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1 IntroductionSequencing of the genomes of organisms and organelles has and will continue to producelarge quantities of complex map and DNA sequence data. The development of algorithms,techniques, software and databases are crucial in accumulating and interpreting these datain a robust and \automated" manner. Sequencing of the E. coli genome is now about50% complete [1, 2] and as such, it serves as an important testbed for both laboratoryand computer analysis techniques. Here we describe a new computer method for locatingthe protein coding genes in unannotated E. coli contigs and translating them into proteinsequences.There are two principle methods for �nding genes, most of which have been incorporatedinto systems that analyse eucaryotic DNA [3]. The �rst locates signals in DNA like promotorsequences and splice junctions using techniques such as neural networks [4, 5, 6] or statisticalmethods [7, 8, 9]. The second approach scores a certain window of DNA in various ways inorder to decide whether the window belongs to a coding or a non-coding region (reviewed in[10]). Staden and McLachlan [11, 3] proposed deviation from average codon usage as a way ofdetermining the probability that the window is coding or not. Later, Gribskov et al. [12] useda similar measure as a part of their \codon preference plot", but their measure did not requirethe knowledge of an average codon usage from other sources. Most other scoring methodsare related to codon usage in some way [13, 3]. Recently, neural networks [4, 14, 15, 16] andMarkov chains [17, 18, 19] have been used to analyze coding (and non-coding) regions. Inparticular, the program GeneMark [20] �nds genes in E. coli DNA using a Markov modelfor the coding region related to the one discussed here, and a very simple Markov model forthe non-coding regions. Whether looking for signals in the DNA or using window scoring,there remains the problem of combining all the scores and/or signals detected in a givencontig to produce a coherent \parse" into genes separated by intergenic regions. The outputof this �nal parsing step could be a list of genes, each represented by its begin and endposition within the contig. Snyder and Stormo have recently proposed an elegant dynamicprogramming method to accomplish this �nal step [21]. Other more linguistically motivatedapproaches to this kind of sequence parsing problem are described in [22, 23, 24, 25].One aim of this paper is to combine all the aforementioned methods for locating proteincoding regions (the search for initiation signals, the scoring of possible coding regions, and the�nal dynamic programming to get the best parse) in a single simple framework of HiddenMarkov Models (HMMs). HMMs have been used to analyse DNA [18], to model certainprotein-binding sites in DNA [8, 9] and in protein analysis [26, 27, 28, 29, 30, 31, 32]. TheHMM we use to �nd genes in E. coli is much larger and more complex than those used inthe early HMM work. Since only one strand is modelled, the HMM is applied twice, onceto the direct strand and then to the complementary strand. The basic HMM architecture isidentical to our earlier work [29], but here it is organised into a series of looping structures(Figure 3) containing explicit submodels for each of the 64 codons and for gene overlaps.It allows for the possiblity of insertions and deletions of individual nucleotides within acodon because such errors may result in completely or partially incorrect translated protein2



sequences (see [33, 34, 35]). These sequence \errors" are distinct from real frameshifts andother programmed recoding events i.e. alternative reading of the genetic code (see [36, 37]).In the HMM, if for example, a base is omitted such that one of the \codons" is only two baseslong, the model compensates by skipping one of the bases in the codon model (similarly forinsertions). To avoid modelling any DNA sequence as a gene with many errors or frameshifts,the probability of this behavior is small. Models for certain intergenic features such asrepetitive extragenic palindromic sequences (REPs) [38, 39], emerged fromwhat were initiallymore generic models during the HMM training procedure i.e. estimation of the parametersof the HMM.The HMM was trained on approximately one million nucleotides from the EcoSeq6database of labelled genes (Kenn Rudd, personal communication; [40]) and tested on theremainder (about 325,000 nucleotides). Since EcoSeq6 is not fully annotated yet (K. Rudd,personal communication), our results should assist in identifying the locations of new genesand highlighting errors and or inconsistencies in the data. For each contig in this test set weused the Viterbi algorithm [41, 29], a standard dynamic programming procedure for HMMs,to �nd its most likely path through the hidden states of the HMM. Based on the stochasticmodel represented by our HMM, this path was then used to de�ne a parse of the contig intogenes separated by intergenic regions. Of about 240 labelled genes in the test set, we foundabout 80%1 of the sequences labeled as protein-coding genes in EcoSeq6 exactly, i.e. withprecisely the same start and stop codons. Approximately 5% were found within 10 codonsof the start codon, 5% overlap by at least 60 bases or 50% and about 5% were missed com-pletely. For each of genes predicted by the parser but not labelled in EcoSeq6, we performeda database search using the programme BLASTP [42] and the predicted protein sequence.The results indicate that many of these appear to encode known proteins. In addition, thereare several instances where the HMM suggests insertion or deletion errors in the labelling ofthe contigs.The most distinctive aspects of our work are the complexity of the intergenic model andthe simplicity of the overall HMM framework for combining coding measures and speci�csensors to produce useful parses. To demonstrate the advantages of explicitly modeling thestructures in the intergenic region, we also trained and tested a much simpler HMM that didnot include a sophisticated intergenic model, but instead relied only on the statistics of thecodon models (Figure 1). While this model performed quite well also (about 70% exactlycorrect), our more complex HMM performed signi�cantly better.1The actual percentage of exactly correct predictions on the test set is about (85%), but since performanceon the training set (about 1000 genes) was only 78% exactly correct, we believe that 80% is a more realisticperformance estimate. 3



2 MethodsA Parser with a Simple Intergenic ModelAn HMM for DNA patterns generates sequences of A, C, T and Gs according to a randomprocess. The simplest HMM used in this research is illustrated in Figure 1 and consists of acollection of rings, all connected to a central state. Each ring possesses one or more HMMswhose structure is essentially the same as that used in our work on modelling protein families[29]. There is one codon HMM for each of the 61 DNA triplets that code for amino acids aswell as a ring which generates the intergenic region and its 
anking stop and start codons.The random process used by the HMM to generate a sequence of nucleotides is a randomwalk starting in the middle of any of the HMMs. Assume we begin at the central state andenter any of the rings by traversing one of the arrows shown in Figure 1. Each such statetransition has an associated probability and transitions out of the central state are chosenat random according to these probabilities (they sum to one). For example, a transitionleading to the AAC codon model HMM generates the three nucleotides AAC with veryhigh probability and then, with probability 1, makes the transition back to the centralstate. Subsequently, a new transition out of the central state is selected randomly andindependently of the previous transition. Choosing one of the 61 codon models repeatedlyresults in a \random gene". The gene eventually terminates upon entry into one of the ringsbelow the central state. The probability of such a transition is fairly small.2 One stop codonHMM generates both TAA and TGA, each according to its frequency of occurrence in E.coli , and the other TAG. In the simple HMM, a sequence of nucleotides representing anintergenic region are produced independently and at random by looping in the state labelled\Intergene model". Next, the start codon HMM generates either ATG, GTG or TTG, eachwith the appropriate probability (TTG is very rare in E. coli). A transition is made backto the central state and the whole process repeated i.e. generation of several random codonsfollowed by another intergenic region and so on. This entire procedure produces a sequenceof nucleotides that is statistically similar to a contig of E. coli DNA consisting of a collectionof genes interspersed with intergenic regions.Each random walk has a well-de�ned probability determined by the probability parame-ters of the HMM. This probability is inverted and employed to locate the beginning and endsof genes. For a given contig of E. coli DNA, the most likely random walk through the HMMthat generates this sequence is calculated with a dynamic programming method known asthe Viterbi algorithm (described in [41]; see also [29]). The Viterbi algorithm generates aparse of the contig, i.e. labels genes in the DNA by identifying portions of the path thatbegin with the start codon at the end of the intergenic ring, pass through several amino acidcodon HMMs, and return to one of the stop codons at the beginning of the intergenic ring.The model parses a gene in one direction only and thus �nds all genes on the direct strand.To locate genes on the opposite strand, the reverse complement (A and T interchanged, G2This probability is roughly determined by the number of intergenic regions divided by the number ofcodons in a typical contig of E. coli DNA. 4
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Cod- Aa Us- Ran- Cod- Aa Us- Ran- Cod- Aa Us- Ran- Cod- Aa Us- Ran-on age dom on age dom on age dom on age domAAA Lys 3.5 1.3 GAA Glu 4.3 1.6 CAA Gln 1.3 1.4 TAA * * *AAG Lys 1.1 1.6 GAG Glu 1.8 1.8 CAG Gln 3.0 1.7 TAG * * *AAC Asn 2.4 1.4 GAC Asp 2.2 1.7 CAC His 1.1 1.5 TAC Tyr 1.4 1.4AAT Asn 1.4 1.3 GAT Asp 3.2 1.5 CAT His 1.2 1.4 TAT Tyr 1.5 1.3AGA Arg 0.1 1.6 GGA Gly 0.6 1.8 CGA Arg 0.3 1.7 TGA * * *AGG Arg 0.1 1.8 GGG Gly 1.0 2.2 CGG Arg 0.4 2.0 TGG Trp 1.4 1.8AGC Ser 1.6 1.7 GGC Gly 3.2 2.0 CGC Arg 2.4 1.8 TGC Cys 0.7 1.6AGT Ser 0.7 1.5 GGT Gly 2.8 1.8 CGT Arg 2.5 1.6 TGT Cys 0.5 1.5ACA Thr 0.5 1.4 GCA Ala 2.0 1.7 CCA Pro 0.8 1.5 TCA Ser 0.6 1.4ACG Thr 1.4 1.7 GCG Ala 3.6 2.0 CCG Pro 2.6 1.8 TCG Ser 0.8 1.6ACC Thr 2.5 1.5 GCC Ala 2.5 1.8 CCC Pro 0.4 1.6 TCC Ser 0.9 1.5ACT Thr 0.9 1.4 GCT Ala 1.6 1.6 CCT Pro 0.6 1.5 TCT Ser 0.9 1.4ATA Ile 0.3 1.3 GTA Val 1.1 1.5 CTA Leu 0.3 1.4 TTA Leu 1.1 1.3ATG Met 2.5 1.5 GTG Val 2.7 1.8 CTG Leu 5.7 1.6 TTG Leu 1.2 1.5ATC Ile 2.7 1.4 GTC Val 1.5 1.6 CTC Leu 1.0 1.5 TTC Phe 1.8 1.4ATT Ile 2.8 1.3 GTT Val 1.9 1.5 CTT Leu 0.9 1.4 TTT Phe 1.9 1.2Table 1: The relative frequencies of the 64 codons (in percent) in the E. coli DNA training dataused in this study (\Usage"). \Random" gives the corresponding values if codon usage was simplya result of the relative frequencies of the four nucleotides (A, 23.66, G, 27.89, C, 25.30, and T,23.15). \Aa" and \*" denote amino acid and stop codon respectively.The role of the codon HMMs in Figures 1 and 3 is similar to the role played by codon usagestatistics in many other gene �nding methods [3]. Codon usage statistics are far from whatwould be expected if they were based on randomly chosen nucleotides (see Table 1). Inour model, the codons in a gene are considered random and independent. Therefore, theprobability that a region is coding is simply the product of the probabilities of the individualcodons. The probability of an open reading frame (ORF) consisting of codons c1; c2; : : : ckand excluding start and stop codons isProb(c1; : : : ck) = kYi=1 p(ci); (1)where p(ci) is the probability of codon ci given in Table 1 for E. coli . We de�ne the geneindex of an ORF to be the negative logarithm of this divided by the length of the contig,I(c1; : : : ck) = �1k kXi=1 log64p(ci): (2)The average value for a typical E. coli gene is equal to the entropy of the E. coli codonprobability distribution.3 Using an estimate of this distribution obtained from our trainingset (Table 1) yields average(I) = 0:935: (3)For genes in the training set, relatively few have a large gene index: roughly 16% havean index greater than 0.96, 7% one greater than 0.98, and only about 2.5% a gene index3Since logarithm base 64 is used, the entropy of any codon distribution will be at most 1. Therefore,typical genes will have an index less than 1. 6



larger than 1.0, see Figure 2. This gene index will be used to rank predictions and resolveambiguities of the predictions by the HMM.

Figure 2: Distribution of gene index for 920 genes in the training set. Any genes with a length notdivisable by 3 or with unusual start codons (not ATG, GTG and TTG) or stop codons (not TAA,TAG, and TGA) are not counted. The inset shows the cumulative distribution, i.e. the fraction ofgenes with a gene index below a certain value; the vertical line denotes the average gene index.The gene model uses the codon probability as the probability of making a transition intothe corresponding codon model. Assume that a particular path through the HMM startsin the intergenic model and goes through the start codon model before looping in the genemodel k times (producing k codons), and then enters one of the stop codon models beforeending in the intergenic model. This corresponds to an ORF of length k (not counting startand stop codons) 
anked by intergenic regions. The probability of that path will containthe probability for the ORF as given in Equation 1. Thus, using the Viterbi algorithm withsuch a model gives an overall parser similar to Staden and McLachlan's codon-usage methodof locating genes [11], or the related method of Gribskov et al. [12], and then following thisby a simple dynamic programming method like that of [21].The 61 codon models are designed to generate one nucleotide triplet each. In the mainstates (squares), the probability of generating the letters of the codons is set to one and theothers to zero. To allow for the possiblity of frameshifts and sequencing errors, insertions ordeletions are modelled in the same manner that insertions and deletions are modelled in our7



HMMs built for protein families [29] (see Figure 1). For each of the three nucleotides in thecodon independently, there is a very small probability, Pindel, that that nucleotide is deleted(i.e. missing in the sequence). Similarly, independently between each pair of consecutivenucleotides, before the �rst nucleotide, and after the last nucleotide, a randomly chosennucleotide is inserted with probability Pindel. Experiments (data not shown) indicated that\zeroth order" codon statistics were almost as good as higher order models, for example,those incorporating statistics on which codons are likely to follow other codons. Thus, wefocus on constructing good models of the intergenic regions while keeping the gene modelsimple. This contrasts with the work of others such as Borodovsky and McIninch [17, 20].A Parser with a Complex Intergenic ModelThe more complex HMM (Figure 3), intergenic model consists of several parts in addition tothe start and stop codon models described earlier. After generating the stop codon, the modelchooses either the transition to the long intergenic HMM or the short intergenic HMM, withappropriate probabilities. The short intergenic HMM tends to generate intergenic regions oflengths from 1 to 14 or so, with statistics determined from examples of such short intergenicregions in actual E. coli contigs. Similarly, the parameters of the long intergenic modelare adjusted to capture the statistics of longer intergenic regions. The parameters of thetwo intergenic models were estimated from a set of known intergenic regions by a learningprocedure known as the forward-backward algorithm. As a result of the training process,the long intergenic region develops patterns, without having to explicitly encode them. Forexample, it discovers a structure about 5 to 10 nucleotides before the start codon thatcorresponds to the well known Shine-Delgarno sequence [43] (positions marked 36{40 inFigure 4). The strong nucleotide preferences imediately following the stop codon (positions5{18) resemble a repetitive extragenic palindrome or REP sequence [38, 39]. All of thesefeatures are considered by the Viterbi method when matching a segment of the sequenceto one of the intergenic models and thus provide statistical information not used in othergene-�nding methods.Models for Overlapping GenesThe possibility of overlapping genes are dealt with by two overlap HMMs. In Figure 3, thebox labelled \Overlap models" represents separate HMMs for handling overlaps of 1 or 4nucleotides, each forming its own ring with the central state. The HMM for overlaps of 1generates the sequences TAATG or TGATG with high probability and other sequences withvery small probability. Each time this overlap model is encountered in a parse, TAA or TGAis taken to be the stop codon for one gene and ATG is the start codon for another gene (themiddle nucleotide A is shared). With high probability, the HMM for overlaps of length 4produces sequences that match the regular expression NN[AG]TGANN, where N stands forany of the four nucleotides, and [AG] means either A or G. TGA is assumed to be the stopcodon of a gene extending to the left, and the triplet ATG (or GTG) the start codon of a8



gene extending to the right. The two Ns on either side are needed to keep the overall HMMin the correct reading frame both before and after the overlap. In the E. coli training data,about 75% of the overlaps were of lengths 1 or 4. Instead of modeling the remaining overlaps(greater than 4 bases) explicitly, we �nd them in a special post-processing step before the�nal parse of the contig is produced (described below).
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ENDFigure 4: The model for long intergenic regions shown in Figure 3. This model was trained by theforward-backward algorithm on 424 intergenic regions of lengths larger than 10.Training set Test setTotal number of contigs 300 129Total number of characters 1,271,528 324,684Number of genes 1007 251Average length (internal genes) 1008 1015Overlaping genes, length 1 50 7Overlaping genes, length 4 40 12Overlaping genes, length > 4 34 1Table 2: Statistics on the 429 contigs of E. coli DNA used in our experiments.10



GTG, and TTG, and by standard stop codons TAA, TGA, and TAG. For each contig, thecomplementary sequence was generated and intergenic regions between these genes generatedin the same way. Note that intergenic regions often contain genes in the opposite direction.Codon usage statistics were then calculated for the genes in the training set (Table 1).Only genes that did not begin or end a contig and had a length divisable by 3 were used.All codons that did not contain the letter \N", representing an unknown nucleotide, werecounted. The relative frequencies of the 61 codons that are not stop codons were then usedto set the transition probabilities in the codon models. Statistics were collected for the usageof start and stop codons in the same manner.Parameter EstimationAlthough the model contains many parameters (probabilities), all but one (Pindel) are deter-mined automatically from the training contigs. Because of the problem of over�tting withsuch a large number of parameters, the test contigs provide independent cross validationof the results. The parameters of the short and long intergenic models were established bya learning procedure known as the forward-backward algorithm, a special case of the moregeneral EM method [45]. A detailed description of the forward-backward algorithm can befound elsewhere [41]. In our implementation [29], we use the algorithm to �nd a maximuma posteriori setting of the parameters given the training sequences. The prior probabilitiesare exactly like those used in [29], but rather than estimating this prior from other sources,we use a uniform prior on the four possible nucleotides in each HMM state that generates anucleotide. The only signi�cant di�erence is that the distributions on the four nucleotides inwhat are called \insert states" in [29] are estimated from the training sequences here, ratherthan being \hardwired" to the uniform distribution.The long intergenic model (Figure 4) was trained on regions with 10 or more basesbetween the stop and start codons, roughly the minimum length of an intergenic regionwith a Shine-Delgarno pattern. Because of the importance of this pattern, it was trained intwo steps. First, a model was trained on the 20 (or fewer) nucleotides just before the startcodon from intergenic regions longer than 10. This model, of length 15, was incorporatedinto a longer model and �xed while training the rest of the long intergenic model. The �nalintergenic model had a length of 44. The short model was trained on sequences of length 1to 14. (Note that some sequences were used to train both.) This model had a length of 9.Since there is an insu�cient number of examples of frameshifts and indel errors to esti-mate Pindel, the probability that a nucleotide is inserted in a codon, this manually-tunableparameter was �xed at 10�8 after a few experiments (this avoided modelling any DNA asa gene with many errors or frameshifts). The remaining parameters are all associated withtransitions from the central state to one of the HMMs or transitions between sub HMMs.The probability of entering each codon model is set proportional to the codon usage shown inTable 1. The constant of proportionality, i.e. the overall probability of making a transitionfrom the central state to one of the codon models, is called Pgene. Using the data, one canestimate Pgene by Pgene = 1 � 1=(Ncodon � 1), where Ncodon is the average number of codons11



in a gene. The other parameters are estimated empirically in a similar fashion.Post ProcessingThe parser does make some mistakes. For instance, it sometimes predicts a frame shift verynear to a region of two overlapping genes, instead of actually predicting overlap between twogenes (particularly long overlaps often lead to a \frameshift"). Another common mistakeis to predict short genes entirely overlapping with a long gene in the opposite direction.Predicted genes often compete with a \gene" on the opposite strand that is in the comple-mentary reading frame. These so-called \shadow genes" [20] arise because coding regionshave an excess of self-complementary RNY (R:purine, Y: pyrimidine) type codons [46]. Thecodons that correspond to stop codons on the other strand (TTA, TCA, and CTA) are un-common codons which enhance the probability of long ORFs opposite from real genes. If thepossibility of stop codons is ignored, the average gene index of the complementary region is�P58i=1 p(~ci) log64(p(ci)), where ~ci is the codon complementary to ci. The sum is only over58 codons that do not have a stop codon as complementary codon. The result is:Average gene index for complementary region = 0:964 (4)which is less than one and similar to the average index of a real gene (0.936).We have devised three simple rules to minimise these errors. The parameters in theserules are rather ad hoc, but post-processing appears fairly robust to small changes (the lastrule is the most sensitive). After genes have been predicted in both directions of a contig ofDNA the predictions are post-processed as follows:1. Each predicted frameshift is checked to see if there is a possible stop/start pair nearby. The �rst stop codon up to 200 bases downstream from the frameshift that is in thereading frame used prior to the frameshift is located. If such a stop codon is found,then the nearest start codon is located (if any) up to 40 bases before or after the stopcodon in the reading frame used after the frameshift. If both a stop and start codonare found the predicted gene is split into two.2. Genes predicted at either end of a contig that are less than 100 bases long and thosein the middle which are less than 20 are disregarded.3. If two predicted genes in opposite directions overlap by more than 15 bases, one of themis suppressed. If they are both long (more than 400 bases), or if they have comparablelengths (ratio of short to long > 0:5), the prediction with the lower gene index (asgiven in Equation (2)) is retained. Otherwise, the shorter of the two is suppressed(unless the longer one has already been suppressed by an even longer one).4 Merelycomparing the gene indices of the two opposite predictions is ine�ective because a very4In principle, this can lead to odd situations where genes suppress each other in a cascade, but this isvery unlikely in practice. 12



Type of Post- Data set EcoSeq6 genes found by parser Possibleintergenic processing Perfect Almost Partly Not falsemodel perfect found positiveComplex None Training 731 (74.7) 57 (5.8) 141 (14.4) 50 (5.1) 665Test 203 (86.0) 12 (5.1) 11 (4.7) 10 (4.2) 191After Training 767 (78.7) 62 (6.4) 88 (9.0) 57 (5.9) 310Test 201 (85.2) 13 (5.5) 8 (3.4) 14 (5.9) 82Simple None Training 692 (70.8) 81 (8.3) 163 (16.7) 42 (4.3) 1524Test 179 (75.8) 23 (9.7) 25 (10.6) 9 (3.8) 412After Training 694 (71.3) 81 (8.3) 143 (14.7) 55 (5.7) 331Test 174 (72.5) 22 (9.3) 23 (9.7) 17 (7.2) 98Table 3: Performance of the parsers with simple and complex intergenic models in terms of predic-tion of whole genes. \Perfect" indicates cases where the starts and ends of the predicted genes arethe same as those given in EcoSeq6; \Almost perfect", the start codon of the prediction is within10 codons of that speci�ed in EcoSeq6 (and in the same reading frame); \Partly", the predictionoverlaps the labelled gene by at least 60 bases or 50%; \Not found", EcoSeq6 genes that are notpredicted by the parser (false negatives); and \Possible false positive", genes that are predicted butnot labeled as such in EcoSeq6. Numbers in parenthesis are in percent.short spurious prediction often has a very low gene index. One simple rule that worksalmost as well as is simply to always suppress the shorter of the two.3 ResultsThe performances of the simple parser (Figure 1) and parser with the more complex in-tergenic region model (Figure 3) were evaluated by counting the number of whole genescorrectly predicted before and after post-processing in both the training and test sets (Table3). Parser mistakes on gene fragments at the ends of contigs that were less than 100 baseslong were not counted, because such short end fragments generally contain too little infor-mation for reliable recognition. The table does not include a number of cases we discardedduring testing. These are 19 genes which had either a stop or start codon di�erent from thestandard ones, a stop codon in the reading frame of the gene or genes with many unknownbases. Also 17 predictions subsequently identi�ed as tRNA genes were disregarded. In orderto make a fair comparison the simple parser was augmented with the two overlap models.Thus, the only di�erence between the simple and the more complex parsers is the model ofthe intergenic region.The importance of modelling the intergenic region can be seen by comparing the resultsfrom the complex and simple parsers both with and without post-processing. In all cases,the rate of false negatives (\Not found") is approximately 5-6%, i.e., the two parsers discoverroughly the same number of genes. However, the complex parser has a better accuracy; more13



of the discovered genes are perfect or almost perfect. Thus, better modeling of sequenceelements prior to the start of a gene ensures selection of the correct start of the gene insituations with many possible start codons.The surprisingly good performance of the simple parser in terms of identifying labelledgenes is accomplished at the cost of a much greater number of (possible) false positives(about 50% more than the actual number of genes, which is around 1000 for the trainingset and 250 for the test set). However, post-processing reduces this number to less than halfwithout degrading the number of correctly predicted genes signi�cantly. It seems like thepost-processing is doing most of the work, choosing between ORFs in opposite directions.This provides good evidence that the post-processing rules work.For the more complex parser, post-processing moves about 4% of the predictions from\partly" found to \perfect" (for the training set), because it resolves overlapping genes. Theraw parser often predicts two overlapping genes as one long gene with a \frame shift" closeto the region of the overlap (before the stop codon of the �rst gene). Provided the predictedframe shift is within 200 bases of the downstream stop codon, post-processing will resolvethis situation. Particularly long overlaps that are not modelled explicitly are found this way.Note that the start of the second gene is just chosen as the start codon closest to the stopcodon of the other gene (40 bases upstream or downstream from the stop codon), whichmight not be the optimal one. As with the simple parser, the post-processing also reducesthe number of possible false positives quite considerably.The parser performs better on the test set than on the training set, which is the oppositeof what one would expect if over�tting the training data was of concern. We believe that thisis simply fortuitous. For instance, the test set contains only one instance of a gene overlapof more than 4 bases, whereas the training set contains 34 such instances. Note that eachsuch instance in
uences the prediction of two genes, meaning that about 7% of the traininggenes are in
uenced and less than 1% of the test genes.Partly discovered genes and false negativesTable 4 gives more details on genes in Table 3 that were either \partly" found or \not found"(genes 1-101). Since EcoSeq6 is not fully annotated (K. Rudd, personal communication),some of the errors made by the parser may be incorrect labelings in the database or genuineerrors in the sequences. We suspect the errors for genes 102{107 and 109{118 fall into thiscategory because, for example, the lengths of genes 113 and 115 as given in EcoSeq6 areeach not divisible by 3. The parser often makes predictions that start a few codons beforeor after the actual start codons. Those less than 10 codons o�, \Almost perfect", werenot investigated any further. In the training set, 28 predictions (2.8%) have a start codonbetween 10 and 20 codons from the correct one and 49 (4.9%) have a larger deviation (genes1{84 in Table 4a that are not marked with \~"). Most of the predictions that di�er by morethan 20 codons occur in genes with a large gene index (those denoted with \#").There are 13 cases of genes with inframe stop codons or stop/start codons that di�erfrom those given in EcoSeq6 (103-107, 109-113, 115-118). The two genes ygiB (number 6 in14



Table 4a) and ygiA (listed as undiscovered in Table 4b) have a very large overlap of 146 basesand the parser has concatenated them into one. In four cases a gene was predicted as beingtwo genes (108-111). There are 10 instances (86-95) of the parser predicting a \frameshift"or error, 8 of these occur in genes with a high gene index.In Table 4b, the 13 false negatives (EcoSeq6 labelled genes that are not identi�ed bythe parser) consist of correctly predicted genes that are suppressed by shadow genes (96-101, 112-118), genes with di�erent start/stop codons or inframe stop codons and very shortgenes. It is unclear why genes 98 and 99 are not found. The majority of false negativesare listed separately in Table 4c, because they have unusual codon statistics giving them anabnormally large gene index. Of the 53 false negatives in the training set, 32 had a geneindex of more than 1.0, 17 had a gene index between 0.98 and 1.0, and 4 had a gene indexbetween 0.96 and 0.98. These numbers are all fairly high compared to the average of 0.935.Possible new genes or \false positives"Some of the predictions considered as possible false positives may be real genes which havenot been labelled yet whilst others might be spurious. We examined genes predicted by thecomplex parser (after post-processing) in more detail by translating each into the proteinsequence and performing a database search using BLAST [42] and a non-redundant databasecomposed of Swiss-Prot 27.0, PIR 38.0 and translated GenBank 79.0. Of 286 predicted genes,95 matched a known protein. Some of these are known E. coli genes which have been notlabeled in EcoSeq6 but will be in EcoSeq7 (Kenn Rudd, personal communications). Of therest, 63 had a signi�cant similarity to a known protein (Poisson Probability P < 0:05) andthe rest (128) did not have any signi�cant similarity. At the same time we became aware ofsimilar work by Mark Borodovsky, Eugine Koonin and Kenn Rudd (personal comunications)carried out with a di�erent method, but with strongly correlated results. Details of theirresults are given in their forthcoming paper. Figure 5 shows one of the biologically interestingsimilarities revealed by our BLAST searches.a)|--------------------------||--------------------------||--------------------------||--------------------------|| Labelled | Len. |Start|| Labelled | Len. |Start|| Labelled | Len. |Start|| Labelled | Len. |Start|| EcoSeq6 | |of || EcoSeq6 | |of || EcoSeq6 | |of || EcoSeq6 | |of || Gene | | || Gene | | || Gene | | || Gene | | ||-------------|------|-----||-------------|------|-----||-------------|------|-----||-------------|------|-----|| 1 glpG | 831 | 33 || 22 cysM | 912 | 54 || 43 yacA # | 444 | 69 || 64 fhuE | 2190 | 129 || 2 rnpA # | 360 | 33 || 23 pcnB | 1407 | 54 || 44 yjeB # | 426 | 72 || 65 leuS | 2583 | 147 || 3 hemB | 1008 | 33 || 24 phnJ | 846 | 54 || 45 mvrA ~ | 807 | 73 || 66 lipA | 846 | 152 || 4 secD | 1848 | 33 || 25 trxA | 384 | 54 || 46 glgP | 2430 | 75 || 67 xylE | 1476 | 180 || 5 yfhC | 537 | 33 || 26 deoD | 720 | 57 || 47 xseA | 1371 | 78 || 68 ycaE | 675 | 183 || 6 ygiB | 705 | 33 || 27 gcpE | 1119 | 57 || 48 phnA | 336 | 78 || 69 sohA # | 336 | 195 || 7 fruF' ^ | 313 | 34 || 28 ycaG # | 294 | 57 || 49 araJ # | 1185 | 84 || 70 yicD # | 825 | 198 || 8 rpoS ~ | 1089 | 36 || 29 yebD | 453 | 57 || 50 aroK ~# | 435 | 84 || 71 menD # | 1389 | 204 || 9 rbsD | 420 | 36 || 30 cyoA | 948 | 60 || 51 dmsA | 2358 | 87 || 72 trg ~ | 1608 | 228 || 10 bioD # | 660 | 39 || 31 araE | 1419 | 60 || 52 yjjB # | 387 | 90 || 73 yggC # | 474 | 240 || 11 srlQ | 672 | 39 || 32 speC | 2196 | 60 || 53 tdk # | 618 | 90 || 74 nirC | 555 | 252 || 12 ygdB # | 366 | 42 || 33 recO | 729 | 60 || 54 cirA | 1992 | 96 || 75 bax' ^# | 478 | 252 || 13 galE | 1053 | 42 || 34 rho | 1260 | 60 || 55 lacA # | 612 | 96 || 76 celB | 1254 | 279 || 14 hypE | 969 | 42 || 35 fes # | 1125 | 63 || 56 ychE # | 549 | 99 || 77 cynT # | 348 | 309 |15



| 15 yjeC' ^ | 258 | 42 || 36 yfhB | 573 | 63 || 57 carA | 1149 | 105 || 78 rfe | 774 | 330 || 16 ygjC | 441 | 42 || 37 yggD | 402 | 66 || 58 cdsA # | 750 | 108 || 79 malS | 2031 | 477 || 17 fepB | 957 | 48 || 38 pcm ~ | 627 | 66 || 59 ybeB | 210 | 108 || 80 mcrB # | 1398 | 501 || 18 dnaE | 3483 | 48 || 39 prs | 948 | 66 || 60 fabA ~ | 516 | 108 || 81 ydbD' ^~#| 1050 | 534 || 19 sdaA | 1347 | 48 || 40 bisC | 2181 | 66 || 61 glpR # | 900 | 111 || 82 cadC # | 1539 | 558 || 20 yhbD' ^ | 397 | 49 || 41 rfaQ # | 969 | 66 || 62 cysB # | 975 | 114 || 83 hsdS # | 1395 |1038 || 21 hisF | 777 | 51 || 42 dnaA | 1404 | 69 || 63 yhdG # | 966 | 120 || 84 hsdR | 3273 |2097 ||--------------------------||--------------------------||--------------------------||--------------------------|b)------------------------------------------------------------------------------------------| Labelled EcoSeq6 Gene || Predicted EcoSeq6 Gene ||-------------------------------------------------------||-------------------------------|| Name | Len. | Gene | begin-end || begin-end | Frameshift || | | Index | in contig || | or error || | | | || | at base N ||-------------------------------------------------------||-------------------------------|| 85 thdF | 1320 | 1.030 # | 11894-10575 || 11317-11141 | || 86 ygjA | 876 | 0.989 # | 334-1209 || 331-1240 | 984 || 87 ^ybjB' | 369 | 0.986 # | 1-369 || 1-323 | 160 || 88 ^rhsE' | 2047 | 0.975 # | 1-2047 || 47-1532 | 1525 || 89 rhsD | 4281 | 0.972 # | 460-4740 || 460-4168 | 4160 || 90 ^rhsB | 4236 | 0.962 # | 101-4336 || 101-3879 | 3858 || 91 rhsA | 4134 | 0.962 # | 759-4892 || 759-4590 | 4510 || 92 ^rhsC | 4194 | 0.961 # | 101-4294 || 101-4109 | 3868 || 93 yjdA | 2229 | 0.958 | 13444-15672 || 13444-15916 |15664,15915 || 94 ^ydiB' | 520 | 0.957 | 1-520 || 5-672 | 318 || 95 ~mukB | 4605 | 0.922 | 459-5063 || 459-4909 | 4621 || 96 ^nadR' | 366 | 0.958 | 3403-3768 || * + | || 97 ~pheM | 45 | 0.957 | 7131-7087 || * | || 98 rpmJ | 117 | 0.957 | 3198-3082 || * | || 99 ybdD | 198 | 0.948 | 12848-13045 || * | || 100 trpL | 45 | 0.938 | 12670-12626 || * | || 101 ~uxaB' | 137 | 0.932 | 150-286 || * + | || 102 ^fepE | 267 | ! | 10230-10496 || 10359-x | || 103 dacB | 1434 | ! | ? 993-2426 ? (25) || 992-2425 | || 104 ^~ydbA' | 1129 | ! | 1-1129 ? (15) || 1-1170 | || 105 yadB' | 600 | 0.958 | ? 2295-1696 ? || 2043-1693 | || 106 holC | 443 | 0.939 | 3595-3153 ? || 3595-3137 | || 107 ~infC | 543 | 0.936 | ? 8498-7956 || 8390-x | || 108 ^ycaF' | 293 | 1.054 # | 1-293 || 8-115 & 112-318| || 109 fdnG | 3051 | ! | 451-3501 ( 1) ||451-1038 & 1087-x | || 110 barA | 2757 | ! | 114-2870 ? (10) ||114-821 & 815-2869| || 111 ~fdhF | 2148 | ! | 2223-76 ( 1) ||2223-1804 & 1755-x| || 112 TerC | 22 | 1.124 # | ? 270-249 ? || * | || 113 ~ydbB' | 3497 & | 0.951 | ? 3739-7235 || * + | || 114 rpsG | 537 | ! | 3984-3448 || * + | || 115 prfB | 1099 & | ! | 2712-1614 (24) || * + | || 116 ^holA' | 230 | ! | 230-1 ( 3) || * | || 117 ssrA | 362 | ! | ? 147-508 ? ( 5) || * | || 118 micF | 174 | ! | ? 1477-1650 ? ( 1) || * | |------------------------------------------------------------------------------------------c)---------------------------------------------------------------------------| Gene Index | Undiscovered labelled EcoSeq6 Gene ||--------------------------------------------------------------------------|| > 1.0 | ydcA pgpA avtA yebB rfaK ~priB || | ^ydcB' ^div' mcrC selC rfaZ ^~fucT' || | ^yzzA dsdC sulA yjjC rfaS ~rmf || | mcrA fimB phnQ fruL radC ~ycdA || | relF yidD ^sufI' leuL ~trkG || | yibA fimB yjfA rfaL ~appY || | xylU hisL pyrL yibB ~lit |16



| > 0.98 | ygiA ycfA fimE pinO rfaB ^~yahA' || | bicB rem tnaL ivbL ~ompT || | cysX yiaB ^glnD5' rfaJ ~pheL || | ^glnD3' ygdA ^yeiA' rfaI ~rcsA || > 0.96 | glgS hycA yhhA rfaY ~fecE |----------------------------------------------------------------------------Table 4: Details on the \partly" and \not found" genes of Table 3 and labelled EcoSeq6 geneswith possible errors (incorrect predictions of 102-118 were not counted). (a) Genes predicted withthe start codon more than 10 codons from the correct location. Last column shows how far thepredicted start is from the correct start. (b) Other mistakes made by the parser and possible errorsin the database labeling. \begin-end" gives the nucleotide positions for the beginnings and ends ofthe labelled genes as given in EcoSeq6 and for the genes predicted by the parser; \x" signi�es thatthe stop codon is in correct location. (c) Genes undiscovered by the parser. All have high geneindices. The symbols are as follows: \^": gene located at the beginning or end of contig; tilde:genes from the test set; \#": gene has a large gene index (> 0:96); \&": genes whose length is notdivisible by 3 (note genes 107 and 111 are very short); \!": gene index not calculated because ofin frame stop codon(s) or many codons with unknown bases (for example, genes 85 and 113 have71% and 33% dirty codons respectively); \�": labelled gene that was not predicted; \+": predictedgene is suppressed by a shadow gene; \?": potentially mislabelled start (left hand side) and stop(right hand side) codons. The number in parenthesis is the number of stop codons in the readingframe of the gene.4 DiscussionHere we have described a completely automated HMM based method that makes predictionsabout the locations of genes in E. coli DNA. The predictive power of the method was testedin terms of �nding whole genes in EcoSeq6, a database of labelled E. coli DNA contigs.The HMM parser predicts about 80% of the genes correctly i.e. same stop/start codonsas that given in EcoSeq6 and another 4.5{6% almost correctly (about 6% better than amodel with a very simple treatment of the intergenic region). About 5% the genes aremissed completely, almost entirely due to those genes having unusual codon statistics. Ofthe remaining roughly 10% of the genes, the parser makes fairly good predictions in abouthalf of these instances. This gives a total rate of useful predictions of about 90%. Theresults from our parser should aid in the process of identifying the location of new genes andhighlighting errors and inconsistencies in the data. Indeed, we �nd that many of the genespredicted by the parser but not identi�ed in EcoSeq6 do correspond to existing sequencesin the protein databases. Examination of the results from performing database searches onthese false positives suggests the possible function of some of these and revealed a novelputative methyltransferase domain present in a phylogenetically diverse group of organisms.With the current approach the parser is not very likely to perform better than 90%.Firstly, there is no reason to believe that the 5% of the genes that the parser missed because17



Consensus LD G G G V * DL *L ** * G *E LPF FD * * *LRE * LKPGG * **1 ESCCOL YAFE 1 ----MSGLPQGRPTFGAAQ--------------------NVSAVVAYDLSAHMLDVVAQAAEARQ---LKNITTRQGYAESLPFADNAFDIVISRYSAHHWHDVGAALREVNRILKPGGRLIVMDVMSPGHPVRDIWLQTVEA 1162 ESCCOL bioC 40 QRKYTHVLDAGCGPGWMSRHWRE----------------RHAQVTALDLSPPMLVQARQKDA--------ADHYLAGDIESLPLATATFDLAWSNLAVQWCGNLSTALRELYRVVRPKGVVAFTTLVQGSLPERHQAWQAVDE 1583 SERMAR bioC 44 SHPGEQLLDAGCGTGYFSRMWRE----------------RGKRVTALDLAPGMLDVARQRQA--------AHHYLLGDIEQVPLPDAAMDICFSSLVVQWCSDLPAALAELYRVTRPGGVILFSTLAAGSLQELGDAWQQVDG 1624 RHOSPH pmtA 36 NARGGRVLEVGVGTGLSLPLYS-----------------HRVAVTGIDFSHEMLARAREKVEEMG--LEPVKELRQMDARELDFPDETFDTVVAMFLVSVVPEPERVVSEMARVCRKGGEVVIVNHFARDKGPLAAVEKALAR 1595 STAAUR Tn554 33 SPKKGRALDIGCGSGLLVEKLAS----------------YYDEVVGIDISNQMLDLAKSKRQ------LTNTVYLNMNAEQLNFNE-KFDFIVSRTTFHHLDDIASVIQQMKELLNEEGRIVILDNVSEVETPPTYVYKLGAI 1526 STRFRA Tn4456 124 ARPGESALDLGCGPGTDLGTLAKAV-------------SPSGRVIGIDSSQEMVEQARRRTEN-----LPAVEVELGDIHTLPLEDGSIDCARTDRVLQHVADPAQALAEARRVLRPGGRLVMGEPDWDSLTIDYPDLEVSRA 2487 BACSUB gerC2 45 VKEGAKALDVCCGTADWTIALAKAA-------------GKSGEIKGLDFSENMLSVGEQKVKDGG---FSQIELLHGNAMELPFDDDTFDYVTIGFGLRNVPDYLTVLKEMRRVVKPGGQVVCLETSQPEMFGFRQAYFMYFK 1718 LACLAC gerC2 51 DLTGLSILDLCCGTGDWTFDLSESV-------------GPSGKVIGLDFSENMLEIAKAKLKEE---AKKNIEFLQGNAMALPFEKGSFDVVTIGYGLRNTPDYLTVLKEIFRVLKPGGRVVCIETSHPTLPIYKQAFELYFK 1779 ESCCOL YIGO 61 VRRGQTVLDLAGGTGDLTAKFSRLV-------------GETGKVVLADINESMLKMGREKLRNIG--VIGNVEYVQAXXEALPFPDNTFDCITISFGLRNVTDKDKALRSMYRVLKPGGRLLVLEFSKPIIEPLSKAYDAYSF 18810 LEIDON ORF 82 PLPGSKFLDVAGGTGDIAFRITDSIRARGQSFGIVPKTLDGTKVVVCDINAMMLKEGQKRAEREG---YMDIDWVCASGEELPFEDGAFDSYTVSFGIRNFSDRPKALREAFRVLKVGGALHVLEFSRVTCPLLSVPYELWSY 22111 CAEELE ZK652.9 93 VPYNAKCLDMAGGTGDIAFRILRH--------------SPTAKVTVSDINQPMLDVGKKRAEKERDIQPSRAEWVCANAEQMPFESNTYDLFTMSFGIRNCTHPEKVVREAFRVLKPGGQLAILEFSEVNS-ALKPIYDAYSF 22012 MYCTUB ORF 83 YHRTATQVDLGGKQVLEVSCGHGGG------ASYLTRTLHPASYTGLDLNQAGIKLCKKRHR------LPGLDFVRGDAENLPFDDESFDVVLNVEASHCYPHFRRFLAEVVRVLRPGGYFPYADL-RPNNEIAAWEADLAAT 21213 SPIOLE IN37 115 NNRNMLVVDVGGGTGFTTLGIIKHV--------------DPKNVTILDQSPHQLAKAKAKKP------LKECRIIEGDAEDLPFPTDYADRYVSAGSIEYWPDPQRGIREAYRVLKLGGKACLIGPVYPTFWLSRFFADVWML 23714 SACCER ERG6 117 IQRGDLVLDVGCGVGGPAREIAR---------------FTGCNVIGLNNNDYQIAKAKYYAKKYN--LSDQMDFVKGDFMKMDFEENTFDKVYAIEATCHAPKLEGVYSEIYKVLKPGGTFAVYEWVMTDKYDENNPEHRKIA 24215 SACERY eryG 79 ISEGDEVLDVGFGLGAQDFFWLETR--------------KPARIVGVDLTPSHVRIASERAEREN--VQDRLQFKEGSATDLPFGAETFDRVTSLESALHYEPRTDFFKGAFEVLKPGGVLAIGDIIPLDLREPGSDGPPKLA 20516 ESCCOL UBIG 54 GLFGKKVLDVGCGGGILAESMAR----------------EGATVTGLDMGFEPLQVAKLHALESG---IQVDYVQETVEEHAAKHAGQYDVVTCMEMLEHVPDPQSVVRACAQLVKPGGDV-FFSTLNRNGKSWLMAVVGAEY 17617 SACCER COQ3 124 KRPEVSVLDVGCGGGILSESLARLK--------------WVKNVQGIDLTRDCIMVAKEHAKKD----PMLEGKINYECKALEDVTGQFDIITCMEMLEHVDMPSEILRHCWSRLNPEKGILFLSTINRDLISWFTTIFMGEN 24818 SYNP6 YAT1 69 QLGRPRILDAGCGTGVSTDYLAHLN--------------PSAEITAIDISAGTLAVAQERCQRSG--VADRIHFQQLSLYDVAQLPGEFDQINCVGVLHHLEDPDRGLAALASKLAPGGILHIFVYAEIGRAEIRQMQEAIAL 19519 HOMSAP PIMT 75 LHEGAKALDVGSGSGILTACFARMV-------------GQTGKVIGIDHIKELVDDSINNVRKDD---PTLLSSGRVQLVVGDGRMGYAEEA-PYDAIHVGAAAPVVPQALIDQLKPGGRLILPVGPAGGNQMLEQYDKLQDG 20020 ESCCOL PIMT 73 LTPQSRVLEIGTGSGYQTAILAHLV----------------QHVCSVERIKGLQWQARRRLK--------NLDLHNVSTRHGDGWQGWQARA-PFDAIIVTAAPPEIPTALMTQLDEGGILVLPVGEEHQYLKRVRRRGGEFI 190Figure 5: Multiple sequence alignment of a putative methyltransferase domain found in a \falsepositive" gene and a number of other proteins of diverse origin (1-15 are more closely related toeach other but 16-20 share some of the conserved residues). The sequences are 1, E. coli ORFwith similarity to methyltransferases [47] (databank code YAFE ECOLI); 2, E. coli bioC whichis involved in an early step in biotin biosynthesis [48] (BIOC ECOLI); 3, S. marcescens homologof 2 [49] (SMABIO); 4, S. aureus ORF in transposon Tn554 [50] (F24584); 5, R. sphaeroidesphosphatidylethanolamine N-methyltransferase [51] (RCAPMTA); 6, S. fradiae ORF in transpo-son Tn4556 [52] (YT37 STRFR); 7 Synechococcus sp. membrane associated protein (mapA) gene[53] (SYOMAPA); 8, B. subtilis gerC2 which appears to have a role both in spore germination andvegetative cell growth [54] (GRC2 BACSU); 9, L. lactis homolog of 8 [55] (LACPIP); 10, E. coliORF [56] (YIGO ECOLI); 11, L. donovani ORF [57] (LEIMHOMA); 12, C. elegans ORF ZK652.9[58] (CELZK652); 13, M. tuberculosis ORF [59] (U00024); 14, S. oleracea chloroplast inner envelopemembrane protein of unknown function [60, 61] (IN37 SPIOL); 15, S. cerevisiae delta(24)-sterolC-methyltransferase (required for ergosterol synthesis) [62, 63] (ERG6 YEAST); 16, S. erythraeamethyltransferase involved in biosynthesis of the macrolide antibiotic erythromycin [64] (S18533);17, E. coli 3,4-dihydroxy-5-hexaprenylbenzoate methyltransferase required for ubiquinone biosyn-thesis [65] (UBIG ECOLI); 18, S. cerevisiae homolog of 17 [66] (COQ3 YEAST); 19, Synechococ-cus sp. ORF [67] (YAT1 SYNP6); 20, H. sapiens L-isoaspartyl/D-aspartyl methyltransferase [68](PIMT HUMAN); 21, E. coli homolog of 20 [69] (PIMT ECOLI).of unusual codon usage can be found with the kind of model we use for the coding regionsince it only looks at codon usage. Similarly, many of the roughly 5% serious errors the parsermakes occur in genes with unusual codon usage. To locate these genes correctly would requirea more sophisticated gene model. One signi�cant improvement in the model of codon usagewould be to take into account the non-stationary character of the G+C vs A+T content. Ithas been shown that there is a signi�cant drift in the average G+C content in the E. coligenome over periods of several kilobases that cannot be accounted for solely by the changefrom coding to noncoding regions [70]. A new class of \Walking Markov" models has beenproposed to model this phenomenon. The results of some preliminary calculations to see ifextreme variations in G+C content could account for some of our erroneous predictions areshown in Figure 6. These calculations show that this indeed may account for some of the18



problems, but that it does not account for all of it. At this point, it is still unclear as to thebest means to combine the walking Markov idea with the kind of hidden Markov model thatwe use. However, we suspect that other nonstationary aspects of the time series representedby the E. coli genome will also have to be taken into account.

Figure 6: Gene index vs. GC content for genes in the training set (all except the `unusual genes'described in the caption of Figure 2). Note that a high gene index does not imply extreme GCcontent, but a low GC content does imply a high gene index. The genes labeled `incorrectlypredicted' are those that do not fall in the categories `perfect' or `almost perfect', so a reasonablefraction of those are actually useful predictions.The modularity of HMM design, exploited in modeling proteins [71], is a great advantagein building complex models to capture the structure of biological sequences. In future work,we plan to incorporate more explicit models of intergenic regulatory regions and of structuralRNA coding regions. We also intend to try to integrate our protein models with HMMs atthe level of DNA by having a subHMM for each of the widely occurring protein motifsand domains, so that a DNA parser could pick out proteins in a particular family at theDNA level as well. There is a dual advantage in this, because the more precise the model(e.g., modeling all the motifs instead of just the triplets in a gene, and explicitly modelingregulatory regions), the more accurate the parse. This arises because consideration of higher-level patterns constrains the parse much better than low level statistical information alone.19
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