
1

Scattering Parameter Transient Analysis
of Interconnect Networks with
Nonlinear Terminations Using

Recursive Convolution

Haifang Liao and Wayne Wei-Ming Dai

UCSC-CRL-93-28
June 28, 1993

Board of Studies in Computer Engineering
University of California at Santa Cruz

Santa Cruz, CA 95064

ABSTRACT

A novel method for analyzing interconnect networks with nonlinear terminations is

presented. The circuit is partitioned into linear and nonlinear networks. A scattering parameter

based macromodel is introduced to model the linear network. An efficient network reduction

algorithm is developed to reduce the linear network into a network containing one multiport

component (macromodel) together with sources and loads of interest. Exponentially Decayed

Polynomial Functions(EDPF) are used to approximate the scattering parameters of the

macromodel, which is always stable for stable circuits. In order to incorporate the

macromodel into a SPICE like circuit simulator, a simplified recursive convolution formula is

developed and Norton equivalent circuits are derived based on recursive convolution.

Experiment results indicate that our method can approach the accuracy of SPICE3e2 with

order of magnitudes less computing time.

Keywords: scattering parameter, macromodel, multiport component, multiport interconnect
node, component merging, network reduction, lossy transmission line, exponentially decayed
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1 Introduction

As the electrical length of interconnects becomes a significant fraction of signal

wavelength during the fastest transient, the conventional lumped-impedance interconnect

model becomes inadequate and distributed coupled transmission line effects must be taken

into account for both on-chip and off-chip interconnects. However, the fundamental difficulty

encountered in integrating transmission line simulation in a transient circuit simulator arises

because the circuits containing nonlinear devices must be characterized in the time domain

while transmission lines with loss, dispersion, and interconnect discontinuities are best

modeled in the frequency domain. To cope with this difficulty, direct convolution techniques

are used. The system outputs are the convolutions of the inputs with the impulse responses.

The fundamental problem lies in how to determine the impulse response of an arbitrary

interconnect system. While explicit analytical expression of the impulse responses is

impractical, the numerical inverse Fast Fourier Transformation technique suffers from the fact

that excessive number of frequency points are needed to avoid aliasing effects. The another

drawback of the direct convolution is time consuming.

In order to deal with these difficulties, Pade technique[2, 16] is used to get an

approximated explicit analytical expression of the transfer function. Impulse response

functions are approximated with sum of exponential functions in time domain. To avoid

folding, sliding, multiplication, and integration in the progressively time-consuming direct

convolution integration process, the recursive formula[15] is rediscovered[16, 17] for

computing convolution of the approximated impulse response function with any other

function. However, Pade technique suffers from the unstable problem: unstable poles may be
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generated for known stable networks. Instead of using Pade technique, based on the method of

inversion of Laplace transform, F. Y. Chang[14] introduced Laguerre function to approximate

the impulse response functions, together with a recursive convolution formula. But the

accuracy of the approximation is very sensitive to the time constant which is chosen based on

a very rough empirical formula. We have proposed an improved method [8] to choose the time

constant by introducing an error function. In this paper, we simplify the recursive formula and

derive Norton equivalent circuits based on the recursive formula.

 The computation of impulse response of an interconnect system can be achieved by

approximating the characteristic impedance and exponential wave propagation functions[14,

16], or by approximating state variables of state equations[17]. We have presented a scattering

parameter based macromodel[7, 8] to compute transfer functions of interconnect systems.

Scattering parameter (s-parameter) based methods provides efficient techniques to analyze

practical analog and digital integrated circuit interconnect systems that can contain large

number of coupled conductors and discontinuities[1, 9, 10]. S-parameters are well suited for

the characterizing and modeling of linear high frequency devices, partially because it is easier

to directly measure the scattering parameters of any components on broad frequency

bands[13]. Alternatively, the port parameters of many passive components (such as

transmission lines) can be determined in terms of their geometric dimensions and the

electrical characteristics of the materials. S-parameters are numerically well defined and

conceptually simple. The multiconductor transmission line segments and various

discontinuities can be considered as separate components and their s-parameters can be

obtained by measurement or software.

Transient analysis of interconnects based on s-parameters has been addressed by

several authors recently[4, 5, 6]. But all of these methods are based on convolution which are

very time consuming. A novel method for analyzing interconnect networks with nonlinear

terminations is proposed in this paper. The method can handle general RLC and transmission

line networks including capacitive or inductive cutsets and loops. The circuit are partitioned

into linear and nonlinear networks. A scattering parameter based macromodel is introduced to

model the linear network. An efficient network reduction algorithm is developed to reduce the

original network into a network containing one multiport component (macromodel) together

with sources and loads of interest, which may be nonlinear. Exponentially Decayed

Polynomial Functions (EDPF)[14] are used to approximate the scattering parameters of the

macromodel, which is always stable for stable circuits. The macromodel is very flexible that

the accuracy of the model can be controlled by adjusting the order of approximation. The

efficiency and accuracy of the macromodel are well demonstrated.
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2 Scattering Parameter Based Macromodel

Given the individual component scattering parameters, we describe a systematic

reduction algorithm to reduce a distributed-lumped network to a multiport with sources and

loads of interest, as shown in Figure 1.

The network reduction problem can be defined as follows[7, 8]: given a linear

distributed-lumped network described by s-parameters, find a multiport representation of the

network as illustrated by Figure 1, where the multiport is characterized by its s-parameters.

All nodes in the network are internal to the multiport except the node connected to the driving

source (node 1) and the loads of interest (nodes 2 through n). These external nodes are

specified by the user.

To obtain such a multiport representation withm external ports from an arbitrary

distributed-lumped network ofn original nodes, the network is reduced by merging the nodes

into the multiport one at a time while keeping all user specified nodes external. There are two

basic reduction rules[7, 8]:

Adjoined Merging Rule: Let X andY be two adjacent multiports, withm ports andn

ports respectively. Assume portk of X is connected to portl of Y, as shown in Figure 2. After

Figure 1. S-parameter based macromodel
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mergingX andY, the resultant  port has the following s-parameters:

(1)

Self Merging Rule: Let X be anm port with a self loop connected to thelth andkth

ports, as shown in Figure 3. After eliminating the self loop, the resultant (m - 2) port has the

following s-parameters:

(2)

where

(3)

For an arbitrary distributed-lumped network described by the linear components, the

Adjoined Merging Rule is used to merge all internal components, and the Self Merging rule is

applied to eliminate the self loops introduced by the Adjoined Merging process. The

macromodel, or the voltage transfer function of the network can be characterized by the s-

parameters of the multiport component resulted from the reduction process, together with the

s-parameters of the loads.
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Figure 3. Self Merging.
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exists for any physically realizable system. The formulation is completely general for any

linear distributed-lumped network with scattering parameter descriptions. Another advantage

is that the need for using lumped representation of transmission lines is eliminated since lossy

transmission lines can be represented in a distributed form.

3 Time Domain Description of Macromodel with Exponentially Decayed
Polynomial Function(EDPF)

In order to derive recursive convolution, the s-parameters of the macromodel should

be fit with an explicit expression. Exponentially Decayed Polynomial Function (EDPF)[8, 14]

is used here, since it can approximate the time domain transfer function with any degree of

accuracy. And the corresponding frequency domain function of EDPF have only one repeated

stable pole, so it is always stable for stable networks. An n-th order EDPF in time domain has

the following form:

(4)

where  is the time constant which can be used to control the accuracy. We will give

two efficient methods to model a frequency domain s-parameter  with EDPF.

3.1 Modeling of the S-parameters Using Least Square Method

In order to compute coefficients  of EDPF, we transfer  into
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(5)
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and  is the  vector with elements

(9)

3.2 Modeling of the S-parameters Based on Numerical Inversion of Laplace
Transform

In order to compute these coefficients , rewrite  in a series of

orthogonal functions:

(10)

where , and  are Laguerre polynomials of . Laguerre polynomials are widely

used in the numerical inversion of Laplace transforms[22]. A polynomial function is the linear

combination of set of Laguerre polynomials[14],

(11)

The Laplace transform of  is

(12)

The coefficients  can be found as follows. Rewrite above equation

(13)

Let , thus

(14)

and  becomes

(15)

the right side of the above equation is a Fourier series. In order to use FFT technique to

evaluate these coefficients, equally spaced values of  should be chosen. The corresponding

values of  are determined by the equation (14).

Q n 1+

qi Hi sk( ) S sk( )
k 0=

m

∑= i 0 1 … n, , ,=

pi i 0 … n, ,=( ) h t( )

h t( ) ciLi
t
T
--- 

  e
t 2T⁄( )–

i 0=

n

∑=

T d 2⁄= Li x( ) x

L0
t
T
--- 

  1=

L1
t
T
--- 

  t
T
--- 1–=

Li
t
T
--- 

  1
i
--- t

T
--- 2i 1–( )– Li 1–

t
T
--- 

  i 1–( ) Li 2–
t
T
--- 

 –{ }= i 2≥( )

h t( )

H s( ) ci
1 2T⁄ s–( ) i

1 2T⁄ s+( ) i 1+
--------------------------------------

i 0=

n

∑=

ci
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4 Norton Equivalent Circuits Based on Recursive Convolution

4.1 Recursive Convolution Based on the EDPF

It has been shown that convolution integration for a EDPF and a piecewise linear

function can be computed by a recursive formula[14]. In the following, we state a simplified

recursive convolution formula. For the derivation of the formula, see Appendix A. Consider

the following convolution integration

(16)

where

(17)

then  can be computed by

(18)

where  and  can be computed with the following recursive

formulas:

(19)
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incoming wave and outgoing wave at port , respectively. From Eq. (20) and (22), we get

(23)

Rewrite Eq. (20) and combine it with Eq. (21), (22) and (23), the macromodel system

can be described by the following equation:

(24)
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integrated into SPICE-like simulators. The equivalent circuit of a two port macromodel is

shown in Fig 5.

5 Experimental Results

The model has been built and added to the Model Independent SIMulator (MISIM)

[19] which is based on the Modified Nodal Analysis (MNA). Figure 6 is a lossy transmission

line circuit driven by a CMOS inverter. Figure 7a and Figure 7b are the response of the near

end and the far end respectively. Comparing the direct convolution method (solid line)[20],

our macromodel (dashed line) with recursive convolution has almost identical results with

order of magnitudes less computing time.

The next example is a grid-type clock network (See Figure 8) which is distributed

around the periphery of a  chip. The vertical runs are on metal 1 ( ,

 and ) and the horizontal runs are on metal 2 ( ,

 and ). The network is represented by distributed lossy

transmission lines driven by a CMOS inverter. Figure 9a is the curve of the driver output

and Figure 9b is the curves of . There is little difference between the results based on our

macromodel and the SPICE model. While it took more than 500 CPU seconds on SUN

SPARC 1+ for SPICE3e2 to get the answer using the direct convolution [21], our program
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took 56.3 seconds to analyze the circuit using 12th order EDPF approximation.

6 Conclusions

An efficient method for modeling arbitrary interconnect networks with linear or

nonlinear loads for transient simulation was presented. The method is based on scattering

parameter technique, a large scale interconnect system can be reduced to a network containing

one multiport component (macromodel) together with sources, loads of interest and nonlinear

elements. The scattering parameters of the model can be accurately fitted with Exponentially

Decayed Polynomial Functions (EDPF) based on which a recursive convolution is derived.

From the recursive convolution, a Norton equivalent circuit of the macromodel was derived.

Figure 7a. Near end response of the lossy transmission line circuit
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Figure 7b. Far end response of the lossy transmission line circuit
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The model was implemented in a transient simulator and it was verified with experiment

results.
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Appendix A: Recursive Convolution Based on EDPF

Consider the following convolution

(a1)

where  is the excitation function, and  is the transfer function approximated in

the exponentially decayed polynomial function (EDPF), that is
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0

t

∫=

e
∆t d⁄– ∆t t λ–+

d
----------------------- 

  i
e

t λ–( ) d⁄–
x λ( ) dλ

0

t

∫=

e
∆t d⁄–

i

k 
 
  ∆t

d
----- 

  i k– t λ–
d

---------- 
  k

k 0=

i

∑ 
 
 

e
t λ–( ) d⁄–

x λ( ) dλ
0

t

∫=

e
∆t d⁄–

i

k 
 
  ∆t

d
----- 

  i k– t λ–
d

---------- 
  k

e
t λ–( ) d⁄–

x λ( ) dλ
0

t

∫ 
 
 

k 0=

i

∑=

e
∆t d⁄–

i

k 
 
  ∆t

d
----- 

  i k–
wk t( )

 
 
 

k 0=

i

∑=

qi t ∆t+( ) t ∆t+( ) λ–
d

----------------------------- 
  i

e
t ∆t+ λ–( ) d⁄–

x λ( ) dλ
t

t ∆t+( )

∫=
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By using the Trapezoidal rule for the above integration, we have

(a8)

Now, combine equations , we have the following recursive convolution

(a9)

where  and  can be computed with the following recursive

formulas:

(a10)

qi t ∆t+( )

∆t
2
----- e

∆t d⁄–
x t( ) x t ∆t+( )+ 

 
i 0=

∆t
2
----- ∆t

d
----- 

  i
e

∆t d⁄–
x t( ) i 0>






=

a4 a7–( )

y t ∆t+( ) φ t ∆t+( ) ρ t ∆t+( ) x t ∆t+( )+=

ρ t ∆t+( ) p0∆t 2⁄= φ t ∆t+( )

φ t ∆t+( ) piζi t ∆t+( )
i 0=

n

∑=

ζi t ∆t+( ) e
∆t d⁄– i

k 
  ∆t

d
----- 

  i k–
wk t( ) 

 

k 0=

i

∑ ∆t
2
----- ∆t

d
----- 

  i
x t( )+

 
 
 

=

wk t ∆t+( ) ζk t ∆t+( ) ∆t
2
-----x t ∆t+( )+=


