
What is a race in a programand when can we detect it?D. P. Helmbold, C. E. McDowellUCSC-CRL-93-30August 2, 1993
Board of Studies in Computer and Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064abstractThis paper presents a taxonomy of methods for detecting race conditions inparallel programs, shows how recent results �t into the taxonomy, and presentssome new results for previously unexamined points in the taxonomy. It alsopresents a taxonomy of \races" and suggested terminology.Keywords: trace analysis, race detection, debugging, parallel program-ming, event ordering



1. Introduction 11 IntroductionIn this paper we present a taxonomy of methods for detecting race conditions, show howrecent results �t into the taxonomy, and present some new results for previously unexaminedpoints in the taxonomy.Shared memory parallel computers are an important part of high performance computingtoday and will continue to be so for many years. A signi�cant number of these machinesare programmed using a conventional language, modi�ed to contain some form of explicitparallelism (e.g. fork, doall) and some form of explicit synchronization (e.g. join, semaphores).Sometimes these programs are intended to be deterministic, but due to synchronizationerrors are nondeterministic (i.e. contain race conditions). Other programs are intended tobe nondeterministic (at least at some level { this is discussed further later). In both cases itmay be desirable to identify the sources of nondeterminism. This is particularly useful forprograms that were intended to be deterministic but might also be useful for intentionallynondeterministic programs provided the information about sources of nondeterminism ispresented in a suitable manner.Informally, a \race" exists between two program events if they con
ict (e.g. one readsand the other writes the same memory location) and their execution order depends on howthe threads (or tasks) are scheduled (a formal de�nition is given in Section 2).There are many questions that can be asked about the possible \races" in a parallelprogram.� What ordering relationships should hold between statement instances (i.e. what state-ment instances con
ict)?� What ordering relationships hold between statement instances?� What are all of the races in this program?� Are there any races in this program?� What shared memory addresses are accessed by a statement (instance)?Current algorithms for detecting races in programs answer (or attempt to answer) one ormore of the above questions.In Section 2 we examine all possible ordering relationships than can hold between twoprogram events and then classify them into non-races and four classes of races. In Section 4we present our taxonomy of race detection methods. This section surveys results regardingthe complexity of determining precise event ordering relationships, and includes three newnegative results. In Section 5 we summarize the current known algorithms that can correctlyanswer the question, \Are there any races in this program?" In Section 6 we brie
y touchon the the issue of determining the con
icting accesses to shared data.



2 2. Events and Races2 Events and RacesInformally, an execution of a program contains a race if the result of some computationalstep depends upon the scheduling of the individual threads of execution1. Netzer and Miller[NM92] developed a formal model of races that distinguished races that served as a startingpoint for our development. Their model includes two orthoganol attributes of races, withattributes general and data on one axis and feasible, apparent and actual on the other axis.They de�ne a general race as a pair of con
icting accesses that can overlap (i.e. are notatomic or protected by some type of critical section) and a data race as con
iciting acceseswhere the order is not guaranteed but which cannot overlap. An actual race is one thatactually occured in a particular execution and only applies to general races. A feasible race,as the name suggests, is a race that did not occur but does occur in another execution. Anapparent race is one that appears possible based only the limited information in a trace, butcannot occur.In the remainder of this section we formalize our notion of a race and extend Netzer andMiller's catagorization. We assume that any thread's (or task's) execution can be representedby a sequence of atomic operations.De�nition 1: An event is a (contiguous) sequence of one or more atomic operations exe-cuted by a single thread.This de�nition is rather broad and can result in events that are \too big." In particular, ifa single event may include several synchronization operations, the events may overlap (i.e. beconcurrent) but the subparts of the event that might cause a race could be properly orderedby the synchronization operations that are part of the event. The practical impact would bethat a race might be reported that didn't exist. Unless otherwise speci�ed we assume thatthe particular events for a programming system are su�ciently small to distinguish accessesto shared resources that are separated by synchronization. An example of how spurious racesbeing reported would be when two properly synchronized tasks that access shared memoryare each treated in their entirety as an event. The two events would be concurrent and anyshared accesses would also appear concurrent at this level of granularity.We would like an intuitive equivalence relation for events from di�erent executions. Thiswill allow us to draw conclusions about the program statements from which the events arederived. In order to do so we must assume that any conditional reading or writing of sharedmemory is treated as if it was done using explicit conditional control 
ow (e.g. a casestatement). For example, the assignment A[i] = expr is treated as a case statement thatbranches on the value of i. The main e�ect of this assumption is that all instances of asimple statement access the same memory locations.De�nition 2: Two events from di�erent executions of the same program are equal (i.e. canbe considered to be the same event) if� they occur in the same thread,1Within this de�nition we assume that the values read from an external clock are part of the �xed input.



2. Events and Races 3� their constituent atomic operations are derived from the same source program state-ments, and� both events are the nth execution of their constituent atomic action sequence by thethread.Thus an event is uniquely identi�ed by its source program statements, the thread exe-cuting it, and a count indicating the number of times its source program statements havebeen previously executed by its thread.De�nition 3: Let events e1 and e2 be two events occurring in an execution of a program. Ife1 completes before e2 begins then we say e1 happened before e2, written e1!e2. If e1 beginsbefore e2 ends and e2 begins before e1 ends then the two events overlap. If either e1 and e2overlap or e1!e2, then we write e2 6!e1.Note that the happened before and concurrent relationships are for a particular executionand that if e1!e2 (or e1 6!e2) then both e1 and e2 occur in the execution.De�nition 4: Fix an input to the program. Event e1 is ordered before event e2 if in everyexecution of the program on the input in which either event occurs, e1!e2.Two events, e1 and e2, are ordered if e1 is ordered before e2 or e2 is ordered before e1.De�nition 5: Fix an input to the program. Event e1 is semi-ordered before event e2 if� in every execution on the input where both e1 and e2 occur, e1!e2,� there exists an execution on the input containing e1 but not e2 and� no execution on the input contains e2 but not e1.Two events, e1 and e2, are semi-ordered if e1 is semi-ordered before e2 or e2 is semi-orderedbefore e1.De�nition 6: Two events are unordered if they are neither ordered nor semi-ordered.De�nition 7: Two elementary statements con
ict if they both access the same sharedmemory location2 and one (or both) of the accesses changes the value (or state) of thelocation. The accesses can be explicit as in access to a shared variable or implicit as ina communication port used for message passing.De�nition 8: Two di�erent events con
ict if they represent the execution of con
ictingsimple statements.De�nition 9: Fix an input to the program. If two con
icting events are unordered (withrespect to the input) then there is a race between the two events on the input.Each execution provides certain ordering or concurrency relationships between the eventsin the execution. A race exists for a particular input if there are two con
icting events, e1and e2, and either an execution (on the input) where e1 and e2 overlap or a pair of executions(on that input) where e1!e2 in one execution and e2 happens before (or without) e1 in theother.2Reads and writes of a communication port or channel than can be shared are considered to be accesses toshared memory. Thus or race model can be applied to both \shared memory" systems and message passingsystems.



4 2. Events and RacesWhen only a single input is considered, we can classify races based on the relationshipsbetween the two events in the various executions. Given two events e1 and e2, there may beexecutions where:1. e1!e2,2. e2!e1,3. e1 and e2 overlap,4. e1 occurs but e2 does not,5. e2 occurs but e1 does not, or6. neither e1 nor e2 occur.By combining the possibilities there are 64 (= 26) ways the events can be ordered consideringall of the executions on the given input. The presence of Case 6 executions, where neitherevent occurs, does not a�ect the existence of races. This reduces the number of potentiallyinteresting possibilities to 32.Of these 32 combinations, two describe ordered events (1 only and 2 only), and two com-binations describe semi-ordered events (1 with 4 and 2 with 5). In three other combinationsat least one of the two events is never executed (4 only, 5 only, and none of 1{5). Theremaining 25 combinations describe races. We divide these into four groups. Recall thatraces between events are with respect to a particular input.concurrent race: In every execution of the program on the �xed input where both e1 ande2 occur, they overlap.general race: There exist executions of the program on the �xed input in which e1 and e2overlap and executions on the �xed input where either e1!e2 or e2!e1.unordered race: There exist executions of the program on the �xed input in which e1!e2and executions in which e2!e1 but no execution in which e1 and e2 overlap.artifact race: There exist executions of the program on the �xed input where e2 occurs bute1 does not and there exist executions where either e1!e2 or e1 occurs but e2 does not,but there are no executions on the �xed input where either e1 and e2 are concurrentor e2!e1.Table 2.1 summarizes these de�nitions in the 29 cases where both e1 and e2 occur.It may appear strange that two events must occur concurrently, especially if they do notcontain synchronization primitives. However, consider the following code fragements fromtwo di�erent threads.begin beginx:=1; x:=0if (x=0) then y:=0; y:=1end endThe event \x:=1; test x; y:=0;" can only happen if variable x is set to zero concurrently.Thus if these are the only assignments to x, then the event \x:=1; y:=0;" must occurconcurrently with the event \x:=0; y:=1;" in the other thread.



2. Events and Races 5There exists executions wheree1!e2 e2!e1 overlap e1 only e2 onlyyes yes yes y/n y/n general raceyes yes no y/n y/n unordered sequentialyes no yes y/n y/n general raceyes no no y/n yes artifact raceyes no no y/n no not a raceno yes yes y/n y/n general raceno yes no yes y/n artifact raceno yes no no y/n not a raceno no yes y/n y/n concurrentno no no yes yes artifact raceTable 2.1: Summary of possible ordering relationships.We have borrowed the term \artifact race" from Netzer [NM91], these races result fromother races in the program. An artifact race can never be in the group of \�rst" races (asde�ned in [NM91]). In particular, an artifact race has the property that the result of some\earlier" race a�ects the 
ow of control, preventing an event from being executed. Thissuggests an orthogonal attribute of races.A control race causes a thread to take di�erent paths depending upon how the race isresolved. If the control 
ow is not a�ected by a race then it is a data race3.A third potentially useful attribute of a race is its severity. We currently identify twoseverity levels, critical and benign. A benign race has no external e�ect on the resultsof the program (Padua and Emrath [EP88] call this internal non-determinism), while theoutcome of a critical race can a�ect the program's result. Protecting a critical section withlocks (mutual exclusion) does not prevent a race, but can make races benign. Consider thefollowing code fragments with x initialized to zero.lock; lock;x := x + 1; x := x + 2;unlock; unlock;The two updates to x can happen in either order and thus create a race. However, thevalue of x is always three after both critical sections have been executed. Whenever a setof commutative updates to a shared variable must be completed before a variable is usedand there are only unordered races between the updates, the races between updates arebenign. This might not be the case if the two assignment statements were able to executeconcurrently (depending on the granularity of the atomic memory actions). Unordered races3Every race by de�nition involves con
icting data accesses and could be intuitively thought of as a datarace but we reserve data race for those races that only a�ect data and not control 
ow.



6 3. A taxonomy of event ordering approachesare often benign when they are caused by commutative4 updates to a shared variable. Thegoal of at least one tool [Ste93] is to ignore the unordered races and report only concurrentand/or general races.Finally we note that previous work in race detection has distinguished between feasibleand infeasible races. This is really a characteristic of the race detection system which resultsfrom the need for approximate solutions. Any race that is reported but could never actuallyoccur is infeasible.It is sometimes desirable to discuss races and the ordering relationships of statements inprograms (in contrast to events in executions of programs).De�nition 10: A program contains a race between statements s1 and s2 if there is an inputI and events e1 and e2 such that:1. e1 represents the execution of an instance of s1,2. e2 represents the execution of a con
icting instance of s2, and3. there is a race between e1 and e2 on input I.Note that a race between statements is a property of the program whereas a race betweenevents is a property of the program/input pair.3 A taxonomy of event ordering approachesPreviously, results in race detection have been classi�ed as static (compile time), post-mortem trace based, or on-the-
y. The primary distinction between on-the-
y analysis andpost mortem analysis is that in on-the-
y analysis the trace is analyzed as it is generated,thus the entire trace does not need to be stored. This permits more detailed tracing, oftenincluding all of the accesses to shared memory. On-the-
y race detection naturally focuseson those races involving the shared memory accesses reported during the execution. Thisis somewhat di�erent from the problem generally addressed in post mortem trace analysiswhere an attempt is made to determine orderings between all blocks (without regard toshared memory accesses which cannot in general be stored in a post mortem trace due tospace limitations).We will unify static, post-mortem and on-the-
y approaches by viewing each as a typeof static analysis on an appropriately constrained programming model. We will constrainthe programming model along two major axes. The �rst axis identi�es the type of syn-chronization. The second axis identi�es the constraints on the control 
ow of the program.The current known results on computing ordering relationships are summarized in Table 3.1at the end of this section and described in Section 4. The following subsections detail thetaxonomy.4Even when protected by locks, non-commutative updates (such as when the \x := x + 2;" statementis replaced by \x := x * 2;") are still likely to be sources of nondeterminism.



3. A taxonomy of event ordering approaches 73.1 Type of synchronizationThe �rst axis identi�es the type of synchronization. At the top level we only distinguishtwo types of synchronization: monotonic and non-monotonic. These terms were �rst appliedto synchronization in [HM93]. Intuitively, a synchronization construct is monotonic if once ablocking operation becomes unblocked, it remains unblocked for the duration of the program(e.g. Post and Wait with no Clear - once an event is posted, any Wait operations on that eventbecome unblocked and the e�ect of the Post cannot be undone). This intuitive descriptionis only intended to give a general idea of the classi�cation and to motivate the choice ofmonotonic to describe the class. The intuitive notion also accurately describes all \real"monotonic synchronization constructs that we have examined but is not su�cient to preciselycharacterize the class. The formal de�nition is given below.De�nition 11: A set of synchronization constructs is monotonic if every branch-free par-allel program using only synchronization constructs in the set either always terminates nor-mally (all threads complete) or always deadlocks in the same state.Thus a set of synchronization constructs is monotonic if whenever an event becomesenabled, the event is executed before the program terminates or deadlocks.Monotonic synchronization operations include: nested fork-join (e.g. nested parallelloops), ordered critical sections (i.e. properly paired and nested lock-unlock operations wherewhenever multiple locks are simultaneously held, they are always obtained in the same or-der), bu�ered send-receive where the sender names the receiver, and post and wait withno clear. Non-monotonic synchronization operations for which results have been publishedinclude: post and wait with clear, and semaphores.3.2 Constraints on control 
owThe possible constraints on the control 
ow are: no branching, no loops containingsynchronization constructs (or equivalently, loops containing synchronization are unrolled),and unconstrained control 
ow.Branch-free programsDuring a program's execution, each instance of a conditional statement takes a particularbranch. When the program's execution is traced, a record is made of the events (or perhapsonly the important events) executed by each thread and when they are executed. This recordde�nes a branchless program since all of the branching has been \hard wired" when the tracewas generated. The way the branches get \hard wired" depends on both the input suppliedto the program and the outcome of control races in the traced execution.One possible goal is to determine the races exhibited by the traced execution. Sinceonly one execution is considered, each detected race will involve two events which executeconcurrently in the execution. Thus only concurrent races and some general races can bedetected in this way.



8 3. A taxonomy of event ordering approachesThread A Thread BA1: j := 0; B1: i := 1;A2: i := 0; B2: if (i=0) thenA3: if (i=1) then B3: j := 1;A4: k := 1; B4: k := 2;Figure 3.1: This program fragment has con
icting updates to shared variables i, j,and k (as well as con
icting reads to i in the if conditions). Assume each labeledstatement is an event. Consider the branch-free program that results when eventA2 is executed after event B1 and before event B2. Event A4 does not appearin this branch free program as the condition \i=1" in event A3 is hardwired tofalse. The branch-free program gives only a poor approximation to the races inthe original program. In both the original program and the branch free programthe event pairs (A2, B1), (A3, B1), and (A2, B2) are general races. However,another general race (A4, B4) exists in the original program but not the branch-free program. Furthermore, the pair (A1, B3) is a race in the branch-free programbut not in the original program. In the original program A1 is semi-ordered beforeB3 and in the branch-free program the condition in B2 always evaluates to truewhether or not statement A1 has been executed.A more powerful approach is to consider all possible executions of the branch-free programon a particular input. The key sub-goal of this approach is a partial order indicating whichpairs of events are ordered or semi-ordered. From this partial order and the knowledge ofwhich events con
ict one can determine which pairs of events are races. Since the branch-free program has the same set of possible executions on every input, one can use the pairsof events that are races for any particular input to determine which statement pairs in theprogram form a race.Note that control races can a�ect the evaluation of branch conditions. Thus, even anexact analysis of the branch-free program can lead to incorrect results for the original programgenerating the trace. Some races may be missed because the branches leading to them werenot taken in the traced execution. Other races may be incorrectly included because somebranch conditions would be evaluated di�erently in the executions responsible for them. SeeFigure 3.1 for an example.Programs with branches but no loopsThe problem becomes even more di�cult when we consider analyzing programs withbranching (but without loops). For each input, the program with branching can be viewed asa set of branch-free programs. Each legal combination of branch choices for that input leadsto one branch-free program. A simplifying assumption [CS88] is that all branch combinations



3. A taxonomy of event ordering approaches 9Thread A Thread B ThreadCif (input=1) wait(x); wait(y);then post(x); S1; S2;else post(y); post(y); post(x);Figure 3.2: This program fragment contains two con
icting statements, S1 and S2.Although either S1 or S2 can happen �rst, for any given input either S1 happensbefore S2 or S2 happens before S1 but not both. By De�nition 10, this programdoes not contain a race.are possible, so that any set of branch choices is legal. Without this assumption it isNP-hardto determine which branch choices are legal (see Theorem 2).Each branch-free program associated with a branching program/input pair has its ownset of races between events. What one would like to determine is a partial order over theevents where there is an arc from event e1 to event e2 if and only if e1 and e2 are ordered(or semi-ordered) by every branch-free program represented by the program/input pair. Asabove, this partial order can be combined with con
ict information to obtain those pairs ofevents forming races.Now consider the possible inputs for the branching program. For each input there is aset of event pairs which are unordered (with respect to that input). Taking the union ofthese sets of event pairs gives us all pairs of events that are unordered on any possible input.Using information on which event pairs con
ict, we can then list the pairs of events formingraces in the program.The set of pairs of unordered events must be computed separately for each possible input.As shown in Figure 3.2, two con
icting statements that are not ordered the same across allinputs do not necessarily constitute a race. The order in which S1 and S2 from Figure 3.2are executed depends on the input, but is the same on each particular input.The assumption that all branch combinations are possible has the fundamental drawbackthat extra (spurious) races may be reported. Certain combinations of branches are ofteninfeasible, and races in the branch-free program(s) using infeasible combinations of branchesmay result in infeasible races being reported. A combination of branches may be infeasiblebecause two branch conditions may always compute the same value or because statementsin (or the absence of statements from) one branch may determine the value of a later branchcondition.Unrestricted programsPrograms containing loops present an additional di�culty. If the number of loop it-erations cannot be bounded at compile time, then the number of events executed by theprogram (and the number of branch conditions evaluated) is also unbounded. Thus a singleprogram with loops can represent an in�nite number of branch-free programs.



10 4. Details of known results in our taxonomy of ordering event resultsFor each choice of input, we obtain a version of the looping program. Each version of thelooping program represents a (possibly in�nite) number of branch-free programs. For eachinput, we can (at least conceptually) identify5 which pairs of events are ordered or semi-ordered, and (given con
ict information) which pairs of events form races for that input.We can then proceed in the same way as the loop-free case. The union over all possibleinputs of these pairs of events forming races can then be used to determine which pairs ofstatements in the program are races.4 Details of known results in our taxonomy of ordering eventresults4.1 Unrestricted programsIf programs are allowed to have branches and unbounded loops, determining the or-dering relationships between statement instances is undecidable, regardless of the type ofsynchronization used.Theorem 1: Deciding if there exists a race between two con
icting statements in an arbi-trary shared memory parallel program is as hard as the halting problem.Proof: Given an arbitrary (sequential) program P and input I, we create a new parallelprogram containing a new shared variable x initialized to 0. The parallel program forks,executing \print(x);" in one branch. The other branch �rst checks that the parallel program'sinput equals I. If the input matches I then program P is simulated and when (if) theoriginal program halts, the statement \x := 1;" is executed. If the input does not match Ithen the second branch terminates without accessing variable x. There is a race between the\print(x);" statement and the \x := 1;" assignment if and only if program P halts on inputI. Nevertheless, programmers must still uncover data races in their parallel programs.Therefore approaches that compute approximate answers to the problem have been studiedand continue to be investigated [Tay83, LC89, HM91].4.2 No Loops and Monotonically SynchronizedExcluding arbitrary loops is necessary to avoid termination problems and undecidability.Loops executing a �xed number of times can be unrolled. This clearly a�ects the complexityof any analysis algorithm, but is essentially what happens in any trace based approach to racedetection. Loops that do not contain synchronization operations and which are guaranteedto terminate are allowed because they do not a�ect the order analysis between events.5Determining which pairs of events are ordered or semi-ordered is undecidable in general, see Theorem 1.However, the assumption that all combinations of branches are possible alleviates this problem.



4. Details of known results in our taxonomy of ordering event results 11Exact Solution ApproximationsBranchfree Mono-tonic � all monotonic are in P [HM93],� fork/join is in P[MC91, DS90, NR88],� ordered critical sections are in P(section 4.4),� post/wait no clear is in P[NG92],Non-mono-tonic � single semaphore is in P[LKN93],� post/wait/clear is NP-hard(Thm: 3),� semaphores areco-NP-hard[NM90] semaphores [HMW93]Noloops Mono-tonic � fork/join is NP-hard (Thm: 2),� post/wait no clear is Co-NP-hard[CS88] even if all paths are ex-ecutable, fork/join [MC91, DS90, NR88],post/wait no clear [CKS90]Non-mono-tonic � post/wait/clear is NP-hard(Thm: 3 or [CS88]),� semaphores are NP-hard fork/join [MC91, DS90, NR88],post/wait no clear [CKS90]Unre-stricted any Undecidable (Thm: 1) fork/join [MC91, DS90, NR88],ordered critical sections [Ste93],semaphores [McD89],message passing [DKF93],rendezvous [Tay83, LC89]Table 3.1: What ordering relationships hold between statement (instances)?Theorem 2: Deciding if there exists a race between two con
icting statements in an arbi-trary shared memory parallel program (containing explicit thread creation but no loops) isNP-hard.Proof: By reduction from 3SAT. Create a parallel program that forks executing the state-ments x:=1; print(x); in one branch and if(3SAT formula over input) then x:=0;in the other branch. There is a race between the print(x) and the assignment x:=0, if andonly if the formula is satis�able for some input.The key di�erence between this result and the Post/Wait no Clear result of Callahan andSubhlok (see Section 4.2) is they assume all paths are executable and this trivial proof hinges



12 4. Details of known results in our taxonomy of ordering event resultson whether or not one path is executable. The set of programs where all paths are executableis clearly a subset of all programs and hence they have shown that with the addition of Postand Wait the problem is still NP-hard even for the smaller set of programs.Post/Wait no ClearCallahan et. al. [CKS90] have studied simple programs containing only if-then-else con-ditionals and Post/Wait synchronization without Clear (i.e. no loops). The Post/Wait op-erations are permitted to specify events within an array. They claim that as generally used,the index expressions for these events are amenable to standard dependence analysis forcomputing a dependence distance (i.e. the di�erence between the parallel loop index andthe array index used by the Post or Wait). In an earlier paper [CS88] they prove that theproblem of determining if a program is race free is Co-NP-hard for even these relativelysimple programs under the further assumption that all program paths are feasible.In [CKS90], they have gone on to develop a data
ow formulation of the problem for whichthey can compute an approximate solution in polynomial time (the paper does not give theactual complexity). This approximation only applies to programs that are \serializable."By that they mean that if all parallel loops and parallel case statements (the only typesof forking they support) are executed in sequential order (the cases from the parallel caseare executed in the order they appear textually) then the program will complete withoutblocking. i.e. no Wait will be encountered until after a Post for the same event has beenexecuted.They give an algebraic formulation of the problem when the program is further restrictedto contain only one Post for each event variable. The algebraic formulation provides an exactsolution that appears faster in practice than the previous method. However, it involves atransformation to a system of linear equations and determining if there exists a non-negativeintegral solution to the system of equations. Although such interger linear programmingproblems are NP-hard, the systems generated in practice are claimed to be generally smallenough so that this is not a problem.4.3 No Loops and Non-Monotonically SynchronizedAll results in this area indicate that exact solutions are not tractable. As in the case ofunrestricted programs, programmers must still uncover data races in their parallel programs.Therefore approaches that compute approximate answers to the problem have been studiedand continue to be investigated [MC91, DS90, NR88, CKS90].Post/Wait/ClearThe Co-NP-Hard result from [CS88] also applies here. In fact, with the addition of Clear,even detecting races in branch-free (i.e. no conditionals or loops) programs is NP-Hard (seeTheorem 3).



4. Details of known results in our taxonomy of ordering event results 13SemaphoresDetermining precisely the ordering relationships for branch-free programs containingsemaphore synchronization is co-NP-hard[NM90]. Therefore the problem is also co-NP-hard when branches are permitted.4.4 No Branches and Monotonically SynchronizedWe proved in a previous paper [HM93] that computing the precise ordering relationshipsbetween events in branch-free monotonically synchronized programs can be done in polyno-mial time. For completeness we include here several previous polynomial time results fordetermining the precise ordering relationships between events for programs using speci�csets of monotonic synchronization constructs.Fork/JoinA number of methods have been developed in the context of on-the-
y race detectionthat could be used as polynomial time algorithms for determining event orders in branch freefork/join programs[MC91, DS90, NR88]. Some recent e�orts have focused on reducing thenumber of events that must be traced [Net93, MC93]. More importantly, these are on-linealgorithms that require only small amounts of storage and can thus be done \on-the-
y."Critical Sections with Lock/UnlockIn programs that contain only fork/join synchronization, if there is a race between twoevents, then it must be a general race. With the addition of ordered critical sections, theraces may be either general races (i.e. not protected by the same lock) or unordered races (i.e.protected by the same lock). These two kinds of races can be distinguished by comparingthe locks held when the events were executed. For branch-free programs, this comparisioncan easily be done using O(L2) time and O(L) space per event, where L is the maximumlock nesting depth. In practice the lock nesting depth is very small (i.e. 0 or 1) [DS91].Post/Wait no ClearNetzer and Ghosh [NG92] have an algorithm that precisely determines the event orderingsfor a trace of a program that uses Post/Wait synchronization with no Clears. The algorithmconstructs a DAG where the nodes are the events in the trace and the edges represent theguaranteed orderings between events. That is, two events e1 and e2 are ordered (de�nition 4),if and only if there is a path from the node for e1 to the node for e2. The graph constructionrequires O(np) time and O(np) space where n is the number of events in the trace and p isthe number of threads.



14 4. Details of known results in our taxonomy of ordering event results4.5 No Branches and Non-monotonically SynchronizedSimilar to Sections 4.1 and 4.3 most results in this area indicate that exact solutions arenot tractable. The one exception to date is a recent result showing that �nding the exactsolution for programs that use only a single semaphore can be done in polynomial time.Single SemaphoreComputing the exact ordering relationship between events for a loop-free program thatsynchronizes using only a single semaphore can be done in O(n1:5p) time [LKN93] where n isthe number of events and p is the number of threads. The algorithm presented by Lu, Klein,and Netzer determines if two events are ordered by solving a kind of scheduling problem.When P-operations are assigned a cost of +1 and V-operations are assigned a cost of �1, abranch-free program using a single semaphore can execute to completion if and only if it hasa schedule whose cumulative cost is always � 0. Thus one can tell if a program can completeby �nding a schedule where the maximum cumulative cost is minimized. Although this kindof scheduling problem is NP-complete in general, Lu, Klein, and Netzer show how a solutionfor series-parallel graphs can be modi�ed to determine if two events in a branch-free programare ordered.As presented in their paper, Lu et.al. will determine some events to be ordered thatshould not be. This derives from their claim that if you arti�cially order two events andthen fail to �nd a schedule the events cannot occur in that order (and hence are alwaysordered in the reverse direction). Only a small change is needed to get the preferred result.It could be that two events could occur in the arti�cially added order but the program woulddeadlock later in its execution. Instead of insisting on a schedule for the entire program it isonly necessary to �ne a pre�x of a schedule that includes the two arti�cially ordered events.Their algorithm provides the necessary information to determine if such a pre�x exists.Post/Wait/ClearWith the addition of the Clear operation, determining precisely the ordering relationshipsfor branch-free programs becomes NP-hard.Theorem 3: Deciding if there exists a race between two con
icting statements in an arbi-trary shared memory parallel program, containing explicit thread creation and Post/Wait/Clearsynchronization but no loops or branches, is NP-hard.Proof: The proof is by reduction from 3-SAT. We construct the following program whichencodes an instance of the 3 CNF satis�ability problem. This program will contain a race ifand only if there is a satisfying assignment to the 3 CNF formula.� De�ne signal START.� For each variable X de�ne 4 signals, Xt (X is true), Xf (X is false), and XisT XisF (Xhas a value).� For each clause C de�ne a signal Ct (C is true).



4. Details of known results in our taxonomy of ordering event results 15� For each variable X create two threads, TXt and TXf as follows:TXt: TXf:wait START wait STARTclear Xf clear Xtpost XisT post XisFwait Xt wait Xffor each C containing X for each C containing not Xpost Ct post Ctend for end for� Create two other threads - main and racer as follows:main: racer:for each variable X for each variable Xpost Xt wait XisTpost Xf wait XisFend for end forpost START race statementfor each clause C for each variable Xwait Ct post Xtend for post Xfrace statement end for� Claim: The race statements can execute concurrently if there is a truth assignmentsatisfying all of the clauses.1. Run main until just after "post START"2. Run to completion each TXt if X true in truth assignment or TXf if X false intruth3. Run to completion remaining TXt's and TXf's.4. Observe that all Ct, XisT and XisF are now posted.� Claim: The race statements cannot execute concurrently if there is no truth assign-ment satisfying all of the clauses.1. All Ct must be posted before main executes race statement.2. For some X, both TXt and TXf must have posted signals for all Ct to be posted(otherwise the clauses are all satis�able)3. Either Xt or Xf must have been posted twice, and thus the race statement inracer must have already been posted.NOTE: The operations on the XisT and XisF events are not neccessary for the theorem.However, if these operations are removed then the program will have many executions whichend in deadlock.



16 5. Are there any races in this program?SemaphoresDetermining precisely the ordering relationships for even branch-free programs containingsemaphore synchronization is co-NP-hard[NM90].The results in this area are therefore restricted to approximations. Helmbold et.al.[HMW91] and Netzer and Miller [NM91] have pursed two complimentary approaches. Onegroup has been attempting to �nd as many races (unordered blocks) as possible, while theother has been trying to distinguish between feasible, infeasible and artifacts (see below) forthose races they can �nd.5 Are there any races in this program?Because the problem of detecting races in parallel programs is in general intractable,approximations must su�ce. There are two ways to err: report races that do not reallyexist (infeasible races) or fail to report some of the races. The problem with the former isthat the user may be inundated with infeasible races and miss the real race. The problemwith the latter is that a program may be reported to be race free when in fact it is not. Acompromise that has been achieved in some situations is to guarantee to report a non-emptysubset of the actual races. While some races may still be missed, if a program (or execution)is reported to be race free, then the report is accurate.5.1 Fork/JoinMellor-Crummey [MC91] describes a method for analyzing programs containing onlyproperly nested fork/join parallelism. This approach requires O(V N) space where V is thenumber of shared variables and N is the maximum nesting depth of the forks. Also eachmonitoring operation requires O(N) time. The method is called O�set-Span labeling andis similar to English-Hebrew labeling [NR88]. In particular the label for each thread thatis created during the execution of the program is computed based only on the labels of itsimmediate predecessors (the thread executing the fork or the threads resulting in a successfuljoin). The length of each label is proportional to the current nesting depth and at most threelabels must be stored on-the-
y for each shared variable. The most signi�cant contributionof O�set-Span labeling is that a single execution is su�cient to identify a non-empty subsetof the races that could occur for a given input.5.2 Critical SectionsDinning and Schonberg [DS91] describe an approach to detecting access anomalies inprograms that contain critical sections (i.e. properly nested binary semaphores). Thisapproach can use any existing method for determining when two blocks are ordered (e.g.O�set-Span labeling) ignoring the orderings imposed by the unlock-lock operations. As one



6. What shared memory addresses are accessed by a statement (instance)? 17would expect, ignoring the unlock-lock orderings results in many false anomalies. This issolved by adding lock covers to the labels for blocks in critical sections. A lock cover indicateswhat locks are held when a block executes. If there is no nondeterminism \propagated" bythe critical sections then the access anomalies reported will include at least one anomaly (ifthere are any) from the set of access anomalies that could occur given the input suppliedduring the analyzed execution.In addition to needing the lock covers, this approach requires a larger history for eachshared variable than the approaches described in Section 4.4. For each shared variable thehistory may contain as many as T �R labels and lock covers representing the latest writesand similarly for the reads. T is the maximum degree of concurrency and R is the numberof lock covers which is bounded by 2K where K is the number of locks.6 Dinning andSchonberg claim that the use of nested critical sections is rare resulting in very few lockcovers in practice.5.3 SemaphoresWe have developed an algorithm for analyzing traces of programs that contain semaphoresynchronization. In [HMW93] we proved that our algorithm will �nd at least one race fromthe set of possible races that can occur for a given input if any exist.6 What shared memory addresses are accessed by a statement(instance)?Operationally, race detection systems can be divided into three groups, compile time sys-tems, post-mortem trace based systems and on-the-
y systems. A distinguishing character-istic is the degree to which the aliasing problem is solved/avoided. Compile time approachesmust attempt to solve the problem (e.g. conventional vectorizing compiler analysis). Spacelimitations generally prohibit post-mortem systems from storing all shared memory accessesduring data collection. Instead some type of summary information is recorded and thenthe actual addresses are estimated or re-generated when needed. On-the-
y systems haveno such space limitation and can use the actual memory addresses in the analysis, therebyeliminating any aliasing problems.Any monitoring/trace based approach can therefore easily answer the question: \Givenshared memory location X, what statements access X?" By \easily" we mean that the cost ofanswering this question is dominated by the cost of determining the ordering relationships.In general it will add a constant time cost to the processing of each statement (event).6Simply seeing if the intersection of the locks held when accessing a variable is not su�cient. One accessmay be protected by locks a and b, another by locks b and c, and a third by locks a and c. Although theintersection of the locks held is empty, there is no concurrent race between the three accesses.



18 7. ConclusionFor compile time systems there has been a large body of work performed on this problemrestricted to statements within the same loop nest. This work answers a variation of theprevious question, the new question being:Given two statements, S1 and S2, can they access the same location?For two statements outside of a common loop nest there has been no published work thatwe are aware of.7 ConclusionThis paper makes three primary contributions in the area of race detection in parallelprograms. First, we have proposed a taxonomy of \races" that describes all possible, sharedmemory races. Further re�nement is possible, but any type of race can be precisely catego-rized by our taxonomy (Table 3.1). Second, we have presented a taxonomy of approaches todetecting races. The purpose of this taxonomy is to organize the previous results and deter-mine just how much we actually know today about the \race detection" problem. We thensummarized previous results and placed them into the taxonomy. Finally we have presentedsome new results as a �rst step in �lling in the missing pieces of the race detection taxonomy(two more NP-Hardness results and an undecidability result).AcknowledgementThe taxonomy of races was signi�cantly in
uenced by an extended email dialogue withRob Netzer. This work was partially supported by a grant from the National ScienceFoundation (grant # CCR-9102635).References[CKS90] D. Callahan, K. Kennedy, and J. Subhlok. Analysis of event synchronization in aparallel programming tool. In Proceedings of Second ACM SIGPLAN Symposiumon Principles and Practice of Parallel Programming (PPOPP), SIGPLAN Notices,pages 21{30, March 1990.[CS88] D. Callahan and J. Subhlok. Static analysis of low-level synchronization. In Proc.Workshop on Parallel and Distributed Debugging, pages 100{111, May 1988.[DKF93] S. K. Damodaran-Kamal and J. M Francioni. Nondeterminacy: Testing anddebugging in message passing parallel programs. In Proc. ACM/ONR Workshopon Parallel and Distributed Debugging, pages 118{128, 1993.[DS90] A. Dinning and E. Schonberg. An empirical comparison of monitoring algorithmsfor access anomaly detection. InProceedings of SecondACMSIGPLANSymposiumon Principles and Practice of Parallel Programming (PPOPP), 1990.[DS91] A. Dinning and E. Schonberg. Detecting access anomalies in programs with criticalsections. In Proc. Workshop on Parallel and Distributed Debugging, pages 79{90,May 1991.



References 19[EP88] P. A. Emrath and D. A. Padua. Automatic detection of nondeterminacy in parallelprograms. In Proc. Workshop on Parallel and Distributed Debugging, pages 89{99,May 1988.[HM91] D. P. Helmbold and C. E. McDowell. Computing reachable states of parallelprograms (extended abstract). SIGPLAN Notices: Proceedings of the ACM/ONRWorkshop on Parallel and Distributed Debugging, 26(12):76{84, December 1991.[HM93] D. P. Helmbold and C. E. McDowell. A class os synchronization operations thatpermit e�cient race detection. In Submitted to Supercomputing '93, 1993.[HMW91] D. P. Helmbold, C. E. McDowell, and J. Z. Wang. Detecting data races fromsequential traces. In Proc. of Hawaii International Conference on System Sciences,pages 408{417, 1991.[HMW93] D.P.Helmbold,C.E.McDowell, and J. Z.Wang. Determining possible event ordersby analyzing sequential traces. IEEE Transactions on Parallel and DistributedSystems, 1993. Also UCSC Tech. Rep. UCSC-CRL-91-36.[LC89] D. L. Long and L. A. Clarke. Task interaction graphs for concurrency analysis. InProc. 11th Int. Conf. on Software Engineering, 1989.[LKN93] H-I. Lu, P. N. Klein, and R. H. B. Netzer. Detecting race conditions in parallelprograms that use one semaphore. Technical report, Brown Univ., 1993.[MC91] J. Mellor-Crummey. On-the-
y detection of data races for programs with nestedfork-join parallelism. In Supercomputing '91, pages 24{33, November 1991. Albu-querque, NM.[MC93] John Mellor-Crummey. Compile-time support for e�cient data race detection inshared-memory parallel programs. In Proc. ACM/ONRWorkshop on Parallel andDistributed Debugging, pages 129{139, 1993.[McD89] C. E. McDowell. A practical algorithm for static analysis of parallel programs.Journal of Parallel and Distributed Computing, June 1989.[Net93] R. H. B. Netzer. Optimal tracing and replay for debugging shared-memory parallelprograms. In Proc. ACM/ONR Workshop on Parallel and Distributed Debugging,1993.[NG92] R. H.B. Netzer and S. Ghosh. E�cient race condition detection for shared-memoryprogramswith Post/Wait synchronization. InProc. International Conf. on ParallelProcessing, 1992.[NM90] R. H. B. Netzer and B. P. Miller. On the complexity of event ordering for shared-memory parallel program executions. In Proc. International Conf. on ParallelProcessing, volume II, pages 93{97, 1990.[NM91] R. H. B. Netzer and B. P. Miller. Improving the accuracy of data race detection.SIGPLAN Notices (Proc. PPOPP), 26(7):133{144, 1991.[NM92] Robert H.B. Netzer and Barton P. Miller. What are race conditions? Some issuesand formalizations. ACM Letters on Programming Languages and Systems, pages74{88, March 1992.



20 References[NR88] I. Nudler and L. Rudolph. Tools for e�cient development of e�cient parallelprograms. In First Israeli Conference on Computer Systems Engineering, 1988.[Ste93] N. Sterling. WARLOCK - a static data race analysis tool. In Proc.Winter Usenix,pages 97{106, 1993.[Tay83] R. N. Taylor. A general-purpose algorithm for analyzing concurrent programs.CACM, 26(5):362{376, May 1983.


