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ABSTRACT

We present an efficient algorithm for “precisely” determining the possible alternate
orderings of events from a program trace for a class of synchronization operations.
The class includes, post and wait without clear, a restricted form of semaphores, and
message passing where the sender names the receiver. The ordering information is
precise in that a race detection system could be built using the ordering information
such that if the program does not contain any data races for a given input, no races
will be reported, and if the the program does contain data races, at least one of those
races will be reported.

Keywords: trace analysis, race detection, debugging, parallel programming,
event ordering
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1 Introduction

A common task when debugging parallel programs containing explicit synchronization
is identifying the sources of non-determinism generally referred to as races. One approach
to detect races is to analyze a trace of a program execution. The simplest technique is to
look for unsynchronized blocks of code that were actually executed concurrently and contain
conflicting data accesses (such as a read and a write to the same variable). This simple
technique identifies only those races that actually occurred and may significantly under
report the races in the program as even slight variations in the speed of the tasks can result
in different pairs of blocks executing concurrently, and different races being detected. In
order to improve the accuracy of race detection it appears necessary to consider alternative
executions when analyzing a trace.

The approach of our work and others [NM91, NG92, HMW93] is to compute a partial
order representing the order in which the events from a trace did or might have occurred.
This ordering information can be combined with memory access information to perform
either on-the-fly or post-mortem race detection. The goal is a partial order R such that if
e1Rey then ey is guaranteed to happen before e, in every execution in which they both occur.
The results have always fallen short of this goal, at least for polynomial time algorithms.
The resulting partial orders have either ordered events that should not have been ordered
(missing potential races) or failed to order events that are in fact always ordered (reporting
infeasible races).

Recently, Netzer and Ghosh showed how to compute a “precise guaranteed ordering
graph” in polynomial time for programs using post and wait synchronization (without clears)
[NG92]. Their ordering graph is precise in that a race detection system that relies on this
ordering information can be constructed such that:

1. If the program contains races when executed with the given input then the detection

system will report a non-empty subset of the races that could occur.

2. If the program contains no races when executed with the given input then the detection

system will report no races.
The race detection system may still miss some races and report infeasible races that are
artifacts (i.e. controlled by outcomes) of earlier races.

Two events e; and ey are ordered by Netzer and Ghosh’s guaranteed ordering graph if and

only if ey is guaranteed to happen before e, in every execution of the straight line program
resulting from changing all conditional branches in the original program into unconditional
branches in the direction taken by the execution producing the trace being analyzed. This
straight line program is inferred from the original program and the trace. We introduced
the inferred program to characterize the guaranteed orderings in a previous paper [HMW93],
and we will use it again in this paper.
Definition 1.1: Given a trace T of some program P, the program inferred by P and T
(written Pr) is the same as program P except that all conditional branches are replaced with
unconditional branches that branch to the destination taken during the execution that created
trace T'.
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Note that program Pr is never created, it is simply a vehicle for reasoning about event
orderings.

Another justification of the “precise” claim for Netzer and Ghosh’s result is the if and only
if nature of their guaranteed ordering graph (i.e. they find precisely the orderings that hold
for the inferred program). In this paper we extend Netzer and Ghosh’s result for post/wait
synchronization without clears to other kinds of synchronization constructs. We define a
class of synchronization constructs for which there exists an efficient algorithm to determine
this “precise guaranteed ordering graph.”

Informally, a synchronization construct is in the class if all straight line programs that
use this construct either always terminate normally (all tasks complete) or always deadlock
in the same state (i.e. each task is blocked on a particular synchronization operation). This
class includes:

e post/wait synchronization without clears [NG92],

e message passing where the receiver is named by the sender, and

e semaphores when all P(X) operations for a particular semaphore X occur in the same

task.

Netzer and Ghosh define a mazimal valid execution [NG92] for an event e which is
a maximal sequence of post and wait events from an inferred program that satisfies the
post/wait semantics and could precede the event e. Although an event could have several
maximal valid execution sequences, they prove that, for any event e, all maximal valid
execution sequences for that event contain exactly the same set of events (although possibly
in different orders). Note that each maximal valid execution is a prefix of a serialized
execution of program Pr, but not every prefix of a serialization of Pr is a maximal valid
execution.

The main result of this paper is that if the synchronization constructs used yield a similar
notion of maximal sequence where each event’s maximal valid execution sequences contains
the same set of events, then there is an efficient algorithm to compute the precise guaranteed
ordering graph for the inferred program in polynomial time. This uniqueness of maximal
valid execution sequences is characterized by Lemma 3.4 and Definition 3.2, i.e., any program
that uses only monotonic synchronization constructs as defined below will exhibit the desired
behavior.

2 Events and Orderings

The guaranteed ordering graph contains nodes that represent events from a particular
execution of a program. Since we wish to generalize the ordering information from a single
trace to a program as a whole, we must have a way of identifying the “same” event in another
execution.

Although any program activity of interest could be represented as an event, we make
the simplifying assumptions that all events represent the execution of a synchronization
construct in the program and each execution of a synchronization construct is represented
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by an event. In addition, we assume that the events in any execution can be legally serialized.
Note that some high level synchronization constructs, such as Ada entry call and accept,
cannot be represented as single events since neither a call nor the corresponding accept can
finish before the other starts. This problem is easily resolved by treating an entry call as
two events.

Definition 2.1: Event e; in trace T} corresponds to event ey in trace Ty if 1 and eq
represent the exvecution of the same synchronization statement(s) by the same' task and
pred(eq)? in Ty corresponds to pred(eq) in Ty.

In the remainder of this paper, if event e¢; in trace T} corresponds to event e in trace 15
we will use e; (or equivalently es) to refer to both events (e.g. €1 in Ty corresponds to e; in
T1). Note that given a trace Ty of program P on some input, there may be another trace T,
of P on the same input where not all events in T} correspond to events in T5.

We use “57 to represent the causal ordering of the events in a particular execution or
trace T'. This causal ordering will generally be a partial order and is the irreflexive transitive
closure of edges from each event to the next event (if any) executed by the same task and
edges from unblocking events to the blocked events that they unblocked. Note that we use
the 5 causal ordering for analysis purposes and need not compute it. Qur algorithms require
only local logs indicating the events executed by each task (in the order they were executed
by that task).

The following formally defines the must-have-happened-before relation which is the rela-
tion represented by the guaranteed ordering graph. We use “<” to represent the must-have-
happened-before relation for an inferred program.

Definition 2.2: Let T be trace of parallel program P running with some input 1. For any

. . T . .
lwo events ey and ey in T, ey<ey iff e;—ey in every trace T" of the inferred program Pr.

Different executions of the same program on the same input can have different L
relations. The must-have-happened-before relation, <, is the intersection of all these KR
relations.

3 Monotone Synchronization and Ordering Relationships

In this section we define the class of programs that our algorithm is designed to operate
on (MSSL programs). We then prove a close relationship between traces of MSSL programs
and the must-have-happened-before relation (Theorem 3.5). We end the section with a proof
that our algorithm can be used to satisfy the two requirements of precise guaranteed ordering
graphs mentioned in the introduction.

!Tasks can be identified across executions by a simple lexicographic method such as the English half of

an English-Hebrew label [NR88].

Zpred(e) is the event preceding event e in the same task. If e is the first event in the task then pred(e) = 0
and () for one trace corresponds to ) for all other traces.
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Definition 3.1: A straight line parallel program is one in which there are no synchro-
nization operations inside of loops or conditional statements and all loops terminate on all
inputs.

Definition 3.2: A set of synchronization constructs is monotonic if every straight line
parallel program using only synchronization constructs in the set either always terminates
normally (all tasks complete) or always deadlocks in the same state.

A consequence of the above definition is that once an event becomes unblocked, it remains
unblocked throughout the program’s execution. This is the motivation behind calling the
set of synchronization constructs monotonic.

Definition 3.3: If the synchronization constructs used by a program are monotonic then the
program is « monotonically synchronized (MS) program. If, in addition, the program is
a straight line program, then it is « monotonically synchronized straight line (MSSL)
program.

It program P is a monotonically synchronized program then the program Pr inferred by
trace T' of P is a MSSL program. Theorem 3.5 (below) gives us an easy way to determine the
must-have-happened-before relation for a MSSL program. For each event, form the modified
program and compare their traces. This idea was used by Netzer and Ghosh [NG92] and is
exploited by our algorithms in the next section.

Lemma 3.4: Every trace of a MSSL program contains the same events.

Proof: Follows directly from the definition.
]

Theorem 3.5: Let program P be a MSSL program where some task t evecutes event e,
program P’ be the MSSL program P modified so that task t stops just before executing event
e, T be a trace of P, and T be a trace of P’.

In P, event e<e' iff ¢/ €T and ¢’ ¢ T".

Proof: Since P (and P’) are MSSL programs, each trace of P (resp. P’) contains the same
events. Since e is executed by task ¢ in P, event e appears in every trace of P.

For the forward direction assume that e<e’ (with respect to program P). By definition,

T . . .
for every trace T' of P we have e—¢’. Since every trace of P’ is also a partial trace of P and
no trace of P’ contains event e, no trace of P’ can contain event ¢’.

For the other direction assume to the contrary that event ¢’ € T', event ¢’ & T’, and not
e=<e’. Thus there is a serial trace T of an execution of P having the form T = T,e'TyeT..
Then T,e'T, does not contain any events from task ¢ (the task that executes event e in
program P) following e and is therefore a prefix of a trace of P’. By Lemma 3.4 all traces
of P’ contain the same events, contradicting the assumption that e’ & T".

]
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In [HMW93] we proved that if ¢; < ¢ in the inferred program Pr then whenever e;—eq
in some trace T’ of P, there is a race in P that happens before either e¢; or e,. This implies
that a race detection system that uses the guaranteed ordering graph for Pr will report
a non-empty subset of the races in P when run on the input used to produce T'. This is
point one from our informal notion of precise guaranteed ordering graph in the introduction.
Theorem 3.6 (below) proves that if program P contains no races and the ordering graph is
exact for Pr, then no races will be reported for program P. This satisfies point two from
our informal notion of precise guaranteed ordering graph in the introduction.

Theorem 3.6: If program P contains no data races when executed on input I, then ¢ < f
in Pr iff e < f in P on input I.

Proof:

(<) Assume to the contrary that e < fin P but e 4 f in Pr. This means that there is a
serial trace T" of Pr having the form 7" = T, fT,eT.. Because there are no data races in P
on input [, every execution of P on input [ takes the same branches, in particular the same
branches taken by Pr. Thus trace T" is also a trace of P which contradicts e < f in P.

(=) Assume to the contrary that e < fin Pr but e £ f in P. This means that there is a
serial trace 7" of P having the form 1" = T, fT,eT.. Again, since every execution of P on
input [ takes the same branches as taken by Pr, trace T must also be a trace of Pr which
contradicts e < f in Pr.

]

4 Our Algorithm

The basic algorithm is quite similar to the one presented by Netzer and Ghosh [NG92].
It is a direct consequence of the observation captured in Theorem 3.5. It essentially finds
what Netzer and Ghosh called the maximal valid execution sequence for each event and then
adds the appropriate edges to the Guaranteed Ordering Graph.

The algorithm considers each task in turn. When considering task ¢ it adds all (non-
transitive) edges leaving the events executed by task ¢. The algorithm artificially blocks
each event in task ¢ and lets the remainder of program run as far as possible (the repeat
loop). When no more events can be legally executed by other tasks, the algorithm adds an
edge from the artificially blocked event in task ¢ to the first unexecuted event in each other
task, as per Theorem 3.5. The algorithm then adds the edge from the artificially blocked
event to the next event in task ¢, unblocks and executes the event that was artificially
blocked, and then repeats the process with the next event executed by task 7. A simple
example showing a partial execution of the algorithm is shown in Figure 4.1.
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Figure 4.1: The top graph shows the (non-transitive) guaranteed orderings for a
simple program. These are also the edges found by Algorithm 4.1. In the the
remaining four graphs the line labeled S indicates the unique state reached when
the event in the heavy circle is blocked. Each represents a different value for S in
Algorithm 4.1 at the exit of the repeat...until loop with z = 1.
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Algorithm 4.1: Guaranteed Ordering Graph Algorithm

Input: An MSSL program P and a trace T' of program P.

Output: A graph representing a (reduced) partial order over the events in 7.

A state 1s a vector indicating for each task the next event to be executed by that task.
We assume that the tasks are numbered from 1 to ¢.

Create an initial state Sy with each task ready to execute it’s first event.
for ¢« =1 to t {for each task}
let S == So
while S[¢] # terminated
repeat
for j =1 to t {for each task}
while j # ¢ and S[j] is unblocked
unblock any events waiting for S[j]
set S[j] to suce(S[j])
until no more changes are possible
forj=1tot
if j # ¢ add an edge from S[i] to S[y]
unblock any events waiting for S|[¢]
add an edge from S[¢] to suce(S[i])
set S[t] = suee(S[t))
end while
end for

If testing whether an event is blocked or unblocked can be done in constant time then
Algorithm 4.1 has a worst case running time of O(nt?) where n is the number of events in T
and t is the number of tasks in P. The worst running time can be reduced to O(nt) if a clever
data structure can be used to identify the unblocked events which are about to be executed
without iterating through the tasks. One way to do this for post/wait synchronization was
presented in [NG92]. Appendix A contains an algorithm with worst case running time O(nt)
for the other sets of monotonic synchronization constructs described in the following section.

5 Programs in the class

We currently can identify three sets of synchronization constructs that can be used in
MS programs:
e programs that use Post and Wait without clear (PW-programs),

e programs that use Message Passing where the Sender Names the Receiver and the
receiver blocks but does not name the sender (MPSNR-programs), and



8 6. Conclusions and Further Work

e programs that use counting semaphores with the restriction that each semaphore’s
P-operations are all executed by the same task (SRP-programs).

Lemma 5.1: SRP-programs are MS programs.

Proof: Assume to the contrary that some straight line SRP-program P has two serial
traces, 77 and T ending in different states. Because P is a straight line program there must
be some event in one of the traces that is not in the other. Assume without loss of generality
that some event appearing in trace T does not appear in trace Ty, and let event e be the first
event appearing in T} that does not appear in Ty. Then, trace T} can be written T,€eT} where
all events in T, appear in trace Ty. In particular, the event pred(e) (if it exists) appears in
T5, so event e must be blocked at the end of trace Ty. Since V-operations are never blocked,
e must be a P-operation, say the kth P-operation on some signal. Since all P-operations on
a given signal are executed by the same task, &k is a property of the program rather than the
execution, and trace Ty contains exactly £ —1 P-operations on the semaphore. Sub-trace T},
and thus trace Th, contains at least & V-operations on the semaphore unblocking e in trace
1. Therefore, event e is not blocked at the end of trace T, and we have our contradiction.

]

Lemma 5.2: PW-programs are MS programs.

Proof: Assume to the contrary that some straight line PW-program P has two serial traces,
Ty and T; that end in different states. Because P is a straight line program there must be
some event in one of the traces that is not in the other. Assume without loss of generality
that some event appearing in trace 77 does not appear in trace T,, and let event e be the
first event appearing in 7T} that does not appear in T;. Then, trace T} can be written T,€eT}
where all events in T, appear in trace T5. If e is a Post then pred(e) is in Ty and e could be
appended to Ty. If e is a Wait then T, contains a Post to satisfy the Wait and therefore so
does T5 so e could be appended to T5.

]
Lemma 5.3: MPSNR-programs are MS programs.

Proof: An MPSNR-program can be translated into an equivalent (with respect to syn-
chronization) program by the following. Each receive in task R is replaced by V(R). Each
Send-to(R) is replaced by V(R). The resulting program will be an SRP-program and the
result then follows from Lemma 5.1.

]

6 Conclusions and Further Work

Because so many questions regarding races and event orderings are intractable [CS88,
NMO90], it is important to precisely identify those questions that can be answered in polyno-
mial time. We have shown that if every straight line program using a set of synchronization
operations always ends in the same state (monotonic synchronization), then the must-have-
happened-before relation for any such program can be efficiently computed. This extends
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the results of Netzer and Ghosh [NG92], who show how to efficiently compute the must-
have-happened-before relation for straight line programs using post/wait synchronization
(without clear).

Although few real programs are straight line, the execution trace of any program allows
one to infer a straight line program. Rather than analyzing a parallel program directly, we
analyze the straight line program inferred by a trace of the program and then generalize the
results to the original parallel program. We have previously shown that an approximation to
the must-have-happened-before relation can produce a race detection algorithm that reports
a non-empty subset of the races in the original program. In this paper we have shown that
when the must-have-happened-before relation (for the inferred program) is exact, then no
races will be reported for the original program if it contains no races (on the same input).

There are also non-monotonic sets of synchronization constructs which allow the exact
and efficient computation of the must-have-happened-before relation for straight line pro-
grams. One trivial example is properly nested lock /unlock operations. These operations are
non-monotonic since if one task executes

lock 1; lock 2; unlock 2; unlock 1;
while another does
lock 2; lock 1; unlock 1; unlock 2;

then both tasks can either complete or deadlock. On the other hand, any of the tasks can
run to completion before any other events are executed. Thus the only must-have-happened-
before relationships are between events executed by the same task. Another example is the
use of a single semaphore. Programs that use only one semaphore are not monotonically
synchronized but a polynomial algorithm for computing precise ordering information has
been found[LKN93]. An interesting open question is if there is a more interesting non-
monotonic set of synchronization operations where the must-have-happened-before relation
can be exactly and efficiently computed (for straight line programs).
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Our characterization of monotonic sets of synchronization constructs may be difficult to
apply in all cases. It is tempting to claim that monotonicity is equivalent to (or at least
implied by):

whenever an event becomes unblocked then it remains unblocked.
Unfortunately there are some unusual sets of synchronization operations that meet this
unblocking criteria but are not monotonic. One concrete example is the familiar P and V
operations restricted as in SRP-programs (defined in Section 5) combined with a “double”
operation which doubles the current count of unmatched V’s on the semaphore. We are
working towards simple requirements on the synchronization operations that are equivalent
to (or at least imply) monotonicity.
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A Worst case O(nt) algorithm for SRP-programs

The following algorithm has a worst case running time O(nt) and computes the guaran-
teed ordering graph for programs using semaphore style synchronization with the restriction
that all P-operations on the same semaphore occur in the same task. As noted in Section 5,
the synchronization pattern of message passing with one way naming is similar to that of
SRP-programs, and only cosmetic changes to the algorithm are required for these message
passing programs.

The algorithm assumes that the tasks are numbered from 1 to ¢ and that succ(e) is the
next event executed by the same task that executed event e. The constant arrays first[i] and
task[z] are initialized to contain the first event executed by each task 7 and the task executing
the P-operations on semaphore x respectively. The array count[z] stores the number of excess
V-operations on each semaphore z and the array waiting[j] stores the blocked P-operation
that task j is waiting on (or @ if task ¢ is not blocked). The algorithm also uses a queue @)
containing the events which have been simulated, but whose successors have not yet been
seen. Finally variable e-block stores the event in task ¢ which is artificially held up.
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Algorithm A.1: Optimized Guaranteed Ordering Graph Algorithm

Input: A straight line SRP-program P and a trace T" of program P.
Output: A graph representing a (reduced) partial order over the events in 7.

main:
for i =1 to t { for each task }
initialize count[z] to all zeros and waiting[j] to all )
initialize () to empty and e-block to first]7]
for j =1 to ¢ { for each task }
if (5 # ¢) then simulate (first[j])
while (e-block # terminated) do
while ) not empty do
dequeue (¢)
simulate (succ(e))
forj=1tot
if (7 # 1) then add edge from e-block to waiting|[;]
simulate (e-block)
end main

Procedure simulate (e):
if e 1s a P-operation on semaphore x then
if (count[z] = 0) then { event e blocked }
waiting[task[z]] := e
else { event ¢ is not blocked as count[z] > 1 }
enqueue(e)
count[z] := count[z] - 1
if e is a V-operation on semaphore = then
enqueue(e)
if (waiting[task[z]] = €¢’) and (e’ a P-operation on x) then
{¢/ now unblocked }
waiting[task[z]] :=
enqueue(e’)
else { no P-operations on a currently blocked }
count[z] := count[z] + 1
end simulate




