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Data filtering and distribution modeling algorithms for machine learning
Yoav Freund

ABSTRACT

This thesis is concerned with the analysis of algorithms for machine learning. The main focus is on the
role of the distribution of the examples used for learning. Chapters 2 and 3 are concerned with algorithms
for learning concepts from random examples. Briefly, the goal of the learner is to observe a set of labeled
instances and generate a hypothesis that approximates the rule that maps the instances to their labels.

Chapter 2 describes and analyses an algorithm for improving the performance of a general concept
learning algorithm by selecting those labeled instances that are most informative. This work is an
improvement over previous work by Schapire. The analysis provides upper bounds on the time, space
and number of examples that are required for concept learning. Chapter 3 is concerned with situations in
which the learner can select, out of a stream of random instances, those for which it wants to know the
label. We analyze an algorithm of Seung et. al. for selecting such instances, and prove that it is effective
for the Perceptron concept class. Both Chapters 2 and 3 show situations in which a carefully selected
exponentially small fraction of the random training examples are sufficient for learning.

Chapter 4 is concerned with learning distributions of binary vectors. Here we present a new distribution
model that can represent combinations of correlation patterns. We describe two different algorithms for
learning this distribution model from random examples, and provide experimental evidence that they are
effective.

We conclude, in Chapter 5, with a brief discussion of the possible use of our algorithms in real world

problems and compare them with classical approaches from pattern recognition.

Keywords: machine learning, computational learning theory, example selection, selective sampling,

distribution modeling
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1. Introduction

The objective of machine learning is to build machines that learn from their experience. There are
many potential uses for such machines. One is predicting future events, such as a earthquakes or stock
market prices. Another is building machines for identifying structure in complex data, such as sequences of
proteins or DNA. Yet another use is building computers that are controlled using spoken or hand-written
language. In this case learning is needed because voice patterns and writing styles vary so much between
different people that it is close to impossible to write computer code that will anticipate every possible
variety. By using machine learning techniques the computer can be trained to adapt to each individual
user by exposing it to identified instances of speech or writing of the user.

Computers have been used for a long time to find models that fit empirical data using linear regression
methods or to predict the future using simple parameterized predictors. Today, as computers are getting
faster, the trend is towards using non-linear and hierarchical models to describe very complex high
dimensional data. Methods that go under titles such as “neural networks” [Rumelhart and McClelland,
1986, Hertz et al., 1991], “hidden Markov chains” [Rabiner and Juang, 1986], and “radial basis functions”
[Poggio and Girosi, 1989] are becoming increasingly popular. Such algorithms are used for tasks ranging
from controlling the arms of a robot to playing backgammon and from predicting the price of commodities
to recognizing human faces. In general, a machine learning algorithm searches for a simple model that
explains the past experience of the algorithm and then uses this model to predict future events. Various
disciplines provide mathematical frameworks in which to analyze and compare such algorithms. Among
these disciplines are pattern recognition [Duda and Hart, 1973a], estimation theory [Vapnik, 1982], the
theory of stochastic modeling [Rissanen, 1986], the theory of inductive inference [Gold, 1967, Angluin and
Smith, 1983] and computational learning theory [Valiant, 1984a).

Computational learning theory is a part of theoretical computer science. For this reason its natural
emphasis is on learning questions that arise in computation theory, such as learning finite automata and
Boolean formulas. Emphasis is also put on bounding the computational resources that are required for
learning. The type of analysis often combines combinatorial arguments of the type usually found in
computer science together with probabilistic arguments. However, the tendency is to minimize the number
of probabilistic assumptions and use, as much as possible, worst case assumptions. These general tendencies
set some of the work in computational learning theory apart from work done in other mathematical
disciplines that analyze machine learning. Still, much of the work is closely related to work done in the
other disciplines.

A large variety of mathematical frameworks are used in Computational Learning Theory, each of which
emphasizes different aspects of learning. In this section we give a brief survey of some of the popular
frameworks and indicate how the work presented in this thesis is related to these frameworks. After that
survey, we give a brief introduction to each of the three main chapters of this thesis.

In general, one assumes the existence of some model that describes the world, or the task, with which
the learner is faced. The goal of the learner is to discover that model by observing the behavior of the world.

In the simplest and most studied type of learning the hidden model is a concept. Informally, a concept is a



rule that divides the world into positive and negative examples. For instance, the concept of “being blue”
divides all objects into those that are blue and those that are not blue. The learning algorithm is presented
with examples of blue and non-blue objects and and is required to deduce the general rule. More formally,
we define the set of all possible objects as the instance space and define concepts as functions from the

”. An instance, together with its label is called an example. The

concept space to the labels “+” and “—
goal of concept learning is to generate a (description of) another function, called the hypothesis, which is
close to the concept, using a set of examples. In general, we require that the learning algorithm observes
just a small fraction of the instance space and that the learner can generalize the information provided by
these examples to instances that have not been previously observed. It is clear that in order to do that
the learner must have some prior knowledge about the set of possible (or likely) concepts. This knowledge
is defined in terms of the concept class, which is the set of all a-priori possible concepts.

The most demanding learning goal is that of exact identification. Here the learner is required to exactly
identify the model of the world and describe it in a concise form using a predefined language. For example,
suppose the instance space is the plane and that the concept to be learned is the area bounded by a
polygon. In an exact identification task, the learner might be required to generate an exact description of
the polygon using a sequence of the coordinates of the polygon’s corners. The goal of exact identification is
often too hard. Moreover, in real-world scenarios a short and exact description of the behavior of the world
might not even exist. A less demanding and more realistic goal is to generate an approxzimate hypothesis in
an unrestricted language. The quality of such a hypothesis is measured by comparing between the labels
it assigns to instances and the correct labels. The more these labels agree, the higher the quality of the
hypothesis. For example, in the polygon learning problem described above, an approximate identification
might consist of a polygon such that the area of the symmetric difference between the concept polygon
and the hypothesis polygon is small.

One of the most popular mathematical frameworks of approximate concept learning is the model
introduced by Valiant in [Valiant, 1984a], also called the distribution free or PAC (probably approximately
correct) learning model. In this framework the labeled instances that are given to the learner as examples
are chosen independently at random from the instance space. The distribution over the instance space is
arbitrary, and not known to the learner. The accuracy of the hypothesis generated by the learner is defined
as the probability that the hypothesis assigns a wrong label to a randomly chosen instance. Or, in other
words, as the probability measure of the symmetric difference between the hypothesis and the concept.
Note that this is a reasonable way of measuring the error, because the hypothesis is required to be accurate
only on those parts of the instance space which are likely to be observed during learning. In chapter 2
we present an algorithm that can increase the accuracy of distribution free algorithms. This work is an
improvement over previous work by Schapire [Schapire, 1990]. One of the main outcomes of the analysis of
this algorithm are improved upper bounds on the number of examples and on the computational resources
required for learning in Valiant’s model.

Some learning tasks, such as the design of a character recognizer, are best formulated as the generation
of a hypothesis. After the learning process is completed, the hypothesis is fixed, and can be encoded into
fast computer hardware that is part of the character recognizer. Other tasks, such as the prediction of

stock prices, are better described in terms of iterative trials. In this case the hypothesis of the learner is not



fixed, but rather changes after each example and then used for predicting the next example. The quality
of learning is then measured by the rate at which the error in the predictions decreases as a function of
the number of past trials, or, alternatively, by the total number of errors that the predictor makes over all
trials. This type of learning is called online learning.

In the types of learning described so far, the learner is essentially passive, observing the behavior of
its environment but not taking any active part in the the generation of examples. In many situations the
learner can take a much more active role, asking questions and performing experiments on which to base its
hypotheses. In computational learning theory this type of learning is called query learning. A wide variety
of queries have been studied, two of the most popular ones are membership queries, where the learner asks
if a particular instance is a positive instance of a hidden concept and is answered yes or no, and equivalence
queries, where the learner asks whether a particular hypothesis is correct, and is either answered positively
or is given an example on which prediction of the hypothesis is incorrect. For a survey of query learning
see [Angluin, 1988b]. The goal of most of the algorithms for learning using queries is exact identification
of the underlying model. A less studied goal is to use queries in the context of approximate identification
to reduce the number of labeled instances that the learner needs for learning. Previous work by Eisenberg
and Rivest has shown that, in the PAC learning model, no significant reduction of this type is possible
for a natural set of concept classes. These results have been strengthened by Turan [Turdn, 1993]. In
chapter 3 we show that if we allow the learner access to random wunlabeled instances, this problem can
sometimes be alleviated. We show that selecting instances to be used as membership queries out of the
random unlabeled instances has important advantages over constructing queries based on past information.
In particular, we show that the number of labeled examples required for learning the Perceptron concept
class! can be drastically reduced using a simple method for query selection proposed by Seung et. al.
[Seung et al., 1992].

In the frameworks described above, the learner’s main source of information are the labels of the
instances. The instances can usually be considered to encode a “state of nature”, while the labels can be
seen as given by a knowledgeable “teacher”. This type of learning is referred to as supervised learning.
An alternative framework is unsupervised learning, here the learner observes only unlabeled instances,
and tries to model nature without reference to any “correct” labels. One possible goal of unsupervised
learning is to generate an approximation of the unknown distribution of the instances. The quality of
the hypothesis is then measured using one of the standard measures of difference between distributions,
such as the Kullback-Leibler divergence. In chapter 4 we present a distribution model for binary vectors.
We discuss the differences between this model and other models used in unsupervised learning algorithms,
and argue why this model is relevant for some natural learning problems. We present and analyze some
learning algorithms for the unsupervised learning of this model. Finally, we give experimental evidence
illustrating the power of the model and of our learning algorithms.

The main part of this thesis is divided into three chapters, each of which is self contained and can be
read separately from the rest. In the rest of the introduction we give a brief sketch of the main results in

each chapter. Each chapter discusses a different problem and uses a different mathematical framework for

!The Perceptron concept class will be defined in Chapter 3.



its analysis. However, on a conceptual level, there are some common themes that appear in several places.
The most important one is the central role that the distribution of the instances has in concept learning.
The most common assumption about the distribution of instances that is used in computational learning
theory is the distribution-free assumption. In this case the distribution is arbitrary and unknown to the
learner. This can be seen as a choice that is made by an adversary whose goal is to make learning as hard
as possible. Another popular assumption is the distribution specific assumption, in which the distribution
is supposed to be known and fixed, irrespective of the hidden concept. Several results in this thesis suggest
a model in which the distribution of the instances is assumed to be related to the hidden target. In this
case learning can be easier than in the other cases, because the learner can gain important information

both from the labels of the instances and from the distribution of the instances.

Some classical pattern recognition methods are based on estimating the distribution of the instances.
Our approach is different in that it works on directly estimating a hidden deterministic target concept.
This approach can have an advantage when a deterministic target concept is a good approximation of the
actual relation between instances and their labels. We discuss these issues further in Chapter 5. There
we compare our approach with the pattern recognition approach and discuss the technical and conceptual
problems that need to be resolved in order to better understand the performance of our algorithms in real

world scenarios.

1.1 Boosting by majority

In order to describe the results in Chapter 2 in some more detail, we need a somewhat more complete
description of Valiant’s distribution free learning model. We reiterate the basic definitions, and add some
notation. The goal of learning is to generate a hypothesis, h, which approximates a hidden target concept c.

7, and is chosen (arbitrarily)

The concept is a function from an instance space, X, to the labels “+” and “—
from a concept class C. The hypothesis is also a mapping from X to {4+,—}. The hypothesis is not
restricted to any particular form but must be efficiently computable. There is an arbitrary distribution,
D, over the instance space, the form of this distribution is not known to the learner. In order to learn, the
learning algorithm receives a sample which is a set of m examples. Fach example is an instance, together
with its label according to ¢. The instances are chosen independently at random according to D. After
some computation, the learning algorithm outputs a description of the hypothesis h. The error of the
hypothesis is defined as the probability that an instance, chosen at random according to D, is labeled
differently by h and by ¢. We require that the error is smaller than some predefined accuracy parameter
¢ > 0. However, as there is always some small chance that the algorithm receives an unrepresentative
sample, we allow the algorithm to fail with some small probability 6. Both ¢ and é are given as input
to the algorithm, and both can be set arbitrarily close to zero. Moreover, the resources required by the
algorithm to achieve the desired performance should increase at a polynomial rate with respect to 1/¢ and
1/6. These resources include the number of examples, m, The running time of the algorithm, and the

amount of memory used by the algorithm. 2

2In the more complete model of PAC learning, one defines parameters that measure the complexity of the concept class C,

and the dependence of the resources required by the algorithm on these parameters should also be polynomial.



An algorithm meeting these requirements is called a polynomial PAC learning algorithm for the concept
class C. For many concept classes it is hard to find such algorithms, moreover, for an increasing number
of concept classes there are proofs that no efficient algorithm exist (modulo some technical assumptions
[Kearns and Valiant, 1989, Kharitonov, 1993]). A natural question is how the requirements of the PAC
learning model can be weakened to make the problem easier. One possible weakening of the model,
appropriately called weak PAC learning was suggested by Kearns and Valiant [Kearns and Valiant, 1989)].
In this model one omits the requirement that ¢ and 6 can be arbitrarily small. For example, one can
ask for a learning algorithm that with a probability of 10% generates a hypothesis whose error is smaller
than 25%. Such a requirement seems to be much less demanding than that of the standard, or strong,
PAC learning model. However, a surprising result by Schapire [Schapire, 1990], shows that the two models
are essentially equivalent. He shows that if there exists a learning algorithm that can, with non-zero
probability, generate a hypotheses whose error is smaller than 50% — =, for some constant v > 0, then
this algorithm can be transformed into a strong PAC learning algorithm, that achieves arbitrary accuracy
with arbitrarily high probability. Note that the hypothesis that randomly labels each example it sees using
an unbiased coin flip always has an error of 50%, thus the requirement on the weak learning algorithm is
essentially that its predictions are just slightly better than random guessing. The transformation presented
by Schapire is given in terms of a general purpose “boosting” algorithm. This algorithm uses the weak
learning algorithm as a procedure and combines several of the weak hypotheses generated by it into a single
very accurate hypothesis. In addition to the surprising theoretical aspect of Schapire’s result, his algorithm
is very attractive for practical purposes, because it suggests a method for improving the performance of
any learning algorithm. In Chapter 2 we present a different boosting algorithm. Our boosting algorithm
achieves the same improvement in the performance of the weak learning algorithm as Schapire’s algorithm
using fewer runs of the weak learning algorithm and combining the weak hypotheses in a simpler way. Also,
our algorithm requires less computational resources than Schapire’s algorithm. In Chapter 2 we show that
the number of times that the weak learner is called is optimal, and that the amount of computational

resources is close to optimal. We shall now sketch the main ideas that are used in our boosting algorithm.

Consider a learning algorithm that always generates a randomized hypothesis such that the probability
that the hypothesis is mistaken on any particular instance is 1/2 — v, independent of anything else. This
is a weak PAC learning algorithm which is very easy to boost. One can simply run it n times, generating
n different hypotheses, and then output the hypothesis that is the majority vote over the outputs of these
hypotheses. The probability that the majority vote is incorrect on any particular instance is equal to
the probability that a biased coin, whose probability for head is 1/2 + v, gets less than n/2 heads in n
tosses. This probability decreases very rapidly as » increases, and thus the expected error of the majority
hypothesis is very small. Of course, this is a very special type of a weak learner. A general weak learner,
without any constraints, might generate the exact same hypothesis every time we call it, and then the
majority hypothesis will be equal to each of those weak hypothesis and its error will still be 1/2—~. A way
in which we can prevent the weak learner from generating the same hypothesis over and over again is by
exposing it to examples drawn according to different distributions over the instance space. For example, we
can present the learning algorithm only with those examples on which the previous hypothesis is incorrect.

In this case the hypothesis that the weak learner generates must (with high probability) be correct with



probability 1/2 + v on those instances on which the previous hypothesis was incorrect, because this is
exactly the part of the instance space with respect to which the quality of the hypothesis is measured.
It might seem that in this way we can insure some progress towards a set of hypotheses whose errors
can be reduced by a majority vote. However, note that the new hypothesis might be incorrect on all of
the instances on which the previous hypothesis was correct. Thus while we are making some progress on
one part of the instance space, we are losing all of the advantage that we had on another part. Luckily,
there exists a way of generating distributions over the instance space that guarantee that progress is being
made by each hypothesis generated by the learner, such that combining all the hypotheses by a majority
vote generates an accurate hypothesis. Somewhat surprisingly, the number of hypotheses that needs to be
combined is equal to the number that is required when the hypotheses are generated by the very simple
“independent” weak learner described earlier. The basic idea of our boosting algorithm is to run the
weak learning algorithm n times, each time exposing it to a distribution that is more concentrated (in a
particular way) on those instances on which previous hypotheses have been incorrect. These n hypotheses

are then combined into a single hypothesis by taking a majority vote over them.

One of the ways in which the boosting algorithm can generate the distributions to which it exposes the
weak learner is by a method of filtering. This method was first used by Schapire in his boosting algorithm.
Filtering is a process by which each example that is presented to the boosting algorithm undergoes a
stochastic test. If the example passes the test, then it is accepted and passed on to the weak learner,
otherwise it is discarded. An interesting fact is that almost all of the examples that are given to the
boosting algorithm are discarded, and never take part in the actual learning process performed by the
weak learner. More precisely, in order to generate a hypothesis whose error is smaller than €, the algorithm
tests O(1/¢) examples®, out of which only O(log 1/¢) examples are accepted. This might seem to be a very
inefficient way of using the random examples. However, the total number of examples used for learning
is very close to the lower bound on the number of examples needed for learning proven by Blumer et.
al. [Blumer et al., 1989]. In fact, the boosting algorithm makes such efficient use of its resources, that its
analysis gives the best general upper bounds that are currently known on the resources required for PAC
learning algorithms that use polynomial resources.

There are two interesting corollarys from the observation that most of the examples that are given to
the boosting algorithm are discarded. The first is that most of the running time of the boosting algorithm
is spent in the search for the small number of important examples and not in the weak learning algorithm
that is generating the weak hypotheses. As the search for the important examples can be performed in
parallel, we find that any PAC learning algorithm can be transformed to a form that can execute very
efficiently on a parallel computer. Essentially, given some technical assumptions, if a parallel computer with
a sufficient number of processors is available, any PAC learning algorithm can be run in time O(log1/¢).
The second corollary is that if a concept class is learnable then the labels of any sample of size m, for
large enough m, can be deduced from the labels of just O(logm) of the instances. However, note that in
order to find this set of examples, the boosting algorithm needs to know the labels of all the instances in

the sample. In Chapter 3, described in the next section, we show that in certain cases this small set of

*The notation O() is used to indicate that log factors are ignored.



important instances can be detected even without knowing the labels of the whole sample in advance.

It is clear that our boosting algorithm makes intensive use of the fact that the weak learning algorithm,
in Valiant’s model of learning, is required to generate an accurate hypothesis for any input distribution.
This gives our algorithm its power, but also points to a potential problem of using it in practice. The
problem is that most real world learning algorithms are not distribution independent, on the contrary,
their performance is highly dependent on the distribution of instances with which they are presented.
A natural question is whether one can boost the performance of such distribution-dependent learning
algorithms. We give an affirmative answer to this question in Section 2.4.1. Our analysis shows that our
boosting algorithm can be used with such algorithms, and that the accuracy of the hypothesis that it
outputs is proportional to the sensitivity of the given learning algorithm to changes in the distribution of

the instances.

Parts of this work were previously published in [Freund, 1990] and [Freund, 1992].

1.2 Query By Committee

As we have discussed in the previous section, all random training examples are not created equal. In
fact, there is often a very small fraction of the training examples whose labels carry all the information
that is relevant for approximating the hidden concept, and knowing these labels makes all the other labels
redundant.

An interesting question is whether learning algorithms that have access to membership queries, i.e.
algorithms that can ask for the label of any particular instance, can reduce the number of training examples
by querying only on this small set of instances whose labels are the most informative.

This question was previously studied by Eisenberg and Rivest [Eisenberg and Rivest, 1990] in the PAC
learning framework. They give a negative result, and show that for a natural set of concept classes, which
they call “dense in themselves”, queries can not decrease the number of labels that the learner has to observe
before it can generate an accurate hypothesis. Intuitively, the reason is that some of the information that
is conveyed to the learner by a random sample can not be gathered from queries. When a leaner is given a
sample of random examples, it not only receives information about the target concept, but it also gets an
empirical estimate of the distribution of the instances. This estimate is important because the error of the
hypothesis is measured with respect to the distribution of the instances. Clearly, membership queries that
are constructed by the learning algorithm convey no information about the distribution of the instances.

In Chapter 3 we present a framework of learning from queries in which this problem can be overcome.
In this framework, the learner is given separate access to the random instances and to their labels. We
assume that receiving a random unlabeled instance is relatively cheap, while obtaining the label of a random
instance is more expensive. In many real life cases, such as character or speech recognition, this is a natural
assumption, because gathering random unlabeled examples is a basically automatic process, while obtaining
the correct label of an example requires human labor.

We study one particular algorithm for learning in this framework, that was presented by Seung et. al.
[Seung et al., 1992], called “Query-by-Committee”. The algorithm uses a “committee” of learners, that is

to say, a set of independent learning algorithms, each of which generates a hypothesis that is consistent



with the answers to all the queries asked so far. The algorithm selects its membership queries from among
the random instances. It asks membership queries on those random instances that cause disagreement
among the committee members, in other words, those examples that are labeled differently by different
consistent hypotheses.

The process of learning can be seen as an interplay between two types of information. On the one
hand, labeled instances convey information about the hidden concept, this information can be measured
by the number of hypotheses that are eliminated when the label of an instance is revealed. On the other
hand, the set of hypotheses that is consistent with past experience can be used to predict the label of
an unlabeled instance. Qur analysis of the query by committee algorithm is based on the analysis of this
interaction. We show that for the Perceptron concept class, the chosen membership queries reduces the
set of consistent hypothesis at a fast rate. We also show that, in general, when such fast reduction is
achieved by the Query by Committee algorithm, and the concept class is learnable, then the prediction

error decreases exponentially fast in the number of queries asked.

Part of this work was previously published in [Freund et al., 1993].

1.3 Learning distributions of binary vectors

The task of the learner in Chapters 2 and 3 is to generate a hypothesis that approximates a hidden
concept, mapping instances to {4, —}. Tasks of this type are often referred to as supervised learning tasks.
The reason for the name is that the instance labels can be assumed to be generated by a knowledgeable
supervisor, or teacher. As we have discussed earlier, the distribution of the instances plays a major role
in the process of learning, however, learning the form of this distribution is not the ultimate task of the
learner. In contrast, in the framework of unsupervised learning, the goal of the learner is to generate
a hypothesis based on unlabeled instances alone. The hypothesis is an approximate description of the
distribution of the instances.* This description can sometimes provide important information about the
process that generates the instances.

Consider, for example, a situation in which a learning algorithm is presented with statistical information
regarding the people that visit a particular coffee shop and wishes to deduce a good distribution model
for this information. For concreteness, suppose that the clientele of the coffee shop is a predefined set of
n people, and that the learner is given a table that summarizes which of these people visited the coffee
shop at each day of a particular year. For simplicity, we assume that the vector that defines the visitors
on each day is generated by an independent random draw from a distribution that does not change over
time. Clearly, one can deduce important information about social relationships from this table. Groups
of people that tend to visit the coffee shop together are likely to be friends or take the same train, while
people that tend not to be at the coffee shop at the same time might have some animosity towards each
other. A good distribution model of the table should be able to capture and convey these friendships and

animosities.

*Some unsupervised learning algorithms generate hypotheses that are not explicit distribution models. For example, some
clustering algorithm generate a set of so-called “cluster centers”. However, these cluster centers can usually be interpreted as

the means of the components of a Gaussian (or related) mixture distribution.



In Chapter 3 we propose a class of simple distribution models over fixed length binary vectors that
attempts to encode complicated distributions of this type in a useful way. The idea is to introduce a set of
so-called “hidden variables” that represent events that cannot be directly observed, but have influence
on the observable variables. Variables of this type are popular in so-called “Connectionist” models,
such as Boltzmann Machines [Peterson and Anderson, 1987] and Belief Networks [Pearl, 1988]. These
popular models can be interpreted as models of distributions over the observable variables. However, the
distributions defined in this way cannot be described by a reasonably simple closed form expression. Our
approach is to use a very restricted type of Boltzmann Machine which we call the “Combination Machine”.
This restriction makes the distribution model simple enough to enable us to describe it with a simple
closed-form expression. However, it is still general enough to approximate an arbitrary distribution over
the binary vectors to within any desired degree of accuracy.

We present two algorithms for the unsupervised learning of this model from random unlabeled instances.
The first algorithm is a standard gradient ascent algorithm for maximizing the likelihood of the distribution
model. The other model is an adaptation of the “Projection Pursuit” algorithm developed by Friedman
and Tukey [Friedman and Tukey, 1974, Friedman et al., 1984, Friedman, 1987], and by Huber [Huber,
1985]. The basic idea of this algorithm is that the important structure of a high dimensional distribution
is conveyed by those projections of the distribution that are most different from the normal distribution.
These algorithms are especially appealing because they allow an incremental construction of the distribution
model and are thus much more efficient than the gradient ascent algorithm.

We have only a partial analysis of the learning algorithms that we present for the combination machine.
However, we have performed some experiments that demonstrate the performance of these algorithms.
Some of our experiments are on synthetic data which is generated using a combination machine. The
goal of the learning algorithm in these experiments is to uncover the parameters of this machine from the
distribution of the data. In other experiments we have used our algorithm to generate a model for the
distribution of images of handwritten digits. In these experiments we show that the distribution model

that is generated is meaningful and that it competes favorably with another popular distribution model.

Part of this work was previously published in [Freund and Haussler, 1992].
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2. Boosting a weak learning algorithm by majority

2.1 Introduction

The field of computational learning is concerned with mathematical analysis of algorithms that learn
from their experience. One of the main problems studied in computational learning theory is that of concept
learning. Informally, a concept is a rule that divides the world into positive and negative examples. For
instance, the concept of “being blue” divides all objects into those that are blue and those that are not
blue. The learning algorithm is presented with examples of blue and non-blue objects and is required to
deduce the general rule. More formally, we define the set of all possible objects as the instance space and

define concepts as functions from the instance space to the labels “

=" and “47. An instance, together
with its label is called an example. The goal of concept learning is to generate a (description of) another
function, called the hypothesis, which is close to the concept, using a set of examples. In general, we require
that the learning algorithm observes just a small fraction of the instance space and that the learner can
generalize the information provided by these examples to instances that have not been previously observed.
It is clear that in order to do that the learner must have some prior knowledge about the set of possible
(or likely) concepts. This knowledge is defined in terms of the concept class, which is the set of all a-priori
possible concepts.

In this paper we study concept learning in a probabilistic setting. Here the examples that are given
to the learning algorithm are generated by choosing the instances at random from a distribution over
the instance space. This distribution is arbitrary and unknown to the learner. The central measure of
the quality of a learning algorithm in the probabilistic setting is the accuracy of the hypotheses that it
generates. The accuracy of a hypothesis is the probability that it classifies a random instance correctly.
The accuracy of the hypotheses that are generated by a learning algorithm is expected to improve as the
resources available to the algorithm are increased. The main resources we consider are the number of
examples used for learning and the time and space available to the learning algorithm. One of the main
results of this paper is an upper bound on the resources required for learning in the distribution-free model
of learnability introduced by Valiant [Valiant, 1984a].

In Valiant’s model, commonly referred to as the PAC (Probably Approximately Correct) learning model,
or the distribution-free learning model, the quality of a learning algorithm is defined as follows. A learner
is said to have accuracy ¢ with reliability 1 — ¢ if the probability, over the random choice of the examples
and possible internal randomization of the learning algorithm, of generating a hypothesis that has error
smaller than e, is larger than 1 — 4.1

As was recognized by Haussler et. al. [Haussler et al., 1991a], increasing the reliability of any learning
algorithm is easy. This can be done by testing the hypothesis generated by the algorithm on an independent

set of examples to validate its accuracy. If the accuracy is not sufficient, the algorithm is run again, on a

!The exact definition of the PAC learning model are given in Section 2.3.1.
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new set of random examples. It is easy to show that increasing the reliability from 1 — é; to 1 — é3 can be
achieved by running the algorithm O(log(1/62)/(1 — é1)) times.?

Improving the accuracy of a learning algorithm is much harder. Two different variants of the PAC
model were introduced by Kearns and Valiant [Kearns and Valiant, 1989] to address this issue. In strong
PAC learning, which is the more common model, the learner is given the required accuracy, €, as input, and
is required to generate a hypothesis whose error is smaller than e. The resources used by the algorithm can
grow at most polynomially in 1/e. On the other hand, in weak PAC learning the accuracy of the hypothesis
is required to be just slightly better than 1/2, which is the accuracy of a completely random guess. Kearns
and Valiant proved that weak and strong learning are distinct for distribution specific learning. They
have shown that while weak PAC learning of monotone Boolean functions with respect to the uniform
distribution can be done in polynomial time, strong PAC learning of the same class will imply an ability
to break some hard cryptographic problems that are commonly assumed to be unbreakable.

This seemed to indicate that weak and strong distribution-free learning should also be separated.
However, Schapire [Schapire, 1990] proved that weak and strong PAC learning are equivalent in the
distribution-free case. Schapire presented an algorithm that, given access to a weak learning algorithm, can
generate hypotheses of arbitrary accuracy using time and space resources that are polynomial in 1/e. This
algorithm is called the “boosting” algorithm. The main idea is to run the weak learning algorithm several
times, each time on a different distribution of instances, to generate several different hypotheses. We refer to
these hypotheses as the “weak” hypotheses. These weak hypotheses are combined by the boosting algorithm
into a single more complex and more accurate hypothesis. The different distributions are generated using
an ingenious “filtering” process by which part of the random examples that are presented to the boosting
algorithm are discarded, and only a subset of the examples are passed on to the weak learning algorithm.
It turns out that corollaries of this important result give good upper bounds on the time and space
complexity of distribution-free learning. Schapire’s result also has many important implications related to
group-learning, data-compression, and approximation of hard functions.

In this article we present a simpler and more efficient boosting algorithm. Schapire’s boosting algorithm
is defined recursively. Each level of the recursion is a learning algorithm whose performance is better than
the performance of the recursion level below it. The final hypothesis it generates can be represented as
a circuit consisting of many three-input majority gates. The input to the circuit are the labels produced
by the weak hypotheses, and the output is the final label (see Figure 2.1). The depth of the circuit is a
function of the problem parameters (accuracy and reliability), and its structure can vary between runs.
The definition of our boosting algorithm, on the other hand, is not recursive and the final hypothesis
can be represented as a single majority gate. This majority gate combines the outputs of all of the weak
hypotheses.

In this paper we present two variants of our boosting algorithm. The first is boosting by finding a
consistent hypothesis. This variant of the algorithm finds a hypothesis which is consistent with a large set
of training examples. The analysis of this variant is quite straight forward, and its performance is close to

the best performance we achieve. It also seems to be the variant whose application to practical learning

2A full analysis of this algorithm is given in Appendix A.1.
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Figure 2.1: Final concepts structure: (a) Schapire (b) A one-layer majority circuit.

problems is more efficient [Drucker, 1992 1993]. The major drawback of this method is that it requires
storage of the whole training set, which makes the space complexity dependence on € be O((log1/¢€)?/e)
(assuming that the concept class is fixed and that its VC dimension is finite). While this cost is often
taken for granted, Schapire’s algorithm demonstrates that boosting can be achieved using only O(log1/¢)
space. We thus present a second variant of our algorithm, which we call boosting by filtering. This
algorithm selects a small subset of the training examples as they are generated, and rejects all other
examples. The sample complexity (number of training examples) of this version of the algorithm with
respect to € is O((1/¢)(log1/€)*/?(loglog 1/¢)), its time complexity is O((1/¢)(log1/€)>/*(loglog 1/¢)), its
space complexity is (log1/¢)(loglog1/¢)) and the number of weak hypotheses it combines is O(log1/¢).
These are, to the best of our knowledge, the best general upper bounds on the dependence of the resources
required for computationally efficient PAC learning on the desired accuracy e. We present some lower
bounds that show that the possibilities for additional improvement are very limited. In particular, we show
that there cannot be a general boosting algorithm that combines a smaller number of weak hypotheses to
achieve the same final accuracy.

We also present generalizations of the algorithm to learning concepts whose output is not binary. One
generalization is for concepts with k-valued outputs and is quite straightforward. Another generalization is
to real-valued concepts. We show how boosting can be used in this case to transform a learning algorithm
that generates functions whose expected error over the domain is bounded by ¢ into a learning algorithm
that generates functions whose error is bounded by 2¢ over most of the domain.

We also extend our result to distribution-specific learning. We show that our algorithm can be used for
boosting the performance of learning algorithms whose quality depends on the distribution of the instances.
More precisely, we show that the accuracy of the hypothesis that is generated by our boosting algorithm for
a distribution D is a function of the rate in which the accuracy of the boosted learning algorithm decreases
as the distribution of instances that it observes diverges from D. The divergence between the distributions
of the instances can be measured by the Kullback-Leibler measure of divergence.

Schapire [Schapire, 1992], noted that the results presented in this paper can be used to show an

interesting relationship between representation and approximation using majority gates. These results
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were independently discovered by Hastad et. al. [Goldmann et al., 1992]. However, while their proof

technique is very elegant, our proof is more constructive (for details see Section 2.2.2).

It is surprising to note that the boosting algorithm uses only a small fraction of the examples in the
training set. While it needs £2(1/¢) examples to generate a hypothesis that has accuracy €, only O(log1/¢)
of them are passed to the weak learners. Two interesting implications arise from this fact. The first
implication was pointed out to us by Schapire [Schapire, 1992]. It can be shown that if a concept class
is learnable then the following type of compression can be achieved: Given a sample of size m, labeled
according to some concept in the class, the boosting algorithm can be used to find a subsample of size
O(logm) such that the labeling of all of the instances in the sample can be reconstructed from the labels
of the subsample. The second implication was found jointly with Eli Shamir [Shamir, 1992]. We observed
that if training examples can be accumulated in parallel by several parallel processors, then our methods
can translate any PAC learning algorithm to a version that runs in time O(log1/¢) on a parallel computer
with O(1/¢) processors. This is because most of the examples that are given to the boosting algorithm are
simply discarded and the search for a “good” example can be done by many processors in parallel.

The Paper is organized as follows. The main Theorem on which our boosting algorithms are based is
given in Section 2.2 using a simple game-theoretic setting that avoids some of the complications of the
learning problem while addressing the main underlying problem. In Section 2.3 we relate the theorem back
to the learning problem, in Section 2.4 we present some extensions, and in Section 2.5 we summarize and
present some open problems.

In Section 2.2 we present a game, called the “majority-vote” game, between two players, a “weightor”
and a “chooser”. The game consists of k iterations. For simplicity we now assume that the game is played
on the set {1...N}. In each iteration the weightor assigns to the N points non-negative weights that sum
to 1. The chooser has to then “mark” a subset of the points whose weights sum to at least 1/2+ v, where
0 < v < 1/2is a fixed parameter of the game. The goal of the weightor is to force the chooser to mark
each point in the space in a majority of the iterations, i.e. each point has to receive more than k/2 marks.
We show that there exists a strategy that lets the weightor achieve that goal in [%7_2 In N iterations. A
similar game can be played on a general probability space, in which case the goal of the weightor is to
force the chooser to mark all but and € fraction of the space in the majority of the iterations. We show
that £ = [1y~21In1/¢] iterations suffice in this case.

The weightor in this game represents the centerpiece of the boosting algorithm, which is the choice of
the distributions that are presented to the weak learning algorithm. The points that the chooser decides to
mark correspond to the instances on which the weak learner makes the correct prediction. This represents
the freedom of the weak learner to distribute the error of the hypothesis in any way it chooses as long as
the probability that a random instance is labeled correctly is at least 1/2 + ~. This abstraction bypasses
some of the complexities of the PAC learning problem, and can be read independently of the rest of the
paper. In Subsection 2.2.1 we show that in the case of continuous probability spaces, there is a strategy for
the chooser such that for any strategy of the weightor, if the game is stopped in less than k = [%7_2 In1/€]
iterations, more than € of the space is marked less than k/2 times, i.e. the weightor fails to achieve its goal.

Thus our weighting strategy is optimal for the case of continuous probability spaces. In Subsection 2.2.2
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we present the implication of our analysis of the majority-vote game on the representational power of
threshold circuits.

In Section 2.3 we relate the majority-vote game to the problem of boosting a weak learner and present
the two variants of the boosting algorithm and their performance bounds. In order to simplify our analysis
we restrict our analysis in Subsections 2.3.2 and 2.3.3 to the case in which the weak learning algorithms
are deterministic algorithms that generate deterministic hypotheses. In Subsection 2.3.4 we show that this
analysis needs to be changed only slightly to accommodate randomized learning algorithms that generate
randomized hypotheses. In order to present the complete dependence of our bounds on the parameters of
the problem, we don’t use the notational conventions of polynomial PAC learning in our main presentation,
but rather give explicit bounds including constants. Later, in Subsection 2.3.5, we derive upper bounds on
the resources required for polynomial PAC learning that are the best general upper bounds of this type
that exist to date. In Subsection 2.3.6 we compare our upper bounds to known lower bounds and show
that which aspects of our bounds are optimal and which might be further improved.

In Section 2.4 we give several extensions and implications of our main results. In Subsection 2.4.1
we show that our algorithm for boosting by filtering can work even in situations where the error of the
hypotheses generated by the weak learning algorithm is not uniformly bounded for all distributions. In
Subsection 2.4.2 we present a version of the boosting algorithm that works for concepts whose range is a
finite set, and in Subsection 2.4.3 we present a version that works for concepts whose range is a real valued.
In Subsection 2.4.4 we show how boosting can be used to parallelize learning algorithms. We conclude the
paper with a summary and a list of open problems in Section 2.5. In the appendixes to the paper we give

a summary of our notation and proofs of three lemmas.

2.2 The majority-vote game

In this section we define a two-player, complete information, zero-sum game. The players are the
“weightor”, D, and the “chooser”, C. The game is played over a probability space (X, X, V), where X is
the sample space, Y is a o-algebra over X, and V is a probability measure. We shall refer to the probability
of a set A € ¥ as the value of the set and denote it by V(A). A real valued parameter 0 < v < 1/2 s fixed
before the game starts.

The game proceeds in iterations, in each iteration:

1. The weightor picks a weight measure on X. The weight measure is a probability measure on (X, ¥).

We denote the weight of a set A by W(A).
2. The chooser selects a set U € X such that W(U) > 1 + v, and marks the points of this set.

These two-step iterations are repeated until the weightor decides to stop. It then receives, as its payoff,
the subset of X that includes those points of X that have been marked in more than half of the iterations
played (if the number of iterations is even this set does not include points that have been marked exactly
half the time). We shall refer to this set as the reward set and to its value as the reward. The complement
of the reward set is the loss set. The goal of the weightor is to maximize the reward, and the goal of the

chooser is to minimize it.
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The question about this game in which we are interested is whether there exists a general strategy,
independent of the specific probability space that guarantees the weightor a large reward. An affirmative
answer to this question is given in this section. We describe a general strategy for the weightor such that
for any probability space (X, %, V) and any €, > 0, the weightor can guarantee that the reward is larger
than 1 — € after just %(%)2 In 1 iterations.

We shall present the weighting strategy in the following way. We start by giving some insight, and
show what weighting strategies are reasonable. We then present the weighting strategy, and prove a bound
on the reward that it guarantees. Finally we show that for non-singular sample spaces (such as a density
distribution on R™) there is a matching strategy for the adversary, implying that our strategy is the optimal
minimax strategy when the sample space is non-singular.

In the following discussion we are fixing a particular instance of the game, i.e. we consider a particular
sequence of moves taken by the two players. Let k& be the number of iterations in the game. For 0 <1 < k
define {X(, Xi,..., X!} to be a partition of X into i + 1 sets where X! consists of those points in X that

have been marked r times after ¢ turns of the game have been played.

tai
number of marks p Success
Tr = Ok S 3 7
K
2 \>
8
8 I ’ 8 3<//
0N, 177N 3/
i 0 2 > 1<\
8
0 3.7
S
0"\ A
o ertain
I : allure
stage of game
2K

Figure 2.2: Transitions between consecutive partitions

As graphically presented in Figure 2.2, in iteration i, the chooser decides for each point in X! whether
to mark it or not, thus placing it in X;i}l or in X!*!. The goal of the chooser is to minimize the value of
the reward set: Uf: Lk/2J+1Xf‘ The goal of the weightor is to maximize this value. By giving some points

more weight than others, the weightor forces the chooser to mark more of those points. In the extreme,
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by placing all the weight on a single point it guarantees that this point will be marked while at the same

time allowing the chooser not to mark any other point, moving them closer to the loss set.

Let us define some notation:

k the total number of iterations the game is played.

Xi the set of points that have been marked r times in the first ¢ iterations.
Mi=X!n X;:H the subset of X! that is marked in iteration 1.

¢ = V(X)) the value of X!.

zl = % the fraction of X! that is marked in iteration i.

L the loss set, i.e. those points that are in the end marked

less than or equal to half the time.

Note that XJ = X and thus ¢) = 1.

Observe that if » > k/2, then points in X are guaranteed to be in the reward set. Likewise, if i—r > k/2

then points in X! are guaranteed to be in the loss set. Thus it is intuitively clear that any reasonable

weighting scheme will give zero weight to these points and place all the weight on those points for which

both failure and success are still possible. In particular, the only points that should be assigned a non-zero

weight in the final iteration are points in ka_/lzj' We now present a weighting strategy that agrees with

this intuition, and prove that this strategy guarantees the claimed performance.

The weighting strategy assigns a weighting factor ol to each set X! where 0 < r < i < k — 1. If the

space is discrete then the weight assigned to the point 2 € X! on round ¢, is the value of the point times o

times a constant normalization factor that makes the total weight be one (the definition of the weighting for

non-discrete spaces is given in the statement of Theorem 2.2.1). The weighting factor is defined recursively

as follows:

«

k—lz{ 1 ifr:[%J

" 0 otherwise

and for 0 < i<k —2: ) )
a, = (5—7)04;“4— <§+7)0‘3«111-

Recall that v is a parameter of the majority-vote game that is fixed before the game starts.

Solving the induction, it is easy to verify that o’ has the following binomial distribution.

0 ifr<i-&
; —i- El_r El—i—1+r ¢
ob =3 (GG NET GBI i<t
0 ifr> %

where we define (8) to be 1.

The performance of our weighting strategy is given in the following theorem:

(2.1)

Theorem 2.2.1: For any probability space (X, X, V) and any €,7 > 0, if the weightor plays the majority-

vote game for k iterations, where k satisfies

(2.2)
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and uses the following weighting in® iteration i

For any set A in the o-algebra X (2.3)
W(A) =Y V(AnNX))al/Z; (2.4)
r=0

i
where Z; = Z V(XHal ,
r=0
then the reward at the end of the game is at least 1 — €, independent of the strateqy used by the chooser.
Before proving the theorem, we define the function 8 over 0 < 7 < i < k which we call the “potential”
of the set X'. As we shall see the potential of X predicts, in some sense, the fraction of points in X! that
will end up in the loss set. As at the end of the game we know which points are in the loss set and which

are in the reward set, it is reasonable to define the potential for ¢ = &k as

0 ifr>%
k 2
_ 2.5
or { 1 ifr< % (25)
For ¢« < k we define the potential recursively:
i_ (1 i1 (1 i+1 926
B, = 57 B+ St B - (2.6)
A closed form formula for 3% is the tail of the binomial distribution:
1 ifr<i-%
| Elor s ; il g -
=y Tk (GG - i f <k 27)
0 ifr>%

The weight factor function, o', is in some sense a discrete derivative of the potential function along the

T axis:
ol = B — gt (2.8)
The main property of the weighting scheme is that it guarantees that the average potential does not

increase at any step. This property is proved in the following lemma.

Lemma 2.2.2: If the weighting scheme described in Fquation (2.3) is used by the weightor, then

1 2 k
0 1,1 22 k nk
ﬁOZZqT TZZqTﬁTZZqT T
r=0 r=0 r=0

for any strategy of the chooser.

*In the special case where X is discrete, it is sufficient to define the weight of each point. In this case we set Wi(z) = aiV(x)
for all z € X! .



18

Proof of Lemma 2.2.2: Recall that ¢¢ = V(X!) and 2! = V(M N X!). At each iteration i the
adversary chooses the variables 0 < 2z < 1, and we get the following formula for the transition to the next

iteration:

gt =gyl + ‘Zi(l - x;) for 1<r<a, (2:9)
q(?)“ = qé(l — $6) for r=0,
qjjl'_'% =qlat for r=i+1.

Using this we can get a formula that relates the sum Zj«:o ¢’ 3 for consecutive iterations.

i+1
> gtet = gh(1— 2)B5 + Z [ _q2h g+ i (1 — 2B + giaipil
r=0 r=1

and rearranging the sum gives us that

i+1 {
St A =3 gl — 2 + el gt = Eyﬂ“+2q (B3 =5 (2.10)
r=0 r=0

On the other hand, from the weight restriction we get:

7 ' 1

r=0

and as M C X! the definition of the weight function gives:
7 7 1
—ZV —ZV DB - 57111)254'7-

Using the fact that git! > ﬁ;‘_’l'_ll and the definition of Z; we get that

2 g - AT < +72%mﬁwﬁw (2.11)
r=0
Substituting (2.11) into the RHS of (2.10) we finally get that
sl 1 L :
doattat < Z R CE I ACAT R AR
r=0 r=0

Z% 7B+ (— — )3ty = Z%ﬁl

The last equality is a based on Equation (2.6). |
Proof of Theorem 2.2.1 From Equation (2.7) it is immediate that the LHS of Equation 2.2 is equal
to (3, thus, by choice of k, 83 < €, which means that the initial expected potential is small. Combining

this with the inequality from Lemma 2.2.2, that implies that the potential never increases, we get that

k
€> 60> gk

r=0
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On the other hand, from the Equation (2.5) we have:

k

El
dSosldh=>q=Vv(1).
r=0

r=0
Thus the value of the loss set L is at most €. |

In order to see that the result given in Theorem 2.2.1 is meaningful, we give an explicit choice for k

that is close to the optimal choice for small ¢ and ~.

Corollary 2.2.3: Theorem 2.2.1 holds if the number of iterations is chosen to be k = %(%)2 In %

Proof: The LHS of Inequality 2.2 is equal to the probability of the tail of a binomial distribution with
p=1/24 v and k trials, and can be bounded by Chernoff bounds [Bollobas, 1985, page 11]. as follows.

P(Sky < 15)) < P8k, < ) < explir(*2))

where
1 _11 1/24~ 11 1/2 -~

2N T T2 TR
plugging this into the previous formula, and requiring the tail to be bounded by ¢ we get

= Sin(1- (277

€> exp(gln(l —(27)%)

k
Ine> 5111(1 —(29)%)
In(e)
k>2—"—r
T (1= (29)?)
using the bound In(1 — 2) < —z for 0 < 2 < 1 we get that for the above to hold it suffices to require the

following

2.2.1 Optimality of the weighting scheme

We shall now show that, in some natural cases, the weighting strategy devised in this section is optimal.
Assume the probability space (X, Y, V) has the property that for any measurable set A € ¥ there exists
another set A’ € ¥ such that V(A") = 1V(A). Let us call such a probability space “divisible”. One natural
example of a divisible space is the Euclidean space X = R", where Y. is the Borel algebra over R™ and the
measure V is a density measure that assigns all single points a value of zero.

In this case there is a simple strategy for the chooser such that for any strategy of the weightor the size

of the reward set after k iterations will be at most

15]
ﬁ)@+wyg—vfﬂ. (2.1
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Which means that the choice of k£ in Equation 2.2 of Theorem 2.2.1 is the smallest possible. The idea of the
strategy is for the chooser to decide whether or not to mark each point in each iteration independently at
random with probability 1/2+4 v of choosing to mark it. This way the probability that any point is marked
in more than half of the iterations is equal to the binomial tail of Equation (2.12). However, selecting each
point in a continuous domain independently at random is ill defined, and a way for selecting measurable
sets with similar properties is required.

In order to prove the existence of the optimal chooser strategy we need the following simple lemma,
regarding divisible probability spaces
Lemma 2.2.4: Suppose that the probability space (X, %, V) is divisible, and that W is another probability
measure defined on (X,X).

Then for any set A € X there exists a set A’ C A, A" € ¥ such that V(A") = (1/2 4+ 7)V(A) and
W(AY) 2 (1/2 4 7)W(A)
The proof of this lemma is given in the appendix.

The strategy is defined as follows. In the ith iteration, the space X is divided into 2°=! sets Fj, such

79
that two points in X belong to the same set if they have been marked in exactly the same iterations in the
past. Each of these sets is in X, thus, for each set F}, there exists a corresponding set FJ’ € Y., such that
V(F}) = (1/2+y)V(F]), and W(F};) > (1/2+ )W (F]). The chooser marks the points in the set U; F7. It
is easy to check that this is a legitimate marking. It is also not hard to see that the value of the loss set is
equal to the probability that a random coin, whose probability of “heads” is 1/2 4 ~, will fall “tails” more
than k/2 times in k flips. We thus get a legitimate strategy that behaves essentially like a strategy that

marks each point independently at random with probability 1/2 4+ 4 and the claim easily follows.

2.2.2 The representational power of majority gates

Our analysis of the majority-vote game can be used to prove an interesting result regarding the
representation of Boolean functions as a majority over other Boolean functions. This application of boosting
has been discovered by Schapire [Schapire, 1992]. A slightly weaker version of this result was independently
proven by Goldmann, Hastad, and Razborov [Goldmann et al., 1992] using a completely different proof
technique. In the following presentation we follow their notation.

Let f denote a Boolean function whose domain is {—1,1}" and range is {—1,1}. Let H be a set of
Boolean functions defined over the same domain and range. We use D to denote a distribution over the
domain {—1,1}". Let the correlation between f and H with respect to D be defined as

DR(f) = max Ep[f(x)h(x)] .

The distribution-free correlation between f and H is defined as
Di(f) = mjn DR(/)

The majority function is defined as follows

k
MAJ(zq,...,21) = sign (sz) ,
=1
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where )
1, ifz>0

sign(z) = .
gn(e) {—1, otherwise

Using our boosting algorithm we prove the following result

Theorem 2.2.5: Let f be a Boolean function over {—1,1}" and H be a set of functions over the same
domain. Then if k > 21n(2)nD;I2(f), then f can be represented as

fle)= MAJ(hi(x),...,he(2))

where h; € H.

Proof: Assume the majority-vote game is played over the domain {—1,1}" and that the value of a set is
the number of points in it divided by 2". Assume the chooser in the majority-vote game chooses which
points to mark by selecting a function h € H such that Prp(h(z) # f(2)) < 1/2—+ and marking all 2 such
that h(z) = f(z). By definition of Dy(f), such a function exists for every distribution D if v = Dg(f)/2.
Theorem 2.2.1 provides us with a method for selecting the distributions D;, which correspond to the the
weightings W;. This selection guarantees that the majority over the corresponding hypotheses will be very
close to f. More specifically, it guarantees that if k¥ = 1/2y7?In1/e¢, the number of points € {—1,1}"
such that MAJ(hi(z),...,hi(2)) # f(x) is smaller than €2", by setting ¢ < 27" we guarantee that
MAJ(hy(2),...,hi(z)) = f(z) for all z € {—1,1}". Plugging our selection for v and € into k = 1/2y %In ¢
we finish the proof. |1

Goldmann, Hastad and Razborov ([Goldmann et al., 1992]), prove Theorem 2.2.5 using a elegant

application of von Neumann’s Min-Max Theorem. They consider the selection of the h € H that is
correlated to f, as the following game. One side in the game, which we call the weightor, defines the
probability D over X, and the other side,the chooser, chooses h € H. Unlike our majority-vote game,
this game consists of a single trial of this kind, and the players are given the knowledge of each others
decision only after each of them makes its own decision. The chooser’s gain (and the weightor loss) is the
correlation of f and h according to D, Ep[f(x)h(z)] > 1/2 + 4.

The so-called “simple” strategy for the chooser is to select a single function h € H all of the time,
and the simple strategy for the weightor is to always select a single distribution. The assumption of the
theorem implies that for any simple strategy of the weightor there exists a simple strategy for the chooser
that guarantees it a gain of at least 1/2 4+ . The Min-Max theorem implies that because of this, there is
a mized strategy for the chooser that would have an expected gain of at least 1/2 4+ v against any strategy
of the weightor. A mixed strategy is a distribution over the simple strategies. In other words, there exists
a distribution over H such that if h is chosen according to this distribution, then the expected correlation
between h and f with respect to any distribution over X is larger than 1/2 + v. In particular, if the
distribution D is concentrated on any particular element zg € X, then the probability that h(zg) = f(zo)
is larger than 1/2 4+ ~. If we choose k functions independently at random from H according to this
distribution, we can make the probability that M AJ(hy(zg),. .., he(2zo)) = f(xo) arbitrarily high. As X is
a finite space, a sufficiently large value of k guarantees that, with high probability, the majority vote over
k random functions is correct on all of X. Using the fact that | X| = 2" and Chernoff bounds, they get the

statement of the theorem.
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This proof is very short and elegant. However, it is not a constructive proof. On the other hand, our
proof is constructive in that it shows how to generate the distributions that correspond to the desired
functions in H.

For completeness we give a simple lemma (Lemma 3.2 in [Goldmann et al., 1992]) that gives an
approximate converse to Theorem 2.2.5.

Lemma 2.2.6: Let f and H be as in Theorem 2.2.5. Then if [ can be represented as
fle)= MAJ(hi(x),...,he(2))

where h; € H, then Dy(f) > 1/k.
Proof: From the definition of the majority function and the requirement that the argument of the sign

function is never zero, we get that for every € {—1,1}", there are at least (kK + 1)/2 indices 7 such that
hi(z) = f(2). Fixing any distribution D over {—1,1}", we get that

k
ZPI’xeD (hi(z) = f(x)) = Y Pro(e) {1 <i<k|he)=fa)}] > (k+1)/2.

ce{-1,1}"

The pigeon-hole principle guarantees that there exists at least one index 1 < ¢ < k such that
Preep (hi(z) = f(z)) > (k4 1)/2. This implies that DB(f) > 1/k. As this holds for all D, we get

the statement of the lemma. |

2.3 Boosting a weak learner using a majority vote

In this section we shall describe the connection between the majority-vote game and the problem of
boosting a weak learning algorithm.

We start by presenting the minimal notation that is needed for analyzing our boosting algorithms. We
then present our algorithms and their analysis. Later, in Section 2.3.5, we give a more complete notational

framework, and use this framework to relate our results to other results in PAC learning theory.

2.3.1 Preliminaries

We start by giving the definitions of a minimal framework of distribution-free concept learning that is
needed for presenting our main results. A concept is a binary-valued mapping over some domain X. We
denote use the letter ¢ to denote a concept and ¢(z) to denote the label of the instance & according to the
concept c¢. A concept class C is a collection of concepts.*

The learners task is to learn an approximation to a concept ¢. The learner knows a-priori that the
concept is in some known class C, but has no prior knowledge of the specific choice of ¢ € C. The learner

is assumed to have access to a source EX of examples. Each time EX is called, one instance is randomly

*In order to define polynomial PAC learnability, the complexity of the sample space and of the concept class need to be
parameterized. In our initial basic setting we suppress this parameterization and the issue of polynomial versus non polynomial

learning, we return to fully discuss this issue in Section 2.3.5.
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and independently chosen from X according to some fixed but unknown and arbitrary distribution D.?
The oracle returns the chosen instance z € X, along with its label according to the concept ¢, which is
denoted ¢(z). Such a labeled instance is called an ezample. We assume EX runs in unit time.

Given access to EX the learning algorithm runs for some time and finally outputs an hypothesis h.
The hypothesis is a description of an algorithm (possibly probabilistic) that receives as input an instance
x € X and generates a binary output. This output is called the “prediction” of the hypothesis for the label
c(x). We write P(h(z) = ¢(z)) to indicate the probability, over the distribution D on X and random coin
flips of the hypothesis, that the hypothesis correctly predicts the labels of the concept ¢. This probability
is called the accuracy of the hypothesis h. The probability P(h(z) # ¢(x)) is called the error of h with
respect to ¢ under D; if the error is no more than e, then we say h is e-good with respect to the target
concept ¢ and the distribution D.

We say that a learning algorithm A has a uniform sample complexity m(e, ¢) if it achieves the following
performance. For all 0 < ¢,6 < 1, all D, and all ¢ € C, when given parameters ¢ and §, algorithm A
makes at most m calls to EX and outputs a hypothesis h that with probability at least 1 — ¢ is an e-good
approximation of ¢ under D. Similarly we define the time and space complexity of A to be functions that
bound the time and space required by A and denote them by t(¢,d) and s(e, 8) respectively. If a learning
algorithm cannot achieve some values of € and 4, or if the resources required for achieving these values are
not uniformly bounded for all distributions and concepts, we define m(e, §),%(¢,6) and s(e, ) to be infinite
for these values.

The concept of a boosting algorithm was first presented by Schapire in [Schapire, 1990]. A boosting
algorithm is a learning algorithm that uses as a subroutine a different learning algorithm. The goal of the
boosting algorithm is to efficiently generate high-accuracy hypotheses using a learning algorithm that can
efficiently generate only low-accuracy hypotheses. The boosting algorithm invented by Schapire [Schapire,
1990], was a breakthrough in that it showed that any polynomial time learning algorithm that generates
hypotheses whose error is just slightly smaller than 1/2 can be transformed into a polynomial time learning
algorithm that generates hypotheses whose error is arbitrarily small. The boosting algorithms presented
in this paper achieve better performance than those presented by Schapire and the resulting hypotheses
are simpler. A comparison of the performance of the algorithms is given in Section 2.3.5.

We use the generic name WeakLearn to refer to the learning algorithm whose performance we wish
to boost, and we refer to those hypotheses generated by WeakLearn that have the guaranteed accuracy
as weak hypotheses. We assume that there exist some real values 0 < ¢y < 1/2 and 0 < ég < 1 such that
WeakLearn, given mg examples labeled according to some concept ¢ € C, generates a hypothesis whose
error is smaller than ¢ (i.e. a weak hypothesis) with probability larger than 1 — §y over the distribution of
the training examples. We denote by mg, {g, and sg uniform upper bounds on the sample size, time, and
space required by WeakLearn to achieve this accuracy. The boosting algorithms that we shall describe

are able to generate hypotheses of arbitrary accuracy ¢ with arbitrarily high reliability 1 — 6.

®More formally, we assume that (X, %, D) is a probability space, and that C is a set of functions that are measurable with

respect to . Moreover, we assume that all subsets of X that are considered in this paper are measurable with respect to X.
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The parameters ¢ and 6y measure the discrepancy between the performance of
WeakLearn and the performance of an “ideal” learning algorithm that always generates a hypothesis
that has no error with respect to the target concept. The performance of the weak learning algorithms
that we discuss is extremely poor. They are almost completely unreliable, and even when they succeed,
they output a hypothesis whose error is close to that of a random guess. We thus find it useful to define
two new quantities ¥ = 1/2 — ¢y and A = 1 — 8. These parameters measure how far the learning algorithm
is from a completely useless algorithm and arise naturally in the design and analysis of our boosting algo-
rithms. We shall show that the resources required by our algorithms are uniformly bounded by functions
whose dependence on 1/v,1/A,1/¢, and 1/6 is either logarithmic or low-order polynomial.

For the main part of our analysis, in Sections 2.3.2 and 2.3.3, we restrict ourselves to boosting
deterministic learning algorithms that generate deterministic hypotheses. Later, in Section 2.3.4, we show
that all of our algorithms and their analysis hold, with very little change, for the case that the learning

algorithm and the resulting hypotheses are randomized.

2.3.2 Boosting using sub-sampling

One simple way of applying the results of the majority-vote game to boost the performance of
WeakLearn is by using it to find a small hypothesis that is consistent with a large set of training examples.
The algorithm BSampv which is summarized in Figure 2.3, is based on this principle.

The first step of Bgamp is to collect a training set. Formally, this means making m calls to EX,
generating the set S = {(21,01),...,(2m,n)}.% The goal of boosting is to generate a hypothesis that is
correct on all examples in 5.

As the sample is a finite set of size m, the requirement that a hypothesis is correct on all points in the
sample is equivalent to the requirement that the hypothesis has error smaller than 1/m with respect to
the uniform distribution on the sample. In order to do that, BSamp generates different distributions on
the training sample, and each time calls WeakLearn to generate a weak hypothesis, that is, a hypothesis
that has error smaller than 1/2 — v with respect to the given distribution. Each different distribution
forces WeakLearn to generate a weak hypothesis whose errors are on different sample points.” The goal
of the boosting algorithm is to control the location of these errors in such a way that after a small number
of weak hypotheses have been generated, the majority vote over all weak hypotheses will give the correct
label on each point. In other words, for each point in 5, the fraction of the weak hypotheses that assign
the point with the correct label is larger than half.

The problem of generating these distributions is equivalent to the problem of the booster in the majority-
vote game described in the previous section, under the following correspondence of terms. The wvalue
of a point corresponds to the probability assigned to the point by the target distribution (the uniform
distribution in our case). The weight of a point corresponds to the probability assigned to it by the boosting

algorithm. The decision of the adversary to mark a point corresponds to the decision by WeakLearn to

5In many actual machine learning scenarios, the training set S is the basic input to the learning algorithm, and thus this

step 1s only formal.

"Ignoring, for a moment, the fact that WeakLearn has probability & of failing to generate a weak hypothesis.
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Algorithm Bgamp
Input: EX,WeakLearn, v, m
Output: A hypothesis that is consistent on a random sample of size m.
1. Call EX m times to generate a sample S = {(z1,01),...,(2m,ln)}. To each example
(z;,l;) in S there is a corresponding weight w; and count r;. Initially, all weights

are 1/m and all counts are zero.
2. Find a (small) k that satisfies

k

> (i)(l/Q—v) (/2477 < -
i=[k/2]
(For example, any k > 1/(2y*)Inm is sufficient.)
3. Repeat the following steps for ¢ =1...k.
(a) repeat the following steps for [ = 1...(1/A)In(2k/8) or until a good hypothesis

is found.

i. Call WeakLearn, referring it to FiltEX as its source of examples, and

save the returned hypothesis as h;.

ii. Sum the weights of the examples on which hi(z;) # [;. If the sum is smaller

than 1/2 — v then declare h; a weak hypothesis and exit the loop.
(b) Increment r; by one for each example on which h;(z;) =1(;.
(c) Update the weights of the examples according to w; = aj; , Where aj; is defined
7
in Formula (2.1).
(d) Normalize the weights by dividing each weight by > 7", w;.

4. Return as the final hypothesis, hps, the majority vote over hy,...,hg.
Subroutine FiltEX

1. choose a real number z uniformly at random in the range 0 <z < 1.

2. Perform a binary search for the index j; for which

J—1 J
Swise<Yw

(%, w; is defined to be zero.)

3. Return the example (z;,[;)

Figure 2.3: A description of the algorithm for boosting by sub-sampling
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generate a weak hypothesis that is correct on the point. The reward set corresponds to the set on which
the majority vote over the weak hypotheses is correct and the loss is the probability that the majority
makes a mistake, measured with respect to the target distribution. This correspondence lies in the center
of the analysis of algorithm Bgapp-

Before we give the first theorem regarding the performance of Bgamp We must address the fact that
WeakLearn is not guaranteed to always generate a weak hypothesis. This event is only guaranteed
to happen with probability A. However, it is easy to check the hypothesis returned by WeakLearn and
calculate its error on the sample. If this error is larger than ¢y = 1/2—~, WeakLearn is called again, using
a different subset of the examples in §.% This is the role of statement 3.a.ii of BSamp' However, this test
has non-zero probability of failing any arbitrary number of times. In order to guarantee that the boosting
algorithm has uniform finite running time, BSamp tests only a pre-specified number of hypotheses. As we
shall show in the second part of the proof of Theorem 2.3.3, the probability that all these hypotheses will
have error larger than €y is smaller than 6/2. The following theorem shows that if all £ iterations manage
to find a weak hypothesis, then the final hypothesis generated by BSamp is consistent with all the labels
in the sample.

Theorem 2.3.1: If all the hypotheses that are used by algorithm BSamp are €y accurate, then the hypothesis
har, output by BSampf s consistent on the sample 5.

Proof: From the correspondence with the majority-vote game defined above, and from Theorem 2.2.1,
we get that the error of the hypothesis output by Bgamp 18 smaller than 1/m, As the target distribution
is uniform it assigns each point in S5 with probability 1/m. Thus the output hypothesis must be correct
on all points in 5. |

Two issues remain in order to show that Bgyypis an effective learning algorithm. First, we need to
show that there is a way for selecting m, the size of the sample 5, so that the hypotheses generated by
BSampv that is guaranteed to be consistent on 5, will also be have a small probability of error on a random
example outside of 5. Second, we need to show that the algorithm uses uniformly bounded resources.

The fact that using a large enough sample guarantees that a consistent hypothesis will have small
error on the whole domain stems from the fact that k£, the number of hypotheses that are combined
by the majority rule, increases like O(log|S]), as was proven in Corollary 2.2.3. Before getting into a
detailed proof, let us give a rough sketch of a proof for a simple special case. Assume that the hypotheses
generated by WeakLearn are chosen from a finite set of hypotheses H. Denote the set of hypotheses
generated by Bg, ., by Ha. The size of Hyy is |H 18" where ¢ = 1/(27?). Following the well-known
analysis of the Occam’s razor principle [Blumer et al., 1987] we get that the probability that the final
hypothesis is consistent with a random sample of size m but has error larger than ¢ is smaller than
|Hp|(1— €)™ = |H|*18™ (1 — €)™, This quantity decreases rapidly with m. In particular, selecting m large
enough that m > (1/¢)(log(1/8) + (1/2v2)log mlog |H|), guarantees that the hypothesis will have error
smaller than e with probability larger than 1 — 6.

8Note that as WeakLearn is guaranteed to succeed with probability at least A on any distribution over the sample space,

it is guaranteed to succeed on the uniform distribution over S.
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Although this simple analysis gives the correct orders of magnitude, it is incomplete in that it depends
on the size of H. In many cases this size is very large, moreover, often H is infinite or even uncountable.
These cases can be analyzed using the notion of VC-dimension. However, Schapire [Schapire, 1990],
suggested the following elegant proof that is based only on the assumption that the size of the sample
used by WeakLearn is uniformly bounded. Although the final hypothesis is guaranteed to be consistent
with the whole sample, which is of size m, the number of examples from the sample that are ever used by
WeakLearn is? O(logm). In other words, for large m only a small fraction of the training examples are
ever used by WeakLearn!

This small subset of 5 can be seen as a representation of the final hypothesis, hps. Instead of saving
the hypotheses generated by WeakLearn, the boosting algorithm can save the set of examples that were
returned from FiltEX during the run of each algorithm. Later, when the value of hps(2) has to be
calculated on some new example z, the weak learning algorithms can be run again, using the saved sets of
examples, to regenerate the weak hypotheses, and using these weak hypotheses hps(2) can be reconstructed.

Littlestone, Warmuth and Floyd [Littlestone and Warmuth, 1986, Floyd and Warmuth, 1993] have

analyzed algorithms that represent their hypotheses as sets of examples. As the above observation is of
independent interest in the context of their work, we state it as a theorem.
Theorem 2.3.2: Let C be a concept class that is PAC learnable, then there exists a pair of polynomial-time
algorithms P and R ,that stand for “compress” and “reconstruct”, that compute the following mappings.
Let S = {(a1,¢(21)), ..., (xm,c(x))} be a sample labeled according to some concept ¢ € C. Then, for all
such S,

o P(S)=A{(zy,clzi)),....(xi,c(z;))}, such that 1 < i; <m for all 1 < j < r, i.e. the compression
algorithm selects an ordered sequence of of length v from the examples in the sample 5.

e R(P(S)) = h is a hypothesis such that for every sample point z; in S, h(x;) = l;. In other words,
the algorithm R can reconstruct the labels of all the examples in S when given the labeled examples
selected by P.

e 7= 0O(logm).

We now move on to prove a bound on the size of the sample that BSamp has to use in order to guarantee

that the final hypothesis has error smaller than €. In the proof of this theorem we use a technique invented
by Littlestone and Warmuth [Littlestone and Warmuth, 1986] that appears as Appendix A in [Floyd and
Warmuth, 1993].
Theorem 2.3.3: Let WeakLearn be a deterministic learning algorithm that generates, with probability
A > 0 over the random training examples with which it is trained, a deterministic hypothesis whose error
is smaller than 1/2 —~, for some v > 0. Assume the number of training examples required to achieve this
is uniformly bounded by mqg. Then the hypothesis hy; generated by BSamp has the following property.

For any e, 6 >0, if BSamp uses a sample of size at least m, where

2
mzl(ln3+@(1—nm+l) ) :
€ 0 2 ~

®Here we fix the concept class and its VC dimension d. If the VC dimension is not fixed, the O(dlogm) examples are

required.
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then the probability that hyy has error larger than € is smaller than 6. Where the probability is defined over
the random choice of the sample S and over the internal random coin flips in BSampf

Proof: We are interested in bounding the probability of the set of samples and internal coin flips of
Bsamp that generate a hypothesis that has error larger than e. We do that by covering this set by two
disjoint sets. The first set is the set of samples and coin flips that cause BSamp to generate a hypothesis
that is consistent with the sample and yet has error larger than €. The second is the set of samples and
coin flips that causes BSamp to generate a hypothesis that is inconsistent with the sample. The first and
second parts of the proof bound the probabilities of these two sets respectively.

Part 1: We want to show that there is only a small probability that a random sequence of training
examples S = ((21,01),...,(2m,)) labeled according to ¢ € C, can cause Bgamyp to generate a hypothesis
that is consistent with S but has error larger than e.

We first sketch the argument. We consider the following mapping of arbitrary sequences of kmg labeled
examples into hypotheses. The sequence is partitioned into & blocks of length mg, each block is fed into
WeakLearn. Using this block WeakLearn generates a hypothesis.!” Finally, these k& hypotheses are
combined by a majority vote to generate a single hypothesis. We define two properties on sequences
chosen out of §' that are based on the hypothesis to which these sequences are mapped. The first property
is that the hypothesis is consistent with all the examples in 5, the second property is that the hypothesis
has error larger than € w.r.t. the distribution D and the underlying concept. We call sequences that have
both properties “bad” sequences. We show that the probability of a sample S from which a bad sequence
can be chosen is very small. However, if by using some sequence of coin flips, BSamp can generate a
consistent hypothesis that has a large error, then there ezists a way of choosing a bad sequence out of 5,
which means that the probability of BSamp generating such a hypothesis is small.

To bound the probability of samples S from which a bad sequence can be chosen, one can view the
elements of 5 that are not in the sequence as random test points on which the hypothesis is tested. As
most of the points in S are not in the sequence, it is very unlikely that the hypothesis is consistent with
all these examples and yet has a large probability of making an error. This observation, together with the
fact that the total number of sequences of kmg elements from 5 is not too large, gives us the proof of this
part of the theorem.

We now give the formal proof. Which is an adaptation of a technique used by Warmuth and Littlestone
in [Littlestone and Warmuth, 1986]. Fix any concept ¢ € C. Let 5 = ((#1,l1),...,(@m,ln)) be the
sequence of randomly drawn training examples returned by EX in step 1 of a specific run of BSamp such
that for all 7, I[; = ¢(x;). Let S" = ((24,,1¢,), ..., (21,,1:,)) denote a sequence of examples chosen out of 5.

Let T be the collection of all m? sequences of length d = kmyg of integers in {1...m}. For any sequence
of examples S = ((z1,01),...,(2m, ) and for any 7' € 7 we denote ((2y,,0lt,),...,(2¢,.le,)) by Sp. We
denote the hypothesis to which this sequence is mapped by the mapping defined above by has(.5%).

Fixing T, let Uz be the set of all sequences of examples S such that the hypothesis hps(57) has error
larger than e. Recall that the error of hps is the probability, with respect to the distribution D, of the
symmetric difference between hps and ¢. Let Cr be the set of all sequences S such that hps(57) is consistent

10we assume that WeakLearn is deterministic and returns a hypothesis for any sequence of mo examples.
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with all the examples in 5. Observe that each run of Bsamp in which it generates a consistent hypothesis
corresponds to a sequence of indices T such that C'r contains the training set S that was used by the
algorithm. If Bgamp has non-zero probability of generating a consistent hypothesis that has a large error
when using the sample 5, then there must exist some 7" € 7 such that S € C'r N Ur. We can thus upper
bound the probability of failure over the random choice of 5, by requiring that

Y PMCrnUr)<6/2.

TeT
For any particular T' € 7, there exists T’ € 7 where all the elements of 77 are in the range 1...d such that
P(CrNUr) = P"(Crr N Urpr). That is because the elements of $ are drawn independently at random,
so that any permutation of the elements in 5 has the same probability, and there is always a permutation
of the elements of S that transforms 7' to T” of the desired type. It thus suffices to bound P™(Cr N Ur)
for T of the restricted type. In this case, the choice of the hypothesis has({(2+,, 1, ), ..., (21, 1;,))) are only
a function of the first d elements of §. If S € Up, the hypothesis has probability at least 1 — € of making
a mistake on any of the remaining m — d elements of 5, thus the probability that 5 is in C'r, given that it
is in Ur, is at most (1 — G)m_d. Multiplying this probability by the size of 7 we get

mi(1— ey 1< 6/2. (2.13)

By plugging this into d = kmg we get that it is sufficient to require that

mkmo(l _ €)m—km0 S é ,
2
which can be translated to the following stronger requirement on m:
1 2
- (111 5 kmo(Inm + 6)) .

m >

We now use 1/(2y*)Inm as a choice for k, the number of weak hypotheses that are combined by
WeakLearn. Corollary 2.2.3 shows that this choice obeys the inequality of line 2 in Bgamp- We thus get

that it is sufficient to require that

1
m > —
€

(ln(2/6) + molng;(lnm + 6)) .

As the statement of the theorem places a slightly stronger requirement on the minimal value of m, we
get that if BSamp generates a consistent hypothesis than this hypothesis has error smaller than e with
probability at least 1 — §/2.

Part 2: We now bound the probability that Bgamp generates a hypothesis that is not consistent
with the sample. From Theorem 2.3.1 we know that if all of the & hypotheses generated by WeakLearn
have error smaller than ey with respect to the corresponding weightings of the the sample, then the final
hypothesis is consistent with the whole sample. It thus remains to be shown that for any sample .5, the
probability, over the random choice made in Bgamp that any of the & hypotheses used by Bp;); has error
larger than € is smaller than ¢/2k.
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Note that each time a hypothesis is returned from WeakLearn its error on the weighted sample is
checked, and it is rejected if the error is too large. Thus the only case in which a hypothesis used by BSamp
has an error larger than ¢y is when all of the iterations of statement 3.a fail to generate a hypothesis with
small error. As the probability that any single call to WeakLearn generate a good hypothesis is at least
A, the probability that all of the (1/A)In(2k/6) runs of WeakLearn performed in statement 3.a fail to
generate a good hypothesis is at most

6
=2k
Thus the probability that any of the & hypothesis used is not good is at most 6/2. |

(1 — A/ )In(k/5) <

Theorem 2.3.3 gives a uniform upper bound on the sample complexity of BSamp' The bound is given
in terms of an implicit inequality on m, which cannot be written as an exact explicit bound. The following
corollary gives an explicit upper bound on the sample complexity needed for boosting using BSamp'
Corollary 2.3.4: Let WeakLearn be a deterministic learning algorithm that generates, with probability
A > 0 over the random training examples with which it is trained, a deterministic hypothesis whose error
is smaller than 1/2 —~, for some v > 0. Assume the number of training examples required to achieve this
s uniformly bounded by mqg. Then, given any €,6 > 0, if Bsamp s required to generate a hypothesis that

is consistent with a sample of size
m > max{208 “In 5’ 16—(1 —2)2} :

then with probability larger than 1 — §, the hypothesis output by BSamp has error smaller than c.
Proof: We want to find m such that will satisfy:

2
mzl(ln3+@(1—nm+l) ) :
€ 0 2 ~

It suffices if m is larger than the maximum of twice each of the two terms in the RHS. From the
first term we get m > %ln%. To bound m w.r.t. the second term, we observe that, in general, in
order to satisfy m > a(lnm + 1)* it suffices to choose m = 16a(lna)?, if @ > 5. It thus suffices if
m > 16a(lna)? = 16+ 5 (In5)% , or if m > 208. |

The space requirements of BSamp are dominated by the storage of the sample. The sample size is,
ignoring log factors, O(1/¢) (Corollary 2.3.4), while the storage of the hypotheses generated by WeakLearn
is O(k) = O(1/4* log1/e).

We now discuss the time and space complexity of BSamp' One easily observes that the total number
of times that WeakLearn is called is

O(klnk):O(L/\ lnl <lni6—|—lnln )) .

It is thus clear that for small values of € and ¢, the time complexity of BSamp is dominated by the execution
of statements 3.a.ii, 3.b, 3.c and 3.d, that test and update the weights associated with the sample, and not
by the running time of the learning algorithm. This time complexity is O(m) and the dependence of m
on €,6, and A is given in corollary 2.3.4. The Space complexity of the algorithm is similarly dominated by
the storage of the sample and its associated counters and weights in memory. The next section presents a

different boosting algorithm whose space complexity is O(logm).
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2.3.3 Boosting Using filtering

In the previous section we have developed one way of applying the optimal weightor strategy for the
majority-vote game to the problem of boosting a weak learner. While the complexity bounds for this
method are reasonably good, considerable improvement is possible in the space complexity. The space
complexity of Bgamp 18 dominated by the storage of the training examples. In some applications the
training set is in the memory anyway and this cost is taken for granted. However, in other cases (such
as on-line learning), storing all the training examples in memory might be very expensive. Recall that in
order to find a hypothesis with error smaller than €, only O(log(1/€)) out of the O(1/e(log(1/€))?) training
examples in the sample are ever used by the weak learning algorithm. In this section we present algorithms
that select the examples used by WeakLearn in an on-line fashion from the sequence of examples supplied
by EX. This avoids storing many examples in memory and decreases the space complexity to O(log(1/¢)).
Selecting examples directly out of the input stream is the basis of Schapire’s boosting algorithm [Schapire,
1990]. Schapire coined the term “filtering” to describe this process. The selection is viewed as a “filter”
that lies between the source of examples, EX, and the weak learning algorithm. This filter observes
each example generated by EX and either rejects it and throws it away, or accepts it and passes it on to
WeakLearn.

The description of the algorithm is given in Figure 2.4. The overall structure of the algorithm is very
similar to that of Bgamp- The boosting algorithm generates k£ weak hypotheses by calling WeakLearn k
times, each time presenting it with a different distribution over the training examples. However, while in
Bgamp the examples are drawn from a set of examples that is fixed, once and for all, at the beginning of the
process, in Byj); new examples are continually drawn from the sample space by calling EX. Each time a
new example is drawn, its weight is calculated, and a stochastic decision is made whether to accept or reject
the example, such that the probability of acceptance is proportional to the weight. The proportionality

7

! axs 18 chosen in a way that the examples with the largest weights are always accepted. Clearly,

constant, «
one could use any smaller proportionality factor, such as 1, without changing the distribution that is
observed by WeakLearn. Choosing the largest possible proportionality factor maximizes the probability
of accepting a random example and reduces the number of training examples required.

The analysis of Byt corresponds to playing the majority-vote game directly on the sample space,
X, and the input distribution D, and not on the uniform distribution over a sample, as is the case with
BSamp' This simplifies the analysis with respect to the analysis of BSamp in that there is no gap between
the expected error on the training set and the expected error on a random example. On the other hand,
the analysis becomes more involved as a result of the following potential problem. It might happen that
during some iterations of statement (2) a large fraction of the examples generated by EX are rejected. As a
result, the number of examples that have to be filtered in order to generate the training examples required
by WeakLearn becomes prohibitively large. Luckily, as we shall show, the accuracy of the hypotheses
that are generated by WeakLearn in such iterations has very little influence on the the accuracy of the
final hypothesis, hps, that is the final result of By;y;.

We use this property by defining an “abort” condition. This condition, defined at the bottom of

Figure 2.4, detects iterations in which the fraction of accepted examples is small. We refer to such an event
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Algorithm Bp;

Input: EX ,WeakLearn, v, A ¢,

Output: A hypothesis hps, that has error smaller than ¢ with probability at least 1 — 4.
1. Find a (small) k that satisfies

k
> (?)(1/2-—/V/QY(1/2+-7/2)k_i<i€2
i=[k/2]

(For example, k= 4/v2In(1/¢))

2. Repeat the following steps for ¢+ = 0...k — 1, reinitializing #accept and #reject to
zero each time.

(a) Call Bp,), referring it to FiltEX as its source of examples, and requiring it
to use WeakLearn to generate a hypothesis with whose error is smaller than
1/2—~/2 with probability at least 1—§6/2k. Save the resulting weak hypothesis
as hjy1.

(b) If the abort condition happened, then define h;y; to be a hypothesis that
always makes a random prediction using a fair coin.

3. Return as the final hypothesis, hjp;, the majority vote over hy,...,hg.
Subroutine FiltEX
Repeat the following command until an example is accepted or until the abort condition is
satisfied.

1. Call EX, and receive a labeled example (z,l).

2. If : =0 then accept the example and return, else continue to 3.

3. Set r to be the number of indices 1< j <i such that h;(z)=1[, and calculate

.

—1— E_p El_i—14r . N
ol = (fgj_i)(l/Q‘F’V/Q)L?J (1/2—7/2)[2] Hr i 2—§<7‘§§
" 0 otherwise

and of = max a'
max 0<r<i T

4. choose a real number z uniformly at random from the range 0 <z <1.

5. If =z < ai/afnax then accept the example, and return it as the result, else reject it

and jump to 1. In each case, update #accept and #reject accordingly.
The abort condition:

2k 0l

#accept 4 #reject > ——
€(1—¢)

16k%ya!
max (#accept, 41n &)

de(1 — ¢)

Figure 2.4: A description of the algorithm for boosting by filtering.
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as triggering the abort condition. When the abort is triggered, it stops the execution of procedure FiltEX
and the run of procedure WeakLearn that called it, and returns control to statement (2.b). A random
hypothesis is then put in place of the hypotheses that was supposed to be generated by WeakLearn. A
random hypothesis is simply an algorithm that for any « € X generates a label in {0,1} by flipping a
fair coin. The abort condition is defined as a function of two counters, #accept and #reject that are
incremented each time an example, generated by EX is accepted or rejected respectively. Both counters
are reset to zero each time the index ¢ in statement (2) is incremented.

In order to analyze Algorithm By we need to go back to the analysis of the underlying majority-vote
game. In order to do that we introduce again some of the notation used in Section 2.2 and define it in the
context of our new problem.

Let X be the sample space over which a probability distribution D is defined. Define {X{, X1, .. .,Xf}
to be a partition of X into i + 1 sets where X! consists of that set of the sample space that is labeled
correctly by r out of the first 7 hypotheses. Define the following quantities related to this partition:

M!=Xin X;:H the subset of X! that is correctly labeled by the i 4 1st hypothesis

g, = Pr(X})
rl = 1;,;((]\;5)) the probability of a random example to be correctly labeled by has

given that it is in X!

Finally, denote by #; the expected value of the weighting factor o w.r.t. the simulated distribution used

in iteration number 7, i.e.
7
t, = Z q (2.14)
r=0

The probability of accepting a random example during the construction of h; 1y is t;/al ..

We start our analysis by quantifying the reliability of the abort condition. We say that when ¢; <
€(1 — €)/(kv), then triggering the abort condition is “justified”, the following lemma shows that most
triggerings are justified.

Lemma 2.3.5: For all 0 <@ < k — 1, the probability, over the distribution of the examples, that an abort
is triggered during the generation of hiy1, given that t; > (1 — €)/(kv), is smaller than 6 /2k.

Proof: We start by recasting the abort condition in a notation that is more convenient for the analysis.
Let n = #accept + #reject and m = #reject. We define the constants ¢ = (1 — ¢) / kyal,,, and
no = (8/¢)In(16k/céd). Using this notation we say that an abort occurs after testing the nth example if
n > ng and m < enf2. We use ¢ = t;/al,,. to denote the probability that FiltEX accepts a random
example generated by EX. Thus the claim that we want to prove is that if ¢ > ¢ then the probability
of an abort (during any one of the k iterations) is smaller than ¢/2k. This probability can be written as
a sum of the probabilities of aborting after each example after example number ng. We can bound the

probability of aborting after the nth example using Chernoff bounds as follows:

Pr(m < enf2) < e™/®
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Summing this probability over all possible values of n we get that

—cng /8 8 eno /8 - i

e
Pr(abort occurs after n > ng examples) e‘cn/g e

1—e- C/8

n=ng

which proves the claim. |

In order for the algorithm B¢ to work successfully, we need the reliability of WeakLearn to be high.
However, as noted by Haussler et. al. [Haussler et al., 1991a], it is easy to boost the reliability of a learning
algorithm. We give the performance of one possible reliability-boosting algorithm, By, in the following
lemma. The proof of the lemma and the description of the algorithm are given in Appendix A.1.
Lemma 2.3.6: Assume WeakLearn is a learning algorithm that generates hypotheses whose error is
smaller than 1/2 — v with probability at least X > 0, using mq examples. Then, for any 6 > 0, Algorithm
BRel, will generate hypotheses whose error is smaller than 1/2 — v /2 with probability 1 — 6. Furthermore,

the number of examples required by algorithm BRq) is at most

8 mg, 2
-z (111111(S —I—lna) + Tlng .

We now give the two main theorems regarding B;j;. The first theorem proves the correctness of the
algorithm and the second proves a bound on the number of training examples required by the algorithm.
Theorem 2.3.7: If WeakLearn is a learning algorithm that, for any distribution over the sample space
X and any ¢ € C, generates a hypothesis whose error is smaller than 1/2 — v with probability \ for some
v, A> 0. Then, for any é,¢ > 0, the algorithm Bg;);, given € and 8, generates a hypothesis whose error is
smaller than ¢ with probability at least 1 — 6.

The proof of this theorem is based on the potential function, 3¢, defined in the proof of Theorem 2.2.1. From
Lemma 2.2.2 we know that the average potential does not increase when the weightor uses the weighting
scheme and the chooser plays according to the rule, which corresponds, in the context of learning, to the
fact that WeakLearn generates a hypothesis with error smaller than 1/2 — 4. The following lemma is a
refinement of Lemma 2.2.2 that describes the increase in the average potential if the error of the hypothesis
is different from 1/2 — ~.

Lemma 2.3.8: If the error of the hypothesis used in the ith hypothesis is 1/2 — %; then we have the

relationship
1 . .
ZZ At N i i . ZZ i g
qr ﬁr - E :qTﬁ’/’ + (7 - 72) 4,0 .
r=0 r=0 r=0

Proof: Recall Equation (2.10) from the proof of Lemma 2.2.2:

i+1

Zq“’lﬁ”l Z g (1 - 2Bt it = Z g5 + Zq (B4 =B

r=0 r=0
Recall that the weight in the ¢th iteration of the majority-vote game corresponds to the probability
according to the filtered distribution that is observed by WeakLearn during the ith iteration of Bp;.
From this, and the definition of 4;, we get, instead of Equation (2.11), that

Yoqan(BE -8 = (12430 Y e (B - 5 (2.15)
r=0

r=0
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Combining Equations (2.10) and (2.15) we get:

1+1

SNgt gttt =3 gt + (124 9)) ] g8k - st
r=0 r=0 r=0

=> a8t + (1249 (BE -8 + (v =) D (BT = 8
r=0

r=0 r=0
=S |12+ NEH (/2= 98 + (- X G - 83
r=0 r=0
Using Equation (2.6) for the first term and Equation (2.8) for the second term we find that

1+1

St ET =3B + (v-F) D gl
r=0 r=0 7=0

which is the statement of the lemma. |

Proof of Theorem 2.3.7 From Lemma 2.3.5 we know that the probability that any of the times the
abort condition has been triggered is unjustified is smaller than §/2. On the other hand, the properties of
Algorithm BRg, given in Lemma 2.3.6, guarantee that for each iteration, 0 < ¢ < k — 1, the probability
that the error of h; is larger than 1/2 —~/2is smaller than 6/2k. Combining these claims we get that with
probability at least 1 — ¢ all the hypotheses have error smaller than 1/2 — 4/2 and all the times the abort
condition is triggered are justified. We shall now show that in this case the error of hjs is smaller than e.

For all the iterations 1 < ¢ < k in which the abort condition is not triggered, i.e. the hypothesis h;
is successfully generated, we know from Lemma 2.2.2, that the average potential does not increase. On
the other hand, the error of a random coin flip with respect to any distribution over the examples, is, by

definition, one half. Thus we get from Lemma 2.3.8 that in the aborted iterations the average potential
e(l1—¢)

ky
Thus in k iterations the potential increases by at most ¢(1 — ¢). We now follow the same argument as in

increases by at most v Zj«:o gial = vt;. As we assume all the aborts are justified, we know that ¢; <

the proof of Theorem 2.2.1. As the number of iterations, k, is chosen so that 50 < €%, we get that

k
Pr(hn(e) # ca) = 3 kB <+ el—) <@ 4el—e)=c,

r=0
where the probability is taken with respect to both the random choice of z according to D, and the random
coin flips of the dummy weak hypotheses. |
Theorem 2.3.9: The number of training examples required by By is smaller than

5 1/12 k3/2 2]62 1 3/2 Inl
o 8y/2e v max [ mp. d1n 32k%y < ﬁ (111 —) max (mR, 121n Bl /6) , (2.16)
VB dl—¢ be ] e\ e

where k is the number of iterations as chosen in line 1 of Byt and the inequality is obtained by using the

suggested choice of k. The variable mpr denotes the number of examples for generating a weak hypothesis

with reliability 1 — 6/2k by BReo and is equal to:
mo, 4k 8 ( 4k Qk)
2

mp=—In — Inln — +1n —

A ] ] oA
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As discussed above the factor a' . is chosen so that the probability of accepting a random example is

maximized without distorting the simulated distribution. As the value of a’ . plays a critical role in the

proof of the Theorem 2.3.9. we start by presenting a tight upper bound on this value.
Lemma 2.3.10: For all iterations 0 <1 < k — 2 of Bpj}t,

i 8 e1/12

Pmax =\ 3r(k — i — 1)

The proof is given in Appendix A.3.
Proof of Theorem 2.3.9 The number of examples that are required by By, to generate a hypothesis
that has error smaller than 1/2—~/2 with probability larger than 1 —§/2k, denoted mp, is easily bounded
using Lemma 2.3.6. The abort condition guarantees that the number of examples that are tested by

FiltEX during iteration ¢ is at most
2kyal

ﬁ max (mR,4ln

32k2y
be

Thus the total number of examples is bounded by

32k2y\ 2k A1
41 ax - 2.1
max (mR, - ) i ; Ol ax (2.17)

Using Lemma 2.3.10 for 0 <4 < k — 2 and observing that af! = 1 we can bound the sum by

k-1 k-1
: 8el/6 1 8el/6
Lo < —+1] < 2Vk . 2.18
> S (Z .+) Vi (218)
Where the last inequality is true because
k-1 1 k-1 1
—,<1—|—/ —dr =2vk—-1-1.
JZ:; Vi 1V

Combining 2.17 and 2.18 we get the first inequality in 2.16 and plugging in the choice k = ;1—2111% we get
the second inequality. |

We conclude this section by briefly discussing the time and space complexity of Bpj);. Assuming
a uniform bound on the running time of WeakLearn, it is clear that the time complexity of By is
dominated by the time spent in line 3. of FitEX to calculate the labels assigned to the prospective
example by the currently available weak hypotheses. As this time is proportional to the number of weak
hypotheses available, we get that the time complexity of By;; is at most & times the sample complexity of
Bp;j¢. Similarly, assuming a uniform space complexity on WeakLearn and on the size of the hypotheses
that it generates, it is clear that the space complexity of B¢ is proportional to £, the number of hypotheses

that need to be stored in memory.
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2.3.4 Randomized learning algorithms and randomized hypotheses

In our discussion so far, we have concentrated on boosting deterministic weak learning algorithms that
generate deterministic hypotheses. In this section we show that our results transfer, with little or no
change, to the more general case in which both the weak learning algorithm and its hypotheses can be
randomized, i.e. make use of flipping random coins.

Note that the data to the learning algorithm and the hypothesis already has a large degree of ran-
domness, as it consists of examples that are chosen at random. We now show a simple transformation
that translates randomized learning algorithms into deterministic learning algorithms on a different sample
space.

For our analysis we use the convention that the random bits that are used by a randomized algorithm
are given to the algorithm as input when it is called. More specifically, we assume the algorithm is given
a real valued random number, r, chosen uniformly at random from [0, 1] whose binary expansion is used
as an infinite source of random bits.!'? We shall take special care that each bit in the binary expansion
is used at most once during the run of the algorithm. Thus any random bit used at any point in the
algorithm is independent of any other bit. For that reason the distribution of the outcome of the algorithm
is equivalent to the distribution generated if each random bit is chosen by an independent coin flip. Thus
the transformations we present are only tools for analyzing the sample complexity of the learning algorithm,
and the sample and additional computation time of the transformed algorithms that is a result of using
this special convention can be ignored.

Assume A is a randomized learning algorithm that generates randomized hypotheses. Assume A can
learn the concept class C for any distribution D on the sample space X. We now define a mapping
i that maps X,C, A4 and D to X', C’, A" and D', where A’ is a deterministic learning algorithm that
generates deterministic hypotheses. The sample space X' consists of pairs of the form (x,r), where 2 € X
and 7 € [0,1). The probability measure D’ is the measure generated by the cross product between the
distribution D and the uniform distribution on [0,1). FEach concept ¢ € C is mapped to a concept
¢ € C' such that for all (z,r), ¢'({z,7)) = ¢(z). Finally, the algorithm A’, receiving the training examples
{({z1,71), 1), ..., ({T>Tm), lm)}, Tuns the algorithm A on the sample {(z1,01),...,(@m,ln)}, together
with the number r{, that is used by A as its source of random bits. The hypothesis h, generated by A, is
transformed in a similar way, k', upon receiving an instance (z,r) as input, calls h to label z, giving it r
as its source of random bits.

Note that an infinite sequence of bits can be partitioned into an infinite number of infinite subsequences.
For concreteness, we define the nth subsequence of r to consist of the bits whose indices can be written
as (2¢ — 1)27~! for some positive integer i. We denote this subsequence by r,. Note that if r is chosen
uniformly at random then all of its subsequences are also uniformly distributed.

Using these definitions we can now show how boosting the randomized learning algorithm A can
be viewed as boosting the deterministic algorithm A’ over the larger sample space. Transforming the

algorithm for boosting by filtering, B¢, is simpler. The change takes place in the procedure FiltEX. In

11 . . . . . . . .
We assume some convention is used for selecting one of the binary expansions when the expansion is not unique.
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each iteration the procedure receives an example (x,r) € X’ chosen at random according to D’. Tt then
separates x and r, and maps r into rq,...,7;4+1, which are independent random bit sequences. Sequences
1 to 7 are used for calculating hq(z,71),...,hi(x,7;). Sequence number 7 + 1 is returned to WeakLearn,
in this case the algorithm A, for use as its source of random bits. Using this transformation the proofs of
Theorems 2.3.7 and 2.3.9 can be used without change, and thus B;j; works equally well for randomized
and deterministic learning algorithms.

The analysis of the algorithm for boosting by sampling, Bgamp, is somewhat more complicated. That
is because the same examples are repeatedly fed into A. Since the examples include the source of random
bits, this might undesired dependencies between random bits used in different runs of A. To avoid this
problem, we assume that an additional integer parameter, which we denote ¢, is supplied to A. This
parameter directs algorithm A to use, as it source of random bits, the ¢th subsequence of the random
sequence with which it is supplied. The parameter ¢ is different each time A is called, and thus the random
bits used by A are guaranteed to be independent. However, this addition changes somewhat the proof of
Theorem 2.3.3, forcing us to increase the size of the sample that is used by BSampv as is summarized in
the following theorem
Theorem 2.3.11: Let WeakLearn be a randomized learning algorithm that generates, with probability
A > 0 over its internal randomization and the random choice of the training examples, a randomized
hypothesis whose error is smaller than 1/2 — ~, for some v > 0. Assume the number of training examples
required to achieve this is uniformly bounded by mg. Suppose that m, the size of the sample used by BSampf
obeys the following inequality:

1 2 mo /Inm+1\%2 Inm 1 1
mzz(lng+7< 5 ) + 52 (lnx—l—lnln’yTé—l—lnlnlnm))

Then with probability at least 1 — 6, the hypothesis hyy generated by BSamp has error smaller than e.

Proof: The essential difference from the proof of Theorem 2.3.3 is that the number of possible hypotheses
that can be generated from the sample is larger. In Theorem 2.3.3 this number is equal to the number of
subsequences of size d that can be chosen from a sequence of size m, i.e. m?. In our case it is the number
of subsequences times the number of combinations of values of the parameter ¢ that could have been used
in the generation of the k& good hypotheses. Assume that ¢ = ¢r + [ where ¢ = 0...k — 1 is the number of
hypotheses that have been generated so far, [ = 1...r is the counter of the attempts to generate a good
ith hypothesis and r = (1/A)In(2k/6) (These indices are used in statement 3 and 3.a in Figure 2.3). Using
this convention it is clear that each one of the hypotheses can be chosen using one of r values, and the

total number of combinations of values of ¢ is 7*. Thus the basic inequality that replaces inequality 2.13 is
rPmd(1 - a)m=t < §/2. (2.19)

And solving for m that satisfies this inequality we get the statement of the theorem. |

2.3.5 The resources needed for polynomial PAC learning

So far in this paper we have considered learning algorithms that are designed to work for a single fixed

concept class defined over a single fixed sample space. However, most learning algorithms can be used for
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a family of concept classes, and one is then interested in the way the performance of the learning algorithm
depends on the complexity of the concept class. Valiant [Valiant, 1984a] presented a framework, called the
PAC!'? learning framework, in which such quantification can be done. This framework is one of the most
well studied frameworks in computational learning theory. In this section we show the implications of our
work on the PAC learning framework.

We start by presenting some notation following Haussler et. al. [Haussler et al., 1991a]. Assume that
the sample space is a union of sample spaces of increasing complexity: X = U2, X,. Similarly assume
that the concept class that maps points in X, to {0, 1} is defined as a union of concept classes of increasing
complexity: C, = U2, C,, ;. Theindices n and s usually denote the length of the description of an instance
and a concept in some encoding scheme for X and for C respectively.

We say that a concept class C is learnable, or strongly learnable, if there exists a learning algorithm A,
and polynomials pi(-,-,-,-), p2(-,-,-,-) such that:

e For any n,s and any €,6 > 0, the algorithm A, given n, s, ¢, 6 and access to an example oracle EX,

can learn any concept ¢ € C,, ; with respect to any distribution D on X,,, and generate a hypothesis

that has error smaller than e with probability larger than 1 — 6.

o The sample complexity of A, i.e. the number of calls that A makes to EX, is smaller than

pi(n, s, 1/€,1/6).

e The running time of A is polynomial in pa(n,s,1/¢€,1/6).

Kearns and Valiant [Kearns and Valiant, 1988, Kearns and Valiant, 1989] introduced a weaker form of
learnability in which the error cannot necessarily be made arbitrarily small. A concept class C is weakly
learnable if there exists a learning algorithm A, and polynomials p1(-,-,-), p2(-,-,-) and ps(-,-) such that:

e For any n,s and any § > 0, the algorithm A, given n, s, and access to an example oracle EX, can

learn any concept ¢ € C,, ; with respect to any distribution D on X,,, and generate a hypothesis that
has error smaller than 1/2 — 1/ps(n,s) with probability larger than 1 — é.

e The sample complexity of A, i.e. the number of calls that A makes to EX is smaller than py(n, s, 1/6).

e The running time of A is polynomial in py(n,s,1/6).

In other words, a weak learning algorithm produces a prediction rule that performs just slightly better
than random guessing.

Schapire [Schapire, 1990] has shown that the notions of weak and strong PAC learning are equivalent.
Moreover, the boosting algorithm he invented provides an effective way for translating any weak learning
algorithm into a strong learning algorithm. The boosting algorithm By;); presented in this paper provides
a more efficient translation of weak learning algorithms to strong learning algorithms. A simple application
of Theorem 2.3.9 gives the following upper bound on the resources required for PAC learning.

Theorem 2.3.12: IfC is a weakly PAC learnable concept class, parameterized by n and s in the standard
way [Haussler et al., 1991a], then there exists a PAC learning algorithm for C that learns with accuracy
€ and reliability 6 and:

e requires a sample of size

(1/€)(log 1/€)**(loglog 1 /e +log 1/8)pi(n, s),

12PAC learning stands for Probably Approximately Correct learning.
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o halts in time
(1/€)(log1/€)*/*(loglog 1 /€ + log 1/6)pa(n, 5),

e uses space (log1/e)(loglog1/e +log1/6)ps(n,s), and

e outputs hypotheses of size (log1/€e)ps(n,s) evaluatable in time (log1/€e)ps(n,s)
for some polynomials py, pa, ps, p4 and ps.

Compare this theorem to Theorem 4 in [Schapire, 1990]. The statement there is that the dependence
of the sample and time complexity on € is O(1/€ poly(1/¢)), and that that the other dependencies on 1/¢
are poly-logarithmic. Our theorem tightens these bounds by giving the explicit powers in the polynomials
over log(1/¢) and log(1/6). Moreover, our more detailed bound, given in Theorem 2.3.9, shows explicitly
the dependence on the parameters v and mg, which are hidden in the polynomials of the above described

theorems. In the next section we show that some of these upper bounds are optimal.

2.3.6 Relations to other bounds

The bounds given in Theorems 2.3.9 and 2.3.12 are currently the best known bounds on the resources
required for polynomial PAC learning of an arbitrary PAC learnable class. In this section we relate our

results to known lower bounds, and indicate where further improvement might be possible.

Theorem 2.3.12 shows that for any learnable concept class there exists an efficient learning algorithm
for which the dependence of the sample size on the required accuracy, when all other parameters are fixed,
is O(1/e(log1/€)*/?). A general lower bound of Q(1/¢) is given in [Blumer et al., 1986] for learning any
“non-trivial” concept class. This lower bound holds without regard to computational constraints on the
learning algorithm. There exists a matching upper-bound, given in [Haussler et al., 1988][Theorem 5.1],
which says that, ignoring dependence on other parameters, any concept class that can be learned using a
sample of size polynomial in 1/¢ can be learned using a sample of size O(1/¢). The truth might be either
that our upper bound can be reduced to match the lower bound, or that there exists a higher lower bound
on the sample complexity of learning algorithms that are in RP. However, a result of the second type
would be very surprising because it would imply that RP # N P.

The number of weak hypotheses that are combined by our boosting algorithms is
O(1/9%In(1/€)). We now show that this dependence of the number of required weak hypotheses on €
and v is the best possible for any general boosting algorithm. In order to formalize this claim we have
to first define a separation between the weak learner, which does the actual learning, and the boosting
algorithm, that can learn only by calling the weak learner.

Assume the examples are given as a sequence of pairs {((z1, 1), (22,92),-..(Tn, yn)) Where z; € X, y; €
{0,1}. The boosting algorithm is a PAC learning algorithm that has direct access only to the y; part of each
example. However, in addition to that, it has access to a learning oracle WeakLearn and to a labeling
oracle Label. The input to WeakLearn is a set of indices 1 <4y <13 <...<1i; < N. WeakLearn is a
learning algorithm and uses as examples the subset (2, v ), (i, ¥iy)s - - -, (24, i, )) of the sample. It is
required to generate a hypothesis h: X — {0,1} that has error ¢g = 1/2 — 4 and has reliability 1 — ¢ if

the examples it uses as input are independently drawn from some distribution. The booster can use the
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hypotheses returned by WeakLearn by calling the second oracle, Label, to compute the label given by
13

the hypothesis to any example in the sample, i.e. Label(h,) = h(x;).

Assuming these restrictions, we can apply optimality argument from Section 2.2.1, to give a lower bound
on the minimal number of weak hypotheses that have to be combined for boosting. Assume WeakLearn
is a learning algorithm that generates a randomized hypothesis that is simply the correct concept with

independent random noise of 1/2 — v applied to the label.

hi() = { c(x) with probability 1/2 +

1 —¢(xz) with probability 1/2 — v

Assume the errors of the different hypotheses are independent and that'* Pr(c(z) =0) = Pr(c(z) =1) =
1/2. Because of the symmetry in the definitions it is easy to show that in this case the optimal way of
combining the outputs of the hypotheses to get the most accurate prediction of ¢() is to take the majority
function over all the hypotheses. In this case the number of hypotheses required for achieving accuracy of
€ is %’y_zlog 1/€e. This shows that the number of weak hypotheses that are combined by By is at most
eight times the optimum.

As a final comment, we note that as the dependence of the size of the output of a general boosting
algorithm on 7 is Q(y72), the running time of the algorithm necessarily has the same dependence. However,
if we fix 6, then the dependence of the running time of Bp;; on v is O(y™*). The extra factor of y2
comes from the reliability boosting algorithm, that requires a sample of size O(77%) to guarantee that,
with high probability, each weak hypothesis has error smaller than 1/2 — . It remains open whether the
O(7™*) dependence of the running time and of the sample complexity of a general boosting algorithm can

be improved.

2.4 Extensions

2.4.1 Using boosting for distribution-specific learning

So far, we have followed the distribution-free paradigm in computational learning and assumed that
the learning algorithms that we attempt to boost have complexity bounds that hold uniformly for all
input distributions. In this section we show that By}, our second boosting algorithm, can boost learning

algorithms whose accuracy is not uniformly bounded for all distributions. We will define a measure of

13Restricting a learning algorithm in such a way is natural in the context of hierarchical learning models such as weighted-
majority [Littlestone and Warmuth, 1989] and layered neural networks. Some of the analysis of the weighted majority algorithm
is concerned with efficiently searching for a good learning algorithm in a pool of algorithms. In this case the learning algorithm
has access only to the outputs of the algorithms in the pool and not to the original input. Similarly, in a layered neural network
model, units in the deeper hidden layers can receive input only from the layer below them and have no direct access to the
input of the network. The process of filtering or sub-sampling can be interpreted, in this context, as a feedback mechanism by
which a learning unit higher in the hierarchy directs lower level inputs to concentrate on those examples which will contribute

most to the performance of the network as a whole.

#If Pr(c(z) = 0) # Pr(c(z) = 1) then some decrease in the output hypothesis size is possible. However, the Q(y7%)

dependence is unavoidable.
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discrepancy between distributions and show that the accuracy of WeakLearn can be allowed to degrade as
the discrepancy increases between the filtered distribution that is fed into WeakLearn and the distribution
that governs the example oracle EX. We shall refer to the distribution governing EX as the “target”
distribution.

From Lemma 2.3.8 we know that the increase in the average potential in the ¢th iteration is equal to

i+1 i i
Dot =Y @b+ (v =3 Y e
r=0 r=0 r=0

Where 4; is the difference between 1/2 and the error of h; with respect to the filtered distribution in the

ith iteration. We recall the notation defined in Section 2.3.3: ¢; = Y-\ _, ¢’ and re-write the last equation

i+1 i
DA =Y @b+ (v At
r=0 r=0

7
max*

Recall that the probability of accepting a random example that is tested during the ith iteration is ¢;/«
Thus, if the probability of accepting a random example during the ith iteration is small, then the sensitivity
of the final accuracy to the accuracy of the ¢th hypothesis is small. We have already used this fact in the
proof of Theorem 2.3.7. There we used it to show that if the probability of accepting a random example is
small enough, then a random coin flip can be used instead of the weak hypothesis. In this section we use
the same property to relax the requirements on the accuracy of the hypotheses generated by WeakLearn
for distributions that are far from the target distribution.

The following lemma shows how the requirements on the accuracy of the hypotheses generated by

WeakLearn can be relaxed, allowing the generation of hypotheses whose error is larger than 1/2 — 4.

Lemma 2.4.1: Let 0 < 7,¢ < 1/2 be the accuracy parameters supplied to By, and k be the number of

K3
r

iterations chosen by By Let t; denote S'._qq.al and let 1/2 —4; denote the error of h; with respect to
the filtered distribution in the tth iteration.

If, for each iteration 0 <1 < k — 1 we have

4>y (1 — %) : (2.20)

then the error of hyr, the hypothesis output by By, with respect to the target distribution, is smaller than
€
Proof: From Lemma 2.3.8 we immediately get that the increase of the average potential in each iteration
is at most €(1 — €)/k. Thus the total increase in the average potential in all k iterations is (1 — ¢). The
rest of the proof follows the same line of argument as the one used for the aborted iterations in the proof
of Theorem 2.3.7. |

To illustrate the significance of this result, assume that WeakLearn generates a hypothesis whose
error is 1/2 —+ when given examples from the target distribution. Our goal is to achieve a higher degree of
accuracy on the target distribution by making use of the performance of WeakLearn on other distributions.
As we know from the main results of this paper, if WeakLearn is capable of generating a hypothesis with

error smaller than 1/2—+ for any distribution then boosting can achieve any desired accuracy on the target



43

distribution. However, using Lemma 2.4.1 boosting can be used even in cases where the accuracy of the
hypotheses generated by WeakLearn decreases as the distributions supplied to it become more and more
different from the target distribution. The slower the decrease in accuracy, the higher the quality that can
be achieved by boosting.

We start by simplifying Equation (2.20). By choosing k& = (4/7%)In(1/¢), we get an upper bound on

the error of h; as a function of v and ¢;:

?2'27(1_4715:(11117(_1/?)) '

Different choices for v generate different lower bounds on 4; as a function of ¢;. An illustration of these

lower bounds is given in Figure 2.5.

Frequency of accepting

[ N N MR (RN N N N N
— T T T 11 >
1 a random example

100 200 300 400 500 600 700 800 900 1000

Figure 2.5: The accuracy that can be achieved using boosting a learner whose accuracy
depends on the distribution. The horizontal line denotes 1/t, or the number of examples that
have to be filtered per accepted example. The origin denotes an acceptance rate of 1, i.e. every
example is accepted, which means that the weak learner is observing the original distribution. The
horizontal axis denotes the error of the hypotheses. Each sloped line denotes a requirement on
the maximal error of the weak learner as a function of the divergence from the target distribution.
Each such bound guarantees a different accuracy of the final hypothesis, which is described by

the bold arrow on the error axis.

In order to separate the requirements for WeakLearn from the particulars of our boosting algorithm,

we need to upper bound the value of ¢; using a measure of the discrepancy between the target distribution
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and the filtered distribution. We shall now define such a measure of discrepancy, show that this measure
is closely related to the Kullback-Leibler divergence, and give a stronger version of Theorem 2.3.7 based
on this measure.

Definition 1: Let P and Q be two distributions defined over the same space X and sigma-algebra .. The
mazimal-ratio divergence between Q@ and P, denoted Dy (Q||P), is defined to be

Dy (Q]|P) =1n ( sup %)

Aex, P(4)>0 P(A)

We now lower bound the maximal ratio divergence using the well-known Kullback-Leibler divergence.

Lemma 2.4.2: For any two distributions Q and P, defined on the same measure space,
Dy (Ql[P) > D (QIIP) -

Where Dir, (Q||P) is the Kullback-Leibler divergence, which is defined as

D (QI[P) = Faeo (i e

Proof: If Fo (ln %(%) > a then there exists a set A such that Q(A4) > 0 and In %(% > a, which implies
that Dy (Q||P) > a. 1

Note that there is no similar inequality relating the two measures of divergence in the other way. That
is because there might be a set A such that Q(A) is very small, so that the contribution of this set to
Dgr, (Q||P) is negligible, but on the other hand Q(A)/P(A) is extremely large.

Using these measures of divergence, we can lower-bound ¢; by functions of the divergence between the
target distribution and the ¢th filtered distribution:
Lemma 2.4.3: If D is the target distribution, and F; is the distribution generated by FIKEX during the

tth iteration, then
t; < e—DM(FiHV) < e_DKL(FiHV) )

Proof: The second inequality follows from Lemma 2.4.2. To prove the first inequality, assume that

Dy (F;]|D) > a. Then there exists a set A € ¥ such that %%l > ¢, Using the definition of the measure

generated by filtering in Equation (2.3) we get

o TieaDANXDl | Zi Tl DANX) [ Z 1
Yr=oPANX]) T 0 P(AN X)) Zi

The inequality holds because o, < 1 always.'®> Here Z; = S>°_, D(X!)al = t;, from which we get 1/t; > ?,

which proves the lemma. |

We now combine the results of Lemmas 2.4.1, 2.4.2 and 2.4.3 to arrive at the following stronger version
of Theorem 2.3.7

!5 Notice that a tighter bound can be proved using the bound on R maxo<i<r ol given in Lemma 2.3.10. However,

here we avoid using this tighter bound because we want the bound to be independent of .
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Theorem 2.4.4: Fiz a target distribution D and real valued parameters v,€,6 > 0.
If WeakLearn is a learning algorithm that for any distribution P over the sample space X and any ¢ € C,

generates a hypothesis whose error, w.r.t. P, is smaller than

L (1 _ Mezﬁmwnm)

2 41n(1/e) ’
then, with probability at least 1 — 6, the algorithm By, given the parameters, generates a hypothesis whose
error, w.r.t. D, is smaller than «.
Proof: The algorithm uses k& = (4/9%)In(1/¢) as given in statement 1. of Algorithm By (Figure 2.4).

From Lemma 2.4.1 we get that it is enough if the error in the ¢th iteration is smaller than

1 e(l —e€

3= (1- fimarg)
Combining Lemmas 2.4.3 and 2.4.2, we get that ¢; < e~Pxr(PIT) which proves the theorem. |

Notice that Theorem 2.4.4 assumes that the weak learner is completely reliable, i.e. that it has

probability 1 of generating a hypothesis with the desired accuracy. The algorithm can be used for less
reliable weak learning algorithms, but there is a subtle point that needs to be addressed in that case. The
point is that the number of examples required by By, in order to increase the reliability is ©(1/7?%). Thus
if the error of the hypothesis has to be just very slightly smaller than 1/2, the number of examples that
are required to test if the hypothesis is good increases without bounds. To avoid this problem the required
error has to be set to a smaller value, thus making the detection of a good hypothesis easier. We omit the

details of this variant of the boosting algorithm.

2.4.2 Boosting multiple valued concepts

As was noted by Schapire [Schapire, 1991], the generalization of the equivalence between strong and
weak learning to concepts with more than two labels does not enjoy the same tightness as the two label
case. In the two label case an ability to predict the label with accuracy that is a polynomial fraction
better than random guessing is equivalent to strong learning. In the j-label case the probability that a
random guess is correct is equal to 1/7, while the minimal requirement for weak learning to be equivalent
to strong learning is to predict correctly with a probability slightly better than a half. '® As any j-valued
decision rule can be replaced by j — 1 binary decision rules of the type: “is the label equal 7”, the binary
boosting algorithm can be used j — 1 times to generate the desired hypothesis. However, it is possible
to perform the boosting process in one pass, generating a simple j-valued hypothesis and eliminating the
dependence of the complexity on j. The combination rule that is used is simply the j-valued majority, i.e.
the strong hypothesis labels the input with the label given by the largest number of weak hypotheses. The
algorithm and its analysis are almost exactly the same as in the binary case, the only difference is that

the definition of the filtering factor is based on one more parameter, denoted by ¢, that is the number of

1$To realize this, consider a 3-label concept such that for any example there are only two possible labels (over the whole
concept class). In this case, using a random coin flip to choose one of the two possible labels will give a correct answer half of

the time, but the concept class might still be unlearnable [Schapire, 1991].
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incorrect hypothesis whose output is not equal to the incorrect label with the largest number of votes. For
example, suppose the labels are the ten digits, assume the correct label for some example is “0” and the
incorrect label that got the largest number of votes is “9” (irrespective of whether the number of votes “9”
got is larger than the number of votes “0” got) then ¢ is the number of votes that the digits “1”7 to “8”
got. The change in Formula (2.1) is that & is replaced by k — ¢:

0 if r<i— kst
o= 4 (G UF G - Tt i bt oy < bt (2:21)
0 if 7> k=t

2
It is interesting to note that the resources required are completely independent of j, the number of possible
labels. This is even true if j is different for different n and s, or if j is infinite, even uncountable!
However, the requirement of weak learning for concepts with uncountable ranges is unreasonably hard.
The hypothesis must generate the ezact correct output for more than half the inputs (in probability). In

this case the result described in the next section might be more relevant.

2.4.3 Boosting real valued concepts

A modification of the boosting algorithm can be used for boosting learning algorithms for concept
classes whose range is a real number (for a review of algorithms for learning real valued functions, see
Chapter 5 in [Natarajan, 1991]). This variant of the boosting algorithm transforms learning algorithms
that generate hypotheses whose expected error, with respect to the input distribution, is small to algorithms
that generate hypotheses whose error is small for most of the input domain.

Assume C is a set of functions from R to R and WeakLearn is a learning algorithm for C . Let p
be any density function over R, and let (21, f(z1)), (22, f(22)),. .., (@, f(2,)) be a set of examples drawn
independently at random according to p and labeled according to some f € C. Then A, upon observing
this sample, generates a hypothesis function g such that with probability larger than 1 — 6

+oo

| 1@~ g()ldptz) < d (2:22)
We shall sketch how the boosting algorithm can be used to generate a function A such that with high
probability

d
Pp <|f($) — h($)| > 1/27_7) < €.
Where P, is the probability according to the density p and 7, > 0 are polynomial fractions.
Using the Markov inequality and setting A = 1/5% we get, from Equation (2.22), that
1
Py(f(e) — gl > A) < 5~

We extend the notion of agreement between a concept and a hypothesis on an example z to concepts defined
on the reals by saying that f and g “A-agree” on z if |f(z) — ¢g(z)| < A. Using the extended definition of
agreement we can say that WeakLearn is a weak-learner for the concept class C . If we replace all the

places in the boosting algorithm in which it refers to “agree” or “correct” by corresponding references to

“A-agree” or “A-agrees with the true function”, we get a boosting algorithm for real valued functions.
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Suppose, for simplicity, that we are using algorithm Bsamp- Then the result of running the boosting
algorithm over the weak learning algorithm are & real valued functions hy(2),..., hi(z) such that for any
point in the sample more than k/2 of the functions are within é of the correct value. It is interesting to
observe that the results of Theorems 2.3.3 and 2.3.11 hold without change for the real valued case. Thus,
by choosing the size of the sample large enough, we are guaranteed that, with probability at least 1 — 4,
more than half of the hypotheses are A-correct on all but ¢ of the points of the whole domain.

Observe that if more than half of the functions A-agree with f on a point z then the median of the
functions A-agrees with f. From this we get that the median is the natural generalization of the majority

for this case. By taking the median of the k weak hypotheses we get:

P, (Median(hy, hg, ..., h;) A-agrees with f) > 1—¢€.

2.4.4 Parallelizing PAC learning

The fact that the boosting by filtering algorithm, Bp;j;, accepts only a small fraction of the examples
with which it is presented has an interesting implication on the possibility of achieving optimal speed-up
when parallelizing learning algorithms.

Observe that the time complexity of By;j; is dominated by the time that is spent by the procedure
Filt EX on checking examples that are eventually rejected. Observe also the probability that any given ex-
ample is accepted during the generation of the ith hypothesis is constant. In other words, it is independent
of whether or not any other example is tested or accepted during the ¢th stage.

Assume now that we use one of the standard parallel-computation paradigms, such as the PRAM model,
and that we have a computer with a p processors at our disposal. Then we can parallelize the procedure
FiltEX in the following way. Each of the p processors runs the procedure FiltEX independently, each
making separate calls to EX, so that they test different random examples.!'” When one of the p processors
accepts an example, all the other processors are halted and their results are ignored.'® The accepted
example is then returned to WeakLearn as usual. Recall that out of the O(1/e(In 1/€)*/2) examples that
are needed for learning, only O(In 1/¢€) examples have to be accepted and returned to WeakLearn. If the
number of processors is O(1/ey/In1/¢) then the search for an acceptable example takes expected constant
time, so that the expected running time of the boosting algorithm becomes O(In 1/¢). If p is smaller, then
a p-fold speedup over the serial execution is achieved. We summarize this observation in the following
theorem.

Theorem 2.4.5: If C is a polynomially PAC-learnable concept class then there exists a parallel learning
algorithm for C that runs on a PRAM machine with O(1/¢€) processors whose time complezity dependence

on the accuracy is O(log1/¢).

1"We either assume that the running time of EX is negligible or that EX can generate many examples at the same time.

'8\We assume that halting all processors can be done in unit time.
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2.5 Summary and open problems

The algorithms we have described in this paper give the best upper bounds currently known on the
resources required for polynomial PAC learning. While these bounds are in some respects close to optimal,
further improvement might still be possible in the dependence of the sample and time complexity on the
parameters € and .

One undesired property of our boosting algorithm is that it requires prior knowledge of a distribution-
independent bound on the accuracy of the hypotheses that WeakLearn generates. While guessing a
bound is a theoretically feasible solution, it is expensive in practical applications [Drucker, 1992 1993].
Schapire’s algorithm is somewhat better in that respect, because if sample complexity is ignored it can be
used without having prior knowledge of such a bound, and achieve an improvement over the performance
of WeakLearn if such a uniform bound exists.

A deeper problem is that the assumption of distribution-independent bounds for learning algorithms
often seems to be unreasonable. Theorem 2.4.4 is encouraging in this respect because it shows that boosting
can be achieved even without uniform bounds. This might be a sign that a richer, and maybe more realistic
theory of learning can be developed in which performance bounds are distribution dependent.

In this paper we have shown that the boosting algorithm can be generalized to multiple-valued concept
classes as well as real valued concept classes. However, the results regarding real-valued concept classes
are still rather weak, and one would hope that stronger types of boosting can be achieved in that context.
The use of boosting in the context of p-concepts [Kearns and Schapire, 1990] is another long standing open
problem. Some progress on the problem of boosting in the context of independent label noise has been
achieved in a recent work by Aslam and Decatur about boosting learning algorithms in the the statistical
query model introduced by Kearns [Kearns, 1993].

Last but not least, boosting has been successfully applied to some practical machine learning problems
[Drucker et al., 1993]. Further experimentation with boosting methods will hopefully achieve even better
results. Such work will also be useful in pointing to directions in theoretical research that might have a

large impact on the practice of machine learning.

2.6 Summary of notation

2.6.1 Concept Learning Notation

The sample space is denoted X, the concept class is denoted C , and the class of hypotheses is denoted
H. Typical elements of these spaces are denoted z, ¢ and h respectively. The distribution over X, according
to which examples are generated, is denoted by D. We denote by 5 = {(21,¢(21)),...,(2m,c(zn))}
a sample of m examples, labeled according to ¢ € C. The accuracy parameter is denoted ¢, and the
reliability parameter is denoted 6. The sample, time, and space required for the learning algorithm under

discussion to achieve accuracy € with reliability ¢ are denoted m(e,§),s(¢,6) and t(€, §) respectively.
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2.6.2 Notation for the describing boosting

We denote a generic weak learning algorithm by WeakLearn. We use ¢y and 6y to denote the accuracy
and the reliability of WeakLearn. Usually ¢ is close to 1/2 (the accuracy of a random guess) and d is
close to 1 (probability zero of generating an eg-accurate hypothesis). For this reason we define y = 1/2— ¢
and A = 1 — 8g. The number of examples, time and space required by the weak learner to achieve its
fixed goals are denoted myg, {g, and sy respectively. We denote the hypothesis generated by the boosting
algorithm by hjps, and the set of all such hypotheses by Hp;.
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2.6.3 Meaning of common notation in different sections

symbol Meaning in Meaning in analysis of Meaning in analysis of
Majority-Vote Game BSamp Briit
k The total number of The total number of weak hypotheses
iterations in the game. combined by the boosting algorithm.
t=0...%k The number of The number of weak hypotheses
iterations played so far. generated so far.
r=0...1 The number of marks. The number of weak hypotheses that are correct
The points that The points in the The points in X
X! have been marked sample on which r on which r out of
r times in the out of the first ¢ weak the first ¢ weak
first ¢ iterations hypotheses are correct hypotheses are correct
The value of The number of The probability of A
V(A) the set A sample points in A according to the
distribution D
The weight of The sum of the weights The probability of A
Wi(A) the set A assigned to the sample according to the
in the ith points in A using hypotheses | distribution filtered using
iteration hi,...,hi_1 hypotheses hy, ..., h;j_1
al/al . is the probability of
al The weight assigned to points in X! accepting an example from
defined in Equation 2.1 X, during the 7th iteration.
where of .. = maxp<,<; ol
i The potential of the points in X!, defined in Equation 2.7
¢t = V(X!) || The value of X} The number of The probability of X!
sample points in X! according to the
distribution D
The fraction, in The fraction of the The fraction (in terms of the
rl = terms of value) of X} points of X on distribution D) of X!
w that is marked which h; on which h;y1 is correct
VI(X;) i+l i+l
in the ¢th iteration is correct
L The set of points The sample points on The set of points in X on
The loss set || marked less than k/2 which the majority vote which the majority vote is
times in the k is incorrect incorrect, i.e. the set of points
iterations 1.e. the empty set on which has is incorrect.

2.6.4 Special Notation

The expected weight of a random example in the ¢th iteration. This notation is used in the analysis

7

! ax 18 the probability of accepting a random example during the ¢th iteration.

of By because ¢;/a

e 9; - the actual edge of the ith weak hypothesis, h;. In other words, the error of h;, with respect to
the ith filtered distribution, is 1/2 — ;.
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e mp - Denotes the number of examples required by B for generating a weak hypothesis with the

desired reliability.
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3. Accelerating learning using Query by Committee

3.1 Introduction

Most of the research on the theory of learning from random examples is based on a paradigm in which
the learner is both trained and tested on examples drawn at random from the same distribution. In this
paradigm the learner is passive and has no control over the information that it receives. In contrast, in
the query paradigm, the learner is given the power to ask questions. What does the learner gain from this
additional power?

Study of the use of queries in learning [Valiant, 1984b, Angluin, 1988a], has mostly concentrated on
algorithms for ezact identification of the target concept. This type of analysis concentrates on the worst
case behavior of the algorithm, and no probabilistic assumptions are made. In contrast, we are interested in
algorithms that achieve approximate identification of the target, and our analysis is based on probabilistic
assumptions. We assume that both the examples and the target concept are chosen randomly. In particular,
we show that queries can help accelerate learning of concept classes that are already learnable from just
unlabeled data.

This question was previously studied by Eisenberg and Rivest [Eisenberg and Rivest, 1990] in the PAC
learning framework. They give a negative result, and show that, for a natural set of concept classes, which
they call “dense in themselves”, queries are essentially useless. They show that giving the learner the ability
to ask membership queries ( questions of the type “what is the label of the point 27”) in this context does
not enable the learner to significantly reduce the total number of labeled examples it needs to observe.
The reason is that if the learner observes only a small number of examples, either passively or actively,
then it can not be sensitive to slight changes in the target concept and in the underlying distribution. An
adversary can alter the distribution and the target in a way that will not cause the learner to change its
hypothesis, but will increase the error of this hypothesis in a significant way. In this paper we show how
some concept classes that are dense in themselves can be learned efficiently if we allow the learner access
to random wnlabeled examples. This added capability enables the learner to maintain its sensitivity to the
input distribution, while reducing the number of labels that it needs to know.

Baum [Baum, 1991], proposed a learning algorithm that uses membership queries to avoid the in-
tractability of learning neural networks with hidden units. His algorithm is proved to work for networks
with at most 4 hidden units, and there is experimental evidence [Baum and Lang, 1991] that it works
for larger networks. However, when Baum and Lang tried to use this algorithm to train a network for
classifying handwritten characters, they encountered an unexpected problem [Baum and Lang, 1992]. The
problem was that many of the images generated by the algorithm as queries did not contain any recogniz-
able character, they were artificial combinations of character images that had no natural meaning. The
learning algorithm that is analyzed in this paper uses random unlabeled instances as queries and in this
way avoids the problem encountered by Baum’s algorithm.

Our work is derived within the query filtering paradigm. In this paradigm, proposed by [Cohn et al.,

1990], the learner is given access to a stream of inputs drawn at random from the input distribution. The
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learner sees every input, but chooses whether or not to query the teacher for the label. Giving the learner
easy access to unlabeled random examples is a very reasonable assumption in many real-life contexts.
In applications such as speech recognition, it is often the case that collecting unlabeled data is a highly
automatic process, while finding the correct labeling of the data requires expensive human work. Our
algorithm uses all of the unlabeled examples and in this way it overcomes the problems pointed out by
Rivest and Eisenberg. Learning becomes an interactive process, rather then requesting the human to label
all the examples in advance, we let the computer choose the examples whose labels are most informative.
Initially, most examples will be informative for the learner, but as the process continues, the prediction
capabilities of the learner improve, and it discards most of the examples as non-informative, thus saving

the human teacher a large amount of work.

In [Cohn et al., 1990] there are several suggestions for query filters together with some empirical tests of
their performance on simple problems. Seung et al.[Seung et al., 1992] have suggested a filter called “query
by committee,” and analytically calculated its performance for some perceptron-type learning problems.
For these problems, they found that the prediction error decreases exponentially fast in the number of
queries. In this work we present a more complete and general analysis of query by committee, and show
that such an exponential decrease is guaranteed for a general class of learning problems.

The problem of selecting the optimal examples for learning is closely related to the problem of exper-
imental design in statistics (see e.g. [Fedorov, 1972, Atkinson and Donev, 1992]). Experimental design is
the analysis of methods for selecting sets of experiments, which correspond to membership queries in the
context of learning theory. The goal of a good design is to select experiments in a way that their outcomes,
which correspond to labels, give sufficient information for constructing a hypothesis that maximizes some
criterion of accuracy. One natural criterion is the accuracy with which the parameters that define the
hypothesis can be estimated [Lindley, 1956]. In the context of Bayesian estimation a very general measure
of the quality of a query is the reduction in the probability of the set of possible hypotheses that is induced
by the answer to the query. Similar suggestions have been made in the perceptron learning literature[Kinzel
and Rujan, 1990]. A different experimental design criterion is the accuracy with which the outcome of
future experiments, chosen from some constrained domain, can be predicted using the hypothesis. This
criterion is very similar to criteria used in learning theory. Both criteria are important for us in this paper.
We show that while in the general case the two are not necessarily related, they are related in the case of
the query by committee algorithm. Using this relation we prove the efficiency of the algorithm for some
specific concept classes.

The paper is organized as follows. In Section 3.2 we present the Bayesian framework of learning in which
we analyze our algorithm. In Section 3.3 we present some simple learning problems and demonstrate a
case in which the information gain of a query is not the relevant criterion when we are interested in
prediction quality. In Section 3.4 we describe the query-by-committee algorithm. In Section 3.5 we prove
that there is a close relation between information gain and prediction error for QBC. Using this relation
we show in Section 3.6 that the prediction error decreases exponentially fast with the number of queries
for some natural learning problems. In Section 3.7 we give a broader view on using unlabeled examples for

accelerating learning, and in Section3.8 we summarize and point to some potential future directions.
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3.2 Preliminaries

We work in a Bayesian model of concept learning [Haussler et al., 1991b]. As in the PAC model, we
denote by X an arbitrary sample space over which a distribution D is defined. In this paper we concentrate
on the case where X is a Fuclidean space R?. Each concept is a mapping ¢ : X — {0,1} and a concept
class C is a set of concepts. The Bayesian model differs from the PAC model in that we assume that the
target concept is chosen according to a prior distribution P over C and that this distribution is known to
the learner. We shall use the notation Prpep(-) to denote the probability of an event when z is chosen at
random from X according to D.

We assume that the learning algorithm has access to two oracles: Sample and Label. A call to
Sample returns an unlabeled example # € X, chosen according to the (unknown) distribution D. A call
to Label with input a, returns ¢(), the label of 2 according to the target concept. After making some
calls to the two oracles, the learning algorithm is required to output a hypothesis h : X — {0, 1}. We define
the expected error of the learning algorithm as the probability that h(z) # ¢(2), where the probability is
taken with respect to the distribution D over the choice of z, the distribution P over the choice of ¢ and
any random choices made as part of the learning algorithm or of the calculation of the hypothesis h. We
shall usually denote the number of calls that the algorithm makes to Sample by m and the number of
calls to Label by n. Our goal is to give algorithms that achieve accuracy e after making O(1/¢) calls to
Sample and O(log 1/¢) calls to Label.

In our analysis we find it most convenient to view the finite number of examples that the learning
algorithm makes to label as being an initial segment of an infinite sequence of examples, all drawn
independently at random according to D. We shall denote such a sequence of unlabeled examples by
X = {x1,25...}, and use (X, (X)) = {(21,c(21)), (22, ¢(22))...} to denote the sequence of labeled
examples that is generated by applying ¢ to each z € X. We use X;._,, to denote the sequence of
the first m elements in X. We use the terminology of Mitchell [Mitchell, 1978], and define the version
space generated by the sequence of labeled examples <X1m,c()?1m)> to be the set of concepts ¢/ € C
that are consistent with ¢ on X, i.e. that ¢/(2;) = e(x;) for all 1 < i < m. We denote the version space
that corresponds to the first ¢ labeled examples by V, = V(()le,c()?lz)>) The initial version space,
Vo = V(0), is equal to C . The version space is a representation of the information contained in the set
of labeled examples observed by the learning algorithm. A natural measure of the progress of the learning
process is the rate at which the size of the version space decreases. The instantaneous information gain
from the ¢th labeled example in a particular sequence of examples is defined to be —log Prp(V;)/Prp(V;_1).
Summing the instantaneous information gains over a complete sequence of examples we get the cumulative

information gain, which is defined as

e Prp(Vi)
T ces @, c(xy))) = =) log ———— = —log Prp(V,,) . 3.1
((r1se))o ol ))) = = D low Bt = —log Pep(V) (3.1
The natural measure of the information that we expect to gain from the label of an unlabeled example
is the expected instantaneous information gain taken with respect to the probability that each one of the

two labels occurs. Let pg be the probability that the label of z,, is 0, given that ¢ € V,,_; and let V¥ be
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the version space that results from the label z,, being 0. Define p; and V,! in the corresponding way for
the case ¢(x,,) = 1. We define the expected information gain of x;, given V;_1, to be:
) Prp(VP) Prp(V1)

AVii) = —polog — i) gy g — PN i)

GlalVin) = —plos 5oy P8 B v

= —pologpo — (1 — po)log(1 — po) = H(po) ,

(3.2)

where H(p) denotes the Shannon information content of a binary random variable whose probability of
being 1 is p. We shall use log base 2 in our definition and measure the expected information gain in bits.!
The maximal information gain from a single label is one bit. The information gain is thus a very attractive
measure of the gain that can be expected from asking Label for the label of an example. However, as
we show in Section 3.3, this measure, by itself, is not sufficient for guaranteeing a large reduction in the
expected prediction error of the algorithm.

The “Gibbs” prediction rule is to predict the label of a new example x by picking a hypothesis h at
random from the version space and labeling = according to it. The random choice of & is made according
to the prior distribution P restricted to the version space. It is a simple observation (see [Haussler et al.,
1991b]), that the expected error of this prediction error is at most twice larger than the expected error
of the optimal prediction rule which is the Bayes rule. We shall assume that our learning algorithm has
access to an oracle, denoted Gibbs, which can compute the Gibbs prediction for a given example z € X
and version space V. C C. Each time Gibbs(V,z) is called, a hypothesis h € C is chosen at random
according to the distribution P restricted to V, and the label h(z) is returned. Note that two calls to
Gibbs with the same V' and x can result in different predictions. The main result of the paper is that a
simple algorithm for learning using queries, that uses the Gibbs prediction rule, can learn some important

concept classes with accuracy that is exponentially small in the number of calls to Label.

3.3 Two simple learning problems

In this section we discuss two very simple learning problems. Our goal here is to give examples of the
concepts defined in the previous section and to show that selecting examples to be queries solely according
to their expected instantaneous information gain is not a good method in general.

Consider the following concept class. Let X = [0,1], and let the associated probability distribution D

be the uniform distribution. Let the concept class C , consist of all functions of the form

{1, w<x

3.3
0, w>uz (3-3)

Cuwlr) =

where w € [0,1]. We define the prior distribution of concepts, P to be the one generated by choosing w
uniformly from [0, 1].

The version space defined by the examples {(x1, c(21)), ..., (Tm, (2, ))} is (isomorphic to) the segment
Vi = [max(z;|c(z;) = 0),min(z;|e(z;) = 1)]. Let us denote by & the ratio of between the probabilities of

!Here, and elsewhere in the paper, log(-), denotes the logarithm over base two, while In(-) denotes the logarithm over base
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Figure 3.1: A figure of the version space and the examples that achieve maximal information gain

for the two threshold learning problem defined below.

the version space before and after observing the ith example, i.e. §; = PrpV;/PrpV;_1. The instantaneous
information gain of the example (z;, ¢(z;)) is log &;. Given an unlabeled example, the expected instantaneous
information gain from z; is H(&;). Examples that fall outside the segment have a zero expected information
gain, while the example that divides the segment into two equal parts obtains the highest possible expected
information gain of one bit. This agrees with our intuition because the label of examples that fall outside
the segment are already determined by previous labeled examples, while the label of the example that
falls in the middle of the version space interval is least predictable. It is easy to calculate the probability
of a prediction error for the Gibbs prediction rule for a given version space segment. This probability is
equal to the length of the segment divided by three. Thus, if the learner asks for the label of the example
located in the middle of the segment, it is guaranteed to half the error of the Gibbs prediction rule. In this
case we see that asking the oracle Label to label the example that maximizes the expected information
gain guarantees an exponentially fast decrease in the error of the Gibbs prediction rule. In contrast, the
expected prediction error after asking for the labels of n randomly chosen examples is O(1/n). The question
is whether choosing queries according to their expected information gain is a good method in general, i.e.
whether it always guarantees that the prediction error decreases exponentially fast to zero.

The answer to this question is negative, to see why this is the case consider the following, slightly more
complex, learning problem. Let the sample space be the set of pairs in which the first element, z, is either
1 or 2, and the second element, z, is a real number in the range [0, 1],i.e. 2 € X = {1,2} x [0,1]. Let D be
the distribution defined by picking both ¢ and z independently and uniformly at random. Let the concept

class be the set of functions of the form

1, w, <z
: (3.4)
0, w; >z
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where 1 € [0,1]%. The prior distribution over the concepts is the one generated by choosing @ uniformly at
random from [0, 1]2. In this case each example corresponds to either a horizontal or a vertical half plane,
and the version space, at each stage of learning, is a rectangle (see Figure 3.3). There are always two
examples that achieve maximal information gain, one horizontal and the other vertical. Labeling each one
of those examples reduces the volume of the version space by a factor of two. However, the probability
that the Gibbs rule makes an incorrect prediction is proportional to the length of the perimeter of the
rectangular version space, and not to its volume. Thus, if the learner always chooses to ask queries of the
same type, only one of the dimensions of the rectangle is reduced, and the perimeter length stays larger
than a constant. Which implies that the prediction error also stays larger than a constant.

We conclude that the expected information gain of an unlabeled example is not a sufficient criterion
for choosing good queries. The essential problem is that the distribution over the examples is completely
ignored by this criterion. While one can easily find a specific solution for the given learning problem, we
would like to have a general method that is sensitive to the distribution of the examples, and is guaranteed

to work for a wide variety of problems. In the next section we present such a method.

3.4 The Query by Committee learning algorithm

Seung, Opper and Sompolinsky [Seung et al., 1992] have devised an algorithm for learning by queries
which they called “Query by Committee” and we shall refer to as the QBC algorithm. The algorithm
uses as queries examples whose expected information gain is high, however, rather than constructing the
examples, it selects the more informative examples from the random unlabeled examples that it gets from
the oracle Sample.

The algorithm proceeds in iterations, in each iteration it calls Sample to get a random instance z.
It then calls Gibbs twice, and compares the two predictions for the label of z. If the two predictions
are equal, it rejects the instance and proceeds to the next iteration. If the two predictions differ, it calls
Label with input z, and adds the labeled example to the set of labeled examples that define the version
space. It then proceeds to the next iteration. In [Seung et al., 1992] Seung et. al. treat the query by
committee algorithm as an on-line learning algorithm, and analyze the rate at which the error of the two
Gibbs learners reduces as a function of the number of queries made. In our work we prove general bounds
both on the number of queries and on the number of random examples that the algorithm tests. In order
to do that we consider a batch learning scenario, in which the learning algorithm is tested only after it has
finished observing all of the training examples and has fixed its prediction hypothesis.

To do that we define a termination condition on the iterative process described above. When the
algorithm reaches this a state that fulfills this condition it stops calling Sample and Label and uses the
Gibbs oracle to predict the labels of the instances that it receives in the test phase. The termination
condition is satisfies if a large number of consecutive instances supplied by Sample are all rejected.

We measure the quality of the predictions made by the algorithm in a way similar to that used in
Valiant’s PAC model. We define the expected expected error of the algorithm as the probability that
its prediction of the label of a random instance disagrees with that of the true underlying concept. This

probability is taken with respect to the random choice of the instance as well as the underlying concept.



58

We also allow the algorithm some small probability of failure to account for the fact that the sequence of
instances that it observes during training is atypical.

We say that the learning algorithm is successful if its expected error, when trained on a typical sequence
of instances, is small. More Precisely, we define two parameters, an accuracy parameter 1 > ¢ > 0 and
a reliability parameter 1 > 6 > 0. We use the term “training history” to describe a specific sequence of
random instances and random coin flips used during learning a specific hidden concept. For each choice of
the hidden concept, we allow a set of training histories that has probability é to be marked as “atypical”
training histories. OQur requirement is that the expected error over the set of typical training histories is
smaller than e. The parameters € and ¢ are provided to the learning algorithm as input and are used to
define the termination criterion. Figure 3.2 gives a formal description of the algorithm. It is important to
notice that the termination condition depends only on ¢ and 6, and not of any properties of the concept
class. While the performance of the algorithm does depend on such properties, the algorithm can be used
without prior knowledge of these properties.

It is easy to show that if QBC ever stops, then the error of the resulting hypothesis is small with
high probability. That is because it is very unlikely that the algorithm stops if the probability of error is
larger than € (proof is given in Lemma 3.5.3). The harder question is whether QBC ever stops, and if it
does, how many calls to Sample and to Label does it make before stopping? As we shall show in the
following two sections, there is a large class of learning problems for which the algorithm will stop, with
high probability, after O(1/e log 1/é¢) calls to Sample, and O(log1/¢) calls to Label.

The committee filter tends to select examples that split the version space into two parts of comparable
size, because if one of the parts contains most of the version space, then the probability that the two
hypotheses will disagree is very small. Let us normalize the probability of the version space to one
and assume that an example z partitions the version space into two parts with probabilities F' and
1 — I respectively. Then the probability of accepting the example z as a query is 2F(1 — F') and the
information gain from an example is H(F'). Both of these functions are maximized at /' = 0.5 and
decrease symmetrically to zero when [ is increased to one or decreased to zero. It is thus clear that the
queries of QBC have a higher expected information gain than random examples. However, it is not true in
general that the expected information gain of the queries will always be larger than a constant,? moreover,
as we have seen in the Section 3.3, queries with high information gain do not guarantee a fast decrease
of the prediction error in general. Our proof of the performance of QBC consists of two parts. In the
first part, given in Section 3.5, we show that a lower bound on the information gain of the queries does
guarantee a fast decrease in the prediction error of QBC. In the second part, given in Section 3.6, we show
that the expected information gain of the queries of QBC is guaranteed to be higher than a constant in

some important cases.

2For example, consider the case in which the version space contains two disconnected sets in R?, which are very far from
each other, and assume that a random example is very likely to separate between these two sets. Suppose one of the sets
has probability ¢, while the other has probability 1 — ¢. While most of the examples that separate between the two sets are
rejected, the fraction that is accepted can still dominate all other examples. Thus the expected information gain is close to
H(e). As € can be set arbitrarily small, the expected information gain can be arbitrarily close to zero. It seems that this type

of version space can occur only very rarely but we do not know what are the necessary conditions.
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Input: € > 0 - the maximal tolerable prediction error.
6 > 0 - the desired reliability.
Gibbs- an oracle that computes Gibbs predictions.
Sample- an oracle that generates unlabeled examples.
Label- an oracle that generates the correct label of an example.
Initialize n - the counter of calls to Label — to 0, and set the initial version space, Vj, to be the complete

concept class C .

Repeat until more than ¢, consecutive examples are rejected. Where

1 2 1)2
P N U O
€ 36
and n is the number of examples that have been used as queries so far.

1. Call Sample to get an unlabeled example € X drawn at random according to D.

2. Call Gibbs(V,,, z) twice, to get two predictions for the label of z.

3. If the two predictions are equal then reject the example and return to the beginning of the loop.
(step 1)

4. Else call Label(z) to get ¢(2), increase n by 1, and set V,, to be all concepts ¢ € V,,_; such that

d(z) = c(x).

Output as the prediction hypothesis Gibbs(V,,,z).

Figure 3.2: Query by a committee of two
3.5 Relating information gain and prediction error for Query by Committee

In this section we prove that if the expected information gain from the queries used by QBC is high,
then the prediction error of the algorithm is guaranteed to be exponentially small in the number of queries
asked. We shall first define exactly what we mean by high information gain, and then give the theorem
and its proof.

In our analysis we treat runs of the algorithm as initial segments of infinite runs that would have been
generated if there was no termination criterion on the execution of the main loop in QBC. We denote by
X the infinite sequence of unlabeled examples that would have been generated by calls to Sample. We use
an infinite sequence of integer numbers I = {1 < iy < iy < ...} to refer to the sequence of indices of those
examples that are selected by QBC from X and used as queries to Label. This set of examples is denoted
X1. We denote by M the sequence of integers from 1 to m, and use X to denote the first m examples in
X. We use I, to denote the first n indices in 1. Finally, X[n indicates the first n examples that are used
as queries, and X ans indicates the queries that are chosen from the first m unlabeled examples.

We now present the probabilistic structure underlying the query process. A point in the sample space
is a triple (c, )?, I). The probability distribution over this space is defined as follows. The target concept ¢
is chosen according to P, and each component in the infinite sequence X is chosen independently according

to D. Fixing ¢ and )?, we define the distribution of the first n elements of I according the probability the
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algorithm QBC chooses to call the oracle Label on the iterations indexed by [I,. It is easy to see that
the distributions defined for different values of n are consistent with each other, thus we can define the
distribution on I as the limiting distribution for n — oc. We denote the distribution we have defined on
the triplets (e, )2, I) by A and use Pra and Fa to indicate the probability and the expectation taken with
respect to this distribution.

We now define formally what we mean when we say that the queries of QBC are informative.
Definition 2: We say that the expected information gain of queries made by QBC for the learning problem
C, P, D is uniformly lower bounded by g > 0 if the following holds.

For the distribution over (c, )2, I) that is generated by P, D and QBC and for every n > 0, the expected
instantaneous information gain from the n + 1st query, given any sequence of previous queries and their
answers, is larger than g. In our notation we can write this as the requirement that the following conditional

expectation is larger than g almost everywhere:
Pra (E (i, V(X1 e(Xp))) | Xoe(X7,)) > 9) =1

In somewhat more intuitive terms, a uniform lower bound on the information means that for any version
space that can be reached by QBC with non-zero probability, the expected information gain from the next
query of QBC is larger than g. In Section 3.6 We shall prove uniform lower bounds on the information
gain of QBC for some important learning problems.

We now give the theorem that relates the bound on the information gain of QBC to its expected
prediction error.
Theorem 3.5.1: If a concept class C has VC-dimension 0 < d < 0o and the expected information gain of
queries made by QBC is uniformly lower bounded by g > 0 bils, then the following happens with probability
larger than 1 — & over the random choice of the target concept, the sequence of examples, and the choices

made by QBC:
o The number of calls to Sample that QBC makes is smaller than

4d 160(d + 1 d+1)\?
mo = max [ —, 160(d+ 1) max (6,111 M) . (3.5)
el ge €b?g

o The number of calls to Label that QBC makes is smaller than

10(d + 1
ng = 0(d+1) In
g 0

b

In other words, it is an exponentially small fraction of the number of calls to Sample.>

o The probability that the Gibbs prediction algorithm that uses the final version space of QBC makes

a mistake in it prediction is smaller than c.

Before we proceed to prove the theorem, let us give a brief intuitive sketch of the argument (See

Figure 3.3). The idea is that if a concept class is learnable then, after observing many labeled examples,

®Note that the number of calls to Sample must is Q(d/¢) ([Blumer et al., 1989]), even if all of the instances are used as

queries to Label.
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Figure 3.3: Each tag on the z axis denotes a random example in a specific typical sequence. The

symbol X under a tag denotes the fact that the example was chosen as a query.

the conditional distribution of the labels of new examples is highly biased to one of the two labels. This
means that the information gained from knowing the label of a random example is small. This, in turn,
means that the increase in the cumulative information from a sequence of random examples becomes slower
and slower as the sequence gets longer. On the other hand, if the information gained from the queries of
QBC is lower bounded by a constant, then the cumulative information gain from the sequence of queries
increases linearly with the number of queries. It is clear that the information from the labels of the queries
alone is smaller than the information from the labels of all the examples returned by Sample. The only
way in which both rates of increase can hold without violating this simple inequality is if the number of
examples that are rejected between consecutive queries increases with the number of queries. As a result
the termination criterion of QBC will hold, and the algorithm will output it’s final prediction rule after a
reasonably small number of queries. The prediction rule that is output is the Gibbs prediction rule, using
the final version space that is defined by all the labeled examples seen so far. The probability of making
a prediction error using this rule is, by definition, equal to the probability of a disagreement between a
hypothesis that is randomly chosen according to the prior distribution restricted to the version space and a
concept that is independently chosen according to the same distribution. This probability is also equal to
the probability of a accepting a random example as a query when using this version space. The termination
condition is fulfilled only if a large number of random examples are not accepted as queries, which implies
that the probability of accepting a query or making a prediction mistake when using the final version space

is small. We shall prove the theorem using the following three lemmas.

Lemma 3.5.2: If the expected instantaneous information gain of the query algorithm is uniformly bounded
by g > 0 bits, then

Pra(Z((X1,,e(X1,)) < Sn) < " (3.6)
Proof: The definition of a uniform lower bound on the expected information gain means that for any
n > 0, for all sequence of of n queries <)€In, c()zjn)>, excluding possibly a set of measure zero, the expected
information gain from the n + 1st query is lower bounded by g. Put in another way, this means that the

random variables
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Yi = Z((Xp,. e X1)) = Z((X gy e(X12))) — g

form a sequence of sub-martingale differences. As the instantaneous information gain is bounded between
0 and 1, we get that —g < Y; < 1 — ¢g. We can thus use Hoeffding’s bound on the tails of bounded step
sub-martingales [McDiarmid, 1989]  from which we know that for any ¢ > 0

. g € 1_g 1— —en
P Y < —en) < 1oLy
= gte g

Setting ¢ = Ag and taking logs we get

exp ((=(1 4 Mgln(1+A) + (1= (14 Ng)In =) ) <
exp (A= (14+XN)In(1+A))gn) .
Choosing A = 1/2 we get the bound |

Lemma 3.5.3: The probability that the predictions made by QBC are wrong (after its main loop has
terminated) is smaller than € with probability larger than 1 — §/2.

Proof: Assume that the probability of a wrong prediction is larger than €. As discussed in the informal
part of the proof, this implies that the probability of accepting a random example as a query with the final
version space, is also larger than e. It thus remains to show that the probability that QBC stops when
the probability of accepting a query is larger than € is smaller than 6/2.

The termination condition of QBC is that all ¢, examples tested after the nth query are rejected. If the
probability of accepting a random example is larger than ¢ then this probability is smaller than (1 — €)i".

From the definition of t,, we get that

2 2 2 2
m2(n+1) 72 (n+1) 36
In == < e~ 5 =

(1- o)

- T2 (n+1)2

Summing this probability over all possible values of n from zero to infinity we get the statement of the

lemma. |

In [Haussler et al., 1991b] it was shown that if the VC-dimension of a concept class is d, then the
expected information gain from m random examples is bounded by (d + 1)log(m/d). Here we show that

the probability that the information gain is much larger than that is very small.

Lemma 3.5.4: Assume a concept ¢ is chosen at random from a concept class with VC dimension d. Fix

a sequence of examples )2, recall that X denotes the first m examples. Then

Preep (TU (Ko 2 0+ 1ilog 7)) < = (3.7)

em

*The bound as it appears in [McDiarmid, 1989] is given for martingales. However, it is easily checked that it is also true

for super-martingales. Reversing the sign of the Y; we get an equivalent theorem for sub-martingales.



63

Proof: Irom Sauer’s Lemma [Sauer, 1972] we know that the number of different labelings created by

m examples is at most Y% (") < (em/d)?. The expected cumulative information gain is equal to the
entropy (base 2) of the distribution of the labels and is maximized when all the possible labelings have equal
probability. This gives an upper bound of dlog <7* on the expected cumulative information gain. Labelings
that have cumulative information gain larger by a than this expected value, must have probability that
is smaller by 2% then the labels in the equipartition case. As the number of possible labelings remains
the same, the total probability of all concepts that give rise to such labelings is at most 27%. Choosing

em

a = log ©7 we get the bound. |

Proof of Theorem 3.5.1 We consider a randomly chosen element of the event space <c,)?,]>. Our
analysis involves the first mg random examples presented to QBC, XMO, and the first ng queries that
QBC would choose if it never halts, X[no. We denote the number of queries that QBC makes during
the first mgy examples by n, i.e. n = |[I N Mp|. The claim of the theorem is that, with probability at least
1—46, the algorithm halts before testing the m + 1st example, the number of queries it makes, n, is smaller
than ng, and the hypothesis it outputs upon halting has error smaller than e. We shall enumerate a list
of conditions that guarantee that all of these events occur for a particular random choice of examples and
of internal randomization in QBC. By showing that the probability of each of those conditions to fail is
small we get the statement of the theorem.

The conditions are:

1. The cumulative information content of the first ng queries is at least gng/2.

From Lemma 3.5.2 we get that in order for this condition to hold with probability larger than

1 —6/4 it is sufficient to require that

10, 4
> —lIn—. .
no_gn(S (3.8)

2. The cumulative information content from the first mg examples is at most
(d+ 1)(log ).
From Lemma 3.5.4 we get that in order for this condition to hold with probability larger than
1 —6/4 it is sufficient to require that

moy > ﬁ . (3.9)
~eb
3. The number of queries made during the first mg examples, n, is smaller than ng.
The condition follows from conditions 1 and 2 if I(()?IWO,C(XIWOD) > T((Xn,, ¢(Xpg,))). This is

because if n > ng then the information gained from the queries asked during the first mg examples

is larger than the total information gained from the mg examples, which is impossible. In order for
I(<Xln0 ) C(Xjn0)>) > T((Xn,, (X a1,))) to hold, it is sufficient to require that
2(d+1)

ng > p (log 67:;0) .

(3.10)

4. The number of consecutive rejected examples guarantees that the algorithm stops

before testing the mg + 1st example.

Notice that the threshold ¢; increases with ¢. Thus if at least ¢, consecutive examples from among
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the first mg examples are rejected, the algorithm is guaranteed to halt before reaching the mg + 1st
example. As there are mo — n rejected examples, the length of the shortest run of ejected examples
is at least (mg —n)/(n+ 1). We require that this expression is larger than ¢,, and use the fact that
condition 3 holds, i.e. that n < ng. Using these facts it is sufficient to require that
2 1 2
o> 20t Ly T e (3.11)
€ 36
5. The Gibbs prediction hypothesis that is output by the QBC has probability smaller

than ¢ of making a mistaken prediction.

From Lemma 3.5.3 we get that the probability of this to happen is smaller than §/2.

We see that if Equations (3.8), (3.9), (3.10), and (3.11) hold, then the probability that any of the four
conditions fails is smaller than 6.1t thus remains to be shown that our choices of ng and mg guarantee that
these equations hold. Combining Equations (3.8) and (3.10), we get that it is sufficient to require that
mg > 2,d> 1, and

10(d+1), 4
no 1= 04D 7:;0 (3.12)
Plugging this choice of ng into Equation (3.11), we get the following requirement on mq:
g > 40(d+ 1) I 4myg I [20(d+ 1) n 4m0] ‘ (3.13)
€g 0 bg 0

It is simple algebra to check that the following choice of mg and satisfies Equations (3.9) and (3.13):

4d 160(d + 1 d+1)\°
mgy = max | —, Mmax (6,111 M) , (3.14)
el ge €b2g

Equations (3.12) and (3.14) guarantee that the conditions 1-5 hold with probability at least 1 —4. |

3.6 Concept classes that are efficiently learnable using QBC

In this section we show that there exists a uniform lower bound for some interesting geometric concept
classes. Our main analysis is for a learning problem in which concepts are intersections of half-spaces with
a compact and convex subset of R?. In this case the concept class itself can be represented as a compact
and convex subset of R? and each example partitions the concept class by a d — 1 dimensional hyperplane.
We first prove that for the case in which both D and P are uniform there is a uniform lower bound on
the information gain of QBC that does not depend on the dimension d. The proof is based on variational
analysis of the geometry of the version space and is given in Section 3.6.1. In Section 3.6.2 we extend this
proof to the non-uniform case. In Section 3.6.3 we use this result to prove a lower bound for perceptron

learning under the uniform distribution.

3.6.1 Uniformly distributed half-spaces

In this subsection we prove a lower bound on the information gain for a simple geometric learning

problem to which we shall refer as the “parallel planes” learning problem.
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We define the domain, X, to be the set of all pairs of the form (&,¢), where & is a vector in R? whose
length is 1, which we refer to as the “direction” of the example, and ¢ is a real number in the range [—1, +1],
to which we refer as the offset. In other words X = S x [—1, +1], where 5¢ denotes the unit sphere around
the origin of R?. In this section we assume that the distribution D on X is uniform.> The concept class,
C, is defined to be a set of binary functions over X, parameterized by vectors @ € R?,||||; < 1, that are

defined as follows oL
. 1, w-2>1,
cg(Z,t) = . . (3.15)
<t

We assume that the prior distribution is uniform on B? - the unit ball of radius one around the origin.
This concept class is very similar to the class defined by the perceptron with variable threshold.® However,
note that in this case the threshold, ¢, is part of the input, and not a parameter that defines the concept.
This concept class is a bit strange, but as we shall see, the results we can prove for it can be used on the
context of more natural concept classes such as the perceptron and thresholded smooth functions.

The reason that we can prove a uniform lower bound on the expected information gain of QBC for
this concept class is that all the version spaces that can be generated when learning a concept from this
concept class share some properties. The first property is each example, (Z,t) cuts the version space by a
plane that is orthogonal to the direction # and has offset ¢ from the origin.” As ¢ is uniformly distributed,
the planes that cut the version space in each direction have a uniformly distributed offset that spans width
of the version space in that direction. The second property is that all version spaces that can be generated
when learning this concept class are bounded convex sets because they are defined as the intersection of a
ball with a number of half-spaces.

As discussed in Section 3.4, both the expected information gain of an example and the probability that
the example is accepted by QBC are quantities that depend on the ratio between the probabilities of the
two parts of the version space that are created by the example. Based on these observations we can reduce
our problem to a one dimensional problem. Fix a particular direction #. Let Fz:[—1,4+1] — [0,1] be the

fraction of the version space, V', that is on one side of the plane defined by ¥ and ¢, i.e.

Pr. ep(cg € V0eg(Z) <t)
Fz(t) = = . 1
x( ) PI’Cpr (Cw € V) (3 6)

We call F' the volume function of the version space. The probability that QBC accepts the example (7, 1)
is 2Fz(t)(1 — Fz(t)), and the expected information gain from the example is H(Fz(t)). As t is uniformly

distributed, the expected information gain from the examples whose direction is & is

®Actually, it is enough to assume that the distribution of the offset t is uniform for any direction #. No assumption needs

to be made regarding the distribution of Z.
5The perceptron concept class is defined as the following set of binary functions over the unit sphere

() 1, #-@0>t
ca (& .
ot 0, otherwise

"In the following discussion we ignore the distinction between the concepts in C and their parameterization, and refer to

the concept ¢z simply as the vector .
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6t = LLEO0 = O
Jo FR()(1 = Fx(1)) dt

(3.17)

We now give the main technical theorem of this section. The theorem proves a lower bound on the value
of G(Fz). The proof is based on finding the convex version space that produces the smallest value of
G/(Fgz). This body is constructed of two equivalent cones connected at their bases. Barland [Barland, 1992,
Theorem 5], analyzes a similar problem. He finds the convex body that achieves the minimal value of the
functional [*!' min(Fp(t),1 — Fz(t))dt. Interestingly enough, he finds that the same body produces the

minimal value of this functional.

Theorem 3.6.1: The value of the functional G(Fz) for the parallel planes learning problem, when the
prior and input distributions are uniform, is at least 1/9 4+ 7/(181n2) > 0.672 bits, independent of the

dimension d.

Proof: The proof is based on a variational analysis of the functional . We shall show that there is one
volume function that corresponds to a convex body which minimizes this functional. Using a number of
transformations we shall show that the volume function of any other convex body can be transformed to
a volume function of a different convex body which obtains a smaller value of G.

We shall bound the value of G(F%) independently of the direction #. Our bound depends only on the
fact that the version space is a bounded convex set in R™ and that the distribution in it is uniform. We
thus drop the subscript & from Fz(:). As F(—1) =0, F(+1) =1, and H(1) = H(0) = 0, we will, without
loss of generality, extend the definition of F'(?) to all of R by defining it to be zero for t < —1 and one for
t > 1. We then redefine the integrals in the definition of G(#') in Equation (3.17) to be from from —oo to
oo. It is easy to check that G(F(t)) = G(F(at 4 b)) for any a,b # 0. Thus, without loss of generality, we
will consider the set of volume functions to be the set of all monotone non-decreasing functions, I, such

that F(0) = 1/2 and there exist a_ < 0 < ay such that F(a_) =0 and F(aq) = 1.

We first show that for any volume function F(t¢), one of the two functions:

[ F() t<0
F_(t)_{l—F(—t) t>0"

1-F(-t) t<0
Fy(t) = -
+(1) {F(t) >0
gives a lower value of G. We can partition the integrals in the numerator and the denominator of

Equation (3.17) into two parts:

_JZS Fa)(L - F(a)H (F(x)) da
S22 F)(1 = F(a)) da

G(F)

2 F)(1 = F(a) H(F(x) de+ [y Fz)(1 = F(x) H(F(z)) dz
S F(2)(1 = F(x)) da + [ F(2)(1 = F(x)) da
As all the integrals are positive it is easy to get a contradiction if G(F") is smaller than both
_ 2Jg " F(o)( = F(a)) H(F(x)) dx
GlIv) = 2 [F° P(a)(1— F(a))de

(3.18)
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and

_2J2 F(a)(1 — F(a))H(F(x)) da

G- QfEOO F(z)(1 - F(z))dx

; (3.19)

Thus at least one of the expressions is smaller than G/(F'). In the remainder of the proof we shall restrict
our attention to volume functions F' that are created in this way. For every convex body, whose volume
function is F, we define the volume functions F_ and F,. These volume functions do not necessarily
correspond to convex functions. Rather, they correspond to bodies that are symmetric around the plane
defined by t = 0, such that each of the two symmetric parts is a convex body. We shall call this type of
volume functions “projection symmetric” and denote them by PS. Formally, F' is a projection symmetric
volume function if there exists a convex body whose volume function is F, such that I/ = F_|_ or ' = F_.
As in this case F(t) = 1 — F(—t), expressions (3.19) and (3.18) are both equal to G/(F') and we redefine
G/(F) as expression (3.18). We shall show that the projection symmetric volume function that attains the
lowest value of G corresponds to a convex body and in this way show that this is the volume function
corresponding to a convex body that minimizes G.

In order to find the PS volume function that minimizes G'(F') we use infinitesimal variational transfor-
mations of I’ that decrease the value of G. We find it convenient to define simple transformations of ¥ and
H. Define K(t) = F(t)(1 - F(t)), and Q(2) = H(1/2 —+/1 — 42/2), then Equation (3.17) can be written

in a slightly simpler form as

K (OQE (1)) dt
G(H) = K (tydt

(3.20)

The changes in G(K') for small changes in the function K can be approximated by a linear functional,

called the Fréchet derivative,®

as follows

GUE+9) = GO+ [ VGt di+ o0 (/+°o W(1)? dt) ,

where

_ Jo " K (s) ds g (K(MQK(1)) = [i™ K(s)Q(K(s)) ds g K(1)
( oK (s) d5)2

QU (1) + K(1)

V(1) (3.21)

1
O K (s) ds

J
K(t)) - G(K
T QU (1) = (K

We first consider the behavior of the sum of the first two terms in the square brackets. Denote K(¢)
by y. A direct calculation shows that Q(y) + yaa—yQ(y) is a strictly increasing function of y in the range
0 <y < 1/4, which is the range of K(¢). It is 0 for y = 0 and 1 for y = 1/4.

As 0 < G(K) < 1 the third term is in the range of the sum of the first two terms. As K() is decreasing
for positive ¢, it implies that there is some point w > 0, which is a function of K, such that for all 0 < ¢ < w,
%U)G(K(t)) > 0, and for all ¢t > w, %U)G(K(t)) < 0. The parameter w is of critical importance in the
rest of the paper, and we shall refer to it is the “pivot point”. In terms of the volume function F, for ¢t > 0,

8Details on how the Fréchet derivative is defined and calculated can be found in standard books on variational analysis,
such as [Smith, 1985].
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F increases when K decreases and vice versa. Thus if the variational function ¥(#) is non-negative for
points below the pivot point, non-positive for points above the pivot point, and f0+°° V()% dt is sufficiently
small then G(K (1) + V(1)) < 0 as desired.

It remains to show how the variation functions W(¢) can be chosen in a way that preserves the PS
properties of the volume function. We define f(¢) = dl;gt)
slice of the version space located at {. We define the function r(¢) to be “3/f(t). One of the d dimensional

bodies whose volume function gives rise to the function r is the body of revolution whose surface is created

,i.e. f(t) is the d — 1st dimensional volume of the

by revolving the function 7(¢) around the ¢ axis. For this reason r(¢) is also called the radius function of
the body. The following lemma gives an important property of the radius function of convex bodies.
Lemma 3.6.2: The radius function that corresponds to convex bodies is concave on its support set.
Proof: Let us denote by S; the convex body in R?' that is defined by the slice of the version space
located at t. Clearly, f(¢) is the volume of ;.

We define the linear combination of two bodies, A and B as:
MA+ B = {/\1@ + /\2b|(1 €A be B} ,

where A, Ay € R. An immediate result of the convexity of the version space is that for any ¢{,%3 € R,
and any 0 < A, Ay < 1 such that Ay + Ao =1

A5t + A25t, T S\t 40018, -

Using the terminology of the theory of convex bodies, we can say that the set of bodies 5%, parameterized
by t € R is a (one-parameter) concave family of bodies.?

The Brunn Minkowski theorem states that, for bodies in R™, “the n-th root of the volume of the bodies
of a linear or concave family is a concave function of the family of parameters” ([Bonnesen and Fenchel,
1987],Subsection 48). In our case, n = d — 1 and the family is a concave family of a single parameter. We

thus get the statement of the lemma as a special case of the Brunn Minkowski theorem. |

We shall use G4(r) to denote G(F') where F'is the volume function of a d dimensional body whose
radius function is . We shall show that the radius function that corresponds to a PS volume function and

minimizes G(r) is (up to a normalization factor ¢4 that does not change Gg4(r)):
r*(t) = ¢qmax(0,1— |t]) (3.22)

The revolution body that corresponds to this radius function is constructed of two equivalent cones joined
at their bases. As this is a convex body we conclude that it is the convex body that minimizes G(F'). One
can compute Gy(r*) for any fixed d by solving the integral in Equation (3.17) as follows. In this case we
find it more convenient to use the integral over the negative half of the line as defined in Equation (3.18).
The volume function in the range —1 <t < 0is Fj(t) = [*_(r*(s))*"'ds = (1+1)?/2 and it is 0 for t < 0.
Plugging this into Equation (3.18) we get

Gy - S R - SRS dr_ o VAL FyR(E)E

I L fo? P41 = F)aF

, (3.23)

°For the definition of a convex family of bodies see ([Bonnesen and Fenchel, 1987] Subsection 24).
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which can be shown by direct calculation to decrease as d — oo. Which gives the general lower bound of

GF) > Jo "L~ FYH(FYAF _ 1 7
4 f01/2(1 — F)dF 9  18log2 ~

(3.24)

And this gives the statement of the theorem.

What remains to be shown is the existence of variations that decrease G(F') for all volume functions but
F™, that preserve the PS properties of F'. As the characterization for volume functions of convex bodies
is given in terms of the radius function we describe the variations in terms of adding a variation function,
(1) to the radius function r(¢). As we are restricting ourselves to volume functions, it is enough to define
P(t) for 0 <t < 0.

Let us enumerate the requirements on the radius variation function 1(¢), and on the corresponding
volume variation function F(t) + ¥(t) = [3(r(s) + ¥(s))? "  ds.

1. We need F(]t])+ ¥(|¢|) to be a PS volume function. For this to hold we require that r(¢) 4 ¥(¢) is a

positive concave function that is nonzero only on a bounded segment [0, ¢], ¢ < oc.

2. We need to guarantee that [;° VG(¢)¥(t)dt < 0. For that to hold we require that ¥(¢) is non-positive
for all 0 € ¢t < w and non-negative for all ¢ > w. Where w is the pivot point for the volume function

F.

3. For any given € > 0 we should be able to find a radius variation function (t) such that the change
in the corresponding volume function is as small as is desired € > [;" W(#)? dt > 0.

We describe three families of variational functions. For any radius function r that corresponds to a
volume function in PS and is not equal to 7 = ¢y max(0, 1 — |{|), one of these variations applies, showing
that there exists r/(t) such that G4(r') < G4(r). The variations are constructed geometrically. Below is a
list of the constructions that should be read alongside Figure 3.4. The basic idea in all three transformations
is to “move” volume from place to place along the projection direction, in such a way that for each point ¢
in a particular range, volume is moved only from one the right of the points to their left or vice versa. It
is easy to check that each of the conditions 1-3 holds for each of those transformations. In the descriptions
below we shall refer to volume changes are caused by increasing or decreasing the radius function, note
that these are changes in the d-dimensional volume of the body whose volume function corresponds to
the radius function, and not in the two dimensional area described by the changes in the graph. The
transformations thus depend on the dimension of the actual body, however, the qualitative form of the
transformation remains the same for all dimensions. Each transformation takes a parameter A, which is a
positive number that is set small enough so that condition 3 holds.

1. If r is not linear in the range 0 < ¢ < w then transformation 1 is used (see Figure 3.4(a)):

(a) Let A be the point (w,r(w)), select a point A’ on the curve defined by r to the left of A so that
the volume decrease caused by changing the curvel® A ~ A’ to the cord A — A’ is equal \/2.

%We use A — B to denote the line segment between the points A and B, and A ~ B to denote the segment of a curve
that connects A and B. We also use the shorthand A — B —~ €' — D to denote a the concatenation of a line segment, a curve

segment, and another line segment.
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Transformation 1

Transformation 2

Tangents \

r®

Transformation 3

Figure 3.4: The variational transformations

(b) Let B be the point (0,r(0)), select a point B’ slightly above B and connect it to the (unique)
point X on the curve so that the curve B — X —~ A’ — A is concave. Choose B’ so that the
volume increase caused by changing the curve B —~ X to the line B — X is A/2.

Set Ag small enough so that this construction is possible for all 0 < A < Ag.

Note that for each point 0 <t < w, at least one of the two following conditions hold: either volume
is only removed from the right of ¢, or volume is only added to the left of {. This implies that the
volume function, F'(t), increases in this range. Because the amount of volumes that are removed and

added are equal, F(t) does not change for ¢ outside the range [0, w]. This implies that condition 2
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holds.

2. If r does not decrease linearly to zero for ¢ > w then transformation 2 is used (see Figure 3.4(a)):

(a) Select A” on the curve to the right of A so the volume decrease that is caused by changing
A~ A"to A—A"is A/2.

(b) Let C' be the point at which the curve meets the horizontal axis. Select C” slightly to the right
of €' and connect it to the point ¥ on the curve so that the curve ¢’ —Y —~ A” — A is concave.
Choose C’ so that the volume increase caused by changing ¢’ — C' =Y to C' — Y is A/2.

Set Ag small enough so that this construction is possible for all 0 < A < Ag.
An argument similar to the one used in transformation 1 holds in this case for ¢ > w.

3. If neither condition 1 nor 2 holds, and the slopes of the two linear segments are not equal (i.e. 7 # r*),
then transformation 3 is used (see Figure 3.4(b)):

(a) A point A’ slightly below A is chosen.

(b) A point B’ slightly above B is chosen so that there is no net change in the volume when changing
A—BtoA'—B.

(¢) A point C” slightly to the right of C' is chosen so that there is no net change in the volume when
changing A — C' to A’ — (C".

(d) The movement from A to A’ is chosen do that the change in the volume caused by each of the
four changesinr: B—XtoB - X, A-XtoA-— X A-Y toA -Y and C-Y toC' =Y
is equal to \/4

In this case the volume function is changed on both sides of the pivot point. Arguments similar to
the one used in transformation 1 shows that condition 2 is met.
The only PS radius functions to which none of those transformations apply is r*, thus finishing the

proof of the theorem.

3.6.2 Relaxing the uniformity constraints

In this section we show that the results of Theorem 3.6.1 can be extended to cases where the prior and
input distributions are not exactly uniform. We use the following definition
Definition 3: We say that a density D’ is within A\ of D if for every measurable set A, we have that
A< Prp(A)/Prpi(A) < 1/
Using this definition, we get the following extension of Theorem 3.6.1:
Theorem 3.6.3: The value of the functional G(F') for the parallel planes learning problem, when the

prior distribution is within Ap of uniform and the input distribution is within Ap of uniform, is at least
ApAD(1/9+ 7/(181n2)) > 0.672ALAp bits, independent of the dimension d.
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Proof:

We first prove the dependence on the uniformity of the input distribution, as measured by Ap. In
general, any distribution D that is within Ap of the uniform distribution g can be written as weighted
sum of the form Apu + (1 — Ap)v where v is some other distribution. Fix the version space and any
prior distribution, let the distribution of examples be D = Apu + (1 — Ap)v and let g, g, be the expected
information gains when the examples are generated according to p or v respectively. As g, > 0 we get
that the expected information gain when D is within Ap of uniform is at least Ap times the expected
information gain when D is uniform.

The analysis of the dependence on Ap is more involved. We go back to the analysis of an arbitrary
projection of a convex body from the proof of Theorem 3.6.1. The main idea there was to show transfor-
mations that increase or decrease the volume function in particular ranges, in a way that decreased the
expected information gain. There, the transformation involved changing the shape of the body. Here we
present a transformation that changes the density of the prior distribution inside the version space.

We fix a convex body and a direction & along which this body is projected. We denote by p() the
average density along the slice of body which is defined by the example (Z,¢). The relation between the

volume function F, and the radius function r is now

Fi = [ ) olsis.

We search for a density distribution of the points in the body, which is within Ap of the uniform distribution,
and minimizes the expected information gain from (uniformly distributed) examples whose direction is Z.
Note that the symmetrization argument used in the proof of Theorem 3.6.1 holds for this case too, and
we can thus restrict ourselves to functions r and p that are defined only over the positive reals. From the
variational derivative of F'(¢) for t > 0 that we computed in Equation (3.21), we know that G(F’) decreases
if F'(t) is increased for some ¢ < w or if F(¢) is decreased for some 0 < ¢ < w. As we allow deviations from
the uniform prior distribution we can change F without changing the form of the convex body. We shall
now give a variation of p that changes p(?) in the range 0 < ¢ < w in a way that decreases G(F’). As this
variation can be applied to any p that does not have a specific step-like form in this range, we get that
this step-like form of p achieves the minimal value of G(#') for this fixed body and P that is within Ap of
uniform. A similar argument can be used to show that p(?) must also have a stepwise form in the range
w < 1.
Assume that there exist 0 < ¢y <ty <wand €,6 > 0suchthat 0 <t —e<t1+e<tr—e<tate<w

, and such that for all ¢ € [t —€,t1 + €], p(t) < 1/Ap — ¢, and for all ¢ € [t2 — €, 12 + €], p(t) > Ap + 6. We
add to p(t) the following variation function:

+o1, ti—e<t<t e,

P(t) =< —bg, lo—e<t<ty+e,,
0, otherwise

where 67, 69 are chosen so that § > 61,65 > 0 and
i il (r(s))" s

& [Pre(p(s))ilds

tQ—E
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This insures that the volume function does not change outside the range [t; — €, 15 + €].

It is easy to check that p(t) + ¥(¢) corresponds to a density distribution that is within Ap of the
uniform distribution. Changing the density distribution from p(t) to p(t) + (t) decreases F(t) in the
range [t — €,t3 + ¢] and does not change F'(t) anywhere else. Thus this change decreases G(F'). It is also
easy to check that this variation cannot be applied to p if and only if there exists 0 < a < w such that
p(t) =1/Ap for 0 <t < a and p(t) = Ap for a < t < w. From this argument and a similar argument for
the range ¢ > w we get that the density function that minimizes G(F) must be of the form

y 1/Ap, 0<t<aorb<t,

Ap, a<t<b

where 0 < a < w < b. We do not have a simple variational argument for determining the exact value of a
and b, however, as we shall see, we can lower bound the information gain without this explicit knowledge.

We have thus found the form of the density function that minimizes the information gain for a specific
body (and a specific projections). Suppose now that we fix the function p and vary the shape of the body,
i.e. the radius function r. Going through the construction of the variational functions ¥ in the proof of
Theorem 3.6.1, we see that the same construction steps hold verbatim, although special attention needs
to meaning of the expression “the volume decrease is equal to z” as the volume is now defined in terms of
the non uniform distribution specified by p.

The combination of these two arguments shows that the smallest value of G(F) is attained for the
radius function r* specified in Equation (3.22), and the average density function p*. It remains to compute
a lower bound on G(F') based on these two facts. This is done by bounding the ratio between the values
of G(F') for the uniform prior and the non uniform prior cases.

We change the integration variable in Equation (3.19) from @ to F(z):'!

fo? F(1 - F) H(F) %dF
PP - F) d2qr

G(F) = (3.26)
When written in this form, the dependence of G/(F') on the r and p enters the equation through the
derivative da/dF. By bounding the ratio between the values that this derivative attains in the uniform
and the non-uniform cases, we can bound the ratio between the values that G/(F’) attains for the uniform
and the non-uniform prior distributions.

The volume function that corresponds to the uniform prior distribution is, for —1 < 2 <0, F,(z) =

(1+ x)d/Q. The volume function that corresponds to the prior distribution defined by p* is
AR+ 2), —1< 2 < —b,

Foonuni(2) = 5 Ap(1+2) 4, -b<z < —a, (3.27)
/\7_31(1—|—x)d—|—1—/\7§1, —a< <0

T
T

Where ¢ > 0 is defined by matching the two definitions of F(—b).

" Recall that we are considering the symmetric case, so Iy = F_ = F.
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Taking the derivatives of F .y and F,, . We get the following equation for their ratio:

Y 0< F < F(-b).
-1/d 1-1/d
(d( )n)on unif __ A’p (2%€C) ? F(_b) S F S F(_a)7 (3.28)
dz 1-1/d
TF ) i ﬂ”(#) Fl—a) < F <1/2
P2+t -1 ’ (-a)< <1/

Using the facts that Ap < 1, ¢ > 0, and d > 2 we can bound the ratio of the derivatives for each of the
three cases. For the range —1 < 2 < —b we get that

Ap < M < w <1. (3.29)

( i )
dF .
unif

For the range —b < 2 < —a we get, using the fact that F' is monotone non-decreasing, that

— _ =101 _ p\d
| < 2F(—a) < 2F(z) < 2F(-b) _ Ap (1 —10) S/\7_32 7
2F(—a)—c¢ = 2F(z)—¢ = 2F(=b)—c¢  Ap(1 —b)?
which implies that in the range —b < 2 < —a,
(i)
1< AT < A Dt <\ 2R < 22 (3.30)
(dF)uruf
Finally, for the range —a < z < 0, we get that
s _ Ap(l—a)+c 2F(—a)
AP S 1 d = -1
Ap (1 —a) 2F(—a) + A5 —
which implies that
AL < ATV < -1 < M<1 (3.31)

)
().

Combining the bounds from Equations (3.29), (3.30), and (3.31), and plugging them into Equation (3.28),

we get that
dz.
AQ < (dF)non-unif < A—Q
<
dF unif
Using this bound and Equation (3.26) we get that G(F,onunic) > ’\PG( F,ui1). This completes the proof of
the theorem. |

3.6.3 Perceptrons

Using the tools we developed in the previous sections, we can prove that QBC is an efficient query
algorithm for the perceptron concept class when the prior distribution and the distribution of examples

are both close to uniform.
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The perceptron concept class is defined as the following set of binary functions over the unit ball

1, &-@>0

. ?
0, otherwise

co(Z) { (3.32)
where @, % € R?, ||@]]z = 1 and ||Z]]z < 1. The prior distributions are within some constants from the
uniform distributions over the respective sets. As each @ is a point on the surface of a d dimensional
sphere, the initial version space is isomorphic to the unit sphere.

In this section we prove that there exists a lower bound on the information gain of the queries of QBC.
However, our proof technique requires that the initial version space is not the complete unit sphere, but is
restricted to be within a cone. In other words, there has to exist a unit vector @y such that for any @ € Vy

the dot product @ - Wy is larger than some constant o > 0.

This condition is annoying. However, it is not hard to guarantee that this condition holds by using
an initial learning phase, prior to the use of QBC, that does not use filtering but rather queries on all
the random instances supplied by Sample. Using the results of Blumer et. al. we can bound the number
of training examples that are needed to guarantee that the prediction error of an arbitrary consistent
hypothesis is small (with high probability). As the distribution of the instances is close to uniform, a small
prediction error implies that the hypothesis vector is within a small angle of the vector that corresponds

to the target concept. The details of this argument are given in the following lemma.

Lemma 3.6.4: Assume that the distribution of the instances D is within Ap from the uniform distribution
in the unit ball. Suppose m random instances are chosen according to D, labeled according to fgz,(-) and

used to find a hypothesis fz(-) that is consistent with all the labeled instances.

If

2 8d 1

-, 8d log —3) where € = Ap cos ™ (a)
0 € €

then, with probability 1 — 6 over the choice of the m random instances, 1 - Wy > a.

4
m > max (—log
€

Proof: If @ - @y < a then the angle between @ and @ is larger than cos™'(a). The examples on which
faz(@) is incorrect are those vectors in the unit ball for which ¥ - @ > 0 and & - @y < 0, or & - & < 0 and
Z -y > 0. This defines a subset of the unit ball, constructed of two wedges, whose volume is at least
cos™!(a) of the volume of the ball. As the distribution of the instances is within Ap from the uniform
distribution, the probability of this set is at least Ap cos™1(a).

On the other as the VC dimension of the d dimensional perceptron is d we can use the classical uniform
convergence bounds from [Blumer et al., 1989]. Theorem 2.1 in [Blumer et al., 1989] guarantees that a
hypothesis that is consistent with m labeled examples, chosen independently at random from an arbitrary

distribution, has error smaller than ¢ with probability 1 — é if

m > max (élog g,%log E) .
€ 0 € €

Combining these two arguments, we get the statement of the theorem. |
Assuming that an initial phase of learning from unfiltered instances is used to guarantee a bound on

the maximal angle between vectors, we get the following theorem.
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Theorem 3.6.5: For any a > 0, let C, be the d dimensional perceptron concept class as defined in
Fquation (3.32), restricted to those concepts ¢z, such that Wy - @ > a for some unit vector Wy. Let the
prior distribution over C, be within is within Ap of uniform and the input distribution be within Ap from
uniform. Then the expected information gain of the queries of QBC is larger than 0.67204551/\%/\1)
Proof: The version space for the perceptron is a region on the d-dimensional unit sphere that is bounded
by a set of great circles. We shall transform this problem into a special case of the parallel planes learning
problem defined in Section 3.6.1.

Because we assume the existence of the vector Wy we can define a one-to-one mapping of the version
space to a bounded convex subset of RY'. We can assume, without loss of generality, that @y =
{1,0,...,0}. We can also assume that ||Z]| = 1, because all instances & whose length is smaller than
1 can be mapped to #/||Z||2 without changing the label assigned to them by the concepts. The distribution

over the surface of the unit sphere that is created in this way is within Ap of uniform.

In this case the mapping of the concepts is defined by transforming the vector @ = {wy, ws, ..., wy}
that lies on the unit sphere to the d — 1 dimensional vector @' = {wy/wy, w3/wy,...,wg/wi}. The
corresponding mapping of the instances maps the instance ¥ = {xy,..., 24} that lies on the unit sphere

to the pair @ = {aq,.. -aQUd}/\/Z?:z 2?2 and t = —951//\/2?22 22. It is easy to see that the condition
that defines the perceptron @ - ¥ > 0 is equivalent to #’ - @’ > t, which is the condition that defines the
corresponding parallel-plane concept.

The condition W - Wy > « is, in this case, equivalent to wy > «. It is easy to check that the only
examples in the transformed concept space that can be labeled both 0 and 1 by some concept in C, are
those for which /3%, z? > . This implies that the increase in the volume of an infinitesimal part of the
instance space is by a factor of at most a~%. Thus as the distribution over the instances on the surface
of the unit sphere is within Ap of uniform, the distribution over the transformed instance space is within

a?\p of uniform.

To bound the distance of the prior distribution from uniform, consider the mapping of an infinitesimally
small region of the version space from the sphere to the plane. Figure 3.5 illustrates this transformation
for a two dimensional perceptron. This transformation maps the hyperspherical region to a larger region
in the hyperplane. The factor by which the volume is increased is between 1 and a~%. This can be seen
by separating the transformation into two steps. In the first step, the region on the unit hypersphere is
mapped to a region on a larger hypersphere. The radius of this larger hypersphere is at most a1, thus

(@=1) " Tn the second step, the region on the large

the increase in the volume is by a factor of at most a~
hypersphere is mapped to the hyperplane, as the region is infinitesimally small, it can be approximated by
a linear region. The increase in the volume of the region in this step is by a factor of a=!. Multiplying the
two factors we get a~¢.

As the prior distribution over the sphere is within Ap of uniform, the distribution over the hyperplane
that is generated by the mapping is within Apa? of uniform.

We thus have a special case of the parallel plane learning problem with close to uniform distributions.

Using Theorem 3.6.3, we get the result of the theorem. |
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Figure 3.5: The transformation that maps the spherical version space unto the hyperplane.
3.7 Learning using unlabeled examples and membership queries

The QBC algorithm uses unlabeled examples in order to reduce the number of labeled examples that
it needs to know. While QBC is a very simple algorithm it clearly does not manifest the only way of
using the information provided by random unlabeled examples. In this section we define a measure of the
information content of a sequence of labeled examples that is relevant directly for prediction. We show
that this measure, unlike the standard measure of information that we discuss earlier in the paper, is
directly related to the prediction error. We also show that is can be estimated directly when the learner
has access to unlabeled random examples. From our discussion in Section 3.3, we know that this measure
of information has to be sensitive to the input distribution D, as well as to the prior P.

The measure of information that we suggest is the expected entropy of the distribution of the label of
a randomly chosen example. More specifically, if V' is the version space, P the prior distribution, and D

the input distribution, then we define the label entropy of V. C C with respect to P and D as
LH(V,P, D)= Eyep (H(Prp(c(z) =1lc e V))) .

This measure of information can be interpreted as the expected information that we get from the label
of a random example, given that we already know that it is labeled by a concept from the version space V.
If the label entropy is low, then for most instances the distribution of the labels is highly biased to either 0
or 1, and thus predicting the more probable label is likely to be correct. More specifically, Haussler et. al.
([Haussler et al., to appear]) have shown that the probability that the optimal Bayes prediction is incorrect
can be upper and lower bounded by functions'?of LH(V, P, D):

H™Y(LH(V,P,D)) <
Eyep (min(Prp(e(z) = 1c € V), 1 — Prp(c(z) = 1lc € V)))
< LH(V,P,D)/2

Also, this measure of information is exactly the expected log-loss of the optimal prediction algorithm that

outputs the probability of each label.

12We define H™'(z) as the unique 0 < y < 1/2 such that H(y) = «.
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While this measure is a natural measure of the information content of a sample that is relevant for
prediction, it is not a useful guide for learning algorithms in the standard frameworks of distribution-free
learning, because it is not clear how to estimate it when the input distribution, D, is not known. In our
model the learner can make calls to the oracles Sample and Gibbs, and in this way estimate LH(V,P,D)
directly. Using this estimate, the learner can search for those queries that produce the largest expected
reduction in the label entropy of the version space. If the algorithm can find examples that reduce the
label entropy of V' by a fixed fraction at every step then we are guaranteed that the prediction error will

decrease exponentially fast in the number of queries. On the other hand, note that when QBC decreases

n n

the prediction error below e~ after n queries, then the label entropy after n queries is smaller than ne™".
Thus the queries used by QBC in such cases decrease the label entropy of V' by a fixed fraction. Thus
QBC can be seen as an algorithm that can, for some learning problems, select queries that reduce the label
entropy by a fixed fraction. While QBC is a very simple and surprisingly effective method of searching for
such queries, it seems very possible that other algorithms for finding such queries might be more general.

The definition of label entropy can be extended to the case where the target concept is randomized.
This is of special interest because we do not know how to extend QBC for such problems. In this case each
concept ¢ € C assigns a probability to each of the two labels. We shall denote the probability assigned to
the label y € 0,1 under the distribution defined by the concept ¢ and the instance x by Prc(x)(y). In this
case the regular definition of the concept space is useless, because the notion of consistency of a concept
with the data is no longer deterministic. The natural generalization of the notion of the version space to
this case is the Bayesian posterior distribution. The probability assigned to the concept ¢ after observing

the sample S = (z1,91),. .., (@n, yn) is:

Pr(c) Pr(S|c) _ Prp(c) [Tzt Pre(e(vi)
PI(S) ZCIEC PIP(C/) H?:l Prc’(xl)(yz)

and the label entropy can be defined in this case to be

Pr(c|S) =

LH(V,P,D)= Epep (H (Z Pr(c|S)Prc(x)(1)))
ceC
The relations between prediction and the information content carry on to this case. The question of finding
effective algorithm for selecting queries with high information content in this case is a very interesting open

question.

3.8 Summary

In this chapter we have proved that the Query by Committee algorithm is an efficient query algorithm
for the perceptron concept class with distributions that are close to uniform. This establishes, by rigorous
mathematical analysis, results that were found By Seung et. al. in [Seung et al., 1992] using methods from
statistical mechanics, which are only partially formalized and which consider only the high-dimensional

limit of the problem.
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We have proved that, in general, if the queries that are selected by the query by committee algorithm
have high expected information gain then the prediction error is guaranteed to decrease rapidly with the
number of queries. By proving that this is the case for the perceptron learning problem, we have achieved
our main result.

We hope that lower bounds on the expected information gain of QBC can be proven for much more
general learning problems. It seems that it would be very useful, in this context, to generalize Theorem 3.5.1
to allow cases in which the expected information gain is small to occur with some small probability.

The QBC algorithm, in its current form, does not allow for noise in the labels of the examples, and
it assumes that the hypothesis space and the concept space are equal. Finding algorithms for selecting
queries that work in this case is the next main step in this direction.

In this work we have explored some of the power of algorithms for learning using queries that have
access to random unlabeled instances and can make membership queries. This model of learning is a
natural one in contexts where unlabeled instances are much cheaper than labeled instances. An interesting
general open question is how much more powerful is this model of learning from queries from the standard

model for using membership queries in statistical learning.
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4. Unsupervised learning of distributions on binary vectors using two

layer networks

4.1 Introduction

Most of this thesis is concerned with the problem of learning mappings. The data that is supplied to
the learning algorithm in this case is a set of labeled instances. As the labels are commonly seen as being
supplied by some kind of a supervising teacher, this type of learning is often referred to as “supervised”
learning. In this chapter we consider the problem of learning distributions. In this case the data to the
learner consists just of instances. This type of learning is called “unsupervised” learning.

Suppose that we are given a large (unordered) set of binary vectors and that we wish to find the types
of correlations and redundancies that exist between the bits in these vectors. We assume that each binary
vector is of the form ¥ = {xy,...,2,} € {£1}", and that each vector is generated independently at random
according some unknown distribution on {£1}". Such an assumption is natural, for instance, when each
instance consists of (possibly noisy) measurements of n different binary attributes of a randomly selected
object. Our interest is in cases where the dimension n of the vectors is large, say n > 50. One example
of this type of scenario is when the instances are binary images of handwritten digits, where each bit
corresponds to the black or white color of a single pixel in the image. The correlations that we expect to
see in this case correspond to the fact that the values of neighboring pixels or pixels that lie along lines or
curves are strongly dependent on each other.

Knowledge of the correlations between different bits of the binary vector is useful when we want to use
a set of measurements for various classification and prediction tasks. The idea that features that are useful
for classification can be deduced from the distribution of typical inputs is the basis of several existing
algorithms for unsupervised learning. One type of algorithm selects projections of the input based on
Principle Component analysis [Sanger, 1989, Oja, 1989]. Another type of algorithm clusters data based on
an assumption that the underlying distribution is a mixture of Gaussians [Everitt and Hand, 1981, Nowlan,
1990]. The combination model presented in this paper is related to both of these lines of work and has
some advantages over each of them.

If we find a good model of the distribution, we can tackle other interesting learning problems, such as
the problem of estimating the conditional distribution on certain components of the vector & when provided
with the values for the other components (a kind of regression problem), or predicting the actual values
for certain components of ¥ based on the values of the other components (a kind of pattern completion
task). In the example of the binary images presented above, this would amount to the task of recovering
the value of a pixel whose value has been corrupted. We can often also use the distribution model to help
us in a supervised learning task. This is because it is often easier to express the mapping of an instance
to the correct label by using “features” that are correlation patterns among the bits of the instance. For
example, it is easier to describe each of the ten digits in terms of patterns such as lines and circles, rather
than in terms of the values of individual pixels, that are more likely to change between different instances

of the same digit.
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The process of learning an unknown distribution from examples is usually called density estimation or
parameter estimation in statistics, depending on the nature of the class of distributions used as models.
There has been considerable work on density/parameter estimation for distributions on real vector spaces
(see e.g. [Duda and Hart, 1973b]), and less on binary vector spaces. The most popular mainstream
statistics models for distributions on {£1}" for large n appear to be small mixtures of Bernoulli product
distributions! [Everitt and Hand, 1981, Nowlan, 1990], and models in which only k-wise dependencies
between the components of the input are allowed, for some k << n [Freeman, 1987, Cox and Snell, 1989].
Newer and more exciting models include Bayes networks [Pearl, 1988] and Markov random fields [Pearl,
1988, Geman and Geman, 1984, Geman, 1986]. In the neural network area, both Hopfield nets [Hopfield,
1982] and Boltzmann machines [Ackley et al., 1985] can be used as models of probability distributions on
{£1}" for relatively large n. We will look at a class of models defined by a special type of Boltzmann
machine.

Hopfield networks, Boltzmann machines and Markov random fields are all based on the statistical
physics concepts of energy and local interaction between units whose state is binary.? The models defined
by Hopfield networks and Boltzmann Machines are special cases of the more general Markov random field
model. The units in a Hopfield network correspond to the bits of the binary vectors and the interaction
between units are restricted to symmetric pairwise interactions. Boltzmann machines also employ only
pairwise interactions, but in addition to the units that correspond to bits of the data vectors, commonly
called the input units, there are hidden units, which correspond to unobserved binary variables. These
hidden units interact with the input units and generate correlations between the vector bits that the input
units represent. The distribution of the binary vectors generated by the Boltzmann Machine is defined
as the marginal distribution induced on the state of the input units by the Markov random field over all
units, both observed and hidden.

While the Hopfield network is relatively well understood, it is limited in the types of distributions that
it can model. On the other hand, Boltzmann machines are universal in the sense that they are powerful
enough to model any distribution (to any degree of approximation), but the mathematical analysis of their
capabilities is often intractable. Moreover, the standard learning algorithm for the Boltzmann machine,
a gradient ascent heuristic to compute the maximum likelihood estimates for the weights and thresholds,
requires repeated stochastic approximation, which results in unacceptably slow learning. Many methods
have been proposed to speed up learning in Boltzmann machines. One of these methods is the mean-field
approximation [Peterson and Anderson, 1987]. In Section 4.2.2 we shall see some relations between one of

our learning rules and the mean field approximation.

1A Bernoulli product distribution is a distribution over binary vectors in which each component is chosen independently
of the rest.

?Informally, a Markov random field consists of a set of random variables that are connected as nodes in a graph. The
distribution of each random variable is determined by the value of its neighbors. In other words, given the value of all the
neighbors of random variables, the value of the random variable is independent of the state of the rest of the random variables.
The Markov process is a special case of the Markov field in which each random variable corresponds to a specific time step and
its neighbors are the random variables that correspond to the previous and the succeeding time steps. In general, Markov-field

distributions have a canonical description that is based on the concept of interaction energy.
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In our research we have attempted to narrow the gap between Hopfield networks and Boltzmann
machines by finding a model that will be powerful enough to be universal, yet simple enough to be
analyzable and computationally efficient.? The model that we use in this work is essentially a Boltzmann
Machine whose connection graph is bipartite. There are two types of nodes: “input” nodes and “hidden”
nodes. Each input node is connected to each of the hidden nodes, and no other connections exist. We call
this model the influence combination machine, or, for short, the combination machine. We refer to the
distribution that is defined on the binary vectors by the combination machine as the combination model.
This type of Boltzmann machine was previously studied by Smolensky in his harmony theory [Rumelhart
and McClelland, 1986][Ch.6]. In his work he discusses several possible ways of using this type of model for
solving problems in Artificial Intelligence. In our work we concentrate on the mathematical properties of
the model and on efficient algorithms for learning the model from random instances.

The combination machine consists of two types of units: input units, each of which holds one component
of the input vector, and hidden units, representing hidden variables. There is a weighted connection between
each input unit and each hidden unit, and no connections between input units or between hidden units (see
Figure 4.1). The presence of the hidden units induces dependencies, or correlations, between the variables
modeled by input units. To illustrate the representational power of the combination model, consider the
distribution of people that visit a specific coffee shop on Sunday. Let each of the n input variables represent
the presence (+1) or absence (—1) of a particular person that Sunday. These random variables are clearly
not independent. For example, if Fred’s wife and daughter are there, it is more likely that Fred is there
as well, if you see three members of the golf club, you expect to see other members of the golf club, if
Bill is there, you are unlikely to see his ex-wife Brenda there, etc. This situation can be modeled by a
combination model in which each hidden variable represents the presence or absence of a social group. The
weights connecting a hidden unit and an input unit measure the tendency of the corresponding person to
be associated with the corresponding group. In this coffee shop situation, several social groups may be
present at the same time, exerting a combined influence on the distribution of customers. In Sections 4.2.3
and 4.2.4 we discuss why the combination model is better for describing this type of distributions than
popular models such as the mixture model and principal components methods.*

We show that the combination model is a universal model in the sense that any probability distribution
on {£1}" can be represented by a combination model with n input units to within any desired accuracy.
Then we show that the standard Boltzmann machine learning rule, when applied to a combination model,
can be computed in closed form, instead of using random sampling techniques. Thus we get a faster

learning algorithm than the standard Boltzmann rule that is also exact. The computational complexity of

®Recent work on modeling correlations by hidden units has also been done by Radford M. Neal [Neal, 1990]. In his work
he gives a different variant of the Boltzmann Machine algorithm that uses distribution models similar to Judea Pearl’s Bayes
Networks [Pearl, 1988, Gefner and Pearl, 1987]. His model is superior to the Boltzmann Machine in the sense that the
connection weights are interpreted as conditional probabilities, which is a more accessible interpretation than local energy
interactions. The learning algorithms that Neal used are based on stochastic approximation. The question of whether a

two-layer model of this type has universal representation capabilities is open.

*Noisy-OR gates have been introduced in the framework of Bayes Networks to allow for such combinations [Pearl, 1988].

However, using this in networks with hidden units has not been studied, to the best of our knowledge.
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the learning rule is exponential in the number of hidden units. However, under certain natural conditions
we show that there exists a good approximation that requires only polynomial time.

We then explore the relationships between the distributions generated by the combination model and
those studied in Projection Pursuit density estimation [Huber, 1985, Friedman et al., 1984, Friedman,
1987]. We show that the search for hidden variables that have a strong influence on the input distribution
can be interpreted as a search for projections of the input that have a non-Normal marginal distribution.
Based on this observation, we propose a learning algorithm based on exploratory projection pursuit for
the combination model. This method is a greedy method that adds a single hidden unit at a time to
the model. The time complexity of this method is linear in the number of hidden units compared to
the exponential complexity of the gradient based method. However, while the gradient based method is
guaranteed to converge to a local minimum in the model space, the projection pursuit method does not
have this guarantee.

We conclude this paper with results of some experiments. The first set of experiments compare the two
learning algorithms on synthetically generated data, and demonstrate their advantages and deficiencies.
The second set of experiments compare the performance of the combination model to that of the mixture

model and demonstrate the difference in the type of distribution representations that they generate.

4.2 The influence combination distribution model

4.2.1 Notation

For the most part, we use standard algebraic notation in our formulas. Elements from the n-dimensional
spaces R™ and {—1,+1}" are denoted by vectors @, 7,.... We denote by ||Z]]1,||Z]|2 the l; and I3 norms
of #, and by Z - ¥ the dot product between two vectors. We use the standard hyperbolic trigonometric
functions P - cinh ()

sinh(z) = — cosh(z) = —g tanh(z) = cosh(z)
We denote the natural base logarithm by “In”. Finally, we use the function logistic(z) = 1/(1 + exp(—z))

that is commonly used in the definition of Boltzmann Machines.

4.2.2 The Model

In this section we present the combination machine and the corresponding distribution model, which
is the influence combination distribution model. The combination machine is a simple Connectionist type
model which is a special case of the Boltzmann Machine [Ackley et al., 1985]. As we shall see, the simplicity
of this special case makes it easier to analyze than the general Boltzmann machine and allows the use of
more efficient learning algorithms. At the same time, the model is still powerful enough to approximate
any distribution of binary vectors.

To model a distribution on {+1}" we use a machine with n + m units. There are two types of units,

n input units, each of which represents a single bit in the random vector, and m hidden units, whose role
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Figure 4.1: The bipartite graph of the combination model

is the create correlation between the values of the input units. These units are connected in a bipartite
graph as illustrated in Figure (4.1).

The random variables represented by the input units each take values in {41, —1}, while the hidden
variables, represented by the hidden units, take values in {0,1}. The state of the machine is defined by
the values of these random variables. We denote by @ = (21,...,2,) € {£1}" the state of the input units,
and by h = (h1,...,hy) € {0,1}™ the state of the hidden units.

There are m(n+1) real-valued parameters associated with the machine. Each particular setting of these
parameters defines the parameter vector of the machine. Each parameter vector defines a distribution on
the states of the machine. Summing over the state of the hidden units we get a distribution on the
input units, which is the influence combination distribution defined by the particular parameter vector.
There are two variants of the combination model, which we call the binary valued and the real valued
combination machines. While we are mostly interested in the binary model, the real valued model is a

useful approximation in some cases.

The parameters are all real-valued and are defined as follows. There is a weight parameter associated
(4)
' J

unit to the jth input unit. We also use 3 to denote the vector of all n weights associated with the ¢th

with each edge in the bipartite graph. We denote by w’:"’ the weight of the edge connecting the ith hidden

hidden unit.> There is a bias parameter associated with each hidden unit. We denote the bias of the ith

hidden unit by 800 € R. The complete parameter vector of a binary combination model is denoted by

—

¢B = {(&5(1),0(1)), .. .,(w(m),H(m))}. For a given ¢pg, the energy of a state of the combination machine is
defined as

m

E(Z,hlop) = — > (3D -7+ 60 (4.1)

=1
and the probability of a state is defined to be

°In [Rumelhart and McClelland, 1986][Ch.6], binary connection weights are used, here we use real-valued weights.
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- 1 - .
Pr(Z,hl¢B) = Ee—E(x,hMB) where Zp = Ze—E(x,M(bB)‘
7,0

We find it useful to define the “combined weight” of a particular state of the hidden units as the sum of

the weight vectors corresponding to the hidden units whose state is 1:

m

B(h) =3 hiat

=1

=

Plugging the definition of the energy into the definition of Zp, we get that
Zg = Zexp (Z -7+ O(i))hi) .
=1
Expanding the sum in the exponent we get that
Zp = Z (exp(z i) Z exp(f-&f(/_i))) .
Ee{o,1}m i=1 ge{-1,41}n

Expanding the sum over ¥ € {—1,+1}", we get that

o
[
N
D
B
\GE
D‘
%
||::]z
(‘D
%

i)+ exp(— (ﬁ)j))),

where &(h); denotes the jth component of G(h). Using the definition of cosh(z), we can rewrite the last

expression as
Zp=2" Y [exp(z hdO) T cosh(a(ﬁ)j)] : (4.2)
he{oaym =1 J=1
Note that the trivial model, in which there are no hidden units, defines the uniform distribution over

the state vectors Z. In the general case the probability distribution over possible state vectors on the input

units is given by

Pr(Zop)= Y. Pr(f,ﬁ|¢3):;—B ST exp (i(a“)-me(i))hi) (4.3)

he{o,1}m he{o,1}m =1

By separating the sum over h into a sum over all & such that h,, = 0 and a sum over all & such that

hy, = 1, we can rewrite Equation (4.3) in the following form:

1 () e g(m el :
Pr(Z|¢p) = Tn (eo + P24 )) Z exp (Z (&5(2) ST 4 0(2))h¢)

{hl e —1 }E{O,l}m_l

Repeating this manipulation for all m components of h we get that

Pr(&|¢p) ——H(1+ I (4.4)
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Equation (4.4) is a simple closed form representation of the distribution defined by the parameter vector
¢p. Notice that the hidden unit variables, h;, are not explicitly present in this formula. Each factor in the
product is associated with one hidden unit in the corresponding machine. This product form is particular
to the combination model, and does not hold for general Boltzmann machines. Product form distribution
models have been used for density estimation in Projection Pursuit [Huber, 1985, Friedman et al., 1984,
Friedman, 1987]. We shall look further into this relationship in Section 4.3.3.

In some of the following discussion we shall find it useful to use a variant of the combination model that
defines distributions over the whole real space R", i.e. to allow each input to have any real-value instead
of limiting it to only +1 and -1. The structure of the machine is the same, we keep the hidden variables
{0, 1}-valued, and the distribution is defined in a similar way, but the energy function has an extra term
that is necessary for ensuring that the distribution can be normalized. This term corresponds to each input
unit having a connection of strength —1 to itself. To differentiate between the binary and the real-valued
models we subscript quantities relating to the real-valued model by R. The energy of a particular state of

the real-valued model is given by

- ks L . 1. .
E(Z.hlér) = ~ (Z(m 7+ 0“))1@2») + 511213, (4.5)
=1
which produces the following distribution over the R™:
. - EERTPIEN 274000

_ _ z wWi-£46

PT($|¢R)—4 > Pr(#hlog) = ezl ”2Z—RH(1+€ )7 (4.6)

he{oJ}m =1

where

ZR:/ S exp (- E(#Flon)) d (4.7)

R™
he{0,1}m

1 i .
> /exp(——||f||§—|—Z(1Ui-f—|—0(2))hi)df
Rn 2 =1

Re{o1}m

m A TR

=) 3 e [Z hi6') + 5||@(h)||§] , (4.8)
Fe{o,1}m =1

using the integral of the Gaussian distribution.

We discuss the relation between the real-valued and the binary-valued model in Section 4.2.6.

4.2.3 Discussion of the model

The right hand side of Equation (4.4) has a simple intuitive interpretation. The ¢th factor in the product
corresponds to the hidden variable h; and is an increasing function of the dot product between # and the
weight vector of the ¢th hidden unit. Hence an input vector & will tend to have large probability when it is
in the direction of one of the weight vectors @i (i.e. when @i - 7 is large), and small probability otherwise.
This is the way that the hidden variables can be seen to exert their "influence”; each corresponds to a

preferred or "prototypical” direction in space. The bias parameter (), together with the length |||
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of the weight vector, control the strength of the influence of the ith hidden variable in comparison with
the other hidden variables, as well as its “width”, i.e. how close in direction ¥ has to be to @t before it
significantly influences its probability. Increasing either |[ii|| or () increases the strength of the influence
of the hidden unit. Decreasing 8() and, at the same time, increasing ||@i||2, decreases the “width” of the
influence, making the influence of the ¢th hidden unit more restricted to input vectors whose direction is
very close to the direction of @i. This is true for both the binary-valued and the real-valued combination
models.

Equation (4.3) shows that the combination model can be written as a mixture of 2™ distributions of
the form 1 .

0 exp (;(W) T+ 0“))/%) :
where I € {0,1}" and Z(/_”;) is the appropriate normalization factor. Each of these distributions is a product
of n Bernoulli distribution, i.e. the z; is drawn independently at random and attains a value of —1 or 41
with probabilities logistic(—23(h);) and logistic(+23(h);) respectively, which implies that the mean of ;
in according to this distribution is tanh(G(h);). We shall refer to this type of distribution as a “Bernoulli
product distribution”. The combination model is a mixture of 2™ Bernoulli product distributions, each
corresponding to a setting of h and each having a mixture coefficient Z(/_”;)

It is interesting to compare the class of combination models to the standard class of models defined
by a mixture of Bernoulli product distributions. The same bipartite graph described in Figure (4.1) can
be used to define a standard mixture model. Assign each of the m hidden units a weight vector @ and a
probability p; such that >, p; = 1. To generate an example, choose one of the hidden units according to

the distribution defined by the p;’s, and then choose the vector # according to P;(%) = , Where Z;

1wz
Zie

is the appropriate normalization factor so that > zc(yqyn P;(7) = 1. We thus get the distribution

P(7) = f: Di gwic# (4.9)

This form for presenting the standard mixture model emphasizes the similarity between this model and
the combination model. A vector ¥ will have large probability if the dot product @: - ¥ is large for some
1 < ¢ < m (solong as p; is not too small). However, unlike the standard mixture model, the combination
model allows more than one hidden variable to be +1 for any generated example. This means that several
hidden influences can combine in the generation of a single example, because several hidden variables can
be 4+1 at the same time.

To see why this is useful, consider two examples. First, consider the coffee shop example given in
the introduction. At any moment of time it is reasonable to find several social groups of people sitting
in the shop. The combination model will have a natural representation for this situation, while in order
for the standard mixture model to describe it accurately, a hidden variable has to be assigned to each
combination of social groups that is likely to be found in the shop at the same time. Similarly, when we
want to represent the distribution of binary images of digits, it is reasonable to assume that each specific
image contains several patterns, such as lines and curves. Of course, the whole digit can be perceived as

a pattern, in which case the mixture model is the relevant distribution model. However, we claim that
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it is often more appropriate to represent each digit image as a combination of patterns rather than a
single pattern. In other words, we claim that, for typical sets of images of digits, the maximal likelihood
combination model will have larger likelihood than a mixture model with the same number of parameters.
In Section 4.4 we give experimental evidence to support this claim. In cases where this claim is correct
the combination model is exponentially more succinct than the standard mixture model, and naturally
captures the underlying product structure of the distribution. Of course, if the space of hidden variables
does not have a product structure of this type, then the combination model is no better than the standard
mixture model.

In analogy with the binary combination model, the real-valued combination model can be shown to
represent a mixture of 2™ symmetric Gaussian distributions. From Equation (4.6) we get that for the
empty case, m = 0, where there are no hidden variables present, the distribution is a symmetric Gaussian

by definition. When a single hidden variable is present, the distribution becomes
12112 1 .2 1 1 12112 12112 =17 1
7 — 2l = a0 _ 2 (-5l -3 1ZB+T1-2+6) _
Pr(Z|¢pr) = €72 2Z(1—|—e )_Z(ez 2 e 2172 )_

1 (=3B 4 == TSm0
7

This is a mixture of two Gaussians, both of which have spherical symmetry. They differ only in the location
of the mean, which is 0 for the first component and @1 for the second component, and in their relative
probabilities (mixture weights). Each additional hidden unit has the effect of transforming the previous
distribution into a mixture of two distributions, one is the previous distribution, and the other is the

original distribution shifted by @i (See Figure 4.2).

Figure 4.2: The distribution over R* generated by a (real valued) combination model with
three hidden units. Iach pair of concentric circles denotes a single Gaussian distribution. The

distribution defined by the combination model is a mixture of these eight Gaussians.
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In the general case the combination model with m hidden units is equivalent to a mixture of 2™
Gaussians whose expected values are located at the combined weight, &5(/_{), corresponding to each of the
2™ possible states of 5.6 This interpretation of the real-valued model will be used in Section (4.3.6)in a

Projection Pursuit algorithm for learning the combination model.

4.2.4 Comparison with principal components analysis

Principal Component Analysis (PCA) is a popular method for the analysis of high order correlations
(see e.g. [Jolliffe, 1986]). Many algorithms for unsupervised learning are based on this method, among them
some learning rules for neural networks [Sanger, 1989, Oja, 1989]. The method is based on the covariance
matrix, which measures pairwise correlations among input bits. The main assumption underlying the
method is that the low dimension projections of the data that retain the largest amount of information are
those projections that have the largest variance. One justification of this assumption is that if the data
has a simple enough distribution such as a Gaussian distribution then the reconstruction of the original
input from its projections is optimal for this choice of projections. The directions with largest variance are
equal to the directions of the eigenvectors of the covariance matrix that have the largest eigenvalues.

The neural network implementation of PCA is usually a two layer network with the same architecture
as the combination model. The learning rule, however, is different, and tries to make the weight vectors
of the hidden units equal to eigenvectors of the covariance matrix of the input. The outputs of the hidden
units are thus projections of the data (or a nonlinear transformation of such projections).

This type of network is capable of representing each input as a combination of correlation patterns. In
this sense it is as powerful as the combination model and does not suffer from the deficiencies of mixture
models described in the previous section. However, as this method of analysis is based only on the second
order correlations among pixels it necessarily ignores part of the structure of the distribution. In the
combination model, on the other hand, each hidden unit can represent correlations of arbitrary order. We
claim that some natural distributions have strong high order correlation and that taking into account only
the second order correlations ignores some of the most important information available in the distribution.

In Section 4.4 we shall give some experimental evidence to support this claim.

4.2.5 Universality of the model

Despite its limited connectivity, it is not hard to show that the class of binary combination models is
universal in the sense that for every n and every distribution on {£1}" there is a combination model with
n input units that approximates that distribution to within any desired accuracy. The argument is similar
to an argument for the same claim regarding the class of mixtures of Bernoulli product distributions.

Assume first that the distribution we want to estimate is Pr(Z) = p for ¥ = (1,1,...,1) and Pr(¥) =

=2 for ¥ # (1,1,...,1). Here we need only one hidden unit. We define ¢ = p(Qi;l) and choose

P T
s = (a,a,...,a) and 6 = —na + In(q — 1), where @ = LIn(g — 1) + LIn(1/€). We get the following

values for f(Z):=1+ I 6D

SCompare this to the mixture of Bernoulli products whose expected values are tanh(&i(ﬁ)). A more detailed comparison of

the two models will be given in Section 4.2.6.
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If Z =(4+1,+1,...,41), then f(Z) is equal to ¢. For a vector where exactly one component is equal
to —1 and all the rest are +1, f(¥) is equal to 1 + ¢, and for a vector & which has k£ components that are
equal to —1, () is equal to 1 + (¢ — 1)(¢/(qg — 1))* < 1 4 €. By setting ¢ small enough we can make
1+ 6(3(1).54.9(1) arbitrarily close to 1 for all ¥ # & = (+1,+1,...,41). Normalizing the distribution to sum
to 1 we can get a distribution that is arbitrarily close to the desired distribution.

To approximate an arbitrary distribution, we multiply 2" factors, each approximating a distribution
that is highly concentrated on a single setting of ¥ and almost uniform on all other settings. By appropriate
choice of the parameters we can approximate the arbitrary distribution closely for each value of . Of course
this requires exponentially many hidden units, but this is unavoidable since it requires an exponential
number of parameters to specify an arbitrary distribution over {£1}" in any reasonable parametric model.

Of course, we are interested in cases where the distribution of the data can be represented well by
a small combination model. While a general distribution might require many hidden units to model it,
distributions that are encountered in nature are often simple, and can be modeled well by a model that has
only a small number of hidden units. In Section 4.4 we show that the distribution of images of handwritten

digits can be approximated well by a combination model with few hidden units.

4.2.6 Relations between the binary-valued and the real-valued models

Two variants of the combination model were introduced in Section 4.2.2, the binary-valued model
(Equations (4.1) to (4.4)) and the real-valued model (Equations (4.5) to (4.8)). The binary-valued model
is the natural model for representing distributions of binary vectors, and thus, ideally, we would like to
use only this model. On the other hand, the real-valued model has properties that make it possible to
use more efficient learning algorithms to learn it. As we show in this section, the real-valued model is an
approximation of the binary model when the weights are all small. Thus we can use the algorithms for the
real-valued model to find an approximate parameter vector of the binary model.

The real-valued model defines a density function, in contrast with the binary model, which defines a
point mass distribution. However, the ratio between the densities assigned by a real-valued model to any
pair of points in {—1,+1}" is equal to the ratio of the probabilities assigned to the same points by a binary
model with the same parameters. This is because the factor of e~ 311 in the density function is equal to
e~™2 for all vectors in {—1,+1}".

This does not mean that the maximum-likelihood parameter vector for a given set of examples is equal
for both models. This is because the normalization factors Zg and Zp are different for each of the two
cases. However, as we shall now see, when the weight vectors & are small the normalization factors are
very close to each other.

Recall Equation (4.2):

Zp =2" Z exp (i hzﬂ(i)) ﬁ cosh (&f(ﬁ)])
=1 7=1

Re{o,1}m

The Taylor expansion of cosh(z) around z = 0 is:
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2 $4 $6

cosh(w):l—l—%—l—ﬁ—l—a—l—...
(4

thus the first order approximation of Zp for small values of w; " is:

S lexp (é hﬁ(i)) ﬁ (1 + % (Q(ﬁ)j)Z)]

hefo,1}m J=1

On the other hand, note that Equation (4.8) can also be written as:

m ) n 1/ - 9

Zp = (27r)n/2 Z lexp (Z hie(l)) H exp (5 (w( )]) )] ,
Ee{o,l}m =1 7=1

The Taylor expansion of exp(z) around z = 0 is

2?23

exp(w):l—l—x—l—g—l—?—l—...
(@) -

thus the first order approximation of Zp for small values of w;” is:

Zp ~ (27)"? Z [exp (i hzﬂ(i)) ﬁ (1 + L ("(ﬁ))Z)] R (z)nﬂ 7B .
he{oaym =1 J=1 2 : 2

The fact that the two models differ by a constant factor is of no consequence when looking for the maximal-

likelihood parameter vector, because this constant factor disappears in the derivative of the log of the

likelihood.

The difference between the two approximations is of the order of [|G(R)||3. Thus if ||3(%)||; is much
smaller than 1 the approximation is reasonable.

There is another way in which the two models can be compared. In Section 4.2.3 we have shown that
both the real-valued and the binary-valued combination models are equivalent to mixture models. The
real-valued model is equal to a mixture of 2™ Gaussian distributions. Each mixture component corresponds
to a setting of h and has an expected value of &5(/_{) Similarly, the binary-valued combination model is

equivalent to a mixture of 27" Bernoulli product distributions, each of which has an expected value of

— — — —

tanh(@(h)). When &(h) is small tanh(&(h)) =~ S(h).

It is easy to show that every one dimensional projection of a Gaussian distribution generates a Normal
marginal distribution. Thus the marginal distribution that is generated by the real-valued combination
model is a mixture of normal distributions. Diaconis and Friedman [Diaconis and Freedman, 1984] have
shown that, in some sense, most “well-behaved” distributions generate a marginal distribution that is close
to normal when projected on a randomly chosen direction. In particular, the uniform distribution on
the 2™ binary vectors in {—1,+1}" generates, with very high probability, a marginal distribution that is
close to the normal distribution, when the projection direction is chosen uniformly at random from the n
dimensional sphere, and n is large. In Appendix B, we show that this is also true for Bernoulli product
distributions, if the distributions of the individual coordinates are not too biased. Thus, under reasonable
assumptions, the marginal distribution that is generated by the binary valued combination model is also

mixture of normal distributions.
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In addition, if the weight vectors, @i, are short, then the mixture coefficients and the means of the
mixture components of the two models are close, which implies that the projections of the distributions
defined by the real-valued model and the binary valued model with the same parameters are very close to
each other. We use this correspondence in our analysis of the projection pursuit learning methods, which

are based on properties of projections of the data.

4.3 Learning the model from examples

4.3.1 Learning by gradient ascent on the log-likelihood

We now suppose that we are given a sample consisting of a set S of vectors in {£1}" drawn indepen-
dently at random from some unknown distribution. Our goal is to use the sample S to find a good model
for this unknown distribution using a combination model with m hidden units, if possible. The method
we investigate here is the method of maximum likelihood estimation using gradient ascent. The goal of
learning is reduced to finding the set of parameters for the combination model that maximizes the (log of
the) probability of the set of examples 5. In fact, this gives the standard learning algorithm for general
Boltzmann machines [Ackley et al., 1985]. For a general Boltzmann machine this would require stochastic
estimation of the parameters. As stochastic estimation is very time-consuming, the result is that learning
is very slow. In this section we show that stochastic estimation need not be used for the combination

model.

From Equation (4.4), the log of the likelihood of a sample of input vectors
S ={zW 7@ . 70 given a particular setting ¢p = {(3M),001), ... (30", 00"))} of the parame-

ters of the model is:

log-likelihood (¢p) = Z In Pr(Z|¢B) = i (Z In(1+ e‘r’(i)'f"'e(i))) —NInZp. (4.10)
zZes =1 \ZeS
Taking the gradient of the log-likelihood results in the following formulas. For the bias parameters we
get:
O Joglikelihood(¢) = Y N T P (#165) 1 — L (4.11)
EYI0) LT @O FH) . (@ Ze0)
and for the jth component of G
8( )log likelihood (¢p) = Z Zh 1() o)) - N Z Pr(Z |¢B)x] - 411. —— (4.12)
8w] i (&) 2400 ez 14+e (@) .246(2))

The purpose of the clamped and unclamped phases (also called action and sleep phases) in the
Boltzmann machine learning algorithm is to approximate these two expressions. The first term in each
expression corresponds to the clamped phase, and the second one to the unclamped, or sleep phase. In
general Boltzmann Machines, this estimation is performed using stochastic methods. However, here the

clamped term is easy to calculate, it requires summing a logistic type function over all training examples.
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The same term is obtained by making the mean field approximation for the clamped phase in the general
algorithm [Peterson and Anderson, 1987], which is exact in this case. It is more difficult to compute the
sleep phase term, as it is an explicit sum over the entire input space, and within each term of this sum
there is an implicit sum over the entire space of states of hidden units in the factor Pr(Z|¢p). However,
again taking advantage of the special structure of the combination model, we can reduce this sleep phase

gradient term to a sum only over the states of the hidden units. Recall Equation (4.2):

Zg =2" Z exp( Zh@ Hcosh

he{o,1ym
A similar derivation gives that
exp (3 iy hie(i)) H?—l cosh(&(h ) )
Yhetonym [XP(ZEy E0O) Tz cosh(a(71);)

The second term of the derivative w.r.t. 8) is /06 In Zg = (800 Zg)/Zp. As 8) appears only once
in Zp, we get that:

Pr(h|¢g) = (4.13)

1 R
1 4 e~ (@0-+600) - N Z Pr(h|ép)hi - (4.14)
zes Fe{o,}m

0 -
mlog—hkehhood((b]g) = Z

Similarly, for each component of @i, we use the fact that d cosh(t)/dt = tanh(?), to get that

0 1 -
w()log likelihood (¢) = Za@] oy~ N S° Pr(hl¢p)h; tanh(3B(h);) (4.15)

J Fes Re{o,1}m

The formulas for the gradients of the log likelihood for the real-valued model are very similar. A

derivation similar to the one used to derive Equation (4.13), gives us that, for the real-valued model

exp(Sor; hif + 1||3(R)]13)

Pr(h|oR) = (4.16)
Sheqonym [P B0 + LIS
Using this equation we get that
0 - 1 .
mlog—hkehhood(qﬁg) = Z 1+ e @D ze0) N ) > Pr(hl¢r)h (4.17)
Zes hE{O,l}m
and for each j
0 - o
G )log likelihood (¢r) = Z i e w( Y ETE) T N ) Z Pr(h|or)hi@(h); (4.18)
J res Re{oa}m

Equations (4.14-4.13) are very similar to Equations (4.17-4.16). The differences are in the partial
derivative of the normalization factors, Zp and Zg, with respect to the weight vectors. Note that the
equations for the real-valued model are simpler. As was discussed in Section (4.2.6), the normalization
factors for the real and binary models are very close to each other when the weight vectors @i have small
I norm. Thus although the equations for the maximal likelihood solutions differ, the solution of the

real-valued model are approximate solutions for the binary model and vice versa.
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The time required to compute Equations (4.14) and (4.15), (or Equations (4.17) and (4.18) is O(]S|n +
2™). Thus, if m is small compared with the size of the sample S, then the computation time is linear in
the number of training example and in the size of the input vector, which is reasonable. However, for large
m it might not be possible to compute all 2" terms. There is a way to avoid this exponential explosion
if we can assume that a small number of terms dominate the sums. If, for instance, we assume that the
probability that more than & hidden units are active (+1) at the same time is negligibly small we can get
a good approximation by computing only O(mk) terms. In the extreme case where we assume that only
one hidden unit is active at a time (i.e. k£ = 1), the combination model essentially reduces to the standard
mixture model as discussed is Section 4.2.3. For larger k, this type of assumption provides a middle ground
between the generality of the combination model and the simplicity of the mixture model. In the next

section we show how the gradient of the real-valued model can be approximated when m is large.

4.3.2 Approximating the gradient

One possible approach to estimating the gradient when m is large is to search for the larger terms
in Equations (4.17,4.18) and ignore the smaller ones. We now show that in the case of the real-valued
model the problem of locating the large terms is equivalent to a simple geometric problem. Although this
problem is NP-hard in the general case it might typically be easy in the cases that we encounter in real

life problems.

Recall Equation (4.16)

eXP(Z?Q hie(i) + %H Z?il hﬂm”%)
Y reqonyn XDy MO0 + 31 2 il [3)]

Pr(hlor) =

We would like to estimate which of the vectors h correspond large terms. i.e. we would like to find all h

—

such that g(h) = 72, b0 + 1| 52, b |2 is large. Define the following matrix notation. We use 7 to

denote a column vector and Z7 to denote its transpose, i.e. a row vector. We define

(1)
(2)

Using this notation we define g(h) as
> _ 7 oz Lizrane
oy = -0+ JJIETOl:
and rewrite Equation (4.16) as

exp(g(h))

Pr(h|¢r) = = .
Rie{o,1}m exp(g(h'))
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Rearranging g(/_”;) we get
R T 1 .
o) = LT + 67 (@070l - LA (00T)

assuming that Q07 is not singular.

The second term is a constant and is eliminated by the normalization. We can therefore ignore it. The
first term corresponds to the distance between a sum of a subset of the weight vectors and the fixed vector
67 (Q0T)~1Q. The problem of finding the settings of & for which g(k) is largest translates to the problem
of finding a subset of a given set of vectors which is furthest away (in the regular Euclidean distance) from
a given fixed vector.

It is not clear how hard this computation problem is in the general case. If the vectors are orthogonal
then the problem is easy. In this case the set of all 2" vector combinations defines the corners of a
rectangular box. If the dot product, ¥ - @i, is equal to ||@i||2/2 for all ¢, then ¥ is in the center of the box.
Any deviation from equality for a particular index ¢ determines whether the vector corresponding vector,
Wi, is in the subset whose sum is furthest from Z. In general, one of the closest subset-sums is equal to
l_{TQ, where each coordinate of & is defined by:

{ 1 if @i 7 < @il
hi =

0 otherwise

A promising direction for further research is to find methods that can solve this problem efficiently in
the general case. Such methods would compute an approximation to the gradient by computing only the

largest terms in the sum that defines it.

4.3.3 Projection Pursuit methods

A statistical method that has a close relationship with the combination model is the Projection Pursuit
(PP) technique [Huber, 1985, Friedman et al., 1984, Friedman, 1987]. In this section we give a short
overview of the technique, show how it relates to the combination model, and present a learning algorithm
for the combination model based on Projection Pursuit methods. This algorithm is a greedy algorithm
that generates the hidden units one by one. It avoids the exponential blowup of the standard gradient
ascent technique, and also has that advantage that the number m of hidden units is estimated from the

sample as well, rather than being specified in advance.

4.3.4 Overview of Projection Pursuit

Many methods for analyzing high dimensional data study the first and second order statistics of the
data, which are the mean vector and the covariance matrix. Principal components analysis is an example
of such a method. Such methods necessarily ignore the structure of the distribution that is not reflected
in the first and second order statistics, which may be an important part. Projection Pursuit methods can

sometimes find this important high-order structure.
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The distribution model over R™ with the largest entropy for a given average and covariance is a Gaussian
distribution. Thus one natural definition of the information ignored by the second order analysis is the
deviation of the empirical distribution from the Gaussian distribution. Low order linear projections have
been traditionally used by researchers in their efforts to understand high dimensional distributions. As all
projections of a Gaussian distribution produce a Normal marginal distribution. Thus, if a projection of
a distribution generates a marginal distribution that is very different from the normal distribution, this
is an indication that the projection contains information about the distribution that does not exist in
its covariance matrix. Such a projection may be called an “interesting” projection. There are various
“projection indices” defined in the PP literature to measure how interesting a particular projection is,
and many of these indices relate directly to the deviation of the marginal distribution from a Normal
distribution. Projection Pursuit methods locate the low dimensional projections in which the projection
index is largest, i.e. those projections that are most interesting.

Originally, PP was used to suggest projection directions as an aid for the manual exploration of high
dimensional data via two or three dimensional projections. Later PP became a complete method for
statistical data analysis, using repeated search for interesting projections to generate n-dimensional density
estimations. The search for a description of the distribution of a sample in terms of its projections can be
formalized in the context of maximal likelihood density estimation in the following way [Friedman, 1987].
Define po(&) to be the initial estimate of the density over R", i.e. the Gaussian density with appropriate
mean and covariance. Define G to be a family of functions from R to R and A to be the set of vectors of
length 1, i.e. A={d € R"|||d||z = 1}. Using these we define the nth order projection estimates to be the

following set of densities

PP = {%po(f)g gi(@V-z) | aVea; geq Z= /R ) po(f)g gi(@ f)df} (4.19)
The log-likelihood of a specific density p € PP, with respect to a sample
5 ={zW, 7@, . #MN)} where ) € R" is defined, in the standard way, to be
LL(p|§) = Inp(F) .
Zes

The goal of Projection Pursuit is to find a series of approximations:
p1 € PPy, p2 € PPa,...pm € PP, that have maximally increasing log-likelihood. The first approxima-
tion, po, is the Gaussian density itself, and the (i 4+ 1)-st approximation is generated by adding a factor
gi(d'(i)) - Z) to the ¢th approximation. The vector @ is called the ith projection of the data.

The projection index is a function of @% that is a heuristic measure of the anticipated contribution of
a factor involving the projection @® to the likelihood of the model. Given a choice of &%), the optimal
choice of the function g¢;(-) in terms of maximizing the likelihood is the following [Friedman et al., 1984].

Define pf(i)(t) to be the marginal density on R generated by projecting the density p; on the direction &),
Similarly define ﬁ&(l)(t) to be an approximation to the marginal density generated by projecting the true
density on the direction &(¥), estimated empirically using the sample 5.7 Then the optimal choice for gi(+),

in terms of maximizing the likelihood of the model, is

"Note that the marginal density is a one dimensional function, thus the number of samples needed for estimating it
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~3()
P (1)
gi(t) = 61

()

As the optimal choice of g¢;(-), for a given choice of @ is simple to calculate. The main problem of

(4.20)

designing a projection pursuit method is finding a good projection index whose calculation can be performed
efficiently. Various projection indices have been discussed in the literature [Huber, 1985, Friedman, 1987].
Selection of a direction that has a high projection index is usually performed using gradient following
methods. After a local maximum of the projection index has been found, the index function is altered to
prevent the search from finding the same direction again, and a search for a direction with a high projection
index is started from a different starting point.

The search for new projection directions can be simplified if instead of altering the projection index
function, the sample is altered in a way that previously found interesting projections (0_2(1), a?, .. .,&(i_l))
are made to appear uninteresting, i.e. Normally distributed. So called “structure removal” methods have
been devised towards this goal [Huber, 1985, Friedman, 1987]. These methods alter the sample in such a
way that a specific single projection that has been interesting is made uninteresting while all orthogonal
projections are left unchanged. Put in another way, suppose that some density p € PPF,, has high likelihood
with respect to a given sample, and that one of the factorsin p is gl(o_Z(l) -&). Then removing the structure
corresponding to gl(o_Z(l) -Z) means transforming the sample into a sample for which p(f)/gl(d'(l) -Z), which
is a model in PP,,_1, has high likelihood.

To summarize, most iterative projection pursuit methods share the following common structure:

¢ Initialization

Set Sp to be the input sample.
Set po to be the initial density (Gaussian).
e Tteration
Repeat the following steps for ¢ = 1,2 ... until all projections of 5; are almost Normal.
1. Find a direction & for which the projection index of the projection of S;_; is maximized.
2. Approximate the actual marginal density in the direction a0 by finding a close fit to the density
of the projection of the sample S;_1. Set ¢;(-) to be the ratio between this approximation and
the marginal density produced on & by p;_1, using Equation (4.20).
3. Set S; to be S;_1 with the structure defined by the factor gi(o_Z(i) - Z) removed. This makes the
projection of S; on @) uninteresting, and all of the orthogonal projections remain equal to that
of 5;_1.
4. Set pi(7) to be pi_1(F)gs(@D - 7).
Notice that in this method the functions g; are chosen in such a way that the product [, ¢:(@® - 7)
is normalized for each m and there is no need for an additional normalization term Z, as appears in the
definition of PP, in Equation (4.19).

is relatively small. In this way projection pursuit avoids, to some degree, the infamous “curse of dimensionality” in the

estimation of the distribution of high dimensional data.
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Projection Pursuit has proved itself successful in some experiments [Friedman, 1987]. However, the
search for best density is performed in a greedy manner and might not succeed in finding the optimal
density in PP,,. While there is quite a large body of research on the representational power of projection
pursuit models, little is theoretically known about reliability of the associated learning algorithms, such as

the one presented above.

4.3.5 Projection Pursuit and the combination model

Recall Equation (4.6), which describes the density generated by the real-valued combination model:
PR ETTIENE » FOp e
p(Z)=e"2 7 g ( t+e ) .

Using the following definitions we see that this class of models is a special case of the class of models

presented in Equation (4.19).
pol@) = (2m) 727 2IIE = Nr(0, 1)

{2
1 . .
G = {g tR—R | g(t)= 7 (1 + 69""“'“”2) VS R}

It is clear that, under these definitions, p(Z) is a function in PP,,. In the next section we present a greedy
algorithm for learning the combination model that is based on this relation.

A similar relationship holds for the binary model. However, we have not managed to find a good
structure removal procedure for the binary-valued model. We thus present an algorithm for learning the
real-valued model and, based on the relations given in Section 4.2.6, we claim that the solutions that we
find for the real-valued model are approximate solutions for the binary-valued model.

There are two main differences between our work and previous work on using exploratory projection
pursuit algorithms for estimating distributions. The first difference is that while our model defines a
distribution on all R", our data-points are taken from {—1,+1}". However, as discussed at the end of
Section 4.2.6, the projections of the binary vectors generate marginal distributions that are close to Normal,
similarly to the distributions we expect from real-valued data.

The second difference is that the family of functions G from which the ¢;s are taken is a very restricted
set of functions. This is unlike standard PP techniques, in which the functions ¢; are chosen from some
very broad family, such as some family of spline functions. This means that, in our case, any single
function g € G might be far from adequate for describing the marginal distribution on some direction
@ and several factors with the same @ might be needed. This, in turn, has the effect that eliminating
the structure generated by a single factor does not amount to transforming the marginal distribution on
the corresponding projection so that it becomes completely uninteresting. As most structure elimination

techniques do exactly that, they are unfit in the context of learning the combination model.
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4.3.6 PP algorithm for learning the combination model

In this section we present a variant of PP that is a learning algorithm for the combination model.
Our algorithm combines the search for an interesting projection direction, &, with the search for the
corresponding projection function, ¢(-). The algorithm searches for the optimal factor by maximizing the
likelihood of a single factor model with respect to the (possibly altered) sample. After such a factor is found,
the algorithm alters the examples in such a way that the structure encoded in the factor is eliminated, and

subsequent searches will find different factors.

The algorithm is thus based on two elements. The first element is a method for finding a maximal
likelihood combination model with a single hidden unit. This method serves both for finding a projection
direction, and for finding the function g;(-) associated with this direction. The second element is a structure
removal procedure. We shall describe the two elements in turn.

We have previously described how gradient ascent can be used for finding model with highest log-
likelihood. However, for the special case where there is only a single hidden unit in the model, a much
faster method can be used. This method is an Expectation-Maximization (EM) method [Dempster et
al., 1977]. EM is a general method for estimating the parameters of distribution models that have both
observable and unobservable random variables. This method achieves extremely fast convergence when

used for estimating a mixture of product distributions.®

The Expectation Maximization method is based on iterative improvement of the estimates of the
maximal likelihood values of the model parameters. It starts with some initial guess of the parameters
®init» and proceeds by iterating the following two steps. It can be shown [Dempster et al., 1977], that each
of these iterations improves the likelihood of the parameters.

1. Using the old setting of the parameters, ¢, as if they were the actual parameters, some statistics

of the joint distribution of the hidden and the observable variables are calculated.

2. The old setting of the parameters, ¢4, is replaced with a new setting of the parameters ¢new,
which is the most likely setting of the parameters given the values of the statistics calculated in step

1. These new parameters are used as the old parameters in the following iteration.
To see how this method is implemented for the problem of estimating the parameters of a real-
valued combination model with a single hidden unit let us calculate the maximal likelihood setting of
the parameters assuming that we are given a sample S’, of size N, in which each element describes the

value of both the observable random variables, ¥, and the unobservable random variable h. The log

likelihood is
exp (h(0 + & - 7))

ZR

LL8,3|S) = 3 WmP@Eh63)= Y I
(h,Z)€S’ (h,&)eS’

= % mo+sm - N (14 e (0+5191E))
(h,@)ES!

8]t is not easy to implement EM directly on the complete combination model, because although this distribution can be

expressed as a mixture of product distributions, the parameters that define the mixture components are coupled.
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Taking the derivative of the log-likelihood with respect to the parameters and equating to zero to find the

optimal setting of the parameters, we get the following equations. From the derivative w.r.t. § we get that
o L. 2
Z h = N logistic | 6opt + §||wopt||2 ) (4.21)
(h,7)€S
and from the gradient w.r.t. & we get that
. - o 12 2

Z hi = Gopt IV logistic | Ogpt + §||wopt||2 (4.22)
(h,7)€S

Notice that if we divide the sums on the left hand side of Equations (4.21) and (4.22) by N, we get the
definition of the empirical estimates of E(h) and of E(hZ), which we shall denote by E(h) and E(hZ).
Solving Equations (4.21) and (4.22) for the values of the optimal parameters, we get that:

. E(hT)
“opt = E—(h) . (4.23)
and
1—Eh) 1,
opt = —In “Ehy §||Wopt||§ : (4.24)

We thus see that the statistics that we need to estimate in the first step of the EM iteration are E(h) and
E(h) These statistics can be directly calculated from the sample S’, as this sample includes both & and
h. However, given a setting of the parameters, we can compute the distribution of & for any setting of &,
and thus calculate the desired statistics.

The implementation of the EM method for the combination model with a single hidden unit is thus
as follows. We start with an initial setting of the parameters: (i1, 0ip5¢) and proceeds by iterating the
following two steps on the given sample S = (&1, Z2,...,ZN)

L. In the Expectation calculation step the current parameters (Jy)q,0,1q) are used as if they describe
the correct input distribution. Given this description and a particular setting of the input units, &,
we can compute probability that each hidden unit is 0 or 1 given any setting of the observable vector
z

Pr(h; = 1|7, &g)q, 0p1q) = logistic(Gg)q - T+ 0,14)7 -

Using this equation and the sample 5, it is possible to compute the following estimates:

E(hf) — % Z logistic(ﬁold -4 eold)f
z7es

. 1 . "
Eh=1)= v Z logistic(&g1q - 7 + 051q)
Zes
2. In the Maximization step, new parameters (Gpew,fnew) are calculated using Equations (4.23)
and (4.24). The new parameters (Cnew,fnew) are used as the old parameters (&,1q,05q) in the

following iteration.
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3. The iteration terminates when the difference between (&new,fnew) and (&;1q,0,1q) becomes in-

significant.

We now present the structure removal procedure. In the analysis of the real-valued model in Sec-
tion (4.2.3) we have shown that the addition of a hidden variable has the effect of replacing the previous
distribution by a mixture of two distributions, the first of which is equivalent to the previous, and the sec-
ond is a shifted copy of the previous distribution, shifted by the weight vector @ that corresponds to the
hidden unit. The shifted copy corresponds to the case in which h; = 1 while the unshifted one correspond
to the case where h; = 0. For each data point we compute the probability, p, that h; = 1. We then flip a
random coin whose bias is p and, according to the outcome of the coin flip, either keep the example as it
is or subtract @ from it. This has the effect of shifting the shifted copy, which corresponds to h; = 1 to
coincide with the unshifted copy, which corresponds to k; = 0. In this way the structure encoded by the
hidden unit is eliminated from the empirical distribution. Details are described below.

¢ Initialization

Set Sp to be the input sample.
Set po to be the initial distribution (Gaussian).

e Tteration
Repeat the following steps for ¢ = 1,2 ... until no single-variable combination model has a significantly
higher likelihood than the Gaussian distribution with respect to 5.
1. Perform an EM procedure to maximize the log-likelihood of a single hidden variable model on
the sample S;_1. Denote by #; and @i the parameters found by this procedure, and create a

new hidden unit with associated binary random variable h; with these weights and bias.
2. Transform 5;_1 into 5; using the following structure removal procedure.

For each example & € 5;_1 compute the probability that the hidden variable h; found in the

last step is 1 on this input:
Loy —1
Pl = 1) = (14 ¢ 0475)

Flip a coin that has probability of “head” equal to P(h; = 1). If the coin turns out “head” then
add ¥ — Wi to 5; else add T to 5.
3. Set p;(¥) to be p;_1(Z) 27" (1 + eei"'m'f), where Z; = Y 2pi—1(%) (1 + eei"'m'f).

4.4 Experimental work

We have carried out several experiments to test the performance of unsupervised learning using the
combination model. The goals of these experiments is to show that the combination model is a useful one
and to compare the performance of the different learning algorithm that we have developed.

The first set of experiments compares the two learning methods for the combination model presented
in this paper. The first is the gradient ascent method, and the second is the projection pursuit method.
The experiments in this set were performed on synthetically generated data. The input consisted of 4,000

binary vectors of 64 bits that represent 8 X 8 binary images. The binary vectors are synthesized using
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a combination model with 10 hidden units whose weights were set as in Figure (4.3,a). Each square in
this image denotes a single real valued parameter,® the matrix corresponds to the weight vector, and the
rectangle above the matrix corresponds to the bias parameter . We shall refer to each random binary
vector as an instance.

The ultimate goal of the learning algorithms was to retrieve the model that generated the instances,
which we call the “target” model. However, this goal is generally not achievable. The first reason is that
the optimal model is not unique, i.e. there usually are other combination models that generate the exact
same distribution as the target model, or a distribution that is very close to it. For example, a permutation
of the hidden units does not change the distribution defined by the model. As we have found out in the
experiments, other simple transformations of the target model produce models that are almost as good as
the target model. Another reason that we cannot retrieve the exact target is that the parameter vector of
the target is real valued, and thus cannot be exactly identified by a finite number of instances. The third
reason is that our algorithms are not guaranteed to find the optimal model for the given data. The gradient
ascent algorithm is only guaranteed to locate a local maximum of the likelihood, and the Projection Pursuit
algorithm is only guaranteed to increase the likelihood of the model with each additional hidden unit.

While the difference between the parameter vectors of the learned model and of the target model is
usually large, their performance as models of the random instances is similar. We measure this performance
using three different error measures. Fach error measure defines a way of computing the error of a
combination model with respect to a set of instances. We have measured these errors for the target
model and for each of the learned models. Each measurement was taken both with respect to the instances
that were used for learning (the “training” instances) and with respect to an independent test set of 4000
instances.

We now describe each of the three measures of error that we have used:

o Average log-loss

Each learned distribution model defines a probability distribution, P, on the space of images. A
popular measure of the distance between P and the actual distribution ¢ is the cross entropy, which
is defined as — 3 _.(Q(z)log P(x)). The cross entropy is minimized when P = @, and is then equal
to the entropy of (). The cross entropy can be estimated by taking the average value of minus log
of the probability that the model assigns to each instance in the sample. This measure of error is
also called the log-loss error. We scale the error so that the uniform distribution model, that assigns
equal probability to all instances, has an expected error of 1. The log-loss error is hard to compute
for large combination models, which is why we use it only in the experiments on synthetic data in

which we use only 10 hidden units in the models.

e Single bit completion
We estimate the average number of mistakes made by the model when it is used to predict the value
of single bits of the instances. More precisely, the mistakes it makes when used to predict the value

of each single bit in each of the instances in the sample, when given the values of all the other bits of

°The results are given using Hinton diagrams [Rumelhart and McClelland, 1986], i.e. positive values are displayed as full

rectangles, negative values as empty rectangles, and the area of the rectangle is proportional to the absolute value.
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that instance. The combination model defines a probability for any possible instance. The prediction
is defined as the value of the bit that corresponds to the more probable instance. We estimate this

average number by choosing at random 5 bit locations for each instance in the sample.

o Input reconstruction
We estimate the quality of the combination model as an input representation scheme. For each
instance (21, ...,2,) we compute the most probable state of the hidden units. This state can be seen
as an encoding of the instance. One way of defining the quality of this encoding scheme is to measure
how much additional information is required to reconstruct the instance from the state of the hidden
units alone. Each state of the hidden units defined a Bernoulli product distribution over the images.
The additional information that is required to encode a particular instance is the log of one over the
probability assigned to the instance. As the distribution is a Bernoulli product, this can be written
as the following sum:

H(@|h) = [(1+ i) logy p; + (1 — 2:) logy (1 — pi)]

1

n

N | —

K3

where p; is the independent probability of the ¢th input bit to be +1 given the hidden state, which
is equal to
m .
p; = logistic sz(])hj
i=1
This measure of error is scaled so that it measures the additional information that is required per
input bit.
All experiments used a test set and a separate training set, each containing 4000 examples. The
gradient ascent method is based on the binary distribution model. It typically needed about 1000 epochs
to stabilize.'% In the projection pursuit algorithm, 4 iterations of EM per hidden unit proved sufficient to

find a stable solution. The results are summarized in the following table and in Figure (4.3).!!

log-loss single bit prediction | input reconstruction

train | test | train test train test
gradient ascent for 1000 epochs | 0.399 | 0.425 | 0.098 0.100 0.311 0.338
projection pursuit 0.893 | 0.993 | 0.119 0.114 0.475 0.480
Projection pursuit followed by
gradient ascent for 100 epochs | 0.411 | 0.430 | 0.091 0.089 0.315 0.334
Projection pursuit followed by
gradient ascent for 1000 epochs | 0.377 | 0.405 | 0.071 0.082 0.261 0.287
true model 0.401 | 0.396 | 0.077 0.071 0.286 0.283

The best learning result was achieved by starting with the projection pursuit algorithm then using the

parameter vector that was learned as a starting point for the gradient ascent algorithm. The final result

%The algorithm used a standard momentum term (see [Hertz et al., 1991], page 123) to accelerate the convergence.

" The difference between the measurements of the quality of the true model on the test set and on the training set are due
to the random fluctuations between the two sets of examples. These differences provide an indication of the accuracy of our

measurements.
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Figure 4.3: The weight vectors of the models in the synthetic data experiments. Fach matrix
represents the 64 weights of one hidden unit. The range of the weights is [—6,46] with the large
white squares representing the value 6. The square above the matrix represents the units bias.
positive weights are displayed as full squares and negative weights as empty squares, the area of
the square is proportional to the absolute value of the weight. (a) The weights in the model used
for generating the data. (b) The weights in the model found by gradient ascent alone. (c¢) The
weights in the model found by projection pursuit alone. (d) The weights in the model found by
projection pursuit followed by gradient ascent. For this last model we also show the histograms of
the projection of the examples on the directions defined by those weight vectors; the bimodality

expected from projection pursuit analysis is evident.

of this combination is presented in Figure 4.3(d), together with the corresponding projections of the data
along the directions defined by the weight vectors. We can see that there is a close correspondence between
the weight vectors in the learned model and the vectors in the target model described in Figure 4.3(a).
Counting from left to right, the weight vectors of units 1,2,8,9, and 10 in the learned model are almost
identical to the weight vectors of units 1,4,6,7,and 5 in the target model. Units 3 and 7 in the learned model
are close to the negation of units 8 and 3 in the target model, and units 4 and 5 in the learned model are
combinations of units (10,2) and (9,2) of the target model respectively. There is no exact correspondence of
the biases. As we see from the table, the performance of the learned model is almost as good as that of the
target model according to all three measures. We thus conclude that reversing the sign of weight vectors
and combining them can sometimes create a different combination model whose corresponding distribution
is very similar.

When the gradient ascent model is used to learn by itself (Figure 4.3(b)),it tends to get stuck in local
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minima, as can be seen in the table. It is also a very slow method, both because of the large number of
iterations that is required and because each iteration requires complex calculations. The fact that the local
search process is stuck in a sub-optimal solution can be seen in the weight vectors of the learned model in
that four of the weight vectors (those of units 1,2,6,10, counting from the left) have no clear correspondence
to any of the weight vectors in the target model.

The Projection Pursuit method is very fast, but its results are weaker than those of the gradient ascent
method by itself. It tends to find a model whose weight vectors correspond to various combinations of
the weight vectors of the target model and their negations. The performance of the results of projection
pursuit are similar to those of the gradient method in the single bit prediction measure and in the input
reconstruction measure. On the other hand, the performance of the Projection pursuit model in terms
of the likelihood of the model that it generates is very poor. The reason is that the data that we use is
generated by a binary valued combination model, while the projection pursuit model is based on a real
valued combination model. The difference between these two models is large, because the weights that
are used in the target model are in the range [—6,46]. As we have shown in Section 4.2.6, the binary
model and the real valued model are approximately equal when the weights are small. To show that this is
indeed the source of the error, we repeated the previous experiments using a target model with the weight
vectors divided by a factor of 7, so that now all the weights are in the range [—6/7,+6/7]. The results are

summarized in the following table

log-loss single bit prediction | input reconstruction

train | test | train test train test
True Model 0.939 | 0.941 | 0.36 0.36 0.86 0.87
gradient ascent for 400 epochs

0.937 | 0.944 | 0.36 0.37 0.86 0.87
projection pursuit 0.964 | 0.966 | 0.38 0.39 0.92 0.92
Projection pursuit followed by
gradient ascent for 400 epochs | 0.935 | 0.943 | 0.36 0.37 0.86 0.87

We see that in this case, the likelihood of the model found by the projection pursuit algorithm is similar
to that of the other models. Because in this case the weights are so small, the difference between the
distribution defined by the model and the uniform distribution is small, as is reflected in the measures of
accuracy. However, the difference from the uniform distribution is statistically significant. The combination
of the two learning algorithms was able to retrieve the weights of the target model almost as well as in the

previous experiment (see Figure 4.4).

In the second set of experiments we compare the performance of the combination model to that of the
mixture model. The comparison uses real world data extracted from the NIST handwritten data base.?
Examples are 16 x 16 binary images (see Figure (4.5)). There are 500 examples in the training set and 500

in the test set. We use 45 hidden units to model the distribution in both of the models. Because of the

12NIST Special Database 1, HWDB Rel1-1.1, May 1990.
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Figure 4.4: The weight vectors of the models in the synthetic data experiments. The target target
is the same as in the previous experiment but the range of the weights is divided by a factor of 7,
so that the largest white squares represent the value of 6/7. (a) The weights in the model found
by gradient ascent alone. (b) The weights in the model found by projection pursuit alone. (c)
The weights in the model found by projection pursuit followed by gradient ascent.

large number of hidden units we cannot use gradient ascent learning and instead use projection pursuit.
For the same reason it was not possible to compute the likelihood of the combination model and only the
other two measures of error were used. Each test was run several times to estimate the accuracy of our
measurements.

For learning a mixture model we use an incremental version of EM. We start with a model with a single
Bernoulli product distribution and run EM until the method converges. We then take a mixture of two
Bernoulli product distributions, each of which is initialized to be a slight random perturbation of the single
Bernoulli product. We then let EM run on this model until it converges, and then we split each component
into two in a similar way. Continuing in this fashion we repeatedly double the size of the model.!?

The final errors of many runs of these algorithms, starting from different initial weights, are summarized
in the table below. The errors of two representative runs are given in Figures 4.8 and 4.9. A sample of the
final weight vectors of the learned combination model and mixture model are given in Figures 4.6 and 4.7
respectively. A complete list of all of the 45 weight vectors for each model are given in Figures 4.10 and
4.11.

single bit prediction input reconstruction

train test train test
Product distribution | 0.29 &£ 0.01 | 0.30 £ 0.01 | 0.78 &£ 0.01 | 0.80 £+ 0.01
Mixture model 0.19 £ 0.01 | 0.26 £ 0.01 | 0.55 £ 0.01 | 0.70 £ 0.01
combination model 0.19 £ 0.01 | 0.20 £ 0.01 | 0.60 £ 0.01 | 0.64 £ 0.01

The first line in this table, named “Product distribution” summarizes the performance of a simple dis-
tribution model that assumes that the pixels are distributed according to a Bernoulli product distribution.
The reconstruction of the input, in this case, is simply the fixed reconstruction in which each bit is set to

its more probable value. The performance of this model provides a baseline with respect to which we can

¥ When 32 units are to be split, only the first 13 of them are split, to give the final number of 45 mixture components.
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compare the performance of the other distribution models whose goal is to capture dependencies between
the pixels. We see that the performance of the combination model is significantly better than that of the
mixture model on the test set. The difference is especially significant when compared to the baseline of
the Product distribution model. Also, we see that the difference between the performance on the test set
and on the training set, i.e. the over-fitting, is much smaller for the combination model.

A qualitative comparison between the weight vectors found by the two models confirms the expected
advantage of the combination model in describing combinations of correlations. While the typical weight
vectors of the mixture model (see Figure (4.7)), which is a sample out of Figure (4.10)) look very much like
an average prototype of a specific digit, the weight vectors of the combination model relate to more local
features, such as lines and curves (see Figure (4.6)), which is a sample out of Figure (4.11)). This relates
to fact that the mixture model relates each example with the single weight vector that is most similar to

it, while the combination model relates each example with a combination of its weights.

X i ol 5T o

Figure 4.5: A few examples from the handwritten digits sample.

As the experiments on synthetic data have shown that PP does not reach optimal solutions by itself
we expect the advantage of the combination model over the mixture model to increase further by using
improved learning methods. Of course, the combination model is a very general distribution model and is
not specifically tuned to the domain of handwritten digit images, thus it cannot be compared to models
specifically developed to capture structures in this domain. However, the experimental results support our
claim that the combination model is a simple and tractable mathematical model for describing distributions

in which several correlation patterns combine to generate each instance.
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Figure 4.8: A comparison of the input reconstruction error on 16 x 16 pixel digit images. This

error measures the average amount of additional information that is required for reconstructing

the input from the state of the hidden units. The information is measured in bits per pixel. The

higher and lower curves in each graph describe the error on the test set and on the training set

respectively. The graph on the left describes the error of the mixture model as a function of the

number of training iterations (epochs). The number of mixture components is doubled every 20

iterations. There is a spike in the error immediately following the doubling, as a result of the

added randomization. The graph on the right describes the error of the combination model as a

function of the number of iterations. (The spike in the graph around iteration 230 is a side effect

of a “backfitting” stage that has not proven to be useful.)
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Figure 4.9: A comparison of the single bit completion error on 16 x 16 pixel digit images. The

error measures the probability of a mistake in predicting a random single missing bit in the image,

using the distribution model and the values of all the rest of the pixels. The higher and lower

curves in each graph describe the error on the test set and on the training set respectively. The

graph on the left describes the error of the mixture model as a function of the number of training

iterations (epochs). The number of mixture components is doubled every 20 iterations. The

graph on the right describes the error of the combination model as a function of the number of

iterations. (The peak in the graph around iteration 230 is a side effect of a “backfitting” stage

that has not proven to be useful.)
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5. Concluding remarks

Each chapter of this thesis discusses different learning algorithms, aiming at different goals, and analyzed
using a different mathematical framework. However, a common theme in much of this work is the important
role that the distribution of instances plays in learning.

In this section we speculate on the possible application of our learning algorithms to real-world problems.
We do that by discussing in some detail a simple real world classification problem. Through this example
we illustrate some phenomena that re-occur in our work and point out some advantages our algorithms
might have in real world problems, as well as some of the technical and conceptual problems that lie on
the way to a more complete understanding of this type of learning algorithm.

Suppose that we wish to build a machine that will learn to sort apples of two varieties, for example,
Pippin and Mutzu, according to their color. Suppose, for simplicity, that we measure the color using two
color filters, which give us two real valued measurements for each apple. Thus each apple corresponds to
a point in the plane, which is labeled either “P” or “M”. The goal of learning is to find a mapping from
the plane to the set { P, M } that optimally predicts the type of an apple from measurements of the apples
color. The problem setup is illustrated in Figure 5.1(a).

There might be apples whose color is not representative of their variety, these apples correspond to
points whose label does not agree with that of the optimal prediction rule. However, we expect that if the
two color filters are properly chosen then the label of most apples will agree with the prediction rule. Also,
it is reasonable to expect that the instances whose label disagrees with the prediction rule are located close
to the borders between the two labels. If more than two colors are used to make the predictions, then we
can expect the optimal prediction rule to improve, and the concentration of the error close to the borders
to become more pronounced.

One approach to the problem, that is suggested by our boosting algorithm, described in Chapter 2, is to
create a large set of simple hypotheses and combine them using a majority vote. As we expect most of the
typical examples to be far from the decision border and have equal labels, the following simple algorithm
is likely to generate prediction rules that have a considerable advantage over random predictions:

1. Pick a small sample of labeled apples, i.e. labeled points in the plane.

2. For each point in the sample, find the largest disk around it that contains only points with the same

label.
3. Choose the disk that contains the largest number of (equally labeled) points.

4. Qutput the hypothesis that labels the points in the disk with the label of the point in its center, for
points outside the disk, the hypothesis generates a random label by flipping a fair coin.

The type of hypotheses that this algorithm is likely to generate is given in Figure 5.1(c). The result of

running the boosting by majority algorithm using this weak learner is a randomized rule for predicting

labels that combines a large number of such disks, as described in Figure 5.1(d). Given a specific point on

the plane, each disk contributes one vote, if the point is inside the disk, then the vote is according to the

label associated with the disk, otherwise, it is simply a random coin flip. The label of the point is then

predicted according to the label that got the maximal number of votes. If a point is covered by a large
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Figure 5.1: This figure describes the anticipated behavior of the boosting algorithm and the query
algorithm on a real world learning problem. Part (a) describes a learning problem regarding the
separation of two apple varieties according to their color. Each of the coordinates describes the
intensity of a particular color. The bold line describes the optimal decision rule. The contour
map defines the probability distribution of the apples, and X’s denote the maximal density points.
Part (b) describes the behavior of the query by committee algorithm. Each letter corresponds
to a single training example. The two dotted lines describe two possible decision rules that have
the same performance on the training examples. The query by committee algorithm accepts as
queries those examples that fall in the highlighted areas. Part (c) describes a typical hypothesis
chosen by the weak learner described in the text. The disk defines the hypothesis which predicts
the label M inside the disk and predicts randomly outside it. Part (d) describes a possible set of
weak hypotheses (overlapping disks) at a late point in the boosting process.



115

number of disks of the same type then it is likely to be labeled in the same way by the combined prediction
rule.

As apples that have similar color are likely to be of the same type, it is reasonable that the algorithm
will be able to find a large disk that contains many random instances with the same label. It is also likely
that any new random instance that falls within this disk will have the same label. This means that the
generated hypothesis is better than a random guess within the disk, which gives it an edge over a random
guess of the label. However, it is clear that the size of this edge depends on the number of instances that
fall within the disk, which, in turn, depends on the distribution of the instances. If most of the instances
are of apples with ambiguous color, then instances with similar color are likely to be of different types, and
the disk found by the learning algorithm is likely to be small and provide only a small edge over random
guessing. It seems reasonable to assume that the distribution of actual apples gives high probability to
colors that are far from the optimal decision border, as described in Figure 5.1(a), which implies that the
hypothesis found by the boosting algorithm in the first stage is likely to have a large edge. However, as
the boosting algorithm proceeds, it tends to accept examples close to the decision border, because these
are the examples on which different hypotheses tend to disagree.

We thus expect that the behavior of the proposed learning algorithm will not fit within the standard
weak-PAC learning framework, but rather be of the distribution-dependent type analyzed in Section 2.4.1.
Using the results presented there we would like to show that if the edge of the weak learner does not
decrease too rapidly as the distribution of the instances is changed by the boosting algorithm, then the
boosting algorithm is able to generate an accurate hypothesis. However, several obstacles remain in the
path to this type of analysis. First, we wish to consider ambiguous concepts, i.e. concepts that allow
mapping a particular color to both types of apples. This type of mapping has been formalized by Kearns
and Schapire [Kearns and Schapire, 1990] using the notion of p-concepts. However, little progress has been
made so far on algorithms for boosting p-concepts! Second, we need to formalize the intuitive argument
presented above regarding the dependence of the edge of the weak learner on the concentration of the
instances around the border. This argument involves a close relationship between the hidden concept and
the distribution of the instances, and such a relationship is completely outside the realm of the current
theory of learning from random examples.

Let us now discuss using the query by committee algorithm (Chapter 3) in the context of the same
problem. Suppose we have some reasonable learning algorithm that works for this kind of problem. For
example, suppose that a neural network is capable of learning to separate the two varieties of apples
according to their color. For simplicity, let us assume that the hypotheses computed by this network can
be represented by regions bounded by a polygon with a small number of vertices. We can use the method
of query by committee to try to reduce the number of instances that the human teacher needs to label. The
idea is simple, instead of a single neural network, we train two neural networks. We use the same labeled
examples to train both networks. The difference between the networks is a result of using a stochastic

update rule that introduces small random perturbations into the training process so that each network

!Recently, Aslam and Decatur have shown how boosting can be used in the context of Kearns Statistical Queries model to

boost weak learning algorithms in the context of independent noise on the labels.
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arrives at a different set of weights. These perturbations also apply if the training error is zero, so that
even in the stationary state the two networks perform a kind of a random walk in the space of hypotheses.
Every unlabeled instance is presented to the two networks and they compute their predictions. If the two
predictions differ, then the teacher is queried, and the labeled example is added to the training set. After
each instance is presented, the two networks are trained, whether the example was added to the training
set or not, to insure that a different pair of hypotheses is tried each time. The state of the algorithm after
a number of training examples have been accumulated is described in Figure 5.1(b).

This algorithm seems to be a reasonable implementation of the query by committee method to this
case. However, a rigorous analysis of its behavior is well beyond what we can currently achieve. Not only
is the hidden concept a p-concept, but the hypotheses are taken from a different space than the hidden
concepts. It is not clear whether random perturbations of the learning rule provide a good approximation
of a Gibbs learning algorithm. Moreover, even if this is a reasonable approximation, it is not clear whether
the equivalent prior distribution provides a reasonable approximation to the “correct” prior distribution
that we assume is available to the learner in our analysis. However, if the qualitative results of our analysis
carry over to this case, then the number of queries will be just a small fraction of all the random instances.
Intuitively, that is clear, because after a small number of typical apples of each variety have been observed,
each of the networks is likely to be correct on most of the typical instances. That intuition, which is
illustrated in Figure 5.1(d), is a result of the fact that most of the examples are far from the borders. It
is only the rare instances that are close to the border that can cause the algorithm to make a query. As
the training set increases, both hypotheses become increasingly accurate and increasingly similar, and the
frequency of queries decreases to zero.

Notice some similarities in the behavior of the two algorithms presented above. Both algorithms start by
choosing examples at random from the space and then gradually concentrate on examples that are closer to
the borders. As this concentration increases, more and more of the random examples are discarded, causing
only a small fraction of the instances to take part in the actual learning. Also, in both of the algorithms the
examples that are more important, and are usually accepted, are examples on which different hypotheses
tend to disagree. In the current state of the theoretical analysis, these are only intuitive notions and there
are many obstacles on the way to proving theorems that will formalize them. The obstacles are both
technical and conceptual. On the technical level, a more sophisticated mathematical analysis is required to
prove that results similar to the ones presented in this thesis exist in a broader context. On the conceptual
level, we need mathematical frameworks for the analysis of learning that will incorporate prior assumptions
about the structure of the world that are intuitively appealing but are ignored by the current frameworks.

A main assumption that was used in the discussion above is that the distribution of the instances
is, in a strong sense, helpful to the learning process. This assumption is justified because in many cases
both the instance and its label are generated by the same underlying process. In our apple classification
example, both the color of the apple and its type are direct results of its genetic type. As a contrast,
consider the task of classifying the two types of apples according to the bar-code number that is printed
on their packages. In this case the bar-code, which defines the instance, is related mostly to the way
in which packaging companies and shops are organized, and not to the genetic information of the apple.

Consequently, we would not expect the distribution of these bar-codes to be related, in any simple way,
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to the correct classification of the apples. Note that there exists a well-defined mapping from bar-codes to
types, and this mapping might be learnable, however, in this case it seems clear that the learner can learn
very little from unlabeled instances.

We believe that in many real-world learning problems the labels and the instances are both generated
by the same mechanism and, as a result, the learning algorithm can assume a close relation between the
distribution of the instances and the hidden target. The type of assumption on the distribution of the
instances that we used in this section is that the more likely instances can be classified easily, while smaller
and smaller parts of the instance space get harder and harder to classify. The work we present in Chapter 4
can be seen as a further step in this direction. Here we assume that we can deduce useful information from
the instance distribution alone, without any label information. The work we present is concerned with a
distribution model for high dimensional binary vectors, however, one of the basic motivations for this work
can be demonstrated in our simple example of apple classification. In this problem, it is quite reasonable
to assume that the distribution of the color of random apples tends to cluster around specific colors, which
correspond to specific varieties of Mutzu and of Pippin. Unsupervised learning can be used to locate these
clusters. It is then sufficient to query a teacher on one instance from each cluster to deduce the correct
label of the whole cluster.

The experimental work we present at the end of Chapter 4 in which we try to learn the distribution
of images of handwritten digits has a similar motivation. We believe that high-order correlations between
the pixels in such images correspond to meaningful features such as lines and intersections, and that the
images of typical digits are concentrated in clusters that correspond to different digits and can be described
by combinations of such features. If this assumption is correct, then in order to learn to classify the images
according to the digit that they contain, it is sufficient to obtain the correct classification of just one image
from each cluster, greatly reducing the number of labeled instances required for learning.

It seems that the digit image data, which is very high-dimensional, is much more clustered then the
apple color data. Indeed, we believe that in general, as the number of features that are used to characterize
an instance increases, the distribution of the instances in feature space becomes increasingly concentrated
around typical values and away from the optimal decision boundaries.

Other approaches to learning optimal prediction rules, such as pattern recognition [Duda and Hart,
1973a], incorporate the assumption that the distribution of the instances is informative directly into their
basic mathematical framework. It is thus interesting to compare our approach to the approach used for
learning in pattern recognition. We claim that our approach has advantages over the classical pattern
recognition approach because while it is sensitive to the distribution of the instances, it ignores some
properties of the distribution that are not relevant to making optimal predictions. We shall briefly describe
a pattern recognition approach to this problem, and then compare it to the approaches described above.

The classical mathematical description of the apple variety prediction problem that is used in pattern
recognition [Duda and Hart, 1973a] is the following. We assume that each of the two varieties of apples has
some probability of having any particular color. Thus each variety of apple corresponds to a distribution
over the plane. Nature generates a random example by selecting the variety of the apple at random
and then selecting the associated color according to the corresponding distribution over the plane. The

resulting distribution is a mixture of the two distributions that correspond to the two apple varieties.
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Each color has some probability of corresponding to one of the two varieties, and the optimal prediction
rule is to predict the variety that has a higher probability. One classical pattern recognition approach to
learning the optimal decision rule is to first estimate the distribution of the colors of each variety of apple,
and then to define the prediction rule by comparing the estimated probabilities that are associated with
each color. The estimation of the distributions can be performed by either parametric or non-parametric
methods [Duda and Hart, 1973a]. The parametric methods search for a distribution from a particular
family of distributions, such as Gaussian mixtures, that best fits the data. Non-parametric methods, such
as the k-nearest neighbor classification method, estimate the probabilities locally around each point of the
input space. The approach that is suggested by our work is different than both the parametric and the
non-parametric approaches in pattern recognition. Rather than estimating the distributions, we work on
directly approximating the optimal prediction rule. Our methods are sensitive to the distribution of the
instances in a different way than the pattern recognition methods. They start by gathering information
on the decision rule from random examples and then, gradually, concentrate on those examples which are
close to the border or have an atypical label.

This approach has an advantage over the pattern recognition approach when the distribution of the
label that correspond to most of the color combinations is strongly biased to one of the two labels, while
those color combinations on which the bias of the label distribution is weak are concentrated in small border
areas. For the typical colors, very rough approximations of the distributions are sufficient for making the
correct prediction. The pattern recognition approach ignores this property, while our algorithms use it to
their advantage by concentrating on those instances whose label is more ambiguous.

To summarize, we think that the results presented in this thesis point to the important role that
the distribution of instances plays in concept learning. In the popular distribution free learning model
presented by Valiant, the input distribution is assumed to be the worst case. Another popular assumption
is that the instance distribution is some specific distribution, such as the uniform distribution, a product
distribution, or a mixture of Gaussians. We believe that in many cases one can assume that the instance
distribution is closely related to the hidden target concept. While it is not clear what is the best way
to formalize this type of assumption, it seems clear that such a formalization will make the problem of
learning considerably easier and will bring computational learning theory closer to the practice of machine

learning and pattern recognition.
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Appendix A. Appendixes regarding Boosting by Majority

A.1 Boosting the reliability of a learning algorithm

We present the boosting algorithm, Br, in Figure A.1, and prove its performance.

Proof of Lemma 2.3.6 The bound on the number of examples is immediate from the definition of the
algorithm. To prove that the algorithm is correct, we bound the probability that the resulting hypothesis
has error larger than 1/2 — v/2. There are two events that might cause this. The first is that all of the r
hypotheses generated by WeakLearn have error larger than 1/2 —~. The second is that a hypothesis that
has error larger than 1/2 — v/2 makes less mistakes, on the test sample, than a hypothesis that has error
smaller than 1/2 — . It is easy to bound the probability of each of those events by /2. Which proves the
lemma.

As we know that each call to WeakLearn has probability of at least A of generating a hypothesis with
error smaller than 1/2 — 4 at each trial, the probability of not generating any accurate enough hypothesis

1s at most

(1 _ /\)T _ (1 _ /\)I/Aln(2/6) < e—ln(2/6) _ (5/2 )

In order for the second event to happen, given that one of the hypotheses has error smaller than 1/2 — 7,
there has to be a bad hypothesis whose estimated error is larger than that of the good hypothesis. For this
to happen, the gap between the actual error and the estimated error for at least one of the r hypotheses

has to be at least v/4. Using Hoeffding bounds we get that this probability is at most
re O = poxp(=2(8/77) In(2r/8)(7/4)%) = re” ) = 572,

which proves the lemma. |

A.2 Divisibility lemma

Lemma A.2.1: If the probability space (X,%,V) is divisible, then, for any set D € X there exists a set
G CD,G e X such that V(G) = (1/24+v)V(D) and W(G) > (1/2 4+ v)W(D)

Algorithm Bpg

Input: EX ,WeakLearn, v, A, ¢

Output: A hypothesis hys, that has error smaller than 1/2 — v/2 with probability at least 1 — 4.

1. Call WeakLearn r = ﬂ@ times, each time on a different set of random examples.
Store the resulting hypotheses as hi,...,h,.

2. Count the number of mistakes made by each of the r hypotheses on a random sample of
size m = (8/9?%)In(2r/¢).

3. Return the hypothesis that makes the smallest number of mistakes on the sample.

Figure A.1: A description of the algorithm for boosting the reliability of an algorithm.
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Proof: First observe that as we are interested only in the ratio of the weight and value of G to that of
D, so w.lLo.g. we can assume that V(D)= W(D) = 1.

Define the following series of partitions of D.

e Py={D}.

o Py = {D}, D{} where the sets are disjoint and V(D) = V(D{) = 1.

e Construct P;y1 from P; by splitting each set in P; into two equal valued parts. So that the value of

each part is exactly 277,
We shall now use the partitions Py, Py, Pa, ... to construct a series of sets Gg, G, G, ... that will

provide better and better approximations of the target set G. Assume that the binary expansion of 1/24~
is
1 = :
o T =202
=0
(note that by = 0,67 = 1) and construct the sets G; according to the following inductive procedure:

Go=10

A; = the set with the largest value in P; that is not a subset of G;_
ifb; =0 G
Git1 =9 .
ifb; =1 G, UA\;

It is clear that (/; is a monotonically increasing series of sets and that lim; ., V(G;) = 1/2 + ~. Also

clearly from the way A; is chosen we have

Wa) o V(A
1- W(Gz) - 1- V(Gi)

We shall now prove by induction on 7 that Vi > 0 W(G;) > V(G,).
e Fori =10, Gy =0 so the claim holds trivially.
e For ¢ > 1, if b; = 0 then G;11 = G so the induction holds trivially. FElse, ) = 1 and thus
Git1 = Gy UA; and we get:

W(Giy1) = W(Go) + W(A;) = V(G) + (W(Gi) = V(G)) + W(A) >

1= V(G;) — (W(GG) = V(G

VG0 + (W(G) = V(Go) 4 Vi) - AL LEEg =)

1
1- V(Gi)]

The first two terms sum to V(G;41), and the last term is positive because V(G;) < 1 and from the
induction hypothesis W(G,;) — V(G;) > 0, the induction hypothesis is thus proven.
Define GG = (J52; G;. As all A; are in the sigma algebra ¥ then sois G. Also V(G) = lim; .o, V(GZ)

1/2 4+ 5. similarly W(G) = lim;_ W(G;) = 1/2 4+ v and because for all ¢ we have W(G;) > V(G)), w
also get an inequality at the limit W(G) > V(G) = 1/2 4 +, which proves the lemma. |

V(G + V(A) + (W(G) = V(G))[L -
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A.3 Proof of Lemma 2.3.10

In order to prove the lemma, we use the following technical lemma:

Lemma A.3.1: For any real numbers x > 1 and 0 < p < 1/2
1

1 Gofimw) o0 (i)
exp | — < @/ ) < .
3(1 —4p?)a [2 pxH(1/2—p) /1 —4u?

Where H(y) = —ylny—(1—y)In(1—y) is the entropy function, and the extension of the binomial function
to the reals is based on the extension of the factorial to the Gamma function z!=7(z + 1).

Proof: The proof of this lemma is based on the Stirling approximation. Notice that as @ — 0o, the lower
bound converges to 1 while the upper bound converges to (1 — 4u2)_1/2. In other words, for large values

of x the binomial <1’(1/€—u)> is related to the exponential function in the denominator by a small factor.

(A.1)

Stirling approximation to the factorial can be written in the following way:!
| | 1
Vae>1alne —a+ %—I—ln\/%r <ln(z)<zlne -2+ %—I—ln\/%r—l— 97
x

From which we get the lower bound as follows

In (w(l/;— H)) =lna! —In((1/2 — p)a)! —In((1/2 + p)z)!

> zlne —z 4+ lnTx—l—ln\/Qﬂ

_x(l/Q—Iu)ln(x(l/Q—,u))—|—x(1/2_Iu)_w_lnﬁ_m
o124 ) nCa(1/2 ) o124 ) - S o -
= wH(l/Q—u)—lnﬁ—lnm—ln@_m
> wH(l/Q—u)—ln%an—m‘

And the upper bound as follows

In (x(l/g— M)) = Ina! —In((1/2 — p)e)! — In((1/2 + p)z)!
In

1
< xlnw—x—l——x—l—ln\/ﬂ—l——
2 12z

(12— ) In(e(1/2 = ) + 2(1/2— gy — DEU2Z0D) s

2
—a(1/2 + ) In(a(1/2 4+ 1) + 2(1/2 4 1) — W Cnver

1 1

= xH(l/Q—,u)—ln\/E—ln\/Z—,u?—ln\/27r—|—E
x

1
H(1/2 — —1 2 In2 -1 1 —4p? + — .
zH(1/ ) —Inv2rz 4 In n4/ 1 —|—12$

!See, for example, Equation (9.91) in [Graham et al., 1991].
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Proof of Lemma 2.3.10 : We can rewrite the definition of o’ from Figure 2.4 as follows (ignoring

the choices of r that give ! = 0 for the purpose of the upper bound):
N L 0yet-m L L7 ye4m

where e =k —i¢—1and p=1/2—(|k/2] —r)/(k—1i—1). Using the upper bound given in Lemma A.3.1

bound the last expression for any value of p

2 el/12r 1 1 1 5 1 1~
—_ H(= - — —w)n(= - = — In(=+ <)) .
< ﬂacmexp(x (2 ,u)-l-ac(2 ,u)n(2 2)—|—x(2—|—,u)n(2—|—2))
But a basic inequality is that for any —1/2 < p < 1/2

1 1 1

Hiz-m<-G-mhi;-D-G+mnG+D).

Where equality is achieved only when p = v /2. From this we get that

T VA 2l Tt o [2 T
((%_N)x)(Q 2) (2+2) < ﬂxm.

As v <1/2,and = > 1, we get the statement of the lemma. |
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Appendix B. Projection distributions of the binary combination

model.

In this section we use results from [Diaconis and Freedman, 1984] to show that the projections of the
binary combination model are very similar to those of the real-valued combination model model when
the weight vectors are small. As has been discussed in Section (4.2.3), the binary combination model
distribution can be viewed as a mixture of 2™ generalized binomial distributions. We call these binomial
distributions binoms. Each binom corresponds to a particular setting of the hidden vector h and to a single
Gaussian component in the real-valued model. We shall show that although the distribution of the binoms
are very different from the corresponding Gaussians, their projections onto almost any direction are very
similar. This implies that the projections of the binary-valued combination model are very similar to those
of the real-valued combination model. Because Projection pursuit methods depend only on properties of
the projections of the distribution, it is a valid approximation to use the real-valued combination model
for learning distributions generated by a binary-valued combination model.

The mixture coefficients of the binoms are Pr(h|¢) as defined in Equation (4.13). The mean of the
binom corresponding to & is p(h;) = tanh(3 7, hiw®) where by tanh(Z) we denote the application of tanh
to each component of Z. If the weight vectors w(? are all small then tanh(3>"i%, hiw(i)) ~ Y7 hiw®, and
we get that the means of the binoms are very close to the means of the corresponding Gaussians. Next we
show that under mild assumptions, the projection of each binom is very close to a Gaussian.

Diaconis and Freedman [Diaconis and Freedman, 1984] discuss conditions under which most projections
of high-dimensional data sets are close to Gaussian. Their analysis considers large sets of points taken
from high dimensional spaces. These points are not assumed to be generated by a distribution. Instead,
the conditions for Gaussianity of the projection are given as geometric relations among the points. These
relations must hold in the limit where both the dimension of the space and the size of the sets tends
to infinity. We shall show that if the weight vectors of the combination model are generated by some
distribution then, with high probability, samples generated by each binom have the required geometric
properties and thus most of their projections are close to Gaussians.

We follow most of the notation used in [Diaconis and Freedman, 1984]. Let &y, ¥, ..., Zn be vectors in
R™, this is the data set. Suppose that n, NV and the data set all depend on some common index v, and that
as v tends to infinity, so do n and N. Let 5,,_1 be the unit sphere in R™ and let v be chosen uniformly at
random from S,_1. Theorem 1.1 in [Diaconis and Freedman, 1984] states that if the following conditions
hold, then the empirical distribution of 7 - #; converges weakly to the normal distribution A(0,c?) in
probability, as v — co. Where “weak convergence” is convergence as a measure on R and “in probability”
is w.r.t. the uniform distributions on 5, _1.

The required conditions follow. There must exist some finite and positive o such that for any positive

¢, the following limits hold as v tends to infinity,
{1 < <N &1 - o®n] > en}| /N =0 (B.1)

[ {1 <ok <N |- @] > en}| /[N? =0 (B.2)
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Where # denotes the cardinality of a set. The first condition intuitively means that vectors are almost all
of almost the same length. The second condition means that most pairs of vectors are close to orthogonal.

We are interested in projections of samples generated by the combination model, as these are
random samples, we would like to show that the geometric conditions hold with probability one.
Suppose we have a sequence of binomial distributions over binary cubes of increasing dimension:
{=1,+1},{=1,+1}% ..., {—1,+1}",.... Bach distribution is fully specified by its mean vector: ji; € [—1,+1], s € [~1
Suppose that we have a sample from each distribution and that the sample size increases with the dimen-
sion n of the space: (Z1),(Z%, %), -, (&7,..., @), ---. We would like to show that random projections of
these samples produce empirical marginal distributions that are very close to Gaussian distributions with
a probability that goes to 1 as n — oo. However, it is not hard to construct sequences of mean vectors
such that this will not happen. For instance, if f = {0,+1,...,41}, then the distribution is concentrated
in the two points {—1,4+1,...,41}, and {+1,41,...,41}, and all projections of this distribution will also
be concentrated on two points.

We prove that the desired asymptotic conditions hold with probability 1 if the mean vectors [, are
selected in the following way. Assume there is some distribution P on [—1,+1] and that each component
of each [, is drawn independently at random from this distribution. For this to hold for the mixture
components of the combination model it is enough to assume that the components of the weight vectors

in the model underlying the data are chosen independently at random.

Theorem B.0.2: Suppose that a sequence of vectors of increasing dimension:
ﬁl € [_17 —I'l]vﬁ? € [_17 +1]27 e 'wﬁn € [_17 —I'l]nv s

is randomly drawn by selecting each component of each vector according to some distribution P over
[—1,+1].

Fach vector ji,, defines a distribution over {—1,4+1}" in which the components are independent and the
expected value is [i,. Suppose that for each n we draw n vectors from this distribution, and that from each
random vector we subtract the mean, [i,.

Suppose that for each n we draw a vector @ uniformly at random from the n dimensional unit sphere,
project the n random vectors on the direction defined by & and assign each of the points in the projection
a probability mass of 1/n. In this way we create, for each n, a discrete distribution over the reals.

With probability one, over all the random choices that create the sequence of distributions, there exists

o > 0 such that the sequence of distributions converges weakly to the normal distribution N'(0,0?).!

Proof: We prove the theorem by showing that the conditions of Theorem 1.1 in [Diaconis and Freedman,
1984] hold with probability one.

The proof of the condition B.1 is a simple application of the Markov bound. We wish to show that for

some ¢ and for any €, > 0:

lim P(#{1<j<n: |[|F]3-0c*n|>en} >én)=0

!'Weak convergence means that for any measurable set A, the probability assigned to A by the sequence of distributions

converges to the probability of the limit distribution.
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The n examples are independent, thus as » increases the fraction of the vectors that obey the condition
becomes very close to the probability of obeying the condition. Thus it suffices to show that for a randomly
chosen example ¥

. =12 2 _
Tim (|73~ o*n] > en) = 0

the squared length of a vector is a sum of the squares of its components. As the components are chosen

independently at random according to the mean vector [, and as the components of ji, are chosen

independently at random according to P we get that the average length of # is n(1 — [T 22dP(z)).

The variance of each term is at most 1. Thus defining o2 to be 1 — j'll 22dP(z) and using Markov bounds
we get that

PO|IF)E — o] > en) < —— = L

(en)?  ne?

and as n increases the probability decreases to zero as desired.

The proof of condition (B.2) is a bit more involved, because in this case the n? pairs that are checked
for the condition are not independent. However, using the theory of U-statistics [Serfling, 1980][Chap. 5]
their behavior can be related to that of independently drawn pairs. We wish to show that for any ¢,6 > 0:

lim P(#{1<j, k<N :|Z %] >en}>én*)=0

n—oo

first observe that when j = k the condition will most often not hold, as we have just proved that the
squared length of a vector is concentrated around o?n. However we can ignore this set as it is a vanishing

fraction of the n? pairs. It is thus sufficient to prove that
lim P(#{1<j,k<mn; j#k:|Z; -Tx| >en}>bén(n—-1))=0

Using the notation of [Serfling, 1980] we define

hZ,j) =

0 otherwise

) {1 if |Z-9] > en

and observe the corresponding U-statistic, that is a random variable defined over samples of size n:

" " 2 o o
U(Zy,...,7,) = (= 1) 1§%§n hZ;, Z5)
This random variable is exactly the cardinality of the set of pairs that have a dot product larger than en
divided by n(n — 1). Our goal is thus reduced to proving that the probability of a sample for which U is
too large is small. We do that by using Markov inequality. The fact that U is an unbiased statistic means
that the average of U is equal to the average of h(Z, ) when & and ¥ are chosen independently at random.
In other words it is equal to the probability that two randomly chosen vectors have a dot product larger
than en. We shall denote that probability by ¢. The variance of U can be related to the variance of h(Z, %)
by using Lemma A. from page 183 of [Serfling, 1980].

Var(U(Zy,..., 7 2(n—2)G + (] < %Cz

yTn)) < m
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Where (3 is simply the variance of h(Z,y) when & and § are chosen independently at random. As h(Z, %)
is either 0 or 1, its variance is ¢(1 —t). Putting the bound on the variance into the Markov bound we get:
411 —1)

Pl = DU ) > (n(n = D] < PV, Ta) = 1] > 8= 1] < S

It is easy to see that

4
t=P(Z 9 > < —
(1741 > en) < 5~

thus lim,, ... t = 0 and we get that the desired probability goes to zero, which completes the proof. |



