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1. Introduction 11 IntroductionA central task in Computational Learning Theory is to provide simple mathematicalcharacterizations of what is learnable under natural formal models of learning. An examplealong these lines is the characterization of those classes of binary functions that are learnablein Valiant's PAC model in terms of the Vapnik-Chervonenkis dimension1 proved by Blumer,Ehrenfeucht, Haussler, and Warmuth [3]. A natural way to extend the PAC model is toconsider the learning of general multi-valued (instead of just binary) functions.Intuitively, we can reduce the problem of learning any multi-valued function f to theproblem of learning a related set of binary functions by providing a binary encoding off 's range. For example, a function f : X ! f0; : : : ; ng in some class F can be learntby learning the dlog(n + 1)e binary functions fi 2 Fi, where fi(x) is the ith bit of f(x).However, checking the learnability of each Fi might result in a much harder task thandirectly inspecting the class F . In this paper we o�er several simple combinatorial propertiesof the class F itself each characterizing the learnability of F . More precisely, we present ageneral scheme for extending the VC-dimension to classes of f0; : : : ; ng-valued functions forany positive integer n. Our scheme de�nes a wide family of notions of dimension includingas special cases the Natarajan dimension [9], the Graph dimension [4, 9], Pollard's pseudo-dimension [10, 11, 6], and a generalization proposed by Vapnik (see, e.g. [16]).In extending Valiant's PAC model, we assume (see also [9]) that a \target" function ischosen from a given class of multi-valued functions and the learner is to select from thesame class a function that yields a good approximation of the target. The class is said tobe learnable if for any target function and for any probability distribution on the domainan arbitrarily accurate approximation can be obtained with high probability with respectto a random sample of �nite size.Our main result is a simple combinatorial condition characterizing the set of notions ofdimension (from among those generated by our scheme) whose �niteness is necessary andsu�cient for learning. This provides a variety of new tools for determining the learnabilityof a given class F of multi-valued functions and, furthermore, establishes the equivalencebetween the learnability of F and the learnability of the classes (of binary functions)generated by any reasonable binary encoding of F 's range. As a side e�ect we establishthe equivalence between PAC-learnability and the property of uniform convergence offrequencies to probabilities over an associated class of binary \loss functions." Anotherinteresting side e�ect (Corollary 6 and Theorem 10) is that the ratio of (1) the dimension ofa set F of f0; : : : ; ng-valued functions as measured by any of the previously studied notionsof dimensions listed above, and (2) F 's dimension as measured by any other of those notionsof dimension, is at most 4:67 log2(n + 1). In fact, this relationship can be seen to hold forany pair of the notions of dimension in our scheme, each of who's �niteness provides acharacterization of learnability. Thus, one may use whichever of these notions of dimensionis most convenient for analyzing a given class of functions, and have a good estimate for allof them.A further extension to Valiant's learning framework can be obtained within the moregeneral pattern recognition model studied by Vapnik [15]. This framework, often called the\robust" or \agnostic" PAC model, was discussed in an appendix of [3] and studied in a moregeneral setting in [6]. In the robust PAC model the learner's task is to generate (with high1De�ned by Vapnik and Chervonenkis [17].



2 2. Generalizations of the VC-dimensionprobability) a nearly optimal deterministic approximation of a stochastic relationship usinghypotheses chosen from a given class of functions. The �niteness of each of the dimensionsde�ned by our condition is shown to be su�cient for robust learning and necessary forthe weaker non-robust learning. Therefore they characterize learnability in both models.Moreover, this double characterization is also shown not to depend on which particularbounded nonnegative function is used to measure the loss.In Section 2 we prove some combinatorial properties of our family of generalizations.The applications of these properties to learning are described in Section 3. In Section 4we show how our results can be extended to robust learning models and to more generalloss functions. We also show how sample size bounds can be computed using the results ofSection 2. Finally, Section 5 is devoted to open problems and conclusions.2 Generalizations of the VC-dimensionWe begin by introducing a general scheme for extending the VC-dimension.The results presented in this section can be stated more easily if we de�ne the VC-dimension and its generalizations as dimensions of subsets of f0; : : : ; ngm for any positiveinteger m. In Section 3 we will extend these de�nitions and demonstrate their relevance tothe learnability of classes of f0; : : : ; ng-valued functions on arbitrary domains.Let N be the positive integers. Choose m;n 2 N and let S � f0; : : : ; ngm.For each k-tuple { = (i1; : : : ; ik) of indices from the set f1; : : : ; mg, de�ne the {-projectionof S in f0; : : : ; ngk by Sj{ = f(si1 ; : : : ; sik) : (s1; : : : ; sm) 2 Sg:Suppose for a moment that n = 1. In such a case we say that S � f0; 1gm VC-shattersa k-tuple { = (i1; : : : ; ik) of indices if and only ifSj{ = f0; 1gk:The VC-dimension of S is the length of the longest sequence of indices VC-shattered by S.2Now let us return to the more general case in which n � 1. A natural way to extendthe above de�nition of shattering is to say that S shatters the k-tuple { = (i1; : : : ; ik) if andonly if Sj{ = f0; : : : ; ngkand de�ne a notion of dimension as we did with the VC-dimension. This de�nition ofshattering was investigated in [1, 8, 13, 2]. Unfortunately, using this extension, if n > 1,the set f0; 1gm, which has 2m elements, has dimension 0. This fact prevents the �nitenessof such a notion of dimension from being a characterization of learnability in the modelstudied here [3].To de�ne a generalization that yields bounds on jSj for sets S of a given dimension thatare polynomial in m and therefore su�ciently strong for learning in our model, we lookfor a \translation" of multi-valued vectors into binary vectors. This is done by consideringmappings  from the set f0; : : : ; ng to f0; 1; �g (� will be thought of as a null element).2Notice that this de�nition is equivalent to that we would obtain if we insisted that the shattered indicessatisfy 1 � i1 < i2 < � � � < ik � m, which is perhaps the easiest way to think of this and the followingde�nitions of shattering.



2. Generalizations of the VC-dimension 3More formally, let 	 be a family of mappings  from f0; : : : ; ng to f0; 1; �g. Foru 2 f0; : : : ; ngm and  = ( 1; : : : ;  m) 2 	m, denote ( 1(u1); : : : ;  m(um)) by  (u). For aset U � f0; : : : ; ngm, de�ne  (U) = f (u) : u 2 Ug.We say { = (i1; : : : ; ik) is 	-shattered by S if there exists  2 	k such thatf0; 1gk �  (Sj{):In the case in which there exists such a  , which in addition has  1 =  2 = � � � =  k, wesay that { is uniformly 	-shattered by S.Let the 	-dimension of S (denoted by 	-dim(S)) be the maximum d for which thereexists a d-tuple { 2 f1; : : : ; mgd of indices 	-shattered by S and let the uniform 	-dimensionof S (denoted by 	-dimU(S)) be the corresponding de�nition for uniform shattering.By choosing di�erent subsets 	 of the set of all functions from f0; : : : ; ng to f0; 1; �g,we obtain a whole family of notions of dimension. In Section 2.2 we will investigate someproperties of this family that will prove useful for showing results about learnability.2.1 Previously known examplesSeveral previously de�ned notions of dimension correspond to particular choices of theset 	 of mappings. Some of them are listed below.� Pollard's pseudo-dimension [11, 6] is the 	P -dimension, where 	P = f P;k : 0 < k �ng and  P;k is de�ned by  P;k(a) = ( 1 if a � k0 otherwise.� Vapnik [16] describes a generalization of the VC-dimension that is equivalent to theuniform 	P -dimension.� The Graph dimension [4, 9] is the 	G-dimension, where 	G = f G;k : k 2 f0; : : : ; nggand  G;k is de�ned by  G;k(a) = ( 1 if a = k0 otherwise.� The Natarajan dimension [9] is the 	N -dimension, where 	N = f N;k;l : k; l 2f0; : : : ; ng; k 6= lg and  N;k;l is de�ned by N;k;l(a) = 8><>: 1 if a = k0 if a = l* otherwise.Let 	B be the set of all mappings from f0; : : : ; ng to f0; 1g and de�ne the 	B-dimensionaccordingly.Note that the Graph dimension, the Natarajan dimension, and the 	B-dimension donot make use of the natural ordering on f0; : : : ; ng and could just as easily be de�ned forabstract �nite sets.



4 2. Generalizations of the VC-dimension2.2 Elementary PropertiesWe may de�ne an order v on the set of all subsets of f0; 1; �gf0;:::;ng by saying 	 v �i� whenever an S � f0; : : : ; ngm 	-shatters { � f1; : : : ; mg, it �-shatters it too.It can be shown that for m � 2; n � 3, this order is partial.Theorem 1: If m = 2; n = 3, there exists S � f0; : : : ; ngm that 	G-shatters (1; 2) anddoesn't 	P -shatter it, and there exists T � f0; : : : ; ngm that 	P -shatters (1; 2) and doesn't	G-shatter it. Hence 	P and 	G are incomparable.Proof: In Appendix A. 2Lemma 2: Let 	;� be classes of mappings from f0; : : : ; ng to f0; 1; �g such that 	 v �.Then for all S � f0; : : : ; ngm 	-dim(S) � �-dim(S)	-dimU(S) � �-dimU(S)Proof: Follows directly from the de�nitions. 2The next lemma gives a su�cient condition for 	 v � for families 	 and � of mappingsfrom f0; : : : ; ng to f0; 1; �g.Lemma 3: Let 	;� be classes of mappings from f0; : : : ; ng to f0; 1; �g such that for all 2 	 there exists � 2 � such that  �1(0) � ��1(b) and  �1(1) � ��1(1 � b) holds for beither 0 or 1. Then 	 v �.Proof: Assume that for all  2 	 there is a � 2 � such that  �1(0) � ��1(0) and  �1(1) ���1(1). (The case in which for all  2 	 there is a � 2 � such that  �1(0) � ��1(1) and �1(1) � ��1(0) can be handled analogously.) Choose S � f0; : : : ; ngm and { 2 f1; : : : ; mgksuch that S 	-shatters {. Choose  2 	k such thatf0; 1gk �  (Sj{):For each j; 1 � j � k, let �j be such that  �1j (0) � ��1j (0) and  �1j (1) � ��1j (1). Let� = (�1; : : : ; �k).We claim that f0; 1gk � �(Sj{). Choose b = (b1; : : : ; bk) 2 f0; 1gk. Let r 2 Sj{ be suchthat  (r) = b. Choose j 2 f1; : : : ; kg. Since  �1j (0) � ��1j (0),  �1j (1) � ��1j (1), andbj 2 f0; 1g, �j(rj) =  j(rj). Since j was chosen arbitrarily, �(r) =  (r) = b. Therefore,since b was chosen arbitrarily, f0; 1gk � �(Sj{):Thus S �-shatters {. The uniform case follows analogously. 2Finally, we have the following simple observation.Lemma 4: For any set 	 of mappings from f0; : : : ; ng to f0; 1; �g and any S � f0; : : : ; ngm,	-dimU(S) � 	-dim(S):



2. Generalizations of the VC-dimension 52.3 DistinguishersLet 	 be a family of mappings from f0; : : : ; ng to f0; 1; �g. We say that a pair a; b ofdistinct elements in f0; : : : ; ng is 	-distinguishable if there exists  2 	 such that  (a) = 0and  (b) = 1 or vice versa. We call 	 a distinguisher if each pair a; b of distinct elementsin f0; : : : ; ng is 	-distinguishable.All the examples of notions of dimension given in Section 2.1 are easily seen to correspondto distinguishers. It is also immediate to see that if n = 1, for any distinguisher 	 thede�nitions of the 	-dimension and the uniform 	-dimension are equivalent to the de�nitionof the VC-dimension.Theorem 5: For any distinguisher 	,	N v 	 v 	B :Proof: Follows immediately from Lemma 3 and the de�nition of a distinguisher. 2Theorem 5 trivially yields the following corollary about the 	-dimension and the uniform	-dimension for various 	's.Corollary 6: Choose a distinguisher 	 and S � f0; : : : ; ngm.	N -dim(S) � 	-dim(S) � 	B-dim(S)	N -dimU (S) � 	-dimU (S) � 	B-dimU (S):We now turn to the proof of some combinatorial bounds about distinguishers that will beused in the next section. First, we establish the following bound on the uniform 	-dimensionof S in terms of its (non-uniform) 	-dimension for any 	.Theorem 7: Choose a set 	 of mappings from f0; : : : ; ng to f0; 1; �g. Choose S �f0; : : : ; ngm. Then 	-dim(S) � j	j(	-dimU(S)):Proof: Let d = 	-dimU(S): Suppose that the 	-dimension d0 of S is greater than dj	j.Let { = (i1; : : : ; id0) be a sequence shattered by S and let  = ( 1; : : : ;  d0) be such thatf0; 1gd0 �  (Sj{):By the pigeonhole principle, since d0 > dj	j, there exists a subsequence (ij1 ; : : : ; ijd+1) of {such that for all 1 � k; l � d+1,  jk =  jl . Therefore, S uniformly 	-shatters (ij1 ; : : : ; ijd+1),contradicting the assumption that 	-dimU(S) = d. 2We next show that this bound is the best possible in terms of d and j	j.Theorem 8: Choose positive integers d and r. Then if m and n are large enough, there isa family 	 of functions from f0; : : : ; ng to f0; 1; �g, and S � f0; : : : ; ngm for which1. j	j = r,2. 	-dimU (S) = d,3. 	-dim(S) = dr.Proof: In Appendix B. 2We will make use of the following result which bounds from above the cardinality of aset S � f0; : : : ; ngm in terms of its Natarajan dimension.33A looser bound was proved by Natarajan [9]. We apparently need the stronger bound to proveTheorem 10.



6 2. Generalizations of the VC-dimensionTheorem 9 ([7]): Choose S 2 f0; : : : ; ngm. Then if 	N -dim(S) � d,jSj � dXi=0 mi ! n+ 12 !i �  me(n+ 1)22d !d :We apply this theorem to obtain an upper bound on the 	B-dimension of a given classin terms of its Natarajan (	N ) dimension. Recall that Corollary 6 established that theNatarajan dimension of a class is at most its 	B-dimension.Theorem 10: Let S � f0; : : : ; ngm. Let dN = 	N -dim(S) and dB = 	B-dim(S). ThendB � 4:67dN log2(n+ 1):Proof: Let { = (i1; : : : ; idB) be a sequence of indices 	B-shattered by S. Let T = Sj{ . Sincethere exists  2 	B such that f0; 1gdB �  (T );we have that jT j � 2dB . From Theorem 9, we may conclude that jT j � (dBe(n+1)22dN )dN . Thus, dBe(n + 1)22dN !dN � 2dB :Using the approximation ln x � xy � ln(ey) (see [12]), which holds for any pair x; y of realpositive numbers, we derive the following chain of implications for all y < ln 2,2dB �  dBe(n+ 1)22dN !dN() dB ln 2 � dN "ln dBdN + ln e(n + 1)22 #=) dB ln 2 � dN "dBdN y � ln(ey) + ln e(n+ 1)22 #() dB ln 2 � dBy + dN ln (n+ 1)22y() dB � dNln 2� y ln (n+ 1)22y :If we assume further that y � 1=2, we obtain the followingdB � 2dN ln(n+ 1)� dN ln(2y)ln 2� y= (2 ln 2)dN log2(n+ 1)� dN ln(2y)ln 2� y� �(2 ln 2)� ln(2y)ln 2� y �dN log2(n+ 1) (since n � 1; y � 1=2)= � ln 2� ln yln 2� y � dN log2(n+ 1)Choosing y = 1=5 and applying numerical techniques completes the proof. 2Finally, we show that the bound of Theorem 10 is within a constant factor of the bestpossible in terms of dN and n.



3. Applications to learning 7Theorem 11: Choose a positive integer d. Then if m = ddlog2(n + 1)e, there existsS � f0; : : : ; ngm for which� 	N -dim(S) � d.� 	B-dim(S) = dblog2(n+ 1)c.Proof: In Appendix C. 23 Applications to learningWe move on to apply the results of Sections 2.2 and 2.3 to a natural extension of thePAC learning model. We describe a number of characterizations of learnability for classesof f0; : : : ; ng-valued functions proving, in particular, that for any distinguisher 	, a classis learnable if and only if its 	-dimension is �nite. After Vapnik [16], we will adopt anaive attitude toward measurability, assuming that every set encountered in our proofs ismeasurable. If one prefers, one may assume that the domain of any probability space wedescribe is countable, although considerably weaker assumptions, similar to those used in[3, 6], su�ce. If X is a set, P is a probability distribution over X , and f maps X to IR, letEx2P [f(x)] denote the expectation of f with respect to P .Choose a set X , a positive integer n, and a family F of f0; : : : ; ng-valued functionsde�ned on X . For a probability measure D over X and a function f 2 F we de�ne theerror of a function h with respect to D and f , denoted by errorD;f (h), to beDfx 2 X : f(x) 6= h(x)g:A learning strategy for F is a mapping from �nite sequences of elements of X � f0; : : : ; ngto F .Intuitively, our de�nition of learnability requires the existence of a learning strategyable to yield an arbitrarily good approximation of any target function in the class with highprobability with respect to a random sample of �nite size.More formally, we say that F is learnable if there exists a learning strategy A (notnecessarily computable) and an integer-valued function m = m(�; �) such that for any�; � > 0, for any probability measure D over X , and for any f 2 F the eventerrorD;f(A(v)) > �occurs with probability at most � for random sequences v = ((x1; f(x1)); : : : ; (xm; f(xm))),where (x1; : : : ; xm) 2 Xm is drawn according to Dm.This de�nition of learnability is essentially that studied in [9], which in turn was basedon Valiant's PAC model [14]. As we discuss in Section 4, the characterizations of learnabilitywe present here also hold for more general and perhaps more realistic \loss functions." Forinstance, the \loss" on x can be allowed to depend on the extent the target's value f(x)di�ers from the value h(x) of the learner's hypothesis.In order to apply the results of the previous section, we now extend the notion of thedimension of a set of vectors to sets of functions.For a �nite sequence x = (x1; : : : ; xk) of elements of X de�ne the x-restriction of F byFjx = f(f(x1); : : : ; f(xk)) : f 2 Fg:



8 3. Applications to learningFor a class 	 of mappings from f0; : : : ; ng to f0; 1; �g de�ne the 	-dimension of F (denotedby 	-dim(F)) to be the maximum over all positive integers k and all x 2 Xk of the 	-dimension of its x-restriction, if such a maximum exists, and in�nity otherwise. De�ne theuniform 	-dimension of F analogously.As a �rst step, we mention the following result showing that the �niteness of theNatarajan dimension is necessary for learning.Theorem 12 ([5, 9]): If 	N -dim(F) =1 then F is not learnable.The next theorem follows relatively straightforwardly from the results obtained in theprevious section.Theorem 13: Choose distinguishers 	 and �. Then the following are equivalent:1. 	-dim(F) =1.2. �-dim(F) =1.3. 	-dimU(F) =1.4. �-dimU (F) =1.Proof: (1. ) 2.): Assume for contradiction that 	-dim(F) = 1 and �-dim(F) is �nite.Let d = 	-dim(F). Let m1 and x = (x1; : : : ; xm1) be such that that�-dim(Fjx) = d:Let m2 and y = (y1; : : : ; ym2) be such that	-dim(Fjy) = d1 + 4:67d log2(n+ 1)e:Let z = (x1; : : : ; xm1 ; y1; : : : ; ym2). Let S = Fjz . Trivially, �-dim(S) = d and	-dim(S) > 4:67d log2(n+ 1):Applying Corollary 6 we have that	B-dim(S) > 4:67	N -dim(S) log2(n+ 1);but by Theorem 10 this is a contradiction.(2. ) 1.): This follows from (1. ) 2.) by symmetry.(1. ) 3.): Assume for contradiction that 	-dim(F) =1 and 	-dimU (F) is �nite. Letd = 	-dimU(F). Let m1 and x = (x1; : : : ; xm1) be such that	-dimU (Fjx) = d:Let m2 and y = (y1; : : : ; ym2) be such that	-dim(Fjy) > j	jd:Let z = (x1; : : : ; xm1 ; y1; : : : ; ym2). Let S = Fjz . Again, trivially, 	-dimU(S) = d and	-dim(S) > j	jd, which contradicts Theorem 7.(2. ) 4.): This follows immediately from (1. ) 3.).Finally, (3.) 1.) and (4.) 2.) follow immediately from Lemma 4. This completes theproof. 2Combining Theorem 12 with Theorem 13, we can show that the �niteness of anydimension de�ned by a distinguisher is necessary for learning.



3. Applications to learning 9Corollary 14: Let 	 be a distinguisher. If 	-dim(F) =1, then F is not learnable.We now turn to the de�nition of a class of f0; 1g-valued \loss functions" for F , whosecombinatorial and statistical properties are related to the learnability of F in a way thatwill be shown later.De�ne the 0-1 loss function l0�1 from f0; : : : ; ng2 to f0; 1g byl0�1(a; b) = ( 1 if a 6= b0 otherwise.For any function f from X to f0; : : : ; ng de�ne the function l0�1;f from X � f0; : : : ; ng tof0; 1g by l0�1;f (x; a) = l0�1(f(x); a). Finally, de�ne the class l0�1;F = fl0�1;f : f 2 Fg of0-1 loss functions induced by F .Lemma 15: The VC-dimension of l0�1;F equals the Graph dimension of F .Proof: Suppose the sequence x1; : : : ; xk of elements of X are 	G-shattered by F . Thenthere exist  1; : : : ;  k 2 	G such thatf( 1(f(x1)); : : : ; ( k(f(xk)))g = f0; 1gk:Let a1; : : : ; ak 2 f0; : : : ; ng be such that for all j; 1 � j � k,  j is de�ned by j(b) = ( 1 if b = aj0 otherwise.Such a sequence a1; : : : ; ak exists due to the de�nition of 	G-shattering. We claim thatthe sequence (x1; a1); : : : ; (xk; ak) of elements of X � f0; : : : ; ng is VC-shattered by l0�1;F .Choose b 2 f0; 1gk. Let f 2 F be such thatb = (1�  1(f(x1)); : : : ; 1�  k(f(xk))):Since, by de�nition, for all j; 1 � j � k, l0�1;f(xj ; aj) = 1�  j(f(xj)), we haveb = (l0�1;f(x1; a1); : : : ; l0�1;f (xk; ak)):Since b was chosen arbitrarily, l0�1;F shatters (x1; a1); : : : ; (xk; ak). Thus the VC-dimensionof l0�1;F is at least the Graph dimension of F .Now assume that a sequence (x1; a1); : : : ; (xk; ak) of elements of X � f0; : : : ; ng is shat-tered by l0�1;F . We claim that x1; : : : ; xk is 	G-shattered by F . De�ne  1; : : : ;  k 2 	G,by  j(b) = ( 1 if b = aj0 otherwise.Applying the fact that for all j; 1 � j � k, l0�1;f(xj ; aj) = 1� j(f(xj)), in a similar mannerto the above veri�es that x1; : : : ; xk is 	G-shattered by F , and therefore that the Graphdimension of F is at least the VC-dimension of l0�1;F . This completes the proof. 2Next we de�ne a statistical property of l0�1;F that in the next theorem will be shownequivalent to learning. We say that l0�1;F is uniformly convergent if there exists an integer-valued function m = m(�) such that for all � > 0 and for all probability measures P overX � f0; : : : ; ng, if ((x1; a1); : : : ; (xm; am)) is chosen according to Pm, the event9f 2 F : ��� 1m mXj=1 l0�1;f (xj ; aj)�E(x;a)2P [l0�1;f (x; a)]��� � �



10 3. Applications to learningoccurs with probability at most �. Since we require that the same m be su�cient for alldistributions P , this is sometimes called distribution free uniform convergence.Now we are ready for our main result which shows a variety of ways in which learnabilitycan be characterized.Theorem 16: For any distinguisher 	 the following are equivalent:1. 	-dim(F) is �nite.2. 	-dimU(F) is �nite.3. l0�1;F is uniformly convergent.4. The VC-dimension of l0�1;F is �nite.5. F is learnable.Proof: Theorem 13 implies that (1., 2.). Corollary 14 implies that (5.) 1.). Lemma 15and Theorem 13 imply that (1. , 4.). The implication (4. ) 3.) is an immediateconsequence of the results in [17] and the implication (3. ) 5.) is a special case of [6,Lemma 1, p. 20]. This completes the proof. 2The concept of distinguisher is a kind of metacharacterization, as it characterizes those	 which in turn characterize learnability both through the �niteness of the 	-dimension andthrough the �niteness of the uniform 	-dimension. To see this, all that remains is to showthat for any family 	 of mappings from f0; : : : ; ng to f0; 1; �g which is not a distinguisherneither the 	-dimension nor the uniform 	-dimension characterizes learnability.Lemma 17: If 	 is a family of mappings from f0; : : : ; ng to f0; 1; �g which is not adistinguisher and if X is in�nite, then there is a family F of functions from X to f0; : : : ; ngwhich has 	-dimension 0 and has uniform 	-dimension 0, but which is not learnable.Proof: Suppose 	 fails to distinguish a1; a2 2 f0; : : : ; ng. Then the set of all functions fromX to fa1; a2g trivially has 	-dimension and uniform 	-dimension 0. However, this class isisomorphic to the set of all f0; 1g-valued functions de�ned on X , which was shown in [3] tonot be PAC-learnable if X is in�nite. 2Say that a family 	 of mappings from f0; : : : ; ng to f0; 1; �g provides a characterizationof learnability if and only if for any family F of f0; : : : ; ng-valued functions the learnabilityof F is equivalent to the �niteness of either its 	-dimension or its uniform 	-dimension.Then Theorem 16 and Lemma 17 yield the following result.Theorem 18: A family 	 of mappings from f0; : : : ; ng to f0; 1; �g provides a characteri-zation of learnability if and only if 	 is a distinguisher.3.1 Reductions between learning problemsWe now show a di�erent way in which distinguishers can be used to characterize learn-ability. A natural approach to learning many-valued functions is to represent them by sets off0; 1g-valued functions. For example, a function f : X ! f0; : : : ; ng can be represented bydlog(n+1)e binary functions fi, where fi(x) is the ith bit of f(x). The problem of learningf can then be reduced to the problem of learning each function fi for i = 1; : : : ; dlog(n+1)e.More generally speaking, reductions between learning problems can be built by representingsets of multi-valued functions through sets of f0; 1; �g-valued functions. This is done usingsome set 	 of mappings from f0; : : : ; ng to f0; 1; �g whereby we represent each f in a classF of f0; : : : ; ng-valued functions through a set of f0; 1; �g-valued functions. In this sectionwe show that whenever a set 	 of such mappings is a distinguisher, then its representation



4. Further applications 11of F preserves learnability. More precisely, the learnability of a class F is equivalent to thelearnability of each set of f0; 1; �g-valued functions in the collection representing F throughthe distinguisher 	.We begin by introducing a few preliminary de�nitions. For all f : X ! f0; : : : ; ngand all  : f0; : : : ; ng ! f0; 1; �g let  f be the function from X to f0; 1; �g de�ned by f (x) =  (f(x)). Moreover, for any class F of such functions f let  F = f f : f 2 Fg.The de�nition of VC-shattering (and therefore the associated notion of VC-dimension)can be trivially generalized to classes of f0; 1; �g-valued functions by insisting that a sequencex be VC-shattered if and only if Fjx = f0; 1gjxj (as usual, �'s do not contribute to shattering).In the rest of the section we will use the above slightly extended de�nition of VC-dimension.The next lemma relates the notions of uniform 	-dimension and VC-dimension.Lemma 19: For all sets 	 of mappings from f0; : : : ; ng to f0; 1; �g,	-dimU(F) = max fVC-dim( F) :  2 	g :Proof. Immediate from the de�nitions. 2We then obtain the following characterization.Theorem 20: For all distinguishers 	, F is learnable if and only if  F is learnable for all 2 	.Proof. Choose a distinguisher 	. By Theorem 16, F is learnable if and only if the uniform	-dimension of F is �nite. By Lemma 19, this is equivalent to the �niteness of the VC-dimension of  F for all  2 	. By the results of [3], for each  2 	,  F is learnable exactlywhen it has �nite VC-dimension. This completes the proof. 2As a �nal remark to this section we point out that Theorem 16, as most of the resultspresented in this paper, holds also if we use a more general de�nition of distinguisher whereeach mapping  depends on both the domain and the range of the functions in F . Moreformally, in this framework a distinguisher is a set 	 of mappings  from X � f0; : : : ; ngto f0; 1; �g. A sequence x on X (say of length d) is 	 -shattered by F whenever there existsa sequence ( 1; : : : ; d) 2 	 d such that for any b 2 f0; 1gd there exists a f 2 F for which� 1(x1; f(x1)); : : : ; d(xd; f(xd))� = b:Accordingly, the 	 -dimension of F is the length of the longest sequence x 	 -shattered byF .4 Further applicationsIn this section we describe how our results can be applied to more general and perhapsmore realistic learning problems. We also apply the bounds of Section 2 to the derivationof sample complexities, that is, sample sizes su�cient for learning in our framework.



12 4. Further applications4.1 Robust learningFor practical learning tasks one might want to relax the hypothesis that the pairs(x; a) 2 X � f0; : : : ; ng in the sample are generated according to a function belongingto some known class, or even that there exists a functional relationship between the x'sand a's. A more realistic assumption might be to require the existence of a probabilitydistribution on X �f0; : : : ; ng from which all pairs in the sample are independently drawn.In such learning settings, which are usually called \robust", the learner's goal might be to�nd a good approximation, according to a proper criterion, of the unknown distributionwithin the class F of hypotheses. In this section we prove that learnability and robustlearnability are in fact equivalent properties of classes of f0; : : : ; ng-valued functions.In the robust variant of our learning model, the error of a function h 2 F is de�ned withrespect to a distribution P over the set X � f0; : : : ; ng byerrorP (h) = Pf(x; a) : f(x) 6= ag:We say that a class F of f0; : : : ; ng-valued functions is robustly learnable if there existsa learning strategy A (again not necessarily computable) and an integer-valued functionm = m(�; �) such that for any �; � > 0 and for any probability measure P overX�f0; : : : ; ng,the event errorP (A(v)) > inff2F errorP (f) + �occurs with probability at most � over all samples v 2 (X � f0; : : : ; ng)m drawn accordingto Pm (the m-fold product measure derived from P ).This de�nition of learnability is a restriction of that studied in [15, 6] and we refer theinterested reader to these sources for additional motivation. Using the results of previoussections we can quickly prove the following theorem.Theorem 21: F is learnable if and only if F is robustly learnable.Proof. The implication (3. ) 5.) in Theorem 16 holds also in the robust learning model.For the other direction just observe that learnability is clearly implied by robust learnability.2 Note that the equivalence between learnability and robust learnability could have beenmore directly demonstrated by combining Natarajan's [9] and Haussler's [6] results.4.2 General loss functionsA more general error model than that of Section 3 can be considered. A natural choicecould be a model in which certain errors are more serious than others. Call any function lfrom f0; : : : ; ng2 to the nonnegative reals such that for any a 2 f0; : : : ; ng, l(a; a) = 0 a lossfunction. Let the error of a function h with respect to a loss function l, a distribution Dover X , and a function f beerror l;D;f(h) = Ex2D[l(f(x); h(x))]:We then say that F is learnable w.r.t. a loss function l if F is learnable according to thede�nition of learnability given in Section 3 with errorD;f replaced by error l;D;f . Noticethat the learnability of F is equivalent to the learnability of F w.r.t. the loss function l0�1de�ned in Section 3.



4. Further applications 13Theorem 22: F is learnable if and only if F is learnable w.r.t. all loss functions.Proof. Since F is learnable if and only if F is learnable w.r.t. l0�1, the \if" direction istrivial. For the other direction assume F is learnable w.r.t. l0�1 and choose a loss functionl. Let M be the maximum value taken by l on its (�nite) domain. Then for any f; g 2 Ferror l;D;f (g) �M � errorD;f(g):Therefore, for any � > 0, distribution D and functions f; g 2 F , errorD;f(g) � �M implieserror l;D;f(g) � �. The theorem is proven. 2In Section 3 we introduced the class l0�1;F of 0-1 loss functions induced by F . Thisnotation can be extended to any loss function l as follows. Let lf be the function onX � f0; : : : ; ng de�ned by lf(x; a) = l(f(x); a)and let lF = flf : f 2 Fg. Notice that lF is a class of functions with �nite range. Noticefurther that the de�nition of the 	P dimension given in Section 2.1 can be extended toclasses of real-valued functions, the union of whose ranges contains nonintegral values asfollows.For each real � de�ne  P;� : IR! f0; 1g by P;�(a) = ( 1 if a � �0 otherwise.We then say that the sequence (x1; : : : ; xk) 2 Xk is 	P -shattered by F i� there exists�1; : : : ; �k such thatf0; 1gk � f( P;�1(f(x1)); : : : ;  P;�k(f(xk))) : f 2 Fgand de�ne the 	P -dimension of F to be the length of the longest sequence 	P -shatteredby F .We now extend Theorem 22 to robust learning. A preliminary lemma is needed.Lemma 23: For all classes F and loss functions l the 	P -dimension of lF is at most the	B-dimension of F .Proof. To prove the lemma is su�cient to show that for all positive integers d and allz 2 (X � f0; : : : ; ng)d, if lF 	P -shatters z = (x1; a1); : : : ; (xd; ad), then F 	B-shattersx = (x1; : : : ; xd). Assuming that z is 	P -shattered by lF amounts to saying that there is asequence r of d positive reals such that for all b 2 f0; 1gd there is some f 2 F satisfyingl(f(xi); ai) � ri () bi = 1 for i = 1; : : : ; d: (4:1)For each i = 1; : : : ; d, de�ne the mapping  i with domain f0; : : : ; ng by i(c) = ( 1 if l(c; ai) � ri0 otherwise.Since for 1 � i � d,  i maps f0; : : : ; ng to f0; 1g, it belongs to the distinguisher 	B, since	B contains all such mappings. Therefore, condition (4.1) implies i(f(xi)) = 1 () l(f(xi); ai) � ri for i = 1; : : : ; d:Since such a set of  i can be found in 	B for all choices of z and r, the lemma is proven. 2We will also use the following result.



14 4. Further applicationsTheorem 24 ([6]): If the 	P dimension of lF is �nite then F is robustly learnable.Now we are ready for the main result of this section.Theorem 25: F is robustly learnable if and only if F is robustly learnable w.r.t. all lossfunctions.Proof. It is easily veri�ed that the robust learnability of F is equivalent to the robustlearnability of F w.r.t. l0�1, and this proves the \if" part. For the other direction if F isrobustly learnable, then F is learnable as well. Since 	B is a distinguisher, by Theorem 16the 	B-dimension of F is �nite. Choose a loss function l. By Lemma 23, the 	P -dimensionof lF is �nite. By Theorem 24, this implies the robust learnability of F w.r.t. l. 24.3 Sample size boundsThe de�nition of learnability for a class F of functions calls for the existence of both alearning strategy and an integer-valued function m = m(�; �) satisfying the given learningcriterion. The term PAC learning sample complexity is often used to denote the slowestgrowing function m for which such a learning strategy exists. By generalizing results from[3], we now prove upper bounds on the PAC learning sample complexity for the multi-valuedcase.Theorem 26: The PAC learning sample complexity of a class F of f0; : : : ; ng-valued func-tions is at most O�1� (dG log 1� + log 1� )� (4:2)where dG is the Graph dimension of F .Proof. Choose a class F of functions from X to f0; : : : ; ng and let dG be its Graphdimension. Choose a distribution D on X and a target function f 2 F . Let P be thedistribution induced on X � f0; : : : ; ng by D and f . By Lemma 15, the VC-dimension ofthe class l0�1;F of 0-1 loss functions on X � f0; : : : ; ng induced by F equals the Graphdimension of F . Now observe that the problem of learning the target function f 2 Fto within accuracy � > 0 reduces to the problem of identifying any f 2 F for whichPr(l0�1;f = 1) � �. By the results of [3], a sample size of order as speci�ed in formula(4.2) is su�cient to ensure that, with probability at least 1� �, any hypothesis h for whichl0�1;h(x; a) = 0 for all pairs (x; a) in the sample achieves this goal. 2We can generalize Theorem 26 and obtain a similar bound in terms of the 	-dimensionand the uniform 	-dimension of F for each distinguisher 	.Theorem 27: Choose a class F of f0; : : : ; ng-valued functions and a distinguisher 	. Thenthe PAC learning sample complexity of F is at mostO�1� (d(logn) log 1� + log 1� )� (4:3)where d is the 	-dimension of F and at mostO�1� (uj	j(logn) log 1� + log 1� )� (4:4)where u is the uniform 	-dimension of F .



5. Conclusions and open problems 15Proof. Corollary 6 and Theorem 10 imply that for any class F of 	-dimension d and�-dimension d0, where 	 and � are two distinguishers, d0 = O(d logn) holds. Therefore, byTheorem 26 the upper bound (4.3) holds whenever F has 	-dimension d with respect tosome distinguisher 	. Finally, the bound (4.4) is an immediate consequence of Theorem 7.2 Theorems 26 and 27 can both be easily extended to arbitrary loss functions by replacingeach 1=� with (maxa;b l(a; b))=�.Regarding the second part of the above theorem, observe that the size of a distinguishercan have very di�erent rates of growth with respect to n. For instance, j	Bj is exponentialin n whereas j	P j is linear. Also, there are distinguishers whose size is logarithmic in n:Let 	L be the set de�ned by f L;k : k � dlog2(n+ 1)eg (4:5)where  L;k(j) is the kth least signi�cant bit in a binary encoding of j. Then 	L has sizedlog2(n+ 1)e and is a distinguisher, as one can easily verify.5 Conclusions and open problemsIn this work we gave a general scheme for extending the VC-dimension to classesof multi-valued functions and we proved a combinatorial condition characterizing thosegeneralizations of the VC-dimension whose �niteness is necessary and su�cient for learningin a natural extension of the PAC framework. We also provided further characterizationsof learnability for classes of multi-valued functions in terms of the VC-dimension and interms of the uniform convergence property of a class of induced loss functions. We thenproved equivalence between learning and robust learning and independence of our notion oflearnability on the choice of the loss function. We �nally showed applications of these resultsto the problem of estimating the PAC learning sample complexity su�cient for learning withconsistent hypotheses.A possible direction for future work is the investigation of the relationships of the resultsproven here to the real-valued case. In fact certain notions of dimension, such as thePollard's 	P -dimension, are naturally extended to classes of real-valued functions takingvalues in a bounded real interval (say [0; 1] for simplicity). A real-valued learning problemcan be reduced to the multi-valued case through a discretization of the range [0; 1] into aset f0; : : : ; ng (see [7]). The number of discrete elements into which the continuous range isbroken is proportional to 1� , where � is the required bound on the error of the hypothesis.Also, the discretization does not increase the 	P -dimension of the original class, so the�niteness of either the 	P -dimension or Vapnik's uniform 	P -dimension are su�cient forrobust learning in the real-valued case. On the other hand, some properties true in thediscrete case are lost in the continuous one. For instance, while in the discrete case, the�niteness of the 	P -dimension is equivalent to the �niteness of the uniform 	P dimension,the class of monotone increasing functions on [0; 1] has in�nite 	P -dimension but uniform	P -dimension equal to 1.
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18 A. Proof of Theorem 1A Proof of Theorem 1Suppose S = f(0; 0); (0; 1); (1; 1); (1; 2)gT = f(0; 1); (1; 2); (2; 3); (3; 0)gIf  = ( G;1;  G;1), then (S) = f(0; 0); (0; 1); (1; 1); (1; 0)g= f0; 1g2;and (1; 2) is 	G-shattered by S.Assume for contradiction that (1; 2) is 	P -shattered by S. Then there exists  =( P;k;  P;l) where k; l 2 f1; 2; 3g such that f0; 1g2 �  (S). Assume as a �rst case thatk � l. Since there is (u; v) 2 S such that (1; 0) 2  (S), u � k � l > v contradicting theeasily observed fact that u � v for all (u; v) 2 S. Assume as a second case that k < l.Since there is (u; v) 2 S such that (0; 1) 2  (S), v � l > k > u contradicting another easilyobserved fact: that u � v � 1 for all (u; v) 2 S. Therefore (1; 2) is not 	P -shattered by S.If  = ( P;2;  P;2), then (T ) = f(0; 0); (0; 1); (1; 1); (1; 0)g= f0; 1g2;and (1; 2) is 	P -shattered by T .Choose  = ( G;k;  G;l) where (k; l) 2 T . Then for all t 2 T for which t 6= (k; l), (t) = (0; 0). If (k; l) 62 T , and  = ( G;k;  G;l), then for no t 2 T is  (t) = (1; 1). Thus,(1; 2) is not 	G-shattered by T . This completes the proof. 2This result may trivially be extended to arbitrary m > 1; n > 2.B Proof of Theorem 8Let n = r, m = dn, and 	 = 	P . LetJ0 = f1; : : : ; ng; J1 = fn+ 1; : : : ; 2ng; : : : ; Jd�1 = f(d� 1)n+ 1; : : : ; dng:Let S be the set of all s 2 f0; : : : ; ngm for which for all j 2 f0; : : : ; d� 1g, for all u; v 2 Jj ,if u < v, then su � sv.Notice that part 1 of Theorem 8 is satis�ed by the assumption 	 = 	P . We now splitthe proof of parts 2 and 3 into a number of lemmas.Lemma 28: The uniform 	P -dimension of S is at least d.Proof: We claim that (n; 2n; : : : ; dn) is uniformly 	P -shattered by S. Choose b 2 f0; 1gd.De�ne s 2 f0; : : : ; ngm bysi = ( 0 if n doesn't divide i, or if bbi=nc = 01 otherwise.Clearly s 2 S, and (	P;1(sn);	P;1(s2n); : : : ;	P;1(sdn)) = b:Since b was chosen arbitrarilyf0; 1gd � f(	P;1(sn);	P;1(s2n); : : : ;	P;1(sdn)) : s 2 Sg:Thus (n; 2n; : : :; dn) is uniformly 	P -shattered by S, completing the proof. 2



B. Proof of Theorem 8 19Lemma 29: Choose a positive integer q. If S uniformly 	P -shatters { 2 f1; : : : ; mgq, thenfor each 1 � j � d, jfil : 1 � l � qg \ Jj j � 1:Proof: Assume the negation of the lemma for contradiction. Let 1 � k � n be such thatf0; 1gq � f(	P;k(si1);	P;k(si2); : : : ;	P;k(siq )) : s 2 Sg;and let j be such that jfij0 : 1 � j 0 � qg \ Jj j > 1:Let u and v be distinct elements of Jj for which u < v. We havef0; 1g2 � f(	P;k(su);	P;k(sv)) : s 2 Sg:In particular, (1; 0) 2 f(	P;k(su);	P;k(sv)) : s 2 Sg:Thus, su � k and sv < k;which implies su > sv ;which, by the de�nition of S, is a contradiction since u; v 2 Jj and u < v. This completesthe proof. 2Theorem 30 (Requirement (2.) from Theorem 8): The uniform 	P -dimension of Sis d.Proof: Follows immediately from Lemmas 28 and 29. 2Corollary 31: The 	P -dimension of S is at most dn.Proof: Follows immediately from Theorem 30 and Theorem 7. 2Lemma 32: The 	P -dimension of S is at least dn.Proof: We claim that (1; : : : ; dn) is shattered. De�ne  by letting i =  P;(i�nb(i�1)=nc):for i = 1; 2; : : : ; dn. Thus = ( P;1; : : : ;  P;n;  P;1; : : : ;  P;n; � � � ;  P;1; : : : ;  P;n):Choose b 2 f0; 1gdn. De�ne s 2 f0; : : : ; ngdn bysi = ( (i� 1)� nb(i� 1)=nc if bi = 0i� nb(i� 1)=nc otherwise.Since si � i � nb(i � 1)=nc, and si+1 � i � nbi=nc, if i and i + 1 are both in Jj for somej, b(i � 1)=nc = bi=nc, and therefore si � si+1. Therefore s 2 S. Choose i 2 f1; : : : ; dng.Then, by de�nition, si � i� nb(i� 1)=nc i� bi = 1;and therefore  i(si) =  P;(i�nb(i�1)=nc)(si) = bi:Since b was chosen arbitrarily, f0; 1gdn �  (S):This completes the proof. 2Theorem 33 (Requirement (3.) from Theorem 8): The 	P dimension of S is dn.Proof: Follows from Corollary 31 and Lemma 32. 2



20 C. Proof of Theorem 11C Proof of Theorem 11Let 	L be the set de�ned byf L;k : 1 � k � dlog2(n+ 1)eg (C:1)where  L;k(r) is the kth least signi�cant bit in a binary encoding of r.De�ne 
 : f0; : : : ; ngd ! f0; : : : ; ngm as follows. (Recall that m = ddlog2(n+ 1)e.)Suppose 
(z) = s. Informally, s is formed by �rst writing the binary representation of z1using the alphabet f0; z1g, then writing the binary representation of z2 using the alphabetf0; z2g, and so on, and then \concatenating" the results. (If some zj = 0, we just putdlog2(n+1)e zero's in its place.) Formally, for each 1 � i � m, if j = b(i�1)=dlog2(n+1)ec,then si = zj+1 L;t(zj+1)where t = dlog2(n+ 1)e � ((i+ 1)moddlog2(n + 1)e). Note that 
 is one-to-one. LetS = 
(f0; : : : ; ngd)be the range of 
. For example, if n = 3; d = 2,S = f(0; 0; 0; 0); (0; 0; 0; 1); (0; 0; 2; 0); (0; 0; 3; 3);(0; 1; 0; 0); (0; 1; 0; 1); (0; 1; 2; 0); (0; 1; 3; 3);(2; 0; 0; 0); (2; 0; 0; 1); (2; 0; 2; 0); (2; 0; 3; 3);(3; 3; 0; 0); (3; 3; 0; 1); (3; 3; 2; 0); (3; 3; 3; 3)gLemma 34: Choose a positive integer q. If S 	N -shatters { 2 f1; : : : ; mgq, then for each0 � j � d� 1, jfj 0 : b(ij0 � 1)=dlog2(n+ 1)ec = jgj � 1:Proof: Assume the negation of the lemma for contradiction. Let  2 	qN be such thatf0; 1gq �  (Sj{)and let j be such that jfj 0 : b(ij0 � 1)=dlog2(n+ 1)ec = jgj > 1:Let iu and iv be distinct elements offij0 : b(ij0 � 1)=dlog2(n+ 1)ec = jg:Let ku; lu; kv; lv satisfy  u =  N;ku;lu ;  v =  N;kv;lv :Assume without loss of generality that ku < lu, kv < lv. Let s 2 S be such that( u(siu);  v(siv)) = (1; 1):Let z = 
�1(s). Since siu = zj+1 L;tu(zj+1)siv = zj+1 L;tv(zj+1)



C. Proof of Theorem 11 21where tu = dlog2(n+ 1)e � ((iu + 1)moddlog2(n+ 1)e)and tv = dlog2(n+ 1)e � ((iv + 1)moddlog2(n+ 1)e):Also lu; lv > 0 (since lu > ku, lv > kv), we havesiu = lu = zj+1siv = lv = zj+1and lu = lv = zj+1.Let s0 2 S be such that ( u(s0iu);  v(s0iv)) = (0; 1):Let z0 = 
�1(s0). Since  u(s0u) 6=  u(su), the binary representation of zj+1 is not the sameas that of z0j+1, and therefore zj+1 6= z0j+1. But since  v(s0v) = 1, s0v > 0, and therefores0v = z0j+1 and lv = z0j+1. Thus, we havelv = z0j+1 6= zj+1 = lv;a contradiction. This completes the proof. 2Corollary 35: The 	N -dimension of S is at most d.Theorem 36: The uniform 	P -dimension of S is at least dblog(n+ 1)c.Proof: Assume �rst that (n+ 1) is a power of 2. In this caseblog2(n+ 1)c = dlog2(n+ 1)e = log2(n+ 1):Choose b 2 f0; 1gm. Let z1 be the number represented in binary by the �rst log2(n+1) bitsof b, z2 be the number represented by the next log2(n + 1) bits, and so on. Let s = 
(z).Trivially, ( P;1(s1); : : : ;  P;1(sm)) = b:Since b was chosen arbitrarily,f0; 1gm � f( P;1(s1); : : : ;  P;1(sm)) : s 2 Sg;completing the proof in this case.If (n+ 1) is not a power of two, thenblog2(n+ 1)c = dlog2(n+ 1)e � 1:One may easily show in an analogous way that(2; : : : ; dlog2(n+ 1)e; dlog2(n+ 1)e+ 2; : : : ; 2dlog2(n+ 1)e;� � � ; (d� 1)dlog2(n+ 1)e+ 2; : : : ; ddlog2(n+ 1)e)is uniformly 	P -shattered by S, completing the proof. 2Corollary 37: The 	B-dimension of S is at least dblog(n+ 1)c.Proof: Follows directly from Lemma 4, Corollary 6, and Theorem 36. 2


