Worst-case Quadratic Loss Bounds
for On-line Prediction of Linear
Functions by Gradient Descent

Nicolo Cesa-Bianchi*
Philip M. Long!
Manfred K. Warmuth?

UCSC-CRL-93-36
October 12, 1993

Board of Studies in Computer and Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064

ABSTRACT

In this paper we study the performance of gradient descent when applied to
the problem of on-line linear prediction in arbitrary inner product spaces. We
show worst-case bounds on the sum of the squared prediction errors under various
assumptions concerning the amount of a priori information about the sequence
to predict. The algorithms we use are variants and extensions of on-line gradient
descent. Whereas our algorithms always predict using linear functions as hypotheses,
none of our results requires the data to be linearly related. In fact, the bounds proved
on the total prediction loss are typically expressed as a function of the total loss of
the best fixed linear predictor with bounded norm. All the upper bounds are tight
to within constants. Matching lower bounds are provided in some cases. Finally, we
apply our results to the problem of on-line prediction for classes of smooth functions.

Keywords: prediction, Widrow-Hoff algorithm, gradient descent, smoothing, inner
product spaces, computational learning theory, on-line learning, linear systems.

*DSI, Universitad di Milano, Via Comelico 39, 20135 Milano (ITALY).

Email address: cesabian@dsi.unimi.it.

fComputer Science Department, Duke University, P.O. Box 90129, Durham, NC 27708 USA.
Email address: plong@cs.duke.edu.

{Computer Science Department, UC Santa Cruz, Santa Cruz, CA 95064 USA.
Email: manfred@cse.ucsc.edu.

1. Introduction 1

1 Introduction

In this paper we analyze algorithms in the on-line prediction model. We assume the
prediction process occurs in a sequence of trials. At trial number ¢ the prediction algorithm

e is presented with an instance x; chosen from some domain A,
e is required to return a real number 7,

e then receives a real number y, from the environment which we interpret as the truth.
The total loss of an algorithm over a sequence of m trials is 7% (§; — y;)?. A critical aspect
of this model is that when the algorithm is making its prediction §; for the ¢th instance x4,
it has access to pairs (z,,ys) only for s < t.

We adopt a worst-case outlook, following [Daw84, Vov90, LW91, LLW91, FMG92, MF92,
CFH'93] and many others, assuming nothing about the environment of the predictor, in
particular the pairs (21,71), ..., (Zm, ¥m). Our results can be loosely interpreted as having
the following message: “To the extent that the environment is friendly, our algorithms have
small total loss.” Of course, the strength of such results depends on how “friendly” is
formalized. For the most general results of this paper (described in Section 4), the domain
X is assumed to be a (real) vector space.! To formalize “friendly,” we make use of the
general notion of an inner product (-,-), which is any function from A x & to R that has
certain properties (see Section 3 for a list). The inner product formalization is very general.
One of the simplest inner products may be defined as follows in the case that X = R" for
some n:

n
(u,v) = Zumi =u-v.
=1

Notice that for any inner product space (X, (-,-)), for any w € X', we obtain a linear function
Jw from X to R by defining

fw(x) = (w,). (1.1)

Typically, we express the bounds on the loss of our algorithms as a function of

iﬁ;f Z((w, x) — y:)?, (1.2)

where the infimum is taken over all w whose norm /(w,w) is bounded by a parameter.
Roughly speaking, this quantity measures the total misfit or noise of the environment with
respect to the best “model” in the inner product space. In other words, bounds in terms of
(1.2) are strong to the extent that there is a (not too large) w for which fyp “approximately”
maps x;’s to corresponding y;’s. In many cases we can even bound the additional loss of
the algorithm over the above infimum similarly to the additional loss bounds of [CFH193]
obtained in a simpler setting. Our bounds are worst-case in the sense that they hold for all
sequences of pairs (@, y;). (In some cases we assume the norm of the x;’s is bounded by a
second parameter.)

Faber and Mycielski [FM91] noted that a natural class of smooth functions of a single real
variable can be defined using inner products as above. The same class of smooth functions,
as well as linear functions in R", has been heavily studied in Statistics [Har91] (however,
with probabilistic assumptions). Thus, general results for learning classes of functions
defined by arbitrary inner product spaces can be applied in a variety of circumstances.

!The general results will hold for finite and infinite dimensional vector spaces.

2 1. Introduction

Faber and Mycielski proved bounds on 3 ,(§; — y;)* under the assumption that there was
aw € X for which for all ¢, y; = (w,2;), and described some applications of this result
for learning classes of smooth functions. Mycielski [Myc88] had already treated the special
case of linear functions in R™. The algorithm they analyzed for this “noise-free” case was a
generalization of the on-line gradient descent algorithm? to arbitrary inner product spaces.
We call this algorithm GD (defined below). In this paper we analyze the behavior of GD
in the case in which there isn’t necessarily a w for which for all ¢, y, = (w, ;). Faber and
Mycielski [FM91] also studied this case, but their algorithms made use of side information
which, in this paper, we assume is not available.

Gradient descent is an algorithm design technique which has achieved considerable
practical success in more complicated hypothesis spaces, in particular neural networks
[Tou89, Tou90, LMT91, MHL92]. Despite this success, there appears not to be a principled
method for tuning the learning rate. In this paper, we tune the learning rate in presence of
noise with the goal of minimizing the worst-case total squared loss over the best that can
be obtained using elements from a given class of linear functions.

The GD algorithm maintains an element w of A" as its hypothesis which is updated
between trials. For each ¢, let w; be the hypothesis before trial ¢ (the initial hypothesis W
is the zero vector). GD predicts with gy, = (W, ;) and updates the hypothesis following
the rule

Wiy = Wy — NG — Yo (1.3)
where n > 0 is the learning rate parameter.

If the real vector space A" has finite dimension, then each element v of X’ can be uniquely
represented by the real vector ¢(v) of its Fourier coefficients, once a basis is chosen. If the
basis is orthonormal, by simple linear algebra facts we have ¢, = (W, z¢) = c(w;) - c(@xy).
Furthermore, the vector 2(9; — y;)c(@;) is the gradient, with respect to the vector e(w;), of
the squared error (§; — y;)? for the pair (z;,y;). Hence, in this case, rule (1.3) is indeed an
“on-line” version of gradient descent performed over the quadratic loss.

When X is an arbitrary real vector space, and therefore its elements may not be uniquely
represented by finite tuples of reals, the GD algorithm is a natural generalization of on-line
gradient descent® and may viewed as follows [MS91].* After each trial ¢, there is a set S; of
elements w of X' for which (w,z;) = y;. Intuitively, our hypothesis would like to be more
like the elements of 5%, since we are banking on there being a nearly functional relationship
Sw between the @,’s and the y,’s. It does not want to change too much, however, because
the example (x, y;) may be misleading. The GD algorithm “takes a step” in the direction
of the element of Sy which is closest to w; (using the natural notion of the distance between
elements of an inner product space).

?Even though in the neural network community this algorithm is usually credited to Widrow and Hoff
[WH60], a similar algorithm for the iterative solution of a system of linear equations was previously developed
by Kaczmarz [Kac37].

*To be precise, if X has countably infinite dimension, then GD can still be viewed as a mapping
performing on-line gradient descent. Such a mapping is clearly noncomputable in general since each step
might involve the update of an infinite number of coefficients. However, note that the ¢-th hypothesis W,
is a linear combination of the first ¢ — 1 examples {X1,...,%X:—1} and can thus be represented by ¢ — 1 real
coeflicients.

*Actually, this interpretation appears to be valid only in the slightly more restricted case that (X, (-,-))
is a Hilbert space.

2. Overview of results 3

2 Overview of results

We now give an overview of the bounds obtained in this paper. For any v € X,
|lv]] = /(v,v) measures the “size” of v. We show in Theorem 4.3 that for all sequences
s = (=, y1))r € (X X R)* and for all positive reals X, W, and F, if max, ||z¢|| < X and

s)

L = inf —y)?
W(S) ||ul7ﬂ§W - ((wth) yt) ”

then the GD algorithm (with learning rate tuned to X ,W, and E') achieves the following

ST —y)® < Lw(s) + 20WXWE + (WX)2 (2.1)

t

(Notice that Ly (s) > Ly (s) for all W’ > W.) The above bound is tight in a very strong
sense: We show in Theorem 7.1 a lower bound of Ly/(s) 4+ 2(W X)WE 4+ (W X)? that holds
for all X, W, and F, also when these parameters are given to the algorithm ahead of time.

We then remove the assumption that a bound E on Ly (s) is known for some W.
However, we require that y;’s are in a certain range [—Y, Y] for some Y > 0. In Theorem 4.4
we show that for all positive reals X and Y and for all sequences s = ((@¢,y¢))¢ €
(X x [-Y,Y])* such that max, ||| < X, the sum of squared errors incurred on s by
a variant of the GD algorithm (with learning rate tuned to the remaining parameters X

and Y) is at most
Lyyx(s)+9.2 (Y /Lyyx(s)+Y?). (2.2)

Notice that the above result also holds when Ly, x(s) is replaced by Ly (s) for any W <
Y/X. Observe that Zt(yt—yt)Q—Ly/X(s) can be interpreted as the excess of the algorithm’s
total loss over the best that can be obtained using vectors w whose norms are at most
Y/X. The above bound is tight within constant factors: We show in Theorem 7.2 that
for all prediction algorithms A and all X,Y, F > 0, there is a sequence s on X’ x [-Y,Y]
such that max ||z;|| = X, Ly/x(s) = F, and the total squared loss of A on s is at least
E +2YVE + Y2 However, the dimension of the inner product space must increase as a
function of . As before, the lower bound holds also if all three parameters are given to
the algorithm ahead of time.

We continue by giving the algorithm less information about the sequence. For the case
when only a bound X on the norm of any @; is known, we show in Theorem 4.1 that the
GD algorithm, tuned to X, achieves the following upper bound on the sum of its squared
errors:

2:25 it | (el)l + 3 (w0, 20) —)
on any sequence s = {(@¢,y:))¢ € (X x R)* such that max; ||| < X. Note that this result
shows how the GD algorithm is able to trade-off between the “size” of a w, represented by
its norm, and the extent to which w “fits” the data sequence, represented by the sum of
squared errors incurred by fqp.

Finally, with no assumptions on the environment of the learner, a further variant of the
GD algorithm has the following bound on the sum of squared errors (Theorem 4.6)

. 2 2 2
9 Inf ~|(max|fa|")[|wl| +Zt:((wth)—%)

4 2. Overview of results

that holds on any sequence s = ((@¢,y:)): € (¥ x R)*.

We may apply our general bounds to a class of smooth functions of a single real
variable, in the manner used by Faber and Mycielski [FM91] in the case that there is a
perfect smooth function. The smoothness of a function is measured by the 2-norm of its
derivative. Of course, the derivative measures the steepness of a function at a given point,
and therefore the 2-norm (or any norm, for that matter) of the derivative measures the
tendency of the function to be steep. When normalized appropriately, the 2-norm of a
function f’s derivative can be seen to be between the average steepness of f and the f’s
maximum steepness. In Theorem 5.1 we show that if there is an (absolutely continuous)
function f: Ry — R with f(0) = 0 which tends not to be very steep and which tends to
approximately map z;’s to the y;’s, and if the z;’s are not very big, then an application of
the GD algorithm to this case obtains good bounds on the sum of squared errors. More
formally, we show that, for example, if the z,’s are taken from [0, X], and if f:[0,00) — R

satisfies || f'||2 = fOX f(u)? du < W, and 3,(f(2¢) — y:)* < E, then the predictions g; of
the special case of the general GD algorithm applied to this problem satisfy

D (G —)’ < > (flar) - yt)Q] +2WVXE + W2X. (2.3)

< /inf [
+ ||f ||2SW t

A bound of
> (G —w) < WX
i

was proved by [FM91]in the case when £ = 0. It is surprising that the time required for the
algorithm we describe for this problem to make its tth prediction g, is O(t) in the uniform
cost model provided that all past examples and predictions are saved. This is because,
although the vector space in which we live in this application consists of functions, and
therefore the GD algorithm requires us to add functions, we can see that the functions that
arise are piecewise linear, with the pieces being a simple functions of the past examples and
predictions. In the case F = 0, however, there is an algorithm with an optimal bound on
S°(9: — y¢)* which computes its tth prediction in O(logt) time [KL92], raising the hope
that there might be a similarly efficient robust algorithm. In Theorem 5.2 we extend our
result to apply to classes of smooth functions of n > 1 real variables studied by Faber and
Mycielski [FM91] in the absence of noise. We further show that upper bound (2.3), even
viewed as bound on the excess of the algorithm’s total loss over the loss of the best function
of “size” at most W, is optimal, constants included.

Littlestone, Long and, Warmuth [LLW91] proved bounds for another algorithm for
learning linear functions in R", in which the @;’s were measured using the infinity norm, and
the w’s were measured using 1-norm. The bounds for the two algorithms are incomparable
because different norms are used to measure the sizes of the «’s and the w’s. However,
the algorithm of [LLW91] does not appear to generalize to arbitrary inner product spaces
as did the GD algorithm, and therefore those techniques do not appear to be as widely
applicable.

One of the main problems with gradient descent is that it motivates a learning rule but
does not give any method for choosing the step size. Our results provide a method for
setting the learning rate essentially optimally when learning linear functions. An exciting
research direction is to investigate to what extent the methods of this paper can be applied
to analyze other simple gradient descent learning algorithms.

3. Preliminaries 5

Our methods can also be applied to the batch setting where the whole sequence of
examples is given to the learner at once and the goal of learning is to find the function
that minimizes the sum of the squared errors. In the case of linear functions this can be
solved directly using the linear least squares method which might be considered to be too
computationally expensive. Iterative methods provide an alternative. We prove a total loss
bound for a gradient descent algorithm by applying the techniques used in this paper. We
then contrast this bound to the standard bound for steepest descent on the squared residual
error.

The paper is organized as follows: In Section 3 we recall the notion of inner product
space and define the algorithm GD. The upper bounds for GD and its variants are all
proven in Section 4; in this section we also prove bounds for the normalized total loss.
These results are applied in Section 5 to derive upper bounds for prediction in classes of
smooth functions. The comparison with the standard steepest descent methods is given in
Section 6. Corresponding lower bounds for the upper bounds of Sections 4 and 5 are then
proven in Section 7. The paper is concluded in Section 8 with some discussion and open
problems.

3 Preliminaries

Let IV denote the positive integers, R denote the reals. Fach prediction of an on-line
algorithm is determined by the previous examples and the current instance. In this paper
the domain of the instances is always a fixed real vector space X'. An on-line prediction
algorithm A is a mapping from (X' X R)* X X’ to R. For a finite sequence s = (@4, ¥1))1<t<m
of examples we let g, denote the prediction of A on the t-th trial, i.e., o

U = A(((ﬂﬁla 3/1)7 .. -7(9015—17 yt—l))a JUt)-

and we call 91,..., 9, the sequence of A’s on-line predictions for s.

An inner product space (sometimes called a pre-Hilbert space since the imposition of one
more assumption yields the definition of a Hilbert space) consists of a real vector space X’
and a function (-,-) (called an inner product) from X' X X to R that satisfies the following
for all w, v,z € X and x € R:

4. (x,x) > 0 whenever & # 0.
The last requirement can be dropped essentially without affecting the definition (see e.g.
[You88, page 25]). For € X', the norm of @, denoted by ||x||, is defined by

lz]| = /(2 2).

(These definitions are taken from [YouS88].)

An example of an inner product is the dot product in R". For x,y € R" for some
positive integer n, the dot product of and y is defined to be

n
Y= szyz
i=1

6 4. Upper bounds for the generalized gradient descent algorithm

Algorithm GD.
Input: n > 0.
e Choose X’s zero vector as initial hypothesis w;y.

o On each trial t:
1. Get ®; € X from the environment.

2. Predict with ¢, = (wy, z¢).
3. Get y; € X from the environment.

4. Update the current hypothesis w; according to the rule

Wiy = Wy + (Y — Gt)t

Figure 4.1: Pseudo-code for algorithm GD. (See Theorems 4.1, 4.2, 4.3, and
Corollary 4.1.)

The 2-norm (or Euclidian norm) of € R" is then defined to be

If fis a function from R to R, we say that f is absolutely continuous® iff there exists a
(Lebesgue measurable) function g : R — R such that for all a,b € R, a < b,

4 Upper bounds for the generalized gradient descent algorithm

In this section, we prove bounds on the worst case sum of squared errors made by
the GD algorithm (described in Figure 4.1). (Technically, Figure 4.1 describes a different
learning algorithm for each initial setting of the “learning rate” n. For a particular n, we
will refer to the associated learning algorithm as GD,, and we will use a similar convention
throughout the paper).

For the remainder of this section, fix an inner product space (X, (-,-)). In what follows,
we will analyze the GD algorithm and its variants starting from the case where only a bound
on the norm of @4, for all ¢, is available to the learner ahead of time. We will then show how
additional information can be exploited for tuning the learning rate n and obtaining better
worst-case bounds. Finally, we will prove a bound for the case where no assumptions are
made on the environment of the learner.

4.1 Bounding the size of the instances

In this section we prove that, when given a bound on max; ||@;||, the algorithm GD can
obtain good bounds on the sum of squared errors. We will remove the assumption of this
knowledge later through application of standard doubling techniques.

®This is shown to be equivalent to a more technical definition in most Calculus texts.

4. Upper bounds for the generalized gradient descent algorithm 7

As a first step, we will show the following which might be interpreted as determining
the “progress” per trial, that is the amount that GD,, learns from an error. The derivation
is based on previous derivations used in the proof of convergence of the on-line gradient
descent algorithm (see, e.g. [DHT73]).

Lemma 4.1: Choose z, w1, w € X,y € R,n > 0. Let §j = (wy,x) and wy = w1 + n(y —
9)z. Then

[y — w||* — ||z — wl|* = (20 — n*[[2]|*)(5 —)" — 20(y — D)y — (w.z)). (4.1)
Proof: Let a = n(y — y). Then wy = wy + ax. Thus

lws —wl|]* = (w2 —w), (w2 — w))
= (w1 +az—w),(w +ax —w))
= |lioy — w2 + (202, (1 — w)) + o]z

This implies

Iz = w]|* — [loy —wl|* = 2a(z, (w1 - w)) + o’[|z||*
= 2a(j — (w,z)) + o*||2||*
= 20(§ - y)+ 2a(y — (w,2)) + o |||

Expanding our definition of a,

Iz — wl” = [Joy —wl|* = =25(§ - y)* + 25(y =)y — (w,2)) + 7*[|z[[*(y — 9)°
= (2 —n*ll=ll*)(3 —y)2+277(@/—@?)(@/—(2)),
establishing (4.1). O

We need the following simple lemma:
Lemma 4.2: For all q,r,c € R such that ¢ < 1,

2
2 gr>eqt - ———. 4.2
L = (4.2)
Proof. For ¢ = 1 the lemma trivially holds. For ¢ < 1 inequality (4.2) is equivalent to
f(g) > 0 where

7‘2

41 —¢)
By differentiating f we find the unique minimum at ¢ = ﬁ where f is seen to have value
0. O

flg)=(1-c)¢* —qr+

As a second step, we show a lower bound on the progress per trial. This lower bound
will be used to prove the main theorem of this section.
Lemma 4.3: Choose x,wy,w € X,y € R. Choose X,3,¢c € R such that X > ||x||,
0<fB<2andc<1. Let

g = (wy,x) and wo :1171—|—%(y—g)):13.

~ 2 ﬁ2 2
x| - g g e

8 4. Upper bounds for the generalized gradient descent algorithm

Proof. Applying Lemma 4.1 with n = %, we get

=l sl = | (35 - 2R - 00 B - i)
> (B 5) - v B 00— o) (4.3
> P -0 - 55l il (w2 (1.0
> 2K [c@ -0 e W] (4.5

where Inequality (4.3) holds because X > ||z|| and Inequality (4.5) is an application of
Lemma 4.2. |

The next theorem shows that the performance of the GD algorithm degrades gracefully
as the relationship to be modelled moves away from being (w,-) from some w € X.
Throughout the paper, for all sequences s = ((x¢, y:)): € (X' X R)* and all w € X, let

LUJ(S) = Z((wth) - yt)27
t
and for all W > 0 let

Lw(s) = ||ul:ﬂ£W Law(s).

Theorem 4.1: Choose 0 < 3 <2,0<ec¢< 1, méeN, and s = {(x¢,y))i<m € (X X R)™.

Let X > max ||z¢||, and let g1, ..., §n be the sequence of GD g, x2’s on-line predictions for
s. Then,
.- X?wl? Lw(s)
)i — y1)? < inf . 4.6
2= < il |- 5t @ et =) o

In particular, if 3 = 2/3 and ¢ = 1/2,

m

DG =)* < 2.25 inf [X|Jl|” + Luo(s)] (4.7)

t=1

Notice that, by setting ¢ = 1/2 and by letting 5 — 0, the constant on the Lqip(s) term
can be brought arbitrarily close to 1 at the expense of increasing the constant on the other
term.

Proof: Choose w € X. If wy,ws,..., w41 is the sequence of GDg,/x2’s hypotheses, we
get
~28-8% 2 B 2
Z vz (G —)" — N (y: — (w,z))
Ly 25— R =0)
< S (e — wl? [lorgs —w]®) by Temma 4.3
=1
= oy — w[]* ~ [Jn41 — w]]?
< wl)? since w1 = 0 and || - || is nonnegative.

4. Upper bounds for the generalized gradient descent algorithm 9

Thus
m 2 2 2
2 s _ 2| o X7l
2 [0 g o < 55
Solving for >_,(§; — y;)? yields
S X2 ? B2
i — yi)* < L
20 e g o)
establishing (4.6). Formula (4.7) then follows immediately. O

Observe that the assumption @q = 0 is chosen merely for convenience. If 1y #* 0, then
the factor ||w||? in (4.6) is replaced by ||w — 1w¢||?. Thus, in this more general form, the
bound of Theorem 4.1 depends on the squared distance between the starting vector w; and
the “target” w

Normalized loss

If we run algorithm GD with learning rate 7 set in each trial ¢ to we can then

B
IEIRN
prove a variant of Theorem 4.1 for a different notion of loss (previously studied by Faber
and Mycielski [FM91]) which we call normalized loss. The normalized loss incurred by an
(@t—yt)2
)) i 4 IEAR
following result via a straightforward variant of the proof of Lemma 4.3.

Lemma 4.4: Choose z,wi,we X, ye R, 0<3<2, and0<ec< 1. Let

algorithm predicting ¢; on a trial (x,y;) is defined by . We begin by proving the

§=(@,2) and wzzwﬁﬁ(y—y)w.
Then

ﬁ2
(26 = B?)x(1

2y 287

@y — w||* — ||y — wl|* > e (9 —y)’c—

= w2

We now extend Theorem 4.1 to the normalized loss. Let

le2ls

i fw Ty —Z/t))
t=1

Theorem 4.2: Choose 0 < < 2, m € N, and s = ((2¢,9¢))i<m € (X X R)™. Let
U1y s Jm be the sequence of GDg|\z, |2 's on-line predictions for s. Then,

S [el Li(s)
2P St [ﬂ(Q—ﬂ)ch(?—ﬂ)%(l—C)]

t=1

for all 0 < ¢ < 1. In particular, if =2/3 and ¢ = %,

S (9 — yt)2 . 2 ;
> <225 inf, [llwl[* + Li(s)] -

10 4. Upper bounds for the generalized gradient descent algorithm

The above theorem shows that the knowledge of a bound on ||a;||, for all ¢, is not necessary
when the normalized loss is used. This raises the question of whether the setting n = W
(for some fixed not depending on ||x;||) can be successfully used when the goal is to
minimize the total unnormalized loss and no bound on ||z,|| is available beforehand. On
the other hand, suppose X' = R, and the inner product is just the ordinary product on the
reals. Suppose further that for ¢ > 0, 21 = ¢, and y; = 1, whereas for all ¢t > 1, 2y = 1
and y; = 0. Then for smaller and smaller ¢, the total (unnormalized) quadratic loss of the
GD with the above setting of # in this case is unbounded, whereas there is a w such that

S (way — y)* = 1, namely 0. (This example is due to Ethan Bernstein.)

4.2 Tuning

The next result shows that, if certain parameters are known in advance, optimal perfor-
mance can be obtained by tuning 3. We need a technical lemma first. Define the function
G:Ri_ — (0,1] by

WX
X0 = T
Lemma 4.5: Forall E.W, X >0
(WX)? E -)
Bk T @A~ E T (WX W XVE (4.8)

— _ VE+WX
whenever = G(E,W,X) and ¢ = NN R

Proof. First notice that, when § and ¢ are chosen as in the lemma’s hypothesis, 0 < 3 <1
and % <e¢< 1forall E,W,X > 0. Second, observe that (4.8) can be rewritten as

1 y2

FEE AR T R)
where y = W—\/?(Now let
1 +1
F=GEW.X)= == and = ny+ -
Then y
(2-pP)=1 and (Q—ﬁ)Qc(l—c)zl—ﬁ:y_l_—l.
By making these substitutions in (4.9) we obtain y + 1+ y(y + 1) = (y + 1)]

Theorem 4.3: For each E, X, W > 0, the algorithm GDggw,x)/x2 has the following
properties.

Choose m € N, s = (x4, Y¢))i<m € (X' X R)™, such that max, ||z|| < X, and Ly (s) < F.
Let g1, ..., 9 be the sequence_of GDgpw,x)/x2 s on-line predictions for s. Then,

m

S (G —y)? < Lw(s) + 2WXVE + (WX)2

t=1

4. Upper bounds for the generalized gradient descent algorithm 11

max; ||z¢|]*> < X. By Theorem 4.1, for all 3 and ¢ such that 0 < 3 <2 and 0 < ¢ < 1, we
have

Proof. Choose m € N, s = (4, ¥))i<m € (X X R)™ for which Ly (s) < E and

N B Luo(s)
;(%_%) S W |z-pe T 2_prel_o)
< (VVX)2 Lw(s)
S B2=pe T @ prdi—q
Xy Liv(s)
= Beopr T oy et w(e)
(WX)>2 E
S Ba_pe @ prdi o W)

since Ly (s) < F and 0 < (2 — 8)%¢c(1 — ¢) < 1 for the given ranges of ¢ and 3. Applying
Lemma 4.5 for = G(E,W,X)and ¢ = VELWX o then conclude

WEF+WX’
S —9)? < E+2WXVE+(WX) = E+ Ly(s)
t=1
= Lw(s)+2WXVE + (WX)?
as desired. O

A corollary to Theorem 4.3 can be obtained for the normalized loss.
Corollary 4.1: For any E,W > 0 and for any m € N. Choose s = (¢, Ys))i<m €
(X X R)™, such that Ly (s) < E. Let §1,...,9m be the sequence of GD g woay/||z.|2 s
on-line predictions for s. Then,

m

3 (9=)" < Liy(s) + 2WVE + W2

o el

Proof. Lemma 4.5 can be applied to Theorem 4.2 with X = 1 and ¢ = 2\\//_%:% The
derivation then closely resembles that of Theorem 4.3. O

The following corollary shows an application of Theorem 4.3 to classes of linear functions
in R". For each W, n, let LINy,,, be the set of all functions f from R" to R for which there
exists w € R", ||wl||z < W, such that for all z € R", f(z) = w - x.

Corollary 4.2: For each E, X, W > 0, the GD algorithm has the following properties.
Choose m,n € N, (¢, y:))i<m € (R" X R)™, such that maxy||z||; < X, and there
is an f € LINw,, for which 7% (f(@:) — y)> < E. Let §1,...,9m be the sequence of
GDgpw.x)/x2 s on-line predictions for s, when GD is applied to the inner product space
LINw,,. Then,

S(g—y)* < inf [Z(f(a:t) - m?] +2WXVE + W2X2
=1 fELINW’n =1

In the next section, we show that techniques from [CFH*93] may also be applied to obtain
a Ly;x(s)+ O(YVE + Y?) bound on the total loss (unnormalized) when bounds X on
||z¢|| and Y on |y;| are known for all . However, the delicate interplay between Ly and
W (loosely speaking, increasing W decreases Ly) has so far prevented us from obtaining
such a result without knowledge of any of the three parameters W, X, and F.

12 4. Upper bounds for the generalized gradient descent algorithm

Algorithm G1.
Input X,Y > 0.
o Foreach:=0,1,...
— Let k; = 2*(aY)?.
— Repeat
1. Give x4 to GDG(ki,Y/X,X)/X2-
2. Get GDgy, y/x x)/x2’s prediction hy.
3. Predict with

-Y ifh<-Y
@t - ht lf |ht| S Y
Y otherwise.

4. Pass Y to GDG(ki,Y/X,X)/X2‘
until the total loss in this loop exceeds

ki 42Vl + Y2

Figure 4.2: Pseudo-code for the algorithm G1. (See Theorem 4.4.) Here GD is
used as a subroutine and its learning rate is set using the function G defined in
Section 4.2. Optimized values for the parameters are z = 2.618 and a = 2.0979.

4.3 Bounding the range of the y,’s

We now introduce an algorithm G1 for the case where a bound X on the norm of =,
and a bound Y on |y, for all ¢, are known ahead of time. The algorithm is sketched in
Figure 4.2. In the following theorem we show a bound on the difference between the total
loss of G1 and the loss of the best linear predictor w whose norm is bounded by Y/X,
where X bounds the norm of the ;’s and Y bounds the norm of the y;’s. The bound Y/ X
on the norm of the best linear predictor comes from an application of Theorem 4.3 and is
the largest value for which we can prove the result.

Theorem 4.4: For each X,Y > 0, the algorithm G1 has the following properties.
Choose m € N, s = ((Z,y))i<m € (X X [-Y,Y])™ such that max ||z;|]] < X. Let

U1y Um be the sequence of Glx y’s on-line predictions for s. Then
Z(@)t - yt)2 < LY/X(S) +9.2 (Y\/Ly/X(S) + Yz) .
=1

Before proving the theorem we need some preliminary lemmas.
Lemma 4.6: The total loss of G1 incurred in each loop i is at most k; + (2azi/2 + 5)Y2.

Proof. By construction of G1, the total loss incurred in each loop 7 is at most k; + (2azi/2 +
1)Y? plus the possible additional loss on the trial causing the exit from the loop. To upper
bound this additional loss observe that G1 always predicts with a value g; in the range
[-Y,Y]. By hypothesis, y; € [-Y,Y] for all t. Hence the loss of G1 on a single trial ¢ is at
most 4Y 2, |

In what follows W = Y/X. Let s; be the subsequence of s fed to G1 during loop 1.
Lemma 4.7: If G1 exits loop i, then Ly (s;) > ki.

4. Upper bounds for the generalized gradient descent algorithm 13

Proof. By construction of G1, if G1 exits loop ¢, then the total loss incurred on subse-
quence s; is bigger than
ki + 2V Vk; + V2.

Since |y;] <Y and since G1 predicts on each trial of loop ¢ by “clipping” the prediction of
GDg 1, ,w,x)/x2 to make it fit in the range [-Y,Y], we conclude that the total loss incurred
by GD g, w,x)/x2 on loop ¢ is bigger than k; +2Y /k; +Y? as well. Hence by Theorem 4.3
Lw (s;) > k; must hold. O
Lemma 4.8: Let £ be the index of the last loop entered by G1. Then

(z - 1)LW(8))
<1 14 ——.
< ogz< + (@)?
Proof.
L = inf [,
WSl =y et
= f L
i [Z w(]
l
> inf L i
> 2 Lw&ﬁzw w(s >]
= ZLW
=0
-1
> Zk + Lw(s¢) by Lemma 4.7
-1)
> (aY)QZZZ
=0
l
-1
= (ay)2 .
(aY)"——
Solving for £ finally yields the lemma. O

Lemma 4.9: The total loss on G1 on the last loop { entered is at most
Lw(se) + (202 + 5)Y2,

Proof. By construction of G1, the total loss L, of G1 on loop £ is the total loss of
GD g, w,x)/x2 on s¢. If Ly (s¢) < ke, then by Theorem 4.3

Ly < LW(Sg)—|—2WX\/_—|— (WX)?
< Lw(s) +2YVEk +Y? since Y = WX
= Lyw(s))+ (2a2"% + 1)Y?
< Lw(s))+ (2027 + 5)Y2.

On the other hand, if Ly (s/) > k¢, then by Lemma 4.6

Ly < ko + (2612[/2 + 5)Y2
< Lw(si)+ (2az"7% 4 5)Y?

and the proof is concluded. O

14 4. Upper bounds for the generalized gradient descent algorithm

Lemma 4.10: For all x > 0, ((ngg) < 0.8362y/z.

Proof. The inequality in the statement of the lemma is equivalent to

In(1
W H2) () 53621n(2.618) < 0.
N
The function w has a unique maximum at z 2 3.921. At this value of 2 the above
inequality is seen to hold. O

Proof of Theorem 4.4. By Lemmas 4.6 and 4.9,

(@t - yt)2

LM

(i + (20217 + 5)Y?| + Ly (s¢) + (202 4 5)y 2

(]

~ .
[
=]

l
ki +2aY? 3" 2+ Lyr(se) + 5(¢ + 1)Y?

=0

(]

~ .
[
=]

ez _
/7 -1

+1)/2 9gy2
0% _ 2a
wi(s)+ 2aY ol /e

(1 _I_ z—1 LW S) 9
2 (aY)? 2aY 2
+ 2aY — —|— 5+ 1)Y* by Lemma 4.8

Vz-1 vz -
vz (2= DLw(s) 2aY2
Aoyt Ty T e

< Lw(s)+ 2aY? \/Z\/E I (1 + (z _(igfL)ZV(S)) — jiﬂﬂ + 5(¢ + 1)
= Lw(s)+ 2aY2\/_\/2 + 2Y \/ (z—1)Lw(s 2aY2 + 5(0+ 1)Y?
Lw(s) +2Yﬁf \/z—lLW)+ 2aY?

+ 5 [logz (%) + 1] Y? by Lemma 4.8.

< Lw(s;) + Lw(se) +2aY? +5(l+1)Y* by Lemma 4.7

-
Il
=]

IN

T+ 50+ 1)Y?

IN

w(s)

= Lw(s)+2aY?

IN

1
Lemma 4.10 we get

The factor \/\Z/E vz — 1 is minimized at z 2 2.618. Plugging back in this value and using

m

Z(@t - yt)2
=1
1.618 Ly (s)
2 2
< Lw(s)+ 6.6604Y /Ly (s) + 2aY? + 5 l0.8362 T 1] Y
<

Lw(s) + (6.6604 + 5‘(;&) Y/Lw(s)+ (2a+ 5)Y?

4. Upper bounds for the generalized gradient descent algorithm 15

Algorithm G1-norm.
Input Y > 0.
e Foreach¢=0,1,...
— Let k; = 2%(aY).
— Repeat
1. Give x4 to GDG(ki,Y,l)/HZBtH?-
2. Get GDgr, v,y |2 s Prediction hy.
3. Predict with

-Y ifh <-Y
@t - ht lf |ht| S Y
Y otherwise.

4. Pass Y to GDG(k¢,Y,1)/||ZIZt||2'
until the total loss in this loop exceeds

ki 4+ 2V \/k; + Y2

Figure 4.3: Pseudo-code for the algorithm G1l-norm. (See Theorem 4.5.)

Finally, by letting ¢ = 2.0979 to trade-off between the last two terms we obtain

S (G —y)* < Lw(s)+9.2 (Y,/Lw(s) + Y2) :
=1
O

Our next result is a corollary to Theorem 4.4 for the normalized loss. The algorithm
G1l-norm used in the proof is sketched in Figure 4.3. Since the normalized loss is used,
there is no need to know a bound X on the norm of the x;’s.
Theorem 4.5: For all Y > 0, the algorithm G1l-norm has the following properties.
Choose m € N, s = (x4, Yi))i<m € (X X [-Y,Y])™. Let i1,...,0m be the sequence of
Gl-normy s on-line predz'ctz'ons_for s. Then

i (e = 9)° < Ly (s)+9.2 (Y L (s) + Y2) ,

t=1

Proof. Given Corollary 4.1, the proof follows from a straightforward adaptation to the
normalized loss of the proof of Theorem 4.4. O

4.4 Predicting with no a priori information

In this section we remove all assumptions that the learner has prior knowledge. We
introduce a new variant of the GD algorithm which we call G2. This new variant is
described in Figure 4.4. A bound on G2’s total error follows quite straightforwardly from
Theorem 4.1 via the application of standard doubling techniques.

Theorem 4.6: For any 0 < 8 < 2, the algorithm G2g has the following properties.
Choose m € N,s = (4, y))i<m € (X X R)™. Let §1,...,0n be the sequence of G25’s
on-line predictions for s. Then,

. - A(max || |*)|[w]]?
§ —)? < inf
tzl(yt w)” < ul;IéX B(2 - p)c

Lw(s)
(2= 83)%c(1-c)

I

16 4. Upper bounds for the generalized gradient descent algorithm

Algorithm G2.
Input 0 < 8 < 2.
o Let 7=0.
o Let Xy = ||aq]|.
e On each trial ¢:
1. Let j « max{j, [logﬁ @W}
2. Give x; to GDﬁ/(QJ/zXl)z-
3. Use GDﬁ/(zj/zXl)z’s prediction .
4. Pass y; to GDﬁ/(zj/zXl)z-

Figure 4.4: Pseudo-code for the algorithm G2 that uses GD as a subroutine.

(See Theorem 4.6.) The learning rate of GD is dynamically set depending on the
relative sizes of the x;’s.

for all 0 < ¢ < 1. In particular, if 3 =4/3 and ¢ = 1/2,

m

0 —)2 <9 i 2 2 ‘
> (=) <9 ut, | (maxler] Pl + Lu(s)

Proof: Choose 0 < < 2 and 0 < ¢ < 1. Notice that, in addition to a vector of
hypothesized weights, G2 maintains an integer j between trials. Before learning takes
place, j is set to 0. After G2 receives @y, it sets Xy = ||z1|| and starts as a subroutine
GDg/(x,)>- Thereafter, at each trial ¢, after G2 receives @y, it sets

. N |||
J < maxyj, [log 5 X, .

Then G2 uses GDﬁ/(zj/zXl)z for prediction on that trial.

Thus G2 uses GDg/(x,)> as long as the @;’s are smaller than X, at which time it
switches over to C‘rDﬁ/(\/in)27 which it uses as long as the @;’s are no bigger than v/2X;

(possibly for 0 trials), and continues in this manner, successively multiplying its assumed
upper bound on the 2-norm of the &;’s by v/2. Let X = max; ||x¢||. It follows immediately
from Theorem 4.1 that

. (flog\/i(X/Xl)] ||w||2(22/2X1)2) Lw(s)

A

D D P TR

[log, 7 (X/X1)]
_ ||w||2X%(S 22»)+(Lu(s)
2 —

B(2—B)c = B)2e(1 —c)
[w]*XT o108, (x/x1) La(s)

< Be-pe AT sy
Al|wl|> X2 Law(s)

B(2=P)e " (2=0)%c(l—c)

Plugging in § = 4/3 and ¢ = 1/2 completes the proof. O

5. Application to classes of smooth functions 17

5 Application to classes of smooth functions

In this section, we describe applications of the inner product results of the previous
section to arbitrary classes of smooth functions. While we will focus on applications of
Theorem 4.3, we note that analogs of the other results of Section 4 can be obtained in a
similar manner.

5.1 Smooth functions of a single variable

We begin with a class of smooth functions of a single real variable that was studied by
Faber and Mycielski [FM91] in a similar context, except using the assumption that there
was a function f in the class such that y, = f(z) for all . Their methodology was to
prove general results like those of the previous section under that assumption that there
was a w with fuw(z¢) = y, for all ¢, then to reduce the smooth function learning problem
to the more general problem as we do below. Similar function classes have also often been
studied in nonparametric statistics (see, e.g. [Har91]) using probabilistic assumptions on
the generation of the z4’s.

Let R, be the set of nonnegative reals. We define the set SMOyw to be all absolutely
continuous f : Ry — R for which

1. f(0)=0

2. /o7 fl(2)2dz < W.
The assumption that f(0) = 0 will be satisfied by many natural functions of interest.
Examples include distance traveled as a function of time and return as a function of
investment. We will prove the following result about SMOwy.
Theorem 5.1: For each E, X, W > 0, there is a prediction algorithm Agvo with the
following properties.
Choose m € N, s = ((24,Y:))i<m € ([0, X] X R)™, such that there is an f € SMOy for
which 7 (f(2) —y)* < E. Let §1,...,0m be the sequence of Asno s on-line predictions
for s. Then,

S—w)* < inf D (fla) —w)®| +2WVXE+ WX,

t=1 FeSMOw t=1

Proof: For now, let us ignore computational issues. We’ll treat them again after the proof.
Fix F, X, W > 0. The algorithm Agno operates by reducing the problem of learning

SMOy to a more general problem of the type treated in the previous section.

Let L?(Ry) be the space of (measurable) functions g from R, to R for which
157 9(u)? duis finite. L*(Ry) is well known to be an inner product space (see, e.g. [You88]),
with the inner product defined by

(91,92) :/o g1(u)gz2(u) du.
Further, we define g3 = g2 + g1 by
(Ve) ga(z) = ga(2) + g1(2),

and g3 = kg1 by
(Vz) gs(z) = Kgi(2).

18 5. Application to classes of smooth functions

Algorithm Agyo.
Input: £, W, X > 0.
e On each trial ¢:
1. Get 2 € [0, X] from the environment.
2. Give X<z € Lz(R+) to GDG(E,W,X)/X2'
3. Use GDg(g w, x)/x2’s prediction g;.
4

. Pass Y to GDG(E,W,X)/X2'

Figure 5.1: Pseudo-code for algorithm Agpyo. (See Theorem 5.1.) Algorithm GD
(here used as a subroutine) is applied to the inner product space X = L*(Ry).
The function G, used to set GD’s learning rate, is defined in Section 4.2.

Now apply algorithm GD to this particular inner product space, L?*(R,), with learning
rate 1 set to G(F, W, X), where the function G is defined in Section 4.2. For any = > 0,
define x<, : Ry — R by

1 ifu<z

0 otherwise.

X<o(u) = {

Note that for any z < X

el = ¢ | et du= vz < VX, (5.1)

and therefore y<, € L*(Ry).

In Figure 5.1, we give a short description of the algorithm Agyo. Note that for any
f € SMOw,

1= [s du<w, (5.2)

Finally, note that since f(0) =0,

xr

(Foxes) = [T Povetny du= [*) du=fo) = f0) = J) 53
Thus, if there is an f € SMOyy for which "7, (f(xt) — y)* < F, then f' € L*(Ry) has
[|f/]] < W and satisfies

m

S x<ar) = w)* < E.

=1
Combining this with (5.1) and Theorem 4.3, we can see that GD’s predictions satisfy

m m

D —w)* < inf IS ((f X<ar) — 1)°| +2WVXE + WX,

- !
t=1 ||f ||SW t=1

The result then follows from the fact that Agymo just makes the same predictions as GD.
O

By closely examining the predictions of the algorithm Agnyo of Theorem 5.1, we can see
that it can be implemented in time polynomial in ¢. The algorithm GD maintains a function
w € L?(R,) which it updates between trials. As before, let w; be the tth hypothesis of

5. Application to classes of smooth functions 19

4

(xtvyt)

A

T hit

he

Y

Figure 5.2: An example of the update of the application of the GD algorithm to
smoothing in the single-variable case. The derivative of the hypothesis is modified
by a constant in the appropriate direction to the left of x4, and left unchanged to
the right.

GD. We can see that w; can be interpreted as the derivative of Agpo’s tth hypothesis.
This is because GD’s tth prediction, and therefore Agymo’s tth prediction, is

(ﬁ%anxt) :/

0

00 Tt

Wi (u)X <o (1) du = /0 wy(u) du.

Hence Agno’s tth hypothesis hy satisfies b} = ;.
GD sets wy to be the constant 0 function, and its update is

Wiy = wi + (Y — @t)XSx”

where 77 doesn’t depend on ¢ (see the proof of Theorem 4.3). Integrating yields the following
expression for Agyo’s t+ 1st hypothesis:

hopa(2) = hi(x) +n(y: — ge)r if 2 < 2y
FUTT hy(x) 4+ 9y — 9e)x, otherwise

and therefore
hiva(x) = he(x) + n(y — §¢) min{ay, z }.

By induction, we have

ht—l—l(x) = 772(3/5 - @s)min{57}v
s<t

trivially computable in O(¢) time if the previous §;’s are saved. This algorithm is illustrated
in Figure 5.2.

5.2 Smooth functions of several variables

Theorem 5.1 can be generalized to higher dimensions as follows. The analogous general-
ization in the absence of noise was carried out in [FM91]. The domain X is R’ . We define
the set SMOw,, to be all functions f: R} — R for which there is a function f such that

20 5. Application to classes of smooth functions

1. V:I:ER”f()— ot JyT flua, o ug) dug, L dug

2. \/fo) ul,...,un))Qdun...dulgVV.
It is easily Verlﬁed that when f exists, it is defined by
~ 0" f(ug, ..., uy)
J(unseeestn) = duy...0u,

We can establish the following generalization of Theorem 5.1.

Theorem 5.2: For each E, X, W > 0 and n € N, there is a prediction algorithm Agmon
with the following properties.

Choose m € N, s = ((®¢,y¢))i<m € ([0, X]" X R)™, such that there is an f € SMOy,, for
which 3701 (f(z)—y)* < E. Let Gy, .. ., §m be the sequence of Asyon ’s on-line predictions
for s. Then,

i(@/t —y)? < inf [i(f(wt) - 3/15)2] LW XYAE + WX

t=1 feSMOW" t=1

Proof. Fix F, X, W,n > 0. The algorithm Agmon operates by reducing the problem of
learning SMOwy,,, to a more general problem of the type treated in the previous section.
Let L?*(R’}) be the space of (measurable) functions g from R to R for which

/ / dwn...dxl

is finite. Again, it is well known (see e.g. [You88]), that L?(R/) has an inner product

defined by
(91,92) = /0 /0 gi(x)ga(z) day, .. day

Now apply algorithm GD to this particular inner product space, LQ(R:L_), with learning
rate 7 set to G(&, W, X)), where the function ¢ is defined in Section 4.2. For any = € R,
define x<z : R} — R as the indicator function of the rectangle [0, 1] X ... x [0, 2,]. Note
that for any = € [0, X]"

||X§w||:¢/0 /0 X<z (w)? duy, ...duy = | [] 2 < X"/ (5.4)
=1

and therefore y<z € L*(RY).
The algori‘ghm Asmon is sketched in Figure 5.3. Note that for any f € SMOywy,,, there
is a function f such that

(vaSZIZt) = /OOO /OOO f(xlv' . '7$n)X§€IZt($17' . '7$n) dwn . .d$1 = f(wt)

Thus, if there is an f € SMOyy,, for which 372, (f(2) — y;)? < E, then the corresponding
f € L*(Ry), which has ||f]] < W, satisfies 7%, ((f, X<z:) — yt) < FE. Combining this
with (5.4) and Theorem 4.3, we can see that GD’s predictions satisfy

i(@/ —y)? < inf [i((]za)(gwt) —y)?| + QWX E + W2X™.

=1 I Fll<w

The result then follows from the fact that Asyon just makes the same predictions as GD.
O

It is easy to see, by extending the discussion following Theorem 5.1, that the predictions
of Theorem 5.2 can be computed in O(tn) time, if previous predictions are saved.

6. A comparison to standard gradient descent methods 21

Algorithm Agyon.
Input: £, W. X > 0.
e On each trial ¢:

1. Get @; € [0, X" from the environment.

[\

Give XSwt € Lz(RZ_) to GDG(E,W,X)/X2‘
3. Use GDg(p,w x)/x2’s prediction .
4. Pass Y to GDG(E,W,X)/X2'

Figure 5.3: Pseudo-code for algorithm Agnon. (See Theorem 5.2.) Algorithm GD
(here used as a subroutine) is applied to the inner product space X' = L*(RY}).
The function G, used to set GD’s learning rate, is defined in Section 4.2.

6 A comparison to standard gradient descent methods

The goal of this section is to compare the total square loss bounds obtained via our
analysis to the bounds obtained via the standard analysis of gradient descent methods.
Standard methods only deal with the case when all the pairs (xy,y;) are given at once
(batch case) rather than in an on-line fashion. Thus we consider the problem of finding the
solution & € R"™ of a system of linear equations

a1121 + a1 222+ ... Fa1 T, = by

U, 1271 + am,2$2+ ce ‘|’am,n$n = bm

where a; ;,0; € R. The above system can be given the more compact representation Az = b,
where b = (b1,...,b,,) and A is a m X n matrix with entries a; ;. (Ax denotes the usual
matrix-vector product.) For simplicity, we assume in this section that Az = b has a solution.
However, we do not assume that the matrix A has any special property.

A standard iterative approach for solving the problem Az = b is to perform gradient
descent over the squared residual error R(z) = ||AZ — b||3, where is a candidate solution.
We will prove upper bounds on the sum of R(@¢) for the sequence @1, &3, ... of candidate
solutions generated by the gradient descent method tuned either according to the standard
analysis or to our analysis. The bound are expressed in terms of both the norm of the
solution = and the eigenvalues of AT A, where AT denotes the transpose matrix of A.

We define the norm ||A]| of a matrix A by

[A[l2 = sup [[Av][2.

|”U 2=1

This is the norm induced by the Euclidean norm for vectors in R" (see [GL89].) Notice
that ||Av||2 < ||A]|z]|v]]2 (Cauchy-Schwartz inequality). We will make use of the following
well-known facts.

Fact 6.1 ([HJ85]): For any real matriz A, ||All2 = VAmnaz, where Apa, is the largest
eigenvalue of AT A.

Fact 6.2 ([HJ85]): For any real matriz A,

14T ||z = []A]]2-

22 6. A comparison to standard gradient descent methods

Given a candidate solution # € R" with squared residual error R(z), the gradient
of R(%) with respect to @ is VR(2) = 2AT (A& — b). By applying the gradient descent
(Kaczmarz) rule for the batch case we derive the update

@41 = 2 — 24T (AZ - b) (6.1)
for some scaling factor n > 0. Simple manipulation shows that
(@) = () + 7| AVR(2)|]3 = nllVR(0) 15 (6:2)

Following the standard analysis of gradient descent, we find the value of 1 minimizing the
LHS of (6.2) at
IVE(Z:)]13

2| AV R(2,)|3
By plugging this optimal value of 7 back in (6.2) we get

m=

IV R(2)|l3

Rl@u) = R = o B

Proposition 6.1: For allm,n > 0, for any mxn real matriz A and for any vector x € R".
Let b = Ax and let A\in, Anaz be, respectively, the smallest and the largest eigenvalues of
AT A. Then, if 2o = 0 and @41 is computed from @&; using formula (6.1) with n = ny,

> ~ (Amzn + Amaav)z

> llad, bl < Bt ek g
Proof. If A\,;, = 0, then the bound holds vacuously. Assume then A,;, > 0. Via an
application of the Kantorovich inequality to the square matrix AT A (see e.g. [Lue84]) it can
be shown that

4AmmAm“’)) R(&:). (6.3)

R(2¢41) < (1_ (Amin + A 2

Therefore, we get
4AminAmaac
(Amzn + Amaaa’)z

By summing up over all iterations ¢ we obtain

R(2y) < R(2y) — R(@441).

4Am2n max
O & Aonas)? Z: (@) < R(®o).

Recalling that &9 = (0,...,0) and making use of Fact 6.1,
(Amzn + Amaav)z

> llaa bl < gt g
< Ol e
S eTMET™T:
WM
= Qo ey

6. A comparison to standard gradient descent methods 23

concluding the proof. |

A different analysis of update (6.1) can be obtained by applying the techniques developed
in Section 4. Let D(2) be the distance ||& —z||3 of & to the solution . An easy adaptation
of Lemma 4.1 shows that

D(&i1) = D(&e) + ||V R(&)|13 — 4nR (). (6:4)
Here, the minimization over 7 yields the optimimum at

2R(2:)
IV R(@)|13

N2 =

We then have the following result.

Proposition 6.2: For all m,n > 0, for any mxn real matriz A and for any vector @ € R".
Let b = Ax and let A\, be the largest eigenvalue of AT A. Then, if 29 = 0 and ®4q s
computed from &, using formula (6.1) with n = 12,

o0
> |[A@: = b3 < Anas 2|13
t=0

Proof. By plugging 7, for n in (6.4) we obtain

. . 4R(xy)*
D(iIZH_l) = D(iBt) - _,(7})2
IV R(24)][5

|| A2, — b]|3

|AT(Az, - b)|[3

= D(&) — || Az, — bll3

. A2 — B3 By
< D(xy) — W by definition of ||AT||,
. Az, — b||3

Therefore, rearranging the above and summing up over all iterations ¢,

dollAz —bll3 < [|A]3D(@0)
t=0

[RUHIESLS

since &g = (0,...,0). By Fact 6.1, this implies

o0
> |[A@: = b3 < Anas 2|13
t=0

|

In summary, we compared two tunings of 5 for the learning rule (6.1). The first and
standard one maximizes the decrease of ||AZ — b||3 and the second one maximizes the
decrease in ||& — z||3, where @ is a solution.

The first method has the advantage that one can show that ||AZ — b||3 decreases by a
fixed factor in each trial (Inequality (6.3)). (Note that this factor is 1 when A,,;, = 0, and
this holds when A does not have full rank.) In contrast, matrices A can be constructed
where updating with the optimal learning rate 7y causes an increase in ||AZ — b||3.

24 7. Lower bounds

The second method, however, always leads to better bounds on 5, ||Az; — b||3 since

\ < (Amzn + Amaaa’)z
e = 4Am2n

for all Ayuin, Amae > 0. (Notice that the corresponding bound for the first method is vacuous
when A, = 0, which holds, as we said above, when A does not have full rank.)

7 Lower bounds

In this section, we describe lower bounds which match the upper bounds of Theorems 4.3,
5.1, and 5.2, constants included. In fact, these lower bounds show that even the upper bound
on the excess of the algorithm’s squared loss above the best fixed element within a given
class of functions is optimal.

Theorem 7.1: Fix an inner product space X for which an orthonormal basis can be found.®
For all E. X, W > 0 and all prediction algorithm A, there exists n € N and a pair
(z,y) € X X R, such that ||z|| < X and the following hold: There is a w € X for which
l|w|| =W and ((w,z) — y)* = E. Furthermore, if § = A(x;) then

(9 —y)? > E+2WXVE + (WX)>

Proof. Choose an orthonormal basis for X. Set # = (X,0,...), y = sgn(—§)(WX + VE),
and w = (sgn(—¢)W,0,...). The result then follows easily. 0

To establish the upper bound of Theorem 4.4, in which general bounds were obtained
without any knowledge of an upper bound on Ly (s), we required the assumption that
the y;’s were in a known range [—Y,Y] and compared the total loss of the GD algorithm
on s against Ly (s), where W = Y/(max, ||2||). Therefore, the above lower bound does
not say anything about the optimality of those results. The following lower bound shows
that Theorem 4.4 cannot be significantly improved in general. It further has obvious
consequences concerning the finite dimension case when the “noise level” E is not too
large relative to the number n of variables as well as X and Y.

Theorem 7.2: Let <Xd>deN be any sequence of inner product spaces such that X; is a
d-dimensional vector space. Choose X,Y, FE > 0. Let n be any integer such that

n > (1 + g) : (7.1)

Then for any prediction algorithm A there is a sequence ((@1,y1))i<n € (X x [-Y,Y])"
such that

1. Forall1 <t <mn, ||z = X.
2. If for each t, g = A(((1,y1), - - 5 (Ti—1, Yi-1)), 1), then

n

Sgi— 32> (Y +VE? = E4+2YVE + V2

t=1

An orthonormal basis can be found under quite general conditions. See e.g. [You88] for details.

7. Lower bounds 25
3. There exists w € R" such that ||lw| = Y/X and
Z (yt - (wth))z =FE.

Proof. Choose X,Y, E > 0 and choose n € N so that (7.1) is satisfied. Let e1,...,e, be
an orthonormal basis of A}, (since X}, is a finite-dimensional inner product space, such an

orthonormal basis can always be found). Let x; = Xe;, for ¢ = 1,...,n. Since the basis
is orthonormal, ||z;|| = X for all ¢, fulfilling part 1. Consider the adversary which at each
step t = 1,...,n feeds the algorithm with vector ; and, upon algorithm’s prediction g,

responds with

Y +
1= sgnl i) —
This implies
2
. Y +vVFE
(9= 9:)° > | —F—=—
Vn

forall t =1,2,...,n. This proves part 2. Now let w be the vector of A,, with coordinates

(Sgn(1)%, . "Sgn(_?n)%)

with respect to the basis eq,...,e,. To prove part 3, first notice that ||w|| = Y/X. Second,
for each t = 1,...,n we have

2 = -sn Y—I—\/_ i, W :
(ye — (e, w))" = _g() —F— NG — (@1,)]

= |sgn(—)Y—I_\/_
= _g Ut NG

= -Sgn(t)Y;I_/%/_ X(Sgn(—?t)Y/X)r

NG
(- 5)

X(et,w)]

N
E
.

This concludes the proof of part 3. Finally, notice that (7.1) implies that for all ¢ =

1,2,....n
Y+VE
lye| = ——=— <Y
Vn

The proof is complete. O

We conclude with a lower bound for smooth functions.

Theorem 7.3: Choose ., X, W > 0, n € N, and a prediction algorithm A. Then there
exists m € N, s = (24, Ys))i<m € ([0, X]" X R)™, such that the following hold: There is a
Junction f € SMOw,, for which >.7%(f(x+) — y)? < E. If for each t,

gr = A(((21,91)5 - -5 (oo, Ye-1)), 21,

26 8. Discussion and conclusions

then

m

S —ye)? > B4 2WXYAVE 4 2w X"

t=1

Proof. In fact m = 1 suffices in this case. Let 1 = (X,..., X). Suppose the first prediction
71 of A is nonpositive. Let

n = WX+ VE
and let the function f: R} — R be defined by

W i3
flz) = X2 z’—H1%
if € [0, X]", and f(x) = 0 otherwise. Then, for any = € [0, X]",

f(a:):/Oxl.../oxnf(ul,...,un) du, .. .duq,

where f = XV,IL//Z). The following are then easily verified
1. f(0)=0

2. (f(e1) = o) = (WX2 = (WX2 4 VE))? = E

3o I JoT F(w)? duy . duy = X e/ X122 = W

4 (h—m)?> (WX 4 VE?R = E+2WX"/2/E + W2Xn
since §; < 0. The case in which ¢; > 0 can be handled symmetrically. O

8 Discussion and conclusions

In this paper we have investigated the performance of the gradient descent rule applied
to the problem of on-line prediction in arbitrary inner product spaces. Through a reduction,
we then applied our results to natural classes of smooth functions.

One of the most interesting contributions of this work is perhaps the derivation of the
optimal “learning rate” for gradient descent methods when the goal is to minimize the
worst-case sum of squared errors. Qur tuning of the learning rate is based on a prior:
information that can be guessed on-line with an increase in the total loss of constant factors
only. In the case of iterative solution of systems of linear equations, we also showed that,
with respect to the sum of squared errors, the tuning provided by our analysis compares
favorably against the tuning obtained via the standard gradient descent analysis.

It is an open problem whether, instead of using adversarial arguments as we do here, our
lower bounds can already be obtained when the examples are randomly and independently
drawn from a natural distribution. For more simple functions this was done in [CFHT93]:
the lower bounds there are with respect to uniform distributions and the upper bounds
which essentially meet the lower bounds are proven for the worst-case as done in this paper.

An interesting open problem is whether a variant of the GDx y algorithm (see Fig-
ure 4.2) exists such that, for all sequences s = (@, ¥¢))i<m satisfying ||z;|| < X and |y| <Y
for all ¢, the additional total loss of the algorithm on s over and above infwex Lw(s) is
bounded by a function of X, Y only. Notice that this does not contradict Theorem 7.2.

References 27

The most challenging research direction is to prove worst case loss bounds for other
gradient descent applications (by tuning the learning rate) as we have done in this paper
for linear functions and the square loss. For example, are there useful worst case loss
bounds for learning linear functions with other loss functions than the square loss. Another
interesting case would be worst case loss bounds for learning the class of linear functions
passed through a fixed transfer function (such as tanh or the sigmoid function) for any
reasonable loss function.

Acknowledgements

We thank Ethan Bernstein for helpful conversations, and for pointing out an error in an
earlier version of this paper. Thanks to Jyrki Kivinen for simplying the proof of Theorem
7.2 and to Peter Auer, Gianpiero Cattaneo, and Shuxian Lou for their comments. We are
also grateful to Jan Mycielski for telling us about the paper by Kaczmarz.

Part of this research was done while Nicold Cesa-Bianchi was visiting UC Santa Cruz
partially supported by the “Progetto finalizzato sistemi informatici e calcolo parallelo” of
CNR under grant 91.00884.69.115.09672 (Italy), and Phil Long was at Technische Uni-
versitaet Graz supported by a Lise Meitner Fellowship from the Fonds zur Férderung der
wissenschaftlichen Forschung (Austria), and at UC Santa Cruz supported by a UCSC Chan-
cellor’s dissertation-year fellowship. Phil Long was also supported by AFOSR grant F49620-
92-J-051. Manfred Warmuth was supported by by ONR grant NO0014-91-J-1162 and NSF
grant TRI-9123692.

References

[CFHT93] N.Cesa-Bianchi, Y. Freund, D.P. Helmbold, D. Haussler, R.E. Schapire, and M.K.
Warmuth. How to use expert advice. Proceedings of the 25th ACM Symposium
on the Theory of Computation, 1993.

[Daw84] A. Dawid. Statistical theory: The prequential approach. Journal of the Royal
Statistical Society (Series A), pages 278-292, 1984.

[DHT73] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley,
1973.

[FM91] V. Faber and J. Mycielski. Applications of learning theorems. Fundamenta
Informaticae, 15(2):145-167, 1991.

[FMG92] M. Feder, N. Merhav, and M. Gutman. Universal prediction of individual se-
quences. [FEF transactions of information theory, 38:1258-1270, 1992.

[GL&9] G.H. Golub and C.F. Van Loan. Matriz Computations. The John Hopkins UP,
1989.

[Har91] ~ W. Hardle. Smoothing Techniques. Springer Verlag, 1991.

[HJ85] R.A. Horn and C.R. Johnson. Matriz Analysis. Cambridge University Press,
1985.

[Kac37] S. Kaczmarz. Angenaherte Auflésung von systemen linearer gleichungen. Bull.
Acad. Polon. Sci. Lett. A, 35:355-357, 1937.

[KL92] D. Kimber and P.M. Long. The learning complexity of smooth functions of a

single variable. The 1992 Workshop on Computational Learning Theory, pages
153159, 1992.

28

[LLWO1]

[LMT91]

[Lue84]
[LW91]

[MF92]

[MHL92]
[MS91]
[Myc88]
[Tous9]
[Tou90]
[Vov90]
[WTH60]

[You88]

References

N. Littlestone, P.M. Long, and M.K. Warmuth. On-line learning of linear func-
tions. Proceedings of the 23rd ACM Symposium on the Theory of Computation,
pages 465475, 1991.

R.P. Lippman, J.E. Moody, and D.S. Touretsky. Advances in Neural Information
Processing Systems, volume 3. Morgan Kaufmann, 1991.

D.G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, 1984.
N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Tech-
nical Report UCSC-CRL-91-28, UC Santa Cruz, October 1991. A preliminary
version appeared in the Proceedings of the 30th Annual IEEF Symposium on the
Foundations of Computer Science, October 89, pages 256-261.

N. Merhav and M. Feder. Universal sequential learning and decision from indi-
vidual data sequences. The 1992 Workshop on Computational Learning Theory,
pages 413-427, 1992.

J.E. Moody, S.J. Hanson, and R.P. Lippman. Advances in Neural Information
Processing Systems, volume 4. Morgan Kaufmann, 1992.

J. Mycielski and S. Swierczkowski. General learning theorems. Unpublished,
1991.

J. Mycielski. A learning algorithm for linear operators. Proceedings of the
American Mathematical Society, 103(2):547-550, 1988.

David S. Touretsky. Advances in Neural Information Processing Systems, vol-
ume 1. Morgan Kaufmann, 1989.

David S. Touretsky. Advances in Neural Information Processing Systems, vol-
ume 2. Morgan Kaufmann, 1990.

V. Vovk. Aggregating strategies. In Proceedings of the 3nd Workshop on Com-
putational Learning Theory, pages 371-383. Morgan Kaufmann, 1990.

B. Widrow and M.E. Hoff. Adaptive switching circuits. 1960 IRE WESCON
Conv. Record, pages 96104, 1960.

N. Young. An introduction to Hilbert space. Cambridge University Press, 1988.

