nal method of counting the number of renewal events is also a reliable method ofestimating the mean, since it gives us con�dence intervals without making any assumptionsabout the underlying distribution. The problem with this method is that the normality



20assumption for Nt is true only for \large"3 values of t, which means that the experimentmust be conducted over a long period of time before we can trust the estimates provided bythis method. The second problem is that getting the data involves obtaining the permissionof the user of the machine, since our method of obtaining the data changes some data onthe queried machine. Again, this restricts the amount of data we can collect anonymouslyover the Internet.

3Cox [4] presents arguments that about three times the mean value of the distribution is a good \large"number.



21Chapter 3ImplementationIn this chapter we describe the three experiments that were performed to collect observationsabout hosts on the Internet. We describe the way in which the data was collected and detailsabout the implementation of any programs to collect the data. We also describe the size andscope of the data collected, and the estimates arising from these observations are presentedin the last chapter.In the context of renewal processes, each failure of a host is a renewal event. Our goalis to estimate the mean of the interevent time. The �rst section describes how we usedwtmp log �les to obtain a sample of the interevent times. The second section describes anexperiment using Sun's status monitor service to obtain a sample of the number of renewalevents in a period of time. The �nal section describes an experiment using Sun's remoteuptime service to obtain a sample of the backward occurrence distribution.3.1 Analyzing wtmp log �lesOn Unix systems that maintain some degree of accounting, a �le called wtmp is updatedautomatically by the system. This �le stores a record of all logins and logouts. Whenevera user logs in or out of the system, a record is appended to this �le noting the terminalthe user was logged on, the user name and the time at which the user logged in or out. Inaddition, as part of the startup procedure on a Unix system, a record of the time at whichthe machine was started is appended to the wtmp log. The wtmp �les can become verylarge on heavily used machines, so this �le is periodically either deleted or saved in backup



22storage. By examining a contiguous sequence of wtmp logs for a machine and extracting theentries added when the machine is started, we can get a sample of the times at which themachine was started.As mentioned previously, when each reboot of a host is considered a renewal event, thisexperiment gives us a sample of the interevent times of the renewal process. We can thenuse the formulae in section 2.2 to obtain an estimate and con�dence interval for the meaninterevent renewal time.We now describe the way in which the wtmp log were collected and selected to yield asample of the interevent times.3.1.1 Obtaining and selecting the sample wtmp logsWe posted a message on the Usenet newsgroup comp.os.research describing our exper-iment, and requested that wtmp logs be mailed in to us along with a description of thetype of the machine. Replies to this message were the primary source of wtmp logs in ouranalysis. In addition, we obtained a few more wtmp logs from hosts in our computer sciencedepartment and undergraduate computer science resources.We made two decisions in using the wtmp logs to come up with a sample set of obser-vations of times between reboots. First, we decided to use logs that spanned at least twomonths. This was done to avoid di�culties with analyzing truncated data. If the lengthof the wtmp log is too small, it is possible that the machine was never rebooted during thistime. All we can learn from such data is that the machine was continuously running for atleast the period of time the wtmp log was maintained, but it does not give us a sample ofthe time between the time the machine was started. We cannot however choose to simplyignore those logs that do not contain any reboot entries but use others, because then wewould arti�cially favor logs that have many reboot entries and hence bias the data towardhosts with small intervals between reboots.



23To avoid encountering this problem altogether, we decided to use only logs that weremaintained for su�ciently long periods of time. From previous experiments, two monthswas considered long enough to avoid the problem of truncated data.The second decision we took in using the data was to pick one consecutive pair of rebootentries in the wtmp log and added the time interval between these two entries into our sampleset of observations instead of adding all the intervals contained in a wtmp log. The reasonwe did not add all the intervals in the wtmp log was to avoid bias in our sample which arisesbecause not all hosts fail with the same frequency. However, hosts that do fail frequentlycontribute far more reboot entries in their wtmp log than hosts that fail less frequently. If wehad counted every single interval in each wtmp log, hosts that reboot frequently contributefar more (and far shorter intervals) than hosts that get rebooted less frequently. This biasesthe sample in favor of hosts that fail frequently. Therefore, to avoid to avoid biasing oursample with excessive contributions from hosts that fail frequently, we took only one sampleinterval from each host.3.1.2 Obtaining intervals from the wtmp logsSince wtmp logs are binary �les, we asked that they be encoded with the uuencode programand then electronically mailed to us. Since some mailers cannot handle very large �les,many logs were split across di�erent mail messages. In addition, there can be a sequenceof wtmp �les for a machine, representing a consecutive series of backed up versions of thelog. This �rst task was just to get back the original binary �le from all the messages wereceived. This proved very time-consuming, and assembling the original log from all thesemail messages was done \by hand", by sorting and saving the messages in the correct order.After running the uudecode program to get back the original binary �le, any contiguoussequence of wtmp �les for a host were merged together.The second task was to analyze this information to determine its viability and obtainboot time entries. Once we had all the wtmp �les, this task was relatively easy to automate,and was done through a combination of Perl and shell scripts. The consolidated �le from



24a host was analyzed to determine the length of time it covered. This was determined bycomparing the �rst entry in the �le with the last. Since wtmp �les contain the login or logouttimes of the users of the system, the times contained in the �rst and last entries in the �lebracket the time interval covered by the wtmp log. The time interval between this pair ofentries is actually slightly less than the time period spanned by the wtmp log, since the logbegins before the �rst entry is made into the log, and the log ends after the last entry ismade into the log. For reasons described in the previous section If this interval was lessthan two months, the wtmp log was discarded. Otherwise, all the entries representing boottimes were extracted and saved. This step gave us a set of boot times for the machine.Lastly, we randomly picked two consecutive entries from this set of boot time entriesfor the host and added the time interval spanned by these two points into our sample set ofobservations. This gives us one sample observation from each log �le. As described in theprevious section, this step is necessary to prevent bias towards hosts that fail frequently.We obtained a total of 457 responses to our posting sending in information about 171hosts. As mentioned earlier, the di�erence in the number of responses and the numberof hosts is because many responses mailed the wtmp �les in multiple parts, or the wtmplogs themselves were in multiple �les. We were unable to analyze a few of the logs thatwere mailed in because of lack of access to a machine of that type. (Each type of machinestores the data in a slightly di�erent fashion.) This weeding process left us with wtmp logsfor 86 hosts. To get an idea of the characteristics of the wtmp logs themselves, each logcontained an average of 37.4 boot time entries. The average length of time spanned by awtmp log in the collection we used was 126 days, more than four months. Of course, eachhost contributes only one time interval to the sample observations, so we had a total of 86sample intervals.One observation we made about the data is that it often consists of a \run" of rebootentries at relatively close intervals of a few hours followed by a reboot entry after a longinterval of a few weeks. Apparently, it takes the typical machine a few attempts to ironout problems each time the system is brought down. In terms of the distribution of times



25between reboots, this indicates that the failure rate is very high when the machine is started,and drops down as the machine continues to run uninterrupted.3.2 The status monitor ExperimentSun implements a service called the status monitor as part of its network services. Thisservice is performed by a daemon called rpc.statd that runs using the Sun RPC protocol[17]. This daemon o�ers Sun RPC based remote procedure calls that can be made toobtain information about the status of the system. The purpose of this service is to providea generalized way to inform interested hosts about whether a machine is running or not,and also a way of letting clients of the service know when the machine is back on line. Thisis of importance, for example, in implementing �le locking over NFS. A �le server may godown between requests for locks on a �le. By providing a mechanism of letting clients knowwhen the server is back, lock requests can be reissued and �le locking semantics can bepreserved over �le server crashes. In fact, Sun implements a network locking service with adaemon called rpc.lockd that uses the services o�ered by the status monitor service. Thenetwork locking service provides �le locking services that work properly in Sun's network�le system over both client and server failures.The basic service performed by the status monitor is to agree to \watch" a set ofmachines, and report to another set of machines when the \state" of any of these machineschanges. A state change occurs when a watched machine goes down and comes back up.(This is actually two state changes { machine goes down, comes back up { but the reportis made only when the watched machine restarts.) The state of the machine, which is aninteger that keeps track of the number of state changes that have taken place, is returnedalong with this report. This integer is called the state number for the machine. The statenumber is twice the number of times the machine has been rebooted, as there are two statechanges for each reboot { one when the machine goes down and one when it comes backon-line.



26The fortunate fact that the service actually records the number of state changes allowsus to determine the number of times a machine has been rebooted in a certain interval oftime by recording the state number at the beginning and at the end of the interval. Thisgives us the number of renewal events in that interval of time. We can then use the estimatespresented in section 2.4 to obtain an estimate for the mean interevent renewal time.The next few sections describe in more detail the mechanics of the status monitor serviceand how we used this to obtain the number of of times the machine was rebooted in a certaininterval of time.3.2.1 Using the status monitor serviceThe status monitor service provides these remote procedure calls.1. A call that informs the status monitor on host A, that a particular host, host B isinterested in host A's state. This call simply saves the host name of host B into a �leon host A. Whenever host A restarts, the status monitor looks up the �le and informsthe status monitor on each of the hosts in this �le that host A's state has changed.2. A call that sends a host name B as input, asks the status monitor on host A to registera remote procedure callback that exists on the host making the request. The statusmonitor on host A will then call the callback whenever a state change is reported fromhost B. This call returns the state number reported from host B.3. Calls to undo the e�ects of both these calls.4. A debugging call to host A that triggers o� a \fake" status change report to all hoststhat are interested in host A. As part of this operation, the state is incremented bytwo.The usual way to use the status monitor service is to �rst let host A know that host Bis interested in host A. Second, register a procedure on host B that the status monitor onhost B calls whenever host A reports a status change. Typically, the procedure registered



27on host B is a local procedure call into an application that is interested in the status of hostA. Our goal was to use the status monitor service to measure the state number twice,separated by a long period of time. The di�erence is then twice the number of times themachine was restarted in that interval. Our experiment to obtain the state number on atarget host consisted of �ve remote procedure calls that did the following.1. Tell the status monitor on the target machine that the target machine itself wasinterested in its status.2. Ask the target host to call a procedure on our machine whenever a status report comesin from the target machine3. Send the triggering debugging call to the target host.4. This sends a status report about the target machine back to itself, which is forwardedto our machine.5. Unregister all our calls on the target host.We noticed aws in the implementation of the status monitor service during the courseof our experiment. Sun calls this an intermediate version of the service. For example,the call that lets host A know that host B is interested in it is supposed to return thestate number on host A according to the protocol. This functionality does not appear tohave been implemented, which made our job of obtaining the state number more di�cult.One can also let host A know that a completely unknown or unreachable host called B isinterested in its status. When host A restarts, it keeps periodically trying to reach hostB, apparently because it thinks host B is down. Rebooting does not help, and the onlysolution to prevent host A from trying forever is to manually edit the �le where the monitorkeeps a list of hosts that are interested in its status. We also noticed occasional oddities,when the state number decreased between two measurements. We did not investigate thisphenomena, but we believe it might be caused through installing a new version of theoperating system during the interim.



283.2.2 Obtaining and selecting the sampleThis experiment can be made anonymously, with no special privileges necessary to make andobtain all the information described in the preceding paragraphs. However, the experimentchanges data on the machine (the state number changes during our third procedure call tothe target machine, when the debugging call is made). There was also the possibility thatthe status report change could cause transitory delays in the system while the network �lelocking service completed updating any changes necessary to performed its functions. Inview of the nature of this experiment, we decided to ask the permission of the administratorsof the hosts involved before running this experiment. Unfortunately, this diminished thesize of the data that we could collect.We �rst posted a message on several Usenet newsgroups asking for a list of hosts onwhich we could perform our experiment. After consolidating the list of hosts obtained fromthe response to our postings, we ran a pilot query on the hosts in this list. We recordedthe state number and the time at which the state number was obtained. Some hosts in thislist did not run the status monitor server, and we removed those hosts from our collection.Some hosts did not respond or were unreachable, and we also removed these hosts from oursample after querying them once more after an interval of one day.We repeated the same process after 16 days, this time discarding any hosts that did notrespond to our queries. The reason for not querying this set again is because some of theremote procedure calls that we make are implemented over an unreliable communicationprotocol. Our querying mechanism is also \destructive" in that it increments the statenumber by 2 when it succeeds. Due to the unreliable nature of the communication protocol,it is possible for the state number to change even when we do not get a response. Werepeated this step once more, 39 days from when the experiment was �rst begun. Thisprocess left us with a sample of state numbers from 374 hosts. This sample is slightlybiased towards hosts that are highly available, since we discard any hosts that are notavailable during all three queries. The analysis of this data is presented in the last chapter.



293.3 The rup experimentSun Microsystems provides a network service called the kernel statistics server (typicallyimplemented by the program rstatd.) This service is implemented over Sun RPC, andis much simpler to use than the status monitor service. This service provides informationabout a variety of statistics about the performance of the kernel like the paging activity,the number of jobs swapped, the number of device interrupts, number of context switchesand so on. The kernel statistics service o�ers a single remote procedure call that returns astructure �lled with information about the performance of the kernel. There are two entriesin this structure that are of interest to our experiment. One contains the time at whichthe machine was started and the other contains the current time at that machine. Thedi�erence of these two entries is the length of time the machine has been running.Our experiment consisted of invoking this remote procedure call on the target machineand recording the di�erence of these two entries. In terms of renewal processes, a renewalevent occurs when a machine reboots. Our experiment therefore gives a sample of thebackward occurrence distribution of the inter-renewal event time distribution. We can thenuse the results in section 2.3 to obtain estimates for the mean inter-renewal time, which inthis instance is the mean time between reboots.3.3.1 Selecting and obtaining the sampleSuch an experiment was �rst performed by Long, Carroll and Park [6]. All the data wascollected anonymously, and a vast amount of data was retrieved from this experiment. Thelist of hosts that were queried was obtained by traversing the entire Internet name-tree.Duplicate names were consolidated, and information about the type and operating systemof each host was also collected. A subset of this collection of hosts that were likely to berunning the network service were chosen. Calls to the network service were made to hostsin this collection to determine the length of time the host was running. We refer to thispaper [6] for additional details about the experiment and the conditions under which thedata was collected.



30In [6], the data from this experiment was used to provide estimates about the mean timeto failure of hosts on the Internet. Estimates about the mean time to failure were derivedbased on the assumption that the lifetimes of machines were drawn from an exponentialdistribution. The exponential hypothesis was also veri�ed by running a test statistic on thesample data. The data proved to be statistically di�erent from an exponential distribution,especially for large samples.For this thesis, we performed a similar experiment to collect uptime observations abouthosts on the Internet, but instead of information about all the hosts obtained by walkingthe Internet name tree, we obtained them from the same collection of hosts on which weperformed the status monitor experiment. The reason for restricting the size of our samplewas to compare estimates obtained through observations of the status monitor experimentthrough observations from the rup experiment. Each time we obtained the state number fora machine during the status monitor experiment, we also queried and logged informationabout the length of time the machine was up. Since the state number was queried threetimes, we had three measurements for each machine. We arbitrarily chose the uptimeinformation returned at the last time the experiment was performed in deriving estimatesfrom this experiment.As described in section 2.4, we analyzed this data in four di�erent ways to reach estimatesabout the mean time to failure. The �rst estimate is identical to the estimate made in [6],and assumes that the underlying data follows an exponential distribution. The formulaeused in this estimate are presented in section 2.4.1. Since previous experiments show thatthe data is probably related to the exponential distribution, we used two more estimatesthat assume that the data follow two generalizations of the exponential model { the Gammadistribution and the Weibull distribution. The formulae used in this estimate are presentedin section 2.4.2 and 2.4.3 respectively. We also ran the Kolmogorov-Smirno� goodness-of-�t test to determine how closely the model actually �t the data. Finally, we analyzed thedata in a distribution-free fashion by looking at the histogram of the data generated. Thismethod is described in section 2.4.4. Obtaining these estimates using the results in Chapter



312 is straightforward, and the formulae and algorithms used are presented in the Appendix.The results of these four analyses are presented in Chapter 4.



32Chapter 4SummaryIn this chapter, we present the estimates derived based on the observations and calcula-tions from the experiments described in the previous chapters. We compare the di�erentestimates that were obtained, and how the assumptions made during the derivation of theexperiments a�ects the estimate. We also describe some work in progress to obtain morereliable observations and estimates about hosts on the Internet, and �nally present somefuture directions in which this work can be continued.To present these results in the context of renewal processes, we wish to measure meaninter-event renewal time of a process where renewal events occur whenever a host is re-booted. We have three di�erent observations of this renewal process1. A sample of the inter-event renewal times (the wtmp experiment),2. A sample of the number of renewal events in a certain time interval (the status monitorexperiment), and3. A sample of the backward occurrence distribution of the process (the rup experiment.)Chapter 2 presents results from statistics that can be used to estimate the mean inter-event renewal time from such observations. Chapter 3 describes how these observations wereactually selected and obtained. The next three sections presents the results of applying theformulae in Chapter 2 to the observations obtained in Chapter 3.



334.1 Estimates from the wtmp experimentThe wtmp experiment provides us with the smallest number of sample observations, 86sample points. The small sample size is due to the di�culty of collecting the samples, asit requires the cooperation of administrators of the hosts on which the sample was taken.Secondly (as described in Chapter 3) to eliminate the problem of truncated data samples,only su�ciently large log �les were used in obtaining sample points. Lastly, to avoid biastowards hosts that get rebooted frequently, only one measurement per log �le was used. Inspite of the small size of the sample, this measurement is the most direct observation of thequantity we wish to estimate (the inter-event renewal time) as it actually records the timesat which the machine was rebooted. Therefore we can expect this estimate to be a verygood indicator of the actual mean time between reboots of the hosts that were sampled.However the small sample size also means larger con�dence intervals for the estimate, andthe possibility that the sample is not truly representative of hosts on the Internet.The following table summarizes the estimates obtained from the wtmp experiment forthe mean time between reboots. The mean time between reboots is estimated as a littleTable 4.1: Mean time between reboots from the wtmp experimentn �x (days) 90% con�dence interval � min median max86 11.336854 8.415 14.259 16.344978 0.004 4.701736 86.561over 11 days. The small sample size leads to a large 90% con�dence interval for the mean,which lies between between 8 and 14 days. In comparison, estimates from Carroll, Longand Park [6] are signi�cantly higher. For instance, the estimate for the mean time to rebootfor Sun4/60 machines is about 18 days. Other systems too, are estimated to have similarmean times to failure. One explanation for this discrepancy is from the following interestingobservation about our data. There is a very small value for the median, which for our datais a little under 5 days. The next two graphs shed more light on the distribution of the data



34obtained from this experiment. The �rst graph is a graph of the survivor function of thedata. In other words, this is a graph of the probability of surviving for at least a certaintime T , which is just P[t > T ] against time T . The second graph is a plot of the log of the
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Figure 4.1: Survivor function plot from the wtmp experimentsurvivor function log(P[t > T ]) against time T . The second graph gives us some insight intothe failure rate of the distribution. The failure rate is � ddx log(P[t > T ]). In other words,the failure rate is proportional to the slope of this graph. An exponential distribution hasa constant failure rate, so the log survivor function plot for data following an exponentialdistribution would be a straight line. In the graph that we actually observe, there is a steepslope in the very initial portions of the graph indicating regions of high failure, and thenbecomes nearly straight in the rest of the graph, indicating an exponential-like constantfailure rate. The distribution of the data from the wtmp data indicates that the underlying
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Figure 4.2: Log survivor function plot from the wtmp experimentdistribution for the time between reboots is one that has a high failure rate for small timeintervals, and a nearly constant failure rate for larger time intervals.The estimate from [6] assumes the underlying distribution is exponential, and therefore,that the backward occurrence distribution is also exponential. However, from our observa-tion of the sample, the underlying data does not seem to be exponential, and we believethat part of the discrepancy in the two estimates comes from this fact. Of course, thesetwo estimates come from di�erent sample populations of the Internet, which could alsocontribute to the discrepancy.



364.2 Estimates from the status monitor experimentThe status monitor experiment obtains the number of renewal events in an interval of time.The results in section 2.4 then allow us to estimate the mean of the inter-event renewal time.The status monitor experiment gives more direct observations about the mean time betweenreboots of a machine than the uptime experiment as it allows us to make distribution freeestimates about the mean. However, unlike the wtmp data, it is not possible to make anyinferences about the distribution of the underlying distribution due to the nature of theobservation.The status monitor and the remote uptime experiments are based on a slightly largersample of 374 hosts. As described in Chapter 3, even though the data could be collectedanonymously, it changes some data on the target host. Therefore the sample was limitedto those who agreed to let the experiment be performed on their machines. We obtainedmore responses for this experiment, perhaps because unlike the wtmp experiment, the onlything they needed to do was mail in a message agreeing that the experiment be performed.The geographical distribution of the sample is more widely distributed than the wtmpexperiment since a larger group of volunteers agreed to let their hosts be used in the exper-iment. This tends to make this experiment more indicative of the behavior of the Internetas a whole, but the sample size is still rather small. Moreover, it is rather \clustered" datain that a volunteer would typically agree that a set of machines in a particular institutioncould participate in the experiment.As described in Chapter 3, we took three measurements of the state number, and onlyused those machines that responded to all three requests. In making the estimate, onlythe state numbers from the �rst and last observations were used. The time di�erencebetween these two measurements were identical for all the hosts to within 5 minutes. Weused the results in section 2.4 to compute the estimate for the mean of the intereventrenewal period. The appendix also contains the formula used to arrive at the mean and thecon�dence interval for the mean.



37Table 4.2: Mean time between reboots from the status monitor experimentn �x (days) 90% con�dence interval374 11.240 10.179 12.548The estimate from this experiment predicts a mean time between reboots of just over11 days. This is gratifying since it corroborates the prediction from the prediction fromthe wtmp experiment. This two experiments measure di�erent characteristics about hostson the Internet, and are taken on di�erent samples. The fact that these two di�erentexperiments estimate about the same value for the mean time between reboots indicatesthat our estimate may not be too far from the truth.4.3 Estimates from the rup experimentThe uptime experiment was performed on the same hosts that participated in the statusmonitor experiment. The same caveats that apply to the sample used in the status monitorexperiment apply to this sample too. Machine uptime records were taken each time thestate number was determined. Since the state number was obtained thrice, there were threeuptime samples for each host. The �rst of these three observations was arbitrarily used toestimate the mean time to failure for these machines. This data is easily obtained, but hardto analyze without making assumptions about the underlying data. In all, we attemptedto make four di�erent estimates from the data in this experiment. Only one of them alsoprovides con�dence estimates, but it makes strong assumptions about the distribution of theunderlying data, namely that it is exponential in nature. Two others assume that the datais a generalization of the exponential distribution, but do not yield con�dence estimates.In addition to estimating the mean time to failure, we also test the goodness-of-�t of thedata to the proposed distribution by running the Kolmogorov-Smirno� test on the actualand proposed distribution. The fourth estimate is a di�erent way of analyzing the data, by



38using histograms. This estimate does not yield con�dence estimates either, but is presentedas an interesting distribution-free method of obtaining the mean time to failure.The �rst table are the estimates derived from the assumption that the distribution isgoverned by an exponential distribution.Table 4.3: Mean time to failure from the rup experiment (exponential assumption)n �x (days) 90% con�dence interval Dn374 14.725 13.049 16.401 0.056558The statistic for the Kolmogorov-Smirno� test (the value ofDn) is interesting. We acceptthe hypothesis that the distribution is truly exponential at about a level of signi�cance of0.18. This suggests that the data is quite close to being an exponential distribution.Assuming that the data follows the Gamma distribution, the method of moments forcomputing the parameters for the Gamma distribution on our sample data led to an equationwith an impossible value for � (which was smaller than 0), so the estimates could not bederived. This is probably caused due to the small sample size.Assuming the data follows the Weibull distribution, we reach the following estimates forthe mean time to failure.Table 4.4: Mean time to failure from the rup experiment (Weibull assumption)n �x (days) � � Dn374 13.922 0.953791 0.082784 0.050227Assuming that the data follows a Weibull distribution leads to a lower estimate for themean time to failure. The value for the parameter � is of interest as it is smaller than1. This indicates a decreasing failure rate, which ties in with our observation about thefailure rate from the wtmp experiment. Since the uptime and wtmp experiment are twodi�erent observations about hosts, this provides independent evidence that the failure rates



39are indeed high for small time intervals. The data also indicates that the distribution iscloser to being a Weibull distribution than an exponential distribution, and it is acceptedat a level of signi�cance of about 0.25.Finally, the histogram method of estimating the data was used to estimate the meantime to failure. The bin size was chosen to be one day, and the histogram of samples wasgenerated. The fraction of samples in the �rst bin divided by the bin width gives us anestimate (the histogram estimate) for the density function of the of the backward occurrencevariable at the origin. (Chapter 2 has more details on the histogram method of estimatingthe data). Since the value of the density function of the backward occurrence variable atthe origin is 1=�, this is an estimate for the inverse of the mean. The graph of the histogramgenerated is also shown below. This method estimated the mean time to failure as 13.32days.4.4 Comparison of the estimatesAll three experiments lead to unexpectedly low estimates on the mean time to failure forhosts on the Internet. These numbers need to be viewed in light of the fact that any timea machine is shut down, it is assumed to be a failure. Three di�erent observations abouthosts on the Internet lead to a total of �ve estimates about hosts on the Internet. All theseestimates predict a time of between 11 and 14 days.The wtmp experiment is the most reliable indicator of the true time between reboots,as it contains exact records of when the machine was started. The wtmp experiment alsopredicts a low average time between reboots, and is probably caused by the number of\false starts" that seem to occur each time a system is rebooted. However, the sample sizeis rather small, and tends to be clustered around a few sites. With a larger sample size, thismethod can be expected to yield more accurate estimates. The wtmp experiment also letsus observe the distribution of the data, and it appears to be fairly exponential in natureexcept for small values of time, when the failure rates are very high.
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Figure 4.3: Histogram estimate of the density function from the rup experimentThe status monitor experiment becomes more reliable as the duration of the experimentis increased. Observations from this experiment predict a mean time between failures thatare comparable with those predicted by the wtmp experiment. Both these experimentsare reliable, in that they sample exactly the quantity that needs to be determined, but indi�erent ways. Therefore it is not surprising that they lead to similar estimates about themean time between reboots of the machine. These two experiments also provide separateand independent evidence about the mean time between reboots of hosts on the Internet.The remote uptime experiment requires more careful analysis, and estimates tend tobe based on assumptions about the distribution of the data. Unfortunately, assuming any-thing more complicated than an exponential distribution leads to di�culties in estimatingparameters of the distribution and in obtaining con�dence estimates. Estimates based onthis experiment appear to be higher than those predicted by either the wtmp or the status



41monitor experiment. On the same set of hosts, the more reliable status monitor experimentpredicts a slightly lower mean time between failures than the estimates from the remoteuptime experiment. This appears to be a direct consequence of the high initial failure rate,and the inability of the models assumed in deriving estimates based on the uptimes to ad-equately capture this distribution. However, for the small sample sizes considered in thisthesis, both the exponential and the Weibull model were good �ts to the observed data, andthe Weibull model �ts the data a little better than the exponential model. This is to beexpected, as the Weibull model is a generalization of the exponential model. The predictedWeibull model also had a decreasing failure rate, which validates our observations aboutthe high initial failure rate of the observed data based on the wtmp experiment.In comparison with the estimates made in [6], all of our estimates yield lower meantimes between failure. However, it is interesting to note that same method used in [6] (therup experiment with the exponential hypothesis) produced an estimate that was closest tothose in [6]. The fact that they are still di�erent is probably due to the fact that these twoexperiments were taken on di�erent sample populations.4.5 Future directionsThe ideal observation about hosts on the Internet would involve continuous monitoring toaccurately track failures. Work is in progress on continuously monitoring hosts on the Inter-net without generating a voluminous amount of tra�c. A prototype of a monitoring systemcalled the tattler has been implemented. This monitoring system is described in [13]. Atattler is a monitoring station that periodically gathers information about a subset of hostson the Internet. A tattler also periodically contacts another random tattler in the systemand exchanges information that it has collected about hosts. By having di�erent tattlersmonitor a particular host, the load generated on the network by the monitoring system isspread out. Moreover, interruptions in monitoring a host caused because of network parti-tions can be reduced since more than one tattler can monitor a particular host. A system oftattlers behaves essentially as a distributed database of information. The consistency of this



42database in the face of failures of tattlers is ensured by exchanging information su�cientlyoften, through a protocol called the time-stamped anti-entropy protocol [10]. This protocolguarantees that the database is \eventually consistent." This means that if all monitoringwere to stop at any particular instant, (but tattlers still continue to contact one another)the probability of any two tattlers having non-identical databases approaches zero. Theprotocol is robust in the face of transient failures of tattlers, and is also able to detect whenall the tattlers in the system have an identical collection of data in their database. A proto-type of this system has been monitoring hosts anonymously by periodically checking if thehost responds to a ping message. It also veri�es if a host has been rebooted since the lasttime the host was queried by making an uptime call and comparing the boot times retrievedfrom the last query. This system is intended to provide us with a large-scale anonymousmethod of collecting information about hosts on the Internet that can be used to derive esti-mates about the time to failure of hosts without making any assumptions about underlyingdistributions.Another promising area to focus e�orts is to develop a model to predict the time tofailure of hosts on the Internet. The simple exponential model is useful, but not completelyaccurate. The Weibull model is a little more accurate, but is hard to analyze when usedin trying to predict the behavior of distributed systems. It would be interesting to exploreother models to adequately summarize the data that we observed. Lastly, if the model of theapplication whose reliability we are trying to predict is already being solved numerically, thedata collected through out experiments can be used directly as a source of time to failuresof hosts.



43AppendixThis section presents the formulae and algorithms used to arrive at the various estimatespresented in the thesis. The theory behind these formulae and algorithms are presented inChapter 2.Sampling the interevent renewal timeGiven: A sample of N observations x1; x2; : : : ; xN of the interevent renewal time of a processand a con�dence level (1� �).Output: A (1� �) con�dence interval for the mean interevent time of the renewal process.Algorithm: 1. Determine � (from statistics tables) such that P(T > �) = �=2, where T is aStudent T distribution with N � 1 degrees of freedom.2. Compute X = (PNi=1 xi)=N3. Compute S = rPN1 (xi�X)2N�14. Output the interval (X � � SpN ; X + � SpN )Sampling the backward occurrenceThis section describes all the formulae used in obtaining estimates for mean of the renewalprocess. In all these cases, we have the following scenario.Given: A sample of N observations x1; x2; : : : ; xN of the backward occurrence variable of arenewal process.



44The exponential modelHere we assume that the renewal process follows the exponential hypothesis, and that weare given a con�dence level (1� �)Output: A (1� �) con�dence interval for the mean interevent time of the renewal process.Algorithm: 1. Determine � (from statistics tables) such that P(X > �) = �=2, where X is achi-squared distribution with 2N degrees of freedom.2. Compute X = (PNi=1 xi)=N3. Output the interval (X 2n� ; X 2n� )The Weibull modelIn this algorithm, we assume that the renewal process follows the Weibull distribution.Output: An estimate for the mean interevent time of the renewal process.Algorithm: 1. Pick a random positive value �, and a small error tolerance value �.2. Compute �0 = PNi=1 x�iPNi=1 x�i logxi (	(1 + 1=�) + log( �N PNi=1 x�i )). Here, 	(x) is thederivative of log �(x).3. If the absolute di�erence between �0 and � is larger than �, set � = �0 and repeatthe previous step. Otherwise, proceed to the next step.4. Compute � = N�PNi=1 x�i5. Output 1� 1��(1 + 1=�)The Gamma distributionIn this algorithm, we assume that the renewal process follows a Gamma distribution.Output: An estimate for the mean interevent time of the renewal process.Algorithm: 1. Compute X = (PNi=1 xi)=N



452. Compute S = rPN1 (xi�X)2N�13. Compute � = 2X3S�X24. Compute � = 3S�5X2X2�3s5. Output �=�.The histogram estimateThe estimate is computed by estimating the probability density function of the renewalprocess at the origin using a histogram.Algorithm 1. Without loss of generality assume the samples are sequenced in increasing order.De�ne the bin width b to be log2(xN � x1).2. Compute n0, the number of samples that fall in the interval [�b=2; b=2]. This isthe number of entries in the bin centered around the origin.3. Let p0 = n0=(bN). This is the histogram estimate of the pdf at the origin.4. return 1=p0. This is the estimate of the mean of the distribution f .Counting the number of renewal eventsGiven: A sample n1; n2; : : : ; nN of the number of renewal events in a time interval L, and acon�dence interval (1� �).Output: A (1� �) con�dence interval for the interevent renewal time.Algorithm 1. For each i in f1; 2; : : : ; Ng, compute ti = L=ni2. Determine � (from statistics tables) such that P(T > �) = �=2, where T is aStudent T distribution with N � 1 degrees of freedom.3. Compute T = (PNi=1 ti)=N4. Compute S = rPN1 (ti�T)2N�15. Output the interval (T � � SpN ; T + � SpN )



46The Kolmogorov-Smirno� testThe Kolmogorov-Smirno� test is a measure of how closely a hypothesized distribution ac-tually follows the sample that is obtained.Given: A set of observed sample points x1; x2; : : : ; xN and a proposed cumulative distributionfunction F0(x) to explain the sample points.Output: The DN statistic for the data.Algorithm 1. For each xi, compute mi = maxxi�x<xi+1 ji=N � F0(x)j. Take xN+1 =12. Compute m0 = maxx<x1 j1=N � F0(x)j3. Output the maximum of all the mi
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