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1. Introduction 11 IntroductionA common task when debugging parallel programs containing explicit synchronizationis identifying the sources of non-determinism generally referred to as races. One approachto detect races is to analyze a trace of a program execution. The simplest technique is tolook for unsynchronized blocks of code that were actually executed concurrently and containconicting data accesses (such as a read and a write to the same variable). This simpletechnique identi�es only those races that actually occurred and may signi�cantly underreport the races in the program as even slight variations in the speed of the tasks can resultin di�erent pairs of blocks executing concurrently, and di�erent races being detected. Inorder to improve the accuracy of race detection it appears necessary to consider alternativeexecutions when analyzing a trace.The approach of our work and others [NM91, NG92, HMW93] is to compute a partialorder representing the order in which the events from a trace did or might have occurred.This ordering information can be combined with memory access information to performeither on-the-y or post-mortem race detection. The goal is a partial order R such that ife1Re2 then e1 is guaranteed to happen before e2 in every execution in which they both occur.The results have always fallen short of this goal, at least for polynomial time algorithms.The resulting partial orders have either ordered events that should not have been ordered(missing potential races) or failed to order events that are in fact always ordered (reportinginfeasible races).Recently, Netzer and Ghosh showed how to compute a \precise guaranteed orderinggraph" in polynomial time for programs using post and wait synchronization (without clears)[NG92]. Their ordering graph is precise in that a race detection system that relies on thisordering information can be constructed such that:1. If the program contains races when executed with the given input then the detectionsystem will report a non-empty subset of the races that could occur.2. If the program contains no races when executed with the given input then the detectionsystem will report no races.The race detection system may still miss some races and report infeasible races that areartifacts (i.e. controlled by outcomes) of earlier races.Two events e1 and e2 are ordered by Netzer and Ghosh's guaranteed ordering graph if andonly if e1 is guaranteed to happen before e2 in every execution of the straight line programresulting from changing all conditional branches in the original program into unconditionalbranches in the direction taken by the execution producing the trace being analyzed. Thisstraight line program is inferred from the original program and the trace. We introducedthe inferred program to characterize the guaranteed orderings in a previous paper [HMW93],and we will use it again in this paper.De�nition 1.1: Given a trace T of some program P , the program inferred by P and T(written PT ) is the same as program P except that all conditional branches are replaced withunconditional branches that branch to the destination taken during the execution that createdtrace T .



2 2. Events and OrderingsNote that program PT is never created, it is simply a vehicle for reasoning about eventorderings.Another justi�cation of the \precise" claim for Netzer and Ghosh's result is the if and onlyif nature of their guaranteed ordering graph (i.e. they �nd precisely the orderings that holdfor the inferred program). In this paper we extend Netzer and Ghosh's result for post/waitsynchronization without clears to other kinds of synchronization constructs. We de�ne aclass of synchronization constructs for which there exists an e�cient algorithm to determinethis \precise guaranteed ordering graph."Informally, a synchronization construct is in the class if all straight line programs thatuse this construct either always terminate normally (all tasks complete) or always deadlockin the same state (i.e. each task is blocked on a particular synchronization operation). Thisclass includes:� post/wait synchronization without clears [NG92],� message passing where the receiver is named by the sender, and� semaphores when all P (X) operations for a particular semaphore X occur in the sametask.Netzer and Ghosh de�ne a maximal valid execution [NG92] for an event e which isa maximal sequence of post and wait events from an inferred program that satis�es thepost/wait semantics and could precede the event e. Although an event could have severalmaximal valid execution sequences, they prove that, for any event e, all maximal validexecution sequences for that event contain exactly the same set of events (although possiblyin di�erent orders). Note that each maximal valid execution is a pre�x of a serializedexecution of program PT , but not every pre�x of a serialization of PT is a maximal validexecution.The main result of this paper is that if the synchronization constructs used yield a similarnotion of maximal sequence where each event's maximal valid execution sequences containsthe same set of events, then there is an e�cient algorithm to compute the precise guaranteedordering graph for the inferred program in polynomial time. This uniqueness of maximalvalid execution sequences is characterized by Lemma 3.4 and De�nition 3.2, i.e., any programthat uses onlymonotonic synchronization constructs as de�ned below will exhibit the desiredbehavior.2 Events and OrderingsThe guaranteed ordering graph contains nodes that represent events from a particularexecution of a program. Since we wish to generalize the ordering information from a singletrace to a program as a whole, we must have a way of identifying the \same" event in anotherexecution.Although any program activity of interest could be represented as an event, we makethe simplifying assumptions that all events represent the execution of a synchronizationconstruct in the program and each execution of a synchronization construct is represented



3. Monotone Synchronization and Ordering Relationships 3by an event. In addition, we assume that the events in any execution can be legally serialized.Note that some high level synchronization constructs, such as Ada entry call and accept,cannot be represented as single events since neither a call nor the corresponding accept can�nish before the other starts. This problem is easily resolved by treating an entry call astwo events.De�nition 2.1: Event e1 in trace T1 corresponds to event e2 in trace T2 if e1 and e2represent the execution of the same synchronization statement(s) by the same1 task andpred(e1)2 in T1 corresponds to pred(e2) in T2.In the remainder of this paper, if event e1 in trace T1 corresponds to event e2 in trace T2we will use e1 (or equivalently e2) to refer to both events (e.g. e1 in T2 corresponds to e1 inT1). Note that given a trace T1 of program P on some input, there may be another trace T2of P on the same input where not all events in T1 correspond to events in T2.We use \ T!" to represent the causal ordering of the events in a particular execution ortrace T . This causal ordering will generally be a partial order and is the irreexive transitiveclosure of edges from each event to the next event (if any) executed by the same task andedges from unblocking events to the blocked events that they unblocked. Note that we usethe T! causal ordering for analysis purposes and need not compute it. Our algorithms requireonly local logs indicating the events executed by each task (in the order they were executedby that task).The following formally de�nes the must-have-happened-before relation which is the rela-tion represented by the guaranteed ordering graph. We use \�" to represent the must-have-happened-before relation for an inferred program.De�nition 2.2: Let T be trace of parallel program P running with some input I. For anytwo events e1 and e2 in T , e1�e2 i� e1 T 0!e2 in every trace T 0 of the inferred program PT .Di�erent executions of the same program on the same input can have di�erent T!relations. The must-have-happened-before relation, �, is the intersection of all these T!relations.3 Monotone Synchronization and Ordering RelationshipsIn this section we de�ne the class of programs that our algorithm is designed to operateon (MSSL programs). We then prove a close relationship between traces of MSSL programsand the must-have-happened-before relation (Theorem 3.5). We end the section with a proofthat our algorithm can be used to satisfy the two requirements of precise guaranteed orderinggraphs mentioned in the introduction.1Tasks can be identi�ed across executions by a simple lexicographic method such as the English half ofan English-Hebrew label [NR88].2pred(e) is the event preceding event e in the same task. If e is the �rst event in the task then pred(e) = ;and ; for one trace corresponds to ; for all other traces.



4 3. Monotone Synchronization and Ordering RelationshipsDe�nition 3.1: A straight line parallel program is one in which there are no synchro-nization operations inside of loops or conditional statements and all loops terminate on allinputs.De�nition 3.2: A set of synchronization constructs is monotonic if every straight lineparallel program using only synchronization constructs in the set either always terminatesnormally (all tasks complete) or always deadlocks in the same state.A consequence of the above de�nition is that once an event becomes unblocked, it remainsunblocked throughout the program's execution. This is the motivation behind calling theset of synchronization constructs monotonic.De�nition 3.3: If the synchronization constructs used by a program are monotonic then theprogram is a monotonically synchronized (MS) program. If, in addition, the program isa straight line program, then it is a monotonically synchronized straight line (MSSL)program.If program P is a monotonically synchronized program then the program PT inferred bytrace T of P is a MSSL program. Theorem 3.5 (below) gives us an easy way to determine themust-have-happened-before relation for a MSSL program. For each event, form the modi�edprogram and compare their traces. This idea was used by Netzer and Ghosh [NG92] and isexploited by our algorithms in the next section.Lemma 3.4: Every trace of a MSSL program contains the same events.Proof: Follows directly from the de�nition.Theorem 3.5: Let program P be a MSSL program where some task t executes event e,program P 0 be the MSSL program P modi�ed so that task t stops just before executing evente, T be a trace of P , and T 0 be a trace of P 0.In P , event e�e0 i� e0 2 T and e0 62 T 0.Proof: Since P (and P 0) are MSSL programs, each trace of P (resp. P 0) contains the sameevents. Since e is executed by task t in P , event e appears in every trace of P .For the forward direction assume that e�e0 (with respect to program P ). By de�nition,for every trace T of P we have e T!e0. Since every trace of P 0 is also a partial trace of P andno trace of P 0 contains event e, no trace of P 0 can contain event e0.For the other direction assume to the contrary that event e0 2 T , event e0 62 T 0, and note�e0. Thus there is a serial trace T of an execution of P having the form T = Tae0TbeTc.Then Tae0Tb does not contain any events from task t (the task that executes event e inprogram P ) following e and is therefore a pre�x of a trace of P 0. By Lemma 3.4 all tracesof P 0 contain the same events, contradicting the assumption that e0 62 T 0.



4. Our Algorithm 5In [HMW93] we proved that if e1 � e2 in the inferred program PT then whenever e2!e1in some trace T 0 of P , there is a race in P that happens before either e1 or e2. This impliesthat a race detection system that uses the guaranteed ordering graph for PT will reporta non-empty subset of the races in P when run on the input used to produce T . This ispoint one from our informal notion of precise guaranteed ordering graph in the introduction.Theorem 3.6 (below) proves that if program P contains no races and the ordering graph isexact for PT , then no races will be reported for program P . This satis�es point two fromour informal notion of precise guaranteed ordering graph in the introduction.Theorem 3.6: If program P contains no data races when executed on input I, then e � fin PT i� e � f in P on input I.Proof:(() Assume to the contrary that e � f in P but e 6� f in PT . This means that there is aserial trace T 0 of PT having the form T 0 = TafTbeTc. Because there are no data races in Pon input I, every execution of P on input I takes the same branches, in particular the samebranches taken by PT . Thus trace T 0 is also a trace of P which contradicts e � f in P .()) Assume to the contrary that e � f in PT but e 6� f in P . This means that there is aserial trace T 0 of P having the form T 0 = TafTbeTc. Again, since every execution of P oninput I takes the same branches as taken by PT , trace T 0 must also be a trace of PT whichcontradicts e � f in PT .4 Our AlgorithmThe basic algorithm is quite similar to the one presented by Netzer and Ghosh [NG92].It is a direct consequence of the observation captured in Theorem 3.5. It essentially �ndswhat Netzer and Ghosh called the maximal valid execution sequence for each event and thenadds the appropriate edges to the Guaranteed Ordering Graph.The algorithm considers each task in turn. When considering task i it adds all (non-transitive) edges leaving the events executed by task i. The algorithm arti�cially blockseach event in task i and lets the remainder of program run as far as possible (the repeatloop). When no more events can be legally executed by other tasks, the algorithm adds anedge from the arti�cially blocked event in task i to the �rst unexecuted event in each othertask, as per Theorem 3.5. The algorithm then adds the edge from the arti�cially blockedevent to the next event in task i, unblocks and executes the event that was arti�ciallyblocked, and then repeats the process with the next event executed by task i. A simpleexample showing a partial execution of the algorithm is shown in Figure 4.1.
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SFigure 4.1: The top graph shows the (non-transitive) guaranteed orderings for asimple program. These are also the edges found by Algorithm 4.1. In the theremaining four graphs the line labeled S indicates the unique state reached whenthe event in the heavy circle is blocked. Each represents a di�erent value for S inAlgorithm 4.1 at the exit of the repeat...until loop with i = 1.



5. Programs in the class 7Algorithm 4.1: Guaranteed Ordering Graph AlgorithmInput: An MSSL program P and a trace T of program P .Output: A graph representing a (reduced) partial order over the events in T .A state is a vector indicating for each task the next event to be executed by that task.We assume that the tasks are numbered from 1 to t.Create an initial state S0 with each task ready to execute it's �rst event.for i = 1 to t ffor each taskglet S = S0while S[i] 6= terminatedrepeatfor j = 1 to t ffor each taskgwhile j 6= i and S[j] is unblockedunblock any events waiting for S[j]set S[j] to succ(S[j])until no more changes are possiblefor j = 1 to tif j 6= i add an edge from S[i] to S[j]unblock any events waiting for S[i]add an edge from S[i] to succ(S[i])set S[i] = succ(S[i])end whileend forIf testing whether an event is blocked or unblocked can be done in constant time thenAlgorithm 4.1 has a worst case running time of O(nt2) where n is the number of events in Tand t is the number of tasks in P . The worst running time can be reduced to O(nt) if a cleverdata structure can be used to identify the unblocked events which are about to be executedwithout iterating through the tasks. One way to do this for post/wait synchronization waspresented in [NG92]. Appendix A contains an algorithm with worst case running time O(nt)for the other sets of monotonic synchronization constructs described in the following section.5 Programs in the classWe currently can identify three sets of synchronization constructs that can be used inMS programs:� programs that use Post and Wait without clear (PW-programs),� programs that use Message Passing where the Sender Names the Receiver and thereceiver blocks but does not name the sender (MPSNR-programs), and



8 6. Conclusions and Further Work� programs that use counting semaphores with the restriction that each semaphore'sP-operations are all executed by the same task (SRP-programs).Lemma 5.1: SRP-programs are MS programs.Proof: Assume to the contrary that some straight line SRP-program P has two serialtraces, T1 and T2 ending in di�erent states. Because P is a straight line program there mustbe some event in one of the traces that is not in the other. Assume without loss of generalitythat some event appearing in trace T1 does not appear in trace T2, and let event e be the �rstevent appearing in T1 that does not appear in T2. Then, trace T1 can be written TaeTb whereall events in Ta appear in trace T2. In particular, the event pred(e) (if it exists) appears inT2, so event e must be blocked at the end of trace T2. Since V-operations are never blocked,e must be a P-operation, say the kth P-operation on some signal. Since all P-operations ona given signal are executed by the same task, k is a property of the program rather than theexecution, and trace T2 contains exactly k�1 P-operations on the semaphore. Sub-trace Ta,and thus trace T2, contains at least k V-operations on the semaphore unblocking e in traceT1. Therefore, event e is not blocked at the end of trace T2 and we have our contradiction.Lemma 5.2: PW-programs are MS programs.Proof: Assume to the contrary that some straight line PW-program P has two serial traces,T1 and T2 that end in di�erent states. Because P is a straight line program there must besome event in one of the traces that is not in the other. Assume without loss of generalitythat some event appearing in trace T1 does not appear in trace T2, and let event e be the�rst event appearing in T1 that does not appear in T2. Then, trace T1 can be written TaeTbwhere all events in Ta appear in trace T2. If e is a Post then pred(e) is in T2 and e could beappended to T2. If e is a Wait then Ta contains a Post to satisfy the Wait and therefore sodoes T2 so e could be appended to T2.Lemma 5.3: MPSNR-programs are MS programs.Proof: An MPSNR-program can be translated into an equivalent (with respect to syn-chronization) program by the following. Each receive in task R is replaced by V(R). EachSend-to(R) is replaced by V(R). The resulting program will be an SRP-program and theresult then follows from Lemma 5.1.6 Conclusions and Further WorkBecause so many questions regarding races and event orderings are intractable [CS88,NM90], it is important to precisely identify those questions that can be answered in polyno-mial time. We have shown that if every straight line program using a set of synchronizationoperations always ends in the same state (monotonic synchronization), then the must-have-happened-before relation for any such program can be e�ciently computed. This extends



6. Conclusions and Further Work 9the results of Netzer and Ghosh [NG92], who show how to e�ciently compute the must-have-happened-before relation for straight line programs using post/wait synchronization(without clear).Although few real programs are straight line, the execution trace of any program allowsone to infer a straight line program. Rather than analyzing a parallel program directly, weanalyze the straight line program inferred by a trace of the program and then generalize theresults to the original parallel program. We have previously shown that an approximation tothe must-have-happened-before relation can produce a race detection algorithm that reportsa non-empty subset of the races in the original program. In this paper we have shown thatwhen the must-have-happened-before relation (for the inferred program) is exact, then noraces will be reported for the original program if it contains no races (on the same input).There are also non-monotonic sets of synchronization constructs which allow the exactand e�cient computation of the must-have-happened-before relation for straight line pro-grams. One trivial example is properly nested lock/unlock operations. These operations arenon-monotonic since if one task executeslock 1; lock 2; unlock 2; unlock 1;while another does lock 2; lock 1; unlock 1; unlock 2;then both tasks can either complete or deadlock. On the other hand, any of the tasks canrun to completion before any other events are executed. Thus the only must-have-happened-before relationships are between events executed by the same task. Another example is theuse of a single semaphore. Programs that use only one semaphore are not monotonicallysynchronized but a polynomial algorithm for computing precise ordering information hasbeen found[LKN93]. An interesting open question is if there is a more interesting non-monotonic set of synchronization operations where the must-have-happened-before relationcan be exactly and e�ciently computed (for straight line programs).



10 6. Conclusions and Further WorkOur characterization of monotonic sets of synchronization constructs may be di�cult toapply in all cases. It is tempting to claim that monotonicity is equivalent to (or at leastimplied by):whenever an event becomes unblocked then it remains unblocked.Unfortunately there are some unusual sets of synchronization operations that meet thisunblocking criteria but are not monotonic. One concrete example is the familiar P and Voperations restricted as in SRP-programs (de�ned in Section 5) combined with a \double"operation which doubles the current count of unmatched V's on the semaphore. We areworking towards simple requirements on the synchronization operations that are equivalentto (or at least imply) monotonicity.AcknowledgementThis work was partially supported by a grant from the National Science Foundation(grant # CCR-9102635).
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12 A. Worst case O(nt) algorithm for SRP-programsAlgorithm A.1: Optimized Guaranteed Ordering Graph AlgorithmInput: A straight line SRP-program P and a trace T of program P .Output: A graph representing a (reduced) partial order over the events in T .main:for i = 1 to t f for each task ginitialize count[x] to all zeros and waiting[j] to all ;initialize Q to empty and e-block to �rst[i]for j = 1 to t f for each task gif (j 6= i) then simulate (�rst[j])while (e-block 6= terminated) dowhile Q not empty dodequeue (e)simulate (succ(e))for j = 1 to tif (j 6= i) then add edge from e-block to waiting[j]simulate (e-block)end mainProcedure simulate (e):if e is a P-operation on semaphore x thenif (count[x] = 0) then f event e blocked gwaiting[task[x]] := eelse f event e is not blocked as count[x] � 1 genqueue(e)count[x] := count[x] - 1if e is a V-operation on semaphore x thenenqueue(e)if (waiting[task[x]] = e0) and (e0 a P-operation on x) thenfe0 now unblocked gwaiting[task[x]] := ;enqueue(e0)else f no P-operations on x currently blocked gcount[x] := count[x] + 1end simulate


