
University of CaliforniaSanta CruzData �ltering and distribution modeling algorithms for machine learningA dissertation submitted in partial satisfactionof the requirements for the degree ofDoctor of PhilosophyinComputer and Information SciencesbyYoav FreundSeptember 1993The dissertation of Yoav Freund is approved:Manfred K. WarmuthDavid HausslerDavid P. HelmboldDean of Graduate Studies and Research

Copyright c byYoav Freund1993

iiiContentsAbstract viAcknowledgments vii1. Introduction 11.1 Boosting by majority : 41.2 Query By Committee : 71.3 Learning distributions of binary vectors : 82. Boosting a weak learning algorithm by majority 102.1 Introduction : 102.2 The majority-vote game : 142.2.1 Optimality of the weighting scheme : 192.2.2 The representational power of majority gates : 202.3 Boosting a weak learner using a majority vote : 222.3.1 Preliminaries : 222.3.2 Boosting using sub-sampling : 242.3.3 Boosting Using �ltering : 312.3.4 Randomized learning algorithms and randomized hypotheses : : : : : : : : : : : : : 372.3.5 The resources needed for polynomial PAC learning : : : : : : : : : : : : : : : : : : : 382.3.6 Relations to other bounds : 402.4 Extensions : 412.4.1 Using boosting for distribution-speci�c learning : 412.4.2 Boosting multiple valued concepts : 452.4.3 Boosting real valued concepts : 462.4.4 Parallelizing PAC learning : 472.5 Summary and open problems : 482.6 Summary of notation : 482.6.1 Concept Learning Notation : 482.6.2 Notation for the describing boosting : 492.6.3 Meaning of common notation in di�erent sections : 502.6.4 Special Notation : 50

iv3. Accelerating learning using Query by Committee 523.1 Introduction : 523.2 Preliminaries : 543.3 Two simple learning problems : 553.4 The Query by Committee learning algorithm : 573.5 Relating information gain and prediction error for Query by Committee : : : : : : : : : : : 593.6 Concept classes that are e�ciently learnable using QBC : 643.6.1 Uniformly distributed half-spaces : 643.6.2 Relaxing the uniformity constraints : 713.6.3 Perceptrons : 743.7 Learning using unlabeled examples and membership queries : : : : : : : : : : : : : : : : : : 773.8 Summary : 784. Unsupervised learning of distributions on binary vectors using two layer networks 804.1 Introduction : 804.2 The inuence combination distribution model : 834.2.1 Notation : 834.2.2 The Model : 834.2.3 Discussion of the model : 864.2.4 Comparison with principal components analysis : 894.2.5 Universality of the model : 894.2.6 Relations between the binary-valued and the real-valued models : : : : : : : : : : : 904.3 Learning the model from examples : 924.3.1 Learning by gradient ascent on the log-likelihood : 924.3.2 Approximating the gradient : 944.3.3 Projection Pursuit methods : 954.3.4 Overview of Projection Pursuit : 954.3.5 Projection Pursuit and the combination model : 984.3.6 PP algorithm for learning the combination model : 994.4 Experimental work : 1015. Concluding remarks 113References 119A. Appendixes regarding Boosting by Majority 123A.1 Boosting the reliability of a learning algorithm : 123A.2 Divisibility lemma : 123A.3 Proof of Lemma 2.3.10 : 125

vB. Projection distributions of the binary combination model. 127

Data �ltering and distribution modeling algorithms for machine learningYoav FreundabstractThis thesis is concerned with the analysis of algorithms for machine learning. The main focus is on therole of the distribution of the examples used for learning. Chapters 2 and 3 are concerned with algorithmsfor learning concepts from random examples. Briey, the goal of the learner is to observe a set of labeledinstances and generate a hypothesis that approximates the rule that maps the instances to their labels.Chapter 2 describes and analyses an algorithm for improving the performance of a general conceptlearning algorithm by selecting those labeled instances that are most informative. This work is animprovement over previous work by Schapire. The analysis provides upper bounds on the time, spaceand number of examples that are required for concept learning. Chapter 3 is concerned with situations inwhich the learner can select, out of a stream of random instances, those for which it wants to know thelabel. We analyze an algorithm of Seung et. al. for selecting such instances, and prove that it is e�ectivefor the Perceptron concept class. Both Chapters 2 and 3 show situations in which a carefully selectedexponentially small fraction of the random training examples are su�cient for learning.Chapter 4 is concerned with learning distributions of binary vectors. Here we present a new distributionmodel that can represent combinations of correlation patterns. We describe two di�erent algorithms forlearning this distribution model from random examples, and provide experimental evidence that they aree�ective.We conclude, in Chapter 5, with a brief discussion of the possible use of our algorithms in real worldproblems and compare them with classical approaches from pattern recognition.Keywords: machine learning, computational learning theory, example selection, selective sampling,distribution modeling

viiAcknowledgmentsFirst of all, I would like to thank Manfred Warmuth and David Haussler for all that they have taughtme, and their for their help and support during my graduate studies. It was through working with themthat I have learned how to do research, and how exciting and satisfying the process can be. I wouldespecially like to thank Manfred for the many ideas that he provided along the way, and David for teachingme how to work with people from other disciplines and how to write papers. I would like to thank DavidHelmbold for his help in writing this thesis, especially Chapter 2.Major parts of this work are products of collaborative e�orts. The work in Chapter 2 has greatlybene�ted from several discussions with Rob Schapire. Major contributions to this chapter have also beenmade by Manfred Warmuth, David Haussler, Eli Shamir and Wolfgang Maass. Chapter 3 is joint workwith Sebastian Seung, Eli Shamir and Tali Tishby, and Chapter 4 is joint work with David Haussler.The experimental part of the work described in Chapter 4 was done in collaboration with KB Sriram,and I would like to thank him for all his hard work.I would like to thank the other people with whom I had the opportunity to work during my graduatestudies. Naoki Abe, Nicolo Cesa-Bianchi and Phil Long in Santa Cruz. Sebastian Seung, Eli Shamir, TaliTishby, Dana Ron, Ronitt Rubinfeld and Yoram Singer in the Hebrew University in Jerusalem, and MikeKearns, Rob Schapire and Linda Sellie in AT&T Bell Labs in Murray Hill. I would also like to thankManfred Opper and Nick Littlestone for some interesting discussions.Thanks to all my friends in Santa Cruz for the wonderful times that we had together.Thanks to my girlfriend, Becky Hess, for her love and encouragement.Finally, I am very grateful for the generous �nancial support of the Regents of the University ofCalifornia (graduate fellowship), the O�ce of Naval Research (Contract number N0014-86-K-0454) andthe US-Israel Binational Science Foundation (BSF) (Grant no. 90-00189/2).

11. IntroductionThe objective of machine learning is to build machines that learn from their experience. There aremany potential uses for such machines. One is predicting future events, such as a earthquakes or stockmarket prices. Another is building machines for identifying structure in complex data, such as sequences ofproteins or DNA. Yet another use is building computers that are controlled using spoken or hand-writtenlanguage. In this case learning is needed because voice patterns and writing styles vary so much betweendi�erent people that it is close to impossible to write computer code that will anticipate every possiblevariety. By using machine learning techniques the computer can be trained to adapt to each individualuser by exposing it to identi�ed instances of speech or writing of the user.Computers have been used for a long time to �nd models that �t empirical data using linear regressionmethods or to predict the future using simple parameterized predictors. Today, as computers are gettingfaster, the trend is towards using non-linear and hierarchical models to describe very complex highdimensional data. Methods that go under titles such as \neural networks" [Rumelhart and McClelland,1986, Hertz et al., 1991], \hidden Markov chains" [Rabiner and Juang, 1986], and \radial basis functions"[Poggio and Girosi, 1989] are becoming increasingly popular. Such algorithms are used for tasks rangingfrom controlling the arms of a robot to playing backgammon and from predicting the price of commoditiesto recognizing human faces. In general, a machine learning algorithm searches for a simple model thatexplains the past experience of the algorithm and then uses this model to predict future events. Variousdisciplines provide mathematical frameworks in which to analyze and compare such algorithms. Amongthese disciplines are pattern recognition [Duda and Hart, 1973a], estimation theory [Vapnik, 1982], thetheory of stochastic modeling [Rissanen, 1986], the theory of inductive inference [Gold, 1967, Angluin andSmith, 1983] and computational learning theory [Valiant, 1984a].Computational learning theory is a part of theoretical computer science. For this reason its naturalemphasis is on learning questions that arise in computation theory, such as learning �nite automata andBoolean formulas. Emphasis is also put on bounding the computational resources that are required forlearning. The type of analysis often combines combinatorial arguments of the type usually found incomputer science together with probabilistic arguments. However, the tendency is to minimize the numberof probabilistic assumptions and use, as much as possible, worst case assumptions. These general tendenciesset some of the work in computational learning theory apart from work done in other mathematicaldisciplines that analyze machine learning. Still, much of the work is closely related to work done in theother disciplines.A large variety of mathematical frameworks are used in Computational Learning Theory, each of whichemphasizes di�erent aspects of learning. In this section we give a brief survey of some of the popularframeworks and indicate how the work presented in this thesis is related to these frameworks. After thatsurvey, we give a brief introduction to each of the three main chapters of this thesis.In general, one assumes the existence of some model that describes the world, or the task, with whichthe learner is faced. The goal of the learner is to discover that model by observing the behavior of the world.In the simplest and most studied type of learning the hidden model is a concept. Informally, a concept is a

2rule that divides the world into positive and negative examples. For instance, the concept of \being blue"divides all objects into those that are blue and those that are not blue. The learning algorithm is presentedwith examples of blue and non-blue objects and and is required to deduce the general rule. More formally,we de�ne the set of all possible objects as the instance space and de�ne concepts as functions from theconcept space to the labels \+" and \�". An instance, together with its label is called an example. Thegoal of concept learning is to generate a (description of) another function, called the hypothesis, which isclose to the concept, using a set of examples. In general, we require that the learning algorithm observesjust a small fraction of the instance space and that the learner can generalize the information provided bythese examples to instances that have not been previously observed. It is clear that in order to do thatthe learner must have some prior knowledge about the set of possible (or likely) concepts. This knowledgeis de�ned in terms of the concept class, which is the set of all a-priori possible concepts.The most demanding learning goal is that of exact identi�cation. Here the learner is required to exactlyidentify the model of the world and describe it in a concise form using a prede�ned language. For example,suppose the instance space is the plane and that the concept to be learned is the area bounded by apolygon. In an exact identi�cation task, the learner might be required to generate an exact description ofthe polygon using a sequence of the coordinates of the polygon's corners. The goal of exact identi�cation isoften too hard. Moreover, in real-world scenarios a short and exact description of the behavior of the worldmight not even exist. A less demanding and more realistic goal is to generate an approximate hypothesis inan unrestricted language. The quality of such a hypothesis is measured by comparing between the labelsit assigns to instances and the correct labels. The more these labels agree, the higher the quality of thehypothesis. For example, in the polygon learning problem described above, an approximate identi�cationmight consist of a polygon such that the area of the symmetric di�erence between the concept polygonand the hypothesis polygon is small.One of the most popular mathematical frameworks of approximate concept learning is the modelintroduced by Valiant in [Valiant, 1984a], also called the distribution free or PAC (probably approximatelycorrect) learning model. In this framework the labeled instances that are given to the learner as examplesare chosen independently at random from the instance space. The distribution over the instance space isarbitrary, and not known to the learner. The accuracy of the hypothesis generated by the learner is de�nedas the probability that the hypothesis assigns a wrong label to a randomly chosen instance. Or, in otherwords, as the probability measure of the symmetric di�erence between the hypothesis and the concept.Note that this is a reasonable way of measuring the error, because the hypothesis is required to be accurateonly on those parts of the instance space which are likely to be observed during learning. In chapter 2we present an algorithm that can increase the accuracy of distribution free algorithms. This work is animprovement over previous work by Schapire [Schapire, 1990]. One of the main outcomes of the analysis ofthis algorithm are improved upper bounds on the number of examples and on the computational resourcesrequired for learning in Valiant's model.Some learning tasks, such as the design of a character recognizer, are best formulated as the generationof a hypothesis. After the learning process is completed, the hypothesis is �xed, and can be encoded intofast computer hardware that is part of the character recognizer. Other tasks, such as the prediction ofstock prices, are better described in terms of iterative trials. In this case the hypothesis of the learner is not

3�xed, but rather changes after each example and then used for predicting the next example. The qualityof learning is then measured by the rate at which the error in the predictions decreases as a function ofthe number of past trials, or, alternatively, by the total number of errors that the predictor makes over alltrials. This type of learning is called online learning.In the types of learning described so far, the learner is essentially passive, observing the behavior ofits environment but not taking any active part in the the generation of examples. In many situations thelearner can take a much more active role, asking questions and performing experiments on which to base itshypotheses. In computational learning theory this type of learning is called query learning. A wide varietyof queries have been studied, two of the most popular ones are membership queries, where the learner asksif a particular instance is a positive instance of a hidden concept and is answered yes or no, and equivalencequeries, where the learner asks whether a particular hypothesis is correct, and is either answered positivelyor is given an example on which prediction of the hypothesis is incorrect. For a survey of query learningsee [Angluin, 1988b]. The goal of most of the algorithms for learning using queries is exact identi�cationof the underlying model. A less studied goal is to use queries in the context of approximate identi�cationto reduce the number of labeled instances that the learner needs for learning. Previous work by Eisenbergand Rivest has shown that, in the PAC learning model, no signi�cant reduction of this type is possiblefor a natural set of concept classes. These results have been strengthened by Turan [Tur�an, 1993]. Inchapter 3 we show that if we allow the learner access to random unlabeled instances, this problem cansometimes be alleviated. We show that selecting instances to be used as membership queries out of therandom unlabeled instances has important advantages over constructing queries based on past information.In particular, we show that the number of labeled examples required for learning the Perceptron conceptclass1 can be drastically reduced using a simple method for query selection proposed by Seung et. al.[Seung et al., 1992].In the frameworks described above, the learner's main source of information are the labels of theinstances. The instances can usually be considered to encode a \state of nature", while the labels can beseen as given by a knowledgeable \teacher". This type of learning is referred to as supervised learning.An alternative framework is unsupervised learning, here the learner observes only unlabeled instances,and tries to model nature without reference to any \correct" labels. One possible goal of unsupervisedlearning is to generate an approximation of the unknown distribution of the instances. The quality ofthe hypothesis is then measured using one of the standard measures of di�erence between distributions,such as the Kullback-Leibler divergence. In chapter 4 we present a distribution model for binary vectors.We discuss the di�erences between this model and other models used in unsupervised learning algorithms,and argue why this model is relevant for some natural learning problems. We present and analyze somelearning algorithms for the unsupervised learning of this model. Finally, we give experimental evidenceillustrating the power of the model and of our learning algorithms.The main part of this thesis is divided into three chapters, each of which is self contained and can beread separately from the rest. In the rest of the introduction we give a brief sketch of the main results ineach chapter. Each chapter discusses a di�erent problem and uses a di�erent mathematical framework for1The Perceptron concept class will be de�ned in Chapter 3.

4its analysis. However, on a conceptual level, there are some common themes that appear in several places.The most important one is the central role that the distribution of the instances has in concept learning.The most common assumption about the distribution of instances that is used in computational learningtheory is the distribution-free assumption. In this case the distribution is arbitrary and unknown to thelearner. This can be seen as a choice that is made by an adversary whose goal is to make learning as hardas possible. Another popular assumption is the distribution speci�c assumption, in which the distributionis supposed to be known and �xed, irrespective of the hidden concept. Several results in this thesis suggesta model in which the distribution of the instances is assumed to be related to the hidden target. In thiscase learning can be easier than in the other cases, because the learner can gain important informationboth from the labels of the instances and from the distribution of the instances.Some classical pattern recognition methods are based on estimating the distribution of the instances.Our approach is di�erent in that it works on directly estimating a hidden deterministic target concept.This approach can have an advantage when a deterministic target concept is a good approximation of theactual relation between instances and their labels. We discuss these issues further in Chapter 5. Therewe compare our approach with the pattern recognition approach and discuss the technical and conceptualproblems that need to be resolved in order to better understand the performance of our algorithms in realworld scenarios.1.1 Boosting by majorityIn order to describe the results in Chapter 2 in some more detail, we need a somewhat more completedescription of Valiant's distribution free learning model. We reiterate the basic de�nitions, and add somenotation. The goal of learning is to generate a hypothesis, h, which approximates a hidden target concept c.The concept is a function from an instance space, X , to the labels \+" and \�", and is chosen (arbitrarily)from a concept class C. The hypothesis is also a mapping from X to f+;�g. The hypothesis is notrestricted to any particular form but must be e�ciently computable. There is an arbitrary distribution,D, over the instance space, the form of this distribution is not known to the learner. In order to learn, thelearning algorithm receives a sample which is a set of m examples. Each example is an instance, togetherwith its label according to c. The instances are chosen independently at random according to D. Aftersome computation, the learning algorithm outputs a description of the hypothesis h. The error of thehypothesis is de�ned as the probability that an instance, chosen at random according to D, is labeleddi�erently by h and by c. We require that the error is smaller than some prede�ned accuracy parameter� > 0. However, as there is always some small chance that the algorithm receives an unrepresentativesample, we allow the algorithm to fail with some small probability �. Both � and � are given as inputto the algorithm, and both can be set arbitrarily close to zero. Moreover, the resources required by thealgorithm to achieve the desired performance should increase at a polynomial rate with respect to 1=� and1=�. These resources include the number of examples, m, The running time of the algorithm, and theamount of memory used by the algorithm. 22In the more complete model of PAC learning, one de�nes parameters that measure the complexity of the concept class C,and the dependence of the resources required by the algorithm on these parameters should also be polynomial.

5An algorithm meeting these requirements is called a polynomial PAC learning algorithm for the conceptclass C. For many concept classes it is hard to �nd such algorithms, moreover, for an increasing numberof concept classes there are proofs that no e�cient algorithm exist (modulo some technical assumptions[Kearns and Valiant, 1989, Kharitonov, 1993]). A natural question is how the requirements of the PAClearning model can be weakened to make the problem easier. One possible weakening of the model,appropriately called weak PAC learning was suggested by Kearns and Valiant [Kearns and Valiant, 1989].In this model one omits the requirement that � and � can be arbitrarily small. For example, one canask for a learning algorithm that with a probability of 10% generates a hypothesis whose error is smallerthan 25%. Such a requirement seems to be much less demanding than that of the standard, or strong,PAC learning model. However, a surprising result by Schapire [Schapire, 1990], shows that the two modelsare essentially equivalent. He shows that if there exists a learning algorithm that can, with non-zeroprobability, generate a hypotheses whose error is smaller than 50% � , for some constant > 0, thenthis algorithm can be transformed into a strong PAC learning algorithm, that achieves arbitrary accuracywith arbitrarily high probability. Note that the hypothesis that randomly labels each example it sees usingan unbiased coin ip always has an error of 50%, thus the requirement on the weak learning algorithm isessentially that its predictions are just slightly better than random guessing. The transformation presentedby Schapire is given in terms of a general purpose \boosting" algorithm. This algorithm uses the weaklearning algorithm as a procedure and combines several of the weak hypotheses generated by it into a singlevery accurate hypothesis. In addition to the surprising theoretical aspect of Schapire's result, his algorithmis very attractive for practical purposes, because it suggests a method for improving the performance ofany learning algorithm. In Chapter 2 we present a di�erent boosting algorithm. Our boosting algorithmachieves the same improvement in the performance of the weak learning algorithm as Schapire's algorithmusing fewer runs of the weak learning algorithm and combining the weak hypotheses in a simpler way. Also,our algorithm requires less computational resources than Schapire's algorithm. In Chapter 2 we show thatthe number of times that the weak learner is called is optimal, and that the amount of computationalresources is close to optimal. We shall now sketch the main ideas that are used in our boosting algorithm.Consider a learning algorithm that always generates a randomized hypothesis such that the probabilitythat the hypothesis is mistaken on any particular instance is 1=2� , independent of anything else. Thisis a weak PAC learning algorithm which is very easy to boost. One can simply run it n times, generatingn di�erent hypotheses, and then output the hypothesis that is the majority vote over the outputs of thesehypotheses. The probability that the majority vote is incorrect on any particular instance is equal tothe probability that a biased coin, whose probability for head is 1=2 + , gets less than n=2 heads in ntosses. This probability decreases very rapidly as n increases, and thus the expected error of the majorityhypothesis is very small. Of course, this is a very special type of a weak learner. A general weak learner,without any constraints, might generate the exact same hypothesis every time we call it, and then themajority hypothesis will be equal to each of those weak hypothesis and its error will still be 1=2�. A wayin which we can prevent the weak learner from generating the same hypothesis over and over again is byexposing it to examples drawn according to di�erent distributions over the instance space. For example, wecan present the learning algorithm only with those examples on which the previous hypothesis is incorrect.In this case the hypothesis that the weak learner generates must (with high probability) be correct with

6probability 1=2 + on those instances on which the previous hypothesis was incorrect, because this isexactly the part of the instance space with respect to which the quality of the hypothesis is measured.It might seem that in this way we can insure some progress towards a set of hypotheses whose errorscan be reduced by a majority vote. However, note that the new hypothesis might be incorrect on all ofthe instances on which the previous hypothesis was correct. Thus while we are making some progress onone part of the instance space, we are losing all of the advantage that we had on another part. Luckily,there exists a way of generating distributions over the instance space that guarantee that progress is beingmade by each hypothesis generated by the learner, such that combining all the hypotheses by a majorityvote generates an accurate hypothesis. Somewhat surprisingly, the number of hypotheses that needs to becombined is equal to the number that is required when the hypotheses are generated by the very simple\independent" weak learner described earlier. The basic idea of our boosting algorithm is to run theweak learning algorithm n times, each time exposing it to a distribution that is more concentrated (in aparticular way) on those instances on which previous hypotheses have been incorrect. These n hypothesesare then combined into a single hypothesis by taking a majority vote over them.One of the ways in which the boosting algorithm can generate the distributions to which it exposes theweak learner is by a method of �ltering. This method was �rst used by Schapire in his boosting algorithm.Filtering is a process by which each example that is presented to the boosting algorithm undergoes astochastic test. If the example passes the test, then it is accepted and passed on to the weak learner,otherwise it is discarded. An interesting fact is that almost all of the examples that are given to theboosting algorithm are discarded, and never take part in the actual learning process performed by theweak learner. More precisely, in order to generate a hypothesis whose error is smaller than �, the algorithmtests ~O(1=�) examples3, out of which only O(log 1=�) examples are accepted. This might seem to be a veryine�cient way of using the random examples. However, the total number of examples used for learningis very close to the lower bound on the number of examples needed for learning proven by Blumer et.al. [Blumer et al., 1989]. In fact, the boosting algorithm makes such e�cient use of its resources, that itsanalysis gives the best general upper bounds that are currently known on the resources required for PAClearning algorithms that use polynomial resources.There are two interesting corollarys from the observation that most of the examples that are given tothe boosting algorithm are discarded. The �rst is that most of the running time of the boosting algorithmis spent in the search for the small number of important examples and not in the weak learning algorithmthat is generating the weak hypotheses. As the search for the important examples can be performed inparallel, we �nd that any PAC learning algorithm can be transformed to a form that can execute verye�ciently on a parallel computer. Essentially, given some technical assumptions, if a parallel computer witha su�cient number of processors is available, any PAC learning algorithm can be run in time O(log 1=�).The second corollary is that if a concept class is learnable then the labels of any sample of size m, forlarge enough m, can be deduced from the labels of just O(logm) of the instances. However, note that inorder to �nd this set of examples, the boosting algorithm needs to know the labels of all the instances inthe sample. In Chapter 3, described in the next section, we show that in certain cases this small set of3The notation ~O(�) is used to indicate that log factors are ignored.

7important instances can be detected even without knowing the labels of the whole sample in advance.It is clear that our boosting algorithm makes intensive use of the fact that the weak learning algorithm,in Valiant's model of learning, is required to generate an accurate hypothesis for any input distribution.This gives our algorithm its power, but also points to a potential problem of using it in practice. Theproblem is that most real world learning algorithms are not distribution independent, on the contrary,their performance is highly dependent on the distribution of instances with which they are presented.A natural question is whether one can boost the performance of such distribution-dependent learningalgorithms. We give an a�rmative answer to this question in Section 2.4.1. Our analysis shows that ourboosting algorithm can be used with such algorithms, and that the accuracy of the hypothesis that itoutputs is proportional to the sensitivity of the given learning algorithm to changes in the distribution ofthe instances.Parts of this work were previously published in [Freund, 1990] and [Freund, 1992].1.2 Query By CommitteeAs we have discussed in the previous section, all random training examples are not created equal. Infact, there is often a very small fraction of the training examples whose labels carry all the informationthat is relevant for approximating the hidden concept, and knowing these labels makes all the other labelsredundant.An interesting question is whether learning algorithms that have access to membership queries, i.e.algorithms that can ask for the label of any particular instance, can reduce the number of training examplesby querying only on this small set of instances whose labels are the most informative.This question was previously studied by Eisenberg and Rivest [Eisenberg and Rivest, 1990] in the PAClearning framework. They give a negative result, and show that for a natural set of concept classes, whichthey call \dense in themselves", queries can not decrease the number of labels that the learner has to observebefore it can generate an accurate hypothesis. Intuitively, the reason is that some of the information thatis conveyed to the learner by a random sample can not be gathered from queries. When a leaner is given asample of random examples, it not only receives information about the target concept, but it also gets anempirical estimate of the distribution of the instances. This estimate is important because the error of thehypothesis is measured with respect to the distribution of the instances. Clearly, membership queries thatare constructed by the learning algorithm convey no information about the distribution of the instances.In Chapter 3 we present a framework of learning from queries in which this problem can be overcome.In this framework, the learner is given separate access to the random instances and to their labels. Weassume that receiving a random unlabeled instance is relatively cheap, while obtaining the label of a randominstance is more expensive. In many real life cases, such as character or speech recognition, this is a naturalassumption, because gathering random unlabeled examples is a basically automatic process, while obtainingthe correct label of an example requires human labor.We study one particular algorithm for learning in this framework, that was presented by Seung et. al.[Seung et al., 1992], called \Query-by-Committee". The algorithm uses a \committee" of learners, that isto say, a set of independent learning algorithms, each of which generates a hypothesis that is consistent

8with the answers to all the queries asked so far. The algorithm selects its membership queries from amongthe random instances. It asks membership queries on those random instances that cause disagreementamong the committee members, in other words, those examples that are labeled di�erently by di�erentconsistent hypotheses.The process of learning can be seen as an interplay between two types of information. On the onehand, labeled instances convey information about the hidden concept, this information can be measuredby the number of hypotheses that are eliminated when the label of an instance is revealed. On the otherhand, the set of hypotheses that is consistent with past experience can be used to predict the label ofan unlabeled instance. Our analysis of the query by committee algorithm is based on the analysis of thisinteraction. We show that for the Perceptron concept class, the chosen membership queries reduces theset of consistent hypothesis at a fast rate. We also show that, in general, when such fast reduction isachieved by the Query by Committee algorithm, and the concept class is learnable, then the predictionerror decreases exponentially fast in the number of queries asked.Part of this work was previously published in [Freund et al., 1993].1.3 Learning distributions of binary vectorsThe task of the learner in Chapters 2 and 3 is to generate a hypothesis that approximates a hiddenconcept, mapping instances to f+;�g. Tasks of this type are often referred to as supervised learning tasks.The reason for the name is that the instance labels can be assumed to be generated by a knowledgeablesupervisor, or teacher. As we have discussed earlier, the distribution of the instances plays a major rolein the process of learning, however, learning the form of this distribution is not the ultimate task of thelearner. In contrast, in the framework of unsupervised learning, the goal of the learner is to generatea hypothesis based on unlabeled instances alone. The hypothesis is an approximate description of thedistribution of the instances.4 This description can sometimes provide important information about theprocess that generates the instances.Consider, for example, a situation in which a learning algorithm is presented with statistical informationregarding the people that visit a particular co�ee shop and wishes to deduce a good distribution modelfor this information. For concreteness, suppose that the clientele of the co�ee shop is a prede�ned set ofn people, and that the learner is given a table that summarizes which of these people visited the co�eeshop at each day of a particular year. For simplicity, we assume that the vector that de�nes the visitorson each day is generated by an independent random draw from a distribution that does not change overtime. Clearly, one can deduce important information about social relationships from this table. Groupsof people that tend to visit the co�ee shop together are likely to be friends or take the same train, whilepeople that tend not to be at the co�ee shop at the same time might have some animosity towards eachother. A good distribution model of the table should be able to capture and convey these friendships andanimosities.4Some unsupervised learning algorithms generate hypotheses that are not explicit distribution models. For example, someclustering algorithm generate a set of so-called \cluster centers". However, these cluster centers can usually be interpreted asthe means of the components of a Gaussian (or related) mixture distribution.

9In Chapter 3 we propose a class of simple distribution models over �xed length binary vectors thatattempts to encode complicated distributions of this type in a useful way. The idea is to introduce a set ofso-called \hidden variables" that represent events that cannot be directly observed, but have inuenceon the observable variables. Variables of this type are popular in so-called \Connectionist" models,such as Boltzmann Machines [Peterson and Anderson, 1987] and Belief Networks [Pearl, 1988]. Thesepopular models can be interpreted as models of distributions over the observable variables. However, thedistributions de�ned in this way cannot be described by a reasonably simple closed form expression. Ourapproach is to use a very restricted type of Boltzmann Machine which we call the \Combination Machine".This restriction makes the distribution model simple enough to enable us to describe it with a simpleclosed-form expression. However, it is still general enough to approximate an arbitrary distribution overthe binary vectors to within any desired degree of accuracy.We present two algorithms for the unsupervised learning of this model from random unlabeled instances.The �rst algorithm is a standard gradient ascent algorithm for maximizing the likelihood of the distributionmodel. The other model is an adaptation of the \Projection Pursuit" algorithm developed by Friedmanand Tukey [Friedman and Tukey, 1974, Friedman et al., 1984, Friedman, 1987], and by Huber [Huber,1985]. The basic idea of this algorithm is that the important structure of a high dimensional distributionis conveyed by those projections of the distribution that are most di�erent from the normal distribution.These algorithms are especially appealing because they allow an incremental construction of the distributionmodel and are thus much more e�cient than the gradient ascent algorithm.We have only a partial analysis of the learning algorithms that we present for the combination machine.However, we have performed some experiments that demonstrate the performance of these algorithms.Some of our experiments are on synthetic data which is generated using a combination machine. Thegoal of the learning algorithm in these experiments is to uncover the parameters of this machine from thedistribution of the data. In other experiments we have used our algorithm to generate a model for thedistribution of images of handwritten digits. In these experiments we show that the distribution modelthat is generated is meaningful and that it competes favorably with another popular distribution model.Part of this work was previously published in [Freund and Haussler, 1992].

102. Boosting a weak learning algorithm by majority2.1 IntroductionThe �eld of computational learning is concerned with mathematical analysis of algorithms that learnfrom their experience. One of the main problems studied in computational learning theory is that of conceptlearning. Informally, a concept is a rule that divides the world into positive and negative examples. Forinstance, the concept of \being blue" divides all objects into those that are blue and those that are notblue. The learning algorithm is presented with examples of blue and non-blue objects and is required todeduce the general rule. More formally, we de�ne the set of all possible objects as the instance space andde�ne concepts as functions from the instance space to the labels \�" and \+". An instance, togetherwith its label is called an example. The goal of concept learning is to generate a (description of) anotherfunction, called the hypothesis, which is close to the concept, using a set of examples. In general, we requirethat the learning algorithm observes just a small fraction of the instance space and that the learner cangeneralize the information provided by these examples to instances that have not been previously observed.It is clear that in order to do that the learner must have some prior knowledge about the set of possible(or likely) concepts. This knowledge is de�ned in terms of the concept class, which is the set of all a-prioripossible concepts.In this paper we study concept learning in a probabilistic setting. Here the examples that are givento the learning algorithm are generated by choosing the instances at random from a distribution overthe instance space. This distribution is arbitrary and unknown to the learner. The central measure ofthe quality of a learning algorithm in the probabilistic setting is the accuracy of the hypotheses that itgenerates. The accuracy of a hypothesis is the probability that it classi�es a random instance correctly.The accuracy of the hypotheses that are generated by a learning algorithm is expected to improve as theresources available to the algorithm are increased. The main resources we consider are the number ofexamples used for learning and the time and space available to the learning algorithm. One of the mainresults of this paper is an upper bound on the resources required for learning in the distribution-free modelof learnability introduced by Valiant [Valiant, 1984a].In Valiant's model, commonly referred to as the PAC (Probably Approximately Correct) learning model,or the distribution-free learning model, the quality of a learning algorithm is de�ned as follows. A learneris said to have accuracy � with reliability 1� � if the probability, over the random choice of the examplesand possible internal randomization of the learning algorithm, of generating a hypothesis that has errorsmaller than �, is larger than 1� �.1As was recognized by Haussler et. al. [Haussler et al., 1991a], increasing the reliability of any learningalgorithm is easy. This can be done by testing the hypothesis generated by the algorithm on an independentset of examples to validate its accuracy. If the accuracy is not su�cient, the algorithm is run again, on a1The exact de�nition of the PAC learning model are given in Section 2.3.1.

11new set of random examples. It is easy to show that increasing the reliability from 1� �1 to 1� �2 can beachieved by running the algorithm O(log(1=�2)=(1� �1)) times.2Improving the accuracy of a learning algorithm is much harder. Two di�erent variants of the PACmodel were introduced by Kearns and Valiant [Kearns and Valiant, 1989] to address this issue. In strongPAC learning, which is the more common model, the learner is given the required accuracy, �, as input, andis required to generate a hypothesis whose error is smaller than �. The resources used by the algorithm cangrow at most polynomially in 1=�. On the other hand, in weak PAC learning the accuracy of the hypothesisis required to be just slightly better than 1=2, which is the accuracy of a completely random guess. Kearnsand Valiant proved that weak and strong learning are distinct for distribution speci�c learning. Theyhave shown that while weak PAC learning of monotone Boolean functions with respect to the uniformdistribution can be done in polynomial time, strong PAC learning of the same class will imply an abilityto break some hard cryptographic problems that are commonly assumed to be unbreakable.This seemed to indicate that weak and strong distribution-free learning should also be separated.However, Schapire [Schapire, 1990] proved that weak and strong PAC learning are equivalent in thedistribution-free case. Schapire presented an algorithm that, given access to a weak learning algorithm, cangenerate hypotheses of arbitrary accuracy using time and space resources that are polynomial in 1=�. Thisalgorithm is called the \boosting" algorithm. The main idea is to run the weak learning algorithm severaltimes, each time on a di�erent distribution of instances, to generate several di�erent hypotheses. We refer tothese hypotheses as the \weak" hypotheses. These weak hypotheses are combined by the boosting algorithminto a single more complex and more accurate hypothesis. The di�erent distributions are generated usingan ingenious \�ltering" process by which part of the random examples that are presented to the boostingalgorithm are discarded, and only a subset of the examples are passed on to the weak learning algorithm.It turns out that corollaries of this important result give good upper bounds on the time and spacecomplexity of distribution-free learning. Schapire's result also has many important implications related togroup-learning, data-compression, and approximation of hard functions.In this article we present a simpler and more e�cient boosting algorithm. Schapire's boosting algorithmis de�ned recursively. Each level of the recursion is a learning algorithm whose performance is better thanthe performance of the recursion level below it. The �nal hypothesis it generates can be represented asa circuit consisting of many three-input majority gates. The input to the circuit are the labels producedby the weak hypotheses, and the output is the �nal label (see Figure 2.1). The depth of the circuit is afunction of the problem parameters (accuracy and reliability), and its structure can vary between runs.The de�nition of our boosting algorithm, on the other hand, is not recursive and the �nal hypothesiscan be represented as a single majority gate. This majority gate combines the outputs of all of the weakhypotheses.In this paper we present two variants of our boosting algorithm. The �rst is boosting by �nding aconsistent hypothesis. This variant of the algorithm �nds a hypothesis which is consistent with a large setof training examples. The analysis of this variant is quite straight forward, and its performance is close tothe best performance we achieve. It also seems to be the variant whose application to practical learning2A full analysis of this algorithm is given in Appendix A.1.

12
M

MMM

MMMM M

M

 −hypothesis generated
 by WeakLearn

M −Majority gate

(a)
(b)

Figure 2.1: Final concepts structure: (a) Schapire (b) A one-layer majority circuit.problems is more e�cient [Drucker, 1992 1993]. The major drawback of this method is that it requiresstorage of the whole training set, which makes the space complexity dependence on � be O((log 1=�)2=�)(assuming that the concept class is �xed and that its VC dimension is �nite). While this cost is oftentaken for granted, Schapire's algorithm demonstrates that boosting can be achieved using only O(log 1=�)space. We thus present a second variant of our algorithm, which we call boosting by �ltering. Thisalgorithm selects a small subset of the training examples as they are generated, and rejects all otherexamples. The sample complexity (number of training examples) of this version of the algorithm withrespect to � is O((1=�)(log 1=�)3=2(log log 1=�)), its time complexity is O((1=�)(log 1=�)5=2(log log 1=�)), itsspace complexity is (log 1=�)(log log 1=�)) and the number of weak hypotheses it combines is O(log 1=�).These are, to the best of our knowledge, the best general upper bounds on the dependence of the resourcesrequired for computationally e�cient PAC learning on the desired accuracy �. We present some lowerbounds that show that the possibilities for additional improvement are very limited. In particular, we showthat there cannot be a general boosting algorithm that combines a smaller number of weak hypotheses toachieve the same �nal accuracy.We also present generalizations of the algorithm to learning concepts whose output is not binary. Onegeneralization is for concepts with k-valued outputs and is quite straightforward. Another generalization isto real-valued concepts. We show how boosting can be used in this case to transform a learning algorithmthat generates functions whose expected error over the domain is bounded by c into a learning algorithmthat generates functions whose error is bounded by 2c over most of the domain.We also extend our result to distribution-speci�c learning. We show that our algorithm can be used forboosting the performance of learning algorithms whose quality depends on the distribution of the instances.More precisely, we show that the accuracy of the hypothesis that is generated by our boosting algorithm fora distribution D is a function of the rate in which the accuracy of the boosted learning algorithm decreasesas the distribution of instances that it observes diverges from D. The divergence between the distributionsof the instances can be measured by the Kullback-Leibler measure of divergence.Schapire [Schapire, 1992], noted that the results presented in this paper can be used to show aninteresting relationship between representation and approximation using majority gates. These results

13were independently discovered by Hastad et. al. [Goldmann et al., 1992]. However, while their prooftechnique is very elegant, our proof is more constructive (for details see Section 2.2.2).It is surprising to note that the boosting algorithm uses only a small fraction of the examples in thetraining set. While it needs
(1=�) examples to generate a hypothesis that has accuracy �, only O(log 1=�)of them are passed to the weak learners. Two interesting implications arise from this fact. The �rstimplication was pointed out to us by Schapire [Schapire, 1992]. It can be shown that if a concept classis learnable then the following type of compression can be achieved: Given a sample of size m, labeledaccording to some concept in the class, the boosting algorithm can be used to �nd a subsample of sizeO(logm) such that the labeling of all of the instances in the sample can be reconstructed from the labelsof the subsample. The second implication was found jointly with Eli Shamir [Shamir, 1992]. We observedthat if training examples can be accumulated in parallel by several parallel processors, then our methodscan translate any PAC learning algorithm to a version that runs in time O(log 1=�) on a parallel computerwith �(1=�) processors. This is because most of the examples that are given to the boosting algorithm aresimply discarded and the search for a \good" example can be done by many processors in parallel.The Paper is organized as follows. The main Theorem on which our boosting algorithms are based isgiven in Section 2.2 using a simple game-theoretic setting that avoids some of the complications of thelearning problem while addressing the main underlying problem. In Section 2.3 we relate the theorem backto the learning problem, in Section 2.4 we present some extensions, and in Section 2.5 we summarize andpresent some open problems.In Section 2.2 we present a game, called the \majority-vote" game, between two players, a \weightor"and a \chooser". The game consists of k iterations. For simplicity we now assume that the game is playedon the set f1 : : :Ng. In each iteration the weightor assigns to the N points non-negative weights that sumto 1. The chooser has to then \mark" a subset of the points whose weights sum to at least 1=2+ , where0 < � 1=2 is a �xed parameter of the game. The goal of the weightor is to force the chooser to markeach point in the space in a majority of the iterations, i.e. each point has to receive more than k=2 marks.We show that there exists a strategy that lets the weightor achieve that goal in d12�2 lnNe iterations. Asimilar game can be played on a general probability space, in which case the goal of the weightor is toforce the chooser to mark all but and � fraction of the space in the majority of the iterations. We showthat k = d12�2 ln 1=�e iterations su�ce in this case.The weightor in this game represents the centerpiece of the boosting algorithm, which is the choice ofthe distributions that are presented to the weak learning algorithm. The points that the chooser decides tomark correspond to the instances on which the weak learner makes the correct prediction. This representsthe freedom of the weak learner to distribute the error of the hypothesis in any way it chooses as long asthe probability that a random instance is labeled correctly is at least 1=2 + . This abstraction bypassessome of the complexities of the PAC learning problem, and can be read independently of the rest of thepaper. In Subsection 2.2.1 we show that in the case of continuous probability spaces, there is a strategy forthe chooser such that for any strategy of the weightor, if the game is stopped in less than k = d12�2 ln 1=�eiterations, more than � of the space is marked less than k=2 times, i.e. the weightor fails to achieve its goal.Thus our weighting strategy is optimal for the case of continuous probability spaces. In Subsection 2.2.2

14we present the implication of our analysis of the majority-vote game on the representational power ofthreshold circuits.In Section 2.3 we relate the majority-vote game to the problem of boosting a weak learner and presentthe two variants of the boosting algorithm and their performance bounds. In order to simplify our analysiswe restrict our analysis in Subsections 2.3.2 and 2.3.3 to the case in which the weak learning algorithmsare deterministic algorithms that generate deterministic hypotheses. In Subsection 2.3.4 we show that thisanalysis needs to be changed only slightly to accommodate randomized learning algorithms that generaterandomized hypotheses. In order to present the complete dependence of our bounds on the parameters ofthe problem, we don't use the notational conventions of polynomial PAC learning in our main presentation,but rather give explicit bounds including constants. Later, in Subsection 2.3.5, we derive upper bounds onthe resources required for polynomial PAC learning that are the best general upper bounds of this typethat exist to date. In Subsection 2.3.6 we compare our upper bounds to known lower bounds and showthat which aspects of our bounds are optimal and which might be further improved.In Section 2.4 we give several extensions and implications of our main results. In Subsection 2.4.1we show that our algorithm for boosting by �ltering can work even in situations where the error of thehypotheses generated by the weak learning algorithm is not uniformly bounded for all distributions. InSubsection 2.4.2 we present a version of the boosting algorithm that works for concepts whose range is a�nite set, and in Subsection 2.4.3 we present a version that works for concepts whose range is a real valued.In Subsection 2.4.4 we show how boosting can be used to parallelize learning algorithms. We conclude thepaper with a summary and a list of open problems in Section 2.5. In the appendixes to the paper we givea summary of our notation and proofs of three lemmas.2.2 The majority-vote gameIn this section we de�ne a two-player, complete information, zero-sum game. The players are the\weightor", D, and the \chooser", C. The game is played over a probability space hX;�; V i, where X isthe sample space, � is a �-algebra overX , and V is a probability measure. We shall refer to the probabilityof a set A 2 � as the value of the set and denote it by V (A). A real valued parameter 0 < � 1=2 is �xedbefore the game starts.The game proceeds in iterations, in each iteration:1. The weightor picks a weight measure on X . The weight measure is a probability measure on hX;�i.We denote the weight of a set A by W (A).2. The chooser selects a set U 2 � such that W (U) � 12 + , and marks the points of this set.These two-step iterations are repeated until the weightor decides to stop. It then receives, as its payo�,the subset of X that includes those points of X that have been marked in more than half of the iterationsplayed (if the number of iterations is even this set does not include points that have been marked exactlyhalf the time). We shall refer to this set as the reward set and to its value as the reward. The complementof the reward set is the loss set. The goal of the weightor is to maximize the reward, and the goal of thechooser is to minimize it.

15The question about this game in which we are interested is whether there exists a general strategy,independent of the speci�c probability space that guarantees the weightor a large reward. An a�rmativeanswer to this question is given in this section. We describe a general strategy for the weightor such thatfor any probability space hX;�; V i and any �; > 0, the weightor can guarantee that the reward is largerthan 1� � after just 12(1)2 ln 1� iterations.We shall present the weighting strategy in the following way. We start by giving some insight, andshow what weighting strategies are reasonable. We then present the weighting strategy, and prove a boundon the reward that it guarantees. Finally we show that for non-singular sample spaces (such as a densitydistribution on Rn) there is a matching strategy for the adversary, implying that our strategy is the optimalminimax strategy when the sample space is non-singular.In the following discussion we are �xing a particular instance of the game, i.e. we consider a particularsequence of moves taken by the two players. Let k be the number of iterations in the game. For 0 � i � kde�ne fX i0; X i1; : : : ; X iig to be a partition of X into i+ 1 sets where X ir consists of those points in X thathave been marked r times after i turns of the game have been played.
ss
ss

ssss s sssss
0k1k
k-1kkk

failure32033331110 222201 100number of marksr = 0..k
i = 0..k

successcertain
stage of game certainFigure 2.2: Transitions between consecutive partitionsAs graphically presented in Figure 2.2, in iteration i, the chooser decides for each point in X ir whetherto mark it or not, thus placing it in X i+1r+1 or in X i+1r . The goal of the chooser is to minimize the value ofthe reward set: [kr=bk=2c+1Xkr . The goal of the weightor is to maximize this value. By giving some pointsmore weight than others, the weightor forces the chooser to mark more of those points. In the extreme,

16by placing all the weight on a single point it guarantees that this point will be marked while at the sametime allowing the chooser not to mark any other point, moving them closer to the loss set.Let us de�ne some notation:k the total number of iterations the game is played.X ir the set of points that have been marked r times in the �rst i iterations.M ir = X ir \X i+1r+1 the subset of X ir that is marked in iteration i.qir = V (X ir) the value of X ir.xir = V (M ir)V (Xir) the fraction of X ir that is marked in iteration i.L the loss set, i.e. those points that are in the end markedless than or equal to half the time.Note that X00 = X and thus q00 = 1.Observe that if r > k=2, then points in X ir are guaranteed to be in the reward set. Likewise, if i�r � k=2then points in X ir are guaranteed to be in the loss set. Thus it is intuitively clear that any reasonableweighting scheme will give zero weight to these points and place all the weight on those points for whichboth failure and success are still possible. In particular, the only points that should be assigned a non-zeroweight in the �nal iteration are points in Xk�1bk=2c. We now present a weighting strategy that agrees withthis intuition, and prove that this strategy guarantees the claimed performance.The weighting strategy assigns a weighting factor �ir to each set X ir where 0 � r � i � k � 1. If thespace is discrete then the weight assigned to the point x 2 X ir on round i, is the value of the point times �irtimes a constant normalization factor that makes the total weight be one (the de�nition of the weighting fornon-discrete spaces is given in the statement of Theorem 2.2.1). The weighting factor is de�ned recursivelyas follows: �k�1r = (1 if r = bk2c0 otherwise ;and for 0 � i � k � 2: �ir = �12 � ��i+1r + �12 + ��i+1r+1 :Recall that is a parameter of the majority-vote game that is �xed before the game starts.Solving the induction, it is easy to verify that �ir has the following binomial distribution.�ir = 8>><>>: 0 if r � i� k2�k�i�1b k2 c�r�(12 +)b k2 c�r(12 �)d k2 e�i�1+r if i� k2 < r � k20 if r > k2 ; (2:1)where we de�ne �00� to be 1.The performance of our weighting strategy is given in the following theorem:Theorem 2.2.1: For any probability space hX;�; V i and any �; > 0, if the weightor plays the majority-vote game for k iterations, where k satis�esb k2 cXj=0 kj!(12 +)j(12 �)k�j � � ; (2:2)

17and uses the following weighting in3 iteration iFor any set A in the �-algebra � (2.3)W (A) = iXr=0V (A \X ir)�ir=Zi ; (2.4)where Zi = iXr=0V (X ir)�ir ;then the reward at the end of the game is at least 1� �, independent of the strategy used by the chooser.Before proving the theorem, we de�ne the function �ir over 0 � r � i � k which we call the \potential"of the set X ir. As we shall see the potential of X ir predicts, in some sense, the fraction of points in X ir thatwill end up in the loss set. As at the end of the game we know which points are in the loss set and whichare in the reward set, it is reasonable to de�ne the potential for i = k as�kr = (0 if r > k21 if r � k2 : (2:5)For i < k we de�ne the potential recursively:�ir = �12 � ��i+1r + �12 + ��i+1r+1 : (2:6)A closed form formula for �ir is the tail of the binomial distribution:�ir = 8>><>>: 1 if r � i� k2Pb k2 c�rj=0 �k�ij �(12 +)j(12 �)k�i�j if i� k2 < r � k20 if r > k2 : (2:7)The weight factor function, �ir, is in some sense a discrete derivative of the potential function along ther axis: �ir = �i+1r � �i+1r+1 : (2:8)The main property of the weighting scheme is that it guarantees that the average potential does notincrease at any step. This property is proved in the following lemma.Lemma 2.2.2: If the weighting scheme described in Equation (2.3) is used by the weightor, then�00 � 1Xr=0 q1r�1r � 2Xr=0 q2r�2r : : : � kXr=0 qkr�kr ;for any strategy of the chooser.3In the special case where X is discrete, it is su�cient to de�ne the weight of each point. In this case we setW (x) = �irV (x)for all x 2 Xir .

18Proof of Lemma 2.2.2: Recall that qir = V (X ir) and xir = V (M \ X ir). At each iteration i theadversary chooses the variables 0 � xir � 1, and we get the following formula for the transition to the nextiteration: qi+1r = qir�1xir�1 + qir(1� xir) for 1 � r � i ; (2.9)qi+10 = qi0(1� xi0) for r = 0 ;qi+1i+1 = qiixii for r = i+ 1 :Using this we can get a formula that relates the sum Pir=0 qir�ir for consecutive iterations.i+1Xr=0 qi+1r �i+1r = qi0(1� xi0)�i+10 + iXr=1[qir�1xir�1 + qir(1� xir)]�i+1r + qiixii�i+1i+1 :and rearranging the sum gives us thati+1Xr=0 qi+1r �i+1r = iXr=0 qir[(1� xir)�i+1r + xir�i+1r+1] = iXr=0 qir�i+1r + iXr=0 qirxir(�i+1r+1 � �i+1r) : (2:10)On the other hand, from the weight restriction we get:iXr=0W (M ir) � 12 + ;and as M ir � X ir the de�nition of the weight function gives:1Zi iXr=0V (M ir)�ir = 1Zi iXr=0V (M ir)(�i+1r � �i+1r+1) � 12 + :Using the fact that �i+1r > �i+1r+1 and the de�nition of Zi we get thatiXr=0 qirxir(�i+1r+1 � �i+1r) � (12 +) iXr=0 qir(�i+1r+1 � �i+1r) : (2:11)Substituting (2.11) into the RHS of (2.10) we �nally get thati+1Xr=0 qi+1r �i+1r � iXr=0 qir�i+1r + (12 +) iXr=0 qir(�i+1r+1 � �i+1r) =iXr=0 qir((12 +)�i+1r+1 + (12 �)�i+1r) = iXr=0 qir�ir :The last equality is a based on Equation (2.6).Proof of Theorem 2.2.1 From Equation (2.7) it is immediate that the LHS of Equation 2.2 is equalto �00 , thus, by choice of k, �00 � �, which means that the initial expected potential is small. Combiningthis with the inequality from Lemma 2.2.2, that implies that the potential never increases, we get that� � �00 � kXr=0�kr qkr :

19On the other hand, from the Equation (2.5) we have:kXr=0�kr qkr = b k2 cXr=0 qkr = V (L) :Thus the value of the loss set L is at most �.In order to see that the result given in Theorem 2.2.1 is meaningful, we give an explicit choice for kthat is close to the optimal choice for small � and .Corollary 2.2.3: Theorem 2.2.1 holds if the number of iterations is chosen to be k = 12(1)2 ln 1� .Proof: The LHS of Inequality 2.2 is equal to the probability of the tail of a binomial distribution withp = 1=2 + and k trials, and can be bounded by Cherno� bounds [Bollobas, 1985, page 11]. as follows.P (Sk;p � bk2 c) � P (Sk;p � k2) � exp(kH(k=2k))where H(12) = 12 ln 1=2 + 1=2 + 12 ln 1=2� 1=2 = 12 ln(1� (2)2)plugging this into the previous formula, and requiring the tail to be bounded by � we get� � exp(k2 ln(1� (2)2))ln � � k2 ln(1� (2)2)k � 2 ln(�)ln(1� (2)2)using the bound ln(1� x) < �x for 0 � x � 1 we get that for the above to hold it su�ces to require thefollowing k � 2ln(1=�)(2)2 = 12 12 ln(1�)2.2.1 Optimality of the weighting schemeWe shall now show that, in some natural cases, the weighting strategy devised in this section is optimal.Assume the probability space hX;�; V i has the property that for any measurable set A 2 � there existsanother set A0 2 � such that V (A0) = 12V (A). Let us call such a probability space \divisible". One naturalexample of a divisible space is the Euclidean space X = Rn, where � is the Borel algebra over Rn and themeasure V is a density measure that assigns all single points a value of zero.In this case there is a simple strategy for the chooser such that for any strategy of the weightor the sizeof the reward set after k iterations will be at mostb k2 cXj=0 kj!(12 +)j(12 �)k�j : (2:12)

20Which means that the choice of k in Equation 2.2 of Theorem 2.2.1 is the smallest possible. The idea of thestrategy is for the chooser to decide whether or not to mark each point in each iteration independently atrandom with probability 1=2+ of choosing to mark it. This way the probability that any point is markedin more than half of the iterations is equal to the binomial tail of Equation (2.12). However, selecting eachpoint in a continuous domain independently at random is ill de�ned, and a way for selecting measurablesets with similar properties is required.In order to prove the existence of the optimal chooser strategy we need the following simple lemma,regarding divisible probability spacesLemma 2.2.4: Suppose that the probability space hX;�; V i is divisible, and that W is another probabilitymeasure de�ned on hX;�i.Then for any set A 2 � there exists a set A0 � A;A0 2 � such that V (A0) = (1=2 +)V (A) andW (A0) � (1=2 +)W (A)The proof of this lemma is given in the appendix.The strategy is de�ned as follows. In the ith iteration, the space X is divided into 2i�1 sets Fj , suchthat two points in X belong to the same set if they have been marked in exactly the same iterations in thepast. Each of these sets is in �, thus, for each set Fj , there exists a corresponding set F 0j 2 �, such thatV (Fj) = (1=2+)V (F 0j), and W (Fj) � (1=2+)W (F 0j). The chooser marks the points in the set [jF 0j . Itis easy to check that this is a legitimate marking. It is also not hard to see that the value of the loss set isequal to the probability that a random coin, whose probability of \heads" is 1=2+ , will fall \tails" morethan k=2 times in k ips. We thus get a legitimate strategy that behaves essentially like a strategy thatmarks each point independently at random with probability 1=2 + and the claim easily follows.2.2.2 The representational power of majority gatesOur analysis of the majority-vote game can be used to prove an interesting result regarding therepresentation of Boolean functions as a majority over other Boolean functions. This application of boostinghas been discovered by Schapire [Schapire, 1992]. A slightly weaker version of this result was independentlyproven by Goldmann, Hastad, and Razborov [Goldmann et al., 1992] using a completely di�erent prooftechnique. In the following presentation we follow their notation.Let f denote a Boolean function whose domain is f�1; 1gn and range is f�1; 1g. Let H be a set ofBoolean functions de�ned over the same domain and range. We use D to denote a distribution over thedomain f�1; 1gn. Let the correlation between f and H with respect to D be de�ned asDDH(f) := maxh2H ED[f(x)h(x)] :The distribution-free correlation between f and H is de�ned asDH(f) := minD DDH(f) :The majority function is de�ned as followsMAJ(x1; : : : ; xk) = sign kXi=1 xi! ;

21where sign(x) = � 1; if x � 0�1; otherwise :Using our boosting algorithm we prove the following resultTheorem 2.2.5: Let f be a Boolean function over f�1; 1gn and H be a set of functions over the samedomain. Then if k > 2 ln(2)nD�2H (f), then f can be represented asf(x) =MAJ(h1(x); : : : ; hk(x)) ;where hi 2 H.Proof: Assume the majority-vote game is played over the domain f�1; 1gn and that the value of a set isthe number of points in it divided by 2n. Assume the chooser in the majority-vote game chooses whichpoints to mark by selecting a function h 2 H such that PrD(h(x) 6= f(x)) � 1=2� and marking all x suchthat h(x) = f(x). By de�nition of DH(f), such a function exists for every distribution D if = DH(f)=2.Theorem 2.2.1 provides us with a method for selecting the distributions Di, which correspond to the theweightings Wi. This selection guarantees that the majority over the corresponding hypotheses will be veryclose to f . More speci�cally, it guarantees that if k = 1=2�2 ln 1=�, the number of points x 2 f�1; 1gnsuch that MAJ(h1(x); : : : ; hk(x)) 6= f(x) is smaller than �2n, by setting � < 2�n we guarantee thatMAJ(h1(x); : : : ; hk(x)) = f(x) for all x 2 f�1; 1gn. Plugging our selection for and � into k = 1=2�2 ln �we �nish the proof.Goldmann, Hastad and Razborov ([Goldmann et al., 1992]), prove Theorem 2.2.5 using a elegantapplication of von Neumann's Min-Max Theorem. They consider the selection of the h 2 H that iscorrelated to f , as the following game. One side in the game, which we call the weightor, de�nes theprobability D over X , and the other side,the chooser, chooses h 2 H . Unlike our majority-vote game,this game consists of a single trial of this kind, and the players are given the knowledge of each othersdecision only after each of them makes its own decision. The chooser's gain (and the weightor loss) is thecorrelation of f and h according to D, ED[f(x)h(x)]� 1=2 + .The so-called \simple" strategy for the chooser is to select a single function h 2 H all of the time,and the simple strategy for the weightor is to always select a single distribution. The assumption of thetheorem implies that for any simple strategy of the weightor there exists a simple strategy for the chooserthat guarantees it a gain of at least 1=2 + . The Min-Max theorem implies that because of this, there isa mixed strategy for the chooser that would have an expected gain of at least 1=2+ against any strategyof the weightor. A mixed strategy is a distribution over the simple strategies. In other words, there existsa distribution over H such that if h is chosen according to this distribution, then the expected correlationbetween h and f with respect to any distribution over X is larger than 1=2 + . In particular, if thedistribution D is concentrated on any particular element x0 2 X , then the probability that h(x0) = f(x0)is larger than 1=2 + . If we choose k functions independently at random from H according to thisdistribution, we can make the probability thatMAJ(h1(x0); : : : ; hk(x0)) = f(x0) arbitrarily high. As X isa �nite space, a su�ciently large value of k guarantees that, with high probability, the majority vote overk random functions is correct on all of X . Using the fact that jX j = 2n and Cherno� bounds, they get thestatement of the theorem.

22This proof is very short and elegant. However, it is not a constructive proof. On the other hand, ourproof is constructive in that it shows how to generate the distributions that correspond to the desiredfunctions in H .For completeness we give a simple lemma (Lemma 3.2 in [Goldmann et al., 1992]) that gives anapproximate converse to Theorem 2.2.5.Lemma 2.2.6: Let f and H be as in Theorem 2.2.5. Then if f can be represented asf(x) =MAJ(h1(x); : : : ; hk(x)) ;where hi 2 H, then DH(f) � 1=k.Proof: From the de�nition of the majority function and the requirement that the argument of the signfunction is never zero, we get that for every x 2 f�1; 1gn, there are at least (k + 1)=2 indices i such thathi(x) = f(x). Fixing any distribution D over f�1; 1gn, we get thatkXi=1Prx2D (hi(x) = f(x)) = Xx2f�1;1gnPrD(x) jf1 � i � k j hi(x) = f(x)gj � (k + 1)=2 :The pigeon-hole principle guarantees that there exists at least one index 1 � i � k such thatPrx2D (hi(x) = f(x)) � (k + 1)=2. This implies that DDH(f) � 1=k. As this holds for all D, we getthe statement of the lemma.2.3 Boosting a weak learner using a majority voteIn this section we shall describe the connection between the majority-vote game and the problem ofboosting a weak learning algorithm.We start by presenting the minimal notation that is needed for analyzing our boosting algorithms. Wethen present our algorithms and their analysis. Later, in Section 2.3.5, we give a more complete notationalframework, and use this framework to relate our results to other results in PAC learning theory.2.3.1 PreliminariesWe start by giving the de�nitions of a minimal framework of distribution-free concept learning that isneeded for presenting our main results. A concept is a binary-valued mapping over some domain X . Wedenote use the letter c to denote a concept and c(x) to denote the label of the instance x according to theconcept c. A concept class C is a collection of concepts.4The learners task is to learn an approximation to a concept c. The learner knows a-priori that theconcept is in some known class C, but has no prior knowledge of the speci�c choice of c 2 C. The learneris assumed to have access to a source EX of examples. Each time EX is called, one instance is randomly4In order to de�ne polynomial PAC learnability, the complexity of the sample space and of the concept class need to beparameterized. In our initial basic setting we suppress this parameterization and the issue of polynomial versus non polynomiallearning, we return to fully discuss this issue in Section 2.3.5.

23and independently chosen from X according to some �xed but unknown and arbitrary distribution D.5The oracle returns the chosen instance x 2 X , along with its label according to the concept c, which isdenoted c(x). Such a labeled instance is called an example. We assume EX runs in unit time.Given access to EX the learning algorithm runs for some time and �nally outputs an hypothesis h.The hypothesis is a description of an algorithm (possibly probabilistic) that receives as input an instancex 2 X and generates a binary output. This output is called the \prediction" of the hypothesis for the labelc(x). We write P (h(x) = c(x)) to indicate the probability, over the distribution D on X and random coinips of the hypothesis, that the hypothesis correctly predicts the labels of the concept c. This probabilityis called the accuracy of the hypothesis h. The probability P (h(x) 6= c(x)) is called the error of h withrespect to c under D; if the error is no more than �, then we say h is �-good with respect to the targetconcept c and the distribution D.We say that a learning algorithm A has a uniform sample complexity m(�; �) if it achieves the followingperformance. For all 0 < �; � < 1, all D, and all c 2 C, when given parameters � and �, algorithm Amakes at most m calls to EX and outputs a hypothesis h that with probability at least 1� � is an �-goodapproximation of c under D. Similarly we de�ne the time and space complexity of A to be functions thatbound the time and space required by A and denote them by t(�; �) and s(�; �) respectively. If a learningalgorithm cannot achieve some values of � and �, or if the resources required for achieving these values arenot uniformly bounded for all distributions and concepts, we de�ne m(�; �); t(�; �) and s(�; �) to be in�nitefor these values.The concept of a boosting algorithm was �rst presented by Schapire in [Schapire, 1990]. A boostingalgorithm is a learning algorithm that uses as a subroutine a di�erent learning algorithm. The goal of theboosting algorithm is to e�ciently generate high-accuracy hypotheses using a learning algorithm that cane�ciently generate only low-accuracy hypotheses. The boosting algorithm invented by Schapire [Schapire,1990], was a breakthrough in that it showed that any polynomial time learning algorithm that generateshypotheses whose error is just slightly smaller than 1=2 can be transformed into a polynomial time learningalgorithm that generates hypotheses whose error is arbitrarily small. The boosting algorithms presentedin this paper achieve better performance than those presented by Schapire and the resulting hypothesesare simpler. A comparison of the performance of the algorithms is given in Section 2.3.5.We use the generic name WeakLearn to refer to the learning algorithm whose performance we wishto boost, and we refer to those hypotheses generated by WeakLearn that have the guaranteed accuracyas weak hypotheses. We assume that there exist some real values 0 � �0 < 1=2 and 0 � �0 < 1 such thatWeakLearn, given m0 examples labeled according to some concept c 2 C, generates a hypothesis whoseerror is smaller than �0 (i.e. a weak hypothesis) with probability larger than 1� �0 over the distribution ofthe training examples. We denote by m0; t0; and s0 uniform upper bounds on the sample size, time, andspace required by WeakLearn to achieve this accuracy. The boosting algorithms that we shall describeare able to generate hypotheses of arbitrary accuracy � with arbitrarily high reliability 1� �.5More formally, we assume that hX;�;Di is a probability space, and that C is a set of functions that are measurable withrespect to �. Moreover, we assume that all subsets of X that are considered in this paper are measurable with respect to �.

24The parameters �0 and �0 measure the discrepancy between the performance ofWeakLearn and the performance of an \ideal" learning algorithm that always generates a hypothesisthat has no error with respect to the target concept. The performance of the weak learning algorithmsthat we discuss is extremely poor. They are almost completely unreliable, and even when they succeed,they output a hypothesis whose error is close to that of a random guess. We thus �nd it useful to de�netwo new quantities = 1=2� �0 and � = 1� �0. These parameters measure how far the learning algorithmis from a completely useless algorithm and arise naturally in the design and analysis of our boosting algo-rithms. We shall show that the resources required by our algorithms are uniformly bounded by functionswhose dependence on 1=; 1=�; 1=�, and 1=� is either logarithmic or low-order polynomial.For the main part of our analysis, in Sections 2.3.2 and 2.3.3, we restrict ourselves to boostingdeterministic learning algorithms that generate deterministic hypotheses. Later, in Section 2.3.4, we showthat all of our algorithms and their analysis hold, with very little change, for the case that the learningalgorithm and the resulting hypotheses are randomized.2.3.2 Boosting using sub-samplingOne simple way of applying the results of the majority-vote game to boost the performance ofWeakLearn is by using it to �nd a small hypothesis that is consistent with a large set of training examples.The algorithm BSamp, which is summarized in Figure 2.3, is based on this principle.The �rst step of BSamp is to collect a training set. Formally, this means making m calls to EX,generating the set S = f(x1; l1); : : : ; (xm; lm)g.6 The goal of boosting is to generate a hypothesis that iscorrect on all examples in S.As the sample is a �nite set of size m, the requirement that a hypothesis is correct on all points in thesample is equivalent to the requirement that the hypothesis has error smaller than 1=m with respect tothe uniform distribution on the sample. In order to do that, BSamp generates di�erent distributions onthe training sample, and each time calls WeakLearn to generate a weak hypothesis, that is, a hypothesisthat has error smaller than 1=2 � with respect to the given distribution. Each di�erent distributionforces WeakLearn to generate a weak hypothesis whose errors are on di�erent sample points.7 The goalof the boosting algorithm is to control the location of these errors in such a way that after a small numberof weak hypotheses have been generated, the majority vote over all weak hypotheses will give the correctlabel on each point. In other words, for each point in S, the fraction of the weak hypotheses that assignthe point with the correct label is larger than half.The problem of generating these distributions is equivalent to the problem of the booster in the majority-vote game described in the previous section, under the following correspondence of terms. The valueof a point corresponds to the probability assigned to the point by the target distribution (the uniformdistribution in our case). The weight of a point corresponds to the probability assigned to it by the boostingalgorithm. The decision of the adversary to mark a point corresponds to the decision by WeakLearn to6In many actual machine learning scenarios, the training set S is the basic input to the learning algorithm, and thus thisstep is only formal.7Ignoring, for a moment, the fact that WeakLearn has probability �0 of failing to generate a weak hypothesis.

25Algorithm BSampInput: EX,WeakLearn, ;mOutput: A hypothesis that is consistent on a random sample of size m.1. Call EX m times to generate a sample S = f(x1; l1); : : : ; (xm; lm)g. To each example(xj ; lj) in S there is a corresponding weight wj and count rj. Initially, all weightsare 1=m and all counts are zero.2. Find a (small) k that satisfieskXi=dk=2e ki!(1=2�)i(1=2 +)k�i < 1m(For example, any k > 1=(22) lnm is sufficient.)3. Repeat the following steps for i = 1 : : :k.(a) repeat the following steps for l = 1 : : :(1=�) ln(2k=�) or until a good hypothesisis found.i. Call WeakLearn, referring it to FiltEX as its source of examples, andsave the returned hypothesis as hi.ii. Sum the weights of the examples on which hi(xj) 6= lj. If the sum is smallerthan 1=2� then declare hi a weak hypothesis and exit the loop.(b) Increment rj by one for each example on which hi(xj) = lj.(c) Update the weights of the examples according to wj = �irj, where �ir is definedin Formula (2.1).(d) Normalize the weights by dividing each weight by Pmj=1 wj.4. Return as the final hypothesis, hM, the majority vote over h1; : : : ; hk.Subroutine FiltEX1. choose a real number x uniformly at random in the range 0 � x < 1.2. Perform a binary search for the index j for whichj�1Xi=1 wi � x < jXi=1 wi(P0i=1 wi is defined to be zero.)3. Return the example (xj ; lj)Figure 2.3: A description of the algorithm for boosting by sub-sampling

26generate a weak hypothesis that is correct on the point. The reward set corresponds to the set on whichthe majority vote over the weak hypotheses is correct and the loss is the probability that the majoritymakes a mistake, measured with respect to the target distribution. This correspondence lies in the centerof the analysis of algorithm BSamp.Before we give the �rst theorem regarding the performance of BSamp we must address the fact thatWeakLearn is not guaranteed to always generate a weak hypothesis. This event is only guaranteedto happen with probability �. However, it is easy to check the hypothesis returned by WeakLearn andcalculate its error on the sample. If this error is larger than �0 = 1=2�,WeakLearn is called again, usinga di�erent subset of the examples in S.8 This is the role of statement 3.a.ii of BSamp. However, this testhas non-zero probability of failing any arbitrary number of times. In order to guarantee that the boostingalgorithm has uniform �nite running time, BSamp tests only a pre-speci�ed number of hypotheses. As weshall show in the second part of the proof of Theorem 2.3.3, the probability that all these hypotheses willhave error larger than �0 is smaller than �=2. The following theorem shows that if all k iterations manageto �nd a weak hypothesis, then the �nal hypothesis generated by BSamp is consistent with all the labelsin the sample.Theorem 2.3.1: If all the hypotheses that are used by algorithm BSampare �0 accurate, then the hypothesishM , output by BSamp, is consistent on the sample S.Proof: From the correspondence with the majority-vote game de�ned above, and from Theorem 2.2.1,we get that the error of the hypothesis output by BSamp is smaller than 1=m, As the target distributionis uniform it assigns each point in S with probability 1=m. Thus the output hypothesis must be correcton all points in S.Two issues remain in order to show that BSampis an e�ective learning algorithm. First, we need toshow that there is a way for selecting m, the size of the sample S, so that the hypotheses generated byBSamp, that is guaranteed to be consistent on S, will also be have a small probability of error on a randomexample outside of S. Second, we need to show that the algorithm uses uniformly bounded resources.The fact that using a large enough sample guarantees that a consistent hypothesis will have smallerror on the whole domain stems from the fact that k, the number of hypotheses that are combinedby the majority rule, increases like O(log jSj), as was proven in Corollary 2.2.3. Before getting into adetailed proof, let us give a rough sketch of a proof for a simple special case. Assume that the hypothesesgenerated by WeakLearn are chosen from a �nite set of hypotheses H . Denote the set of hypothesesgenerated by BSamp by HM . The size of HM is jH jc logm, where c = 1=(22). Following the well-knownanalysis of the Occam's razor principle [Blumer et al., 1987] we get that the probability that the �nalhypothesis is consistent with a random sample of size m but has error larger than � is smaller thanjHM j(1� �)m = jH jc logm(1� �)m. This quantity decreases rapidly with m. In particular, selecting m largeenough that m � (1=�)(log(1=�) + (1=22) logm log jH j), guarantees that the hypothesis will have errorsmaller than � with probability larger than 1� �.8Note that as WeakLearn is guaranteed to succeed with probability at least � on any distribution over the sample space,it is guaranteed to succeed on the uniform distribution over S.

27Although this simple analysis gives the correct orders of magnitude, it is incomplete in that it dependson the size of H . In many cases this size is very large, moreover, often H is in�nite or even uncountable.These cases can be analyzed using the notion of VC-dimension. However, Schapire [Schapire, 1990],suggested the following elegant proof that is based only on the assumption that the size of the sampleused by WeakLearn is uniformly bounded. Although the �nal hypothesis is guaranteed to be consistentwith the whole sample, which is of size m, the number of examples from the sample that are ever used byWeakLearn is9 O(logm). In other words, for large m only a small fraction of the training examples areever used by WeakLearn!This small subset of S can be seen as a representation of the �nal hypothesis, hM . Instead of savingthe hypotheses generated by WeakLearn, the boosting algorithm can save the set of examples that werereturned from FiltEX during the run of each algorithm. Later, when the value of hM (x) has to becalculated on some new example x, the weak learning algorithms can be run again, using the saved sets ofexamples, to regenerate the weak hypotheses, and using these weak hypotheses hM (x) can be reconstructed.Littlestone, Warmuth and Floyd [Littlestone and Warmuth, 1986, Floyd and Warmuth, 1993] haveanalyzed algorithms that represent their hypotheses as sets of examples. As the above observation is ofindependent interest in the context of their work, we state it as a theorem.Theorem 2.3.2: LetC be a concept class that is PAC learnable, then there exists a pair of polynomial-timealgorithms P and R ,that stand for \compress" and \reconstruct", that compute the following mappings.Let S = f(x1; c(x1)); : : : ; (xm; c(xm))g be a sample labeled according to some concept c 2 C. Then, for allsuch S,� P (S) = f(xi1 ; c(xi1)); : : : ; (xir ; c(xir))g, such that 1 � ij � m for all 1 � j � r, i.e. the compressionalgorithm selects an ordered sequence of of length r from the examples in the sample S.� R(P (S)) = h is a hypothesis such that for every sample point xi in S, h(xi) = li. In other words,the algorithm R can reconstruct the labels of all the examples in S when given the labeled examplesselected by P .� r = O(logm).We now move on to prove a bound on the size of the sample thatBSamp has to use in order to guaranteethat the �nal hypothesis has error smaller than �. In the proof of this theorem we use a technique inventedby Littlestone and Warmuth [Littlestone and Warmuth, 1986] that appears as Appendix A in [Floyd andWarmuth, 1993].Theorem 2.3.3: Let WeakLearn be a deterministic learning algorithm that generates, with probability� > 0 over the random training examples with which it is trained, a deterministic hypothesis whose erroris smaller than 1=2� , for some > 0. Assume the number of training examples required to achieve thisis uniformly bounded by m0. Then the hypothesis hM generated by BSamp has the following property.For any �; � > 0, if BSamp uses a sample of size at least m, wherem � 1� ln 2� + m02 � lnm+ 1 �2! ;9Here we �x the concept class and its VC dimension d. If the VC dimension is not �xed, the O(d logm) examples arerequired.

28then the probability that hM has error larger than � is smaller than �. Where the probability is de�ned overthe random choice of the sample S and over the internal random coin ips in BSamp,Proof: We are interested in bounding the probability of the set of samples and internal coin ips ofBSamp that generate a hypothesis that has error larger than �. We do that by covering this set by twodisjoint sets. The �rst set is the set of samples and coin ips that cause BSamp to generate a hypothesisthat is consistent with the sample and yet has error larger than �. The second is the set of samples andcoin ips that causes BSamp to generate a hypothesis that is inconsistent with the sample. The �rst andsecond parts of the proof bound the probabilities of these two sets respectively.Part 1: We want to show that there is only a small probability that a random sequence of trainingexamples S = h(x1; l1); : : : ; (xm; lm)i labeled according to c 2 C, can cause BSamp to generate a hypothesisthat is consistent with S but has error larger than �.We �rst sketch the argument. We consider the following mapping of arbitrary sequences of km0 labeledexamples into hypotheses. The sequence is partitioned into k blocks of length m0, each block is fed intoWeakLearn. Using this block WeakLearn generates a hypothesis.10 Finally, these k hypotheses arecombined by a majority vote to generate a single hypothesis. We de�ne two properties on sequenceschosen out of S that are based on the hypothesis to which these sequences are mapped. The �rst propertyis that the hypothesis is consistent with all the examples in S, the second property is that the hypothesishas error larger than � w.r.t. the distribution D and the underlying concept. We call sequences that haveboth properties \bad" sequences. We show that the probability of a sample S from which a bad sequencecan be chosen is very small. However, if by using some sequence of coin ips, BSamp can generate aconsistent hypothesis that has a large error, then there exists a way of choosing a bad sequence out of S,which means that the probability of BSamp generating such a hypothesis is small.To bound the probability of samples S from which a bad sequence can be chosen, one can view theelements of S that are not in the sequence as random test points on which the hypothesis is tested. Asmost of the points in S are not in the sequence, it is very unlikely that the hypothesis is consistent withall these examples and yet has a large probability of making an error. This observation, together with thefact that the total number of sequences of km0 elements from S is not too large, gives us the proof of thispart of the theorem.We now give the formal proof. Which is an adaptation of a technique used by Warmuth and Littlestonein [Littlestone and Warmuth, 1986]. Fix any concept c 2 C. Let S = h(x1; l1); : : : ; (xm; lm)i be thesequence of randomly drawn training examples returned by EX in step 1 of a speci�c run of BSamp suchthat for all i, li = c(xi). Let S 0 = h(xt1; lt1); : : : ; (xtd; ltd)i denote a sequence of examples chosen out of S.Let T be the collection of all md sequences of length d = km0 of integers in f1 : : :mg. For any sequenceof examples S = h(x1; l1); : : : ; (xm; lm)i and for any T 2 T we denote h(xt1 ; lt1); : : : ; (xtd; ltd)i by S 0T . Wedenote the hypothesis to which this sequence is mapped by the mapping de�ned above by hM (S0T).Fixing T , let UT be the set of all sequences of examples S such that the hypothesis hM(S 0T) has errorlarger than �. Recall that the error of hM is the probability, with respect to the distribution D, of thesymmetric di�erence between hM and c. Let CT be the set of all sequences S such that hM (S 0T) is consistent10we assume that WeakLearn is deterministic and returns a hypothesis for any sequence of m0 examples.

29with all the examples in S. Observe that each run of BSamp in which it generates a consistent hypothesiscorresponds to a sequence of indices T such that CT contains the training set S that was used by thealgorithm. If BSamp has non-zero probability of generating a consistent hypothesis that has a large errorwhen using the sample S, then there must exist some T 2 T such that S 2 CT \ UT . We can thus upperbound the probability of failure over the random choice of S, by requiring thatXT2T Pm(CT \ UT) � �=2 :For any particular T 2 T , there exists T 0 2 T where all the elements of T 0 are in the range 1 : : :d such thatPm(CT \ UT) = Pm(CT 0 \ UT 0). That is because the elements of S are drawn independently at random,so that any permutation of the elements in S has the same probability, and there is always a permutationof the elements of S that transforms T to T 0 of the desired type. It thus su�ces to bound Pm(CT \ UT)for T of the restricted type. In this case, the choice of the hypothesis hM (h(xt1; lt1); : : : ; (xtd; ltd)i) are onlya function of the �rst d elements of S. If S 2 UT , the hypothesis has probability at least 1� � of makinga mistake on any of the remaining m� d elements of S, thus the probability that S is in CT , given that itis in UT , is at most (1� �)m�d. Multiplying this probability by the size of T we getmd(1� �)m�d � �=2 : (2:13)By plugging this into d = km0 we get that it is su�cient to require thatmkm0(1� �)m�km0 � �2 ;which can be translated to the following stronger requirement on m:m � 1� �ln 2� � km0(lnm+ �)� :We now use 1=(22) lnm as a choice for k, the number of weak hypotheses that are combined byWeakLearn. Corollary 2.2.3 shows that this choice obeys the inequality of line 2 in BSamp. We thus getthat it is su�cient to require thatm � 1� �ln(2=�) +m0 lnm22 (lnm+ �)� :As the statement of the theorem places a slightly stronger requirement on the minimal value of m, weget that if BSamp generates a consistent hypothesis than this hypothesis has error smaller than � withprobability at least 1� �=2.Part 2: We now bound the probability that BSamp generates a hypothesis that is not consistentwith the sample. From Theorem 2.3.1 we know that if all of the k hypotheses generated by WeakLearnhave error smaller than �0 with respect to the corresponding weightings of the the sample, then the �nalhypothesis is consistent with the whole sample. It thus remains to be shown that for any sample S, theprobability, over the random choice made in BSamp that any of the k hypotheses used by BFilt has errorlarger than �0 is smaller than �=2k.

30Note that each time a hypothesis is returned from WeakLearn its error on the weighted sample ischecked, and it is rejected if the error is too large. Thus the only case in which a hypothesis used by BSamphas an error larger than �0 is when all of the iterations of statement 3.a fail to generate a hypothesis withsmall error. As the probability that any single call to WeakLearn generate a good hypothesis is at least�, the probability that all of the (1=�) ln(2k=�) runs of WeakLearn performed in statement 3.a fail togenerate a good hypothesis is at most (1� �)(1=�)ln(2k=�) � �2k :Thus the probability that any of the k hypothesis used is not good is at most �=2.Theorem 2.3.3 gives a uniform upper bound on the sample complexity of BSamp. The bound is givenin terms of an implicit inequality on m, which cannot be written as an exact explicit bound. The followingcorollary gives an explicit upper bound on the sample complexity needed for boosting using BSamp.Corollary 2.3.4: Let WeakLearn be a deterministic learning algorithm that generates, with probability� > 0 over the random training examples with which it is trained, a deterministic hypothesis whose erroris smaller than 1=2� , for some > 0. Assume the number of training examples required to achieve thisis uniformly bounded by m0. Then, given any �; � > 0, if BSamp is required to generate a hypothesis thatis consistent with a sample of sizem � max�208; 2� ln 2� ; 16m0�2(ln m0�2)2� ;then with probability larger than 1� �, the hypothesis output by BSamp has error smaller than �.Proof: We want to �nd m such that will satisfy:m � 1� ln 2� + m02 � lnm+ 1 �2! ;It su�ces if m is larger than the maximum of twice each of the two terms in the RHS. From the�rst term we get m > 2� ln 2� . To bound m w.r.t. the second term, we observe that, in general, inorder to satisfy m > a(lnm + 1)2 it su�ces to choose m = 16a(lna)2, if a � 5. It thus su�ces ifm > 16a(lna)2 = 16 � 5 � (ln 5)2 , or if m > 208.The space requirements of BSamp are dominated by the storage of the sample. The sample size is,ignoring log factors, ~O(1=�) (Corollary 2.3.4), while the storage of the hypotheses generated byWeakLearnis O(k) = O(1=2 log 1=�).We now discuss the time and space complexity of BSamp. One easily observes that the total numberof times that WeakLearn is called isO(k ln k) = O� 12� ln 1� �ln 12� + ln ln 1��� :It is thus clear that for small values of � and �, the time complexity ofBSamp is dominated by the executionof statements 3.a.ii, 3.b, 3.c and 3.d, that test and update the weights associated with the sample, and notby the running time of the learning algorithm. This time complexity is O(m) and the dependence of mon �; �, and � is given in corollary 2.3.4. The Space complexity of the algorithm is similarly dominated bythe storage of the sample and its associated counters and weights in memory. The next section presents adi�erent boosting algorithm whose space complexity is O(logm).

312.3.3 Boosting Using �lteringIn the previous section we have developed one way of applying the optimal weightor strategy for themajority-vote game to the problem of boosting a weak learner. While the complexity bounds for thismethod are reasonably good, considerable improvement is possible in the space complexity. The spacecomplexity of BSamp is dominated by the storage of the training examples. In some applications thetraining set is in the memory anyway and this cost is taken for granted. However, in other cases (suchas on-line learning), storing all the training examples in memory might be very expensive. Recall that inorder to �nd a hypothesis with error smaller than �, only O(log(1=�)) out of the O(1=�(log(1=�))2) trainingexamples in the sample are ever used by the weak learning algorithm. In this section we present algorithmsthat select the examples used byWeakLearn in an on-line fashion from the sequence of examples suppliedby EX. This avoids storing many examples in memory and decreases the space complexity to O(log(1=�)).Selecting examples directly out of the input stream is the basis of Schapire's boosting algorithm [Schapire,1990]. Schapire coined the term \�ltering" to describe this process. The selection is viewed as a \�lter"that lies between the source of examples, EX, and the weak learning algorithm. This �lter observeseach example generated by EX and either rejects it and throws it away, or accepts it and passes it on toWeakLearn.The description of the algorithm is given in Figure 2.4. The overall structure of the algorithm is verysimilar to that of BSamp. The boosting algorithm generates k weak hypotheses by calling WeakLearn ktimes, each time presenting it with a di�erent distribution over the training examples. However, while inBSamp the examples are drawn from a set of examples that is �xed, once and for all, at the beginning of theprocess, in BFilt new examples are continually drawn from the sample space by calling EX. Each time anew example is drawn, its weight is calculated, and a stochastic decision is made whether to accept or rejectthe example, such that the probability of acceptance is proportional to the weight. The proportionalityconstant, �imax, is chosen in a way that the examples with the largest weights are always accepted. Clearly,one could use any smaller proportionality factor, such as 1, without changing the distribution that isobserved by WeakLearn. Choosing the largest possible proportionality factor maximizes the probabilityof accepting a random example and reduces the number of training examples required.The analysis of BFilt corresponds to playing the majority-vote game directly on the sample space,X , and the input distribution D, and not on the uniform distribution over a sample, as is the case withBSamp. This simpli�es the analysis with respect to the analysis of BSamp in that there is no gap betweenthe expected error on the training set and the expected error on a random example. On the other hand,the analysis becomes more involved as a result of the following potential problem. It might happen thatduring some iterations of statement (2) a large fraction of the examples generated by EX are rejected. As aresult, the number of examples that have to be �ltered in order to generate the training examples requiredby WeakLearn becomes prohibitively large. Luckily, as we shall show, the accuracy of the hypothesesthat are generated by WeakLearn in such iterations has very little inuence on the the accuracy of the�nal hypothesis, hM , that is the �nal result of BFilt.We use this property by de�ning an \abort" condition. This condition, de�ned at the bottom ofFigure 2.4, detects iterations in which the fraction of accepted examples is small. We refer to such an event

32Algorithm BFiltInput: EX,WeakLearn, ; �; �; �Output: A hypothesis hM , that has error smaller than � with probability at least 1� �.1. Find a (small) k that satisfieskXi=dk=2e ki!(1=2� =2)i(1=2 + =2)k�i < �2(For example, k = 4=2 ln(1=�))2. Repeat the following steps for i = 0 : : :k � 1, reinitializing #accept and #reject tozero each time.(a) Call BRel, referring it to FiltEX as its source of examples, and requiring itto use WeakLearn to generate a hypothesis with whose error is smaller than1=2� =2 with probability at least 1� �=2k. Save the resulting weak hypothesisas hi+1.(b) If the abort condition happened, then define hi+1 to be a hypothesis thatalways makes a random prediction using a fair coin.3. Return as the final hypothesis, hM, the majority vote over h1; : : : ; hk.Subroutine FiltEXRepeat the following command until an example is accepted or until the abort condition issatisfied.1. Call EX, and receive a labeled example (x; l).2. If i = 0 then accept the example and return, else continue to 3.3. Set r to be the number of indices 1 � j � i such that hj(x) = l, and calculate�ir = 8<: �k�i�1b k2 c�r�(1=2 + =2)b k2 c�r(1=2� =2)d k2 e�i�1+r if i� k2 < r � k20 otherwiseand �imax = max0�r�i�ir4. choose a real number x uniformly at random from the range 0 � x � 1.5. If x < �ir=�imax then accept the example, and return it as the result, else reject itand jump to 1. In each case, update #accept and #reject accordingly.The abort condition:#accept+ #reject > 2k�imax�(1� �) max #accept; 4 ln 16k2�imax��(1� �) !Figure 2.4: A description of the algorithm for boosting by �ltering.

33as triggering the abort condition. When the abort is triggered, it stops the execution of procedure FiltEXand the run of procedure WeakLearn that called it, and returns control to statement (2.b). A randomhypothesis is then put in place of the hypotheses that was supposed to be generated by WeakLearn. Arandom hypothesis is simply an algorithm that for any x 2 X generates a label in f0; 1g by ipping afair coin. The abort condition is de�ned as a function of two counters, #accept and #reject that areincremented each time an example, generated by EX is accepted or rejected respectively. Both countersare reset to zero each time the index i in statement (2) is incremented.In order to analyze Algorithm BFilt we need to go back to the analysis of the underlying majority-votegame. In order to do that we introduce again some of the notation used in Section 2.2 and de�ne it in thecontext of our new problem.Let X be the sample space over which a probability distribution D is de�ned. De�ne fX i0; X i1; : : : ; X iigto be a partition of X into i + 1 sets where X ir consists of that set of the sample space that is labeledcorrectly by r out of the �rst i hypotheses. De�ne the following quantities related to this partition:M ir = X ir \X i+1r+1 the subset of X ir that is correctly labeled by the i+ 1st hypothesisqir = Pr(X ir)xir = Pr(M ir)Pr(Xir) the probability of a random example to be correctly labeled by hMgiven that it is in X irFinally, denote by ti the expected value of the weighting factor �ir w.r.t. the simulated distribution usedin iteration number i, i.e. ti = iXr=0 qir�ir (2:14)The probability of accepting a random example during the construction of hi+1 is ti=�imaxWe start our analysis by quantifying the reliability of the abort condition. We say that when ti <�(1 � �)=(k), then triggering the abort condition is \justi�ed", the following lemma shows that mosttriggerings are justi�ed.Lemma 2.3.5: For all 0 � i � k � 1, the probability, over the distribution of the examples, that an abortis triggered during the generation of hi+1, given that ti � �(1� �)=(k), is smaller than �=2k.Proof: We start by recasting the abort condition in a notation that is more convenient for the analysis.Let n = #accept + #reject and m = #reject. We de�ne the constants c = �(1 � �) = k�imax andn0 = (8=c) ln(16k=c�). Using this notation we say that an abort occurs after testing the nth example ifn > n0 and m < cn=2. We use q = ti=�imax to denote the probability that FiltEX accepts a randomexample generated by EX. Thus the claim that we want to prove is that if q � c then the probabilityof an abort (during any one of the k iterations) is smaller than �=2k. This probability can be written asa sum of the probabilities of aborting after each example after example number n0. We can bound theprobability of aborting after the nth example using Cherno� bounds as follows:Pr(m < cn=2) � e�cn=8 :

34Summing this probability over all possible values of n we get thatPr(abort occurs after n > n0 examples) < 1Xn=n0 e�cn=8 = e�cn0=81� e�c=8 < 8ce�cn0=8 < �2k ;which proves the claim.In order for the algorithm BFilt to work successfully, we need the reliability ofWeakLearn to be high.However, as noted by Haussler et. al. [Haussler et al., 1991a], it is easy to boost the reliability of a learningalgorithm. We give the performance of one possible reliability-boosting algorithm, BRel in the followinglemma. The proof of the lemma and the description of the algorithm are given in Appendix A.1.Lemma 2.3.6: Assume WeakLearn is a learning algorithm that generates hypotheses whose error issmaller than 1=2� with probability at least � > 0, using m0 examples. Then, for any � > 0, AlgorithmBRel, will generate hypotheses whose error is smaller than 1=2� =2 with probability 1� �. Furthermore,the number of examples required by algorithm BRel is at most82 �ln ln 2� + ln 1���+ m0� ln 2� :We now give the two main theorems regarding BFilt. The �rst theorem proves the correctness of thealgorithm and the second proves a bound on the number of training examples required by the algorithm.Theorem 2.3.7: If WeakLearn is a learning algorithm that, for any distribution over the sample spaceX and any c 2 C, generates a hypothesis whose error is smaller than 1=2� with probability � for some; � > 0. Then, for any �; � > 0, the algorithm BFilt, given � and �, generates a hypothesis whose error issmaller than � with probability at least 1� �.The proof of this theorem is based on the potential function, �ir, de�ned in the proof of Theorem 2.2.1. FromLemma 2.2.2 we know that the average potential does not increase when the weightor uses the weightingscheme and the chooser plays according to the rule, which corresponds, in the context of learning, to thefact that WeakLearn generates a hypothesis with error smaller than 1=2� . The following lemma is are�nement of Lemma 2.2.2 that describes the increase in the average potential if the error of the hypothesisis di�erent from 1=2� .Lemma 2.3.8: If the error of the hypothesis used in the ith hypothesis is 1=2 � ̂i then we have therelationship i+1Xr=0 qi+1r �i+1r = iXr=0 qir�ir + (� ̂i) iXr=0 qir�ir :Proof: Recall Equation (2.10) from the proof of Lemma 2.2.2:i+1Xr=0 qi+1r �i+1r = iXr=0 qir h(1� xir)�i+1r + xir�i+1r+1i = iXr=0 qir�i+1r + iXr=0 qirxir(�i+1r+1 � �i+1r) :Recall that the weight in the ith iteration of the majority-vote game corresponds to the probabilityaccording to the �ltered distribution that is observed by WeakLearn during the ith iteration of BFilt.From this, and the de�nition of ̂i, we get, instead of Equation (2.11), thatiXr=0 qirxir(�i+1r+1 � �i+1r) = (1=2+ ̂i) iXr=0 qir(�i+1r+1 � �i+1r) : (2:15)

35Combining Equations (2.10) and (2.15) we get:i+1Xr=0 qi+1r �i+1r = iXr=0 qir�i+1r + (1=2 + ̂i) iXr=0 qir(�i+1r+1 � �i+1r)= iXr=0 qir�i+1r + (1=2 +) iXr=0 qir(�i+1r+1 � �i+1r) + (� ̂i) iXr=0 qir(�i+1r � �i+1r+1)= iXr=0 qir h(1=2 +)�i+1r+1+ (1=2�)�i+1r i + (� ̂i) iXr=0 qir(�i+1r � �i+1r+1) :Using Equation (2.6) for the �rst term and Equation (2.8) for the second term we �nd thati+1Xr=0 qi+1r �i+1r = iXr=0 qir�ir + (� ̂i) iXr=0 qir�ir ;which is the statement of the lemma.Proof of Theorem 2.3.7 From Lemma 2.3.5 we know that the probability that any of the times theabort condition has been triggered is unjusti�ed is smaller than �=2. On the other hand, the properties ofAlgorithm BRel, given in Lemma 2.3.6, guarantee that for each iteration, 0 � i � k � 1, the probabilitythat the error of hi is larger than 1=2�=2 is smaller than �=2k. Combining these claims we get that withprobability at least 1� � all the hypotheses have error smaller than 1=2� =2 and all the times the abortcondition is triggered are justi�ed. We shall now show that in this case the error of hM is smaller than �.For all the iterations 1 � i � k in which the abort condition is not triggered, i.e. the hypothesis hiis successfully generated, we know from Lemma 2.2.2, that the average potential does not increase. Onthe other hand, the error of a random coin ip with respect to any distribution over the examples, is, byde�nition, one half. Thus we get from Lemma 2.3.8 that in the aborted iterations the average potentialincreases by at most Pir=0 qir�ir = ti. As we assume all the aborts are justi�ed, we know that ti < �(1��)k .Thus in k iterations the potential increases by at most �(1 � �). We now follow the same argument as inthe proof of Theorem 2.2.1. As the number of iterations, k, is chosen so that �00 � �2, we get thatPr (hM (x) 6= c(x)) = kXr=0 qkr�kr � �00 + �(1� �) � �2 + �(1� �) = � ;where the probability is taken with respect to both the random choice of x according to D, and the randomcoin ips of the dummy weak hypotheses.Theorem 2.3.9: The number of training examples required by BFilt is smaller thanm = 8p2e1=12p3� k3=2�(1� �) max mR; 4 ln 32k2�� ! < 65�2 �ln 1��3=2max�mR; 12 ln 8 ln 1=��� � ; (2:16)where k is the number of iterations as chosen in line 1 of BFilt and the inequality is obtained by using thesuggested choice of k. The variable mR denotes the number of examples for generating a weak hypothesiswith reliability 1� �=2k by BRel and is equal to:mR = m0� ln 4k� + 82 �ln ln 4k� + ln 2k��� :

36As discussed above the factor �imax is chosen so that the probability of accepting a random example ismaximized without distorting the simulated distribution. As the value of �imax plays a critical role in theproof of the Theorem 2.3.9. we start by presenting a tight upper bound on this value.Lemma 2.3.10: For all iterations 0 � i � k � 2 of BFilt,�imax � s 83�(k � i� 1)e1=12The proof is given in Appendix A.3.Proof of Theorem 2.3.9 The number of examples that are required by BRel to generate a hypothesisthat has error smaller than 1=2�=2 with probability larger than 1��=2k, denoted mR, is easily boundedusing Lemma 2.3.6. The abort condition guarantees that the number of examples that are tested byFiltEX during iteration i is at most2k�imax�(1� �) max mR; 4 ln 32k2�� ! :Thus the total number of examples is bounded bymax mR; 4 ln 32k2�� ! 2k�(1� �) k�1Xi=0 �imax : (2:17)Using Lemma 2.3.10 for 0 � i � k � 2 and observing that �k�1max = 1 we can bound the sum byk�1Xi=0 �imax � s8e1=63� 0@k�1Xj=1 1pj + 11A < s8e1=63� 2pk : (2:18)Where the last inequality is true becausek�1Xj=1 1pj < 1 + Z k�11 1pxdx = 2pk � 1� 1 :Combining 2.17 and 2.18 we get the �rst inequality in 2.16 and plugging in the choice k = 42 ln 1� we getthe second inequality.We conclude this section by briey discussing the time and space complexity of BFilt. Assuminga uniform bound on the running time of WeakLearn, it is clear that the time complexity of BFilt isdominated by the time spent in line 3. of FiltEX to calculate the labels assigned to the prospectiveexample by the currently available weak hypotheses. As this time is proportional to the number of weakhypotheses available, we get that the time complexity of BFilt is at most k times the sample complexity ofBFilt. Similarly, assuming a uniform space complexity on WeakLearn and on the size of the hypothesesthat it generates, it is clear that the space complexity ofBFilt is proportional to k, the number of hypothesesthat need to be stored in memory.

372.3.4 Randomized learning algorithms and randomized hypothesesIn our discussion so far, we have concentrated on boosting deterministic weak learning algorithms thatgenerate deterministic hypotheses. In this section we show that our results transfer, with little or nochange, to the more general case in which both the weak learning algorithm and its hypotheses can berandomized, i.e. make use of ipping random coins.Note that the data to the learning algorithm and the hypothesis already has a large degree of ran-domness, as it consists of examples that are chosen at random. We now show a simple transformationthat translates randomized learning algorithms into deterministic learning algorithms on a di�erent samplespace.For our analysis we use the convention that the random bits that are used by a randomized algorithmare given to the algorithm as input when it is called. More speci�cally, we assume the algorithm is givena real valued random number, r, chosen uniformly at random from [0; 1] whose binary expansion is usedas an in�nite source of random bits.11 We shall take special care that each bit in the binary expansionis used at most once during the run of the algorithm. Thus any random bit used at any point in thealgorithm is independent of any other bit. For that reason the distribution of the outcome of the algorithmis equivalent to the distribution generated if each random bit is chosen by an independent coin ip. Thusthe transformations we present are only tools for analyzing the sample complexity of the learning algorithm,and the sample and additional computation time of the transformed algorithms that is a result of usingthis special convention can be ignored.Assume A is a randomized learning algorithm that generates randomized hypotheses. Assume A canlearn the concept class C for any distribution D on the sample space X . We now de�ne a mapping� that maps X;C; A and D to X 0;C0; A0 and D0, where A0 is a deterministic learning algorithm thatgenerates deterministic hypotheses. The sample space X 0 consists of pairs of the form hx; ri, where x 2 Xand r 2 [0; 1). The probability measure D0 is the measure generated by the cross product between thedistribution D and the uniform distribution on [0; 1). Each concept c 2 C is mapped to a conceptc0 2 C0 such that for all hx; ri, c0(hx; ri) = c(x). Finally, the algorithm A0, receiving the training examplesf(hx1; r1i; l1); : : : ; (hxm; rmi; lm)g, runs the algorithm A on the sample f(x1; l1); : : : ; (xm; lm)g, togetherwith the number r1, that is used by A as its source of random bits. The hypothesis h, generated by A, istransformed in a similar way, h0, upon receiving an instance hx; ri as input, calls h to label x, giving it ras its source of random bits.Note that an in�nite sequence of bits can be partitioned into an in�nite number of in�nite subsequences.For concreteness, we de�ne the nth subsequence of r to consist of the bits whose indices can be writtenas (2i � 1)2n�1 for some positive integer i. We denote this subsequence by rn. Note that if r is chosenuniformly at random then all of its subsequences are also uniformly distributed.Using these de�nitions we can now show how boosting the randomized learning algorithm A canbe viewed as boosting the deterministic algorithm A0 over the larger sample space. Transforming thealgorithm for boosting by �ltering, BFilt, is simpler. The change takes place in the procedure FiltEX. In11We assume some convention is used for selecting one of the binary expansions when the expansion is not unique.

38each iteration the procedure receives an example hx; ri 2 X 0 chosen at random according to D0. It thenseparates x and r, and maps r into r1; : : : ; ri+1, which are independent random bit sequences. Sequences1 to i are used for calculating h1(x; r1); : : : ; hi(x; ri). Sequence number i+ 1 is returned to WeakLearn,in this case the algorithm A, for use as its source of random bits. Using this transformation the proofs ofTheorems 2.3.7 and 2.3.9 can be used without change, and thus BFilt works equally well for randomizedand deterministic learning algorithms.The analysis of the algorithm for boosting by sampling, BSamp, is somewhat more complicated. Thatis because the same examples are repeatedly fed into A. Since the examples include the source of randombits, this might undesired dependencies between random bits used in di�erent runs of A. To avoid thisproblem, we assume that an additional integer parameter, which we denote q, is supplied to A. Thisparameter directs algorithm A to use, as it source of random bits, the qth subsequence of the randomsequence with which it is supplied. The parameter q is di�erent each time A is called, and thus the randombits used by A are guaranteed to be independent. However, this addition changes somewhat the proof ofTheorem 2.3.3, forcing us to increase the size of the sample that is used by BSamp, as is summarized inthe following theoremTheorem 2.3.11: Let WeakLearn be a randomized learning algorithm that generates, with probability� > 0 over its internal randomization and the random choice of the training examples, a randomizedhypothesis whose error is smaller than 1=2� , for some > 0. Assume the number of training examplesrequired to achieve this is uniformly bounded by m0. Suppose that m, the size of the sample used by BSamp,obeys the following inequality:m � 1� ln 2� + m02 � lnm+ 1 �2 + lnm22 �ln 1� + ln ln 12� + ln ln lnm�! :Then with probability at least 1� �, the hypothesis hM generated by BSamp has error smaller than �.Proof: The essential di�erence from the proof of Theorem 2.3.3 is that the number of possible hypothesesthat can be generated from the sample is larger. In Theorem 2.3.3 this number is equal to the number ofsubsequences of size d that can be chosen from a sequence of size m, i.e. md. In our case it is the numberof subsequences times the number of combinations of values of the parameter q that could have been usedin the generation of the k good hypotheses. Assume that q = ir + l where i = 0 : : :k � 1 is the number ofhypotheses that have been generated so far, l = 1 : : :r is the counter of the attempts to generate a goodith hypothesis and r = (1=�) ln(2k=�) (These indices are used in statement 3 and 3.a in Figure 2.3). Usingthis convention it is clear that each one of the hypotheses can be chosen using one of r values, and thetotal number of combinations of values of q is rk. Thus the basic inequality that replaces inequality 2.13 isrkmd(1� �)m�d < �=2 : (2:19)And solving for m that satis�es this inequality we get the statement of the theorem.2.3.5 The resources needed for polynomial PAC learningSo far in this paper we have considered learning algorithms that are designed to work for a single �xedconcept class de�ned over a single �xed sample space. However, most learning algorithms can be used for

39a family of concept classes, and one is then interested in the way the performance of the learning algorithmdepends on the complexity of the concept class. Valiant [Valiant, 1984a] presented a framework, called thePAC12 learning framework, in which such quanti�cation can be done. This framework is one of the mostwell studied frameworks in computational learning theory. In this section we show the implications of ourwork on the PAC learning framework.We start by presenting some notation following Haussler et. al. [Haussler et al., 1991a]. Assume thatthe sample space is a union of sample spaces of increasing complexity: X = [1n=1Xn. Similarly assumethat the concept class that maps points in Xn to f0; 1g is de�ned as a union of concept classes of increasingcomplexity: Cn = [1s=1Cn;s. The indices n and s usually denote the length of the description of an instanceand a concept in some encoding scheme for X and for C respectively.We say that a concept class C is learnable, or strongly learnable, if there exists a learning algorithm A,and polynomials p1(�; �; �; �), p2(�; �; �; �) such that:� For any n; s and any �; � > 0, the algorithm A, given n; s; �; � and access to an example oracle EX,can learn any concept c 2 Cn;s with respect to any distribution D on Xn, and generate a hypothesisthat has error smaller than � with probability larger than 1� �.� The sample complexity of A, i.e. the number of calls that A makes to EX, is smaller thanp1(n; s; 1=�; 1=�).� The running time of A is polynomial in p2(n; s; 1=�; 1=�).Kearns and Valiant [Kearns and Valiant, 1988, Kearns and Valiant, 1989] introduced a weaker form oflearnability in which the error cannot necessarily be made arbitrarily small. A concept class C is weaklylearnable if there exists a learning algorithm A, and polynomials p1(�; �; �), p2(�; �; �) and p3(�; �) such that:� For any n; s and any � > 0, the algorithm A, given n; s; � and access to an example oracle EX, canlearn any concept c 2 Cn;s with respect to any distribution D on Xn, and generate a hypothesis thathas error smaller than 1=2 � 1=p3(n; s) with probability larger than 1� �.� The sample complexity of A, i.e. the number of calls that Amakes to EX, is smaller than p1(n; s; 1=�).� The running time of A is polynomial in p2(n; s; 1=�).In other words, a weak learning algorithm produces a prediction rule that performs just slightly betterthan random guessing.Schapire [Schapire, 1990] has shown that the notions of weak and strong PAC learning are equivalent.Moreover, the boosting algorithm he invented provides an e�ective way for translating any weak learningalgorithm into a strong learning algorithm. The boosting algorithm BFilt presented in this paper providesa more e�cient translation of weak learning algorithms to strong learning algorithms. A simple applicationof Theorem 2.3.9 gives the following upper bound on the resources required for PAC learning.Theorem 2.3.12: If C is a weakly PAC learnable concept class, parameterized by n and s in the standardway [Haussler et al., 1991a], then there exists a PAC learning algorithm for C that learns with accuracy� and reliability � and:� requires a sample of size(1=�)(log 1=�)3=2(log log 1=�+ log 1=�)p1(n; s),12PAC learning stands for Probably Approximately Correct learning.

40� halts in time(1=�)(log 1=�)5=2(log log 1=�+ log 1=�)p2(n; s),� uses space (log 1=�)(log log 1=�+ log 1=�)p3(n; s), and� outputs hypotheses of size (log 1=�)p4(n; s) evaluatable in time (log 1=�)p5(n; s)for some polynomials p1; p2; p3; p4 and p5.Compare this theorem to Theorem 4 in [Schapire, 1990]. The statement there is that the dependenceof the sample and time complexity on � is O(1=� poly(1=�)), and that that the other dependencies on 1=�are poly-logarithmic. Our theorem tightens these bounds by giving the explicit powers in the polynomialsover log(1=�) and log(1=�). Moreover, our more detailed bound, given in Theorem 2.3.9, shows explicitlythe dependence on the parameters and m0, which are hidden in the polynomials of the above describedtheorems. In the next section we show that some of these upper bounds are optimal.2.3.6 Relations to other boundsThe bounds given in Theorems 2.3.9 and 2.3.12 are currently the best known bounds on the resourcesrequired for polynomial PAC learning of an arbitrary PAC learnable class. In this section we relate ourresults to known lower bounds, and indicate where further improvement might be possible.Theorem 2.3.12 shows that for any learnable concept class there exists an e�cient learning algorithmfor which the dependence of the sample size on the required accuracy, when all other parameters are �xed,is O(1=�(log 1=�)3=2). A general lower bound of
(1=�) is given in [Blumer et al., 1986] for learning any\non-trivial" concept class. This lower bound holds without regard to computational constraints on thelearning algorithm. There exists a matching upper-bound, given in [Haussler et al., 1988][Theorem 5.1],which says that, ignoring dependence on other parameters, any concept class that can be learned using asample of size polynomial in 1=� can be learned using a sample of size O(1=�). The truth might be eitherthat our upper bound can be reduced to match the lower bound, or that there exists a higher lower boundon the sample complexity of learning algorithms that are in RP . However, a result of the second typewould be very surprising because it would imply that RP 6= NP .The number of weak hypotheses that are combined by our boosting algorithms isO(1=2 ln(1=�)). We now show that this dependence of the number of required weak hypotheses on �and is the best possible for any general boosting algorithm. In order to formalize this claim we haveto �rst de�ne a separation between the weak learner, which does the actual learning, and the boostingalgorithm, that can learn only by calling the weak learner.Assume the examples are given as a sequence of pairs h(x1; y1); (x2; y2); : : :(xn; yn)i where xi 2 X; yi 2f0; 1g. The boosting algorithm is a PAC learning algorithm that has direct access only to the yi part of eachexample. However, in addition to that, it has access to a learning oracle WeakLearn and to a labelingoracle Label. The input to WeakLearn is a set of indices 1 � i1 � i2 � : : : � ik � N . WeakLearn is alearning algorithm and uses as examples the subset h(xi1 ; yi1); (xi2; yi2); : : : ; (xik ; yik)i of the sample. It isrequired to generate a hypothesis h : X ! f0; 1g that has error �0 = 1=2 � and has reliability 1 � � ifthe examples it uses as input are independently drawn from some distribution. The booster can use the

41hypotheses returned by WeakLearn by calling the second oracle, Label, to compute the label given bythe hypothesis to any example in the sample, i.e. Label(h; i) = h(xi). 13Assuming these restrictions, we can apply optimality argument from Section 2.2.1, to give a lower boundon the minimal number of weak hypotheses that have to be combined for boosting. Assume WeakLearnis a learning algorithm that generates a randomized hypothesis that is simply the correct concept withindependent random noise of 1=2� applied to the label.hi(x) = (c(x) with probability 1=2 + 1� c(x) with probability 1=2� :Assume the errors of the di�erent hypotheses are independent and that14 Pr(c(x) = 0) = Pr(c(x) = 1) =1=2. Because of the symmetry in the de�nitions it is easy to show that in this case the optimal way ofcombining the outputs of the hypotheses to get the most accurate prediction of c(x) is to take the majorityfunction over all the hypotheses. In this case the number of hypotheses required for achieving accuracy of� is 12�2 log 1=�. This shows that the number of weak hypotheses that are combined by BFilt is at mosteight times the optimum.As a �nal comment, we note that as the dependence of the size of the output of a general boostingalgorithm on is
(�2), the running time of the algorithm necessarily has the same dependence. However,if we �x �, then the dependence of the running time of BFilt on is O(�4). The extra factor of �2comes from the reliability boosting algorithm, that requires a sample of size O(�2) to guarantee that,with high probability, each weak hypothesis has error smaller than 1=2� . It remains open whether theO(�4) dependence of the running time and of the sample complexity of a general boosting algorithm canbe improved.2.4 Extensions2.4.1 Using boosting for distribution-speci�c learningSo far, we have followed the distribution-free paradigm in computational learning and assumed thatthe learning algorithms that we attempt to boost have complexity bounds that hold uniformly for allinput distributions. In this section we show that BFilt, our second boosting algorithm, can boost learningalgorithms whose accuracy is not uniformly bounded for all distributions. We will de�ne a measure of13Restricting a learning algorithm in such a way is natural in the context of hierarchical learning models such as weighted-majority [Littlestone and Warmuth, 1989] and layered neural networks. Some of the analysis of the weighted majority algorithmis concerned with e�ciently searching for a good learning algorithm in a pool of algorithms. In this case the learning algorithmhas access only to the outputs of the algorithms in the pool and not to the original input. Similarly, in a layered neural networkmodel, units in the deeper hidden layers can receive input only from the layer below them and have no direct access to theinput of the network. The process of �ltering or sub-sampling can be interpreted, in this context, as a feedback mechanism bywhich a learning unit higher in the hierarchy directs lower level inputs to concentrate on those examples which will contributemost to the performance of the network as a whole.14If Pr(c(x) = 0) 6= Pr(c(x) = 1) then some decrease in the output hypothesis size is possible. However, the
(�2)dependence is unavoidable.

42discrepancy between distributions and show that the accuracy ofWeakLearn can be allowed to degrade asthe discrepancy increases between the �ltered distribution that is fed intoWeakLearn and the distributionthat governs the example oracle EX. We shall refer to the distribution governing EX as the \target"distribution.From Lemma 2.3.8 we know that the increase in the average potential in the ith iteration is equal toi+1Xr=0 qi+1r �i+1r = iXr=0 qir�ir + (� ̂i) iXr=0 qir�ir :Where ̂i is the di�erence between 1=2 and the error of hi with respect to the �ltered distribution in theith iteration. We recall the notation de�ned in Section 2.3.3: ti =Pir=0 qir�ir and re-write the last equationi+1Xr=0 qi+1r �i+1r = iXr=0 qir�ir + (� ̂i)ti :Recall that the probability of accepting a random example that is tested during the ith iteration is ti=�imax.Thus, if the probability of accepting a random example during the ith iteration is small, then the sensitivityof the �nal accuracy to the accuracy of the ith hypothesis is small. We have already used this fact in theproof of Theorem 2.3.7. There we used it to show that if the probability of accepting a random example issmall enough, then a random coin ip can be used instead of the weak hypothesis. In this section we usethe same property to relax the requirements on the accuracy of the hypotheses generated by WeakLearnfor distributions that are far from the target distribution.The following lemma shows how the requirements on the accuracy of the hypotheses generated byWeakLearn can be relaxed, allowing the generation of hypotheses whose error is larger than 1=2� .Lemma 2.4.1: Let 0 < ; � � 1=2 be the accuracy parameters supplied to BFilt, and k be the number ofiterations chosen by BFilt. Let ti denote Pir=0 qir�ir and let 1=2� ̂i denote the error of hi with respect tothe �ltered distribution in the ith iteration.If, for each iteration 0 � i � k � 1 we havêi � �1� �(1� �)tik � ; (2:20)then the error of hM , the hypothesis output by BFilt, with respect to the target distribution, is smaller than�Proof: From Lemma 2.3.8 we immediately get that the increase of the average potential in each iterationis at most �(1 � �)=k. Thus the total increase in the average potential in all k iterations is �(1 � �). Therest of the proof follows the same line of argument as the one used for the aborted iterations in the proofof Theorem 2.3.7.To illustrate the signi�cance of this result, assume that WeakLearn generates a hypothesis whoseerror is 1=2� when given examples from the target distribution. Our goal is to achieve a higher degree ofaccuracy on the target distribution by making use of the performance ofWeakLearn on other distributions.As we know from the main results of this paper, if WeakLearn is capable of generating a hypothesis witherror smaller than 1=2� for any distribution then boosting can achieve any desired accuracy on the target

43distribution. However, using Lemma 2.4.1 boosting can be used even in cases where the accuracy of thehypotheses generated by WeakLearn decreases as the distributions supplied to it become more and moredi�erent from the target distribution. The slower the decrease in accuracy, the higher the quality that canbe achieved by boosting.We start by simplifying Equation (2.20). By choosing k = (4=2) ln(1=�), we get an upper bound onthe error of hi as a function of and ti:̂i � �1� �(1� �)4ti ln(1=�)� :Di�erent choices for generate di�erent lower bounds on ̂i as a function of ti. An illustration of theselower bounds is given in Figure 2.5.
0.1

0.2

0.3

0.4

0.5

100 200 300 400 500 600 700 800 900 1000

Error

1

Frequency of accepting

a random exampleFigure 2.5: The accuracy that can be achieved using boosting a learner whose accuracydepends on the distribution. The horizontal line denotes 1=t, or the number of examples thathave to be �ltered per accepted example. The origin denotes an acceptance rate of 1, i.e. everyexample is accepted, which means that the weak learner is observing the original distribution. Thehorizontal axis denotes the error of the hypotheses. Each sloped line denotes a requirement onthe maximal error of the weak learner as a function of the divergence from the target distribution.Each such bound guarantees a di�erent accuracy of the �nal hypothesis, which is described bythe bold arrow on the error axis.In order to separate the requirements for WeakLearn from the particulars of our boosting algorithm,we need to upper bound the value of ti using a measure of the discrepancy between the target distribution

44and the �ltered distribution. We shall now de�ne such a measure of discrepancy, show that this measureis closely related to the Kullback-Leibler divergence, and give a stronger version of Theorem 2.3.7 basedon this measure.De�nition 1: Let P and Q be two distributions de�ned over the same space X and sigma-algebra �. Themaximal-ratio divergence between Q and P, denoted DM (QjjP), is de�ned to beDM (QjjP) := ln supA2�; P(A)>0 Q(A)P(A)! :We now lower bound the maximal ratio divergence using the well-known Kullback-Leibler divergence.Lemma 2.4.2: For any two distributions Q and P, de�ned on the same measure space,DM (QjjP) � DKL (QjjP) :Where DKL (QjjP) is the Kullback-Leibler divergence, which is de�ned asDKL (QjjP) := Ex2Q�ln Q(x)P(x)� :Proof: If EQ �ln Q(x)P(x)� � a then there exists a set A such that Q(A) > 0 and ln Q(A)P(A) > a, which impliesthat DM (QjjP) � a.Note that there is no similar inequality relating the two measures of divergence in the other way. Thatis because there might be a set A such that Q(A) is very small, so that the contribution of this set toDKL (QjjP) is negligible, but on the other hand Q(A)=P(A) is extremely large.Using these measures of divergence, we can lower-bound ti by functions of the divergence between thetarget distribution and the ith �ltered distribution:Lemma 2.4.3: If D is the target distribution, and Fi is the distribution generated by FiltEX during theith iteration, then ti � e�DM (Fi jjV) � e�DKL(FijjV) :Proof: The second inequality follows from Lemma 2.4.2. To prove the �rst inequality, assume thatDM (FijjD) > a. Then there exists a set A 2 � such that Fi(A)D(A) > ea. Using the de�nition of the measuregenerated by �ltering in Equation (2.3) we getea < Pir=0D(A \X ir)�ir = ZiPir=0D(A \X ir) � Pir=0D(A \X ir) = ZiPir=0D(A \X ir) = 1Zi :The inequality holds because �ir � 1 always.15 Here Zi =Pir=0D(X ir)�ir = ti, from which we get 1=ti � ea,which proves the lemma.We now combine the results of Lemmas 2.4.1, 2.4.2 and 2.4.3 to arrive at the following stronger versionof Theorem 2.3.715Notice that a tighter bound can be proved using the bound on �imax = max0�i�r �ir given in Lemma 2.3.10. However,here we avoid using this tighter bound because we want the bound to be independent of i.

45Theorem 2.4.4: Fix a target distribution D and real valued parameters ; �; � > 0.IfWeakLearn is a learning algorithm that for any distribution P over the sample space X and any c 2 C,generates a hypothesis whose error, w.r.t. P, is smaller than12 � �1� �(1� �)4 ln(1=�) eDKL(PjjD)� ;then, with probability at least 1��, the algorithm BFilt, given the parameters, generates a hypothesis whoseerror, w.r.t. D, is smaller than �.Proof: The algorithm uses k = (4=2) ln(1=�) as given in statement 1. of Algorithm BFilt (Figure 2.4).From Lemma 2.4.1 we get that it is enough if the error in the ith iteration is smaller than12 � �1� �(1� �)4ti ln(1=�)� :Combining Lemmas 2.4.3 and 2.4.2, we get that ti � e�DKL(DjjT), which proves the theorem.Notice that Theorem 2.4.4 assumes that the weak learner is completely reliable, i.e. that it hasprobability 1 of generating a hypothesis with the desired accuracy. The algorithm can be used for lessreliable weak learning algorithms, but there is a subtle point that needs to be addressed in that case. Thepoint is that the number of examples required by BRel in order to increase the reliability is
(1=2). Thusif the error of the hypothesis has to be just very slightly smaller than 1=2, the number of examples thatare required to test if the hypothesis is good increases without bounds. To avoid this problem the requirederror has to be set to a smaller value, thus making the detection of a good hypothesis easier. We omit thedetails of this variant of the boosting algorithm.2.4.2 Boosting multiple valued conceptsAs was noted by Schapire [Schapire, 1991], the generalization of the equivalence between strong andweak learning to concepts with more than two labels does not enjoy the same tightness as the two labelcase. In the two label case an ability to predict the label with accuracy that is a polynomial fractionbetter than random guessing is equivalent to strong learning. In the j-label case the probability that arandom guess is correct is equal to 1=j, while the minimal requirement for weak learning to be equivalentto strong learning is to predict correctly with a probability slightly better than a half. 16 As any j-valueddecision rule can be replaced by j � 1 binary decision rules of the type: \is the label equal i", the binaryboosting algorithm can be used j � 1 times to generate the desired hypothesis. However, it is possibleto perform the boosting process in one pass, generating a simple j-valued hypothesis and eliminating thedependence of the complexity on j. The combination rule that is used is simply the j-valued majority, i.e.the strong hypothesis labels the input with the label given by the largest number of weak hypotheses. Thealgorithm and its analysis are almost exactly the same as in the binary case, the only di�erence is thatthe de�nition of the �ltering factor is based on one more parameter, denoted by t, that is the number of16To realize this, consider a 3-label concept such that for any example there are only two possible labels (over the wholeconcept class). In this case, using a random coin ip to choose one of the two possible labels will give a correct answer half ofthe time, but the concept class might still be unlearnable [Schapire, 1991].

46incorrect hypothesis whose output is not equal to the incorrect label with the largest number of votes. Forexample, suppose the labels are the ten digits, assume the correct label for some example is \0" and theincorrect label that got the largest number of votes is \9" (irrespective of whether the number of votes \9"got is larger than the number of votes \0" got) then t is the number of votes that the digits \1" to \8"got. The change in Formula (2.1) is that k is replaced by k � t:�ir;t = 8>><>>: 0 if r � i� k�t2�k�t�i�1b k�t2 c�r�(12 +)bk�t2 c�r(12 �)dk�t2 e�i�1+r if i� k�t2 < r � k�t20 if r > k�t2 (2:21)It is interesting to note that the resources required are completely independent of j, the number of possiblelabels. This is even true if j is di�erent for di�erent n and s, or if j is in�nite, even uncountable!However, the requirement of weak learning for concepts with uncountable ranges is unreasonably hard.The hypothesis must generate the exact correct output for more than half the inputs (in probability). Inthis case the result described in the next section might be more relevant.2.4.3 Boosting real valued conceptsA modi�cation of the boosting algorithm can be used for boosting learning algorithms for conceptclasses whose range is a real number (for a review of algorithms for learning real valued functions, seeChapter 5 in [Natarajan, 1991]). This variant of the boosting algorithm transforms learning algorithmsthat generate hypotheses whose expected error, with respect to the input distribution, is small to algorithmsthat generate hypotheses whose error is small for most of the input domain.Assume C is a set of functions from R to R and WeakLearn is a learning algorithm for C . Let pbe any density function over R, and let (x1; f(x1)); (x2; f(x2)); : : : ; (xn; f(xn)) be a set of examples drawnindependently at random according to p and labeled according to some f 2 C. Then A, upon observingthis sample, generates a hypothesis function g such that with probability larger than 1� �Z +1�1 jf(x)� g(x)jdp(x)< d : (2:22)We shall sketch how the boosting algorithm can be used to generate a function h such that with highprobability Pp �jf(x)� h(x)j > d1=2� � < � :Where Pp is the probability according to the density p and ; � > 0 are polynomial fractions.Using the Markov inequality and setting � = d1=2� we get, from Equation (2.22), thatPp (jf(x)� g(x)j > �) < 12 � :We extend the notion of agreement between a concept and a hypothesis on an example x to concepts de�nedon the reals by saying that f and g \�-agree" on x if jf(x)� g(x)j < �. Using the extended de�nition ofagreement we can say that WeakLearn is a weak-learner for the concept class C . If we replace all theplaces in the boosting algorithm in which it refers to \agree" or \correct" by corresponding references to\�-agree" or \�-agrees with the true function", we get a boosting algorithm for real valued functions.

47Suppose, for simplicity, that we are using algorithm BSamp. Then the result of running the boostingalgorithm over the weak learning algorithm are k real valued functions h1(x); : : : ; hk(x) such that for anypoint in the sample more than k=2 of the functions are within � of the correct value. It is interesting toobserve that the results of Theorems 2.3.3 and 2.3.11 hold without change for the real valued case. Thus,by choosing the size of the sample large enough, we are guaranteed that, with probability at least 1 � �,more than half of the hypotheses are �-correct on all but � of the points of the whole domain.Observe that if more than half of the functions �-agree with f on a point x then the median of thefunctions �-agrees with f . From this we get that the median is the natural generalization of the majorityfor this case. By taking the median of the k weak hypotheses we get:Pp (Median(h1; h2; : : : ; hk) �-agrees with f) > 1� � :2.4.4 Parallelizing PAC learningThe fact that the boosting by �ltering algorithm, BFilt, accepts only a small fraction of the exampleswith which it is presented has an interesting implication on the possibility of achieving optimal speed-upwhen parallelizing learning algorithms.Observe that the time complexity of BFilt is dominated by the time that is spent by the procedureFiltEX on checking examples that are eventually rejected. Observe also the probability that any given ex-ample is accepted during the generation of the ith hypothesis is constant. In other words, it is independentof whether or not any other example is tested or accepted during the ith stage.Assume now that we use one of the standard parallel-computation paradigms, such as the PRAMmodel,and that we have a computer with a p processors at our disposal. Then we can parallelize the procedureFiltEX in the following way. Each of the p processors runs the procedure FiltEX independently, eachmaking separate calls to EX, so that they test di�erent random examples.17 When one of the p processorsaccepts an example, all the other processors are halted and their results are ignored.18 The acceptedexample is then returned to WeakLearn as usual. Recall that out of the O(1=�(ln 1=�)3=2) examples thatare needed for learning, only O(ln 1=�) examples have to be accepted and returned to WeakLearn. If thenumber of processors is O(1=�pln 1=�) then the search for an acceptable example takes expected constanttime, so that the expected running time of the boosting algorithm becomes O(ln 1=�). If p is smaller, thena p-fold speedup over the serial execution is achieved. We summarize this observation in the followingtheorem.Theorem 2.4.5: If C is a polynomially PAC-learnable concept class then there exists a parallel learningalgorithm for C that runs on a PRAM machine with O(1=�) processors whose time complexity dependenceon the accuracy is O(log 1=�).17We either assume that the running time of EX is negligible or that EX can generate many examples at the same time.18We assume that halting all processors can be done in unit time.

482.5 Summary and open problemsThe algorithms we have described in this paper give the best upper bounds currently known on theresources required for polynomial PAC learning. While these bounds are in some respects close to optimal,further improvement might still be possible in the dependence of the sample and time complexity on theparameters � and .One undesired property of our boosting algorithm is that it requires prior knowledge of a distribution-independent bound on the accuracy of the hypotheses that WeakLearn generates. While guessing abound is a theoretically feasible solution, it is expensive in practical applications [Drucker, 1992 1993].Schapire's algorithm is somewhat better in that respect, because if sample complexity is ignored it can beused without having prior knowledge of such a bound, and achieve an improvement over the performanceof WeakLearn if such a uniform bound exists.A deeper problem is that the assumption of distribution-independent bounds for learning algorithmsoften seems to be unreasonable. Theorem 2.4.4 is encouraging in this respect because it shows that boostingcan be achieved even without uniform bounds. This might be a sign that a richer, and maybe more realistictheory of learning can be developed in which performance bounds are distribution dependent.In this paper we have shown that the boosting algorithm can be generalized to multiple-valued conceptclasses as well as real valued concept classes. However, the results regarding real-valued concept classesare still rather weak, and one would hope that stronger types of boosting can be achieved in that context.The use of boosting in the context of p-concepts [Kearns and Schapire, 1990] is another long standing openproblem. Some progress on the problem of boosting in the context of independent label noise has beenachieved in a recent work by Aslam and Decatur about boosting learning algorithms in the the statisticalquery model introduced by Kearns [Kearns, 1993].Last but not least, boosting has been successfully applied to some practical machine learning problems[Drucker et al., 1993]. Further experimentation with boosting methods will hopefully achieve even betterresults. Such work will also be useful in pointing to directions in theoretical research that might have alarge impact on the practice of machine learning.2.6 Summary of notation2.6.1 Concept Learning NotationThe sample space is denoted X , the concept class is denoted C , and the class of hypotheses is denotedH . Typical elements of these spaces are denoted x, c and h respectively. The distribution overX , accordingto which examples are generated, is denoted by D. We denote by S = f(x1; c(x1)); : : : ; (xm; c(xm))ga sample of m examples, labeled according to c 2 C. The accuracy parameter is denoted �, and thereliability parameter is denoted �. The sample, time, and space required for the learning algorithm underdiscussion to achieve accuracy � with reliability � are denoted m(�; �),s(�; �) and t(�; �) respectively.

492.6.2 Notation for the describing boostingWe denote a generic weak learning algorithm byWeakLearn. We use �0 and �0 to denote the accuracyand the reliability of WeakLearn. Usually �0 is close to 1=2 (the accuracy of a random guess) and �0 isclose to 1 (probability zero of generating an �0-accurate hypothesis). For this reason we de�ne = 1=2� �0and � = 1 � �0. The number of examples, time and space required by the weak learner to achieve its�xed goals are denoted m0; t0, and s0 respectively. We denote the hypothesis generated by the boostingalgorithm by hM , and the set of all such hypotheses by HM .

502.6.3 Meaning of common notation in di�erent sectionssymbol Meaning in Meaning in analysis of Meaning in analysis ofMajority-Vote Game BSamp BFiltk The total number of The total number of weak hypothesesiterations in the game. combined by the boosting algorithm.i = 0 : : :k The number of The number of weak hypothesesiterations played so far. generated so far.r = 0 : : : i The number of marks. The number of weak hypotheses that are correctThe points that The points in the The points in XXir have been marked sample on which r on which r out ofr times in the out of the �rst i weak the �rst i weak�rst i iterations hypotheses are correct hypotheses are correctThe value of The number of The probability of AV (A) the set A sample points in A according to thedistribution DThe weight of The sum of the weights The probability of AWi(A) the set A assigned to the sample according to thein the ith points in A using hypotheses distribution �ltered usingiteration h1; : : : ; hi�1 hypotheses h1; : : : ; hi�1�ri=�imax is the probability of�ir The weight assigned to points in Xir accepting an example fromde�ned in Equation 2.1 Xir during the ith iteration.where �imax = max0�r�i �ir�ir The potential of the points in Xir, de�ned in Equation 2.7qir = V (Xir) The value of Xir The number of The probability of Xirsample points in Xir according to thedistribution DThe fraction, in The fraction of the The fraction (in terms of thexir = terms of value) of Xir points of Xir on distribution D) of XirV (Xir\Xi+1r+1)V (Xir) that is marked which hi+1 on which hi+1 is correctin the ith iteration is correctL The set of points The sample points on The set of points in X onThe loss set marked less than k=2 which the majority vote which the majority vote istimes in the k is incorrect incorrect, i.e. the set of pointsiterations i.e. the empty set on which hM is incorrect.2.6.4 Special Notation� ti =Pir=0 qir�irThe expected weight of a random example in the ith iteration. This notation is used in the analysisof BFilt because ti=�imax is the probability of accepting a random example during the ith iteration.� ̂i - the actual edge of the ith weak hypothesis, hi. In other words, the error of hi, with respect tothe ith �ltered distribution, is 1=2� ̂i.

51� mR - Denotes the number of examples required by BRel for generating a weak hypothesis with thedesired reliability.

523. Accelerating learning using Query by Committee3.1 IntroductionMost of the research on the theory of learning from random examples is based on a paradigm in whichthe learner is both trained and tested on examples drawn at random from the same distribution. In thisparadigm the learner is passive and has no control over the information that it receives. In contrast, inthe query paradigm, the learner is given the power to ask questions. What does the learner gain from thisadditional power?Study of the use of queries in learning [Valiant, 1984b, Angluin, 1988a], has mostly concentrated onalgorithms for exact identi�cation of the target concept. This type of analysis concentrates on the worstcase behavior of the algorithm, and no probabilistic assumptions are made. In contrast, we are interested inalgorithms that achieve approximate identi�cation of the target, and our analysis is based on probabilisticassumptions. We assume that both the examples and the target concept are chosen randomly. In particular,we show that queries can help accelerate learning of concept classes that are already learnable from justunlabeled data.This question was previously studied by Eisenberg and Rivest [Eisenberg and Rivest, 1990] in the PAClearning framework. They give a negative result, and show that, for a natural set of concept classes, whichthey call \dense in themselves", queries are essentially useless. They show that giving the learner the abilityto ask membership queries (questions of the type \what is the label of the point x?") in this context doesnot enable the learner to signi�cantly reduce the total number of labeled examples it needs to observe.The reason is that if the learner observes only a small number of examples, either passively or actively,then it can not be sensitive to slight changes in the target concept and in the underlying distribution. Anadversary can alter the distribution and the target in a way that will not cause the learner to change itshypothesis, but will increase the error of this hypothesis in a signi�cant way. In this paper we show howsome concept classes that are dense in themselves can be learned e�ciently if we allow the learner accessto random unlabeled examples. This added capability enables the learner to maintain its sensitivity to theinput distribution, while reducing the number of labels that it needs to know.Baum [Baum, 1991], proposed a learning algorithm that uses membership queries to avoid the in-tractability of learning neural networks with hidden units. His algorithm is proved to work for networkswith at most 4 hidden units, and there is experimental evidence [Baum and Lang, 1991] that it worksfor larger networks. However, when Baum and Lang tried to use this algorithm to train a network forclassifying handwritten characters, they encountered an unexpected problem [Baum and Lang, 1992]. Theproblem was that many of the images generated by the algorithm as queries did not contain any recogniz-able character, they were arti�cial combinations of character images that had no natural meaning. Thelearning algorithm that is analyzed in this paper uses random unlabeled instances as queries and in thisway avoids the problem encountered by Baum's algorithm.Our work is derived within the query �ltering paradigm. In this paradigm, proposed by [Cohn et al.,1990], the learner is given access to a stream of inputs drawn at random from the input distribution. The

53learner sees every input, but chooses whether or not to query the teacher for the label. Giving the learnereasy access to unlabeled random examples is a very reasonable assumption in many real-life contexts.In applications such as speech recognition, it is often the case that collecting unlabeled data is a highlyautomatic process, while �nding the correct labeling of the data requires expensive human work. Ouralgorithm uses all of the unlabeled examples and in this way it overcomes the problems pointed out byRivest and Eisenberg. Learning becomes an interactive process, rather then requesting the human to labelall the examples in advance, we let the computer choose the examples whose labels are most informative.Initially, most examples will be informative for the learner, but as the process continues, the predictioncapabilities of the learner improve, and it discards most of the examples as non-informative, thus savingthe human teacher a large amount of work.In [Cohn et al., 1990] there are several suggestions for query �lters together with some empirical tests oftheir performance on simple problems. Seung et al.[Seung et al., 1992] have suggested a �lter called \queryby committee," and analytically calculated its performance for some perceptron-type learning problems.For these problems, they found that the prediction error decreases exponentially fast in the number ofqueries. In this work we present a more complete and general analysis of query by committee, and showthat such an exponential decrease is guaranteed for a general class of learning problems.The problem of selecting the optimal examples for learning is closely related to the problem of exper-imental design in statistics (see e.g. [Fedorov, 1972, Atkinson and Donev, 1992]). Experimental design isthe analysis of methods for selecting sets of experiments, which correspond to membership queries in thecontext of learning theory. The goal of a good design is to select experiments in a way that their outcomes,which correspond to labels, give su�cient information for constructing a hypothesis that maximizes somecriterion of accuracy. One natural criterion is the accuracy with which the parameters that de�ne thehypothesis can be estimated [Lindley, 1956]. In the context of Bayesian estimation a very general measureof the quality of a query is the reduction in the probability of the set of possible hypotheses that is inducedby the answer to the query. Similar suggestions have been made in the perceptron learning literature[Kinzeland Ruj�an, 1990]. A di�erent experimental design criterion is the accuracy with which the outcome offuture experiments, chosen from some constrained domain, can be predicted using the hypothesis. Thiscriterion is very similar to criteria used in learning theory. Both criteria are important for us in this paper.We show that while in the general case the two are not necessarily related, they are related in the case ofthe query by committee algorithm. Using this relation we prove the e�ciency of the algorithm for somespeci�c concept classes.The paper is organized as follows. In Section 3.2 we present the Bayesian framework of learning in whichwe analyze our algorithm. In Section 3.3 we present some simple learning problems and demonstrate acase in which the information gain of a query is not the relevant criterion when we are interested inprediction quality. In Section 3.4 we describe the query-by-committee algorithm. In Section 3.5 we provethat there is a close relation between information gain and prediction error for QBC. Using this relationwe show in Section 3.6 that the prediction error decreases exponentially fast with the number of queriesfor some natural learning problems. In Section 3.7 we give a broader view on using unlabeled examples foraccelerating learning, and in Section3.8 we summarize and point to some potential future directions.

543.2 PreliminariesWe work in a Bayesian model of concept learning [Haussler et al., 1991b]. As in the PAC model, wedenote by X an arbitrary sample space over which a distribution D is de�ned. In this paper we concentrateon the case where X is a Euclidean space Rd. Each concept is a mapping c : X ! f0; 1g and a conceptclass C is a set of concepts. The Bayesian model di�ers from the PAC model in that we assume that thetarget concept is chosen according to a prior distribution P over C and that this distribution is known tothe learner. We shall use the notation Prx2D(�) to denote the probability of an event when x is chosen atrandom from X according to D.We assume that the learning algorithm has access to two oracles: Sample and Label. A call toSample returns an unlabeled example x 2 X , chosen according to the (unknown) distribution D. A callto Label with input x, returns c(x), the label of x according to the target concept. After making somecalls to the two oracles, the learning algorithm is required to output a hypothesis h : X ! f0; 1g. We de�nethe expected error of the learning algorithm as the probability that h(x) 6= c(x), where the probability istaken with respect to the distribution D over the choice of x, the distribution P over the choice of c andany random choices made as part of the learning algorithm or of the calculation of the hypothesis h. Weshall usually denote the number of calls that the algorithm makes to Sample by m and the number ofcalls to Label by n. Our goal is to give algorithms that achieve accuracy � after making O(1=�) calls toSample and O(log 1=�) calls to Label.In our analysis we �nd it most convenient to view the �nite number of examples that the learningalgorithm makes to label as being an initial segment of an in�nite sequence of examples, all drawnindependently at random according to D. We shall denote such a sequence of unlabeled examples by~X = fx1; x2 : : :g, and use h ~X; c(~X)i = fhx1; c(x1)i; hx2; c(x2)i : : :g to denote the sequence of labeledexamples that is generated by applying c to each x 2 ~X. We use ~X1:::m to denote the sequence ofthe �rst m elements in ~X . We use the terminology of Mitchell [Mitchell, 1978], and de�ne the versionspace generated by the sequence of labeled examples h ~X1:::m; c(~X1:::m)i to be the set of concepts c0 2 Cthat are consistent with c on ~X, i.e. that c0(xi) = c(xi) for all 1 � i � m. We denote the version spacethat corresponds to the �rst i labeled examples by Vi = V (h ~X1:::i; c(~X1:::i)i). The initial version space,V0 = V (;), is equal to C . The version space is a representation of the information contained in the setof labeled examples observed by the learning algorithm. A natural measure of the progress of the learningprocess is the rate at which the size of the version space decreases. The instantaneous information gainfrom the ith labeled example in a particular sequence of examples is de�ned to be � log PrP(Vi)=PrP(Vi�1).Summing the instantaneous information gains over a complete sequence of examples we get the cumulativeinformation gain, which is de�ned asI(hx1; c(x1)i; : : : ; hxm; c(xm)i) := � mXi=1 log PrP(Vi)PrP(Vi�1) = � log PrP(Vm) : (3:1)The natural measure of the information that we expect to gain from the label of an unlabeled exampleis the expected instantaneous information gain taken with respect to the probability that each one of thetwo labels occurs. Let p0 be the probability that the label of xm is 0, given that c 2 Vm�1 and let V 0m be

55the version space that results from the label xm being 0. De�ne p1 and V 1m in the corresponding way forthe case c(xm) = 1. We de�ne the expected information gain of xi, given Vi�1, to be:G(xijVi�1) := �p0 log PrP(V 0i)PrP(Vi�1) � p1 log PrP(V 1i)PrP(Vi�1) (3.2)= �p0 log p0 � (1� p0) log(1� p0) := H(p0) ;where H(p) denotes the Shannon information content of a binary random variable whose probability ofbeing 1 is p. We shall use log base 2 in our de�nition and measure the expected information gain in bits.1The maximal information gain from a single label is one bit. The information gain is thus a very attractivemeasure of the gain that can be expected from asking Label for the label of an example. However, aswe show in Section 3.3, this measure, by itself, is not su�cient for guaranteeing a large reduction in theexpected prediction error of the algorithm.The \Gibbs" prediction rule is to predict the label of a new example x by picking a hypothesis h atrandom from the version space and labeling x according to it. The random choice of h is made accordingto the prior distribution P restricted to the version space. It is a simple observation (see [Haussler et al.,1991b]), that the expected error of this prediction error is at most twice larger than the expected errorof the optimal prediction rule which is the Bayes rule. We shall assume that our learning algorithm hasaccess to an oracle, denoted Gibbs, which can compute the Gibbs prediction for a given example x 2 Xand version space V � C. Each time Gibbs(V; x) is called, a hypothesis h 2 C is chosen at randomaccording to the distribution P restricted to V , and the label h(x) is returned. Note that two calls toGibbs with the same V and x can result in di�erent predictions. The main result of the paper is that asimple algorithm for learning using queries, that uses the Gibbs prediction rule, can learn some importantconcept classes with accuracy that is exponentially small in the number of calls to Label.3.3 Two simple learning problemsIn this section we discuss two very simple learning problems. Our goal here is to give examples of theconcepts de�ned in the previous section and to show that selecting examples to be queries solely accordingto their expected instantaneous information gain is not a good method in general.Consider the following concept class. Let X = [0; 1], and let the associated probability distribution Dbe the uniform distribution. Let the concept class C , consist of all functions of the formcw(x) = � 1; w � x0; w > x ; (3:3)where w 2 [0; 1]. We de�ne the prior distribution of concepts, P to be the one generated by choosing wuniformly from [0; 1].The version space de�ned by the examples fhx1; c(x1)i; : : : ; hxm; c(xm)ig is (isomorphic to) the segmentVi = [max(xijc(xi) = 0);min(xijc(xi) = 1)]. Let us denote by �i the ratio of between the probabilities of1Here, and elsewhere in the paper, log(�), denotes the logarithm over base two, while ln(�) denotes the logarithm over basee.

56
x2x3x6

− + +

x8

+

x9x10

− +
x1

x5

x7

x4

−

−

+

+

The version space

w1

w2

w1 is
somewhere
here

w2 is somewhere here

Two examples that achieve
the highest information gain

Figure 3.1: A �gure of the version space and the examples that achieve maximal information gainfor the two threshold learning problem de�ned below.the version space before and after observing the ith example, i.e. �i = PrPVi=PrPVi�1. The instantaneousinformation gain of the example hxi; c(xi)i is log �i. Given an unlabeled example, the expected instantaneousinformation gain from xi is H(�i). Examples that fall outside the segment have a zero expected informationgain, while the example that divides the segment into two equal parts obtains the highest possible expectedinformation gain of one bit. This agrees with our intuition because the label of examples that fall outsidethe segment are already determined by previous labeled examples, while the label of the example thatfalls in the middle of the version space interval is least predictable. It is easy to calculate the probabilityof a prediction error for the Gibbs prediction rule for a given version space segment. This probability isequal to the length of the segment divided by three. Thus, if the learner asks for the label of the examplelocated in the middle of the segment, it is guaranteed to half the error of the Gibbs prediction rule. In thiscase we see that asking the oracle Label to label the example that maximizes the expected informationgain guarantees an exponentially fast decrease in the error of the Gibbs prediction rule. In contrast, theexpected prediction error after asking for the labels of n randomly chosen examples is O(1=n). The questionis whether choosing queries according to their expected information gain is a good method in general, i.e.whether it always guarantees that the prediction error decreases exponentially fast to zero.The answer to this question is negative, to see why this is the case consider the following, slightly morecomplex, learning problem. Let the sample space be the set of pairs in which the �rst element, i, is either1 or 2, and the second element, z, is a real number in the range [0; 1], i.e. x 2 X = f1; 2g� [0; 1]. Let D bethe distribution de�ned by picking both i and z independently and uniformly at random. Let the conceptclass be the set of functions of the form c~w(i; z) = � 1; wi � z0; wi > z ; (3:4)

57where ~w 2 [0; 1]2. The prior distribution over the concepts is the one generated by choosing ~w uniformly atrandom from [0; 1]2. In this case each example corresponds to either a horizontal or a vertical half plane,and the version space, at each stage of learning, is a rectangle (see Figure 3.3). There are always twoexamples that achieve maximal information gain, one horizontal and the other vertical. Labeling each oneof those examples reduces the volume of the version space by a factor of two. However, the probabilitythat the Gibbs rule makes an incorrect prediction is proportional to the length of the perimeter of therectangular version space, and not to its volume. Thus, if the learner always chooses to ask queries of thesame type, only one of the dimensions of the rectangle is reduced, and the perimeter length stays largerthan a constant. Which implies that the prediction error also stays larger than a constant.We conclude that the expected information gain of an unlabeled example is not a su�cient criterionfor choosing good queries. The essential problem is that the distribution over the examples is completelyignored by this criterion. While one can easily �nd a speci�c solution for the given learning problem, wewould like to have a general method that is sensitive to the distribution of the examples, and is guaranteedto work for a wide variety of problems. In the next section we present such a method.3.4 The Query by Committee learning algorithmSeung, Opper and Sompolinsky [Seung et al., 1992] have devised an algorithm for learning by querieswhich they called \Query by Committee" and we shall refer to as the QBC algorithm. The algorithmuses as queries examples whose expected information gain is high, however, rather than constructing theexamples, it selects the more informative examples from the random unlabeled examples that it gets fromthe oracle Sample.The algorithm proceeds in iterations, in each iteration it calls Sample to get a random instance x.It then calls Gibbs twice, and compares the two predictions for the label of x. If the two predictionsare equal, it rejects the instance and proceeds to the next iteration. If the two predictions di�er, it callsLabel with input x, and adds the labeled example to the set of labeled examples that de�ne the versionspace. It then proceeds to the next iteration. In [Seung et al., 1992] Seung et. al. treat the query bycommittee algorithm as an on-line learning algorithm, and analyze the rate at which the error of the twoGibbs learners reduces as a function of the number of queries made. In our work we prove general boundsboth on the number of queries and on the number of random examples that the algorithm tests. In orderto do that we consider a batch learning scenario, in which the learning algorithm is tested only after it has�nished observing all of the training examples and has �xed its prediction hypothesis.To do that we de�ne a termination condition on the iterative process described above. When thealgorithm reaches this a state that ful�lls this condition it stops calling Sample and Label and uses theGibbs oracle to predict the labels of the instances that it receives in the test phase. The terminationcondition is satis�es if a large number of consecutive instances supplied by Sample are all rejected.We measure the quality of the predictions made by the algorithm in a way similar to that used inValiant's PAC model. We de�ne the expected expected error of the algorithm as the probability thatits prediction of the label of a random instance disagrees with that of the true underlying concept. Thisprobability is taken with respect to the random choice of the instance as well as the underlying concept.

58We also allow the algorithm some small probability of failure to account for the fact that the sequence ofinstances that it observes during training is atypical.We say that the learning algorithm is successful if its expected error, when trained on a typical sequenceof instances, is small. More Precisely, we de�ne two parameters, an accuracy parameter 1 > � > 0 anda reliability parameter 1 > � > 0. We use the term \training history" to describe a speci�c sequence ofrandom instances and random coin ips used during learning a speci�c hidden concept. For each choice ofthe hidden concept, we allow a set of training histories that has probability � to be marked as \atypical"training histories. Our requirement is that the expected error over the set of typical training histories issmaller than �. The parameters � and � are provided to the learning algorithm as input and are used tode�ne the termination criterion. Figure 3.2 gives a formal description of the algorithm. It is important tonotice that the termination condition depends only on � and �, and not of any properties of the conceptclass. While the performance of the algorithm does depend on such properties, the algorithm can be usedwithout prior knowledge of these properties.It is easy to show that if QBC ever stops, then the error of the resulting hypothesis is small withhigh probability. That is because it is very unlikely that the algorithm stops if the probability of error islarger than � (proof is given in Lemma 3.5.3). The harder question is whether QBC ever stops, and if itdoes, how many calls to Sample and to Label does it make before stopping? As we shall show in thefollowing two sections, there is a large class of learning problems for which the algorithm will stop, withhigh probability, after O(1=� log 1=��) calls to Sample, and O(log 1=�) calls to Label.The committee �lter tends to select examples that split the version space into two parts of comparablesize, because if one of the parts contains most of the version space, then the probability that the twohypotheses will disagree is very small. Let us normalize the probability of the version space to oneand assume that an example x partitions the version space into two parts with probabilities F and1 � F respectively. Then the probability of accepting the example x as a query is 2F (1 � F) and theinformation gain from an example is H(F). Both of these functions are maximized at F = 0:5 anddecrease symmetrically to zero when F is increased to one or decreased to zero. It is thus clear that thequeries of QBC have a higher expected information gain than random examples. However, it is not true ingeneral that the expected information gain of the queries will always be larger than a constant,2 moreover,as we have seen in the Section 3.3, queries with high information gain do not guarantee a fast decreaseof the prediction error in general. Our proof of the performance of QBC consists of two parts. In the�rst part, given in Section 3.5, we show that a lower bound on the information gain of the queries doesguarantee a fast decrease in the prediction error of QBC. In the second part, given in Section 3.6, we showthat the expected information gain of the queries of QBC is guaranteed to be higher than a constant insome important cases.2For example, consider the case in which the version space contains two disconnected sets in R2, which are very far fromeach other, and assume that a random example is very likely to separate between these two sets. Suppose one of the setshas probability �, while the other has probability 1 � �. While most of the examples that separate between the two sets arerejected, the fraction that is accepted can still dominate all other examples. Thus the expected information gain is close toH(�). As � can be set arbitrarily small, the expected information gain can be arbitrarily close to zero. It seems that this typeof version space can occur only very rarely but we do not know what are the necessary conditions.

59Input: � > 0 - the maximal tolerable prediction error.� > 0 - the desired reliability.Gibbs- an oracle that computes Gibbs predictions.Sample- an oracle that generates unlabeled examples.Label- an oracle that generates the correct label of an example.Initialize n - the counter of calls to Label { to 0, and set the initial version space, V0, to be the completeconcept class C .Repeat until more than tn consecutive examples are rejected. Wheretn = 1� ln �2(n+ 1)23� ;and n is the number of examples that have been used as queries so far.1. Call Sample to get an unlabeled example x 2 X drawn at random according to D.2. Call Gibbs(Vn; x) twice, to get two predictions for the label of x.3. If the two predictions are equal then reject the example and return to the beginning of the loop.(step 1)4. Else call Label(x) to get c(x), increase n by 1, and set Vn to be all concepts c0 2 Vn�1 such thatc0(x) = c(x).Output as the prediction hypothesis Gibbs(Vn; x).Figure 3.2: Query by a committee of two3.5 Relating information gain and prediction error for Query by CommitteeIn this section we prove that if the expected information gain from the queries used by QBC is high,then the prediction error of the algorithm is guaranteed to be exponentially small in the number of queriesasked. We shall �rst de�ne exactly what we mean by high information gain, and then give the theoremand its proof.In our analysis we treat runs of the algorithm as initial segments of in�nite runs that would have beengenerated if there was no termination criterion on the execution of the main loop in QBC. We denote by~X the in�nite sequence of unlabeled examples that would have been generated by calls to Sample. We usean in�nite sequence of integer numbers I = f1 � i1 < i2 < : : :g to refer to the sequence of indices of thoseexamples that are selected by QBC from ~X and used as queries to Label. This set of examples is denoted~XI . We denote by M the sequence of integers from 1 to m, and use ~XM to denote the �rst m examples in~X. We use In to denote the �rst n indices in I . Finally, ~XIn indicates the �rst n examples that are usedas queries, and ~XI\M indicates the queries that are chosen from the �rst m unlabeled examples.We now present the probabilistic structure underlying the query process. A point in the sample space
is a triple hc; ~X; Ii. The probability distribution over this space is de�ned as follows. The target concept cis chosen according to P , and each component in the in�nite sequence ~X is chosen independently accordingto D. Fixing c and ~X, we de�ne the distribution of the �rst n elements of I according the probability the

60algorithm QBC chooses to call the oracle Label on the iterations indexed by In. It is easy to see thatthe distributions de�ned for di�erent values of n are consistent with each other, thus we can de�ne thedistribution on I as the limiting distribution for n ! 1. We denote the distribution we have de�ned onthe triplets hc; ~X; Ii by � and use Pr� and E� to indicate the probability and the expectation taken withrespect to this distribution.We now de�ne formally what we mean when we say that the queries of QBC are informative.De�nition 2: We say that the expected information gain of queries made by QBC for the learning problemC;P ;D is uniformly lower bounded by g > 0 if the following holds.For the distribution over hc; ~X; Ii that is generated by P ;D and QBC and for every n � 0, the expectedinstantaneous information gain from the n + 1st query, given any sequence of previous queries and theiranswers, is larger than g. In our notation we can write this as the requirement that the following conditionalexpectation is larger than g almost everywhere:Pr� �E �G(xin+1 jV (h ~XIn; c(~XIn)i)) j ~XIn ; c(XIn)� > g� = 1In somewhat more intuitive terms, a uniform lower bound on the information means that for any versionspace that can be reached by QBC with non-zero probability, the expected information gain from the nextquery of QBC is larger than g. In Section 3.6 We shall prove uniform lower bounds on the informationgain of QBC for some important learning problems.We now give the theorem that relates the bound on the information gain of QBC to its expectedprediction error.Theorem 3.5.1: If a concept class C has VC-dimension 0 < d <1 and the expected information gain ofqueries made by QBC is uniformly lower bounded by g > 0 bits, then the following happens with probabilitylarger than 1� � over the random choice of the target concept, the sequence of examples, and the choicesmade by QBC:� The number of calls to Sample that QBC makes is smaller thanm0 = max 4de� ; 160(d+ 1)g� max�6; ln 80(d+ 1)��2g �2! : (3:5)� The number of calls to Label that QBC makes is smaller thann0 = 10(d+ 1)g ln 4m0� ;In other words, it is an exponentially small fraction of the number of calls to Sample.3� The probability that the Gibbs prediction algorithm that uses the �nal version space of QBC makesa mistake in it prediction is smaller than �.Before we proceed to prove the theorem, let us give a brief intuitive sketch of the argument (SeeFigure 3.3). The idea is that if a concept class is learnable then, after observing many labeled examples,3Note that the number of calls to Sample must is
(d=�) ([Blumer et al., 1989]), even if all of the instances are used asqueries to Label.

61
Cumulative
Information
Gain

X X X X

Expected
Cumulative
Information
Gain of
Random
Examples

Cumulative
Information
of Queries

Gap between examples
accepted as queries

Number of

Random ExamplesFigure 3.3: Each tag on the x axis denotes a random example in a speci�c typical sequence. Thesymbol X under a tag denotes the fact that the example was chosen as a query.the conditional distribution of the labels of new examples is highly biased to one of the two labels. Thismeans that the information gained from knowing the label of a random example is small. This, in turn,means that the increase in the cumulative information from a sequence of random examples becomes slowerand slower as the sequence gets longer. On the other hand, if the information gained from the queries ofQBC is lower bounded by a constant, then the cumulative information gain from the sequence of queriesincreases linearly with the number of queries. It is clear that the information from the labels of the queriesalone is smaller than the information from the labels of all the examples returned by Sample. The onlyway in which both rates of increase can hold without violating this simple inequality is if the number ofexamples that are rejected between consecutive queries increases with the number of queries. As a resultthe termination criterion of QBC will hold, and the algorithm will output it's �nal prediction rule after areasonably small number of queries. The prediction rule that is output is the Gibbs prediction rule, usingthe �nal version space that is de�ned by all the labeled examples seen so far. The probability of makinga prediction error using this rule is, by de�nition, equal to the probability of a disagreement between ahypothesis that is randomly chosen according to the prior distribution restricted to the version space and aconcept that is independently chosen according to the same distribution. This probability is also equal tothe probability of a accepting a random example as a query when using this version space. The terminationcondition is ful�lled only if a large number of random examples are not accepted as queries, which impliesthat the probability of accepting a query or making a prediction mistake when using the �nal version spaceis small. We shall prove the theorem using the following three lemmas.Lemma 3.5.2: If the expected instantaneous information gain of the query algorithm is uniformly boundedby g > 0 bits, then Pr�(I(h ~XIn; c(~XIn)i) < g2n) � e� g10n (3:6)Proof: The de�nition of a uniform lower bound on the expected information gain means that for anyn > 0, for all sequence of of n queries h ~XIn ; c(~XIn)i, excluding possibly a set of measure zero, the expectedinformation gain from the n + 1st query is lower bounded by g. Put in another way, this means that therandom variables

62Yi = I(h ~XIi; c(~XIi)i)� I(h ~XIi�1 ; c(~XIi�1)i)� gform a sequence of sub-martingale di�erences. As the instantaneous information gain is bounded between0 and 1, we get that �g � Yi � 1 � g. We can thus use Hoe�ding's bound on the tails of bounded stepsub-martingales [McDiarmid, 1989] 4 from which we know that for any � > 0Pr(nXi=1 Yi � ��n) � �(gg + �)g+�(1� g1� g � �)1�g���n :Setting � = �g and taking logs we get Pr(Pni=1 Yi � ��gn) �exp ���(1 + �)g ln(1 + �) + (1� (1 + �)g) ln 1�g1�(1+�)g�n� �exp ((�� (1 + �) ln(1 + �)) gn) :Choosing � = 1=2 we get the boundLemma 3.5.3: The probability that the predictions made by QBC are wrong (after its main loop hasterminated) is smaller than � with probability larger than 1� �=2.Proof: Assume that the probability of a wrong prediction is larger than �. As discussed in the informalpart of the proof, this implies that the probability of accepting a random example as a query with the �nalversion space, is also larger than �. It thus remains to show that the probability that QBC stops whenthe probability of accepting a query is larger than � is smaller than �=2.The termination condition ofQBC is that all tn examples tested after the nth query are rejected. If theprobability of accepting a random example is larger than � then this probability is smaller than (1� �)tn .From the de�nition of tn we get that(1� �) 1� ln �2(n+1)23� � e� ln �2(n+1)23� = 3��2(n+ 1)2 :Summing this probability over all possible values of n from zero to in�nity we get the statement of thelemma.In [Haussler et al., 1991b] it was shown that if the VC-dimension of a concept class is d, then theexpected information gain from m random examples is bounded by (d+ 1) log(m=d). Here we show thatthe probability that the information gain is much larger than that is very small.Lemma 3.5.4: Assume a concept c is chosen at random from a concept class with VC dimension d. Fixa sequence of examples ~X, recall that ~XM denotes the �rst m examples. ThenPrc2P �I(h ~XM ; c(~XM)i) � (d+ 1)(log emd)� � dem : (3:7)4The bound as it appears in [McDiarmid, 1989] is given for martingales. However, it is easily checked that it is also truefor super-martingales. Reversing the sign of the Yi we get an equivalent theorem for sub-martingales.

63Proof: From Sauer's Lemma [Sauer, 1972] we know that the number of di�erent labelings created bym examples is at most Pdi=0 �mi � � (em=d)d. The expected cumulative information gain is equal to theentropy (base 2) of the distribution of the labels and is maximized when all the possible labelings have equalprobability. This gives an upper bound of d log emd on the expected cumulative information gain. Labelingsthat have cumulative information gain larger by a than this expected value, must have probability thatis smaller by 2a then the labels in the equipartition case. As the number of possible labelings remainsthe same, the total probability of all concepts that give rise to such labelings is at most 2�a. Choosinga = log emd we get the bound.Proof of Theorem 3.5.1 We consider a randomly chosen element of the event space hc; ~X; Ii. Ouranalysis involves the �rst m0 random examples presented to QBC, ~XM0 , and the �rst n0 queries thatQBC would choose if it never halts, ~XIn0 . We denote the number of queries that QBC makes duringthe �rst m0 examples by n, i.e. n = jI \M0j. The claim of the theorem is that, with probability at least1� �, the algorithm halts before testing the m+1st example, the number of queries it makes, n, is smallerthan n0, and the hypothesis it outputs upon halting has error smaller than �. We shall enumerate a listof conditions that guarantee that all of these events occur for a particular random choice of examples andof internal randomization in QBC. By showing that the probability of each of those conditions to fail issmall we get the statement of the theorem.The conditions are:1. The cumulative information content of the �rst n0 queries is at least gn0=2.From Lemma 3.5.2 we get that in order for this condition to hold with probability larger than1� �=4 it is su�cient to require that n0 � 10g ln 4� : (3:8)2. The cumulative information content from the �rst m0 examples is at most(d+ 1)(log em0d).From Lemma 3.5.4 we get that in order for this condition to hold with probability larger than1� �=4 it is su�cient to require that m0 � 4de� : (3:9)3. The number of queries made during the �rst m0 examples, n, is smaller than n0.The condition follows from conditions 1 and 2 if I(h ~XIn0 ; c(~XIn0)i) � I(h ~XM0; c(~XM0)i). This isbecause if n � n0 then the information gained from the queries asked during the �rst m0 examplesis larger than the total information gained from the m0 examples, which is impossible. In order forI(h ~XIn0 ; c(~XIn0)i) � I(h ~XM0 ; c(~XM0)i) to hold, it is su�cient to require thatn0 > 2(d+ 1)g (log em0d) : (3:10)4. The number of consecutive rejected examples guarantees that the algorithm stopsbefore testing the m0 + 1st example.Notice that the threshold ti increases with i. Thus if at least tn consecutive examples from among

64the �rst m0 examples are rejected, the algorithm is guaranteed to halt before reaching the m0 + 1stexample. As there are m0 � n rejected examples, the length of the shortest run of ejected examplesis at least (m0 � n)=(n+ 1). We require that this expression is larger than tn, and use the fact thatcondition 3 holds, i.e. that n < n0. Using these facts it is su�cient to require thatm0 � 2(n0 + 1)� ln "�23� (n0 + 1)2# : (3:11)5. The Gibbs prediction hypothesis that is output by the QBC has probability smallerthan � of making a mistaken prediction.From Lemma 3.5.3 we get that the probability of this to happen is smaller than �=2.We see that if Equations (3.8), (3.9), (3.10), and (3.11) hold, then the probability that any of the fourconditions fails is smaller than �.It thus remains to be shown that our choices of n0 and m0 guarantee thatthese equations hold. Combining Equations (3.8) and (3.10), we get that it is su�cient to require thatm0 � 2, d � 1, and n0 + 1 = 10(d+ 1)g ln 4m0� (3:12)Plugging this choice of n0 into Equation (3.11), we get the following requirement on m0:m0 � 40(d+ 1)�g ln 4m0� ln �20(d+ 1)�g ln 4m0� � : (3:13)It is simple algebra to check that the following choice of m0 and satis�es Equations (3.9) and (3.13):m0 = max 4de� ; 160(d+ 1)g� max�6; ln 80(d+ 1)��2g �2! ; (3:14)Equations (3.12) and (3.14) guarantee that the conditions 1-5 hold with probability at least 1� �.3.6 Concept classes that are e�ciently learnable using QBCIn this section we show that there exists a uniform lower bound for some interesting geometric conceptclasses. Our main analysis is for a learning problem in which concepts are intersections of half-spaces witha compact and convex subset of Rd. In this case the concept class itself can be represented as a compactand convex subset of Rd and each example partitions the concept class by a d� 1 dimensional hyperplane.We �rst prove that for the case in which both D and P are uniform there is a uniform lower bound onthe information gain of QBC that does not depend on the dimension d. The proof is based on variationalanalysis of the geometry of the version space and is given in Section 3.6.1. In Section 3.6.2 we extend thisproof to the non-uniform case. In Section 3.6.3 we use this result to prove a lower bound for perceptronlearning under the uniform distribution.3.6.1 Uniformly distributed half-spacesIn this subsection we prove a lower bound on the information gain for a simple geometric learningproblem to which we shall refer as the \parallel planes" learning problem.

65We de�ne the domain, X , to be the set of all pairs of the form (~x; t), where ~x is a vector in Rd whoselength is 1, which we refer to as the \direction" of the example, and t is a real number in the range [�1;+1],to which we refer as the o�set. In other wordsX = Sd� [�1;+1], where Sd denotes the unit sphere aroundthe origin of Rd. In this section we assume that the distribution D on X is uniform.5 The concept class,C, is de�ned to be a set of binary functions over X , parameterized by vectors ~w 2 Rd; jj~wjj2 � 1, that arede�ned as follows c~w(~x; t) = � 1; ~w � ~x � t ,0; ~w � ~x < t : (3:15)We assume that the prior distribution is uniform on Bd - the unit ball of radius one around the origin.This concept class is very similar to the class de�ned by the perceptron with variable threshold.6 However,note that in this case the threshold, t, is part of the input, and not a parameter that de�nes the concept.This concept class is a bit strange, but as we shall see, the results we can prove for it can be used on thecontext of more natural concept classes such as the perceptron and thresholded smooth functions.The reason that we can prove a uniform lower bound on the expected information gain of QBC forthis concept class is that all the version spaces that can be generated when learning a concept from thisconcept class share some properties. The �rst property is each example, (~x; t) cuts the version space by aplane that is orthogonal to the direction ~x and has o�set t from the origin.7 As t is uniformly distributed,the planes that cut the version space in each direction have a uniformly distributed o�set that spans widthof the version space in that direction. The second property is that all version spaces that can be generatedwhen learning this concept class are bounded convex sets because they are de�ned as the intersection of aball with a number of half-spaces.As discussed in Section 3.4, both the expected information gain of an example and the probability thatthe example is accepted by QBC are quantities that depend on the ratio between the probabilities of thetwo parts of the version space that are created by the example. Based on these observations we can reduceour problem to a one dimensional problem. Fix a particular direction ~x. Let F~x : [�1;+1]! [0; 1] be thefraction of the version space, V , that is on one side of the plane de�ned by ~x and t, i.e.F~x(t) = Prc~w2P (c~w 2 V jc~w(~x) � t)Prc~w2P (c~w 2 V) : (3:16)We call F the volume function of the version space. The probability that QBC accepts the example (~x; t)is 2F~x(t)(1� F~x(t)), and the expected information gain from the example is H(F~x(t)). As t is uniformlydistributed, the expected information gain from the examples whose direction is ~x is5Actually, it is enough to assume that the distribution of the o�set t is uniform for any direction ~x. No assumption needsto be made regarding the distribution of ~x.6The perceptron concept class is de�ned as the following set of binary functions over the unit spherec~w;t(~x)� 1; ~x � ~w � t0; otherwise :7In the following discussion we ignore the distinction between the concepts in C and their parameterization, and refer tothe concept c~w simply as the vector ~w.

66G(F~x) = R+1�1 F~x(t)(1� F~x(t))H(F~x(t)) dtR+1�1 F~x(t)(1� F~x(t)) dt : (3:17)We now give the main technical theorem of this section. The theorem proves a lower bound on the valueof G(F~x). The proof is based on �nding the convex version space that produces the smallest value ofG(F~x). This body is constructed of two equivalent cones connected at their bases. Barland [Barland, 1992,Theorem 5], analyzes a similar problem. He �nds the convex body that achieves the minimal value of thefunctional R+1�1 min(F~x(t); 1� F~x(t)) dt. Interestingly enough, he �nds that the same body produces theminimal value of this functional.Theorem 3.6.1: The value of the functional G(F~x) for the parallel planes learning problem, when theprior and input distributions are uniform, is at least 1=9 + 7=(18 ln 2) > 0:672 bits, independent of thedimension d.Proof: The proof is based on a variational analysis of the functional G. We shall show that there is onevolume function that corresponds to a convex body which minimizes this functional. Using a number oftransformations we shall show that the volume function of any other convex body can be transformed toa volume function of a di�erent convex body which obtains a smaller value of G.We shall bound the value of G(F~x) independently of the direction ~x. Our bound depends only on thefact that the version space is a bounded convex set in Rn and that the distribution in it is uniform. Wethus drop the subscript ~x from F~x(�). As F (�1) = 0, F (+1) = 1, and H(1) = H(0) = 0, we will, withoutloss of generality, extend the de�nition of F (t) to all of R by de�ning it to be zero for t � �1 and one fort � 1. We then rede�ne the integrals in the de�nition of G(F) in Equation (3.17) to be from from �1 to1. It is easy to check that G(F (t)) = G(F (at + b)) for any a; b 6= 0. Thus, without loss of generality, wewill consider the set of volume functions to be the set of all monotone non-decreasing functions, F , suchthat F (0) = 1=2 and there exist a� � 0 � a+ such that F (a�) = 0 and F (a+) = 1.We �rst show that for any volume function F (t), one of the two functions:F�(t) = (F (t) t � 01� F (�t) t > 0 ;F+(t) = (1� F (�t) t � 0F (t) t > 0 ;gives a lower value of G. We can partition the integrals in the numerator and the denominator ofEquation (3.17) into two parts: G(F) = R+1�1 F (x)(1� F (x))H(F (x)) dxR+1�1 F (x)(1� F (x)) dx= R 0�1 F (x)(1� F (x))H(F (x)) dx+ R+10 F (x)(1� F (x))H(F (x)) dxR 0�1 F (x)(1� F (x)) dx+ R+10 F (x)(1� F (x)) dx :As all the integrals are positive it is easy to get a contradiction if G(F) is smaller than bothG(F+) = 2 R+10 F (x)(1� F (x))H(F (x)) dx2 R+10 F (x)(1� F (x)) dx : (3:18)

67and G(F�) = 2 R 0�1 F (x)(1� F (x))H(F (x)) dx2 R 0�1 F (x)(1� F (x)) dx ; (3:19)Thus at least one of the expressions is smaller than G(F). In the remainder of the proof we shall restrictour attention to volume functions F that are created in this way. For every convex body, whose volumefunction is F , we de�ne the volume functions F� and F+. These volume functions do not necessarilycorrespond to convex functions. Rather, they correspond to bodies that are symmetric around the planede�ned by t = 0, such that each of the two symmetric parts is a convex body. We shall call this type ofvolume functions \projection symmetric" and denote them by PS. Formally, F is a projection symmetricvolume function if there exists a convex body whose volume function is F̂ , such that F = F̂+ or F = F̂�.As in this case F (t) = 1 � F (�t), expressions (3.19) and (3.18) are both equal to G(F) and we rede�neG(F) as expression (3.18). We shall show that the projection symmetric volume function that attains thelowest value of G corresponds to a convex body and in this way show that this is the volume functioncorresponding to a convex body that minimizes G.In order to �nd the PS volume function that minimizes G(F) we use in�nitesimal variational transfor-mations of F that decrease the value of G. We �nd it convenient to de�ne simple transformations of F andH . De�ne K(t) = F (t)(1� F (t)), and Q(x) = H(1=2�p1� 4x=2), then Equation (3.17) can be writtenin a slightly simpler form as G(K) = R+10 K(t)Q(K(t)) dtR+10 K(t) dt : (3:20)The changes in G(K) for small changes in the function K can be approximated by a linear functional,called the Fr�echet derivative,8as follows G(K +) = G(K) + Z +10 rG(t)	(t) dt+ o�Z +10 	(t)2 dt� ;where rG(t) = R+10 K(s) ds @@K(t) (K(t)Q(K(t)))� R+10 K(s)Q(K(s)) ds @@K(t)K(t)�R+10 K(s) ds�2 (3.21)= 1R+10 K(s) ds �Q(K(t)) +K(t) @@K(t)Q(K(t))� G(K)�We �rst consider the behavior of the sum of the �rst two terms in the square brackets. Denote K(t)by y. A direct calculation shows that Q(y) + y @@yQ(y) is a strictly increasing function of y in the range0 � y � 1=4, which is the range of K(t). It is 0 for y = 0 and 1 for y = 1=4.As 0 � G(K) � 1 the third term is in the range of the sum of the �rst two terms. As K(t) is decreasingfor positive t, it implies that there is some point w > 0, which is a function ofK, such that for all 0 � t � w,@@K(t)G(K(t)) > 0, and for all t > w, @@K(t)G(K(t)) < 0. The parameter w is of critical importance in therest of the paper, and we shall refer to it is the \pivot point". In terms of the volume function F , for t > 0,8Details on how the Fr�echet derivative is de�ned and calculated can be found in standard books on variational analysis,such as [Smith, 1985].

68F increases when K decreases and vice versa. Thus if the variational function 	(t) is non-negative forpoints below the pivot point, non-positive for points above the pivot point, and R+10 	(t)2 dt is su�cientlysmall then G(K(t) + 	(t)) < 0 as desired.It remains to show how the variation functions 	(t) can be chosen in a way that preserves the PSproperties of the volume function. We de�ne f(t) = dF (t)dt , i.e. f(t) is the d� 1st dimensional volume of theslice of the version space located at t. We de�ne the function r(t) to be d�1pf(t). One of the d dimensionalbodies whose volume function gives rise to the function r is the body of revolution whose surface is createdby revolving the function r(t) around the t axis. For this reason r(t) is also called the radius function ofthe body. The following lemma gives an important property of the radius function of convex bodies.Lemma 3.6.2: The radius function that corresponds to convex bodies is concave on its support set.Proof: Let us denote by St the convex body in Rd�1 that is de�ned by the slice of the version spacelocated at t. Clearly, f(t) is the volume of St.We de�ne the linear combination of two bodies, A and B as:�1A + �2B = f�1a+ �2bja 2 A; b 2 Bg ;where �1; �2 2 R. An immediate result of the convexity of the version space is that for any t1; t2 2 R,and any 0 � �1; �2 � 1 such that �1 + �2 = 1�1St1 + �2St2 � S�1t1+�2t2 :Using the terminology of the theory of convex bodies, we can say that the set of bodies St, parameterizedby t 2 R is a (one-parameter) concave family of bodies.9The Brunn Minkowski theorem states that, for bodies in Rn, \the n-th root of the volume of the bodiesof a linear or concave family is a concave function of the family of parameters" ([Bonnesen and Fenchel,1987],Subsection 48). In our case, n = d� 1 and the family is a concave family of a single parameter. Wethus get the statement of the lemma as a special case of the Brunn Minkowski theorem.We shall use Gd(r) to denote G(F) where F is the volume function of a d dimensional body whoseradius function is r. We shall show that the radius function that corresponds to a PS volume function andminimizes G(r) is (up to a normalization factor cd that does not change Gd(r)):r�(t) = cdmax(0; 1� jtj) (3:22)The revolution body that corresponds to this radius function is constructed of two equivalent cones joinedat their bases. As this is a convex body we conclude that it is the convex body that minimizes G(F). Onecan compute Gd(r�) for any �xed d by solving the integral in Equation (3.17) as follows. In this case we�nd it more convenient to use the integral over the negative half of the line as de�ned in Equation (3.18).The volume function in the range �1 � t � 0 is F �d (t) = R t�1(r�(s))d�1ds = (1+ t)d=2 and it is 0 for t < 0.Plugging this into Equation (3.18) we getG(F �d) = R 0�1 (1+t)d+12 (1� (1+t)d+12)H((1+t)d+12) dtR 0�1 (1+t)d+12 (1� (1+t)d+12) dt = R 1=20 F 1=d(1� F)H(F)dFR 1=20 F 1=d(1� F)dF ; (3:23)9For the de�nition of a convex family of bodies see ([Bonnesen and Fenchel, 1987],Subsection 24).

69which can be shown by direct calculation to decrease as d!1. Which gives the general lower bound ofG(F �d) > R 1=20 (1� F)H(F)dFR 1=20 (1� F)dF = 19 + 718 log 2 : (3:24)And this gives the statement of the theorem.What remains to be shown is the existence of variations that decrease G(F) for all volume functions butF �, that preserve the PS properties of F . As the characterization for volume functions of convex bodiesis given in terms of the radius function we describe the variations in terms of adding a variation function, (t) to the radius function r(t). As we are restricting ourselves to volume functions, it is enough to de�ne (t) for 0 � t <1.Let us enumerate the requirements on the radius variation function (t), and on the correspondingvolume variation function F (t) + 	(t) = R t0(r(s) + (s))d�1 ds.1. We need F (jtj) +	(jtj) to be a PS volume function. For this to hold we require that r(t) + (t) is apositive concave function that is nonzero only on a bounded segment [0; c], c <1.2. We need to guarantee that R10 rG(t)	(t) dt < 0. For that to hold we require that 	(t) is non-positivefor all 0 � t � w and non-negative for all t > w. Where w is the pivot point for the volume functionF .3. For any given � > 0 we should be able to �nd a radius variation function (t) such that the changein the corresponding volume function is as small as is desired � > R+10 	(t)2 dt > 0.We describe three families of variational functions. For any radius function r that corresponds to avolume function in PS and is not equal to r� = cdmax(0; 1� jtj), one of these variations applies, showingthat there exists r0(t) such that Gd(r0) < Gd(r). The variations are constructed geometrically. Below is alist of the constructions that should be read alongside Figure 3.4. The basic idea in all three transformationsis to \move" volume from place to place along the projection direction, in such a way that for each point tin a particular range, volume is moved only from one the right of the points to their left or vice versa. Itis easy to check that each of the conditions 1-3 holds for each of those transformations. In the descriptionsbelow we shall refer to volume changes are caused by increasing or decreasing the radius function, notethat these are changes in the d-dimensional volume of the body whose volume function corresponds tothe radius function, and not in the two dimensional area described by the changes in the graph. Thetransformations thus depend on the dimension of the actual body, however, the qualitative form of thetransformation remains the same for all dimensions. Each transformation takes a parameter �, which is apositive number that is set small enough so that condition 3 holds.1. If r is not linear in the range 0 � t � w then transformation 1 is used (see Figure 3.4(a)):(a) Let A be the point (w; r(w)), select a point A0 on the curve de�ned by r to the left of A so thatthe volume decrease caused by changing the curve10 A _ A0 to the cord A� A0 is equal �=2.10We use A � B to denote the line segment between the points A and B, and A _ B to denote the segment of a curvethat connects A and B. We also use the shorthand A�B _ C �D to denote a the concatenation of a line segment, a curvesegment, and another line segment.

70
w

Cords

Tangents

0

A

A’

B

B’

C C’

Y

Transformation 1

Transformation 2

w

A

t

r(t)

A’

X

Y

B

B’

C C’

Transformation 3

r(t)

t

X

A’’

Figure 3.4: The variational transformations(b) Let B be the point (0; r(0)), select a point B0 slightly above B and connect it to the (unique)point X on the curve so that the curve B � X _ A0 � A is concave. Choose B0 so that thevolume increase caused by changing the curve B _ X to the line B �X is �=2.Set �0 small enough so that this construction is possible for all 0 < � < �0.Note that for each point 0 � t � w, at least one of the two following conditions hold: either volumeis only removed from the right of t, or volume is only added to the left of t. This implies that thevolume function, F (t), increases in this range. Because the amount of volumes that are removed andadded are equal, F (t) does not change for t outside the range [0; w]. This implies that condition 2

71holds.2. If r does not decrease linearly to zero for t � w then transformation 2 is used (see Figure 3.4(a)):(a) Select A00 on the curve to the right of A so the volume decrease that is caused by changingA _ A00 to A �A00 is �=2.(b) Let C be the point at which the curve meets the horizontal axis. Select C 0 slightly to the rightof C and connect it to the point Y on the curve so that the curve C 0� Y _ A00�A is concave.Choose C 0 so that the volume increase caused by changing C 0 � C � Y to C 0 � Y is �=2.Set �0 small enough so that this construction is possible for all 0 < � < �0.An argument similar to the one used in transformation 1 holds in this case for t > w.3. If neither condition 1 nor 2 holds, and the slopes of the two linear segments are not equal (i.e. r 6= r�),then transformation 3 is used (see Figure 3.4(b)):(a) A point A0 slightly below A is chosen.(b) A point B0 slightly above B is chosen so that there is no net change in the volume when changingA�B to A0 �B0.(c) A point C 0 slightly to the right of C is chosen so that there is no net change in the volume whenchanging A� C to A0 � C 0.(d) The movement from A to A0 is chosen do that the change in the volume caused by each of thefour changes in r: B �X to B0 �X , A�X to A�X 0, A� Y to A0 � Y and C � Y to C 0 � Yis equal to �=4In this case the volume function is changed on both sides of the pivot point. Arguments similar tothe one used in transformation 1 shows that condition 2 is met.The only PS radius functions to which none of those transformations apply is r�, thus �nishing theproof of the theorem.3.6.2 Relaxing the uniformity constraintsIn this section we show that the results of Theorem 3.6.1 can be extended to cases where the prior andinput distributions are not exactly uniform. We use the following de�nitionDe�nition 3: We say that a density D0 is within � of D if for every measurable set A, we have that� � PrD(A)=PrD0(A) � 1=�.Using this de�nition, we get the following extension of Theorem 3.6.1:Theorem 3.6.3: The value of the functional G(F) for the parallel planes learning problem, when theprior distribution is within �P of uniform and the input distribution is within �D of uniform, is at least�4P�D(1=9 + 7=(18 ln 2)) > 0:672�4P�D bits, independent of the dimension d.

72Proof:We �rst prove the dependence on the uniformity of the input distribution, as measured by �D. Ingeneral, any distribution D that is within �D of the uniform distribution � can be written as weightedsum of the form �D� + (1 � �D)� where � is some other distribution. Fix the version space and anyprior distribution, let the distribution of examples be D = �D�+ (1� �D)� and let g�; g� be the expectedinformation gains when the examples are generated according to � or � respectively. As g� > 0 we getthat the expected information gain when D is within �D of uniform is at least �D times the expectedinformation gain when D is uniform.The analysis of the dependence on �P is more involved. We go back to the analysis of an arbitraryprojection of a convex body from the proof of Theorem 3.6.1. The main idea there was to show transfor-mations that increase or decrease the volume function in particular ranges, in a way that decreased theexpected information gain. There, the transformation involved changing the shape of the body. Here wepresent a transformation that changes the density of the prior distribution inside the version space.We �x a convex body and a direction ~x along which this body is projected. We denote by �(t) theaverage density along the slice of body which is de�ned by the example (~x; t). The relation between thevolume function F , and the radius function r is nowFd(t) = Z t�1(r(s))d�1�(s)ds :We search for a density distribution of the points in the body, which is within �P of the uniform distribution,and minimizes the expected information gain from (uniformly distributed) examples whose direction is ~x.Note that the symmetrization argument used in the proof of Theorem 3.6.1 holds for this case too, andwe can thus restrict ourselves to functions r and � that are de�ned only over the positive reals. From thevariational derivative of F (t) for t � 0 that we computed in Equation (3.21), we know that G(F) decreasesif F (t) is increased for some t � w or if F (t) is decreased for some 0 � t � w. As we allow deviations fromthe uniform prior distribution we can change F without changing the form of the convex body. We shallnow give a variation of � that changes �(t) in the range 0 � t � w in a way that decreases G(F). As thisvariation can be applied to any � that does not have a speci�c step-like form in this range, we get thatthis step-like form of � achieves the minimal value of G(F) for this �xed body and P that is within �P ofuniform. A similar argument can be used to show that �(t) must also have a stepwise form in the rangew � t.Assume that there exist 0 < t1 < t2 < w and �; � > 0 such that 0 � t1� � < t1+ � � t2� � < t2+ � < w, and such that for all t 2 [t1 � �; t1 + �], �(t) < 1=�P � �, and for all t 2 [t2 � �; t2 + �], �(t) > �P + �. Weadd to �(t) the following variation function: (t) = 8><>:+�1; t1 � � � t � t1 + � ,��2; t2 � � � t � t2 + � ,0; otherwise ;where �1; �2 are chosen so that � � �1; �2 > 0 and�1�2 = R t1+�t1�� (r(s))d�1dsR t2+�t2�� (r(s))d�1ds :

73This insures that the volume function does not change outside the range [t1 � �; t2 + �].It is easy to check that �(t) + (t) corresponds to a density distribution that is within �P of theuniform distribution. Changing the density distribution from �(t) to �(t) + (t) decreases F (t) in therange [t1 � �; t2 + �] and does not change F (t) anywhere else. Thus this change decreases G(F). It is alsoeasy to check that this variation cannot be applied to � if and only if there exists 0 � a � w such that�(t) = 1=�P for 0 � t < a and �(t) = �P for a < t � w. From this argument and a similar argument forthe range t � w we get that the density function that minimizes G(F) must be of the form��(t) = (1=�P; 0 � t � a or b � t ,�P ; a � t � b : (3:25)where 0 � a � w � b. We do not have a simple variational argument for determining the exact value of aand b, however, as we shall see, we can lower bound the information gain without this explicit knowledge.We have thus found the form of the density function that minimizes the information gain for a speci�cbody (and a speci�c projections). Suppose now that we �x the function � and vary the shape of the body,i.e. the radius function r. Going through the construction of the variational functions in the proof ofTheorem 3.6.1, we see that the same construction steps hold verbatim, although special attention needsto meaning of the expression \the volume decrease is equal to x" as the volume is now de�ned in terms ofthe non uniform distribution speci�ed by �.The combination of these two arguments shows that the smallest value of G(F) is attained for theradius function r� speci�ed in Equation (3.22), and the average density function ��. It remains to computea lower bound on G(F) based on these two facts. This is done by bounding the ratio between the valuesof G(F) for the uniform prior and the non uniform prior cases.We change the integration variable in Equation (3.19) from x to F (x):11G(F) = R 1=20 F (1� F) H(F) dxdF dFR 1=20 F (1� F) dxdF dF : (3:26)When written in this form, the dependence of G(F) on the r and � enters the equation through thederivative dx=dF . By bounding the ratio between the values that this derivative attains in the uniformand the non-uniform cases, we can bound the ratio between the values that G(F) attains for the uniformand the non-uniform prior distributions.The volume function that corresponds to the uniform prior distribution is, for �1 � x � 0, Funif(x) =(1 + x)d=2. The volume function that corresponds to the prior distribution de�ned by �� isFnon-unif(x) = 12 8><>:��1P (1 + x)d; �1 � x � �b,�P(1 + x)d + c; �b � x � �a,��1P (1 + x)d + 1� ��1P ; �a � x � 0 (3:27)Where c � 0 is de�ned by matching the two de�nitions of F (�b).11Recall that we are considering the symmetric case, so F+ = F� = F .

74Taking the derivatives of Funif and Fnon-unif we get the following equation for their ratio:� dxdF �non-unif� dxdF �unif = 8>>>><>>>>:�1=dP ; 0 � F � F (�b),��1=dP � 2F2F�c�1�1=d ; F (�b) � F � F (�a),�1=dP � 2F2F+��1P �1�1�1=d ; F (�a) � F � 1=2 (3:28)Using the facts that �P � 1, c � 0, and d � 2 we can bound the ratio of the derivatives for each of thethree cases. For the range �1 � x � �b we get that�P � �1=dP � � dxdF �non-unif� dxdF �unif � 1 : (3:29)For the range �b � x � �a we get, using the fact that F is monotone non-decreasing, that1 � 2F (�a)2F (�a)� c � 2F (x)2F (x)� c � 2F (�b)2F (�b)� c = ��1P (1� b)d�P(1� b)d � ��2P ;which implies that in the range �b � x � �a,1 � ��1=d � � dxdF �non-unif� dxdF �unif � ��2+1=dP � ��2P : (3:30)Finally, for the range �a � x � 0, we get that�2P � �P(1� a)d + c��1P (1� a)d = 2F (�a)2F (�a) + ��1P � 1 � 1which implies that �2P � �2�1=dP � ��1=d � � dxdF �non-unif� dxdF �unif � 1 (3:31)Combining the bounds from Equations (3.29), (3.30), and (3.31), and plugging them into Equation (3.28),we get that �2P � � dxdF �non-unif� dxdF �unif � ��2PUsing this bound and Equation (3.26) we get that G(Fnon-unif) � �4PG(Funif). This completes the proof ofthe theorem.3.6.3 PerceptronsUsing the tools we developed in the previous sections, we can prove that QBC is an e�cient queryalgorithm for the perceptron concept class when the prior distribution and the distribution of examplesare both close to uniform.

75The perceptron concept class is de�ned as the following set of binary functions over the unit ballc~w(~x)� 1; ~x � ~w � 00; otherwise ; (3:32)where ~w; ~x 2 Rd, jj~wjj2 = 1 and jj~xjj2 � 1. The prior distributions are within some constants from theuniform distributions over the respective sets. As each ~w is a point on the surface of a d dimensionalsphere, the initial version space is isomorphic to the unit sphere.In this section we prove that there exists a lower bound on the information gain of the queries of QBC.However, our proof technique requires that the initial version space is not the complete unit sphere, but isrestricted to be within a cone. In other words, there has to exist a unit vector ~w0 such that for any ~w 2 V0the dot product ~w � ~w0 is larger than some constant � > 0.This condition is annoying. However, it is not hard to guarantee that this condition holds by usingan initial learning phase, prior to the use of QBC, that does not use �ltering but rather queries on allthe random instances supplied by Sample. Using the results of Blumer et. al. we can bound the numberof training examples that are needed to guarantee that the prediction error of an arbitrary consistenthypothesis is small (with high probability). As the distribution of the instances is close to uniform, a smallprediction error implies that the hypothesis vector is within a small angle of the vector that correspondsto the target concept. The details of this argument are given in the following lemma.Lemma 3.6.4: Assume that the distribution of the instances D is within �D from the uniform distributionin the unit ball. Suppose m random instances are chosen according to D, labeled according to f~w0(�) andused to �nd a hypothesis f~w(�) that is consistent with all the labeled instances.If m � max�4� log 2� ; 8d� log 13� � where � = �D cos�1(�)then, with probability 1� � over the choice of the m random instances, ~w � ~w0 � �.Proof: If ~w � ~w0 < � then the angle between ~w and ~w0 is larger than cos�1(�). The examples on whichf~w(~x) is incorrect are those vectors in the unit ball for which ~x � ~w � 0 and ~x � ~w0 < 0, or ~x � ~w < 0 and~x � ~w0 � 0. This de�nes a subset of the unit ball, constructed of two wedges, whose volume is at leastcos�1(�) of the volume of the ball. As the distribution of the instances is within �D from the uniformdistribution, the probability of this set is at least �D cos�1(�).On the other as the VC dimension of the d dimensional perceptron is d we can use the classical uniformconvergence bounds from [Blumer et al., 1989]. Theorem 2.1 in [Blumer et al., 1989] guarantees that ahypothesis that is consistent with m labeled examples, chosen independently at random from an arbitrarydistribution, has error smaller than � with probability 1� � ifm � max�4� log 2� ; 8d� log 13� � :Combining these two arguments, we get the statement of the theorem.Assuming that an initial phase of learning from un�ltered instances is used to guarantee a bound onthe maximal angle between vectors, we get the following theorem.

76Theorem 3.6.5: For any � > 0, let C� be the d dimensional perceptron concept class as de�ned inEquation (3.32), restricted to those concepts c~w, such that ~w0 � ~w > � for some unit vector ~w0. Let theprior distribution over C� be within is within �P of uniform and the input distribution be within �D fromuniform. Then the expected information gain of the queries of QBC is larger than 0:672�5d�4P�DProof: The version space for the perceptron is a region on the d-dimensional unit sphere that is boundedby a set of great circles. We shall transform this problem into a special case of the parallel planes learningproblem de�ned in Section 3.6.1.Because we assume the existence of the vector ~w0 we can de�ne a one-to-one mapping of the versionspace to a bounded convex subset of Rd�1. We can assume, without loss of generality, that ~w0 =f1; 0; : : : ; 0g. We can also assume that jj~xjj2 = 1, because all instances ~x whose length is smaller than1 can be mapped to ~x=jj~xjj2 without changing the label assigned to them by the concepts. The distributionover the surface of the unit sphere that is created in this way is within �D of uniform.In this case the mapping of the concepts is de�ned by transforming the vector ~w = fw1; w2; : : : ; wdgthat lies on the unit sphere to the d � 1 dimensional vector ~w0 = fw2=w1; w3=w1; : : : ; wd=w1g. Thecorresponding mapping of the instances maps the instance ~x = fx1; : : : ; xdg that lies on the unit sphereto the pair ~x0 = fx2; : : : ; xdg=qPdi=2 x2i and t = �x1==qPdi=2 x2i . It is easy to see that the conditionthat de�nes the perceptron ~w � ~x � 0 is equivalent to ~x0 � ~w0 � t, which is the condition that de�nes thecorresponding parallel-plane concept.The condition ~w � ~w0 > � is, in this case, equivalent to w1 > �. It is easy to check that the onlyexamples in the transformed concept space that can be labeled both 0 and 1 by some concept in C� arethose for which qPdi=2 x2i > �. This implies that the increase in the volume of an in�nitesimal part of theinstance space is by a factor of at most ��d. Thus as the distribution over the instances on the surfaceof the unit sphere is within �D of uniform, the distribution over the transformed instance space is within�d�D of uniform.To bound the distance of the prior distribution from uniform, consider the mapping of an in�nitesimallysmall region of the version space from the sphere to the plane. Figure 3.5 illustrates this transformationfor a two dimensional perceptron. This transformation maps the hyperspherical region to a larger regionin the hyperplane. The factor by which the volume is increased is between 1 and ��d. This can be seenby separating the transformation into two steps. In the �rst step, the region on the unit hypersphere ismapped to a region on a larger hypersphere. The radius of this larger hypersphere is at most ��1, thusthe increase in the volume is by a factor of at most ��(d�1). In the second step, the region on the largehypersphere is mapped to the hyperplane, as the region is in�nitesimally small, it can be approximated bya linear region. The increase in the volume of the region in this step is by a factor of ��1. Multiplying thetwo factors we get ��d.As the prior distribution over the sphere is within �P of uniform, the distribution over the hyperplanethat is generated by the mapping is within �P�d of uniform.We thus have a special case of the parallel plane learning problem with close to uniform distributions.Using Theorem 3.6.3, we get the result of the theorem.

77
w0

Segement of
the spherical
version space

Projection of the region
to a larger sphere

Maximal angle
between W and W

Projection of the
segment on the
planeFigure 3.5: The transformation that maps the spherical version space unto the hyperplane.3.7 Learning using unlabeled examples and membership queriesThe QBC algorithm uses unlabeled examples in order to reduce the number of labeled examples thatit needs to know. While QBC is a very simple algorithm it clearly does not manifest the only way ofusing the information provided by random unlabeled examples. In this section we de�ne a measure of theinformation content of a sequence of labeled examples that is relevant directly for prediction. We showthat this measure, unlike the standard measure of information that we discuss earlier in the paper, isdirectly related to the prediction error. We also show that is can be estimated directly when the learnerhas access to unlabeled random examples. From our discussion in Section 3.3, we know that this measureof information has to be sensitive to the input distribution D, as well as to the prior P .The measure of information that we suggest is the expected entropy of the distribution of the label ofa randomly chosen example. More speci�cally, if V is the version space, P the prior distribution, and Dthe input distribution, then we de�ne the label entropy of V � C with respect to P and D asLH(V;P ;D) = Ex2D (H(PrP(c(x) = 1jc 2 V))) :This measure of information can be interpreted as the expected information that we get from the labelof a random example, given that we already know that it is labeled by a concept from the version space V .If the label entropy is low, then for most instances the distribution of the labels is highly biased to either 0or 1, and thus predicting the more probable label is likely to be correct. More speci�cally, Haussler et. al.([Haussler et al., to appear]) have shown that the probability that the optimal Bayes prediction is incorrectcan be upper and lower bounded by functions12of LH(V;P ;D):H�1(LH(V;P ;D))�Ex2D (min(PrP(c(x) = 1jc 2 V); 1� PrP(c(x) = 1jc 2 V)))� LH(V;P ;D)=2Also, this measure of information is exactly the expected log-loss of the optimal prediction algorithm thatoutputs the probability of each label.12We de�ne H�1(x) as the unique 0 � y � 1=2 such that H(y) = x.

78While this measure is a natural measure of the information content of a sample that is relevant forprediction, it is not a useful guide for learning algorithms in the standard frameworks of distribution-freelearning, because it is not clear how to estimate it when the input distribution, D, is not known. In ourmodel the learner can make calls to the oracles Sample and Gibbs, and in this way estimate LH(V;P ;D)directly. Using this estimate, the learner can search for those queries that produce the largest expectedreduction in the label entropy of the version space. If the algorithm can �nd examples that reduce thelabel entropy of V by a �xed fraction at every step then we are guaranteed that the prediction error willdecrease exponentially fast in the number of queries. On the other hand, note that when QBC decreasesthe prediction error below e�n after n queries, then the label entropy after n queries is smaller than ne�n.Thus the queries used by QBC in such cases decrease the label entropy of V by a �xed fraction. ThusQBC can be seen as an algorithm that can, for some learning problems, select queries that reduce the labelentropy by a �xed fraction. While QBC is a very simple and surprisingly e�ective method of searching forsuch queries, it seems very possible that other algorithms for �nding such queries might be more general.The de�nition of label entropy can be extended to the case where the target concept is randomized.This is of special interest because we do not know how to extend QBC for such problems. In this case eachconcept c 2 C assigns a probability to each of the two labels. We shall denote the probability assigned tothe label y 2 0; 1 under the distribution de�ned by the concept c and the instance x by Prc(x)(y). In thiscase the regular de�nition of the concept space is useless, because the notion of consistency of a conceptwith the data is no longer deterministic. The natural generalization of the notion of the version space tothis case is the Bayesian posterior distribution. The probability assigned to the concept c after observingthe sample S = hx1; y1i; : : : ; hxn; yni is:Pr(cjS) = Pr(c) Pr(Sjc)Pr(S) = PrP(c) Qni=1 Prc(xi)(yi)Pc02CPrP(c0) Qni=1 Prc0(xi)(yi)and the label entropy can be de�ned in this case to beLH(V;P ;D) = Ex2D0@H 0@Xc2CPr(cjS)Prc(x)(1)1A1A :The relations between prediction and the information content carry on to this case. The question of �ndinge�ective algorithm for selecting queries with high information content in this case is a very interesting openquestion.3.8 SummaryIn this chapter we have proved that the Query by Committee algorithm is an e�cient query algorithmfor the perceptron concept class with distributions that are close to uniform. This establishes, by rigorousmathematical analysis, results that were found By Seung et. al. in [Seung et al., 1992] using methods fromstatistical mechanics, which are only partially formalized and which consider only the high-dimensionallimit of the problem.

79We have proved that, in general, if the queries that are selected by the query by committee algorithmhave high expected information gain then the prediction error is guaranteed to decrease rapidly with thenumber of queries. By proving that this is the case for the perceptron learning problem, we have achievedour main result.We hope that lower bounds on the expected information gain of QBC can be proven for much moregeneral learning problems. It seems that it would be very useful, in this context, to generalize Theorem 3.5.1to allow cases in which the expected information gain is small to occur with some small probability.The QBC algorithm, in its current form, does not allow for noise in the labels of the examples, andit assumes that the hypothesis space and the concept space are equal. Finding algorithms for selectingqueries that work in this case is the next main step in this direction.In this work we have explored some of the power of algorithms for learning using queries that haveaccess to random unlabeled instances and can make membership queries. This model of learning is anatural one in contexts where unlabeled instances are much cheaper than labeled instances. An interestinggeneral open question is how much more powerful is this model of learning from queries from the standardmodel for using membership queries in statistical learning.

804. Unsupervised learning of distributions on binary vectors using twolayer networks4.1 IntroductionMost of this thesis is concerned with the problem of learning mappings. The data that is supplied tothe learning algorithm in this case is a set of labeled instances. As the labels are commonly seen as beingsupplied by some kind of a supervising teacher, this type of learning is often referred to as \supervised"learning. In this chapter we consider the problem of learning distributions. In this case the data to thelearner consists just of instances. This type of learning is called \unsupervised" learning.Suppose that we are given a large (unordered) set of binary vectors and that we wish to �nd the typesof correlations and redundancies that exist between the bits in these vectors. We assume that each binaryvector is of the form ~x = fx1; : : : ; xng 2 f�1gn, and that each vector is generated independently at randomaccording some unknown distribution on f�1gn. Such an assumption is natural, for instance, when eachinstance consists of (possibly noisy) measurements of n di�erent binary attributes of a randomly selectedobject. Our interest is in cases where the dimension n of the vectors is large, say n > 50. One exampleof this type of scenario is when the instances are binary images of handwritten digits, where each bitcorresponds to the black or white color of a single pixel in the image. The correlations that we expect tosee in this case correspond to the fact that the values of neighboring pixels or pixels that lie along lines orcurves are strongly dependent on each other.Knowledge of the correlations between di�erent bits of the binary vector is useful when we want to usea set of measurements for various classi�cation and prediction tasks. The idea that features that are usefulfor classi�cation can be deduced from the distribution of typical inputs is the basis of several existingalgorithms for unsupervised learning. One type of algorithm selects projections of the input based onPrinciple Component analysis [Sanger, 1989, Oja, 1989]. Another type of algorithm clusters data based onan assumption that the underlying distribution is a mixture of Gaussians [Everitt and Hand, 1981, Nowlan,1990]. The combination model presented in this paper is related to both of these lines of work and hassome advantages over each of them.If we �nd a good model of the distribution, we can tackle other interesting learning problems, such asthe problem of estimating the conditional distribution on certain components of the vector ~x when providedwith the values for the other components (a kind of regression problem), or predicting the actual valuesfor certain components of ~x based on the values of the other components (a kind of pattern completiontask). In the example of the binary images presented above, this would amount to the task of recoveringthe value of a pixel whose value has been corrupted. We can often also use the distribution model to helpus in a supervised learning task. This is because it is often easier to express the mapping of an instanceto the correct label by using \features" that are correlation patterns among the bits of the instance. Forexample, it is easier to describe each of the ten digits in terms of patterns such as lines and circles, ratherthan in terms of the values of individual pixels, that are more likely to change between di�erent instancesof the same digit.

81The process of learning an unknown distribution from examples is usually called density estimation orparameter estimation in statistics, depending on the nature of the class of distributions used as models.There has been considerable work on density/parameter estimation for distributions on real vector spaces(see e.g. [Duda and Hart, 1973b]), and less on binary vector spaces. The most popular mainstreamstatistics models for distributions on f�1gn for large n appear to be small mixtures of Bernoulli productdistributions1 [Everitt and Hand, 1981, Nowlan, 1990], and models in which only k-wise dependenciesbetween the components of the input are allowed, for some k << n [Freeman, 1987, Cox and Snell, 1989].Newer and more exciting models include Bayes networks [Pearl, 1988] and Markov random �elds [Pearl,1988, Geman and Geman, 1984, Geman, 1986]. In the neural network area, both Hop�eld nets [Hop�eld,1982] and Boltzmann machines [Ackley et al., 1985] can be used as models of probability distributions onf�1gn for relatively large n. We will look at a class of models de�ned by a special type of Boltzmannmachine.Hop�eld networks, Boltzmann machines and Markov random �elds are all based on the statisticalphysics concepts of energy and local interaction between units whose state is binary.2 The models de�nedby Hop�eld networks and Boltzmann Machines are special cases of the more general Markov random �eldmodel. The units in a Hop�eld network correspond to the bits of the binary vectors and the interactionbetween units are restricted to symmetric pairwise interactions. Boltzmann machines also employ onlypairwise interactions, but in addition to the units that correspond to bits of the data vectors, commonlycalled the input units, there are hidden units, which correspond to unobserved binary variables. Thesehidden units interact with the input units and generate correlations between the vector bits that the inputunits represent. The distribution of the binary vectors generated by the Boltzmann Machine is de�nedas the marginal distribution induced on the state of the input units by the Markov random �eld over allunits, both observed and hidden.While the Hop�eld network is relatively well understood, it is limited in the types of distributions thatit can model. On the other hand, Boltzmann machines are universal in the sense that they are powerfulenough to model any distribution (to any degree of approximation), but the mathematical analysis of theircapabilities is often intractable. Moreover, the standard learning algorithm for the Boltzmann machine,a gradient ascent heuristic to compute the maximum likelihood estimates for the weights and thresholds,requires repeated stochastic approximation, which results in unacceptably slow learning. Many methodshave been proposed to speed up learning in Boltzmann machines. One of these methods is the mean-�eldapproximation [Peterson and Anderson, 1987]. In Section 4.2.2 we shall see some relations between one ofour learning rules and the mean �eld approximation.1A Bernoulli product distribution is a distribution over binary vectors in which each component is chosen independentlyof the rest.2Informally, a Markov random �eld consists of a set of random variables that are connected as nodes in a graph. Thedistribution of each random variable is determined by the value of its neighbors. In other words, given the value of all theneighbors of random variables, the value of the random variable is independent of the state of the rest of the random variables.The Markov process is a special case of the Markov �eld in which each random variable corresponds to a speci�c time step andits neighbors are the random variables that correspond to the previous and the succeeding time steps. In general, Markov-�elddistributions have a canonical description that is based on the concept of interaction energy.

82In our research we have attempted to narrow the gap between Hop�eld networks and Boltzmannmachines by �nding a model that will be powerful enough to be universal, yet simple enough to beanalyzable and computationally e�cient.3 The model that we use in this work is essentially a BoltzmannMachine whose connection graph is bipartite. There are two types of nodes: \input" nodes and \hidden"nodes. Each input node is connected to each of the hidden nodes, and no other connections exist. We callthis model the inuence combination machine, or, for short, the combination machine. We refer to thedistribution that is de�ned on the binary vectors by the combination machine as the combination model.This type of Boltzmann machine was previously studied by Smolensky in his harmony theory [Rumelhartand McClelland, 1986][Ch.6]. In his work he discusses several possible ways of using this type of model forsolving problems in Arti�cial Intelligence. In our work we concentrate on the mathematical properties ofthe model and on e�cient algorithms for learning the model from random instances.The combination machine consists of two types of units: input units, each of which holds one componentof the input vector, and hidden units, representing hidden variables. There is a weighted connection betweeneach input unit and each hidden unit, and no connections between input units or between hidden units (seeFigure 4.1). The presence of the hidden units induces dependencies, or correlations, between the variablesmodeled by input units. To illustrate the representational power of the combination model, consider thedistribution of people that visit a speci�c co�ee shop on Sunday. Let each of the n input variables representthe presence (+1) or absence (�1) of a particular person that Sunday. These random variables are clearlynot independent. For example, if Fred's wife and daughter are there, it is more likely that Fred is thereas well, if you see three members of the golf club, you expect to see other members of the golf club, ifBill is there, you are unlikely to see his ex-wife Brenda there, etc. This situation can be modeled by acombination model in which each hidden variable represents the presence or absence of a social group. Theweights connecting a hidden unit and an input unit measure the tendency of the corresponding person tobe associated with the corresponding group. In this co�ee shop situation, several social groups may bepresent at the same time, exerting a combined inuence on the distribution of customers. In Sections 4.2.3and 4.2.4 we discuss why the combination model is better for describing this type of distributions thanpopular models such as the mixture model and principal components methods.4We show that the combination model is a universal model in the sense that any probability distributionon f�1gn can be represented by a combination model with n input units to within any desired accuracy.Then we show that the standard Boltzmann machine learning rule, when applied to a combination model,can be computed in closed form, instead of using random sampling techniques. Thus we get a fasterlearning algorithm than the standard Boltzmann rule that is also exact. The computational complexity of3Recent work on modeling correlations by hidden units has also been done by Radford M. Neal [Neal, 1990]. In his workhe gives a di�erent variant of the Boltzmann Machine algorithm that uses distribution models similar to Judea Pearl's BayesNetworks [Pearl, 1988, Gefner and Pearl, 1987]. His model is superior to the Boltzmann Machine in the sense that theconnection weights are interpreted as conditional probabilities, which is a more accessible interpretation than local energyinteractions. The learning algorithms that Neal used are based on stochastic approximation. The question of whether atwo-layer model of this type has universal representation capabilities is open.4Noisy-OR gates have been introduced in the framework of Bayes Networks to allow for such combinations [Pearl, 1988].However, using this in networks with hidden units has not been studied, to the best of our knowledge.

83the learning rule is exponential in the number of hidden units. However, under certain natural conditionswe show that there exists a good approximation that requires only polynomial time.We then explore the relationships between the distributions generated by the combination model andthose studied in Projection Pursuit density estimation [Huber, 1985, Friedman et al., 1984, Friedman,1987]. We show that the search for hidden variables that have a strong inuence on the input distributioncan be interpreted as a search for projections of the input that have a non-Normal marginal distribution.Based on this observation, we propose a learning algorithm based on exploratory projection pursuit forthe combination model. This method is a greedy method that adds a single hidden unit at a time tothe model. The time complexity of this method is linear in the number of hidden units compared tothe exponential complexity of the gradient based method. However, while the gradient based method isguaranteed to converge to a local minimum in the model space, the projection pursuit method does nothave this guarantee.We conclude this paper with results of some experiments. The �rst set of experiments compare the twolearning algorithms on synthetically generated data, and demonstrate their advantages and de�ciencies.The second set of experiments compare the performance of the combination model to that of the mixturemodel and demonstrate the di�erence in the type of distribution representations that they generate.4.2 The inuence combination distribution model4.2.1 NotationFor the most part, we use standard algebraic notation in our formulas. Elements from the n-dimensionalspaces Rn and f�1;+1gn are denoted by vectors ~x; ~y; : : :. We denote by jj~xjj1,jj~xjj2 the l1 and l2 normsof ~x, and by ~x � ~y the dot product between two vectors. We use the standard hyperbolic trigonometricfunctions sinh(x) = ex � e�x2 ; cosh(x) = ex + e�x2 ; tanh(x) = sinh(x)cosh(x) :We denote the natural base logarithm by \ln". Finally, we use the function logistic(x) = 1=(1 + exp(�x))that is commonly used in the de�nition of Boltzmann Machines.4.2.2 The ModelIn this section we present the combination machine and the corresponding distribution model, whichis the inuence combination distribution model. The combination machine is a simple Connectionist typemodel which is a special case of the Boltzmann Machine [Ackley et al., 1985]. As we shall see, the simplicityof this special case makes it easier to analyze than the general Boltzmann machine and allows the use ofmore e�cient learning algorithms. At the same time, the model is still powerful enough to approximateany distribution of binary vectors.To model a distribution on f�1gn we use a machine with n +m units. There are two types of units,n input units, each of which represents a single bit in the random vector, and m hidden units, whose role

84
h1 h2 h3

x5x1 x2 x3 x4

m=3

n=5

w (2)

1

Hidden Units

Input UnitsFigure 4.1: The bipartite graph of the combination modelis the create correlation between the values of the input units. These units are connected in a bipartitegraph as illustrated in Figure (4.1).The random variables represented by the input units each take values in f+1;�1g, while the hiddenvariables, represented by the hidden units, take values in f0; 1g. The state of the machine is de�ned bythe values of these random variables. We denote by ~x = (x1; : : : ; xn) 2 f�1gn the state of the input units,and by ~h = (h1; : : : ; hm) 2 f0; 1gm the state of the hidden units.There arem(n+1) real-valued parameters associated with the machine. Each particular setting of theseparameters de�nes the parameter vector of the machine. Each parameter vector de�nes a distribution onthe states of the machine. Summing over the state of the hidden units we get a distribution on theinput units, which is the inuence combination distribution de�ned by the particular parameter vector.There are two variants of the combination model, which we call the binary valued and the real valuedcombination machines. While we are mostly interested in the binary model, the real valued model is auseful approximation in some cases.The parameters are all real-valued and are de�ned as follows. There is a weight parameter associatedwith each edge in the bipartite graph. We denote by !(i)j the weight of the edge connecting the ith hiddenunit to the jth input unit. We also use ~!(i) to denote the vector of all n weights associated with the ithhidden unit.5 There is a bias parameter associated with each hidden unit. We denote the bias of the ithhidden unit by �(i) 2 R. The complete parameter vector of a binary combination model is denoted by�B = f(~!(1); �(1)); : : : ; (~!(m); �(m))g. For a given �B, the energy of a state of the combination machine isde�ned as E(~x;~hj�B) = � mXi=1(~!(i) � ~x+ �(i))hi (4:1)and the probability of a state is de�ned to be5In [Rumelhart and McClelland, 1986][Ch.6], binary connection weights are used, here we use real-valued weights.

85Pr(~x;~hj�B) = 1ZB e�E(~x;~hj�B) where ZB =X~x;~h e�E(~x;~hj�B):We �nd it useful to de�ne the \combined weight" of a particular state of the hidden units as the sum ofthe weight vectors corresponding to the hidden units whose state is 1:~!(~h) = mXi=1 hi~!(i)Plugging the de�nition of the energy into the de�nition of ZB, we get thatZB =X~x;~h exp mXi=1(~!(i) � ~x+ �(i))hi! :Expanding the sum in the exponent we get thatZB = X~h2f0;1gm0@exp(mXi=1 hi�(i)) X~x2f�1;+1gn exp(~x � ~!(~h))1A :Expanding the sum over ~x 2 f�1;+1gn, we get thatZB = X~h2f0;1gm0@exp(mXi=1 hi�(i)) nYj=1(exp(~!(~h)j) + exp(�~!(~h)j))1A ;where ~!(~h)j denotes the jth component of ~!(~h). Using the de�nition of cosh(x), we can rewrite the lastexpression as ZB = 2n X~h2f0;1gm24exp(mXi=1 hi�(i)) nYj=1 cosh(~!(~h)j)35 : (4:2)Note that the trivial model, in which there are no hidden units, de�nes the uniform distribution overthe state vectors ~x. In the general case the probability distribution over possible state vectors on the inputunits is given byPr(~xj�B) = X~h2f0;1gmPr(~x;~hj�B) = 1ZB X~h2f0;1gm exp mXi=1(~!(i) � ~x+ �(i))hi! (4:3)By separating the sum over ~h into a sum over all ~h such that hm = 0 and a sum over all ~h such thathm = 1, we can rewrite Equation (4.3) in the following form:Pr(~xj�B) = 1ZB �e0 + e~!(m) �~x+�(m)� Xfh1;:::;hm�1g2f0;1gm�1 exp m�1Xi=1 (~!(i) � ~x+ �(i))hi!Repeating this manipulation for all m components of ~h we get thatPr(~xj�B) = 1ZB mYi=1�1 + e~!(i) �~x+�(i)� : (4:4)

86Equation (4.4) is a simple closed form representation of the distribution de�ned by the parameter vector�B. Notice that the hidden unit variables, hi, are not explicitly present in this formula. Each factor in theproduct is associated with one hidden unit in the corresponding machine. This product form is particularto the combination model, and does not hold for general Boltzmann machines. Product form distributionmodels have been used for density estimation in Projection Pursuit [Huber, 1985, Friedman et al., 1984,Friedman, 1987]. We shall look further into this relationship in Section 4.3.3.In some of the following discussion we shall �nd it useful to use a variant of the combination model thatde�nes distributions over the whole real space Rn, i.e. to allow each input to have any real-value insteadof limiting it to only +1 and -1. The structure of the machine is the same, we keep the hidden variablesf0; 1g-valued, and the distribution is de�ned in a similar way, but the energy function has an extra termthat is necessary for ensuring that the distribution can be normalized. This term corresponds to each inputunit having a connection of strength �1 to itself. To di�erentiate between the binary and the real-valuedmodels we subscript quantities relating to the real-valued model by R. The energy of a particular state ofthe real-valued model is given byE(~x;~hj�R) = � mXi=1(~wi � ~x+ �(i))hi!+ 12 jj~xjj22; (4:5)which produces the following distribution over the Rn:Pr(~xj�R) = X~h2f0;1gmPr(~x;~hj�R) = e� 12 jj~xjj22 1ZR mYi=1 �1 + e~wi�~x+�(i)� ; (4:6)where ZR = ZRn X~h2f0;1gm exp ��E(~x;~hj�R)�d~x (4.7)= X~h2f0;1gm ZRn exp �12 jj~xjj22 + mXi=1(~wi � ~x+ �(i))hi!d~x= (2�)n=2 X~h2f0;1gm exp " mXi=1 hi�(i) + 12 jj~!(~h)jj22# ; (4.8)using the integral of the Gaussian distribution.We discuss the relation between the real-valued and the binary-valued model in Section 4.2.6.4.2.3 Discussion of the modelThe right hand side of Equation (4.4) has a simple intuitive interpretation. The ith factor in the productcorresponds to the hidden variable hi and is an increasing function of the dot product between ~x and theweight vector of the ith hidden unit. Hence an input vector ~x will tend to have large probability when it isin the direction of one of the weight vectors ~wi (i.e. when ~wi � ~x is large), and small probability otherwise.This is the way that the hidden variables can be seen to exert their "inuence"; each corresponds to apreferred or "prototypical" direction in space. The bias parameter �(i), together with the length jj~wijj2

87of the weight vector, control the strength of the inuence of the ith hidden variable in comparison withthe other hidden variables, as well as its \width", i.e. how close in direction ~x has to be to ~wi before itsigni�cantly inuences its probability. Increasing either jj~wijj2 or �(i) increases the strength of the inuenceof the hidden unit. Decreasing �(i) and, at the same time, increasing jj~wijj2, decreases the \width" of theinuence, making the inuence of the ith hidden unit more restricted to input vectors whose direction isvery close to the direction of ~wi. This is true for both the binary-valued and the real-valued combinationmodels.Equation (4.3) shows that the combination model can be written as a mixture of 2m distributions ofthe form 1Z(~h) exp mXi=1(~!(i) � ~x+ �(i))hi! ;where ~h 2 f0; 1gm and Z(~h) is the appropriate normalization factor. Each of these distributions is a productof n Bernoulli distribution, i.e. the xj is drawn independently at random and attains a value of �1 or +1with probabilities logistic(�2~!(~h)j) and logistic(+2~!(~h)j) respectively, which implies that the mean of xjin according to this distribution is tanh(~!(~h)j). We shall refer to this type of distribution as a \Bernoulliproduct distribution". The combination model is a mixture of 2m Bernoulli product distributions, eachcorresponding to a setting of ~h and each having a mixture coe�cient Z(~h).It is interesting to compare the class of combination models to the standard class of models de�nedby a mixture of Bernoulli product distributions. The same bipartite graph described in Figure (4.1) canbe used to de�ne a standard mixture model. Assign each of the m hidden units a weight vector ~wi and aprobability pi such that Pmi=1 pi = 1. To generate an example, choose one of the hidden units according tothe distribution de�ned by the pi's, and then choose the vector ~x according to Pi(~x) = 1Zi e~wi�~x, where Ziis the appropriate normalization factor so that P~x2f�1gn Pi(~x) = 1. We thus get the distributionP (~x) = mXi=1 piZi e~wi�~x (4:9)This form for presenting the standard mixture model emphasizes the similarity between this model andthe combination model. A vector ~x will have large probability if the dot product ~wi � ~x is large for some1 � i � m (so long as pi is not too small). However, unlike the standard mixture model, the combinationmodel allows more than one hidden variable to be +1 for any generated example. This means that severalhidden inuences can combine in the generation of a single example, because several hidden variables canbe +1 at the same time.To see why this is useful, consider two examples. First, consider the co�ee shop example given inthe introduction. At any moment of time it is reasonable to �nd several social groups of people sittingin the shop. The combination model will have a natural representation for this situation, while in orderfor the standard mixture model to describe it accurately, a hidden variable has to be assigned to eachcombination of social groups that is likely to be found in the shop at the same time. Similarly, when wewant to represent the distribution of binary images of digits, it is reasonable to assume that each speci�cimage contains several patterns, such as lines and curves. Of course, the whole digit can be perceived asa pattern, in which case the mixture model is the relevant distribution model. However, we claim that

88it is often more appropriate to represent each digit image as a combination of patterns rather than asingle pattern. In other words, we claim that, for typical sets of images of digits, the maximal likelihoodcombination model will have larger likelihood than a mixture model with the same number of parameters.In Section 4.4 we give experimental evidence to support this claim. In cases where this claim is correctthe combination model is exponentially more succinct than the standard mixture model, and naturallycaptures the underlying product structure of the distribution. Of course, if the space of hidden variablesdoes not have a product structure of this type, then the combination model is no better than the standardmixture model.In analogy with the binary combination model, the real-valued combination model can be shown torepresent a mixture of 2m symmetric Gaussian distributions. From Equation (4.6) we get that for theempty case, m = 0, where there are no hidden variables present, the distribution is a symmetric Gaussianby de�nition. When a single hidden variable is present, the distribution becomesPr(~xj�R) = e� 12 jj~xjj22 1Z �1 + e~w1�~x+�(1)� = 1Z �e� 12 jj~xjj22 + e� 12 jj~xjj22+~w1�~x+�(1)� =1Z �e� 12 jj~xjj22 + e� 12 jj~x�~w1jj22+ 12 jj~w1jj22+�(1)� :This is a mixture of two Gaussians, both of which have spherical symmetry. They di�er only in the locationof the mean, which is ~0 for the �rst component and ~w1 for the second component, and in their relativeprobabilities (mixture weights). Each additional hidden unit has the e�ect of transforming the previousdistribution into a mixture of two distributions, one is the previous distribution, and the other is theoriginal distribution shifted by ~wi (See Figure 4.2).
w1

w2

w3Figure 4.2: The distribution over R2 generated by a (real valued) combination model withthree hidden units. Each pair of concentric circles denotes a single Gaussian distribution. Thedistribution de�ned by the combination model is a mixture of these eight Gaussians.

89In the general case the combination model with m hidden units is equivalent to a mixture of 2mGaussians whose expected values are located at the combined weight, ~!(~h), corresponding to each of the2m possible states of ~h.6 This interpretation of the real-valued model will be used in Section (4.3.6) in aProjection Pursuit algorithm for learning the combination model.4.2.4 Comparison with principal components analysisPrincipal Component Analysis (PCA) is a popular method for the analysis of high order correlations(see e.g. [Jolli�e, 1986]). Many algorithms for unsupervised learning are based on this method, among themsome learning rules for neural networks [Sanger, 1989, Oja, 1989]. The method is based on the covariancematrix, which measures pairwise correlations among input bits. The main assumption underlying themethod is that the low dimension projections of the data that retain the largest amount of information arethose projections that have the largest variance. One justi�cation of this assumption is that if the datahas a simple enough distribution such as a Gaussian distribution then the reconstruction of the originalinput from its projections is optimal for this choice of projections. The directions with largest variance areequal to the directions of the eigenvectors of the covariance matrix that have the largest eigenvalues.The neural network implementation of PCA is usually a two layer network with the same architectureas the combination model. The learning rule, however, is di�erent, and tries to make the weight vectorsof the hidden units equal to eigenvectors of the covariance matrix of the input. The outputs of the hiddenunits are thus projections of the data (or a nonlinear transformation of such projections).This type of network is capable of representing each input as a combination of correlation patterns. Inthis sense it is as powerful as the combination model and does not su�er from the de�ciencies of mixturemodels described in the previous section. However, as this method of analysis is based only on the secondorder correlations among pixels it necessarily ignores part of the structure of the distribution. In thecombination model, on the other hand, each hidden unit can represent correlations of arbitrary order. Weclaim that some natural distributions have strong high order correlation and that taking into account onlythe second order correlations ignores some of the most important information available in the distribution.In Section 4.4 we shall give some experimental evidence to support this claim.4.2.5 Universality of the modelDespite its limited connectivity, it is not hard to show that the class of binary combination models isuniversal in the sense that for every n and every distribution on f�1gn there is a combination model withn input units that approximates that distribution to within any desired accuracy. The argument is similarto an argument for the same claim regarding the class of mixtures of Bernoulli product distributions.Assume �rst that the distribution we want to estimate is Pr(~x) = p for ~x = (1; 1; : : : ; 1) and Pr(~x) =1�p2n�1 for ~x 6= (1; 1; : : : ; 1). Here we need only one hidden unit. We de�ne q = p(2n�1)1�p and choose~!(1) = (a; a; : : : ; a) and �(1) = �na + ln(q � 1), where a = 12 ln(q � 1) + 12 ln(1=�). We get the followingvalues for f(~x) := 1 + e~!(1)�~x+�(1) .6Compare this to the mixture of Bernoulli products whose expected values are tanh(~!(~h)). A more detailed comparison ofthe two models will be given in Section 4.2.6.

90If ~x = (+1;+1; : : : ;+1), then f(~x) is equal to q. For a vector where exactly one component is equalto �1 and all the rest are +1, f(~x) is equal to 1 + �, and for a vector ~x which has k components that areequal to �1, f(~x) is equal to 1 + (q � 1)(�=(q � 1))k � 1 + �k . By setting � small enough we can make1 + e~!(1)�~x+�(1) arbitrarily close to 1 for all ~x 6= ~x = (+1;+1; : : : ;+1). Normalizing the distribution to sumto 1 we can get a distribution that is arbitrarily close to the desired distribution.To approximate an arbitrary distribution, we multiply 2n factors, each approximating a distributionthat is highly concentrated on a single setting of ~x and almost uniform on all other settings. By appropriatechoice of the parameters we can approximate the arbitrary distribution closely for each value of ~x. Of coursethis requires exponentially many hidden units, but this is unavoidable since it requires an exponentialnumber of parameters to specify an arbitrary distribution over f�1gn in any reasonable parametric model.Of course, we are interested in cases where the distribution of the data can be represented well bya small combination model. While a general distribution might require many hidden units to model it,distributions that are encountered in nature are often simple, and can be modeled well by a model that hasonly a small number of hidden units. In Section 4.4 we show that the distribution of images of handwrittendigits can be approximated well by a combination model with few hidden units.4.2.6 Relations between the binary-valued and the real-valued modelsTwo variants of the combination model were introduced in Section 4.2.2, the binary-valued model(Equations (4.1) to (4.4)) and the real-valued model (Equations (4.5) to (4.8)). The binary-valued modelis the natural model for representing distributions of binary vectors, and thus, ideally, we would like touse only this model. On the other hand, the real-valued model has properties that make it possible touse more e�cient learning algorithms to learn it. As we show in this section, the real-valued model is anapproximation of the binary model when the weights are all small. Thus we can use the algorithms for thereal-valued model to �nd an approximate parameter vector of the binary model.The real-valued model de�nes a density function, in contrast with the binary model, which de�nes apoint mass distribution. However, the ratio between the densities assigned by a real-valued model to anypair of points in f�1;+1gn is equal to the ratio of the probabilities assigned to the same points by a binarymodel with the same parameters. This is because the factor of e� 12 jj~xjj22 in the density function is equal toe�n=2 for all vectors in f�1;+1gn.This does not mean that the maximum-likelihood parameter vector for a given set of examples is equalfor both models. This is because the normalization factors ZB and ZR are di�erent for each of the twocases. However, as we shall now see, when the weight vectors ~! are small the normalization factors arevery close to each other.Recall Equation (4.2):ZB = 2n X~h2f0;1gm24exp mXi=1 hi�(i)! nYj=1 cosh �~!(~h)j�35 :The Taylor expansion of cosh(x) around x = 0 is:

91cosh(x) = 1 + x22! + x44! + x66! + : : :thus the �rst order approximation of ZB for small values of !(i)j is:ZB � 2n X~h2f0;1gm24exp mXi=1 hi�(i)! nYj=1�1 + 12 �~!(~h)j�2�35On the other hand, note that Equation (4.8) can also be written as:ZR = (2�)n=2 X~h2f0;1gm24exp mXi=1 hi�(i)! nYj=1 exp�12 �~!(~h)j�2�35 ;The Taylor expansion of exp(x) around x = 0 isexp(x) = 1 + x+ x22! + x33! + : : :thus the �rst order approximation of ZR for small values of !(i)j is:ZR � (2�)n=2 X~h2f0;1gm24exp mXi=1 hi�(i)! nYj=1�1 + 12 �~!(~h)j�2�35 � ��2�n=2ZB :The fact that the two models di�er by a constant factor is of no consequence when looking for the maximal-likelihood parameter vector, because this constant factor disappears in the derivative of the log of thelikelihood.The di�erence between the two approximations is of the order of jj~!(~h)jj42. Thus if jj~!(~h)jj2 is muchsmaller than 1 the approximation is reasonable.There is another way in which the two models can be compared. In Section 4.2.3 we have shown thatboth the real-valued and the binary-valued combination models are equivalent to mixture models. Thereal-valued model is equal to a mixture of 2m Gaussian distributions. Each mixture component correspondsto a setting of ~h and has an expected value of ~!(~h). Similarly, the binary-valued combination model isequivalent to a mixture of 2m Bernoulli product distributions, each of which has an expected value oftanh(~!(~h)). When ~!(~h) is small tanh(~!(~h)) � ~!(~h).It is easy to show that every one dimensional projection of a Gaussian distribution generates a Normalmarginal distribution. Thus the marginal distribution that is generated by the real-valued combinationmodel is a mixture of normal distributions. Diaconis and Friedman [Diaconis and Freedman, 1984] haveshown that, in some sense, most \well-behaved" distributions generate a marginal distribution that is closeto normal when projected on a randomly chosen direction. In particular, the uniform distribution onthe 2n binary vectors in f�1;+1gn generates, with very high probability, a marginal distribution that isclose to the normal distribution, when the projection direction is chosen uniformly at random from the ndimensional sphere, and n is large. In Appendix B, we show that this is also true for Bernoulli productdistributions, if the distributions of the individual coordinates are not too biased. Thus, under reasonableassumptions, the marginal distribution that is generated by the binary valued combination model is alsomixture of normal distributions.

92In addition, if the weight vectors, ~wi, are short, then the mixture coe�cients and the means of themixture components of the two models are close, which implies that the projections of the distributionsde�ned by the real-valued model and the binary valued model with the same parameters are very close toeach other. We use this correspondence in our analysis of the projection pursuit learning methods, whichare based on properties of projections of the data.4.3 Learning the model from examples4.3.1 Learning by gradient ascent on the log-likelihoodWe now suppose that we are given a sample consisting of a set S of vectors in f�1gn drawn indepen-dently at random from some unknown distribution. Our goal is to use the sample S to �nd a good modelfor this unknown distribution using a combination model with m hidden units, if possible. The methodwe investigate here is the method of maximum likelihood estimation using gradient ascent. The goal oflearning is reduced to �nding the set of parameters for the combination model that maximizes the (log ofthe) probability of the set of examples S. In fact, this gives the standard learning algorithm for generalBoltzmann machines [Ackley et al., 1985]. For a general Boltzmann machine this would require stochasticestimation of the parameters. As stochastic estimation is very time-consuming, the result is that learningis very slow. In this section we show that stochastic estimation need not be used for the combinationmodel.From Equation (4.4), the log of the likelihood of a sample of input vectorsS = f~x(1); ~x(2); : : : ; ~x(N)g, given a particular setting �B = f(~!(1); �(1)); : : : ; (~!(m); �(m))g of the parame-ters of the model is:log-likelihood(�B) = X~x2S ln Pr(~xj�B) = mXi=10@X~x2S ln(1 + e~!(i)�~x+�(i))1A�N lnZB : (4:10)Taking the gradient of the log-likelihood results in the following formulas. For the bias parameters weget: @@�(i) log-likelihood(�B) = X~x2S 11 + e�(~!(i)�~x+�(i)) �N X~x2f�1gn Pr(~xj�B) 11 + e�(~!(i)�~x+�(i)) (4:11)and for the jth component of ~!(i)@@!(i)j log-likelihood(�B) = X~x2S xj 11 + e�(~!(i) �~x+�(i)) �N X~x2f�1gn Pr(~xj�B)xj 11 + e�(~!(i)�~x+�(i)) (4:12)The purpose of the clamped and unclamped phases (also called action and sleep phases) in theBoltzmann machine learning algorithm is to approximate these two expressions. The �rst term in eachexpression corresponds to the clamped phase, and the second one to the unclamped, or sleep phase. Ingeneral Boltzmann Machines, this estimation is performed using stochastic methods. However, here theclamped term is easy to calculate, it requires summing a logistic type function over all training examples.

93The same term is obtained by making the mean �eld approximation for the clamped phase in the generalalgorithm [Peterson and Anderson, 1987], which is exact in this case. It is more di�cult to compute thesleep phase term, as it is an explicit sum over the entire input space, and within each term of this sumthere is an implicit sum over the entire space of states of hidden units in the factor Pr(~xj�B). However,again taking advantage of the special structure of the combination model, we can reduce this sleep phasegradient term to a sum only over the states of the hidden units. Recall Equation (4.2):ZB = 2n X~h2f0;1gm24exp(mXi=1 hi�(i)) nYj=1 cosh(~!(~h)j)35 :A similar derivation gives thatPr(~hj�B) = exp(Pmi=1 hi�(i))Qnj=1 cosh(~!(~h)j)P~h02f0;1gm hexp(Pmi=1 h0i�(i))Qnj=1 cosh(~w(~h0)j)i (4:13)The second term of the derivative w.r.t. �(i) is @=@�(i) lnZB = (@=@�(i)ZB)=ZB. As �(i) appears only oncein ZB, we get that:@@�(i) log-likelihood(�B) = X~x2S 11 + e�(~!(i)�~x+�(i)) �N X~h2f0;1gmPr(~hj�B)hi : (4:14)Similarly, for each component of ~wi, we use the fact that d cosh(t)=dt = tanh(t), to get that@@!(i)j log-likelihood(�B) = X~x2S xj 11 + e�(~!(i) �~x+�(i)) �N X~h2f0;1gmPr(~hj�B)hi tanh(~!(~h)j) (4:15)The formulas for the gradients of the log likelihood for the real-valued model are very similar. Aderivation similar to the one used to derive Equation (4.13), gives us that, for the real-valued modelPr(~hj�R) = exp(Pmi=1 hi�(i) + 12 jj~!(~h)jj22)P~h02f0;1gm hexp(Pmi=1 h0i�(i) + 12 jj~!(~h)jj22)i : (4:16)Using this equation we get that@@�(i) log-likelihood(�R) = X~x2S 11 + e�(~!(i) �~x+�(i)) �N X~h2f0;1gmPr(~hj�R)hi (4:17)and for each j @@!(i)j log-likelihood(�R) = X~x2S xj 11 + e�(~!(i) �~x+�(i)) �N X~h2f0;1gmPr(~hj�R)hi~!(~h)j (4:18)Equations (4.14-4.13) are very similar to Equations (4.17-4.16). The di�erences are in the partialderivative of the normalization factors, ZB and ZR, with respect to the weight vectors. Note that theequations for the real-valued model are simpler. As was discussed in Section (4.2.6), the normalizationfactors for the real and binary models are very close to each other when the weight vectors ~wi have smalll2 norm. Thus although the equations for the maximal likelihood solutions di�er, the solution of thereal-valued model are approximate solutions for the binary model and vice versa.

94The time required to compute Equations (4.14) and (4.15), (or Equations (4.17) and (4.18) is O(jSjn+2m). Thus, if m is small compared with the size of the sample S, then the computation time is linear inthe number of training example and in the size of the input vector, which is reasonable. However, for largem it might not be possible to compute all 2m terms. There is a way to avoid this exponential explosionif we can assume that a small number of terms dominate the sums. If, for instance, we assume that theprobability that more than k hidden units are active (+1) at the same time is negligibly small we can geta good approximation by computing only O(mk) terms. In the extreme case where we assume that onlyone hidden unit is active at a time (i.e. k = 1), the combination model essentially reduces to the standardmixture model as discussed is Section 4.2.3. For larger k, this type of assumption provides a middle groundbetween the generality of the combination model and the simplicity of the mixture model. In the nextsection we show how the gradient of the real-valued model can be approximated when m is large.4.3.2 Approximating the gradientOne possible approach to estimating the gradient when m is large is to search for the larger termsin Equations (4.17,4.18) and ignore the smaller ones. We now show that in the case of the real-valuedmodel the problem of locating the large terms is equivalent to a simple geometric problem. Although thisproblem is NP-hard in the general case it might typically be easy in the cases that we encounter in reallife problems.Recall Equation (4.16)Pr(~hj�R) = exp(Pmi=1 hi�(i) + 12 jjPmi=1 hi ~wijj22)P~h02f0;1gm hexp(Pmi=1 h0i�(i) + 12 jjPmi=1 h0i ~wijj22)iWe would like to estimate which of the vectors ~h correspond large terms. i.e. we would like to �nd all ~hsuch that g(~h) =Pmi=1 hi�(i) + 12 jjPmi=1 hi ~wijj22 is large. De�ne the following matrix notation. We use ~x todenote a column vector and ~xT to denote its transpose, i.e. a row vector. We de�ne
 = 0BBBBB@ (~w1)T(~w2)T...(~wm)T 1CCCCCA~� = (�1; �2; : : : ; �m)TUsing this notation we de�ne g(~h) as g(~h) = ~h � ~� + 12 jj~hT
jj22 ;and rewrite Equation (4.16) as Pr(~hj�R) = exp(g(~h))P~h02f0;1gm exp(g(~h0)) :

95Rearranging g(~h) we get g(~h) = 12 jj~hT
+ ~�T (

T)�1
jj22� 12~�T (

T)�1~� ;assuming that

T is not singular.The second term is a constant and is eliminated by the normalization. We can therefore ignore it. The�rst term corresponds to the distance between a sum of a subset of the weight vectors and the �xed vector~�T (

T)�1
. The problem of �nding the settings of ~h for which g(~h) is largest translates to the problemof �nding a subset of a given set of vectors which is furthest away (in the regular Euclidean distance) froma given �xed vector.It is not clear how hard this computation problem is in the general case. If the vectors are orthogonalthen the problem is easy. In this case the set of all 2m vector combinations de�nes the corners of arectangular box. If the dot product, ~x � ~wi, is equal to jj~wijj2=2 for all i, then ~x is in the center of the box.Any deviation from equality for a particular index i determines whether the vector corresponding vector,~wi, is in the subset whose sum is furthest from ~x. In general, one of the closest subset-sums is equal to~hT
, where each coordinate of ~h is de�ned by:hi = (1 if ~wi � ~x � 12 jj~wijj20 otherwiseA promising direction for further research is to �nd methods that can solve this problem e�ciently inthe general case. Such methods would compute an approximation to the gradient by computing only thelargest terms in the sum that de�nes it.4.3.3 Projection Pursuit methodsA statistical method that has a close relationship with the combination model is the Projection Pursuit(PP) technique [Huber, 1985, Friedman et al., 1984, Friedman, 1987]. In this section we give a shortoverview of the technique, show how it relates to the combination model, and present a learning algorithmfor the combination model based on Projection Pursuit methods. This algorithm is a greedy algorithmthat generates the hidden units one by one. It avoids the exponential blowup of the standard gradientascent technique, and also has that advantage that the number m of hidden units is estimated from thesample as well, rather than being speci�ed in advance.4.3.4 Overview of Projection PursuitMany methods for analyzing high dimensional data study the �rst and second order statistics of thedata, which are the mean vector and the covariance matrix. Principal components analysis is an exampleof such a method. Such methods necessarily ignore the structure of the distribution that is not reectedin the �rst and second order statistics, which may be an important part. Projection Pursuit methods cansometimes �nd this important high-order structure.

96The distribution model overRn with the largest entropy for a given average and covariance is a Gaussiandistribution. Thus one natural de�nition of the information ignored by the second order analysis is thedeviation of the empirical distribution from the Gaussian distribution. Low order linear projections havebeen traditionally used by researchers in their e�orts to understand high dimensional distributions. As allprojections of a Gaussian distribution produce a Normal marginal distribution. Thus, if a projection ofa distribution generates a marginal distribution that is very di�erent from the normal distribution, thisis an indication that the projection contains information about the distribution that does not exist inits covariance matrix. Such a projection may be called an \interesting" projection. There are various\projection indices" de�ned in the PP literature to measure how interesting a particular projection is,and many of these indices relate directly to the deviation of the marginal distribution from a Normaldistribution. Projection Pursuit methods locate the low dimensional projections in which the projectionindex is largest, i.e. those projections that are most interesting.Originally, PP was used to suggest projection directions as an aid for the manual exploration of highdimensional data via two or three dimensional projections. Later PP became a complete method forstatistical data analysis, using repeated search for interesting projections to generate n-dimensional densityestimations. The search for a description of the distribution of a sample in terms of its projections can beformalized in the context of maximal likelihood density estimation in the following way [Friedman, 1987].De�ne p0(~x) to be the initial estimate of the density over Rn, i.e. the Gaussian density with appropriatemean and covariance. De�ne G to be a family of functions from R to R and A to be the set of vectors oflength 1, i.e. A = f~� 2 Rnj jj~�jj2 = 1g. Using these we de�ne the nth order projection estimates to be thefollowing set of densitiesPPm = (1Zp0(~x) mYi=1 gi(~�(i) � ~x) ���� ~�(i) 2 A; gi 2 G; Z = ZRn p0(~x) mYi=1 gi(~�(i) � ~x)d~x) (4:19)The log-likelihood of a speci�c density p 2 PPm with respect to a sampleS = f~x(1); ~x(2); : : : ; ~x(N)g, where ~x(i) 2 Rn is de�ned, in the standard way, to beLL(pjS) = X~x2S ln p(~x) :The goal of Projection Pursuit is to �nd a series of approximations:p1 2 PP1, p2 2 PP2; : : :pm 2 PPm that have maximally increasing log-likelihood. The �rst approxima-tion, p0, is the Gaussian density itself, and the (i + 1)-st approximation is generated by adding a factorgi(~�(i)) � ~x) to the ith approximation. The vector ~�(i) is called the ith projection of the data.The projection index is a function of ~�(i) that is a heuristic measure of the anticipated contribution ofa factor involving the projection ~�(i) to the likelihood of the model. Given a choice of ~�(i), the optimalchoice of the function gi(�) in terms of maximizing the likelihood is the following [Friedman et al., 1984].De�ne p~�(i)i (t) to be the marginal density on R generated by projecting the density pi on the direction ~�(i).Similarly de�ne p̂~�(i)(t) to be an approximation to the marginal density generated by projecting the truedensity on the direction ~�(i), estimated empirically using the sample S.7 Then the optimal choice for gi(�),in terms of maximizing the likelihood of the model, is7Note that the marginal density is a one dimensional function, thus the number of samples needed for estimating it

97gi(t) = p̂~�(i)(t)p~�(i�1)i (t) (4:20)As the optimal choice of gi(�), for a given choice of ~�(i) is simple to calculate. The main problem ofdesigning a projection pursuit method is �nding a good projection index whose calculation can be performede�ciently. Various projection indices have been discussed in the literature [Huber, 1985, Friedman, 1987].Selection of a direction that has a high projection index is usually performed using gradient followingmethods. After a local maximum of the projection index has been found, the index function is altered toprevent the search from �nding the same direction again, and a search for a direction with a high projectionindex is started from a di�erent starting point.The search for new projection directions can be simpli�ed if instead of altering the projection indexfunction, the sample is altered in a way that previously found interesting projections (~�(1); ~�(2); : : : ; ~�(i�1))are made to appear uninteresting, i.e. Normally distributed. So called \structure removal" methods havebeen devised towards this goal [Huber, 1985, Friedman, 1987]. These methods alter the sample in such away that a speci�c single projection that has been interesting is made uninteresting while all orthogonalprojections are left unchanged. Put in another way, suppose that some density p 2 PPm has high likelihoodwith respect to a given sample, and that one of the factors in p is g1(~�(1) �~x). Then removing the structurecorresponding to g1(~�(1) �~x) means transforming the sample into a sample for which p(~x)=g1(~�(1) �~x), whichis a model in PPm�1, has high likelihood.To summarize, most iterative projection pursuit methods share the following common structure:� InitializationSet S0 to be the input sample.Set p0 to be the initial density (Gaussian).� IterationRepeat the following steps for i = 1; 2 : : : until all projections of Si are almost Normal.1. Find a direction ~�(i) for which the projection index of the projection of Si�1 is maximized.2. Approximate the actual marginal density in the direction ~�(i) by �nding a close �t to the densityof the projection of the sample Si�1. Set gi(�) to be the ratio between this approximation andthe marginal density produced on ~�(i) by pi�1, using Equation (4.20).3. Set Si to be Si�1 with the structure de�ned by the factor gi(~�(i) � ~x) removed. This makes theprojection of Si on ~�(i) uninteresting, and all of the orthogonal projections remain equal to thatof Si�1.4. Set pi(~x) to be pi�1(~x)gi(~�(i) � ~x).Notice that in this method the functions gi are chosen in such a way that the product Qmi=1 gi(~�(i) � ~x)is normalized for each m and there is no need for an additional normalization term Z, as appears in thede�nition of PPm in Equation (4.19).is relatively small. In this way projection pursuit avoids, to some degree, the infamous \curse of dimensionality" in theestimation of the distribution of high dimensional data.

98Projection Pursuit has proved itself successful in some experiments [Friedman, 1987]. However, thesearch for best density is performed in a greedy manner and might not succeed in �nding the optimaldensity in PPm. While there is quite a large body of research on the representational power of projectionpursuit models, little is theoretically known about reliability of the associated learning algorithms, such asthe one presented above.4.3.5 Projection Pursuit and the combination modelRecall Equation (4.6), which describes the density generated by the real-valued combination model:p(~x) = e� 12 jj~xjj22 1ZR mYi=1�1 + e�i+~wi�~x� :Using the following de�nitions we see that this class of models is a special case of the class of modelspresented in Equation (4.19). p0(~x) = (2�)�n=2e� 12 jj~xjj22 = N (0; 1)~�(i) = ~wijj~wijj2G = �g : R! R j g(t) = 1Z �1 + e�i+tjj~wijj2� ;Z 2 R�It is clear that, under these de�nitions, p(~x) is a function in PPm. In the next section we present a greedyalgorithm for learning the combination model that is based on this relation.A similar relationship holds for the binary model. However, we have not managed to �nd a goodstructure removal procedure for the binary-valued model. We thus present an algorithm for learning thereal-valued model and, based on the relations given in Section 4.2.6, we claim that the solutions that we�nd for the real-valued model are approximate solutions for the binary-valued model.There are two main di�erences between our work and previous work on using exploratory projectionpursuit algorithms for estimating distributions. The �rst di�erence is that while our model de�nes adistribution on all Rn, our data-points are taken from f�1;+1gn. However, as discussed at the end ofSection 4.2.6, the projections of the binary vectors generate marginal distributions that are close to Normal,similarly to the distributions we expect from real-valued data.The second di�erence is that the family of functions G from which the gis are taken is a very restrictedset of functions. This is unlike standard PP techniques, in which the functions gi are chosen from somevery broad family, such as some family of spline functions. This means that, in our case, any singlefunction g 2 G might be far from adequate for describing the marginal distribution on some direction~�(i) and several factors with the same ~� might be needed. This, in turn, has the e�ect that eliminatingthe structure generated by a single factor does not amount to transforming the marginal distribution onthe corresponding projection so that it becomes completely uninteresting. As most structure eliminationtechniques do exactly that, they are un�t in the context of learning the combination model.

994.3.6 PP algorithm for learning the combination modelIn this section we present a variant of PP that is a learning algorithm for the combination model.Our algorithm combines the search for an interesting projection direction, ~�, with the search for thecorresponding projection function, g(�). The algorithm searches for the optimal factor by maximizing thelikelihood of a single factor model with respect to the (possibly altered) sample. After such a factor is found,the algorithm alters the examples in such a way that the structure encoded in the factor is eliminated, andsubsequent searches will �nd di�erent factors.The algorithm is thus based on two elements. The �rst element is a method for �nding a maximallikelihood combination model with a single hidden unit. This method serves both for �nding a projectiondirection, and for �nding the function gi(�) associated with this direction. The second element is a structureremoval procedure. We shall describe the two elements in turn.We have previously described how gradient ascent can be used for �nding model with highest log-likelihood. However, for the special case where there is only a single hidden unit in the model, a muchfaster method can be used. This method is an Expectation-Maximization (EM) method [Dempster etal., 1977]. EM is a general method for estimating the parameters of distribution models that have bothobservable and unobservable random variables. This method achieves extremely fast convergence whenused for estimating a mixture of product distributions.8The Expectation Maximization method is based on iterative improvement of the estimates of themaximal likelihood values of the model parameters. It starts with some initial guess of the parameters�init, and proceeds by iterating the following two steps. It can be shown [Dempster et al., 1977], that eachof these iterations improves the likelihood of the parameters.1. Using the old setting of the parameters, �old, as if they were the actual parameters, some statisticsof the joint distribution of the hidden and the observable variables are calculated.2. The old setting of the parameters, �old, is replaced with a new setting of the parameters �new,which is the most likely setting of the parameters given the values of the statistics calculated in step1. These new parameters are used as the old parameters in the following iteration.To see how this method is implemented for the problem of estimating the parameters of a real-valued combination model with a single hidden unit let us calculate the maximal likelihood setting ofthe parameters assuming that we are given a sample S 0, of size N , in which each element describes thevalue of both the observable random variables, ~x, and the unobservable random variable h. The loglikelihood is LL(�; ~!jS 0) = X(h;~x)2S0 ln P (~x; hj�; ~!) = X(h;~x)2S0 ln exp (h(� + ~! � ~x))ZR= X(h;~x)2S0 h(� + ~! � ~x)�N(2�)n=2 ln�1 + exp�� + 12 jj~!jj22��8It is not easy to implement EM directly on the complete combination model, because although this distribution can beexpressed as a mixture of product distributions, the parameters that de�ne the mixture components are coupled.

100Taking the derivative of the log-likelihood with respect to the parameters and equating to zero to �nd theoptimal setting of the parameters, we get the following equations. From the derivative w.r.t. � we get thatX(h;~x)2S h = N logistic��opt + 12 jj~!optjj22� ; (4:21)and from the gradient w.r.t. ~! we get thatX(h;~x)2S h~x = ~!optN logistic��opt + 12 jj~!optjj22� (4:22)Notice that if we divide the sums on the left hand side of Equations (4.21) and (4.22) by N , we get thede�nition of the empirical estimates of E(h) and of E(h~x), which we shall denote by Ê(h) and Ê(h~x).Solving Equations (4.21) and (4.22) for the values of the optimal parameters, we get that:~!opt = Ê(h~x)Ê(h) ; (4:23)and �opt = � ln 1� Ê(h)Ê(h) � 12 jj~!optjj22 : (4:24)We thus see that the statistics that we need to estimate in the �rst step of the EM iteration are Ê(h) andÊ(h). These statistics can be directly calculated from the sample S 0, as this sample includes both ~x andh. However, given a setting of the parameters, we can compute the distribution of h for any setting of ~x,and thus calculate the desired statistics.The implementation of the EM method for the combination model with a single hidden unit is thusas follows. We start with an initial setting of the parameters: (~!init ; �init) and proceeds by iterating thefollowing two steps on the given sample S = h~x1; ~x2; : : : ; ~xNi1. In the Expectation calculation step the current parameters (~!old; �old) are used as if they describethe correct input distribution. Given this description and a particular setting of the input units, ~x,we can compute probability that each hidden unit is 0 or 1 given any setting of the observable vector~x: Pr(hi = 1j~x; ~!old; �old) = logistic(~!old � ~x+ �old)~x :Using this equation and the sample S, it is possible to compute the following estimates:Ê(h~x) = 1N X~x2S logistic(~!old � ~x+ �old)~xÊ(h = 1) = 1N X~x2S logistic(~!old � ~x+ �old)2. In the Maximization step, new parameters (~!new; �new) are calculated using Equations (4.23)and (4.24). The new parameters (~!new; �new) are used as the old parameters (~!old; �old) in thefollowing iteration.

1013. The iteration terminates when the di�erence between (~!new; �new) and (~!old; �old) becomes in-signi�cant.We now present the structure removal procedure. In the analysis of the real-valued model in Sec-tion (4.2.3) we have shown that the addition of a hidden variable has the e�ect of replacing the previousdistribution by a mixture of two distributions, the �rst of which is equivalent to the previous, and the sec-ond is a shifted copy of the previous distribution, shifted by the weight vector ~wi that corresponds to thehidden unit. The shifted copy corresponds to the case in which hi = 1 while the unshifted one correspondto the case where hi = 0. For each data point we compute the probability, p, that hi = 1. We then ip arandom coin whose bias is p and, according to the outcome of the coin ip, either keep the example as itis or subtract ~wi from it. This has the e�ect of shifting the shifted copy, which corresponds to hi = 1 tocoincide with the unshifted copy, which corresponds to hi = 0. In this way the structure encoded by thehidden unit is eliminated from the empirical distribution. Details are described below.� InitializationSet S0 to be the input sample.Set p0 to be the initial distribution (Gaussian).� IterationRepeat the following steps for i = 1; 2 : : :until no single-variable combination model has a signi�cantlyhigher likelihood than the Gaussian distribution with respect to Si.1. Perform an EM procedure to maximize the log-likelihood of a single hidden variable model onthe sample Si�1. Denote by �i and ~wi the parameters found by this procedure, and create anew hidden unit with associated binary random variable hi with these weights and bias.2. Transform Si�1 into Si using the following structure removal procedure.For each example ~x 2 Si�1 compute the probability that the hidden variable hi found in thelast step is 1 on this input: P (hi = 1) = �1 + e�(�i+~wi�~x)��1Flip a coin that has probability of \head" equal to P (hi = 1). If the coin turns out \head" thenadd ~x� ~wi to Si else add ~x to Si.3. Set pi(~x) to be pi�1(~x)Z�1i �1 + e�i+~wi�~x�, where Zi =P~x pi�1(~x) �1 + e�i+~wi�~x�.4.4 Experimental workWe have carried out several experiments to test the performance of unsupervised learning using thecombination model. The goals of these experiments is to show that the combination model is a useful oneand to compare the performance of the di�erent learning algorithm that we have developed.The �rst set of experiments compares the two learning methods for the combination model presentedin this paper. The �rst is the gradient ascent method, and the second is the projection pursuit method.The experiments in this set were performed on synthetically generated data. The input consisted of 4,000binary vectors of 64 bits that represent 8 � 8 binary images. The binary vectors are synthesized using

102a combination model with 10 hidden units whose weights were set as in Figure (4.3,a). Each square inthis image denotes a single real valued parameter,9 the matrix corresponds to the weight vector, and therectangle above the matrix corresponds to the bias parameter �. We shall refer to each random binaryvector as an instance.The ultimate goal of the learning algorithms was to retrieve the model that generated the instances,which we call the \target" model. However, this goal is generally not achievable. The �rst reason is thatthe optimal model is not unique, i.e. there usually are other combination models that generate the exactsame distribution as the target model, or a distribution that is very close to it. For example, a permutationof the hidden units does not change the distribution de�ned by the model. As we have found out in theexperiments, other simple transformations of the target model produce models that are almost as good asthe target model. Another reason that we cannot retrieve the exact target is that the parameter vector ofthe target is real valued, and thus cannot be exactly identi�ed by a �nite number of instances. The thirdreason is that our algorithms are not guaranteed to �nd the optimal model for the given data. The gradientascent algorithm is only guaranteed to locate a local maximum of the likelihood, and the Projection Pursuitalgorithm is only guaranteed to increase the likelihood of the model with each additional hidden unit.While the di�erence between the parameter vectors of the learned model and of the target model isusually large, their performance as models of the random instances is similar. We measure this performanceusing three di�erent error measures. Each error measure de�nes a way of computing the error of acombination model with respect to a set of instances. We have measured these errors for the targetmodel and for each of the learned models. Each measurement was taken both with respect to the instancesthat were used for learning (the \training" instances) and with respect to an independent test set of 4000instances.We now describe each of the three measures of error that we have used:� Average log-lossEach learned distribution model de�nes a probability distribution, P , on the space of images. Apopular measure of the distance between P and the actual distribution Q is the cross entropy, whichis de�ned as �Px(Q(x) logP (x)). The cross entropy is minimized when P = Q, and is then equalto the entropy of Q. The cross entropy can be estimated by taking the average value of minus logof the probability that the model assigns to each instance in the sample. This measure of error isalso called the log-loss error. We scale the error so that the uniform distribution model, that assignsequal probability to all instances, has an expected error of 1. The log-loss error is hard to computefor large combination models, which is why we use it only in the experiments on synthetic data inwhich we use only 10 hidden units in the models.� Single bit completionWe estimate the average number of mistakes made by the model when it is used to predict the valueof single bits of the instances. More precisely, the mistakes it makes when used to predict the valueof each single bit in each of the instances in the sample, when given the values of all the other bits of9The results are given using Hinton diagrams [Rumelhart and McClelland, 1986], i.e. positive values are displayed as fullrectangles, negative values as empty rectangles, and the area of the rectangle is proportional to the absolute value.

103that instance. The combination model de�nes a probability for any possible instance. The predictionis de�ned as the value of the bit that corresponds to the more probable instance. We estimate thisaverage number by choosing at random 5 bit locations for each instance in the sample.� Input reconstructionWe estimate the quality of the combination model as an input representation scheme. For eachinstance (x1; : : : ; xn) we compute the most probable state of the hidden units. This state can be seenas an encoding of the instance. One way of de�ning the quality of this encoding scheme is to measurehow much additional information is required to reconstruct the instance from the state of the hiddenunits alone. Each state of the hidden units de�ned a Bernoulli product distribution over the images.The additional information that is required to encode a particular instance is the log of one over theprobability assigned to the instance. As the distribution is a Bernoulli product, this can be writtenas the following sum: H(~xj~h) = 12 nXi=1 [(1 + xi) log2 pi + (1� xi) log2(1� pi)] ;where pi is the independent probability of the ith input bit to be +1 given the hidden state, whichis equal to pi = logistic0@ mXj=1!(j)i hj1AThis measure of error is scaled so that it measures the additional information that is required perinput bit.All experiments used a test set and a separate training set, each containing 4000 examples. Thegradient ascent method is based on the binary distribution model. It typically needed about 1000 epochsto stabilize.10 In the projection pursuit algorithm, 4 iterations of EM per hidden unit proved su�cient to�nd a stable solution. The results are summarized in the following table and in Figure (4.3).11log-loss single bit prediction input reconstructiontrain test train test train testgradient ascent for 1000 epochs 0.399 0.425 0.098 0.100 0.311 0.338projection pursuit 0.893 0.993 0.119 0.114 0.475 0.480Projection pursuit followed bygradient ascent for 100 epochs 0.411 0.430 0.091 0.089 0.315 0.334Projection pursuit followed bygradient ascent for 1000 epochs 0.377 0.405 0.071 0.082 0.261 0.287true model 0.401 0.396 0.077 0.071 0.286 0.283The best learning result was achieved by starting with the projection pursuit algorithm then using theparameter vector that was learned as a starting point for the gradient ascent algorithm. The �nal result10The algorithm used a standard momentum term (see [Hertz et al., 1991], page 123) to accelerate the convergence.11The di�erence between the measurements of the quality of the true model on the test set and on the training set are dueto the random uctuations between the two sets of examples. These di�erences provide an indication of the accuracy of ourmeasurements.

104(a)(b)(c)(d)Figure 4.3: The weight vectors of the models in the synthetic data experiments. Each matrixrepresents the 64 weights of one hidden unit. The range of the weights is [�6;+6] with the largewhite squares representing the value 6. The square above the matrix represents the units bias.positive weights are displayed as full squares and negative weights as empty squares, the area ofthe square is proportional to the absolute value of the weight. (a) The weights in the model usedfor generating the data. (b) The weights in the model found by gradient ascent alone. (c) Theweights in the model found by projection pursuit alone. (d) The weights in the model found byprojection pursuit followed by gradient ascent. For this last model we also show the histograms ofthe projection of the examples on the directions de�ned by those weight vectors; the bimodalityexpected from projection pursuit analysis is evident.of this combination is presented in Figure 4.3(d), together with the corresponding projections of the dataalong the directions de�ned by the weight vectors. We can see that there is a close correspondence betweenthe weight vectors in the learned model and the vectors in the target model described in Figure 4.3(a).Counting from left to right, the weight vectors of units 1,2,8,9, and 10 in the learned model are almostidentical to the weight vectors of units 1,4,6,7,and 5 in the target model. Units 3 and 7 in the learned modelare close to the negation of units 8 and 3 in the target model, and units 4 and 5 in the learned model arecombinations of units (10,2) and (9,2) of the target model respectively. There is no exact correspondence ofthe biases. As we see from the table, the performance of the learned model is almost as good as that of thetarget model according to all three measures. We thus conclude that reversing the sign of weight vectorsand combining them can sometimes create a di�erent combination model whose corresponding distributionis very similar.When the gradient ascent model is used to learn by itself (Figure 4.3(b)),it tends to get stuck in local

105minima, as can be seen in the table. It is also a very slow method, both because of the large number ofiterations that is required and because each iteration requires complex calculations. The fact that the localsearch process is stuck in a sub-optimal solution can be seen in the weight vectors of the learned model inthat four of the weight vectors (those of units 1,2,6,10, counting from the left) have no clear correspondenceto any of the weight vectors in the target model.The Projection Pursuit method is very fast, but its results are weaker than those of the gradient ascentmethod by itself. It tends to �nd a model whose weight vectors correspond to various combinations ofthe weight vectors of the target model and their negations. The performance of the results of projectionpursuit are similar to those of the gradient method in the single bit prediction measure and in the inputreconstruction measure. On the other hand, the performance of the Projection pursuit model in termsof the likelihood of the model that it generates is very poor. The reason is that the data that we use isgenerated by a binary valued combination model, while the projection pursuit model is based on a realvalued combination model. The di�erence between these two models is large, because the weights thatare used in the target model are in the range [�6;+6]. As we have shown in Section 4.2.6, the binarymodel and the real valued model are approximately equal when the weights are small. To show that this isindeed the source of the error, we repeated the previous experiments using a target model with the weightvectors divided by a factor of 7, so that now all the weights are in the range [�6=7;+6=7]. The results aresummarized in the following table log-loss single bit prediction input reconstructiontrain test train test train testTrue Model 0.939 0.941 0.36 0.36 0.86 0.87gradient ascent for 400 epochs 0.937 0.944 0.36 0.37 0.86 0.87projection pursuit 0.964 0.966 0.38 0.39 0.92 0.92Projection pursuit followed bygradient ascent for 400 epochs 0.935 0.943 0.36 0.37 0.86 0.87We see that in this case, the likelihood of the model found by the projection pursuit algorithm is similarto that of the other models. Because in this case the weights are so small, the di�erence between thedistribution de�ned by the model and the uniform distribution is small, as is reected in the measures ofaccuracy. However, the di�erence from the uniform distribution is statistically signi�cant. The combinationof the two learning algorithms was able to retrieve the weights of the target model almost as well as in theprevious experiment (see Figure 4.4).In the second set of experiments we compare the performance of the combination model to that of themixture model. The comparison uses real world data extracted from the NIST handwritten data base.12Examples are 16� 16 binary images (see Figure (4.5)). There are 500 examples in the training set and 500in the test set. We use 45 hidden units to model the distribution in both of the models. Because of the12NIST Special Database 1, HWDB Rel1-1.1, May 1990.

106(a)(b)(c)Figure 4.4: The weight vectors of the models in the synthetic data experiments. The target targetis the same as in the previous experiment but the range of the weights is divided by a factor of 7,so that the largest white squares represent the value of 6=7. (a) The weights in the model foundby gradient ascent alone. (b) The weights in the model found by projection pursuit alone. (c)The weights in the model found by projection pursuit followed by gradient ascent.large number of hidden units we cannot use gradient ascent learning and instead use projection pursuit.For the same reason it was not possible to compute the likelihood of the combination model and only theother two measures of error were used. Each test was run several times to estimate the accuracy of ourmeasurements.For learning a mixture model we use an incremental version of EM. We start with a model with a singleBernoulli product distribution and run EM until the method converges. We then take a mixture of twoBernoulli product distributions, each of which is initialized to be a slight random perturbation of the singleBernoulli product. We then let EM run on this model until it converges, and then we split each componentinto two in a similar way. Continuing in this fashion we repeatedly double the size of the model.13The �nal errors of many runs of these algorithms, starting from di�erent initial weights, are summarizedin the table below. The errors of two representative runs are given in Figures 4.8 and 4.9. A sample of the�nal weight vectors of the learned combination model and mixture model are given in Figures 4.6 and 4.7respectively. A complete list of all of the 45 weight vectors for each model are given in Figures 4.10 and4.11. single bit prediction input reconstructiontrain test train testProduct distribution 0.29 � 0.01 0.30 � 0.01 0.78 � 0.01 0.80 � 0.01Mixture model 0.19 � 0.01 0.26 � 0.01 0.55 � 0.01 0.70 � 0.01combination model 0.19 � 0.01 0.20 � 0.01 0.60 � 0.01 0.64 � 0.01The �rst line in this table, named \Product distribution" summarizes the performance of a simple dis-tribution model that assumes that the pixels are distributed according to a Bernoulli product distribution.The reconstruction of the input, in this case, is simply the �xed reconstruction in which each bit is set toits more probable value. The performance of this model provides a baseline with respect to which we can13When 32 units are to be split, only the �rst 13 of them are split, to give the �nal number of 45 mixture components.

107compare the performance of the other distribution models whose goal is to capture dependencies betweenthe pixels. We see that the performance of the combination model is signi�cantly better than that of themixture model on the test set. The di�erence is especially signi�cant when compared to the baseline ofthe Product distribution model. Also, we see that the di�erence between the performance on the test setand on the training set, i.e. the over-�tting, is much smaller for the combination model.A qualitative comparison between the weight vectors found by the two models con�rms the expectedadvantage of the combination model in describing combinations of correlations. While the typical weightvectors of the mixture model (see Figure (4.7)), which is a sample out of Figure (4.10)) look very much likean average prototype of a speci�c digit, the weight vectors of the combination model relate to more localfeatures, such as lines and curves (see Figure (4.6)), which is a sample out of Figure (4.11)). This relatesto fact that the mixture model relates each example with the single weight vector that is most similar toit, while the combination model relates each example with a combination of its weights.Figure 4.5: A few examples from the handwritten digits sample.As the experiments on synthetic data have shown that PP does not reach optimal solutions by itselfwe expect the advantage of the combination model over the mixture model to increase further by usingimproved learning methods. Of course, the combination model is a very general distribution model and isnot speci�cally tuned to the domain of handwritten digit images, thus it cannot be compared to modelsspeci�cally developed to capture structures in this domain. However, the experimental results support ourclaim that the combination model is a simple and tractable mathematical model for describing distributionsin which several correlation patterns combine to generate each instance.

108
Figure 4.6: Typical weight vectors found by the combination model

Figure 4.7: Typical weight vectors found by the mixture model

109

Figure 4.8: A comparison of the input reconstruction error on 16 � 16 pixel digit images. Thiserror measures the average amount of additional information that is required for reconstructingthe input from the state of the hidden units. The information is measured in bits per pixel. Thehigher and lower curves in each graph describe the error on the test set and on the training setrespectively. The graph on the left describes the error of the mixture model as a function of thenumber of training iterations (epochs). The number of mixture components is doubled every 20iterations. There is a spike in the error immediately following the doubling, as a result of theadded randomization. The graph on the right describes the error of the combination model as afunction of the number of iterations. (The spike in the graph around iteration 230 is a side e�ectof a \back�tting" stage that has not proven to be useful.)

110

Figure 4.9: A comparison of the single bit completion error on 16 � 16 pixel digit images. Theerror measures the probability of a mistake in predicting a random single missing bit in the image,using the distribution model and the values of all the rest of the pixels. The higher and lowercurves in each graph describe the error on the test set and on the training set respectively. Thegraph on the left describes the error of the mixture model as a function of the number of trainingiterations (epochs). The number of mixture components is doubled every 20 iterations. Thegraph on the right describes the error of the combination model as a function of the number ofiterations. (The peak in the graph around iteration 230 is a side e�ect of a \back�tting" stagethat has not proven to be useful.)

111

Figure 4.10: The weight vector, or image templates, found by the the mixture model

112

Figure 4.11: The weight vector, or image templates, found by the the mixture model

1135. Concluding remarksEach chapter of this thesis discusses di�erent learning algorithms, aiming at di�erent goals, and analyzedusing a di�erent mathematical framework. However, a common theme in much of this work is the importantrole that the distribution of instances plays in learning.In this section we speculate on the possible application of our learning algorithms to real-world problems.We do that by discussing in some detail a simple real world classi�cation problem. Through this examplewe illustrate some phenomena that re-occur in our work and point out some advantages our algorithmsmight have in real world problems, as well as some of the technical and conceptual problems that lie onthe way to a more complete understanding of this type of learning algorithm.Suppose that we wish to build a machine that will learn to sort apples of two varieties, for example,Pippin and Mutzu, according to their color. Suppose, for simplicity, that we measure the color using twocolor �lters, which give us two real valued measurements for each apple. Thus each apple corresponds toa point in the plane, which is labeled either \P" or \M". The goal of learning is to �nd a mapping fromthe plane to the set fP;Mg that optimally predicts the type of an apple from measurements of the applescolor. The problem setup is illustrated in Figure 5.1(a).There might be apples whose color is not representative of their variety, these apples correspond topoints whose label does not agree with that of the optimal prediction rule. However, we expect that if thetwo color �lters are properly chosen then the label of most apples will agree with the prediction rule. Also,it is reasonable to expect that the instances whose label disagrees with the prediction rule are located closeto the borders between the two labels. If more than two colors are used to make the predictions, then wecan expect the optimal prediction rule to improve, and the concentration of the error close to the bordersto become more pronounced.One approach to the problem, that is suggested by our boosting algorithm, described in Chapter 2, is tocreate a large set of simple hypotheses and combine them using a majority vote. As we expect most of thetypical examples to be far from the decision border and have equal labels, the following simple algorithmis likely to generate prediction rules that have a considerable advantage over random predictions:1. Pick a small sample of labeled apples, i.e. labeled points in the plane.2. For each point in the sample, �nd the largest disk around it that contains only points with the samelabel.3. Choose the disk that contains the largest number of (equally labeled) points.4. Output the hypothesis that labels the points in the disk with the label of the point in its center, forpoints outside the disk, the hypothesis generates a random label by ipping a fair coin.The type of hypotheses that this algorithm is likely to generate is given in Figure 5.1(c). The result ofrunning the boosting by majority algorithm using this weak learner is a randomized rule for predictinglabels that combines a large number of such disks, as described in Figure 5.1(d). Given a speci�c point onthe plane, each disk contributes one vote, if the point is inside the disk, then the vote is according to thelabel associated with the disk, otherwise, it is simply a random coin ip. The label of the point is thenpredicted according to the label that got the maximal number of votes. If a point is covered by a large

114
Yellow

B
lu

e

Mutzu

Pippin

Yellow

B
lu

e

MM

M

P

P

P
P

P

M
P P

P
P

M

Yellow

B
lu

e

Yellow

B
lu

e

Pippin

M

M

M
M

M

M

M
M

M

M

P

P P

P

P

P
P

P

P
P

P
P

P

P

P

MM
M

M

(a) (b)

(c)
(d)

M

MM

P

P

P

X

X

X

X

P

MM

M

M

MFigure 5.1: This �gure describes the anticipated behavior of the boosting algorithm and the queryalgorithm on a real world learning problem. Part (a) describes a learning problem regarding theseparation of two apple varieties according to their color. Each of the coordinates describes theintensity of a particular color. The bold line describes the optimal decision rule. The contourmap de�nes the probability distribution of the apples, and �'s denote the maximal density points.Part (b) describes the behavior of the query by committee algorithm. Each letter correspondsto a single training example. The two dotted lines describe two possible decision rules that havethe same performance on the training examples. The query by committee algorithm accepts asqueries those examples that fall in the highlighted areas. Part (c) describes a typical hypothesischosen by the weak learner described in the text. The disk de�nes the hypothesis which predictsthe label M inside the disk and predicts randomly outside it. Part (d) describes a possible set ofweak hypotheses (overlapping disks) at a late point in the boosting process.

115number of disks of the same type then it is likely to be labeled in the same way by the combined predictionrule.As apples that have similar color are likely to be of the same type, it is reasonable that the algorithmwill be able to �nd a large disk that contains many random instances with the same label. It is also likelythat any new random instance that falls within this disk will have the same label. This means that thegenerated hypothesis is better than a random guess within the disk, which gives it an edge over a randomguess of the label. However, it is clear that the size of this edge depends on the number of instances thatfall within the disk, which, in turn, depends on the distribution of the instances. If most of the instancesare of apples with ambiguous color, then instances with similar color are likely to be of di�erent types, andthe disk found by the learning algorithm is likely to be small and provide only a small edge over randomguessing. It seems reasonable to assume that the distribution of actual apples gives high probability tocolors that are far from the optimal decision border, as described in Figure 5.1(a), which implies that thehypothesis found by the boosting algorithm in the �rst stage is likely to have a large edge. However, asthe boosting algorithm proceeds, it tends to accept examples close to the decision border, because theseare the examples on which di�erent hypotheses tend to disagree.We thus expect that the behavior of the proposed learning algorithm will not �t within the standardweak-PAC learning framework, but rather be of the distribution-dependent type analyzed in Section 2.4.1.Using the results presented there we would like to show that if the edge of the weak learner does notdecrease too rapidly as the distribution of the instances is changed by the boosting algorithm, then theboosting algorithm is able to generate an accurate hypothesis. However, several obstacles remain in thepath to this type of analysis. First, we wish to consider ambiguous concepts, i.e. concepts that allowmapping a particular color to both types of apples. This type of mapping has been formalized by Kearnsand Schapire [Kearns and Schapire, 1990] using the notion of p-concepts. However, little progress has beenmade so far on algorithms for boosting p-concepts1 Second, we need to formalize the intuitive argumentpresented above regarding the dependence of the edge of the weak learner on the concentration of theinstances around the border. This argument involves a close relationship between the hidden concept andthe distribution of the instances, and such a relationship is completely outside the realm of the currenttheory of learning from random examples.Let us now discuss using the query by committee algorithm (Chapter 3) in the context of the sameproblem. Suppose we have some reasonable learning algorithm that works for this kind of problem. Forexample, suppose that a neural network is capable of learning to separate the two varieties of applesaccording to their color. For simplicity, let us assume that the hypotheses computed by this network canbe represented by regions bounded by a polygon with a small number of vertices. We can use the methodof query by committee to try to reduce the number of instances that the human teacher needs to label. Theidea is simple, instead of a single neural network, we train two neural networks. We use the same labeledexamples to train both networks. The di�erence between the networks is a result of using a stochasticupdate rule that introduces small random perturbations into the training process so that each network1Recently, Aslam and Decatur have shown how boosting can be used in the context of Kearns Statistical Queries model toboost weak learning algorithms in the context of independent noise on the labels.

116arrives at a di�erent set of weights. These perturbations also apply if the training error is zero, so thateven in the stationary state the two networks perform a kind of a random walk in the space of hypotheses.Every unlabeled instance is presented to the two networks and they compute their predictions. If the twopredictions di�er, then the teacher is queried, and the labeled example is added to the training set. Aftereach instance is presented, the two networks are trained, whether the example was added to the trainingset or not, to insure that a di�erent pair of hypotheses is tried each time. The state of the algorithm aftera number of training examples have been accumulated is described in Figure 5.1(b).This algorithm seems to be a reasonable implementation of the query by committee method to thiscase. However, a rigorous analysis of its behavior is well beyond what we can currently achieve. Not onlyis the hidden concept a p-concept, but the hypotheses are taken from a di�erent space than the hiddenconcepts. It is not clear whether random perturbations of the learning rule provide a good approximationof a Gibbs learning algorithm. Moreover, even if this is a reasonable approximation, it is not clear whetherthe equivalent prior distribution provides a reasonable approximation to the \correct" prior distributionthat we assume is available to the learner in our analysis. However, if the qualitative results of our analysiscarry over to this case, then the number of queries will be just a small fraction of all the random instances.Intuitively, that is clear, because after a small number of typical apples of each variety have been observed,each of the networks is likely to be correct on most of the typical instances. That intuition, which isillustrated in Figure 5.1(d), is a result of the fact that most of the examples are far from the borders. Itis only the rare instances that are close to the border that can cause the algorithm to make a query. Asthe training set increases, both hypotheses become increasingly accurate and increasingly similar, and thefrequency of queries decreases to zero.Notice some similarities in the behavior of the two algorithms presented above. Both algorithms start bychoosing examples at random from the space and then gradually concentrate on examples that are closer tothe borders. As this concentration increases, more and more of the random examples are discarded, causingonly a small fraction of the instances to take part in the actual learning. Also, in both of the algorithms theexamples that are more important, and are usually accepted, are examples on which di�erent hypothesestend to disagree. In the current state of the theoretical analysis, these are only intuitive notions and thereare many obstacles on the way to proving theorems that will formalize them. The obstacles are bothtechnical and conceptual. On the technical level, a more sophisticated mathematical analysis is required toprove that results similar to the ones presented in this thesis exist in a broader context. On the conceptuallevel, we need mathematical frameworks for the analysis of learning that will incorporate prior assumptionsabout the structure of the world that are intuitively appealing but are ignored by the current frameworks.A main assumption that was used in the discussion above is that the distribution of the instancesis, in a strong sense, helpful to the learning process. This assumption is justi�ed because in many casesboth the instance and its label are generated by the same underlying process. In our apple classi�cationexample, both the color of the apple and its type are direct results of its genetic type. As a contrast,consider the task of classifying the two types of apples according to the bar-code number that is printedon their packages. In this case the bar-code, which de�nes the instance, is related mostly to the wayin which packaging companies and shops are organized, and not to the genetic information of the apple.Consequently, we would not expect the distribution of these bar-codes to be related, in any simple way,

117to the correct classi�cation of the apples. Note that there exists a well-de�ned mapping from bar-codes totypes, and this mapping might be learnable, however, in this case it seems clear that the learner can learnvery little from unlabeled instances.We believe that in many real-world learning problems the labels and the instances are both generatedby the same mechanism and, as a result, the learning algorithm can assume a close relation between thedistribution of the instances and the hidden target. The type of assumption on the distribution of theinstances that we used in this section is that the more likely instances can be classi�ed easily, while smallerand smaller parts of the instance space get harder and harder to classify. The work we present in Chapter 4can be seen as a further step in this direction. Here we assume that we can deduce useful information fromthe instance distribution alone, without any label information. The work we present is concerned with adistribution model for high dimensional binary vectors, however, one of the basic motivations for this workcan be demonstrated in our simple example of apple classi�cation. In this problem, it is quite reasonableto assume that the distribution of the color of random apples tends to cluster around speci�c colors, whichcorrespond to speci�c varieties of Mutzu and of Pippin. Unsupervised learning can be used to locate theseclusters. It is then su�cient to query a teacher on one instance from each cluster to deduce the correctlabel of the whole cluster.The experimental work we present at the end of Chapter 4 in which we try to learn the distributionof images of handwritten digits has a similar motivation. We believe that high-order correlations betweenthe pixels in such images correspond to meaningful features such as lines and intersections, and that theimages of typical digits are concentrated in clusters that correspond to di�erent digits and can be describedby combinations of such features. If this assumption is correct, then in order to learn to classify the imagesaccording to the digit that they contain, it is su�cient to obtain the correct classi�cation of just one imagefrom each cluster, greatly reducing the number of labeled instances required for learning.It seems that the digit image data, which is very high-dimensional, is much more clustered then theapple color data. Indeed, we believe that in general, as the number of features that are used to characterizean instance increases, the distribution of the instances in feature space becomes increasingly concentratedaround typical values and away from the optimal decision boundaries.Other approaches to learning optimal prediction rules, such as pattern recognition [Duda and Hart,1973a], incorporate the assumption that the distribution of the instances is informative directly into theirbasic mathematical framework. It is thus interesting to compare our approach to the approach used forlearning in pattern recognition. We claim that our approach has advantages over the classical patternrecognition approach because while it is sensitive to the distribution of the instances, it ignores someproperties of the distribution that are not relevant to making optimal predictions. We shall briey describea pattern recognition approach to this problem, and then compare it to the approaches described above.The classical mathematical description of the apple variety prediction problem that is used in patternrecognition [Duda and Hart, 1973a] is the following. We assume that each of the two varieties of apples hassome probability of having any particular color. Thus each variety of apple corresponds to a distributionover the plane. Nature generates a random example by selecting the variety of the apple at randomand then selecting the associated color according to the corresponding distribution over the plane. Theresulting distribution is a mixture of the two distributions that correspond to the two apple varieties.

118Each color has some probability of corresponding to one of the two varieties, and the optimal predictionrule is to predict the variety that has a higher probability. One classical pattern recognition approach tolearning the optimal decision rule is to �rst estimate the distribution of the colors of each variety of apple,and then to de�ne the prediction rule by comparing the estimated probabilities that are associated witheach color. The estimation of the distributions can be performed by either parametric or non-parametricmethods [Duda and Hart, 1973a]. The parametric methods search for a distribution from a particularfamily of distributions, such as Gaussian mixtures, that best �ts the data. Non-parametric methods, suchas the k-nearest neighbor classi�cation method, estimate the probabilities locally around each point of theinput space. The approach that is suggested by our work is di�erent than both the parametric and thenon-parametric approaches in pattern recognition. Rather than estimating the distributions, we work ondirectly approximating the optimal prediction rule. Our methods are sensitive to the distribution of theinstances in a di�erent way than the pattern recognition methods. They start by gathering informationon the decision rule from random examples and then, gradually, concentrate on those examples which areclose to the border or have an atypical label.This approach has an advantage over the pattern recognition approach when the distribution of thelabel that correspond to most of the color combinations is strongly biased to one of the two labels, whilethose color combinations on which the bias of the label distribution is weak are concentrated in small borderareas. For the typical colors, very rough approximations of the distributions are su�cient for making thecorrect prediction. The pattern recognition approach ignores this property, while our algorithms use it totheir advantage by concentrating on those instances whose label is more ambiguous.To summarize, we think that the results presented in this thesis point to the important role thatthe distribution of instances plays in concept learning. In the popular distribution free learning modelpresented by Valiant, the input distribution is assumed to be the worst case. Another popular assumptionis that the instance distribution is some speci�c distribution, such as the uniform distribution, a productdistribution, or a mixture of Gaussians. We believe that in many cases one can assume that the instancedistribution is closely related to the hidden target concept. While it is not clear what is the best wayto formalize this type of assumption, it seems clear that such a formalization will make the problem oflearning considerably easier and will bring computational learning theory closer to the practice of machinelearning and pattern recognition.

119References[Ackley et al., 1985] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for Boltzmannmachines. Cognitive Science, 9:147{169, 1985.[Angluin and Smith, 1983] Dana Angluin and Carl H. Smith. Inductive inference: Theory and methods.Computing Surveys, 15(3):237{269, September 1983.[Angluin, 1988a] D. Angluin. Queries and concept learning. Machine Learning, 2:319{342, 1988.[Angluin, 1988b] Dana Angluin. Queries and concept learning. Machine Learning, 2:319{342, 1988.[Atkinson and Donev, 1992] A. C. Atkinson and A. N. Donev. Optimum Experimental Designs. Oxfordscience publications, 1992.[Barland, 1992] Ian Barland. Some ideas on learning with directional feedback. Master's thesis, Universityof California at Santa Cruz, June 1992.[Baum and Lang, 1991] E. B. Baum and K. Lang. Constructing hidden units using examples and queries.In Advances in Neural Information Processing, volume 3, 1991.[Baum and Lang, 1992] E. B. Baum and K. Lang. Query learning can work poorly when a human oracle isused. In International Joint Conference in Neural Networks, Beijing, China, 1992.[Baum, 1991] E. Baum. Neural net algorithms that learn in polynomial time from examples and queries.IEEE Trans. Neural Networks, 2:5{19, 1991.[Blumer et al., 1986] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth.Classifying learnable geometric concepts with the Vapnik-Chervonenkis dimension. In 18th ACM Sym-posium on Theory of Computing, pages 273{282, Berkeley, 1986.[Blumer et al., 1987] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth.Occam's razor. Information Processing Letters, 24:377{380, 1987.[Blumer et al., 1989] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth.Learnability and the Vapnik-Chervonenkis dimension. Journal of the Association for Computing Machin-ery, 36(4):929{965, 1989.[Bollobas, 1985] B. Bollobas. Random Graphs. Academic Press, 1985.[Bonnesen and Fenchel, 1987] T. Bonnesen and W. Fenchel. Theory of Convex Bodies. BCS Associates,Moscow, Idaho, USA, 1987.[Cohn et al., 1990] D. Cohn, L. Atlas, and R. Ladner. Training connectionist networks with queries andselective sampling. Advances in Neural Information Processing Systems, 2:566{573, 1990.[Cox and Snell, 1989] D. R. Cox and E. J. Snell. Analysis of binary data. Chapman and Hall, 1989.[Dempster et al., 1977] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incompletedata via the EM algorithm. Roy. Statist. Soc. B, 39:1{38, 1977.[Diaconis and Freedman, 1984] P. Diaconis and D. Freedman. Asymptotics of graphical projection pursuit.Annals of Statistics, 12:793{815, 1984.[Drucker et al., 1993] Harris Drucker, Robert E. Schapire, and Ptrice Simard. Improving performance inneural networks using a boosting algorithm. In Proceedings of the �fth Conf. on Neural InformationsProcessing Systems, San Mateo, CA, 1993. Morgan Kaufmann.[Drucker, 1992 1993] H. Drucker. private correspondence, 1992{1993.[Duda and Hart, 1973a] R. O. Duda and P. E. Hart. Pattern Classi�cation and Scene Analysis. Wiley, 1973.[Duda and Hart, 1973b] R. O. Duda and P. E. Hart. Pattern Classi�cation and Scene Analysis. Wiley, 1973.

120[Eisenberg and Rivest, 1990] Bonnie Eisenberg and Ronald L. Rivest. On the sample complexity of pac-learning using random and chosen examples. In Proceedings of the 1990 Workshop on ComputationalLearning Theory, pages 154{162, 1990.[Everitt and Hand, 1981] B.S. Everitt and D.J. Hand. Finite mixture distributions. Chapman and Hall,1981.[Fedorov, 1972] V. V. Fedorov. Theory of Optimal Experiments. Academic Press, New York, 1972.[Floyd and Warmuth, 1993] Sally Floyd and Manfred Warmuth. Sample compressions, learnability, andthe vapnik-chervonenkis dimension. Technical Report UCSC-CRL-93-13, Computer and InformationSciences, University of California, Santa Cruz, 1993.[Freeman, 1987] D. H. Freeman. Applied Catagorical Data Analysis. Marcel Dekker, 1987.[Freund and Haussler, 1992] Y. Freund and D. Haussler. Unsupevised learning of distributions on binaryvectors using two-layer networks. In Proceedings of the 1991 Conf. on Neural Informations ProcessingSystems, San Mateo, CA, 1992. Morgan Kaufmann.[Freund et al., 1993] Y. Freund, H.S Seung, E. Shamir, and N. Tishby. Accelerating learning using queryby committee. In Proceedings of the 1992 Conf. on Neural Informations Processing Systems (To appear),San Mateo, CA, 1993. Morgan Kaufmann.[Freund, 1990] Y. Freund. Boosting a weak learning algorithm by majority. In Proceedings of the ThirdWorkshop on Computational Learning Theory, pages 202{216, San Mateo, CA, 1990. Morgan Kaufmann.[Freund, 1992] Y. Freund. An improved boosting algorithm and its implications on learning complexity. InProceedings of the Fifth Workshop on Computational Learning Theory, pages 391{398, San Mateo, CA,1992. Morgan Kaufmann.[Friedman and Tukey, 1974] J.H. Friedman and J.W. Tukey. A projection pursuit algorithm for exploratorydata analysis. IEEE Trans. Comput., pages 881{889, 1974.[Friedman et al., 1984] J. H.Friedman,W.Stuetzle, andA. Schroeder. Projectionpursuit density estimation.J. Amer. Stat.Assoc., 79:599{608, 1984.[Friedman, 1987] J. H. Friedman. Exploratory projection pursuit. J. Amer. Stat.Assoc., 82(397):599{608,March 1987.[Gefner and Pearl, 1987] Hector Gefner and Judea Pearl. On the probabilistic semantics of connectionistnetworks. Technical Report CSD-870033, UCLA Computer Science Department, July 1987.[Geman and Geman, 1984] S Geman and D Geman. Stochastic relaxations, Gibbs distributions and theBayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 6:721{742,1984.[Geman, 1986] Stuart Geman. Stochastic relaxation methods for image restoration and expert systems.In D.B. Cooper, R.L.Launer, and D.E. McClure, editors, Automated Image Analysis: Theory andExperiments. Academic Press, 1986.[Gold, 1967] E. Mark Gold. Language identi�cation in the limit. Information and Control, 10:447{474,1967.[Goldmann et al., 1992] M. Goldmann, J. Hastad, and A. Razborov. Majority gates vs. general weightedthreshold gates. In Structures conference Proceedings, pages 2{13, 1992.[Graham et al., 1991] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete mathematics,a foundation for computer science. Addison-Wesley, 1991.[Haussler et al., 1988] David Haussler, Nick Littlestone, and Manfred Warmuth. Predicting 0,1-functionson randomly drawn points. In Proceedings of the 29th Annual Symposium on the Foundations of ComputerScience, pages 100{109. IEEE, 1988.

121[Haussler et al., 1991a] DavidHaussler, Michael Kearns, Nick Littlestone, andManfredK.Warmuth. Equiv-alence of models for polynomial learnability. Information and Computation, 95:129{161, 1991.[Haussler et al., 1991b] David Haussler, Michael Kearns, and Robert Schapire. Bounds on the samplecomplexity of bayesian learning using information theory and the vc dimension. In Proceedings of the 1991Workshop on Computational Learning Theory, pages 61{74, San Mateo, CA, 1991. Morgan Kaufmann.[Haussler et al., to appear] D. Haussler, M. Kearns, and R. Schapire. Bounds on the sample complexity ofBayesian learning using information theory and the VC dimension. Machine Learning, to appear.[Hertz et al., 1991] John Hertz, Anders Krogh, and Richard G. Palmer. Introduction To The Theory OfNeural Computation. Addison Wesley, 1991.[Hop�eld, 1982] J.J. Hop�eld. Neural networks and physical systemswith emergent collective computationalabilities. Proc. Natl. Acad Sci. USA, 79:2554{2558, April 1982.[Huber, 1985] P.J. Huber. Projection pursuit (with discussion). Ann. Stat., 13:435{525, 1985.[Jolli�e, 1986] I.T. Jolli�e. Principle Component Analysis. New York: Springer-Verlag, 1986.[Kearns and Schapire, 1990] Michael J. Kearns and Robert E. Schapire. E�cient distribution-free learningof probabilistic concepts. In 31st Annual Symposium on Foundations of Computer Science, pages 382{391,1990.[Kearns and Valiant, 1988] M. Kearns and L.G. Valiant. Learning boolean formulae or �nite automata isas hard as factoring. Technical Report TR-14-88, Harvard University Aiken Computation Laboratory,Cambridge, MA, 1988.[Kearns and Valiant, 1989] M. Kearns and L. Valiant. Cryptographic limitations on learning booleanformulae and �nite automata. In 21st ACM Symposium on Theory of Computing, pages 433{444, Seattle,WA, 1989.[Kearns, 1993] M. Kearns. E�cient noise-tolerant learning from statistical queries. In Proceedings of the25th ACM Symp. on Theory of Computing, pages 392{401. ACM, 1993.[Kharitonov, 1993] M. Kharitonov. Cryptographic hardness of distribution-speci�c learning. In Proceedingsof the 25th ACM Symp. on Theory of Computing, pages 372{381. ACM, 1993.[Kinzel and Ruj�an, 1990] W. Kinzel and P. Ruj�an. Improving a network generalization ability by selectingexamples. Europhys. Lett., 13:473{477, 1990.[Lindley, 1956] D. V. Lindley. On a measure of the information provided by an experiment. Ann. Math.Statist., 27:986{1005, 1956.[Littlestone and Warmuth, 1986] Nick Littlestone and Manfred Warmuth. Relating data compression andlearnability. This early and hard-to-locate work is referenced and partly re-written in FW93, 1986.[Littlestone and Warmuth, 1989] Nick Littlestone and Manfred K. Warmuth. The weighted majority algo-rithm. In 30th Annual Symposium on Foundations of Computer Science, pages 256{261, 1989.[McDiarmid, 1989] C. McDiarmid. On the method of bounded di�erences. In Survey of Combinatorics,10th British Combinatorial Conference, 1989.[Mitchell, 1978] Tom Mitchell. Version spaces: as approach to concept learning. Technical Report Tech.Report CS-78-711, Dept. of Computer Science, Stanford University, 1978.[Natarajan, 1991] Balas K. Natarajan. Machine Learning - a Theoretical approach. Morgan Kaufmann,1991.[Neal, 1990] Radford M. Neal. Learning stochastic feedforward networks. Technical report, Department ofComputer Science, University of Toronto, November 1990.[Nowlan, 1990] S. Nowlan. Maximum likelihood competitive learning. In D. Touretsky, editor, Advances inNeural Information Processing Systems, volume 2, pages 574{582. Morgan Kaufmann, 1990.

122[Oja, 1989] E. Oja. Neural networks, principle components, and subspaces. Int. J. Neural Systems, 1(1):61{68, 1989.[Pearl, 1988] Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.[Peterson and Anderson, 1987] Carsten Peterson and James R. Anderson. A mean �eld theory learningalgorithm for neural networks. Complex Systems, 1:995{1019, 1987.[Poggio and Girosi, 1989] Tomaso Poggio and Federico Girosi. A theory of networks for approximation andlearning. Technical Report A.I. Memo No. 1140, Massachusetts Institute of Technology, Cambridge, MA,1989.[Rabiner and Juang, 1986] L. R. Rabiner and B. H. Juang. An introduction to hidden markovmodels. IEEEASSP Magazine, 3(1):4{16, January 1986.[Rissanen, 1986] JormaRissanen. Stochastic complexity andmodeling. TheAnnalsof Statistics, 14(3):1080{1100, 1986.[Rumelhart and McClelland, 1986] D. E. Rumelhart and J. L. McClelland. Parallel Distributed Processing:Explorations in the Microstructure of Cognition. Volume 1: Foundations. MIT Press, Cambridge, Mass.,1986.[Sanger, 1989] T.D. Sanger. Optimal unsupervised learning in a single-layer linear feedforward neuralnetwork. Neural Networks, 2:459{473, 1989.[Sauer, 1972] N. Sauer. On the density of families of sets. Journal of Combinatorial Theory (Series A),13:145{147, 1972.[Schapire, 1990] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197{226,1990.[Schapire, 1991] Robert E. Schapire. The Design and Analysis of E�cient LearningAlgorithms. PhD thesis,M.I.T., 1991.[Schapire, 1992] Robert E. Schapire. private correspondence, January 1992.[Sering, 1980] R. J. Sering. Approximation Theorems of Mathematical Statistics. John Wiley & Sons,1980.[Seung et al., 1992] H.S Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proceedings ofthe Fifth Workshop on Computational Learning Theory, pages 287{294, San Mateo, CA, 1992. MorganKaufmann.[Shamir, 1992] E. Shamir. private correspondence, 1992.[Smith, 1985] Peter Smith. Convexity Methods in Variational Calculus. Research studies press, John Wiley& sons, 1985.[Tur�an, 1993] G. Tur�an. Lower bounds for pac learning with queries. In Proceedings of the sixth Workshopon Computational Learning Theory, pages 384{391, 1993.[Valiant, 1984a] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134{42,1984.[Valiant, 1984b] L. G. Valiant. A theory of the learnable. Comm. ACM, 27:1134{1142, 1984.[Vapnik, 1982] V. N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, 1982.

123Appendix A. Appendixes regarding Boosting by MajorityA.1 Boosting the reliability of a learning algorithmWe present the boosting algorithm, BRel, in Figure A.1, and prove its performance.Proof of Lemma 2.3.6 The bound on the number of examples is immediate from the de�nition of thealgorithm. To prove that the algorithm is correct, we bound the probability that the resulting hypothesishas error larger than 1=2� =2. There are two events that might cause this. The �rst is that all of the rhypotheses generated byWeakLearn have error larger than 1=2�. The second is that a hypothesis thathas error larger than 1=2� =2 makes less mistakes, on the test sample, than a hypothesis that has errorsmaller than 1=2� . It is easy to bound the probability of each of those events by �=2. Which proves thelemma.As we know that each call toWeakLearn has probability of at least � of generating a hypothesis witherror smaller than 1=2� at each trial, the probability of not generating any accurate enough hypothesisis at most (1� �)r = (1� �)1=� ln(2=�) � e� ln(2=�) = �=2 :In order for the second event to happen, given that one of the hypotheses has error smaller than 1=2� ,there has to be a bad hypothesis whose estimated error is larger than that of the good hypothesis. For thisto happen, the gap between the actual error and the estimated error for at least one of the r hypotheseshas to be at least =4. Using Hoe�ding bounds we get that this probability is at mostre�2m(=4)2 = r exp(�2(8=2) ln(2r=�)(=4)2) = re� ln(2r=�) = �=2 ;which proves the lemma.A.2 Divisibility lemmaLemma A.2.1: If the probability space hX;�; V i is divisible, then, for any set D 2 � there exists a setG � D;G 2 � such that V (G) = (1=2 +)V (D) and W (G) � (1=2 +)W (D)Algorithm BRelInput: EX,WeakLearn, ; �; �Output: A hypothesis hM , that has error smaller than 1=2� =2 with probability at least 1� �.1. Call WeakLearn r = ln(2=�)� times, each time on a different set of random examples.Store the resulting hypotheses as h1; : : : ; hr.2. Count the number of mistakes made by each of the r hypotheses on a random sample ofsize m = (8=2) ln(2r=�).3. Return the hypothesis that makes the smallest number of mistakes on the sample.Figure A.1: A description of the algorithm for boosting the reliability of an algorithm.

124Proof: First observe that as we are interested only in the ratio of the weight and value of G to that ofD, so w.l.o.g. we can assume that V (D) = W (D) = 1.De�ne the following series of partitions of D.� P0 = fDg.� P1 = fD10; D11g where the sets are disjoint and V (D10) = V (D11) = 12 .� Construct Pi+1 from Pi by splitting each set in Pi into two equal valued parts. So that the value ofeach part is exactly 2�i.We shall now use the partitions P0;P1;P2; : : : to construct a series of sets G0; G1; G2; : : : that willprovide better and better approximations of the target set G. Assume that the binary expansion of 1=2+is 12 + = 1Xj=0 bj2�j(note that b0 = 0; b1 = 1) and construct the sets Gi according to the following inductive procedure:G0 = ;�i = the set with the largest value in Pi that is not a subset of Gi�1Gi+1 = (if bi = 0 Giif bi = 1 Gi [�iIt is clear that Gi is a monotonically increasing series of sets and that limi!1 V (Gi) = 1=2 + . Alsoclearly from the way �i is chosen we haveW (�i)1�W (Gi) � V (�i)1� V (Gi)We shall now prove by induction on i that 8i � 0 W (Gi) � V (Gi).� For i = 0, G0 = ; so the claim holds trivially.� For i � 1, if bi = 0 then Gi+1 = Gi so the induction holds trivially. Else, bi = 1 and thusGi+1 = Gi [�i and we get:W (Gi+1) = W (Gi) +W (�i) = V (Gi) + (W (Gi)� V (Gi)) +W (�i) �V (Gi) + (W (Gi)� V (Gi)) + V (�i)1� V (Gi)� (W (Gi)� V (Gi))1� V (Gi) =V (Gi) + V (�i) + (W (Gi)� V (Gi))[1� 11� V (Gi)]The �rst two terms sum to V (Gi+1), and the last term is positive because V (Gi) � 1 and from theinduction hypothesis W (Gi)� V (Gi) > 0, the induction hypothesis is thus proven.De�ne G = S1j=1Gi. As all �i are in the sigma algebra � then so is G. Also V (G) = limi!1 V (Gi) =1=2 + . similarly W (G) = limi!1W (Gi) = 1=2 + and because for all i we have W (Gi) � V (Gi), wealso get an inequality at the limit W (G) � V (G) = 1=2 + , which proves the lemma.

125A.3 Proof of Lemma 2.3.10In order to prove the lemma, we use the following technical lemma:Lemma A.3.1: For any real numbers x � 1 and 0 � � < 1=2exp�� 13(1� 4�2)x� < � xx(1=2��)�q 2�xexH(1=2��) < exp � 112x�p1� 4�2 : (A.1)Where H(y) = �y ln y�(1�y) ln(1�y) is the entropy function, and the extension of the binomial functionto the reals is based on the extension of the factorial to the Gamma function x! = �(x+ 1).Proof: The proof of this lemma is based on the Stirling approximation. Notice that as x!1, the lowerbound converges to 1 while the upper bound converges to (1� 4�2)�1=2. In other words, for large valuesof x the binomial � xx(1=2��)� is related to the exponential function in the denominator by a small factor.Stirling approximation to the factorial can be written in the following way:18 x � 1 x ln x� x+ ln x2 + lnp2� < ln(x!) < x ln x� x+ ln x2 + lnp2� + 112x :From which we get the lower bound as followsln xx(1=2� �)! = ln x!� ln((1=2� �)x)!� ln((1=2 + �)x)!> x ln x� x+ ln x2 + lnp2��x(1=2� �) ln(x(1=2� �)) + x(1=2� �)� ln(x(1=2� �))2 � lnp2� � 112(1=2� �)x�x(1=2 + �) ln(x(1=2 + �)) + x(1=2 + �)� ln(x(1=2 + �))2 � lnp2� � 112(1=2+ �)x= xH(1=2� �)� lnpx� lnr14 � �2 � lnp2� � 112(1=4� �2)x� xH(1=2� �)� lnp2�x+ ln 2� 13(1� 4�2)x :And the upper bound as followsln xx(1=2� �)! = ln x!� ln((1=2� �)x)!� ln((1=2+ �)x)!< x ln x� x+ ln x2 + lnp2� + 112x�x(1=2� �) ln(x(1=2� �)) + x(1=2� �) � ln(x(1=2� �))2 � lnp2��x(1=2 + �) ln(x(1=2+ �)) + x(1=2 + �) � ln(x(1=2 + �))2 � lnp2�= xH(1=2� �)� lnpx� lnr14 � �2 � lnp2� + 112x= xH(1=2� �)� lnp2�x+ ln 2� lnq1� 4�2 + 112x :1See, for example, Equation (9.91) in [Graham et al., 1991].

126Proof of Lemma 2.3.10 : We can rewrite the de�nition of �ir from Figure 2.4 as follows (ignoringthe choices of r that give �ir = 0 for the purpose of the upper bound):�ri = x(12 � �)x!(12 � 2)x(12��)(12 + 2)x(12+�) ;where x = k� i� 1 and � = 1=2� (bk=2c � r)=(k� i� 1). Using the upper bound given in Lemma A.3.1bound the last expression for any value of � x(12 � �)x!(12 � 2)x(12��)(12 + 2)x(12+�)< r 2�x e1=12xp1� 2 exp�xH(12 � �) + x(12 � �) ln(12 � 2) + x(12 + �) ln(12 + 2)� :But a basic inequality is that for any �1=2 � � � 1=2H(12 � �) � �(12 � �) ln(12 � 2)� (12 + �) ln(12 + 2) :Where equality is achieved only when � = =2. From this we get that x(12 � �)x!(12 � 2)x(12��)(12 + 2)x(12+�) < r 2�x e1=12xp1� 2 :As � 1=2, and x � 1, we get the statement of the lemma.

127Appendix B. Projection distributions of the binary combinationmodel.In this section we use results from [Diaconis and Freedman, 1984] to show that the projections of thebinary combination model are very similar to those of the real-valued combination model model whenthe weight vectors are small. As has been discussed in Section (4.2.3), the binary combination modeldistribution can be viewed as a mixture of 2m generalized binomial distributions. We call these binomialdistributions binoms. Each binom corresponds to a particular setting of the hidden vector ~h and to a singleGaussian component in the real-valued model. We shall show that although the distribution of the binomsare very di�erent from the corresponding Gaussians, their projections onto almost any direction are verysimilar. This implies that the projections of the binary-valued combination model are very similar to thoseof the real-valued combination model. Because Projection pursuit methods depend only on properties ofthe projections of the distribution, it is a valid approximation to use the real-valued combination modelfor learning distributions generated by a binary-valued combination model.The mixture coe�cients of the binoms are Pr(~hj�) as de�ned in Equation (4.13). The mean of thebinom corresponding to ~h is �(~hi) = tanh(Pmi=1 hi!(i)) where by tanh(~x) we denote the application of tanhto each component of ~x. If the weight vectors !(i) are all small then tanh(Pmi=1 hi!(i)) �Pmi=1 hi!(i), andwe get that the means of the binoms are very close to the means of the corresponding Gaussians. Next weshow that under mild assumptions, the projection of each binom is very close to a Gaussian.Diaconis and Freedman [Diaconis and Freedman, 1984] discuss conditions under which most projectionsof high-dimensional data sets are close to Gaussian. Their analysis considers large sets of points takenfrom high dimensional spaces. These points are not assumed to be generated by a distribution. Instead,the conditions for Gaussianity of the projection are given as geometric relations among the points. Theserelations must hold in the limit where both the dimension of the space and the size of the sets tendsto in�nity. We shall show that if the weight vectors of the combination model are generated by somedistribution then, with high probability, samples generated by each binom have the required geometricproperties and thus most of their projections are close to Gaussians.We follow most of the notation used in [Diaconis and Freedman, 1984]. Let ~x1; ~x2; : : : ; ~xN be vectors inRn, this is the data set. Suppose that n;N and the data set all depend on some common index �, and thatas � tends to in�nity, so do n and N . Let Sn�1 be the unit sphere in Rn and let be chosen uniformly atrandom from Sn�1. Theorem 1.1 in [Diaconis and Freedman, 1984] states that if the following conditionshold, then the empirical distribution of � ~xi converges weakly to the normal distribution N (0; �2) inprobability, as � ! 1. Where \weak convergence" is convergence as a measure on R and \in probability"is w.r.t. the uniform distributions on Sn�1.The required conditions follow. There must exist some �nite and positive �2 such that for any positive�, the following limits hold as � tends to in�nity,��� f1 � j � N : jk~xjk22 � �2nj > �ng��� =N ! 0 (B:1)j f1 � j; k � N : j~xj � ~xk j > �ngj =N2 ! 0 (B:2)

128Where # denotes the cardinality of a set. The �rst condition intuitively means that vectors are almost allof almost the same length. The second condition means that most pairs of vectors are close to orthogonal.We are interested in projections of samples generated by the combination model, as these arerandom samples, we would like to show that the geometric conditions hold with probability one.Suppose we have a sequence of binomial distributions over binary cubes of increasing dimension:f�1;+1g; f�1;+1g2; : : : ; f�1;+1gn; : : :. Each distribution is fully speci�ed by its mean vector: ~�1 2 [�1;+1]; ~�2 2 [�1;+1]2; : : : ; ~�n 2 [�1;+1]n; : : :.Suppose that we have a sample from each distribution and that the sample size increases with the dimen-sion n of the space: h~x11i; h~x21; ~x22i; � � � ; h~xn1 ; : : : ; ~xnni; � � �. We would like to show that random projections ofthese samples produce empirical marginal distributions that are very close to Gaussian distributions witha probability that goes to 1 as n ! 1. However, it is not hard to construct sequences of mean vectorssuch that this will not happen. For instance, if ~� = f0;+1; : : : ;+1g, then the distribution is concentratedin the two points f�1;+1; : : : ;+1g, and f+1;+1; : : : ;+1g, and all projections of this distribution will alsobe concentrated on two points.We prove that the desired asymptotic conditions hold with probability 1 if the mean vectors ~�n areselected in the following way. Assume there is some distribution �P on [�1;+1] and that each componentof each ~�n is drawn independently at random from this distribution. For this to hold for the mixturecomponents of the combination model it is enough to assume that the components of the weight vectorsin the model underlying the data are chosen independently at random.Theorem B.0.2: Suppose that a sequence of vectors of increasing dimension:~�1 2 [�1;+1];~�2 2 [�1;+1]2; : : : ; ~�n 2 [�1;+1]n; : : :is randomly drawn by selecting each component of each vector according to some distribution �P over[�1;+1].Each vector ~�n de�nes a distribution over f�1;+1gn in which the components are independent and theexpected value is ~�n. Suppose that for each n we draw n vectors from this distribution, and that from eachrandom vector we subtract the mean, ~�n.Suppose that for each n we draw a vector ~w uniformly at random from the n dimensional unit sphere,project the n random vectors on the direction de�ned by ~w and assign each of the points in the projectiona probability mass of 1=n. In this way we create, for each n, a discrete distribution over the reals.With probability one, over all the random choices that create the sequence of distributions, there exists� � 0 such that the sequence of distributions converges weakly to the normal distribution N (0; �2).1Proof: We prove the theorem by showing that the conditions of Theorem 1.1 in [Diaconis and Freedman,1984] hold with probability one.The proof of the condition B.1 is a simple application of the Markov bound. We wish to show that forsome � and for any �; � > 0:limn!1P (#f1 � j � n : jk~xjk22 � �2nj > �ng > �n) = 01Weak convergence means that for any measurable set A, the probability assigned to A by the sequence of distributionsconverges to the probability of the limit distribution.

129The n examples are independent, thus as n increases the fraction of the vectors that obey the conditionbecomes very close to the probability of obeying the condition. Thus it su�ces to show that for a randomlychosen example ~x limn!1P (k~xk22 � �2nj > �n) = 0the squared length of a vector is a sum of the squares of its components. As the components are chosenindependently at random according to the mean vector ~�n and as the components of ~�n are chosenindependently at random according to �P we get that the average length of ~x is n(1 � R+1�1 x2d �P (x)).The variance of each term is at most 1. Thus de�ning �2 to be 1� R+1�1 x2d �P (x) and using Markov boundswe get that P (k~xk22 � �2nj > �n) � n(�n)2 = 1n�2 :and as n increases the probability decreases to zero as desired.The proof of condition (B.2) is a bit more involved, because in this case the n2 pairs that are checkedfor the condition are not independent. However, using the theory of U-statistics [Sering, 1980][Chap. 5]their behavior can be related to that of independently drawn pairs. We wish to show that for any �; � > 0:limn!1 P (#f1 � j; k � N : j~xj � ~xk j > �ng > �n2) = 0�rst observe that when j = k the condition will most often not hold, as we have just proved that thesquared length of a vector is concentrated around �2n. However we can ignore this set as it is a vanishingfraction of the n2 pairs. It is thus su�cient to prove thatlimn!1P (#f1 � j; k � n; j 6= k : j~xj � ~xkj > �ng > �n(n � 1)) = 0Using the notation of [Sering, 1980] we de�neh(~x; ~y) = (1 if j~x � ~yj > �n0 otherwiseand observe the corresponding U-statistic, that is a random variable de�ned over samples of size n:U(~x1; : : : ; ~xn) = 2n(n� 1) X1�i<j�n h(~xi; ~xj)This random variable is exactly the cardinality of the set of pairs that have a dot product larger than �ndivided by n(n � 1). Our goal is thus reduced to proving that the probability of a sample for which U istoo large is small. We do that by using Markov inequality. The fact that U is an unbiased statistic meansthat the average of U is equal to the average of h(~x; ~y) when ~x and ~y are chosen independently at random.In other words it is equal to the probability that two randomly chosen vectors have a dot product largerthan �n. We shall denote that probability by t. The variance of U can be related to the variance of h(~x; ~y)by using Lemma A. from page 183 of [Sering, 1980].V ar(U(~x1; : : : ; ~xn)) � 2n(n � 1)[2(n� 2)�1 + �2] � 4n�2

130Where �2 is simply the variance of h(~x; ~y) when ~x and ~y are chosen independently at random. As h(~x; ~y)is either 0 or 1, its variance is t(1� t). Putting the bound on the variance into the Markov bound we get:P [n(n � 1)U(~x1; : : : ; ~xn) > �(n(n� 1))] � P [jU(~x1; : : : ; ~xn)� tj > � � t] � 4n t(1� t)(� � t)2It is easy to see that t = P (j~x � ~yj > �n) � 4�2nthus limn!1 t = 0 and we get that the desired probability goes to zero, which completes the proof.

