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(1, 1)  (none)-   O   X  -    -Figure 0.1: Patterns for Othello.An `X' represents our piece, `O' the opponent's, `-' no piece, and `?' any piece. Note that the pattern in (a) is bound to thespeci�c board location (1, 1) while (b) represents a pattern that may appear anywhere on the board.0.1 IntroductionIt has been the goal of AI researchers for many years now to build a successful \tabula rasa" system. Thatis, a system that starting from little apriori knowledge, with experience is able to cope with its environment.In this paper we discuss our own attempt at building a tabula rasa system. APS (Adaptive-Predictive Search)is a general learning system that improves with experience in what we term \complex search domains":These are problems that have a formulation as a state space search. Further, reinforcement is only providedoccasionally, and for many problems only at the end of a given search. Finally, the cardinality of the statespace must be su�ciently large so that attempting to store all states is impractical.The �rst major aspect of an APS system is the compilation of search knowledge in the form of pattern-weight pairs (pws). Patterns are predicates that represent features of states, and weights indicate theirsigni�cance with respect to expected reinforcement. Secondly, since the APS system resides within theexperience-based learning framework, it must possess facilities for creating and removing search knowledge(pws). Knowledge is maintained to maximize the system's performance given space and time constraints.The APS model uses a variety of techniques for inserting and deleting patterns. Finally, a combination ofseveral learning techniques incrementally assign appropriate weights to the patterns in the database. Thespeci�c insertion, deletion, and learning techniques will be described in the next section.Since APS adheres to the experience-based learning framework, it can be applied to new domains withoutrequiring the programmer to be an expert in the domain. In fact, APS has been applied to a variety ofdomains including chess (we call this system \Morph"), othello, pente, and image alignment [6].For example, chess satis�es all of the abovementioned requirements of the complex problem domainsconsidered in this paper: The game tree forms the state space, each game representing a search path throughthe space; reinforcement is only provided at the end of the game; and, �nally, it has a large cardinality ofstates (around 1040) [18]. Furthermore, few e�orts use previous search experience in this area despite thehigh costs of search. In order to focus the research on the learning mechanisms, Morph has been constrainedto using only one-ply of search. In addition, Morph has been given little initial chess knowledge, thus,keeping it within the experienced based learning framework. Despite these constraints, Morph now managesto draw its trainer Gnuchess (a tournament-level program) about once every 800 games, and is capable ofdefeating or drawing human chess novices.Although Morph has been given very little assistance it would be false to say that it was supplied \no"domain knowledge. In earlier versions of APS, the system was supplied a pattern representation language bythe user that was deemed to be appropriate for the given problem domain [6]. For example, some patternsconstructed for the game Othello are displayed in Figure 0.1.In the case of Morph, a graph representation of attacks and defends relationships was provided, as wellas a notion of material. See Figure 0.2 for an example.Further, a combining rule for patterns in a given domain and pattern creation mechanisms were alsoprovided. In this paper, we describe recent e�orts to build a fully domain-independent APS and to implementit within the PEIRCE conceptual structures workbench. For example, the patterns above can be representedin CGs as in Figure 0.3 .We can now see that APS involves the automated construction of a semantic distance function overunpreclassi�edTo test these ideas APS is being applied in the \uninformed MetaGame universe" [15]. This is a universeof chess-like games in which the system is not supplied the rules or objective of the game it is playing!.The structure of the rest of the paper is as follows. Section 2 discusses the current APS system frameworkin detail. In Section 3 we describe our e�ort in building a domain-independent pattern and semantic distanceconstruction scheme. Section 3 also describes a scheme for consructing conceptual graphs out of sequencesof raw bit data followed by reinforcement. Section 4 is the conclusion.



2 0Z0Z0Z0Z rlbZ0ZkZZ0o0Z0ok Z0Z0apo00Z0Z0ono 0Z0o0m0oZ0Z0Z0Z0 ZpZ0Z0Z00ZQZpOqZ pZ0oPZ0AZPZrZ0Z0 Z0Z0M0ZPPZ0Z0ZPO PO0Z0OPZZ0A0ZRJ0 ZBZQS0J0(c)n n(b) PRBQQB RP(a) QB RP nFigure 0.2: A generalization derived from two di�erent chess positions. (a) is the subgraph derivedfrom the board on the left and (b) is the subgraph from the board on the right. The solid edgescorrespond to direct edges between pieces and the dashed edges correspond to indirect edges.Graph (c) is the generalized graph derived from (a) and (b) in which the dotted edges have beengeneralized to generic \attacks."0.2 The APS ModelAs mentioned previously, the APS framework contains three major parts: the pattern-weight formulationof search knowledge, methods for creating and removing pws, and methods for obtaining appropriate weightsfor the pws with respect to reinforcement values. This section discusses each of these facets in detail, afterwhich it describes how the parts interact and how the system performs as a whole.0.2.1 Pattern weight formulation of search knowledgeA pattern represents a boolean feature of a state in the state space. This feature typically represents aproper subset of all the possible properties of the state. That is the feature usually does not represent asingle state, because such patterns would be far too speci�c (and numerous) to be useful in complex problemdomains. Examples of patterns include graphs and sets of attributes . Often the language in which patternsare expressed is akin to the language used to represent the states, but with a higher level of abstraction. Inthe new domain-independent APS model all patterns for all domains are represented as conceptual graphs.Each pattern has associated with it a weight that is a real number within the reinforcement value range.The weight denotes an expected value of reinforcement, given that the current state satis�es the pattern.For example, in a game problem domain a typical set of reinforcement values is f0,1g, for loss and winrespectively. If we have a pw, <p1, :7>, this implies that states which have p1 as a feature are more likely tolead to a win than a loss.The major reason for using pws over another form of knowledge representation is their uniformity. Pwscan simulate other forms of search control and due to their low level of granularity and uniformity more powerand exibility is possible [8]. For example, pws have all the expressive power of macro tables. Additionally,they allow switching over from one macro sequence to another and allow for the combination of two ormore macro tables[8]. Interestingly, Albert Einstein recognized the importance of macro-crossover and thepatterns that arise from it:What precisely is \thinking"? When on the reception of sense impressions, many picturesemerge, this is not yet \thinking." When, however, a certain picture turns up in many suchsequences, then - precisely by such return - it becomes an organizing element for such sequences,in that it connects sequences that in themselves are unrelated to each other.Along these lines, patterns that occur commonly in many search or decision paths can and ought to beexploited in future problem-solving episodes.
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Figure 0.3: Conceptual graphs and a concept hierarchy from the Chess and Othello domains.(a) is a representative Othello pattern. The associated concept hierarchy for square contents is in (b). (c) represents thegeneralized chess pattern from �gure 0.2.0.2.2 Adding and removing patternsThe patterns used to represent search knowledge are stored within a database that is organized as a partialorder on the relation \more-general-than". In the past patterns have been inserted into this database throughthe following four methods: search context rules, generalization and specialization, reverse engineering, andgenetic operators[3]. The actual database insertion and retrieval takes place using algorithms that exploitthe structure in the partial order to do a minimal number of comparison tests[5, 7].Search context rules are the only pattern addition scheme that does not rely on patterns already in thedatabase; thus, they are the only way patterns are added to an empty database. A search context ruletakes as input a particular state and the sequence of all states in the last search and returns a pattern tobe inserted into the database. A search context rule is a deterministic procedure that builds up a patterngiven the previously mentioned inputs.In concept induction schemes [9, 11, 13, 16] the goal is to �nd a concept description to correctly classifya set of positive and negative examples. In general, the smaller description that does the job, the better.Sometimes the concept description needs to be made more speci�c to make a further distinction. At othertimes it can be simpli�ed (generalized) without loss of discriminative power.



4 Generalization patterns are created by extracting similar structures from within two patterns that havesimilar weights. A pattern is specialized in an APS system if its weight must be updated a large amount(indicating inaccuracy). Whereas in a standard concept induction scheme the more speci�c patterns may bedeleted, the APS system keeps them around because they can lead to further important distinctions. Thedeletion module may delete them later, if they no longer prove useful.Reverse engineering is a method used to add macro knowledge into an APS system. Macros can berepresented as pws by constructing a sequence of them such that each pattern is a precondition of thefollowing one. Successive weights in the macro sequence will gradually approach a favorable reinforcement;thus, the system is then motivated to move in this direction.Reverse engineering extends a macro sequence by adding a pattern. This extension is similar toExplanation-Based-Generalization (EBG) [12] or goal regression. The idea is to take the most importantpattern in one state, s1, and back it up to get its preconditions in the preceding state, s2. These precon-ditions then form a new pattern p2. If pattern p2 is the most useful pattern in state s2, it will be backedup as well, creating a third pattern in the sequence, etc. The advantages of this technique are more thanjust learning \one more macro"; each of the patterns can be used to improve the evaluation of many futurepositions and/or to enter the macro at any point in the macro sequence.The APS system makes use of genetic operators in order to add additional patterns into the database.Since patterns are not required to be represented as bit strings (in the new APS thet are conceptual graphs),it is up to the individual APS system to tailor the genetic operators to suit the pattern representation. TheAPS system does not remove all or most of a population of patterns, however, due to the large amount oftime necessary in determining appropriate weights for all patterns.Although a variety of pattern addition schemes are available, due to memory and processing restrictions,the database must be limited in size. As in genetic algorithms there must be a mechanism for insigni�cant,incorrect or redundant patterns to be deleted (forgotten) by the system. A pattern should contribute tomaking the evaluations of states it is part of more accurate. The utility of a pattern can be measured asa function of many factors including age, number of updates, uses, size, extremeness and variance. Theseattributes will be elaborated upon in the next section. We are exploring a variety of utility functions [10].Using such functions, patterns below a certain level of utility can be deleted. Deletion is also necessary fore�ciency considerations: the larger the database, the slower the system learns. For example, after 2000games of training and with a database grown to 2500 patterns the Morph chess system takes twice as longto play and learn (from about 1200 games a day on a Sun Sparc II to about 600 games per day).0.2.3 Modifying the Weights of PatternsThe modi�cation of weights (of patterns) to more appropriate values occurs every time a reinforcementvalue is received from the environment. The modi�cation process can be broken down into two parts.First, each state in the sequence of states that preceded the reinforcement value is assigned a new valueusing temporal di�erence learning. Second, the new value assigned to each state is propagated down to thepatterns which matched that state. A pattern in the database matches a given state if the state satis�es theboolean feature represented by the pattern and no other pattern more speci�c than it matches the state.Temporal di�erence (TD) learning determines new values for the states in the game sequence movingfrom the last state, Sn, to the �rst state, S1. Since state Sn was the state at which reinforcement wasdelivered its new value is set to the reinforcement value. For all other states, Si, the new value is set toa linear combination of its old value and the new value of state Si+1 . For example: if during play a stateAi was evaluated as 0.8 and the next state Ai+1 is determined to be 0.9 (by TD learning, since we workbackwards from the last state) the next state might take on a new value of 0.85 which is halfway betweenthe old and the new recommendation. This method di�ers from supervised learning, where the value of eachstate Si is moved toward the reinforcement value. It has been shown that TD learning converges faster thanthe supervised method for Markov model learning [20]. The success of TD learning stems from the fact thatvalue adjustments are localized. Thus, if the system makes decisions all the way through the search andmakes a mistake toward the end, the earlier decisions are not harshly penalized.Once each state Si has been assigned its new value, each pattern matching Si must have its weightmoved towards the new value. Each weight is moved an amount relative to the contribution the pw had indetermining the old value for the state.This weight updating procedure di�ers from those traditionally used with TD learning in two ways.First, TD learning systems typically use a �xed set of features, whereas in an APS system, the feature setchanges throughout the learning process. Second, the APS system uses a simulated annealing type schemeto give the weight of each pattern its own learning rate. In this scheme, the more a pattern gets updated,the slower its learning rate becomes. Furthermore, in addition to giving each pattern its own learning rate,the annealing scheme forces the convergence of patterns to reasonable values:Weightn = Weightn�1 � (n� 1) + k � newn+ k� 1
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Advance to the successor  with the Figure 0.4: The execution cycle of an APS system.Weighti is the weight after the ith update, new is what TD recommends that the weight should be,n is the number of the current update and k is the global temperature. When k = 0 the system onlyconsiders previous experience, when k = 1 the system averages all experience, and when k > 1 the presentrecommendation is weighted more heavily than previous experience. Thus, raising k creates faster movingpatterns. As an example of how global temperature a�ects the learning rate, if the system doubles the globaltemperature, a pattern that has 100 updates will be updated like a pattern that has 50 updates the nexttime its weight is modi�ed.0.2.4 Integration: The workings of the entire systemThis subsection describes the workings of a complete APS system by combining the parts describedin the previous three subsections. An APS system executes by repeatedly cycling through two phases: asearch phase and a learning phase (see Figure 0.4). In the search phase the APS system does not modify itsknowledge base but instead performs a search using the current knowledge base. The learning phase thenalters the knowledge base by adding and deleting patterns, and modifying the weights of patterns.The search phase traverses a path from the initial state of the problem domain to a reinforcement state.Depth �rst hill climbing is the search technique used to traverse the search tree. In other words, at each stateSi in the search path the state moved into next, Sj , is determined by applying an evaluation function toeach successor state of Si and choosing that state which has the highest evaluation. Note, however, nothingprevents the database from supporting more sophisticated search strategies.Although the exact calculations performed by the evaluation function depend on the particular APSsystem, the function has the following framework. It takes the state to be evaluated and determines themost speci�c pws in the pw database that match that state. In the hierarchy of patterns, the most speci�cPws will manifest as immediate predecessors (\IPs") of the state pattern if it were inserted in the database.The weights of these most speci�c pws are then combined by a system dependent rule to determine the �nalevaluation for that state.The learning phase, the second in the APS cycle of execution, takes as input the sequence of statestraversed in the search performed by the �rst phase. This sequence is used by TD learning and simulatedannealing to modify the weights of the patterns in the database. Patterns are then inserted into the databaseusing the four techniques mentioned in Section 0.2.2. Finally, unimportant patterns are removed from thedatabase as described in the same subsection.The execution of an APS system involves the interaction of many learning techniques. A global viewof this interaction is displayed in Figure 0.5. In this �gure the edges are labelled with actions specifyingwhether a given module adds patterns, deletes patterns or modi�es the weights of patterns. Central to theAPS system is the pattern weight database, which holds all of the accumulated search knowledge generatedand manipulated by the surrounding modules.0.3 Making APS fully domain-independentIn current APS systems the user tailors the form of the evaluation function, pattern representationlanguage and the pattern creation strategies (search context rules, generalization and specialization, reverseengineering and genetic operators) to a given problem domain.
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Figure 0.5: The integration of learning modules within an APS system.Here we want to specify CG-based methods by which the system on its own becomes fully responsible forthe features and relations making up its patterns, which patterns are added and how the weights of patternsare combined. The goal is to automate the knowledge acquisition process as much as possible.We shall still be assuming however that the following has been supplied to the system:� A state representation language in conceptual graphs must be de�ned. The concepts and relations inthe CGs would correspond to the primitive percepts of the environment that are received (presumably)by low-level sensors or in the case of an abstract problem from the problem de�nition itself. In somecases it may be also appropriate to specify a type hierarchy for the concepts and relations if these arepart of the sensing possibilities or the problem de�nition itself. But normally this additional knowledgewould not be provided. not expected. In a chess problem the raw percepts would likely be the set ofpiece square relations on the board, though one could argue that geometric relations like \same rank",\same �le", \near", \far", \same diagonal", \same color square" could come from a visual sensor. Forexample states in the 8-puzzle [4] could be represented as collections of nine position-tile patterns (seeFigure 0.6).� A mechanism for periodically rewarding or punishing the system based on its performance.In principle this is all that would be provided to the system and all that is expected. However, one ofthe beauties of APS is that if more is known about the problem domain it can be supplied by increasingthe detail in the type hierarchies and state descriptions and by increasing the reinforcement method toinclude subgoals as well as �nal goals.Further, an explanation system may be developed by having patterns recall those situations that ledto their creation and those instances that have most inuenced their weight. Although, this does notlead to a domain-theoretic explanation it does allow the system to provide examples (cases) that haveled it to believe what it believes about the current situation. Using this information, the knowledge
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Figure 0.6: State representation in the 8 puzzle.(a) is an individual tile-position pattern expressed as a conceptual graph. Note that the entire state space can be representedby a total of 81 such patterns. (b) is one particular board state composed of a conjunction of nine tile-position patterns.This state happens to be named STATE17.engineer may be able to make further adjustments to the pattern representation scheme so that furtherdistinctions can be achieved.Finally, an interesting feature of the annealing scheme for weight learning is that a group of patterns(or the entire system) may be \disturbed" or \frozen" by raising or lowering their local temperatureor the global temperature of the system. Thus, the domain engineer is not responsible for assigningthe relative signi�cances of system patterns, but may be able to intervene by raising the temperatureof those patterns that don't appear to be behaving properly.OK, this is well and interesting but our real goal is for the system to be as autonomous as possible!We will address two issues: How the system determines which patterns to create and how the systemdecides to combine the weights of patterns. But before delving in let's review the objective of APS: toimprove with experience in complex state space search domains. Pattern-weight pairs are being usedas estimates of distance to the goal state. Beyond this they have no meaning to the system:the systemis syntax-based: all the system cares about are the weights of the patterns that match - not the patternsthemselves. Once these weights are determined how should they be combined?0.3.1 Giving autonomy to APS: semantic distance discoveryIn the book Pattern Recognition[21], Watanabe gives the remarkable Theorem of the Ugly Duckling:Insofar as we use a �nite set of predicates that are capable of distinguishing any twoobjects considered, the number of predicates shared by any two such objects is constant,independent of the choice of the two objects.He continues:This theorem is true also if we limit the number of predicates of any given rank. If wedecide to measure similarity of two objects by the number of predicates of a given rank, orby the total number of all possible predicates that are shared by the two objects, then wecan say: `Any arbitrary two objects are equally similar'. This theorem has a very profoundmeaning for pattern recognition. If we use the concept of distance D instead of similarity,the situation is the same; the distance between a pair of objects is the same for the choiceof any of the pair.Thus, given a �xed set of n predicates and building attributes out of all combinations of these predicatesproducing a boolean lattice, all objects will share (satisfy) the same number of points on this lattice. Hisconclusion is that the only way to distinguish between two objects is to use \extralogical" information,information from outside the set of objects themselves. On closer scrutiny one recognize that theextra-logical information must come from the context in which the system that is matching the objectsis embedded. The context provides criteria for weighting each attribute in terms of importance in thatcontext.In the case of APS (and we believe most AI systems) the context comes from the goal or objectiveof the system. These goals are indirectly represented in the reinforcement the system receives. Thus,from the point-of-view of APS two states are to be considered similar if the expected value of theirreinforcement is similar. In e�ect, the predicates of the Ugly Duckling Theorem will be weighted basedon their importance in determining a �nal reinforcement value. From this perspective APS can beviewed as the automated constructor of semantic distance functions, where semantic similarity is afunction of �nal reinforcement values.



8 Recall that all knowledge stored by APS takes the form of pattern-weight pairs: predicates coupledwith weights. The weights can be viewed as the expected reinforcement value for all states that containthe pattern as a subpattern. Now each pattern set induces a set of equivalence classes over the statespace: states are in the same equivalence class if they match exactly the same set of patterns.We now suggest the following methodology by which the pattern construction and weight learningschemes can become fully domain independent as a result of incorporating the semantic distance un-derstanding. The basic philosphy is to start with the set of domain primitive relations and concepts andgradually form more complicated graphs out of the interactions between these concepts. The patterndeletion mechanism and weight-learning mechanisms of the previous section still apply. Generalizationoperators, search context rules and reverse engineering however may well be no longer necessary. Thenotion of \adjacency" described in the subsection below on relation discovery can be used to get thee�ect of reverse engineering and search context rules in a fully-domain-independent manner.1. Store primitive graphs that correspond to individual primitives and relations of the state descrip-tion scheme. Give them equal weight for starters.2. Store all state CGs previously seen. Assign each of them a weight equal to the target value suppliedby TD learning. In e�ect we are creating the best value for the state known. Periodically, whenthe state store gets �lled a procedure can remove those states that have not been seen for a while.If a state should re-occur in later games it gets the new value.3. For all patterns that will be stored in the database (by future operations) assign them a weightequal to the weighted average of the weights provided by its successor graphs:Wnew = nXi=1 WiGinXi=1 Giwhere n is the number of new's successors, Wi is the weight of the ith successor graph, and Giis the game number of graph i's last occurrence. We are assuming that a state evaluated in latergames (search experiences) has a more accurate value than states evaluated in earlier games.4. Now, to evaluate a state S one uses the \semantic distance" mechanism of the Method IV retrievalscheme [5, 7] which will return for each graph a \closeness" determined as follows:(a) Convert S to a conceptual graph as always.(b) Insert S in the database. By so doing we get a set of immediate predecessors(IP) for S andmaximum common subgraphs of S with everything in the database.(c) Now, one could evaluate S by a function of its IPs as before but instead we use these IPs toconstruct a semantic distance function between S and all pre-stored states:SemanticDistance(S) = sharedIPsXi extr(i)� non�sharedIPsXj extr(j)where extr(i) =jWi � r jdescribes the degree to which pattern i's weight deviates from the average; r is the averagereinforcement value for all states and Wi is the current weight for pattern i.5. Then by looking at graphs that share several IPs and using the semantic distance function itis possible to get a set of \close" matches. Either use the weight (pre-stored evaluation) of theclosest match or a weighted average of a set of close matches of varying degree.This scheme is similar to the \nearest neighbor" approaches applied to bit vectors in pattern recognitionor information retreival tasks [14]. Here these approaches are being generalized to graphs and higherlevel features are being developed dynamically. Further, closeness is a function of the reinforcementvalues rather than assigned apriori.The key remaining question is where do the patterns used in the above scheme come from? The mostuseful patterns that can be created are those which are most relevant to determining semantic distance.The ideal patterns will have extreme average weights with low standard deviation and apply to manystates. Of these factors low standard deviation is most important because it ensures accuracy. Theother two factors ensure general usefulness.A utility function such as N � Extremeness(i)�



0.3. Making APS fully domain-independent 9where N is the number of states in the database, Extremeness(i) is the extremeness of the ith pattern'sweight as de�ned above, and � is the standard deviation of the pattern's weight over time, will be usedby the deletion function to remove patterns periodically.Patterns are inserted based on the following domain-independent scheme: contrast this mechanismwith the domain-speci�c mechanisms of the previous section. Consider the IPs found from the currentquery. We form three classes based on the following mergers:{ Take the two IPs with highest weight. Form a new pattern by \merging" them. Mergers takeplace by forming a CG out of the conjunction of the objects (using AND) (for example see Figure0.3.1 or by creating a new CG through maximal join out of the IPs if they overlap.Do the same with IPs with the lowest weight.{ Finally, do the same with the IPs of lowest and highest weight.These new classes should lead to more accurate semantic distance estimation than before: Mergingthe two highest weight IPs and two lowest weight IPs are likely to lead to classes with more extremeweights. Merging the high with the low will create a class of states that are likely to be similar to thecurrent state since these important conicting factors arise in both.Finally, new patterns are also formed by a \counting" operator that counts for a given state graphthe number of times a given subgraph is repeated. A pattern plus a count becomes a new pattern.This gives the system the capability of learning notions like \material" or mobility in chess which arefeatures of an entire state rather than individual elements of that state.It would indeed seem surprising if such a scheme could construct features that capture the essenceof a state or problem domain. But we argue that in principle that if patterns exist for representingthis information it will be �rst reected in the domains primitives and then gradually propagated tomore complex patterns. Of course for some theoretically constructed domains this may not be thecase since the useful patterns may be very remote from the state descriptions, but in practice thesemethods should serve well , especially when coupled with the statistics-based relation learning methodsdescribed below.0.3.2 Relationship to previous work on semantic distance and in conceptualgraphsSowa [19] de�nes semantic distance based on a frequency interpretation. Types that are shared areconsidered to have importance inversely proportional to the frequency of occurence of them or theirsubtypes in \schemata" or stored database graphs. Sowa's notion of types may be generalized (as wedo above) to higher order intermediate graphs that are shared. We have been weighing the sharing andnon-sharing of these graphs depending on their extremeness. It is interesting to note that the patternsthat have extreme values, by the nature of the normal distribution of weights of patterns (which isobservable empirically) are the patterns whose weights occur less frequently). Here frequency is takenwith respect to the rareness of the expected reinforcement rather than rareness of pattern occurrence.We believe that this is indeed the perspective that ought to be taken. For example, it is possible for agraph to occur infrequently (such as all squares on the queen �le being occupied ), yet be unimportantas well with respect to determining the reinforcement value. It is also possible for a pattern with areleatively extreme weight like \up a knight" to occur fairly often. In fact, all else being equal, themost useful patterns are those with extreme weights, that occur frequently and have a low standarddeviation (weight variance over time).Sowa and others [1, 17] also evaluate maximal joins between a query graph and a database graphby using other syntactic criteria (such as path distance between types and common subtypes) thatignore the context in which the join will be used. While these syntactic criteria have merit, there is alsodanger involved: To accept a purely frequency or syntax-based interpretation of relevance(importance)is to ignore the lesson of the Theorem of the Ugly Duckling, and to assume (with some risk) that thespeci�c graphs and types stored in the hierarchy were designed with frequency or distance inverselycorrelated to importance in the speci�c application being considered.0.3.3 Automated discovery of relationsAn important remaining question is to what degree the system can learn to construct new relations andedge types on its own since these may not be part of the original state description. In fact, let us assumethat NO relations or type hierarchy information is given in the original state description. All the system hasto go by are a set of unlabelled (but identi�ed) predicates (P1,.......,Pn) that can be true or false in a givenstate (this would be represented as a CG with n disconnected nodes), sequences of such states coupled withresulting reinforcement values. This puts us in the same framework as any learning or pattern recognitionalgorithm which is only given raw bit vectors or sequences of them. For the case of chess, 64 (for each



10square) times 13 (for each piece typ e and blank) bits would be assigned for each state. Surprisingly, fromjust this information and no knowledge of the rules or objectives of the domain a tremendous amount canbe learned (given enough experiences and computational power). Though not always obvious, the underlyingmathematical structure of a system (problem domain) will eventually exhibit itself through interaction withanother system (intelligent agent).We suggest the following multi-step algorithm for uncovering the structure (in terms of ConceptualGraphs with expected reinforcement) of a given problem domain:1. Determine discrete multi-valued variables underlying the data. These will exhibit themselves as a setof predicates such at most one is true at a given time. In e�ect we would like to partition the spaceinto possibly overlapping classes such that two predicates are in the same class if they are never bothsimultaneously true. This can be done as follows:(a) By iterating through all state experiences make a \compatibility matrix": a matrix of compatiblepairs: (two nodes are compatible if they never co-occur as true). It is likely that this step will�nd all incompatible pairs, thus little backtracking should be required in the following step.(b) Then using brute force backtracking over the set of compatibilities form larger sets, such that allelements in the set are mutually compatible. Keep those classes that are not assumed by anyothers. Given a set of S compatible nodes, the remainder of the compatible nodes for that classmust be a subset of the intersection of the compatibilities from each node in S. For example, inchess 64 variables for each square on a chessboard and 13 for piece types would be found. For annxn tile puzzle, given n2 input nodes, the 9 tiles and nine positions would be discovered.(c) Once the multi-valued variables have been found, in the state representation each class of n nodescan be collapsed to a single \variable" node connected to a \value" relation node that will pointto 1 of n constants. (Since the value relation is unary, at the implementation level it may beomitted with the constants being attached directly as referents to a variable node). Thus thechess domain will have 77 variables and the tile puzzle 18.2. Next one �nds the statistical correlation between each variable node-value pair, single node predicatesand the reinforcement value. This correlation is stored as a unary attribute with each node. (Atthe implementation level relation nodes are unneccesary since binary relations may be represented asdirected edges.)3. By looking at the correlations of pairs of nodes it is possible to �nd AND, OR, XOR, NAND and NORrelationships between pairs of nodes. These node pairs would also be labeled with the correlationwith the reinforcement value. A matrix with all correlation values (unary and binary) we will calla \correlation structure". Existing well-understood statistical methods are fully applicable here [2],yet rarely have they been used as a basis for symbolic representation. As statistics is the science ofprocessing numerical experiential data (to reveal mathematical structure), its uses within AI have beendramatically under exploited.4. An \adjacency relation" can be de�ned between one and more conditions with edges going out ofconditions that disappear with a single operator application (recognized as two sequential states) andan edge going in to conditions that are newly created. Edges between nodes shared by the same variableare assumed. Having an adjacent condition is a necessary but not necessarily su�cient condition forachieving the transposition de�ned by the two nodes. The structure that represents this adjacencyinformation we term an \adjacency hypergraph".5. The collection of the compatibility matrix, correlation matrix and the adjacency hypergraph we term"basis conceptual structure" for the given problem.6. Using re�nement [5] equivalence classes of nodes in the basis structure may be identi�ed using sometheshhold for matching the real-valued correlations. Nodes with similar properties should be treated assimilar in processing. For example, it should be possible in principle to discover that the 8-puzzle reallyhas only three distinct classes of tiles: blank, corners and sides and 6, 3, and 6 classes of positions,respectively, for each of these (depending on relation to the goal state). Thus a problem of 81 primitiveshas been reduced to 15.7. Now for any input state, for those predicates that are true, the subgraph induced by those predicates(through projection) from the basis strucutre is formed and processing may continue as in the tra-ditional APS and semantic distance approaches discussed above or by recursing such that the newlyformed edges (due to the above steps) become the nodes on the next iteration. Note that for graphmatching purposes two predicates that are shared by the same variable (or in the same equivalenceclass) will be considered equivalent and the labels of predicates will be ignored (what is relevant istheir correlation with the reinforcement value and relationship to other predicates).



0.4. Conclusions and Ongoing Directions 110.4 Conclusions and Ongoing DirectionsWe believe that several crucial mistakes have been made by AI researchers over the past thirty years.These mistakes have limited AI's success in creating a true computational model of intelligence.The �rst pervasive mistake is the anthropomorphising (humanizing) of the notion of intelligence. Torestrict intelligence to what people do is to obscure the true meaning of that word. Intelligence ought tobe identi�ed with optimal problem-solving(decision-making) under resource constraints in the achievementof speci�c goals. Any given agent (human, mechanical or otherwise) could then be placed on the spectrum(actually a partial-order) from no intelligence (random or destructive behavior) to perfect intelligence(optimality). The potential for computers to far exceed humans on this scale is due to their awless memory,endurance, calculating accuracy, and wide resources. Very few humans ever penetrate a problem to its depths.What are called \experts" are often simply those with greater experience. And what we call \creative" or\smart" is sometimes merely clever or tricky, rather than due to deep understanding.The second mistake, which is due to the high role humans have presumed for themselves on the spectrumof intelligence, is the belief that supplying a system with pre-digested domain knowledge is required and theproper path for AI. Such human assistance could never achieve \real intelligence" but merely simulation, fak-ery, or illusion. Indeed, research in AI has seemed to focus on the word \arti�cial" rather than \intelligence".Supplying domain knowledge to a computer certainly has practical value in applications, for testing compu-tational models, and for exploring certain micro-issues, but it is inconsistent to rely on this while maintaininga research goal of creating true computational intelligence. For in our minds, domain-independence goeshand in hand with intelligence. To be fully domain-independent a machine must then develop its knowledgefrom experience. Knowledge is not some important but little-understood element, but rather an abstractrepresentation of the underlying mathematical or statistical structure of a problem-domain.A third mistake (arising from the other two mistakes) is to evaluate AI systems using analogies withhuman cognition or domain-dependent criteria. The di�culty with drawing comparisons to human cognitionis that our own self-understanding is limited and that cognition is often far from optimal. Interestingly, inthose cases in which human processing is highly accurate (as in the human vision system) this can be seenas the results of years of evolutionary experience. Again, experience is the key. To evaluate systems withdomain-dependent criteria while supplying domain-dependent data is to do engineering and applied research- not fundamental research.Thus the development of a computational framework for experience-based learning is a di�cult butcritical challenge. Here, we have argued for the necessity of a multi-strategy approach: At the least, anadaptive search system requires mechanisms for credit assignment, feature creation and deletion, weightmaintenance and state evaluation. Further, it has been demonstrated that the TD error measure can providea mechanism by which the system can monitor its own error rate and steer itself to smooth convergence.The error rate provides a metric more re�ned but well-correlated with the reinforcement values and moredomain-speci�c metrics. Finally, in a system with many components (pws) to be adjusted, learning ratesshould be allowed to di�er across these components. Simulated annealing provides this capability.APS has produced encouraging results in a variety of domains studied as classroom projects [6], includingOthello, Tetris, 8-puzzle, Tic-Tac-Toe, Pente, image alignment, Missionary and Cannibals and more. Cur-rently, others are studying the application of the Morph-APS shell1 to GO, Shogi and Chinese Chess. Butmuch more distance remains to be covered before Morph or other experience-based systems will learn fromexperience with nearly the e�ciency that humans do (and then go beyond). To achieve this, substantialre�nement of the learning mechanisms and an enhancement of their mutual cooperation is required. Webelieve that the new semantic distance learning approach plus the statistical relation construction described inthis paper is an important step in that direction and further that the domain-independent framework has beenestablished for future developments. While time will tell whether the speci�c techniques described herein willbe successful in creating true AI, we are for the moment satis�ed that we are asking the right questions.AcknowledgmentsMany thanks to Claude Noshpitz who did the drawings and helped in general with the �nal draft. Theresearch was partially funded by NSF grant IRI-9112862.1Now publicly available via anonymous ftp from ftp.cse.ucsc.edu. The �le, morph.tar.Z, is in directory /pub/morph/.
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