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Figure  11. The result comparison of the lossy line circuit by SPICE3e2
and the 4th order approximation withnon-time-of-flight (nonTOF)

Figure  12. The comparison of the lossy line circuit by SPICE3e2 and the
4th order approximation with time-of-flight (TOF).
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flight can be accurately extracted for computing the propagation delay. The accuracy of

approximation of output responses, due to the extraction of the time-of-flight, can be greatly

improved.
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Figure  9. The result comparison of the clock network by SPICE3e2 and
the 4th order approximation with time-of-flight (TOF)
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5 Conclusions

A novel and efficient method for modeling arbitrary interconnect systems for transient

simulation was presented. The method is based on scattering parameter technique, a large

scale interconnect system can be reduced to a network containing one multiport component

(macromodel) together with sources, loads of interest. While computing lower order

approximation of the macromodel for evaluating the exponentially charging time, the time-of-

60mm
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60
m

m
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vo
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Figure  7. Grid-type clock network.
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Figure  8. The result comparison of the clock network by SPICE3e2 and
the 4th order approximation withnon-time-of-flight (nonTOF)



9

manipulation keeping track of time-of-flight explicitly, we can get the transfer function with

the following form:

(24)

where  is in Taylor series form with the term at . A mixed exponential

function  [10] which combines Pade technique [12] and EDPF technique [4, 9] is used to

match . The corresponding  has the form

(25)

That is,  is a sum of  exponentials and an  order exponentially decayed

polynomial function. In Eq. (25),  and  are poles and residues of the exponentials,  and

are the time constant and coefficients of the exponentially decayed polynomial function

respectively. The mixed exponential function is always stable for stable systems and have

higher accuracy[10]. Thus the corresponding inverse Laplace transform of  is

(26)

4 Experimental Results

Several testing circuits are used to verify the efficiency and generality of the

macromodel with the extraction of the time-of-flight. These testing circuits include various

topologies commonly encountered in the delay modeling of VLSI/MCM interconnects. All

benchmarks were executed on a Sun Sparc 1+ station.

The first example is a grid-type clock network (See Figure 7) which is distributed

around the periphery of a  chip. The vertical runs are on metal 1 ( ,

 and ) and the horizontal runs are on metal 2

( ,  and ). The network is represented by

distributed lossy transmission lines. Figure 8 is the analysis result of SPICE3e2 and the 4th

order approximation without extracting the time-of-flight. Figure 9 is the result of SPICE3e2

and the 4th order approximation, extracting the time-of-flight . While using the same

order approximation, the simulator with extraction of time-of-flight has much higher accuracy,

since it only need to match the exponentially charging section of the response curves.

Figure 10 is a lossy transmission line circuit. Figure 11 is the analysis results with

SPICE3e2 and the 4th order approximation without extracting the time-of-flight. Figure 12 is

the result of SPICE3e2 and the 4th order approximation, extracting the time-of-flight

. The accuracy of response curves, not only the flat section, but whole curves has

been greatly improved.
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The four basic operations Eq. (13 - 16) together with the S-matrix of lossy

transmission lines provide a novel method to accurately compute the time-of-flight of a

general interconnect system. However, computing the S-matrix of the reduced network for

every frequency point is time consuming. In order to speed up the reduction process, we

expand the S-parameters of components by Taylor series, and derive the formula for

manipulating two Taylor series, which are the extension of the work reported in [9].

Let

 and (17)

where terms at  are used to match the initial condition of transfer functions in

time domain. The series addition/subtraction

 where  and (18)

The series multiplication

 where  and (19)

And the series division

 where  and (20)

The denominators will not be zero, since the scattering parameters of passive

components have no poles at  or , based on the principle of energy conservation[5].

The scattering parameters defined in Eq. (2, 3, 4 and 6) can be easily expanded into

Taylor series based on Eq. (18 - 20). The S-parameters of lossy transmission lines (See Eq.

(6 - 8)) at  becomes:

(21)

and (22)

The exponential factor in Eq. (14) can be expanded into Taylor series based on the

formula:

(23)

Based on S-matrix with time-of-flight extracted and Taylor series expansion and
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outgoing wave at port  to the incoming wave at port . If both port  and port  belong to the

same component, sayX, then  consists of two terms, in the other word, there are two paths

for electromagnetic wave to propagate from port  to port . The first term of Eq. (9a) stands

for the first path on which the wave directly propagates from port  to port . The second term

for the second path on which the wave propagates from port  to port , then reflected to port

. Obviously, the time-of-flight of the  is equal to the less one of these two paths, and the

time-of-flight of the second path is the sum of those of  and .

Similarly, if port  belongs to componentX and port  belongs to componentY, then

there is only one path for electromagnetic wave to propagate from port  to port . The

Eq. (9b) shows that wave propagates from port  to port  of componentX, then from port  to

port  of componentY. Note port  of componentX and port  of componentY are connected

together. The same analysis methods could be applied to Eq. (10) for self merging and Eq.

(12) for transfer function.

In order to keep track of the time-of-flight delay, we derived the following basic

operations:

Let , , then the addition/subtraction is defined as

(13)

where , and

(14)

The multiplication is

(15)

where , and . The division is defined as

(16)

where , . Here we assume  for division, since the time-

of-flights of the denominators in Eq. (9, 10 and 12) are all equal to zero due to the constant

one in the denominators whose time-of-flight is zero.
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mergingX andY, the resultant  port has the following s-parameters:

(9)

Self Merging Rule: Let X be anm port with a self loop connected to thelth andkth

ports, as shown in Figure 3. After eliminating the self loop, the resultant (m - 2) port has the

following s-parameters:

(10)

where

(11)

For an arbitrary distributed-lumped network described by the linear components, the

Adjoined Merging Rule is used to merge all internal components, and the Self Merging rule is

applied to eliminate the self loops introduced by the Adjoined Merging process. The

macromodel, or the voltage transfer function of the network can be characterized by the s-

parameters of the multiport component resulted from the reduction process, together with the

s-parameters of the loads. From this reduced network, we can easily get the transfer function.

For example, the voltage transfer function of the network shown in Figure 6 is

(12)

where  is the s-parameter of the load.

Time-of-flight is the shortest time that the output has the response after the input

excites a signal. In order to extract the time-of-flight, let us go back the Eq. (9).  relates the
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lossy transmission line, we find that the time-of-flights of both  and  are zero, but the

time-of-flights of  and  are . Let us rewrite the Eq. (5),

(6)

where

(7)

(8)

3 Network Reduction Keeping Track of Time-of-flight

Given the individual component scattering parameters, we have described a systematic

reduction algorithm [8, 9] to reduce a distributed-lumped network to a multiport with sources

and loads of interest, as shown in Figure 3. These reduction are based on two basic rules:

Adjoined Merging Rule: Let X andY be two adjacent multiports, withm ports andn

ports respectively. Assume portk of X is connected to portl of Y, as shown in Figure 4. After
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multiport interconnect node and 4) lossy transmission line (See Figure 2).

For a one-port component with the impedance  shown in Figure 2(a), its S-parameter

is expressed as:

(2)

where Z0 is an arbitrary reference impedance. The two-port component has the

following S-matrix:

(3)

The multiport interconnect node as shown in Figure 2(c) can be used to connect all

other components to construct a general interconnection system. The n-port interconnect node

can be described by the scattering matrix [7]:

(4)

Three components above are all lumped components, i.e., electromagnetic waves

propagate across the component virtually instantaneously. Therefore, the time-of-flights of S-

parameters described in Eq. (2-4) are all equal to zero.

For an RLC transmission line shown in Figure 2(d), we have

(5)

where  is the characteristic impedance,  the

wave propagation constant and  the length of the line. Applying Eq. (1) to the S-matrix of the
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network will be . The response is the same as the excitation except that it is delayed in

time by an amount . Therefore, the time-of-flight for an arbitrary transfer function  is

defined [1] as

(1)

While finding the explicit analytical expression of the transfer function for an arbitrary

interconnect system to compute the time-of-flight is impractical, several attempts have been

made to extracted the time-of-flight delay. They either require an explicit analytical

expression of the transfer function[3] or can only deal with one set of transmission lines[11].

The extracted time-of-flight of one transmission line is also used as the lower bound of the

delay for the lossy transmission lines[13].

This paper presents a new method to compute the time-of-flight for arbitrary

interconnect systems, not limited to one transmission line. The method is based on a scattering

parameter macromodel [8, 9]. First, we extract the time-of-flight of scattering parameter for

basic components, then an effective network reduction is developed to compute the lower

order macromodel of an interconnect system, keeping track of time-of-flight delay. The output

responses, due to the extraction of the time-of-flight, is greatly improved.

2 S-parameters of Components with Time-of-Flight extracted

We use scattering parameters (S-parameters) to describe the components of

interconnect systems. A scattering matrix is employed to relate outgoing waves to incoming

waves of a multiport [5]. In order to extract time-of-flights of interconnect systems, let us first

review S-parameters of some basic components of an interconnect system.

The components utilized to characterize a general interconnect network can be

classified into four types [9]: 1) series (one port) impedance, 2) shunt (two port) impedance, 3)

τf

Figure  1. Time-of-Flight.

Output

Input

e t τf−( )

τf H s( )

τf

1
2

−
s ∞→
lim

sd
d ln

H s( )
H s−( )

=



2

Extracting Time-of-Flight Delay from Scattering
Parameter Based Macromodel

Haifang Liao and Wayne Wei-Ming Dai

Computer Engineering

University of California, Santa Cruz

Santa Cruz, CA 95064

1 Introduction

As the electrical length of interconnects becomes a significant fraction of signal

wavelength during the fast transient, the conventional lumped-impedance interconnect model

becomes inadequate and transmission line effects must be taken into account for both on-chip

and off-chip interconnects. The Elmore delay[6] based estimation methods, although efficient,

are insufficient and the deficiencies of such methods need to be addressed with techniques

which are capable of computing delays of a network containing RLC meshes, capacitive

cutsets, inductive loops, and lossy transmission lines.

Recently, an nth order extension of Elmore delay model based on Pade approximation

has been developed [2, 11] to approximate a higher order linear network using the waveforms

generated by its lower order moments. However, the delay associated with transmission line

networks consists of the exponentially charging time and a pure propagation delay

representing the finite propagating speed of electromagnetic signals in the dielectric medium.

This propagation delay, so called time-of-flight delay, denoted by , is particularly evident in

long lines (See Fig. 1). As time-of-flight of the signal across the interconnect is greater than,

or comparable to, the input signal rise-time (i.e. long interconnects), it is impossible to model

the perfectly flat response for  by a finite order of approximation[13], whether a finite sum

of exponentials[2, 11] or an exponentially decayed polynomial function [4, 9].

Hence, the time-of-flight , more precisely the factor , must be extracted from the

transfer function of the circuit. As we know, a transfer function will be called ideal if it is of

the form . For , the magnitude identically equals to one, and the angle is

proportional to the angle frequency . According to the shifting theorem of Laplace

transform, if this ideal network is excited by a signal , the corresponding response of the

τf

t τf≤

τf e
sτf−

H s( ) e
sτf−

= s jω=
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ABSTRACT

A novel and efficient method for transient analysis of interconnect systems is

presented. The method is based on the scattering parameter technique. By extracting the

propagation delay of the lossy transmission line and developing an efficient network reduction

method, we compute the lower order model of the interconnect system for evaluating the

exponentially charging time, keeping track of time-of-flight delay. The accuracy of the system

response can be greatly improved from the extraction of the time-of-flight.

Keywords: Time-of-flight, propagation delay, scattering parameter, macromodel, multiport
component, multiport interconnect node, component merging, network reduction, lossy
transmission line


