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1. Introduction 11 IntroductionIn this paper we analyze algorithms in the on-line prediction model. We assume theprediction process occurs in a sequence of trials. At trial number t the prediction algorithm� is presented with an instance xt chosen from some domain X ,� is required to return a real number ŷt,� then receives a real number yt from the environment which we interpret as the truth.The total loss of an algorithm over a sequence ofm trials isPmt=1(ŷt�yt)2: A critical aspectof this model is that when the algorithm is making its prediction ŷt for the tth instance xt,it has access to pairs (xs; ys) only for s < t.We adopt a worst-case outlook, following [Daw84, Vov90, LW91, LLW91, FMG92,MF92,CFH+93] and many others, assuming nothing about the environment of the predictor, inparticular the pairs (x1; y1); : : : ; (xm; ym). Our results can be loosely interpreted as havingthe following message: \To the extent that the environment is friendly, our algorithms havesmall total loss." Of course, the strength of such results depends on how \friendly" isformalized. For the most general results of this paper (described in Section 4), the domainX is assumed to be a (real) vector space.1 To formalize \friendly," we make use of thegeneral notion of an inner product (�; �), which is any function from X � X to R that hascertain properties (see Section 3 for a list). The inner product formalization is very general.One of the simplest inner products may be de�ned as follows in the case that X = Rn forsome n: (u; v) = nXi=1 uivi = u � v:Notice that for any inner product space hX ; (�; �)i, for anyw 2 X , we obtain a linear functionfw from X to R by de�ning fw(x) := (w;x): (1:1)Typically, we express the bounds on the loss of our algorithms as a function ofinfw Xt ((w;xt)� yt)2; (1:2)where the in�mum is taken over all w whose norm p(w;w) is bounded by a parameter.Roughly speaking, this quantity measures the total mis�t or noise of the environment withrespect to the best \model" in the inner product space. In other words, bounds in terms of(1.2) are strong to the extent that there is a (not too large)w for which fw \approximately"maps xt's to corresponding yt's. In many cases we can even bound the additional loss ofthe algorithm over the above in�mum similarly to the additional loss bounds of [CFH+93]obtained in a simpler setting. Our bounds are worst-case in the sense that they hold for allsequences of pairs (xt; yt). (In some cases we assume the norm of the xt's is bounded by asecond parameter.)Faber and Mycielski [FM91] noted that a natural class of smooth functions of a single realvariable can be de�ned using inner products as above. The same class of smooth functions,as well as linear functions in Rn, has been heavily studied in Statistics [Har91] (however,with probabilistic assumptions). Thus, general results for learning classes of functionsde�ned by arbitrary inner product spaces can be applied in a variety of circumstances.1The general results will hold for �nite and in�nite dimensional vector spaces.



2 1. IntroductionFaber and Mycielski proved bounds on Pt(ŷt � yt)2 under the assumption that there wasa w 2 X for which for all t, yt = (w;xt), and described some applications of this resultfor learning classes of smooth functions. Mycielski [Myc88] had already treated the specialcase of linear functions in Rn. The algorithm they analyzed for this \noise-free" case was ageneralization of the on-line gradient descent algorithm2 to arbitrary inner product spaces.We call this algorithm GD (de�ned below). In this paper we analyze the behavior of GDin the case in which there isn't necessarily a w for which for all t, yt = (w;xt). Faber andMycielski [FM91] also studied this case, but their algorithms made use of side informationwhich, in this paper, we assume is not available.Gradient descent is an algorithm design technique which has achieved considerablepractical success in more complicated hypothesis spaces, in particular neural networks[Tou89, Tou90, LMT91, MHL92]. Despite this success, there appears not to be a principledmethod for tuning the learning rate. In this paper, we tune the learning rate in presence ofnoise with the goal of minimizing the worst-case total squared loss over the best that canbe obtained using elements from a given class of linear functions.The GD algorithm maintains an element ŵ of X as its hypothesis which is updatedbetween trials. For each t, let ŵt be the hypothesis before trial t (the initial hypothesis ŵ1is the zero vector). GD predicts with ŷt = (ŵt;xt) and updates the hypothesis followingthe rule ŵt+1 = ŵt � �(ŷt � yt)xt: (1:3)where � > 0 is the learning rate parameter.If the real vector space X has �nite dimension, then each element v of X can be uniquelyrepresented by the real vector c(v) of its Fourier coe�cients, once a basis is chosen. If thebasis is orthonormal, by simple linear algebra facts we have ŷt = (ŵt;xt) = c(ŵt) � c(xt).Furthermore, the vector 2(ŷt� yt)c(xt) is the gradient, with respect to the vector c(ŵt), ofthe squared error (ŷt � yt)2 for the pair (xt; yt). Hence, in this case, rule (1.3) is indeed an\on-line" version of gradient descent performed over the quadratic loss.When X is an arbitrary real vector space, and therefore its elements may not be uniquelyrepresented by �nite tuples of reals, the GD algorithm is a natural generalization of on-linegradient descent3 and may viewed as follows [MS91].4 After each trial t, there is a set St ofelements w of X for which (w;xt) = yt. Intuitively, our hypothesis would like to be morelike the elements of St, since we are banking on there being a nearly functional relationshipfw between the xs's and the ys's. It does not want to change too much, however, becausethe example (xt; yt) may be misleading. The GD algorithm \takes a step" in the directionof the element of St which is closest to ŵt (using the natural notion of the distance betweenelements of an inner product space).2Even though in the neural network community this algorithm is usually credited to Widrow and Ho�[WH60], a similar algorithm for the iterative solution of a system of linear equations was previously developedby Kaczmarz [Kac37].3To be precise, if X has countably in�nite dimension, then GD can still be viewed as a mappingperforming on-line gradient descent. Such a mapping is clearly noncomputable in general since each stepmight involve the update of an in�nite number of coe�cients. However, note that the t-th hypothesis ŵtis a linear combination of the �rst t � 1 examples fx1; : : : ;xt�1g and can thus be represented by t � 1 realcoe�cients.4Actually, this interpretation appears to be valid only in the slightly more restricted case that hX ; (�; �)iis a Hilbert space.



2. Overview of results 32 Overview of resultsWe now give an overview of the bounds obtained in this paper. For any v 2 X ,jjvjj = p(v; v) measures the \size" of v. We show in Theorem 4.3 that for all sequencess = h(xt; yt)it 2 (X �R)� and for all positive reals X , W , and E, if maxt jjxtjj � X andLW (s) � E, where LW (s) = infjjwjj�W Xt ((w;xt)� yt)2;then the GD algorithm (with learning rate tuned to X ,W , and E) achieves the followingXt (ŷt � yt)2 � LW (s) + 2(WX)pE + (WX)2: (2:1)(Notice that LW (s) � LW 0(s) for all W 0 � W .) The above bound is tight in a very strongsense: We show in Theorem 7.1 a lower bound of LW (s) + 2(WX)pE+ (WX)2 that holdsfor all X , W , and E, also when these parameters are given to the algorithm ahead of time.We then remove the assumption that a bound E on LW (s) is known for some W .However, we require that yt's are in a certain range [�Y; Y ] for some Y > 0. In Theorem 4.4we show that for all positive reals X and Y and for all sequences s = h(xt; yt)it 2(X � [�Y; Y ])� such that maxt jjxtjj � X , the sum of squared errors incurred on s bya variant of the GD algorithm (with learning rate tuned to the remaining parameters Xand Y ) is at most LY=X(s) + 9:2 �YqLY=X(s) + Y 2� : (2:2)Notice that the above result also holds when LY=X(s) is replaced by LW (s) for any W �Y=X . Observe thatPt(ŷt�yt)2�LY=X(s) can be interpreted as the excess of the algorithm'stotal loss over the best that can be obtained using vectors w whose norms are at mostY=X . The above bound is tight within constant factors: We show in Theorem 7.2 thatfor all prediction algorithms A and all X; Y;E > 0, there is a sequence s on X � [�Y; Y ]such that maxt jjxtjj = X , LY=X(s) = E, and the total squared loss of A on s is at leastE + 2YpE + Y 2. However, the dimension of the inner product space must increase as afunction of E. As before, the lower bound holds also if all three parameters are given tothe algorithm ahead of time.We continue by giving the algorithm less information about the sequence. For the casewhen only a bound X on the norm of any xt is known, we show in Theorem 4.1 that theGD algorithm, tuned to X , achieves the following upper bound on the sum of its squarederrors: 2:25 infw2X "(maxt jjxtjj2)jjwjj2 +Xt ((w;xt)� yt)2#on any sequence s = h(xt; yt)it 2 (X �R)� such that maxt jjxtjj � X . Note that this resultshows how the GD algorithm is able to trade-o� between the \size" of a w, represented byits norm, and the extent to which w \�ts" the data sequence, represented by the sum ofsquared errors incurred by fw.Finally, with no assumptions on the environment of the learner, a further variant of theGD algorithm has the following bound on the sum of squared errors (Theorem 4.6)9 infw2X "(maxt jjxtjj2)jjwjj2 +Xt ((w;xt)� yt)2#



4 2. Overview of resultsthat holds on any sequence s = h(xt; yt)it 2 (X �R)�.We may apply our general bounds to a class of smooth functions of a single realvariable, in the manner used by Faber and Mycielski [FM91] in the case that there is aperfect smooth function. The smoothness of a function is measured by the 2-norm of itsderivative. Of course, the derivative measures the steepness of a function at a given point,and therefore the 2-norm (or any norm, for that matter) of the derivative measures thetendency of the function to be steep. When normalized appropriately, the 2-norm of afunction f 's derivative can be seen to be between the average steepness of f and the f 'smaximum steepness. In Theorem 5.1 we show that if there is an (absolutely continuous)function f : R+ ! R with f(0) = 0 which tends not to be very steep and which tends toapproximately map xt's to the yt's, and if the xt's are not very big, then an application ofthe GD algorithm to this case obtains good bounds on the sum of squared errors. Moreformally, we show that, for example, if the xt's are taken from [0; X ], and if f : [0;1)! Rsatis�es jjf 0jj2 = qRX0 f 0(u)2 du � W , and Pt(f(xt)� yt)2 � E, then the predictions ŷt ofthe special case of the general GD algorithm applied to this problem satisfyXt (ŷt � yt)2 � infjjf 0jj2�W "Xt (f(xt)� yt)2# + 2WpXE +W 2X: (2:3)A bound of Xt (ŷt � yt)2 � W 2Xwas proved by [FM91] in the case when E = 0. It is surprising that the time required for thealgorithm we describe for this problem to make its tth prediction ŷt is O(t) in the uniformcost model provided that all past examples and predictions are saved. This is because,although the vector space in which we live in this application consists of functions, andtherefore the GD algorithm requires us to add functions, we can see that the functions thatarise are piecewise linear, with the pieces being a simple functions of the past examples andpredictions. In the case E = 0, however, there is an algorithm with an optimal bound onPt(ŷt � yt)2 which computes its tth prediction in O(log t) time [KL92], raising the hopethat there might be a similarly e�cient robust algorithm. In Theorem 5.2 we extend ourresult to apply to classes of smooth functions of n > 1 real variables studied by Faber andMycielski [FM91] in the absence of noise. We further show that upper bound (2.3), evenviewed as bound on the excess of the algorithm's total loss over the loss of the best functionof \size" at most W , is optimal, constants included.Littlestone, Long and, Warmuth [LLW91] proved bounds for another algorithm forlearning linear functions inRn, in which the xt's were measured using the in�nity norm, andthe w's were measured using 1-norm. The bounds for the two algorithms are incomparablebecause di�erent norms are used to measure the sizes of the x's and the w's. However,the algorithm of [LLW91] does not appear to generalize to arbitrary inner product spacesas did the GD algorithm, and therefore those techniques do not appear to be as widelyapplicable.One of the main problems with gradient descent is that it motivates a learning rule butdoes not give any method for choosing the step size. Our results provide a method forsetting the learning rate essentially optimally when learning linear functions. An excitingresearch direction is to investigate to what extent the methods of this paper can be appliedto analyze other simple gradient descent learning algorithms.



3. Preliminaries 5Our methods can also be applied to the batch setting where the whole sequence ofexamples is given to the learner at once and the goal of learning is to �nd the functionthat minimizes the sum of the squared errors. In the case of linear functions this can besolved directly using the linear least squares method which might be considered to be toocomputationally expensive. Iterative methods provide an alternative. We prove a total lossbound for a gradient descent algorithm by applying the techniques used in this paper. Wethen contrast this bound to the standard bound for steepest descent on the squared residualerror.The paper is organized as follows: In Section 3 we recall the notion of inner productspace and de�ne the algorithm GD. The upper bounds for GD and its variants are allproven in Section 4; in this section we also prove bounds for the normalized total loss.These results are applied in Section 5 to derive upper bounds for prediction in classes ofsmooth functions. The comparison with the standard steepest descent methods is given inSection 6. Corresponding lower bounds for the upper bounds of Sections 4 and 5 are thenproven in Section 7. The paper is concluded in Section 8 with some discussion and openproblems.3 PreliminariesLet N denote the positive integers, R denote the reals. Each prediction of an on-linealgorithm is determined by the previous examples and the current instance. In this paperthe domain of the instances is always a �xed real vector space X . An on-line predictionalgorithm A is a mapping from (X �R)��X toR. For a �nite sequence s = h(xt; yt)i1�t�mof examples we let ŷt denote the prediction of A on the t-th trial, i.e.,ŷt = A(((x1; y1); : : : ; (xt�1; yt�1)); xt):and we call ŷ1; : : : ; ŷm the sequence of A's on-line predictions for s.An inner product space (sometimes called a pre-Hilbert space since the imposition of onemore assumption yields the de�nition of a Hilbert space) consists of a real vector space Xand a function (�; �) (called an inner product) from X � X to R that satis�es the followingfor all u; v;x 2 X and � 2 R:1. (u; v) = (v;u);2. (�u; v) = �(u; v);3. (u+ v;x) = (u;x) + (v;x);4. (x;x) > 0 whenever x 6= 0.The last requirement can be dropped essentially without a�ecting the de�nition (see e.g.[You88, page 25]). For x 2 X , the norm of x, denoted by jjxjj, is de�ned byjjxjj = q(x;x):(These de�nitions are taken from [You88].)An example of an inner product is the dot product in Rn. For x;y 2 Rn for somepositive integer n, the dot product of x and y is de�ned to bex � y = nXi=1 xiyi:



6 4. Upper bounds for the generalized gradient descent algorithmAlgorithm GD.Input: � � 0.� Choose X 's zero vector as initial hypothesis ŵ1.� On each trial t:1. Get xt 2 X from the environment.2. Predict with ŷt = (ŵt;xt).3. Get yt 2 X from the environment.4. Update the current hypothesis ŵt according to the ruleŵt+1 = ŵt + �(yt � ŷt)xt:Figure 4.1: Pseudo-code for algorithm GD. (See Theorems 4.1, 4.2, 4.3, andCorollary 4.1.)The 2-norm (or Euclidian norm) of x 2 Rn is then de�ned to bejjxjj2 = px � x =vuut nXi=1 x2i :If f is a function from R to R, we say that f is absolutely continuous5 i� there exists a(Lebesgue measurable) function g :R! R such that for all a; b 2R, a � b,f(b)� f(a) = Z ba g(x) dx:4 Upper bounds for the generalized gradient descent algorithmIn this section, we prove bounds on the worst case sum of squared errors made bythe GD algorithm (described in Figure 4.1). (Technically, Figure 4.1 describes a di�erentlearning algorithm for each initial setting of the \learning rate" �. For a particular �, wewill refer to the associated learning algorithm as GD�, and we will use a similar conventionthroughout the paper).For the remainder of this section, �x an inner product space hX ; (�; �)i. In what follows,we will analyze theGD algorithm and its variants starting from the case where only a boundon the norm of xt, for all t, is available to the learner ahead of time. We will then show howadditional information can be exploited for tuning the learning rate � and obtaining betterworst-case bounds. Finally, we will prove a bound for the case where no assumptions aremade on the environment of the learner.4.1 Bounding the size of the instancesIn this section we prove that, when given a bound on maxt jjxtjj, the algorithm GD canobtain good bounds on the sum of squared errors. We will remove the assumption of thisknowledge later through application of standard doubling techniques.5This is shown to be equivalent to a more technical de�nition in most Calculus texts.



4. Upper bounds for the generalized gradient descent algorithm 7As a �rst step, we will show the following which might be interpreted as determiningthe \progress" per trial, that is the amount that GD� learns from an error. The derivationis based on previous derivations used in the proof of convergence of the on-line gradientdescent algorithm (see, e.g. [DH73]).Lemma 4.1: Choose x; ŵ1;w 2 X ; y 2 R; � > 0. Let ŷ = (ŵ1;x) and ŵ2 = ŵ1 + �(y �ŷ)x. Thenjjŵ1 �wjj2 � jjŵ2 �wjj2 = (2�� �2jjxjj2)(ŷ � y)2 � 2�(y� ŷ)(y � (w;x)): (4:1)Proof: Let � = �(y� ŷ): Then ŵ2 = ŵ1 + �x. Thusjjŵ2 �wjj2 = ((ŵ2 �w); (ŵ2 �w))= ((ŵ1 + �x�w); (ŵ1 + �x �w))= jjŵ1 �wjj2 + (2�x; (ŵ1 �w)) + �2jjxjj2:This impliesjjŵ2 �wjj2 � jjŵ1 �wjj2 = 2�(x; (ŵ1 �w)) + �2jjxjj2= 2�(ŷ � (w;x)) + �2jjxjj2= 2�(ŷ � y) + 2�(y � (w;x)) + �2jjxjj2:Expanding our de�nition of �,jjŵ2 �wjj2 � jjŵ1 �wjj2 = �2�(ŷ � y)2 + 2�(y� ŷ)(y � (w;x)) + �2jjxjj2(y � ŷ)2= �(2� � �2jjxjj2)(ŷ � y)2 + 2�(y� ŷ)(y � (w;x));establishing (4.1). 2We need the following simple lemma:Lemma 4.2: For all q; r; c 2 R such that c � 1,q2 � qr � cq2 � r24(1� c) : (4:2)Proof. For c = 1 the lemma trivially holds. For c < 1 inequality (4.2) is equivalent tof(q) � 0 where f(q) = (1� c)q2 � qr + r24(1� c) :By di�erentiating f we �nd the unique minimum at q = r2(1�c) where f is seen to have value0. 2As a second step, we show a lower bound on the progress per trial. This lower boundwill be used to prove the main theorem of this section.Lemma 4.3: Choose x; ŵ1;w 2 X ; y 2 R. Choose X; �; c 2 R such that X � jjxjj,0 < � < 2 and c � 1. Letŷ = (ŵ1;x) and ŵ2 = ŵ1 + �X2 (y � ŷ)x:Thenjjŵ1 �wjj2 � jjŵ2 �wjj2 � 2� � �2X2 "c(ŷ � y)2 � �2(2� � �2)2(1� c)(y � (w;x))2# :



8 4. Upper bounds for the generalized gradient descent algorithmProof. Applying Lemma 4.1 with � = �X2 , we getjjŵ1 � wjj2 � jjŵ2 �wjj2 = " 2�X2 � �2jjxjj2X4 ! (ŷ � y)2 � 2�X2 (y � ŷ)(y � (w;x))#� " 2�X2 � �2X2! (ŷ � y)2 � 2�X2 (y � ŷ)(y � (w;x))# (4.3)� 2� � �2X2 �(ŷ � y)2 � 2�2� � �2 jy � ŷj jy � (w;x)j� (4.4)� 2� � �2X2 "c(ŷ � y)2 � �2(2� � �2)2(1� c)(y � (w;x))2# (4.5)where Inequality (4.3) holds because X � jjxjj and Inequality (4.5) is an application ofLemma 4.2. 2The next theorem shows that the performance of the GD algorithm degrades gracefullyas the relationship to be modelled moves away from being (w; �) from some w 2 X .Throughout the paper, for all sequences s = h(xt; yt)it 2 (X �R)� and all w 2 X , letLw(s) =Xt ((w;xt)� yt)2;and for all W > 0 let LW (s) = infkwk�W Lw(s):Theorem 4.1: Choose 0 < � < 2, 0 < c � 1, m 2 N , and s = h(xt; yt)it�m 2 (X �R)m.Let X � maxt jjxtjj, and let ŷ1; : : : ; ŷm be the sequence of GD�=X2's on-line predictions fors. Then, mXt=1(ŷt � yt)2 � infw2X " X2jjwjj2(2� � �2)c + Lw(s)(2� �)2c(1� c)# : (4:6)In particular, if � = 2=3 and c = 1=2,mXt=1(ŷt � yt)2 � 2:25 infw2X hX2jjwjj2 + Lw(s)i : (4:7)Notice that, by setting c = 1=2 and by letting � ! 0, the constant on the Lw(s) termcan be brought arbitrarily close to 1 at the expense of increasing the constant on the otherterm.Proof: Choose w 2 X . If ŵ1; ŵ2; : : : ; ŵm+1 is the sequence of GD�=X2 's hypotheses, weget mXt=1 2� � �2X2 "c(ŷt � yt)2 � �2(2� � �2)2(1� c)(yt � (w;xt))2#� mXt=1(jjŵt �wjj2 � jjŵt+1 �wjj2) by Lemma 4.3= jjŵ1 �wjj2 � jjŵm+1 �wjj2� jjwjj2 since ŵ1 = ~0 and jj � jj is nonnegative.



4. Upper bounds for the generalized gradient descent algorithm 9Thus mXt=1 "c(ŷt � yt)2 � �2(2� � �2)2(1� c)(yt � (w;xt))2# � X2jjwjj22� � �2Solving for Pt(ŷt � yt)2 yieldsmXt=1(ŷt � yt)2 � X2jjwjj2(2� � �2)c + �2(2� � �2)2c(1� c)Lw(s)establishing (4.6). Formula (4.7) then follows immediately. 2Observe that the assumption ŵ1 = ~0 is chosen merely for convenience. If ŵ1 6= ~0, thenthe factor jjwjj2 in (4.6) is replaced by jjw � ŵ1jj2. Thus, in this more general form, thebound of Theorem 4.1 depends on the squared distance between the starting vector ŵ1 andthe \target" w.Normalized lossIf we run algorithm GD with learning rate � set in each trial t to �jjxtjj2 , we can thenprove a variant of Theorem 4.1 for a di�erent notion of loss (previously studied by Faberand Mycielski [FM91]) which we call normalized loss. The normalized loss incurred by analgorithm predicting ŷt on a trial (xt; yt) is de�ned by (ŷt�yt)2jjxtjj2 . We begin by proving thefollowing result via a straightforward variant of the proof of Lemma 4.3.Lemma 4.4: Choose x; ŵ1;w 2 X ; y 2 R, 0 < � < 2, and 0 < c � 1. Letŷ = (ŵ1;x) and ŵ2 = ŵ1 + �jjxjj2 (y � ŷ)x:Thenjjŵ1 �wjj2 � jjŵ2 �wjj2 � 2� � �2jjxjj2 "(ŷ � y)2c� �2(2� � �2)2(1� c)(y � (w;x))2# :We now extend Theorem 4.1 to the normalized loss. LetL0w(s) = mXt=1 (fw(xt)� yt)2jjxtjj2 :Theorem 4.2: Choose 0 < � < 2, m 2 N , and s = h(xt; yt)it�m 2 (X � R)m. Letŷ1; : : : ; ŷm be the sequence of GD�=jjxtjj2's on-line predictions for s. Then,mXt=1 (ŷt � yt)2jjxtjj2 � infw2X " jjwjj2�(2� �)c + L0w(s)(2� �)2c(1� c)#for all 0 < c � 1. In particular, if � = 2=3 and c = 12 ,mXt=1 (ŷt � yt)2jjxtjj2 � 2:25 infw2X hjjwjj2 + L0w(s)i :



10 4. Upper bounds for the generalized gradient descent algorithmThe above theorem shows that the knowledge of a bound on jjxtjj, for all t, is not necessarywhen the normalized loss is used. This raises the question of whether the setting � = �jjxtjj2(for some �xed � not depending on jjxtjj) can be successfully used when the goal is tominimize the total unnormalized loss and no bound on jjxtjj is available beforehand. Onthe other hand, suppose X = R, and the inner product is just the ordinary product on thereals. Suppose further that for � > 0, x1 = �, and y1 = 1, whereas for all t > 1, xt = 1and yt = 0. Then for smaller and smaller �, the total (unnormalized) quadratic loss of theGD with the above setting of � in this case is unbounded, whereas there is a w such thatPt(wxt � yt)2 = 1, namely 0. (This example is due to Ethan Bernstein.)4.2 Tuning �The next result shows that, if certain parameters are known in advance, optimal perfor-mance can be obtained by tuning �. We need a technical lemma �rst. De�ne the functionG : R3+ ! (0; 1] by G(E;W;X) = WXpE +WX:Lemma 4.5: For all E;W;X > 0(WX)2�(2� �)c + E(2� �)2c(1� c) = E + (WX)2+ 2WXpE (4:8)whenever � = G(E;W;X) and c = pE+WX2pE+WX .Proof. First notice that, when � and c are chosen as in the lemma's hypothesis, 0 < � � 1and 12 � c < 1 for all E;W;X � 0. Second, observe that (4.8) can be rewritten as1�(2� �)c + y2(2� �)2c(1� c) = (y + 1)2 (4:9)where y = pEWX . Now let� = G(E;W;X) = 1y + 1 and c = y + 12y + 1 :Then (2� �)c = 1 and (2� �)2c(1� c) = 1� � = yy + 1 :By making these substitutions in (4.9) we obtain y + 1 + y(y + 1) = (y + 1)2. 2Theorem 4.3: For each E;X;W � 0, the algorithm GDG(E;W;X)=X2 has the followingproperties.Choose m 2 N , s = h(xt; yt)it�m 2 (X �R)m, such that maxt jjxtjj � X, and LW (s) � E.Let ŷ1; : : : ; ŷm be the sequence of GDG(E;W;X)=X2's on-line predictions for s. Then,mXt=1(ŷt � yt)2 � LW (s) + 2WXpE + (WX)2:



4. Upper bounds for the generalized gradient descent algorithm 11Proof. Choose m 2 N , s = h(xt; yt)it�m 2 (X � R)m for which LW (s) � E andmaxt jjxtjj2 � X . By Theorem 4.1, for all � and c such that 0 < � < 2 and 0 < c � 1, wehave mXt=1(ŷt � yt)2 � infw2X " X2kwk2�(2� �)c + Lw(s)(2� �)2c(1� c)#� (WX)2�(2� �)c + LW (s)(2� �)2c(1� c)= (WX)2�(2� �)c + LW (s)(2� �)2c(1� c) � LW (s) + LW (s)� (WX)2�(2� �)c + E(2� �)2c(1� c) �E + LW (s)since LW (s) � E and 0 < (2� �)2c(1� c) � 1 for the given ranges of c and �. ApplyingLemma 4.5 for � = G(E;W;X) and c = pE+WX2pE+WX , we then concludemXt=1(ŷt � yt)2 � E + 2WXpE + (WX)2 � E + LW (s)= LW (s) + 2WXpE + (WX)2as desired. 2A corollary to Theorem 4.3 can be obtained for the normalized loss.Corollary 4.1: For any E;W � 0 and for any m 2 N . Choose s = h(xt; yt)it�m 2(X � R)m, such that L0W (s) � E. Let ŷ1; : : : ; ŷm be the sequence of GDG(E;W;1)=jjxtjj2'son-line predictions for s. Then,mXt=1 (ŷt � yt)2jjxtjj2 � L0W (s) + 2WpE +W 2:Proof. Lemma 4.5 can be applied to Theorem 4.2 with X = 1 and c = pE+W2pE+W . Thederivation then closely resembles that of Theorem 4.3. 2The following corollary shows an application of Theorem 4.3 to classes of linear functionsin Rn. For each W;n, let LINW;n be the set of all functions f fromRn toR for which thereexists w 2 Rn, jjwjj2 � W , such that for all x 2 Rn, f(x) = w � x.Corollary 4.2: For each E;X;W � 0, the GD algorithm has the following properties.Choose m;n 2 N , h(xt; yt)it�m 2 (Rn � R)m, such that maxt jjxtjj2 � X, and thereis an f 2 LINW;n for which Pmt=1(f(xt) � yt)2 � E. Let ŷ1; : : : ; ŷm be the sequence ofGDG(E;W;X)=X2's on-line predictions for s, when GD is applied to the inner product spaceLINW;n. Then,mXt=1(ŷt � yt)2 � inff2LINW;n " mXt=1(f(xt)� yt)2#+ 2WXpE +W 2X2:In the next section, we show that techniques from [CFH+93] may also be applied to obtaina LY=X(s) + O(YpE + Y 2) bound on the total loss (unnormalized) when bounds X onjjxtjj and Y on jytj are known for all t. However, the delicate interplay between LW andW (loosely speaking, increasing W decreases LW ) has so far prevented us from obtainingsuch a result without knowledge of any of the three parameters W , X , and E.



12 4. Upper bounds for the generalized gradient descent algorithmAlgorithm G1.Input X; Y � 0.� For each i = 0; 1; : : :{ Let ki = zi(aY )2.{ Repeat1. Give xt to GDG(ki;Y=X;X)=X2.2. Get GDG(ki;Y=X;X)=X2's prediction ht.3. Predict with ŷt = 8><>: �Y if ht < �Yht if jhtj � YY otherwise.4. Pass yt to GDG(ki ;Y=X;X)=X2.until the total loss in this loop exceedski + 2Ypki + Y 2:Figure 4.2: Pseudo-code for the algorithm G1. (See Theorem 4.4.) Here GD isused as a subroutine and its learning rate is set using the function G de�ned inSection 4.2. Optimized values for the parameters are z = 2:618 and a = 2:0979.4.3 Bounding the range of the yt'sWe now introduce an algorithm G1 for the case where a bound X on the norm of xtand a bound Y on jytj, for all t, are known ahead of time. The algorithm is sketched inFigure 4.2. In the following theorem we show a bound on the di�erence between the totalloss of G1 and the loss of the best linear predictor w whose norm is bounded by Y=X ,where X bounds the norm of the xt's and Y bounds the norm of the yt's. The bound Y=Xon the norm of the best linear predictor comes from an application of Theorem 4.3 and isthe largest value for which we can prove the result.Theorem 4.4: For each X; Y � 0, the algorithm G1 has the following properties.Choose m 2 N , s = h(xt; yt)it�m 2 (X � [�Y; Y ])m such that maxt kxtk � X. Letŷ1; : : : ; ŷm be the sequence of G1X;Y 's on-line predictions for s. ThenmXt=1(ŷt � yt)2 � LY=X(s) + 9:2 �YqLY=X(s) + Y 2� :Before proving the theorem we need some preliminary lemmas.Lemma 4.6: The total loss of G1 incurred in each loop i is at most ki + (2azi=2 + 5)Y 2.Proof. By construction ofG1, the total loss incurred in each loop i is at most ki+(2azi=2+1)Y 2 plus the possible additional loss on the trial causing the exit from the loop. To upperbound this additional loss observe that G1 always predicts with a value ŷt in the range[�Y; Y ]. By hypothesis, yt 2 [�Y; Y ] for all t. Hence the loss of G1 on a single trial t is atmost 4Y 2. 2In what follows W = Y=X . Let si be the subsequence of s fed to G1 during loop i.Lemma 4.7: If G1 exits loop i, then LW (si) > ki.



4. Upper bounds for the generalized gradient descent algorithm 13Proof. By construction of G1, if G1 exits loop i, then the total loss incurred on subse-quence si is bigger than ki + 2Ypki + Y 2:Since jytj � Y and since G1 predicts on each trial of loop i by \clipping" the prediction ofGDG(ki;W;X)=X2 to make it �t in the range [�Y; Y ], we conclude that the total loss incurredby GDG(ki ;W;X)=X2 on loop i is bigger than ki+2Ypki+Y 2 as well. Hence by Theorem 4.3LW (si) > ki must hold. 2Lemma 4.8: Let ` be the index of the last loop entered by G1. Then` � logz �1 + (z � 1)LW (s)(aY )2 � :Proof. LW (s) = infkwk�W Lw(s)= infkwk�W "X̀i=0Lw(si)#� X̀i=0 " infkwk�W Lw(si)#= X̀i=0LW (si)� `�1Xi=0 ki + LW (s`) by Lemma 4.7> (aY )2 `�1Xi=0 zi= (aY )2z` � 1z � 1 :Solving for ` �nally yields the lemma. 2Lemma 4.9: The total loss on G1 on the last loop ` entered is at mostLW (s`) + (2az`=2 + 5)Y 2:Proof. By construction of G1, the total loss L` of G1 on loop ` is the total loss ofGDG(k`;W;X)=X2 on s`. If LW (s`) � k`, then by Theorem 4.3L` � LW (s`) + 2WXpk` + (WX)2� LW (s`) + 2Ypk` + Y 2 since Y = WX= LW (s`) + (2az`=2 + 1)Y 2< LW (s`) + (2az`=2 + 5)Y 2:On the other hand, if LW (s`) > k`, then by Lemma 4.6L` � k` + (2az`=2 + 5)Y 2< LW (s`) + (2az`=2 + 5)Y 2and the proof is concluded. 2



14 4. Upper bounds for the generalized gradient descent algorithmLemma 4.10: For all x � 0, ln(1+x)ln(2:618) � 0:8362px.Proof. The inequality in the statement of the lemma is equivalent toln(1 + x)px � 0:8362 ln(2:618)� 0:The function ln(1+x)px has a unique maximum at x �= 3:921. At this value of x the aboveinequality is seen to hold. 2Proof of Theorem 4.4. By Lemmas 4.6 and 4.9,mXt=1(ŷt � yt)2� `�1Xi=0 hki + (2azi=2 + 5)Y 2i+ LW (s`) + (2az`=2 + 5)Y 2� `�1Xi=0 ki + 2aY 2 X̀i=0 zi=2 + LW (s`) + 5(`+ 1)Y 2< `�1Xi=0LW (si) + LW (s`) + 2aY 2z(`+1)=2 � 1pz � 1 + 5(`+ 1)Y 2 by Lemma 4.7� LW (s) + 2aY 2 z(`+1)=2pz � 1 � 2aY 2pz � 1 + 5(`+ 1)Y 2� LW (s) + 2aY 2rz �1 + (z�1)LW (s)(aY )2 �pz � 1 � 2aY 2pz � 1 + 5(`+ 1)Y 2 by Lemma 4.8= LW (s) + 2aY 2 pzpz � 1s1 + (z � 1)LW (s)(aY )2 � 2aY 2pz � 1 + 5(`+ 1)Y 2< LW (s) + 2aY 2 pzpz � 1  1 +s(z � 1)LW (s)(aY )2 !� 2aY 2pz � 1 + 5(`+ 1)Y 2= LW (s) + 2aY 2 pzpz � 1 + 2Y pzpz � 1q(z � 1)LW (s)� 2aY 2pz � 1 + 5(`+ 1)Y 2� LW (s) + 2Y pzpz � 1q(z � 1)LW (s) + 2aY 2+ 5 �logz �1 + (z � 1)LW (s)(aY )2 �+ 1�Y 2 by Lemma 4.8:The factor pzpz�1pz � 1 is minimized at z �= 2:618. Plugging back in this value and usingLemma 4.10 we getmXt=1(ŷt � yt)2� LW (s) + 6:6604YqLW (s) + 2aY 2 + 5 "0:8362s1:618LW(s)(aY )2 + 1# Y 2� LW (s) + �6:6604+ 5:319a �YqLW (s) + (2a+ 5)Y 2:



4. Upper bounds for the generalized gradient descent algorithm 15Algorithm G1-norm.Input Y � 0.� For each i = 0; 1; : : :{ Let ki = zi(aY )2.{ Repeat1. Give xt to GDG(ki ;Y;1)=jjxtjj2 .2. Get GDG(ki ;Y;1)=jjxtjj2 's prediction ht.3. Predict with ŷt = 8><>: �Y if ht < �Yht if jhtj � YY otherwise.4. Pass yt to GDG(ki ;Y;1)=jjxtjj2 .until the total loss in this loop exceedski + 2Ypki + Y 2:Figure 4.3: Pseudo-code for the algorithm G1-norm. (See Theorem 4.5.)Finally, by letting a = 2:0979 to trade-o� between the last two terms we obtainmXt=1(ŷt � yt)2 � LW (s) + 9:2�YqLW (s) + Y 2� : 2Our next result is a corollary to Theorem 4.4 for the normalized loss. The algorithmG1-norm used in the proof is sketched in Figure 4.3. Since the normalized loss is used,there is no need to know a bound X on the norm of the xt's.Theorem 4.5: For all Y � 0, the algorithm G1-norm has the following properties.Choose m 2 N , s = h(xt; yt)it�m 2 (X � [�Y; Y ])m. Let ŷ1; : : : ; ŷm be the sequence ofG1-normY 's on-line predictions for s. ThenmXt=1 (ŷt � yt)2jjxtjj2 � L0Y (s) + 9:2�YqL0Y (s) + Y 2� :Proof. Given Corollary 4.1, the proof follows from a straightforward adaptation to thenormalized loss of the proof of Theorem 4.4. 24.4 Predicting with no a priori informationIn this section we remove all assumptions that the learner has prior knowledge. Weintroduce a new variant of the GD algorithm which we call G2. This new variant isdescribed in Figure 4.4. A bound on G2's total error follows quite straightforwardly fromTheorem 4.1 via the application of standard doubling techniques.Theorem 4.6: For any 0 < � < 2, the algorithm G2� has the following properties.Choose m 2 N ; s = h(xt; yt)it�m 2 (X � R)m. Let ŷ1; : : : ; ŷm be the sequence of G2�'son-line predictions for s. Then,mXt=1(ŷt � yt)2 � infw2X "4(maxt jjxtjj2)jjwjj2�(2� �)c + Lw(s)(2� �)2c(1� c)#



16 4. Upper bounds for the generalized gradient descent algorithmAlgorithm G2.Input 0 < � < 2.� Let j = 0.� Let X1 = jjx1jj.� On each trial t:1. Let j  maxnj; llogp2 jjxtjjX1 mo.2. Give xt to GD�=(2j=2X1)2 .3. Use GD�=(2j=2X1)2 's prediction ŷt.4. Pass yt to GD�=(2j=2X1)2 .Figure 4.4: Pseudo-code for the algorithm G2 that uses GD as a subroutine.(See Theorem 4.6.) The learning rate of GD is dynamically set depending on therelative sizes of the xt's.for all 0 < c � 1. In particular, if � = 4=3 and c = 1=2,mXt=1(ŷt � yt)2 � 9 infw2X �(maxt jjxtjj2)jjwjj2 + Lw(s)� :Proof: Choose 0 < � < 2 and 0 < c � 1. Notice that, in addition to a vector ofhypothesized weights, G2 maintains an integer j between trials. Before learning takesplace, j is set to 0. After G2 receives x1, it sets X1 = jjx1jj and starts as a subroutineGD�=(X1)2 . Thereafter, at each trial t, after G2 receives xt, it setsj  max�j; �logp2 jjxtjjX1 �� :Then G2 uses GD�=(2j=2X1)2 for prediction on that trial.Thus G2 uses GD�=(X1)2 as long as the xt's are smaller than X1, at which time itswitches over to GD�=(p2X1)2 , which it uses as long as the xt's are no bigger than p2X1(possibly for 0 trials), and continues in this manner, successively multiplying its assumedupper bound on the 2-norm of the xt's by p2. Let X = maxt jjxtjj. It follows immediatelyfrom Theorem 4.1 thatmXt=1(ŷt � yt)2 � 0@dlogp2(X=X1)eXi=0 jjwjj2(2i=2X1)2�(2� �)c 1A+ Lw(s)(2� �)2c(1� c)= jjwjj2X21�(2� �)c 0@dlogp2(X=X1)eXi=0 2i1A+ Lw(s)(2� �)2c(1� c)< jjwjj2X21�(2� �)c22+2 log2(X=X1) + Lw(s)(2� �)2c(1� c)= 4jjwjj2X2�(2� �)c + Lw(s)(2� �)2c(1� c) :Plugging in � = 4=3 and c = 1=2 completes the proof. 2



5. Application to classes of smooth functions 175 Application to classes of smooth functionsIn this section, we describe applications of the inner product results of the previoussection to arbitrary classes of smooth functions. While we will focus on applications ofTheorem 4.3, we note that analogs of the other results of Section 4 can be obtained in asimilar manner.5.1 Smooth functions of a single variableWe begin with a class of smooth functions of a single real variable that was studied byFaber and Mycielski [FM91] in a similar context, except using the assumption that therewas a function f in the class such that yt = f(xt) for all t. Their methodology was toprove general results like those of the previous section under that assumption that therewas a w with fw(xt) = yt for all t, then to reduce the smooth function learning problemto the more general problem as we do below. Similar function classes have also often beenstudied in nonparametric statistics (see, e.g. [Har91]) using probabilistic assumptions onthe generation of the xt's.Let R+ be the set of nonnegative reals. We de�ne the set SMOW to be all absolutelycontinuous f :R+ ! R for which1. f(0) = 02. qR10 f 0(z)2 dz � W .The assumption that f(0) = 0 will be satis�ed by many natural functions of interest.Examples include distance traveled as a function of time and return as a function ofinvestment. We will prove the following result about SMOW .Theorem 5.1: For each E;X;W � 0, there is a prediction algorithm ASMO with thefollowing properties.Choose m 2 N , s = h(xt; yt)it�m 2 ([0; X ]�R)m, such that there is an f 2 SMOW forwhich Pmt=1(f(xt)� yt)2 � E. Let ŷ1; : : : ; ŷm be the sequence of ASMO's on-line predictionsfor s. Then, mXt=1(ŷt � yt)2 � inff2SMOW " mXt=1(f(xt)� yt)2# + 2WpXE +W 2X:Proof: For now, let us ignore computational issues. We'll treat them again after the proof.Fix E;X;W � 0. The algorithm ASMO operates by reducing the problem of learningSMOW to a more general problem of the type treated in the previous section.Let L2(R+) be the space of (measurable) functions g from R+ to R for whichR10 g(u)2 du is �nite. L2(R+) is well known to be an inner product space (see, e.g. [You88]),with the inner product de�ned by(g1; g2) = Z 10 g1(u)g2(u) du:Further, we de�ne g3 = g2 + g1 by(8x) g3(x) = g2(x) + g1(x);and g3 = �g1 by (8x) g3(x) = �g1(x):



18 5. Application to classes of smooth functionsAlgorithm ASMO.Input: E;W;X � 0.� On each trial t:1. Get xt 2 [0; X ] from the environment.2. Give ��xt 2 L2(R+) to GDG(E;W;X)=X2.3. Use GDG(E;W;X)=X2's prediction ŷt.4. Pass yt to GDG(E;W;X)=X2.Figure 5.1: Pseudo-code for algorithm ASMO. (See Theorem 5.1.) Algorithm GD(here used as a subroutine) is applied to the inner product space X = L2(R+).The function G, used to set GD's learning rate, is de�ned in Section 4.2.Now apply algorithm GD to this particular inner product space, L2(R+), with learningrate � set to G(E;W;X), where the function G is de�ned in Section 4.2. For any x � 0,de�ne ��x :R+ ! R by ��x(u) = ( 1 if u � x0 otherwise.Note that for any x � X jj��xjj = sZ 10 ��x(u)2 du = px � pX; (5:1)and therefore ��x 2 L2(R+).In Figure 5.1, we give a short description of the algorithm ASMO. Note that for anyf 2 SMOW , jjf 0jj = sZ 10 f 0(u)2 du � W: (5:2)Finally, note that since f(0) = 0,(f 0; ��x) = Z 10 f 0(u)��x(u) du = Z x0 f 0(u) du = f(x)� f(0) = f(x): (5:3)Thus, if there is an f 2 SMOW for which Pmt=1(f(xt) � yt)2 � E, then f 0 2 L2(R+) hasjjf 0jj � W and satis�es mXt=1((f 0; ��xt)� yt)2 � E:Combining this with (5.1) and Theorem 4.3, we can see that GD's predictions satisfymXt=1(ŷt � yt)2 � infjjf 0jj�W " mXt=1((f 0; ��xt)� yt)2# + 2WpXE +W 2X:The result then follows from the fact that ASMO just makes the same predictions as GD.2 By closely examining the predictions of the algorithm ASMO of Theorem 5.1, we can seethat it can be implemented in time polynomial in t. The algorithmGD maintains a functionŵ 2 L2(R+) which it updates between trials. As before, let ŵt be the tth hypothesis of



5. Application to classes of smooth functions 196
?

y -� xHHHHHHHHHHHH -ht
r(xt; yt)ŷt ������HHHHHH -ht+1Figure 5.2: An example of the update of the application of the GD algorithm tosmoothing in the single-variable case. The derivative of the hypothesis is modi�edby a constant in the appropriate direction to the left of xt, and left unchanged tothe right.GD. We can see that ŵt can be interpreted as the derivative of ASMO's tth hypothesis.This is because GD's tth prediction, and therefore ASMO's tth prediction, is(ŵt; ��xt) = Z 10 ŵt(u)��xt(u) du = Z xt0 ŵt(u) du:Hence ASMO's tth hypothesis ht satis�es h0t = ŵt.GD sets ŵ1 to be the constant 0 function, and its update isŵt+1 = ŵt + �(yt � ŷt)��xt ;where � doesn't depend on t (see the proof of Theorem 4.3). Integrating yields the followingexpression for ASMO's t+ 1st hypothesis:ht+1(x) = ( ht(x) + �(yt � ŷt)x if x � xtht(x) + �(yt � ŷt)xt otherwiseand therefore ht+1(x) = ht(x) + �(yt � ŷt)minfxt; xg:By induction, we have ht+1(x) = �Xs�t(ys � ŷs)minfxs; xg;trivially computable in O(t) time if the previous ŷs's are saved. This algorithm is illustratedin Figure 5.2.5.2 Smooth functions of several variablesTheorem 5.1 can be generalized to higher dimensions as follows. The analogous general-ization in the absence of noise was carried out in [FM91]. The domain X is Rn+. We de�nethe set SMOW;n to be all functions f :Rn+ ! R for which there is a function ~f such that



20 5. Application to classes of smooth functions1. 8x 2 Rn f(x) = R x10 : : : R xn0 ~f(u1; : : : ; un) dun : : : du12. qR10 : : :R10 ( ~f(u1; : : : ; un))2 dun : : :du1 � W .It is easily veri�ed that when ~f exists, it is de�ned by~f(u1; : : : ; un) = @nf(u1; : : : ; un)@u1 : : : @un :We can establish the following generalization of Theorem 5.1.Theorem 5.2: For each E;X;W � 0 and n 2 N , there is a prediction algorithm ASMOnwith the following properties.Choose m 2 N , s = h(xt; yt)it�m 2 ([0; X ]n�R)m, such that there is an f 2 SMOW;n forwhich Pmt=1(f(xt)�yt)2 � E. Let ŷ1; : : : ; ŷm be the sequence of ASMOn's on-line predictionsfor s. Then,mXt=1(ŷt � yt)2 � inff2SMOW;n " mXt=1(f(xt)� yt)2# + 2WXn=2pE +W 2Xn:Proof. Fix E;X;W;n � 0. The algorithm ASMOn operates by reducing the problem oflearning SMOW;n to a more general problem of the type treated in the previous section.Let L2(Rn+) be the space of (measurable) functions g from Rn+ to R for whichZ 10 : : :Z 10 g(x)2 dxn : : :dx1is �nite. Again, it is well known (see e.g. [You88]), that L2(Rn+) has an inner productde�ned by (g1; g2) = Z 10 : : :Z 10 g1(x)g2(x) dxn : : : dx1:Now apply algorithm GD to this particular inner product space, L2(Rn+), with learningrate � set to G(E;W;X), where the function G is de�ned in Section 4.2. For any x 2 Rn+,de�ne ��x :Rn+ ! R as the indicator function of the rectangle [0; x1]� : : :� [0; xn]. Notethat for any x 2 [0; X ]njj��xjj = sZ 10 : : :Z 10 ��x(u)2 dun : : : du1 =vuut nYi=1 xi � Xn=2: (5:4)and therefore ��x 2 L2(Rn+).The algorithm ASMOn is sketched in Figure 5.3. Note that for any f 2 SMOW;n, thereis a function ~f such that( ~f; ��xt) = Z 10 Z 10 ~f(x1; : : : ; xn)��xt(x1; : : : ; xn) dxn : : : dx1 = f(xt):Thus, if there is an f 2 SMOW;n for which Pmt=1(f(x)� yt)2 � E, then the corresponding~f 2 L2(R+), which has jj ~f jj � W , satis�es Pmt=1(( ~f; ��xt) � yt)2 � E. Combining thiswith (5.4) and Theorem 4.3, we can see that GD's predictions satisfymXt=1(ŷt � yt)2 � infjj ~fjj�W " mXt=1(( ~f; ��xt)� yt)2#+ 2WXn=2pE +W 2Xn:The result then follows from the fact that ASMOn just makes the same predictions as GD.2 It is easy to see, by extending the discussion following Theorem 5.1, that the predictionsof Theorem 5.2 can be computed in O(tn) time, if previous predictions are saved.



6. A comparison to standard gradient descent methods 21Algorithm ASMOn.Input: E;W;X � 0.� On each trial t:1. Get xt 2 [0; X ]n from the environment.2. Give ��xt 2 L2(Rn+) to GDG(E;W;X)=X2.3. Use GDG(E;W;X)=X2's prediction ŷt.4. Pass yt to GDG(E;W;X)=X2.Figure 5.3: Pseudo-code for algorithmASMOn. (See Theorem 5.2.) AlgorithmGD(here used as a subroutine) is applied to the inner product space X = L2(Rn+).The function G, used to set GD's learning rate, is de�ned in Section 4.2.6 A comparison to standard gradient descent methodsThe goal of this section is to compare the total square loss bounds obtained via ouranalysis to the bounds obtained via the standard analysis of gradient descent methods.Standard methods only deal with the case when all the pairs (xt; yt) are given at once(batch case) rather than in an on-line fashion. Thus we consider the problem of �nding thesolution x 2 Rn of a system of linear equationsa1;1x1 + a1;2x2+ : : : +a1;nxn = b1...am;1x1 + am;2x2+ : : : +am;nxn = bmwhere ai;j ; bi 2 R. The above system can be given the more compact representation Ax = b,where b = (b1; : : : ; bm) and A is a m � n matrix with entries ai;j . (Ax denotes the usualmatrix-vector product.) For simplicity, we assume in this section thatAx = b has a solution.However, we do not assume that the matrix A has any special property.A standard iterative approach for solving the problem Ax = b is to perform gradientdescent over the squared residual error R(x) = jjAx̂�bjj22, where x̂ is a candidate solution.We will prove upper bounds on the sum of R(x̂t) for the sequence x̂1; x̂2; : : : of candidatesolutions generated by the gradient descent method tuned either according to the standardanalysis or to our analysis. The bound are expressed in terms of both the norm of thesolution x and the eigenvalues of ATA, where AT denotes the transpose matrix of A.We de�ne the norm jjAjj of a matrix A byjjAjj2 = supjjvjj2=1 jjAvjj2:This is the norm induced by the Euclidean norm for vectors in Rn (see [GL89].) Noticethat jjAvjj2 � jjAjj2jjvjj2 (Cauchy-Schwartz inequality). We will make use of the followingwell-known facts.Fact 6.1 ([HJ85]): For any real matrix A, jjAjj2 = p�max, where �max is the largesteigenvalue of ATA.Fact 6.2 ([HJ85]): For any real matrix A,jjAT jj2 = jjAjj2:



22 6. A comparison to standard gradient descent methodsGiven a candidate solution x̂ 2 Rn with squared residual error R(x̂), the gradientof R(x̂) with respect to x̂ is ~rR(x̂) = 2AT (Ax̂ � b). By applying the gradient descent(Kaczmarz) rule for the batch case we derive the updatex̂t+1 = x̂t � �2AT(Ax̂� b) (6:1)for some scaling factor � > 0. Simple manipulation shows thatR(x̂t+1) = R(x̂t) + �2jjA~rR(x̂t)jj22 � �jj~rR(x̂t)jj22: (6:2)Following the standard analysis of gradient descent, we �nd the value of � minimizing theLHS of (6.2) at �1 = jj~rR(x̂t)jj222jjA~rR(x̂t)jj22 :By plugging this optimal value of � back in (6.2) we getR(x̂t+1) = R(x̂t)� jj~rR(x̂t)jj424jjA~rR(x̂t)jj22 :Proposition 6.1: For allm;n > 0, for anym�n real matrix A and for any vector x 2 Rn.Let b = Ax and let �min; �max be, respectively, the smallest and the largest eigenvalues ofATA. Then, if x̂0 = 0 and x̂t+1 is computed from x̂t using formula (6.1) with � = �1,1Xt=0 jjAx̂t � bjj22 � (�min + �max)24�min jjxjj22:Proof. If �min = 0, then the bound holds vacuously. Assume then �min > 0. Via anapplication of the Kantorovich inequality to the square matrix ATA (see e.g. [Lue84]) it canbe shown that R(x̂t+1) � �1� 4�min�max(�min + �max)2�R(x̂t): (6:3)Therefore, we get 4�min�max(�min + �max)2R(x̂t) � R(x̂t)� R(x̂t+1):By summing up over all iterations t we obtain4�min�max(�min + �max)2 1Xt=0R(x̂t) � R(x̂0):Recalling that x̂0 = (0; : : : ; 0) and making use of Fact 6.1,1Xt=0 jjAx̂t � bjj22 � (�min + �max)24�min�max R(x̂0)� (�min + �max)24�min�max jjAxjj22� (�min + �max)24�min�max jjAjj22jjxjj22� (�min + �max)24�min�max �maxjjxjj22= (�min + �max)24�min jjxjj22



6. A comparison to standard gradient descent methods 23concluding the proof. 2A di�erent analysis of update (6.1) can be obtained by applying the techniques developedin Section 4. Let D(x̂) be the distance jjx̂�xjj22 of x̂ to the solution x. An easy adaptationof Lemma 4.1 shows thatD(x̂t+1) = D(x̂t) + �2jj~rR(x̂t)jj22 � 4�R(x̂t): (6:4)Here, the minimization over � yields the optimimum at�2 = 2R(x̂t)jj~rR(x̂t)jj22 :We then have the following result.Proposition 6.2: For all m;n > 0, for any m�n real matrix A and for any vector x 2 Rn.Let b = Ax and let �max be the largest eigenvalue of ATA. Then, if x̂0 = 0 and x̂t+1 iscomputed from x̂t using formula (6.1) with � = �2,1Xt=0 jjAx̂t � bjj22 � �maxjjxjj22:Proof. By plugging �2 for � in (6.4) we obtainD(x̂t+1) = D(x̂t)� 4R(x̂t)2jj~rR(x̂t)jj22= D(x̂t)� jjAx̂t � bjj22 jjAx̂t � bjj22jjAT (Ax̂t � b)jj22� D(x̂t)� jjAx̂t � bjj22jjAT jj22 by de�nition of jjAT jj2� D(x̂t)� jjAx̂t � bjj22jjAjj22 by Fact 6.2.Therefore, rearranging the above and summing up over all iterations t,1Xt=0 jjAx̂t � bjj22 � jjAjj22D(x̂0)= jjAjj22jjxjj22since x̂0 = (0; : : : ; 0). By Fact 6.1, this implies1Xt=0 jjAx̂t � bjj22 � �maxjjxjj22: 2In summary, we compared two tunings of � for the learning rule (6.1). The �rst andstandard one maximizes the decrease of jjAx̂ � bjj22 and the second one maximizes thedecrease in jjx̂� xjj22, where x is a solution.The �rst method has the advantage that one can show that jjAx̂� bjj22 decreases by a�xed factor in each trial (Inequality (6.3)). (Note that this factor is 1 when �min = 0, andthis holds when A does not have full rank.) In contrast, matrices A can be constructedwhere updating with the optimal learning rate �2 causes an increase in jjAx̂� bjj22.



24 7. Lower boundsThe second method, however, always leads to better bounds on Pt jjAx̂t � bjj22 since�max � (�min + �max)24�minfor all �min; �max � 0. (Notice that the corresponding bound for the �rst method is vacuouswhen �min = 0, which holds, as we said above, when A does not have full rank.)7 Lower boundsIn this section, we describe lower bounds which match the upper bounds of Theorems 4.3,5.1, and 5.2, constants included. In fact, these lower bounds show that even the upper boundon the excess of the algorithm's squared loss above the best �xed element within a givenclass of functions is optimal.Theorem 7.1: Fix an inner product space X for which an orthonormal basis can be found.6For all E;X;W � 0 and all prediction algorithm A, there exists n 2 N and a pair(x; y) 2 X �R, such that jjxjj � X and the following hold: There is a w 2 X for whichjjwjj = W and ((w;x)� y)2 = E. Furthermore, if ŷ = A(xt) then(ŷ � y)2 � E + 2WXpE + (WX)2:Proof. Choose an orthonormal basis for X . Set x = (X; 0; : : :), y = sgn(�ŷ)(WX +pE),and w = (sgn(�ŷ)W; 0; : : :). The result then follows easily. 2To establish the upper bound of Theorem 4.4, in which general bounds were obtainedwithout any knowledge of an upper bound on LW (s), we required the assumption thatthe yt's were in a known range [�Y; Y ] and compared the total loss of the GD algorithmon s against LW (s), where W = Y=(maxt jjxtjj). Therefore, the above lower bound doesnot say anything about the optimality of those results. The following lower bound showsthat Theorem 4.4 cannot be signi�cantly improved in general. It further has obviousconsequences concerning the �nite dimension case when the \noise level" E is not toolarge relative to the number n of variables as well as X and Y .Theorem 7.2: Let hXdid2N be any sequence of inner product spaces such that Xd is ad-dimensional vector space. Choose X; Y;E > 0. Let n be any integer such thatn �  1 + pEY !2 : (7:1)Then for any prediction algorithm A there is a sequence h(x1; y1)it�n 2 (Xn � [�Y; Y ])nsuch that1. For all 1 � t � n, kxtk = X.2. If for each t, ŷt = A(((x1; y1); : : : ; (xt�1; yt�1));xt); thennXt=1(yt � ŷt)2 � (Y +pE)2 = E + 2YpE + Y 2:6An orthonormal basis can be found under quite general conditions. See e.g. [You88] for details.



7. Lower bounds 253. There exists w 2 Rn such that kwk = Y=X andnXt=1 (yt � (w;xt))2 = E:Proof. Choose X; Y;E > 0 and choose n 2 N so that (7.1) is satis�ed. Let e1; : : : ; en bean orthonormal basis of Xn (since Xn is a �nite-dimensional inner product space, such anorthonormal basis can always be found). Let xi = Xei, for i = 1; : : : ; n. Since the basisis orthonormal, kxik = X for all i, ful�lling part 1. Consider the adversary which at eachstep t = 1; : : : ; n feeds the algorithm with vector xt and, upon algorithm's prediction ŷt,responds with yt := sgn(�ŷt)Y +pEpn :This implies (yt � ŷt)2 �  Y +pEpn !2for all t = 1; 2; : : : ; n. This proves part 2. Now let w be the vector of Xn with coordinates�sgn(�ŷ1)Y=Xpn ; : : : ; sgn(�ŷn)Y=Xpn �with respect to the basis e1; : : : ; en. To prove part 3, �rst notice that kwk = Y=X . Second,for each t = 1; : : : ; n we have(yt � (xt;w))2 = "sgn(�ŷt)Y +pEpn � (xt;w)#2= "sgn(�ŷt)Y +pEpn �X(et;w)#2= "sgn(�ŷt)Y +pEpn �X �sgn(�ŷt)Y=Xpn �#2=  Y +pEpn � Ypn!2= En :This concludes the proof of part 3. Finally, notice that (7.1) implies that for all t =1; 2; : : : ; n jytj = Y +pEpn � Y:The proof is complete. 2We conclude with a lower bound for smooth functions.Theorem 7.3: Choose E;X;W � 0, n 2 N , and a prediction algorithm A. Then thereexists m 2 N , s = h(xt; yt)it�m 2 ([0; X ]n�R)m, such that the following hold: There is afunction f 2 SMOW;n for which Pmt=1(f(xt)� yt)2 � E. If for each t,ŷt = A(((x1; y1); : : : ; (xt�1; yt�1));xt);



26 8. Discussion and conclusionsthen mXt=1(ŷt � yt)2 � E + 2WXn=2pE + 2W 2XnProof. In factm = 1 su�ces in this case. Let x1 = (X; : : :; X). Suppose the �rst predictionŷ1 of A is nonpositive. Let y1 = WXn=2 +pEand let the function f :Rn+ ! R be de�ned byf(x) = WXn=2 nYi=1xi;if x 2 [0; X ]n, and f(x) = 0 otherwise. Then, for any x 2 [0; X ]n,f(x) = Z x10 : : :Z xn0 ~f(u1; : : : ; un) dun : : :du1;where ~f � WXn=2 . The following are then easily veri�ed1. f(0) = 02. (f(x1)� y1)2 = (WXn=2 � (WXn=2 +pE))2 = E3. qR10 : : :R10 ~f(u)2 dun : : :du1 = qXn(c=Xn=2)2 = W4. (ŷ1 � y1)2 � (WXn=2 +pE)2 = E + 2WXn=2pE +W 2Xnsince ŷ1 � 0. The case in which ŷ1 > 0 can be handled symmetrically. 28 Discussion and conclusionsIn this paper we have investigated the performance of the gradient descent rule appliedto the problem of on-line prediction in arbitrary inner product spaces. Through a reduction,we then applied our results to natural classes of smooth functions.One of the most interesting contributions of this work is perhaps the derivation of theoptimal \learning rate" for gradient descent methods when the goal is to minimize theworst-case sum of squared errors. Our tuning of the learning rate is based on a prioriinformation that can be guessed on-line with an increase in the total loss of constant factorsonly. In the case of iterative solution of systems of linear equations, we also showed that,with respect to the sum of squared errors, the tuning provided by our analysis comparesfavorably against the tuning obtained via the standard gradient descent analysis.It is an open problem whether, instead of using adversarial arguments as we do here, ourlower bounds can already be obtained when the examples are randomly and independentlydrawn from a natural distribution. For more simple functions this was done in [CFH+93]:the lower bounds there are with respect to uniform distributions and the upper boundswhich essentially meet the lower bounds are proven for the worst-case as done in this paper.An interesting open problem is whether a variant of the GDX;Y algorithm (see Fig-ure 4.2) exists such that, for all sequences s = h(xt; yt)it�m satisfying jjxtjj � X and jytj � Yfor all t, the additional total loss of the algorithm on s over and above infw2X Lw(s) isbounded by a function of X; Y only. Notice that this does not contradict Theorem 7.2.
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