
Type-Speci�c StorageManagement (Shorter Version)Daniel Ross EdelsonUCSC{CRL{93{2728 May 1993Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractThis dissertation explores the limits of integrating garbage collection (GC) andother memory management techniques into `industrial-strength' statically-typedobject-oriented programming languages (OOPLs). GC cannot entirely replace man-ual reclamation in such languages. However, providing GC as an alternative hasmany bene�ts. We discuss various aspects of the integration of garbage collectorsinto programming languages such as C++. This thesis includes:� a comparison of the behavior of smart pointers with that of normalpointers, and examples of how smart pointers help integrate compiler-independent memory management algorithms into a program;� a presentation of fault interpretation, which is a technique for improv-ing certain algorithms (including some generational garbage collectionalgorithms) through a novel use of virtual memory protection, and,� a discussion of the memory management components we provide, whichinclude: two garbage collectors, a precompiler and additional tools.This report is a shorter version of UCSC{CRL{93{26. Extensive source code inappendices is omitted from this version.Keywords: Garbage collection, memory management, object-oriented program-ming, C++, memory allocation, reference counting

iContentsAcknowledgements viiAcknowledgements : viiPublication History : vii1. Introduction 12. Related Work 32.1 C++ : 32.2 Garbage Collection Overview : 32.2.1 Mark-and-sweep collection : 42.2.2 Copying collection : 52.2.3 Incremental Collection : 52.2.4 Generational Collection : 52.2.5 Other Surveys of Garbage Collection Techniques : : : : : : : : : : : 72.2.6 Summary of Garbage Collection Issues : : : : : : : : : : : : : : : : : 72.2.7 Terminology Used in This Thesis : 82.2.8 Basic Garbage Collection Techniques : : : : : : : : : : : : : : : : : : 82.3 Conservative Garbage Collection : 92.3.1 Boehm and Weiser : 92.3.2 Boehm, Demers, et al. : 102.3.3 Limitations of Conservative Collection : : : : : : : : : : : : : : : : : 102.4 Partially Conservative Garbage Collection : : : : : : : : : : : : : : : : : : : 102.4.1 Bartlett : 102.4.2 Detlefs : 112.5 Type-Accurate Garbage Collection : 112.5.1 Baker's Algorithm : 112.5.2 Lieberman and Hewitt : 122.5.3 Moon : 132.5.4 Ungar : 142.5.5 Appel, Ellis, Li : 152.5.6 Appel : 152.5.7 Beaudoing : 172.5.8 Schmidt and Nilsen : 172.6 Finalization : 172.6.1 Hayes : 172.6.2 Hudson : 182.6.3 Cedar/Mesa : 182.7 C++ Libraries and Extensions : 192.7.1 Kennedy : 192.7.2 Ferreira : 192.7.3 Maeder : 19

ii2.7.4 Samples : 202.7.5 Ellis and Detlefs : 202.8 Memory Allocation : 212.8.1 Sequential Fit Allocation : 212.8.2 Buddy System Allocation : 222.8.3 Quick Fit : 232.8.4 Block Allocation from a Bu�er : 232.8.5 Deallocation : 243. Smart Pointers for Garbage Collection and Reference Counting 253.1 Introduction to Smart Pointers : 253.2 Raw Pointer Behavior : 263.3 Using Smart Pointers : 263.4 Supporting Class Hierarchies : 273.4.1 User-De�ned Conversions : 283.4.2 Conversion to Direct Bases : 283.4.3 Conversion to All Bases : 293.5 Smart Pointer Inheritance Hierarchy : 293.5.1 Replicated Data : 303.5.2 Nonreplicated Data : 313.5.3 Another Error with Pointer Hierarchies : : : : : : : : : : : : : : : : 323.5.4 Class Hierarchies Summary : 333.6 Supporting const Type Conversions : 343.7 Overall Smart Pointer Support for Type Conversions : : : : : : : : : : : : : 353.7.1 An Unrooted Class Hierarchy : 383.8 Weaknesses in the Smart Pointer Support for Type Conversions : : : : : : : 383.8.1 Pointers to volatile Objects : 383.8.2 Conversion Precedence : 383.8.3 Pointer Leakage : 393.9 Accessors as an Alternative to Smart Pointers : : : : : : : : : : : : : : : : : 393.10 Writing Maintainable Code Using Smart Pointers : : : : : : : : : : : : : : 413.10.1 Typedef Pointer Type Names : 413.10.2 Avoid Smart Pointer Member Functions : : : : : : : : : : : : : : : : 423.10.3 Intermediate Variables : 433.11 Smart Pointer Examples: Reference Counting : : : : : : : : : : : : : : : : : 443.11.1 Optimized Reference Counting : 453.11.2 Deferred Reference Counting : 453.12 Smart Pointer Examples: GC Roots and Weak Pointers : : : : : : : : : : : 473.12.1 A Root Table : 473.12.2 Smart Pointer Class De�nitions : 483.12.3 Smart Pointer E�ciency : 483.13 Conclusion on Using Smart Pointers for Garbage Collection : : : : : : : : : 49

iii4. Fault Interpretation for Implementing the GC Remembered Set 524.1 Fault Interpretation: Memory Access Monitoring : : : : : : : : : : : : : : : 524.2 Applications of FI : 534.2.1 Generational Garbage Collection : 534.2.2 Incremental Garbage Collection : 554.2.3 Consistency and Replication Control : : : : : : : : : : : : : : : : : : 564.3 The FI Library : 574.4 The Implementation of FI : 594.4.1 Code Modi�cation : 594.4.2 Register Modi�cation : 594.4.3 Instruction interpretation : 594.4.4 Parallelization : 604.5 E�ciency of Fault Interpretation : 604.6 Availability of the FI Library : 614.7 Conclusion on the Functionality of FI : 625. Integrated Garbage Collection Components 635.1 Introduction to GC in C++ : 635.2 Garbage Collecting C++ Code : 645.3 Locating Internal Pointers : 655.3.1 Internal Pointers and Type Tags: Mark-and-Sweep : : : : : : : : : : 665.3.2 Internal Pointers and Type Tags: Bartlett's Collector : : : : : : : : 675.3.3 Finalization : 675.4 Special Pointers : 685.5 Coexisting Garbage Collectors : 695.5.1 The Mark-and-Sweep Collector : 695.6 Stack Pointers : 715.7 Controlling the Precompiler : 715.7.1 Precompiler File Management : 725.7.2 Precompiler Pragmas : 725.8 Memory Allocator Interfaces : 725.8.1 Allocator Interfaces : 735.8.2 Quick Allocation : 745.8.3 Memory Allocator Implementations : : : : : : : : : : : : : : : : : : 785.9 E�ciency : 785.9.1 E�ciency of the Hypercube Simulation : : : : : : : : : : : : : : : : 785.9.2 Lisp Interpreter and Database Application : : : : : : : : : : : : : : : 795.9.3 E�ciency of the Text Processing Application : : : : : : : : : : : : : 805.10 Status of the Type-Speci�c Garbage Collection Components : : : : : : : : : 805.11 Concluding Remarks on Type Speci�c Garbage Collection : : : : : : : : : : 816. Conclusion 83A. Glossary 84

ivB. Memory Allocator Implementations 86B.1 Sample Class AllocWithFree : 86B.2 Sample Class AllocWithFreeAll : 86B.3 Sample Class PoolAllocWithFree : 88B.4 Sample Class PoolAllocWithFreeOneAll : 89C. Smart Pointer Examples 91C.1 Reference Counting : 91C.2 Optimized Reference Counting : 93C.3 Roots : 95References 99

vList of Figures2.1 A representative data structure : 42.2 Before copy collection : 62.3 During collection: two objects have been compactly copied : : : : : : : : : 62.4 After collection: all objects have been copied : : : : : : : : : : : : : : : : : 62.5 The structure of Baker's to-space. : 123.1 A sample class hierarchy : 283.2 A pointer hierarchy for an object hierarchy : : : : : : : : : : : : : : : : : : 303.3 A smart pointer hierarchy with an abstract base to supply the data : : : : : 313.4 Why a derived�� may not be converted to a base�� : : : : : : : : : : : : : : 323.5 The invalid conversion with smart pointers : : : : : : : : : : : : : : : : : : 333.6 How to misuse the conversion that smart pointer hierarchies permit : : : : 343.7 A smart pointer hierarchy for const : 363.8 The �nal smart pointer organization for the indicated object classes. : : : : 373.9 An object class and an accessor-type reference class : : : : : : : : : : : : : 403.10 Deferred Reference Counting : 463.11 A weak pointer to an unreferenced object. : : : : : : : : : : : : : : : : : : : 483.12 A nulled weak pointer to a collected object. : : : : : : : : : : : : : : : : : : 493.13 The root table : 503.14 The protected page of a cell array : 503.15 A smart pointer class for const objects of type T : : : : : : : : : : : : : : : 514.1 A small FI application : 544.2 Output of the small FI application : 554.3 FI function prototypes : 585.1 Sharing of Smart Pointers Between a Collector and an Application : : : : : 655.2 Sharing of Smart Pointers Between Several Collectors and an Application : 665.3 A class with internal pointers : 675.4 Sample Code Augmented for Mark-and-Sweep Collection : : : : : : : : : : 685.5 Sample Code Augmented for Mostly-Copying Collection : : : : : : : : : : : 695.6 A pointer between objects managed by di�erent collectors : : : : : : : : : : 705.7 A root between objects managed by di�erent collectors : : : : : : : : : : : : 715.8 A Quick Allocator Memory Layout : 755.9 A Pool Allocator Memory Layout : 775.10 Resident Set Size for the Hypercube Simulation : : : : : : : : : : : : : : : : 795.11 Resident Set Sizes for the Lisp Application : : : : : : : : : : : : : : : : : : 80

viList of Tables3.1 Summary of implicit type conversions : 273.2 Strengths and weaknesses of smart pointer organizations : : : : : : : : : : : 363.3 Some ways our smart pointers do not behave like raw pointers : : : : : : : 384.1 E�ciency of the component operations : 615.1 Pragmas recognized by the precompiler : 725.2 Execution Time for the Hypercube Simulation : : : : : : : : : : : : : : : : 795.3 Execution Time for the Lisp Interpreter and Database Application : : : : : 805.4 Execution Time to Format the perl.1 Manual Page : : : : : : : : : : : : : 81

viiPrefaceAcknowledgementsI would like to express my appreciation to Ira Pohl for his unwaivering con�dence andsupport. His tutelage has been a profound inuence on my graduate education.Darrell Long has also been a major inuence during these past several years. He alwaysmade me try harder, and provided an example. Thanks Darrell.Charlie McDowell and Al Kelley exemplify for me what it means to be a professor. IfI end up in academia, I'll attempt to work based on what I've seen in them. I hope I'velearned well.One of the most important events in my graduate career was Marc Shapiro permittingme to work in his group at INRIA, Roquencourt. I learned a tremendous amount duringthat year, and I will be grateful to Marc for a long time. While at INRIA, I had thegood fortune to work with numerous other talented people. In particular, I'd like to thankthe following for their advice and suggestions: Peter Dickman, Philippe Gautron, JulienMaisonneuve, David Plainfoss�e, Michel Ru�n.On several occasions, Allen Van Gelder has discussed my work with me. Invariably, hemade insightful observations that showed me how to improve things.I'd like to thank Eric Juul for some good advice and encouragement during a period ofdoubt.My education has bene�ted from conversations with the following people. (They havecontributed to any strengths in my dissertation, while I alone am responsible for anyweaknesses:) Hans-Juergen Boehm, Joel Bartlett, Niels Christian Juul, Jacques Cohen,Max Copperman, David Detlefs, Amer Diwan, John Ellis, Paulo Ferreira, Barry Hayes,Rick Hudson , Mark Linton, Elliot Moss, Vince Russo, Markku Sakkinen, and Paul Wilson.Lynne Sheehan has made it easier and more pleasant to be a graduate student in thisdepartment, and I'm glad she was here.Finally, my deepest appreciation and thanks go to Barbara, Andi and the rest of myfamily for their support, encouragement and patience.Publication HistoryPortions of chapter 3 were previously published in:Daniel R. Edelson, \Smart Pointers: They're Smart but They're Not Pointers,"Proceedings of the Usenix C++ Technical Conference, August 1992, Portland,OR, pp 1{19, Usenix Association.An earlier version of chapter 4 was published in:Daniel R. Edelson, \Fault Interpretation: Fine Grain Monitoring of Page Ac-cesses," Proceedings of the 1993 Usenix Winter Conference, January 1993, SanDiego, CA, pp 395{404, Usenix Association.Portions of chapter 5 appeared previously in the following workshop proceedings, publishedas Spring-Verlag Lecture Notes in Computer Science Number 637:

viiiDaniel R. Edelson, \Precompiling C++ for Garbage Collection," InternationalWorkshop on Memory Management, September 1992, St. Malo, France pp 299{314, Springer Verlag.

11. IntroductionThe manipulation of dynamically allocated objects is fundamental to modern and classicprogramming practices. The ways programming languages support dynamic memory recla-mation can be viewed as a spectrum ranging from garbage collection (GC) as the uniquememory management technique (e.g., LISP [McC60, SJ84] and Smalltalk/80 [GR83]) tolanguages having manual reclamation as the only language-supported technique (e.g., C[ISO90]). Modula-3 [CDG+88] and C++ [ANS93] are two examples of programming lan-guages that improve upon these extremes. Modula-3 gives the programmer a choice betweenGC and manual reclamation. C++ permits a type to handle its own dynamic memory al-location and deallocation requests; a programmer can implement a customized algorithmthat is transparently invoked by clients using the standard new and delete interface.This thesis presents techniques for improving the exibility and e�ciency of dynamicmemory management within a program. We advocate and demonstrate the practicalityof supplying a library of memory management algorithms and allowing the programmerto select which techniques are used for which data structures. Thus, the programmer hassimultaneously available both manual reclamation and a variety of automatic reclamationtechniques. In addition, we discuss a new way of using virtual memory to improve certaingarbage collection algorithms, and we discuss writing programs so as to increase the modu-larity of the memory management code and the maintainability of the program as a whole.C++ is our implementation language, but the concepts are language independent.The next chapter of this thesis discusses related work. We begin the chapter with briefoverviews of the C++ programming language and general garbage collection algorithms.We then discuss a variety of GC implementations as well as related techniques such as�nalization and memory allocation.Chapter 3 discusses smart pointers. Smart pointers are user-de�ned class objects thatoverload the indirection operators to be usable like normal pointers [Str87]. Smart pointersprovide a compiler-independent way of incorporating into a program memory managementtechniques such as reference counting and garbage collection. We have analyzed the supportfor smart pointers in our chosen implementation language, C++. We have found that smartpointers behave very di�erently from raw pointers in terms of the implicit type conversionsthey undergo. In this chapter, we discuss the di�erences between smart pointers and rawpointers. We recommend a way of de�ning smart pointers that minimizes these di�erences.We also discuss coding styles that help make it convenient for a program to change betweenregular pointers and smart pointers. This chapter has the goals both of aiding and informingcurrent C++ practitioners, and of showing how a future programming language can bettersupport user-de�ned pointer objects. As examples of smart pointers, and as an aid toprogrammers, this chapter includes a variety of smart pointer implementations includingthree distinct reference counting algorithms and some indirect smart pointers. The indirectsmart pointers are subsequently used for two purposes in our garbage collector componentsof chapter 5.Chapter 4 presents a technique called fault interpretation and our library FI thatimplements this technique. Fault interpretation is a novel use of the virtual memory (VM)system that permits a program to monitor all accesses to selected pages of the addressspace. This ability can be exploited to improve garbage collection. In particular, a number ofgenerational garbage collectors use VM protection to detect writes to the older generation(s).

2 1. IntroductionThe written pages comprise part of a conservative estimate of the remembered set, that is,the set of older generation pages containing pointers to younger generation pages. WhenVM protection is used in this manner, the information obtained is of very coarse granularity,e.g., pageX has or has not been touched since the last collection. This requires the collectorto completely scan every written page. Using fault interpretation, the collector can obtainmuch �ner granularity information, for example, page X was written twice at addresses0x1f00 and 0x1f20. We have incorporated FI into an experimental version of Bartlett'sgenerational copying collector. Several other applications of this technique are discussed inthe chapter.Chapter 5 introduces the memory management components and precompiler. Thecomponents include smart pointers for GC roots and weak-pointers, two customized memoryallocators, and two garbage collectors based on versions of Boehm's and Bartlett's collectors.Both collectors conservatively scan the stack looking for roots, or pointers to garbagecollected objects. The collectors also support weak-pointers, accurate object-scanning, non-conservative smart pointer GC roots, and one of them supports �nalization. The collectorsare both compiler-independent and can coexist peacefully in a program. They both requirethe programmer to locate internal pointers for the collector. We also have a precompilerthat automates this task. A variety of pragmas allow the programmer to indicate whichdata structures are garbage collected, as well as with which collector. Finally, chapter 6concludes the thesis.

32. Related WorkThe related work includes both language-speci�c and language-independent techniques.As language-speci�c work, we discuss the C++ programming language and a variety of itsmemory management-related extensions and libraries. Language independent techniquesinclude numerous garbage collection algorithms, memory allocation strategies, and �naliza-tion.2.1 C++C++ is an imperative, object-oriented programming language that tries to combinethe low-level e�ciency of C with high-level abstractive mechanisms such as are found inSimula [Str91, Poh93, ISO90, DN66]. C++ has multiple inheritance, parameterized types,and more recently, exception handling [ANS93]. C++ provides operator overloading inwhich an existing operator symbol is given a new meaning when applied to a user-de�nedtype. The indirection operators � and -> are included among the overloadable operators.Application-level objects that overload these operators are called smart pointers [Str87,Str91] because they can substitute for the raw pointers that are prede�ned by the language.Smart pointers have constructors that permit them to be initialized with raw pointerssuch as new returns. Smart pointers may supply a type conversion to be usable directlyused in control statements, e.g., if (ptr) and while (ptr).Programmers use smart pointers in order to have all the functionality of regular pointersand then some. For example, the and then some might be:� tracing garbage collection [Ede92c],� reference counting [Ken92, Mae92, MIKC92, Cop92],� convenient access to both transient and persistent objects [SGH+89, Str91, HM90,SGM89, MIKC92],� uniform access to distributed objects [SDP92, Gro92, SMC92], or� instrumenting (measuring) the code.To accomplish this, the smart pointers should look and feel, to the greatest extentpossible, like raw pointers. Achieving the ideal, i.e., making the smart pointer semantics asuperset of raw pointer semantics, is impossible [Ede92d]. The next best thing is to see howclose the code can come to making the smart pointers perfect substitutes for raw pointersin all ways except declaration syntax.C++ was not designed with garbage collection, but there have been many proposalsfor GC in C++. On page 390 of [Poh93], [Ede92c] and [EP92] are cited, and the authorsuggests that omitting garbage collection from C++ was a mistake.2.2 Garbage Collection OverviewThe problem of garbage collection (GC) presupposes a data structure of dynamicallyallocated objects. The objects are represented as nodes in a directed graph. Objects maycontain pointers; the pointers are represented as directed edges in the graph. We refer tothose pointers as internal pointers. Other pointers are located on the stack, in the staticarea, and in the registers. These pointers are the only means the application has of accessing

4 2. Related Workthe data structure. These pointers are called the roots. Any object that can be reached byfollowing a pointer sequence starting from a root is reachable or accessible. All other objectsare unreachable or inaccessible or garbage. It is the garbage collector's task to identify theinaccessible objects. This organization is presented in �gure 2.1.A program is typically modeled as a set of one or more application processes and oneor more garbage collector processes. The application processes are called the mutators; thegarbage collector processes are called the collectors. This terminology was introduced in[DLM+78] and has since become standard.Garbage collection algorithms are typically based on one of two techniques: trace-and-sweep or copying.2.2.1 Mark-and-sweep collectionA mark-and-sweep (or trace-and-sweep, the terms are equivalent) garbage collectoriterates over all of the roots [Knu73]. From each root, it visits the subgraph reachablefrom the root. As each object is visited, a mark bit associated with the object is set. Thisis known as the mark or trace phase.After the mark phase, the collector iterates over all of the allocated objects. For eachobject, if its mark bit is unset, then the object is deallocated. This second phase is knownas the sweep. This process deallocates all unreachable objects.Mark-and-sweep collection must be able to locate both the roots and the internal point-ers. A form of mark-and-sweep known as conservative collection relaxes this requirement[BW88]. Basically, conservative collection treats as a pointer any properly aligned valuewhose value is such that it could possibly be a pointer.
The ‘‘Data Structure’’ (The Heap)

Global data

The stack

The registersFigure 2.1: A representative data structureThe pointers in global data, on the stack, and in the registers collectively comprisethe roots.

52.2.2 Copying collectionModern copy collectors are based on the work of Fenichel and Yochelson [FY69] andMinsky [Min63]. Incremental copy collectors are typically based on the Baker algorithm[Bak78]. Copy collectors allocate objects from one region and then copy all live objectsinto another region. These collectors compact the objects into the new region improvingvirtual memory performance. Mark-and-sweep collectors, by contrast, require a third passto compact; conservative collection generally precludes compaction. Since copy collectorsnever deallocate individual objects, a very simple, fast storage allocator can be used.Garbage collection may be invoked by the allocator when it runs out of available memory,or it may be explicitly invoked by the application. The �rst action of garbage collection isa ip, to cause subsequent allocations to be satis�ed from a new memory space. Then, thecollector locates all of the data structure's roots. From each root, the collector visits thereachable objects, copying every object that it encounters. The old version of every objectcontains a forwarding pointer whose value is initially NULL. When the collector visits anobject, it examines the forwarding pointer to see if the object has already been copied.Whether the object was already copied, or if it is just now copied, the pointer that led tothe object is modi�ed to point at the object's new location. If the forwarding pointer waspreviously NULL, meaning the object is just now being copied, then the forwarding pointer,too, is updated with the object's new address. The new versions of objects are identical tothe old versions, except that in preparation for the next garbage collection, their forwardingpointers are initialized to NULL. Figures 2.2, 2.3 and 2.4 show a data structure being copiedby a copy collector. In those �gures, obsolescent pointers in from-space are omitted forclarity.During the copy from each root, the data structure can be traversed breadth-�rst with aqueue or depth-�rst with a stack. The to-space region can supply memory for the queue orstack. Objects are copied into to-space from one end of the region; the process of collectingcompacts all the living objects. Since collection requires two full memory spaces, only halfof the system's memory is usable by the mutator at any given time.2.2.3 Incremental CollectionA variation on standard garbage collection is real-time collection. In real-time collectionlong periods of time in which the mutator is stopped are disallowed. Real-time collectionis normally synonymous with incremental collection. Under this paradigm a small amountof garbage collection work is done frequently.Reference counting is one incremental reclamation technique. Baker's 1978 algorithmwas incremental, but ine�cient. Baker's was the �rst incremental, copying collector [Bak78].2.2.4 Generational CollectionIn 1983{1984 three copying collectors were presented that improved e�ciency by segre-gating objects according to their actual age or anticipated life expectancy [LH83, Moo84,Ung84]. These collectors by Lieberman and Hewitt, Moon, and Ungar respectively, werethe �rst generation-based collectors. These collectors and more recent ones are described inthe next chapter.

6 2. Related Work
A

C

B
E

F

FROM-SPACE TO-SPACE

D

Global data

Registers

The Stack

Figure 2.2: Before copy collection
A

C

B
E

F

D

FROM-SPACE TO-SPACE

C’

Global data

Registers

The Stack

E’Figure 2.3: During collection: two objects have been compactly copied
A

C

B
E

F

D

FROM-SPACE TO-SPACE
Global data

Registers

The Stack

F’

B’

E’

C’

Key: Denotes an object

Denotes an application pointer

Denotes a forwarding pointerFigure 2.4: After collection: all objects have been copied

7Generation-based collectors exploit the following empirically observed phenomenon:young objects are likely to become garbage quickly and old objects are likely to live fora long time. These collectors separate old objects from young objects. Young objects arelikely to die quickly, therefore they are collected frequently. Old objects are unlikely to dieso they are collected less frequently. The rationale is that garbage collecting old objects isunlikely to be pro�table since few are expected to have died since the last collection.Lieberman and Hewitt's was the �rst of this class. It de�nes several generations andconducts incremental collection at di�erent rates in di�erent generations. A generation is aset of objects that are of approximately the same age. Moon's collector uses virtual memoryhardware and longevity-based object segregation to improve the e�ciency of the Bakeralgorithm. It identi�es ephemeral objects that are very short lived, and keeps them separatefrom static (permanent) and dynamic but longer-lived objects. Moon's and Lieberman'scollectors are incremental while Ungar's is stop-and-copy.When collecting a space, the roots for that space must be located. Generational collec-tors share a common problem of tracking pointers to young objects, particularly pointersinside old objects. These pointers must be located because, like pointers on the stack andin global data, they are roots for the collection. In discussions of generational collectors aback pointer is a pointer from an old object to a young one. The methods they use to handleback-pointers is one of the things that distinguishes these algorithms from each other.2.2.5 Other Surveys of Garbage Collection TechniquesTwo major surveys of garbage collection techniques have been published. Cohen pub-lished a survey of early garbage collection techniques and algorithms [Coh81]. Wilsondescribes more recent techniques in uniprocessor garbage collection [Wil92b].2.2.6 Summary of Garbage Collection IssuesDynamically allocated memory is a critical element of modern programming practices.It is vital in graph algorithms, which constitute one of the most important abstractions incomputer science. Managing dynamically allocated memory is nontrivial. Essentially thereare three ways to determine when memory may be recycled:1. The programmer can be responsible for freeing memory.2. By maintaining reference counts some inaccessible storage can be detected and recy-cled.3. Graph-traversal algorithms can be used to identify active memory and free inactivememory. This is known as garbage collection.Programmer controlled storage reclamation can be very e�cient. It is e�ective ondirected acyclic graph (DAG) data structures having no node with in-degree greater thanone. It also works for vectors, however, this is less important in languages that have powerfularray types. Since C++ lacks a real array type this is a primary use of the dynamic memoryallocator in that language.Even in simple cases programmer-controlled storage reclamation can be error-prone,especially in a language of the complexity of C++. The need to manage the memorytakes e�ort away from the more important problem at hand. With generalized graph datastructures the programmer must implement one of the two more complex schemes to ensurethat appropriate memory is freed. If the functionality must be provided then it should notbe the programmer's responsibility.

8 2. Related WorkReference counts are appropriate for some kinds of objects. They are suitable forgeneralized directed acyclic graphs but not for self-referential data structures. Referencecounting can be ine�cient because of the high cost of copying, initializing, and destroyingpointers.Garbage collection is the �nal alternative. Traditional garbage collection was very slowbut modern copying collectors are comparatively e�cient. Copying collectors collect andcompact in a single pass. Their e�ciency increases with the size of the virtual and realmemories, making them a scalable memory management solution for the inde�nite future.The presense of automatic, e�cient garbage collection increases the value of a programmingenvironment.2.2.7 Terminology Used in This ThesisAny object that is reachable from some root by following a sequence of references is live.An allocated object that is not live is garbage. The job of the garbage collector is to locateand deallocate every garbage object.A collector for a statically typed programming language is called type-accurate if everyvalue that the collector interprets as a pointer is actually a pointer. The opposite of type-accurate is conservative [BW88]. Conservative collectors assume that any value that mightbe a pointer actually is a pointer. Partially conservative collectors such as [Bar89] and[Det90] are conservative in certain regions of memory and type-accurate in others.De�nitions of these and the other technical terms used in this thesis are provided inappendix A.2.2.8 Basic Garbage Collection TechniquesThere are certain problems that all garbage collection algorithms must solve. Forexample, both kinds of collectors (mark-and-sweep and copy) must locate the roots ofthe data structure. Mark-and-sweep collectors start from the roots in order to set the markbit associated with every reachable object. Copy collectors start from the roots to copythe entire reachable data structure. In both cases, the roots need to be identi�ed. Thisturns out to be a very hard problem to solve for a C++ garbage collector. Here are somepotential ways of �nding the roots:Conservative scanning: This technique is used to provide GC in languages such as Cand C++ in which minimal run-time type information is available. Conservativecollection generally precludes copying collection because updating an integer thatwas interpreted as a pointer would be incorrect. Some collectors such as [Bar89] areconservative in some regions of memory and type-accurate in others, allowing themto copy and compact a subset of the objects.Tags: Collectors based on tags examine every word on the stack, in global data, and inthe registers. Every word has a tag that indicates whether or not it is a pointer.Arithmetic e�ciency is reduced for tagged integers; this violates the principle oflocalized cost. This solution is generally seen as undesirable for languages such asC and C++.Stack-frame decoding: Garbage collectors based on stack-frame decoding require thatthe compiler provide map information describing the active roots in each stack frame.This map indicates what pointers are present as local variables or temporaries in

9that function invocation. The collector \unwinds" the stack, and interprets the mapinformation that it �nds in every activation record. Using this information, it marksthe objects reachable from the roots present in that activation record. The mapinformation may be maintained dynamically in the activation record [Wen88], orit may be generated statically, with the program counter used to locate the mapcorresponding to each activation record [Gol92, App89a]. This solution permitssource-level compatibility with existing code; it requires recompilation of the libraries.Root registration: Collectors based on root registration record the addresses of the rootsin auxiliary data structures, for example, the protection stack of [War87] and the rootlists of [EP92]. Collectors based on this technique have the potential for object-levelcompatibility for existing code.Root indirection: Collectors based on root indirection permit the application to manip-ulate only indirect pointers. Each indirect pointer references a direct pointer that islocated in a root table. During garbage collection, the collector scans the root tablesto �nd the roots. This method, too, has the potential for object-level compatibilitybetween code that uses garbage collection and code that does not. Its disadvantagesinclude the level of indirection and the cost of maintaining the tables. The object tableof some Smalltalk-80 implementations [GR83, Ung86] constitutes root indirection, asdo the root tables of [Ede92b].2.3 Conservative Garbage CollectionConservative garbage collection is a technique in which the collector does not have accessto type information so it assumes that anything that might be a pointer actually is a pointer[BDS91, BW88]. For example, upon examining a quantity that the program interprets as aninteger (in a register, perhaps), but whose value is such that it also could be a pointer, thecollector would assume the value to be a pointer. This is a useful technique for accomplishinggarbage collection in programming languages that do not use tagged pointers, and in theabsence of compiler support.2.3.1 Boehm and WeiserBoehm and Weiser describe a conservative garbage collector for use with statically type-checked languages like Pascal and C without compiler assistance [BW88]. They rejectedtagged or limited integers or incompatibility with the standard libraries. They wantedto design a collector that would not penalize programs that did not use it. Their goalsare quite similar to those of the author's project. The primary di�erence is their use ofconservative collection instead of copying collection. This is consistent because copyingcollection without compiler assistance would be impossible or prohibitively inconvenient forthe application programmer in languages like C and Pascal.The free lists for small objects are organized as linked lists of blocks, so allocation takesfour or �ve machine instructions including the test for an empty list. When the list is emptya four kilobyte block is obtained from the low-level allocator. This allocation strategy allowsthe compiler or mutator to explicitly deallocate objects that are known to be inaccessible.The low-level allocator uses four kilobyte chunks that may be discontiguous. The sweeproutine coalesces adjacent free blocks and identi�es and returns to the low-level allocatorfree four kilobyte chunks. Their allocation strategy allows them to identify a pointer-sized

10 2. Related Workquantity that points at the beginning of an object, even though the free-store memory maybe discontinuous. Handling pointers into the middle of objects is more di�cult requiringan expensive hash.2.3.2 Boehm, Demers, et al.Boehm, Demers, et al. describe conservative, generational, parallel mark-and-sweepgarbage collection [BDS91, DWH+90] for languages such as C. Russo has adapted thesetechniques for use in an object-oriented operating system written in C++ [Rus91b, Rus91a].Since they are fully conservative, during a collection these collectors must examine everyword of the stack, of global data, and of every marked object. In addition, Boehm dis-cusses compiler changes to preclude optimizations that would cause a conservative garbagecollector to reclaim data that is actually accessible [Boe91].2.3.3 Limitations of Conservative CollectionConservative collectors can retain more garbage than type-accurate collectors becauseconservative collectors interpret non-pointer data as pointers. Often, the amount of retainedgarbage is small, and conservative collection succeeds quite well. Other times, conservativetechniques are not satisfactory. For example, Wentworth has found that conservativegarbage collection performs poorly in densely populated address spaces [Wen90, Wen88].Russo, in using a conservative collector to reclaim dynamic storage used by an object-oriented operating system, has also found that inconveniently large amounts of garbageescape collection [Rus91b]. Lastly, we have tested conservative garbage collection with aCAD software tool called ITEM [Kar89, Ede92a, Ede92b]. This application creates largedata structures that are strongly connected when they become garbage. A single falsepointer into the data structure keeps the entire mass of data from being reclaimed. Thus,our brief e�orts with conservative collection in this application proved unsuccessful. Asthese examples illustrate, conservative collection is a very useful technique, but it is not apanacea.2.4 Partially Conservative Garbage Collection2.4.1 BartlettBartlett has written the Mostly Copying Collector, a generational garbage collector forScheme and C++ that uses both conservative and copying techniques [Bar89, Bar88]. Thiscollector divides the heap into logical pages, each of which has a space-identi�er. Duringa collection an object can be promoted from from-space to to-space in one of two ways: itcan be physically copied to a to-space page, or the space-identi�er of its present page canbe advanced.Bartlett's collector conservatively scans the stack and global data seeking pointers.Any word the collector interprets as a pointer (a root) may in fact be either a pointeror some other quantity. Objects referenced by such roots must not be moved because, asthe roots are not de�nitely known to be pointers, the roots can not be modi�ed. Suchobjects are promoted by having the space identi�ers of their pages advanced. Then, theroot-referenced objects are (type-accurately) scanned with the help of information providedby the application programmer; the objects they reference are compactly copied to the

11new space. This collector works with non-polymorphic C++ data structures, and requiresthat the programmer make a few declarations to enable the collector to locate the internalpointers within collected objects.2.4.2 DetlefsDetlefs has implemented a concurrent atomic garbage collection in the cfront C++compiler [Det90]. This collector generalizes Bartlett's collector in two ways. Bartlett'scollector contains two restrictions:1. Internal pointers must be located at the beginning of objects, and2. heap-allocated objects may not contain unsure pointers, that is, values that may ormay not be pointers.Detlefs' relaxes these by maintaining type-speci�c map information in a header in frontof every object. During a collection the collector interprets the map information to locateinternal pointers. The header can represent information about both sure pointers and unsurepointers. The collector treats sure pointers accurately and unsure pointers conservatively.Detlefs' collector is concurrent and is implemented in the cfront C++ compiler.2.5 Type-Accurate Garbage CollectionType-accurate garbage collection is the opposite of conservative garbage collection. Atype-accurate garbage collector can (by de�nition) unambiguously locate the pointers in aprogram.Goldberg describes tag-free garbage collection for polymorphic statically-typed lan-guages using compile-time information [Gol92], building on work by Appel [App89a]. Gold-berg's compiler emits functions that know how to locate the pointers in all possible (nec-essary) activation records of the program. For example, if some function F contains twopointers as local variables, then another function would be emitted to mark from thosepointers during a collection. The emitted function would be called once for every activeinvocation of F , on the stack, upon a collection, to trace or copy the sub-datastructurereachable from each pointer. Upon a collection, the collector follows the chain of return ad-dresses up the run-time stack. As each stack frame is visited, the correct garbage collectionfunction is invoked. A function may have more than one garbage collection routine becausedi�erent variables are live at di�erent points in the function. Clearly, this collector is verytightly coupled to the compiler.Yasugi and Yonezawa discuss user-level garbage collection for the concurrent object-oriented programming language ABCL/1 [YY91]. Their programming language is based onactive objects, thus, the garbage collection requirements for this language are basically thesame as for garbage collection of Actors [Dic92, KWN90].2.5.1 Baker's AlgorithmBaker's algorithm predates 1981. It is described here because several of the othercollectors described in this survey are based upon it.Baker's algorithm partitions memory into two hemispaces: from-space and to-space. Newobjects are allocated from one end of to-space. In �gure 2.5 the boundary new indicatesthe point at which new objects are allocated. During an allocation operation the collector

12 2. Related Workcopies some small number of objects from from-space to to-space. This process is calledscavenging . Scavenging begins by copying the objects referenced by the roots to to-space.The region of scavenged objects grows up from the bottom of to-space and is delimited bythe relocated pointer. After the roots have been scanned the scavenged objects themselvesare scanned since they may contain pointers to from-space objects. The scanned markerpartitions the to-space objects into those that have been scanned for from-space pointersand those that have not. When a pointer to a from-space object is encountered the objectis scavenged to to-space. When all of the roots and all of the scavenged objects have beenscanned there are no more live objects in from-space. This is the case when the scannedpointer catches up to the relocated pointer. At that point a ip occurs: the names of thehemi-spaces are swapped and the process resumes.
from-space

from-space

objects

objects

Scanned

Unscanned

Newly created objects

new

relocated

scanned

Unallocated memory

Figure 2.5: The structure of Baker's to-space.The algorithm performs its work while satisfying allocation requests. The amount ofwork that it performs during a request is proportional to the size of the request. Whileincremental and therefore by de�nition real-time, this algorithm is ine�cient.2.5.2 Lieberman and HewittLieberman and Hewitt designed an incremental copying garbage collection algorithmthat segregates objects by their age [LH83]. The algorithm creates a number of regionsof objects that are garbage collected at di�erent rates. A region that is very youngprobably contains more garbage than an older region and therefore is garbage collectedmore frequently.The creation region is used to allocate new objects. When the creation region is �lled anew one is allocated. The system maintains a current generation number; when a region iscreated it is assigned the current generation number, which is periodically incremented.The process of initiating garbage collection in a region is called condemning the region.Objects in a condemned region are called obsolete. When a region is condemned all the liveobjects in the region are scavenged into a new region with the same generation number buta higher version number. Then the memory allocated to the condemned region is recycled.

13Objects are evacuated from a region to the next version of the region in the same way asin Baker's algorithm. In the common case, it is assumed that there will not be back-pointers.The algorithm is optimized for this case.When a region is condemned all pointers to objects in the region must be updated. Allthe younger regions must be scanned for pointers into the condemned one. Given this factit is much less expensive to condemn young regions than old ones. This is why the collectorgroups together young objects and scavenges them frequently.Pointers from old regions to young ones are treated specially. Every region has associatedwith it a table that tracks back pointers (x2.2.4) into the region. When the region iscondemned this table is used to update the back pointers without scanning their regions.In this collector there may be multiple scavenges active concurrently. Several regionsmay be in a condemned state and in the process of being scavenged. The scans movethrough the data spaces like waves from older regions to younger ones.The collector can coalesce older regions when the number of objects between themshrinks to an amount that is appropriate for a single generation. The sizes of regions canbe adjusted. Users can indicate the expected lifetimes of objects.Every value fetched from an old object must be checked to see if it points at anassignment table; without hardware support this is expensive. The assignment tables areupdated on every store into an old object, not just on stores of pointers to young objects.Thus the tables can become large giving an exaggerated root set for the collection [App89b].2.5.3 MoonThe ephemeral garbage collector described by Moon is an incremental copying garbagecollector based on the Baker algorithm [Moo84]. It segregates objects according to theexpected longevity to concentrate e�ort where it is likely to be of most bene�t. The collectorworks very closely with virtual memory and related dedicated hardware of the Symbolics3600 LISP system to perform collection-related processing quickly and concurrently withthe mutator.This collector identi�es three categories of objects. Ephemeral objects will probablybecome garbage shortly after they're created. The collector is designed to collect ephemeralobjects e�ciently. Dynamic objects will probably become garbage sometime in the future.Ephemeral objects that survive a certain number of collections are promoted to dynamicstatus. Static objects are not expected to become garbage. They are never collected exceptas the result of an explicit, slow command to \do a full garbage collection." Examples ofstatic objects include compiled functions and internal LISP data structures such as hashtables.This collector is incremental so that interactive response is not degraded by long pauses.The Baker algorithm identi�es pointers to old-space objects in software and substitutesthe forwarding pointer. Moon's collector uses hardware to implement a barrier . On theSymbolics 3600 pointers and integers are di�erentiated by tags. When the mutator loads apointer from memory, the barrier hardware checks to see if it points at an old-space page.If so, the appropriate forwarding pointer is substituted.The roots of a collection include all of the static objects. The normal LISP distributionincludes approximately 4M words of static objects so unless the root set could be narroweddown the collector would be very ine�cient. To keep track of roots the system maintainstables of locations that contain references to ephemeral objects. Whenever a pointer to an

14 2. Related Workephemeral object is created the address of the pointer is stored in the table. When ephemeralobjects are collected these tables identify the roots. The table is maintained with dedicatedhardware; when a word is stored into memory the barrier hardware determines if it pointsinto an ephemeral page. If so, the address is added to a table of references. Pointers are notremoved from these tables when they become invalid; the tables actually indicate a supersetof the roots. The tables are implemented as bit-maps to indicate pages that contain roots.Separate tables indicated in-core pages and swapped pages since in-core pages need to beprocessed more e�ciently.2.5.4 UngarGeneration scavenging is a memory reclamation algorithm designed by Ungar [Ung84,Ung86, UJ88]. Like the two algorithms considered earlier in this section, GenerationScavenging separates young objects from old objects. Unlike Lieberman's and Moon'salgorithms Generation Scavenging is not incremental.Initially in Generation Scavenging all objects are young and they live in a single space.As that space becomes full it is scavenged. The number of scavenges that an object survivesis recorded in the object. After an object survives some number of scavenges it is tenuredto the next generation. In an early description of the algorithm [Ung86] the number ofscavenges that an object needed to survive was �xed. Later work by Ungar and Jacksondiscusses ways of using feedback to inuence the tenure threshold [UJ88].Since the number of generations that an object survives must be counted the algorithmrequires a counter per object. It also requires a single mark bit per object for markingduring scavenges.When a scavenge is performed all references to objects involved in the scavenge mustbe located, including back-pointers. In Lieberman's algorithm this was done with per-generation reference tables. In Moon's algorithm this was done with bitmaps of pages ofobjects. In Ungar's algorithm objects that have been tenured are distinguished based onwhether or not they refer to younger objects. Objects that do refer to younger objects areput into a special set called the remembered set. This set is implemented as an array ofobject pointers. When a generation is scavenged, all the younger generations, the machineregisters, the stack and all the remembered sets are the roots.The Generation Scavenging algorithm partitions each generation into three spaces:NewSpace, PastSurvivorSpace, and FutureSurvivorSpace. These spaces serve as areas fornew object allocation and for copying during scavenges.After a scavenging pass if objects were tenured the remembered set of a generation mayhave grown. If it has, the new part needs to be scavenged. This may cause objects to beadded to FutureSurvivorSpace. If any objects are added they need to be scavenged andthat may cause the remembered set to grow again.Generation Scavenging very rarely scavenges the oldest generation; doing so is very ex-pensive. Therefore objects that live a long time and then die are not detected. When ithappens, this results in wasted virtual address space, possibly wasted memory, and frag-mentation. If that were all that happened, it might not be signi�cant because the amountof memory involved is small. However, these dead objects may still contain references toother objects. Though invalid, these references will keep the other objects alive past whenthey should be reclaimed. Therefore the algorithm su�ers when tenured objects die. Toprevent this, Ungar inserts intermediate generations between the youngest (undergraduate)

15generation and the eldest (full professor) generation. By the time an object reaches full-professorhood it has lived a long time and is unlikely to die. That heuristic is not perfectand memory does get lost. Therefore, a full, compacting mark and sweep garbage collectionis performed o�-line about once a day.2.5.5 Appel, Ellis, LiAppel, Ellis and Li describe a realtime, concurrent garbage collector implemented ona DEC Firey multiprocessor [AEL88]. The algorithm allows the mutators to run concur-rently with the collector. Synchronization is medium-grained and accomplished with virtualmemory hardware.Their collector is based on the Baker algorithm. It partitions memory into to-space andfrom-space; to-space is partitioned into two regions: the region from which new objects areallocated and the copy region. The copy region is partitioned into scanned objects andunscanned objects. The unscanned objects contain the only pointers into from-space thatmay exist. This structure is identical to that of the Baker algorithm (x2.5.1).The collector sets the virtual memory protection of the pages of unscanned objects tono-access. The program traps when the mutator tries to read or write an object on aninaccessible page. The collector handles the trap and scans the faulting page. It scavengesthe objects referenced by pointers on the page, leaves forwarding pointers, and updates thepointers on the page. Then it unprotects the page and resumes the mutator. When themutator resumes the page contains only to-space pointers.The collector also executes concurrently with the mutator. It scans unscanned pagesand scavenges any referenced objects. It unprotects each page after scanning it. The morepages the collector can scan the fewer page traps the mutator will cause.The collector performs a flip when it has insu�cient free memory to satisfy an allo-cation request. For a ip, the collector stops all the mutator threads and scans all theunscanned to-space pages. Then it exchanges the roles of the spaces and reinitializes theto-space boundary pointers: new, scanned and unscanned. Then it scavenges the rootobjects and resumes the mutator threads.This algorithm is incremental because pages are scanned when the mutator referencesthem (or sooner). When to-space runs out of memory the amount of work that the collectormust perform is unpredictable. Additionally an access of a from-space object may result invery little work or in a lot of work. The amortized cost of collection is still small, however,and according to the authors, the algorithm is e�cient. The performance measurements ofthe Boyer benchmark from Gabriel [Gab85] show a garbage collection overhead of 13%.2.5.6 AppelAppel describes a generational garbage collector suitable for use in functional languagesystems under Unix [App89b]. He explains the major problems inherent in generationalcollectors and o�ers e�cient solutions. He identi�es and incorporates Unix features suchas the memory layout of a process's address space and the virtual memory system calls.Appel argues that since copying collectors never deallocate individual objects, garbagecollection can be faster than stack allocation [App87]. His collector uses a simple allocationstrategy that can be hand coded in very few Vax assembly instructions. Virtual memoryprotection is used to avoid explicit bound checks during allocation. When a new object is

16 2. Related Workinitialized, if a write-fault occurs, then the allocator is out of space and must garbage collect.This relys on the fact that initialization of objects in functional languages is comparativelystraightforward; there are no uninitialized �elds. In simple cases this scheme leads to verylittle (or no) allocation overhead because the only required instructions, the initializationof the object, would be required anyway.Like all copying collectors his must di�erentiate between pointers and integers. Thethree schemes Appel identi�es for accomplishing this in statically typed languages are:1. allocating integers dynamically and from a distinct region of memory,2. tagging records with a format, and,3. obtaining a map from the compiler.Segregating types by address would require replacing all integers with pointers to integersallocated in a speci�c region. This would slow down integer arithmetic. In this collectorhe tags records with a value that identi�es the type, and therefore the structure, of theobject. By comparison, traditional mark-and-sweep LISP collectors frequently have usedtagged pointers, and conservative collectors use no type information whatsoever.Appel suggests that generational collectors may be most e�cient when they use exactlytwo generations. The goal of a generational collector is to let objects die before it becomesnecessary to copy them. A collector with only two generations maximizes the amount ofmemory that can be allocated to the youngest generation, therefore a long time can passbefore that generation �lls up and must be collected. This increases the probability thatmost objects in the generation will have had time to die.A collection of only the youngest generation is called aminor collection and a collection ofboth generations is called major . The roots of minor collections, just as in other generationalcollectors (e.g., Hewitt, Moon, Ungar) are the registers, the stack, global data, and pointersfrom old objects to young objects. Roots in old objects are the hardest ones to identifyand maintain. Appel's collector requires that the mutator, through the compiler, maintaina linked list of old-objects that may be roots. An assignment into an old object causesthe object's address to be inserted into a linked list of objects. At collection time thecollector traverses the linked list looking for pointers into the young generation. Pointers toyoung objects can be identi�ed by their value because the allocator uses contiguous chunks.Space for the linked list of roots is allocated out of the same free-store as other dynamicobjects. Objects may be inserted into this list multiple times. The collector identi�esduplications the same way other duplicate roots are identi�ed: by the forwarding pointerleft behind when an object is scavenged. One ine�ciency with this scheme is that objectsare inserted even if they do not reference a young object, e.g., if the assignment was of anold-space pointer. The ameliorating factor is that these assignments are comparatively rarein functional languages such as ML [Wik87].As one last noteworthy item, the collector requires that old, living objects be at a �xedend of the space. However, after a major collection they have been copied to the middle ofthe space. The collector uses a block copy to move them down to the end where it requiresthem. This is an additional copy of all the living objects. After the copy all of the pointersto the objects must be updated.This collector is simple and appears e�cient. It uses virtual memory protection toavoid bound checks. It does not support allocation from discontiguous chunks. It isappealing for its simplicity, however, it is specialized for its target language. The object-initialization code requires that the entire object be initialized when the object is allocated.

17The collector's scheme for tracking pointers from old-objects to young ones is e�cient onlyprovided assignments are rare.2.5.7 BeaudoingBeaudoing describes the Mark-During-Sweep incremental GC algorithm [Bea91,QBQ89]. This algorithm improves the e�ciency of standard mark-and-sweep garbage col-lection by marking and sweeping together in one pass. Speci�cally, the sweep phase ofgarbage collection N is performed concurrently with the mark phase of garbage collectionN + 1. This permits the algorithm to guarantee real-time performance. The algorithm isdescribed in both incremental and true parallel versions.2.5.8 Schmidt and NilsenSchmidt and Nilsen discuss a customized hardware memory system that supports hardreal-time garbage collection in languages like C++ [SN91, Nil91]. The identify as a problemthe lack of high-level languages for real-time systems. (Garbage collection in this case isviewed as one likely attribute of a high-level language.) While there are many incrementalGC algorithms based on Baker's algorithm, Schmidt and Nilsen consider the latency ofsuch algorithms too great. To support real-time GC, they have created a VLSI object spacemanager which implements in hardware some of the more expensive algorithms required bya collector. For example, their hardware can take a pointer to the interior of an object andreturn a pointer to the corresponding object's header. This operation can be quite costlyin languages that permit pointers into the middles of objects.2.6 FinalizationThe term �nalization refers to a semantic action (i.e., a function) associated with anobject that is performed when the object destroyed. Finalization is often used to relinquishresources held by the object. For example, in languages without garbage collection suchas C++, �nalization is frequently used for deallocating dynamically allocated memory.1In languages with garbage collection, �nalization is important for reclaiming non-memoryresources such as network connections or hash table slots. In object-oriented programminglanguages, �nalization is even more important because the author of a class knows bestwhat action to perform when instances of the class terminate [Bud91]. Delegating thisresponsibility to clients of a class violates encapsulation.In garbage collectors that support �nalization, a �nalization function may be associatedwith a dynamically allocated object. When the collector determines that an object hasbecome garbage, the collector calls the object's �nalization function.2.6.1 HayesHayes presents a survey of �nalization mechanisms in 10 programming languages andsystems. [Hay92] His discussion of �nalization includes not just object-based �nalization asis found in languages like Cedar/Mesa [Rov84, ADH+89], but also package-based �nalizationas is found for packages in Ada 9X [Dep91a, Dep91b].1In C++ �nalization functions are called destructors.

18 2. Related WorkHayes points out several things. For one, �nalization and weak pointers [Mil87] are oftenused together. A weak pointer to an object is a pointer that does not prevent the objectfrom being reclaimed by the garbage collector. To prevent dangling references, when anobject is reclaimed, all weak pointers to the object should be overwritten with a NULLpointer value. Weak pointers and �nalization are very useful for implementing caches ofgarbage collectible objects.The biggest problem with �nalization, as discussed by Hayes, is cycles of �nalizableobjects. Speci�cally, if one object x references another object y, then y should not be�nalized and deallocated before x because the �nalization function for x may try to examiney. Thus, in the non-cyclic case, objects should be �nalized in topological order. However,in the presense of cycles, there is no good order in which to �nalize the objects of the cycle.No perfect solution to this problem has yet been presented. Ellis and Detlefs address theproblem by giving correctness higher priority than completeness: their proposed garbagecollector does not reclaim objects in �nalization cycles [ED93, Ell93].2.6.2 HudsonHudson discusses �nalization [Hud91] in the context of the language-independentgarbage collector toolkit [HMDW91]. The �nalization semantics described by Hudson ad-dress the problem of references between �nalizable objects by �nalizing objects in chrono-logical order based on time of creation. He claims that in both functional languages andModula-3 with the new operator, this yields the desired semantics in many cases.In Cedar, �nalization is enabled for individual objects. An object may be identi�ed asgarbage and �nalized, and made reachable again by its �nalization function. Thereafter,the object may have �nalization re-enabled which leads to objects being �nalized multipletimes. Hudson's �nalization semantics do not permit an object to be �nalized multipletimes. An object may be �nalized once and reattached to the data structure by �nalization,but the object can not have �nalization re-enabled. Hudson's semantics may be viewed asphilosophy consistent with the concept of destructors in C++ because an object should notbe destroyed more times than it is initialized. However, it is already inconsistent becausethe object is usable after having been destroyed, so it is not clear how compelling thatargument is.2.6.3 Cedar/MesaCedar/Mesa used a combination of deferred reference counting with preemptive mark-and-sweep to reclaim cyclic garbage structures [Rov84]. A �nalization function and �nal-ization queue could be associated with a type. Instances of the type may have �nalizationenabled on a per-instance basis. When an object with �nalization enabled is identi�ed asgarbage, it is enqueued on the �nalization queue for its type. Some time later, the objectis �nalized by having it is �nalization function called; �nalization is then disabled for theobject. Since �nalization may have made the object reachable, it is not reclaimed untilanother garbage collection con�rms the object to be inaccessible.

192.7 C++ Libraries and Extensions2.7.1 KennedyKennedy describes a C++ type hierarchy called OATH that uses garbage collection[Ken92]. Its collector algorithm uses a combination of reference counting and mark-and-sweep. In OATH, objects are accessed exclusively through references called accessors. Anaccessor implements reference counting on its referent. Thus, the �rst reclamation algorithmavailable for OATH objects is reference counting. In addition, the reference counts areused to implement a three-phase mark-and-sweep algorithm that can collect cyclic datastructures. The three-phase algorithm proceeds as follows. First, OATH scans the objectsto eliminate from the reference counts all references between objects. After that, all objectswith non-zero reference counts are root-referenced. The root-referenced objects serve asthe roots for a standard mark-and-sweep collection, during which the reference counts arerestored.In OATH, a method is invoked on an object by invoking an identically-named method onan accessor to the object. The accessor's method forwards the call through a private pointerto the object. This requires that an accessor implement all the same methods as the objectthat it references. Kennedy implements this using preprocessor macros so that the methodsonly need to be de�ned once. The macros cause both the OATH objects, and their accessors,to be de�ned with the given list of methods. While not overly verbose, the programmingstyle that this utilizes is quite di�erent from the standard C++ style. Additionally, currentcompiler technology renders long macros, such as those required for OATH, quite di�cultto debug. A precompiler would have substantial bene�ts over a preprocessor for a systemlike OATH.2.7.2 FerreiraFerreira discusses a C++ library that provides garbage collection for C++ programs[Fer91]. The library supplies both incremental mark-and-sweep and generational copycollection, and supports pointers to the interiors of objects. The programmer renders theprogram suitable for garbage collection be placing macro de�nitions at various places inthe program. For example, every constructor must invoke a macro to register the object,and every destructor must invoke the complementary a macro to un-register the object.Another macro must be invoked in the class de�nition to add GC members to the class,based on the number of base classes of the class. To implement the remembered set forgenerations, the collector requires a macro invocation on every assignment to an internalpointer. Similarly to the collector we describe in [Ede92b], this collector requires that theprogrammer supply a function to locate internal pointers. Ferreira's collector can also scanobjects conservatively in order to obviate the need for programmer-coding of this function.2.7.3 MaederMaeder describes a C++ library for symbolic computation systems based on smartpointers and reference counting [Mae92]. The library contains class hierarchies for expres-sions, strings, symbols, and other objects that are called normal. To improve the e�ciencyof assignment of reference counted pointers, Maeder uses the address of a discrete object

20 2. Related Workas a replacement for the NULL pointer. The smart pointers support debugging by allow-ing the programmer to detect dangling references: rather than being deleted, an object ismarked deleted, and subsequent accesses to the object cause an error to be reported. Otherfunctionality allows the programmer to detect memory leaks, by reporting objects that arestill alive when the program terminates.2.7.4 SamplesSamples discusses minor changes to the C++ language that would enable it to supportgarbage collection [Sam92]. The changes include 3 new keywords, collected, embedded, andheap that allow:1. classes to be collected or not,2. individual objects to be collected or not, and,3. pointers to reference collected or non-collected objects.Along with these keywords, there are compatibility rules that permit safe pointer op-erations and prevent implicit unsafe ones. In keeping with the C++ philosophy, unsafeoperations such as copying a managed pointer to an unmanaged one may be performed ifexplicitly requested by the programmer in a cast type conversion. Samples also presentsdata structures to implement the proposed language changes. The new data structuresinclude a gc-descriptor and a gc-wrapper. The former is a per-object structure used bythe collector to obtain the latter, which in turn is a per-type data structure used to lo-cate pointer �elds within an object. The collector interface is intended to be independentof any particular algorithm, but the prototype implementation is mark-and-sweep with aconservative scan of the stack.2.7.5 Ellis and DetlefsEllis and Detlefs propose adding garbage collection to C++ through a combinationof language changes and compiler-enforced programming style restrictions [ED93]. Thecompiler changes are kept relatively simple, limiting the e�ciency of the potential GCalgorithms, but increasing the likelihood that compiler vendors will actually implement thechanges. Thus, for this and other reasons, the proposal retains conservative scanning of therun-time stack rather than adopting a more general but harder to implement root-�ndingtechnique such as the stack-frame maps [DMH92].Their proposal is consistent with C++ in that not all programs or data structuresare required to use garbage collection. They partition the programs dynamic memoryinto the normal heap and the collected heap. A class speci�es which heap its instancesare allocated from by default, and this choice may be overridden for individual objects.Pointers to collected objects and uncollected objects may be freely mixed. Indeed, pointersto collected objects may be passed to libraries that do not know of the GC. Again, thislimits the generality and maximum e�ciency of the applicable GC algorithms, while makingthe proposal's restrictions less onerous and more likely to be accepted.The restrictions divide C++ into the normal language and a safe-subset. This is similarto the \storage safe" subset of Cedar [Rov84]. If a programmer codes entirely in the safesubset, the proposal guarantees the program to be free of storage management errors suchas dangling pointers, memory leaks, array bound errors, bogus pointer values, etc. A classde�nition can be agged safe, which the member function de�nitions use unsafe features.

21This enables to enable the programmer to assert that using the class will not result in errors,even though the implementation of the class requires unsafe features. The unsafe featuresinclude the following:� pointer arithmetic,� array subscripting,� converting arrays to pointers,� passing arguments to array formal parameters, excepting string literals,� all casts to types containing pointers, references, and functions, except widening castsand checked narrowing casts,� union types containing pointers, references or functions,� calling an overridden global ::operator new,� uninitialized pointer variables and members,� delete, and� functions declared with ellipsis.Since the restrictions essentially prohibit the built-in arrays of C++, the proposalincludes a number of safe array classes de�ned using templates. These classes check arraybounds to catch subscripting errors. In addition, safe code contains a small number ofadditional run-time checks that ensure no storage errors are created.2.8 Memory AllocationE�cient memory allocation has been a �eld of active research since the late 1950's.Running time of LISP programs is signi�cantly impacted by the e�ciency of the memoryallocator. Research into improving e�ciency has resulted in a wide variety of strategies.There are four common classes of memory allocation strategies: Sequential Fit, BuddySystem, Segregated Free-list, and Bu�er Block allocation.2 Knuth [Knu73] and Standish[Sta80] are good references for detailed descriptions of the issues that arise in implementingthese strategies. Knuth's book predates the Quick Fit Segregated Free-list method.Dynamic allocation strategies are di�cult to analyze analytically but easy to measureempirically. Weinstock compared allocation strategies in [Wei76] and Zorn compared themin [Zor92]. Historically, improving the e�ciency of these techniques resulted in substantiallyfaster LISP systems.2.8.1 Sequential Fit AllocationSequential Fit allocation is a family of allocation strategies that use the same datastructure but di�er in how they choose the block to satisfy a request. They use a circulardoubly-linked list of free blocks. Every free block contains its size and pointers to itsneighbors in the ring. The initial free list consists of one block that points to itself in bothdirections.Every block has a header and footer consisting of a small number of bytes that containthe block's size, its ring pointers, and its current status, namely, allocated or currently free.Given a pointer to a block the allocator can tell three things:2This is a nonstandard term that the author uses to describe the simple allocation scheme for a copyingcollector described by Appel in [App89b].

22 2. Related Work1. whether or not the block is currently free2. whether or not the proceeding block is free3. whether or not the following block is freeProceeding and following are de�ned in terms of absolute address, not linked-list order.Thus, let a ten byte block begin at address 1000. The proceeding block has its last byteat address 999; this byte is part of the block's footer. The trailing block begins at address1010; this byte is part of that block's header. This administrative information is needed forcoalescing adjacent free blocks.A roving pointer indicates the last block in the ring that the allocator examined. Tosatisfy an allocation request the allocator examines some number of blocks starting at theblock referenced by the roving pointer. It selects a block with which to satisfy the request.If the ring contains no su�ciently large block the request fails. If the block it �nds is veryclose to the requested size then it uses the block to satisfy the request. The block is markedas allocated in its header and footer. The roving pointer is advanced past the block; theblock is removed from the ring and returned to the application.Often the block chosen is so much larger than the request that returning it would entailexcessive internal fragmentation. In these cases the block is broken into two. One part isused to satisfy the request and the other is left in the free ring.When a block is deallocated the allocator attempts to coalesce it with adjacent freeblocks. Using the headers and footers the allocator can tell whether or not the adjacentblocks are free. If one or both are free the allocator combines them into one larger freeblock.The variations on this technique are First Fit , Best Fit , Worst Fit , and Optimal Fit .First Fit satis�es an allocation request with the �rst block it �nds that is su�cientlylarge. It frequently chooses a block that is much larger. This can lead to external fragmen-tation. It is attractive because allocation can be very fast.Best Fit always scans the entire ring. It selects the block that is most nearly the exactsize required. It is the best in terms of fragmentation, external and internal. It is generallyslower than First Fit.Worst Fit always scans the entire ring and uses the largest block it �nds. The justi�cationis that this will not create many small blocks that cause external fragmentation.Optimal Fit scans part of the ring to get a representative sample of its contents [Cam71].After scanning some fraction of the ring it then selects the next block it �nds that is betterthan all the ones it has seen. Optimal Fit examines fewer blocks than Best Fit so it isfaster. It examines more blocks than First Fit so it causes less fragmentation.A naive Sequential Fit allocator might use a linear linked list rather than a circularone. Knuth found that this leads to many very small fragments at the beginning of the list[Knu73]. This slows down the First Fit and Optimal Fit strategies. This was an importantobservation because First Fit was the most common strategy at the time it was made. Usinga ring distributes the fragments better.2.8.2 Buddy System AllocationBuddy System allocation is a family of strategies that attempt to be fast while mini-mizing external fragmentation. The most common strategy is based on blocks whose sizesare powers of two, another is based on the �bonacci sequence.

23The Binary Buddy System allocates blocks in sizes that are powers of two. Block sizesof 8, 16, 32 or 1024 units (bytes, words) might be allocated. The allocator keeps linkedlists of free blocks of each size and satis�es a request with the smallest size block that issu�ciently large. For example, a request for 10 bytes would be satis�ed with a 16 byteblock. How this is accomplished if no 16 byte block is available is described in the followingparagraphs.Every block has its buddy [Knu73]. A block of size 2k is always aligned so that the lastk � 1 bits of its address are zero. The kth bit may be either one or zero. The buddy of ablock is the unique block of the same size whose address is di�erent only in the kth bit.For example, suppose a 64 byte block is at binary address abc100000. The digits abcrepresent \don't care" values. The buddy of this block is the 64 byte block at addressabc000000.To satisfy a request of size n the allocator examines the linked list of free blocks of size 2kwhere k is the smallest integer such that 2k � n. In the best case that list is non-empty anda block is used to satisfy the request. If that list is empty the next larger list is examined.If a larger block is available the block is broken into its component buddies. It is removedfrom its former free list. One component is added to the smaller free list while the otheris returned. If the next larger list is empty the algorithm continues up lists until it �nds anonempty one.When a block is deallocated the allocator determines if its buddy is free. If the buddyis also free the allocator combines them into one larger free block and checks if its buddy isfree, etc. Finally the free block is inserted into the list of its size.2.8.3 Quick FitMany programs allocate blocks in a small number of discrete sizes. In these cases a verysimple allocation strategy can be very e�cient.Linked lists of free blocks are maintained for each discrete size. When a block is requesteda free block is taken o� the correct list. When a block is deallocated the block is added tothe list of blocks of its size.When an allocation request is issued and the corresponding free-list is empty, the mem-ory allocator invokes a lower-level allocator. The lower-level can be simple or complicated.Hopefully it is not invoked too often.The second level is backed-up by the operating system memory allocator. This is theQuick Fit strategy described by Weinstock in his doctoral thesis [Wei76] and by Standish[Sta80]. Weinstock found that in some cases First Fit is faster, and in some cases BestFit results in less fragmentation, but on the average Quick Fit is the overall best strategy.The �rst level Quick Fit allocator is very simple to implement. For many programs goode�ciency can be obtained when the second level is simple also.2.8.4 Block Allocation from a Bu�erAs discussed in x 2.2.2, copying garbage collectors do not deallocate individual objects.Instead, the entire space is deallocated at once. The three allocation strategies mentionedpreviously, Sequential Fit, Buddy System and Quick Fit all expect to handle deallocationrequests. The �rst two coalesce adjacent free blocks. All three entail unnecessary overheadfor a system based on copying garbage collection.

24 2. Related WorkIn copying collection, the allocator can satisfy allocation requests out of a large chunkof memory. To allocate a block, the current allocation-point pointer is incremented (ordecremented) by the size of the request and the old (or new) value is returned. The boundmust be checked to ensure that there is available storage. Allocated blocks do not needheaders or footers containing the size and allocation status of the block. Allocated blockscannot be individually deallocated. Instead the entire space is deallocated en masse. Thisallocation strategy, when applicable, is more memory e�cient and faster than the othersdescribed herein.2.8.5 DeallocationThe deallocation operation of the memory allocator causes a previously allocated blockto be marked as free. If the newly freed block is adjacent to another free block the two maybe coalesced to form a larger free block. This is done in Sequential Fit methods and in theBuddy System to reduce external fragmentation. Quick Fit saves time by not coalescingadjacent free blocks.After the block has been deallocated its memory may be used to satisfy a futureallocation request. The strategy and data structures used by the memory allocator dictatethe cost of executing a deallocation request.

253. Smart Pointers for Garbage Collection and ReferenceCountingC++ provides language-level support for de�ning and using special pointers with addi-tional semantics. Such pointers, called smart pointers, are a valuable component of type-speci�c storage management. We use them to implement several reference counting algo-rithms, garbage collection roots, and weak pointers.We tested the hypothesis that smart pointers can transparently replace raw pointers.Our work pointed out the limitations of this approach.In this chapter we evaluate to what extent smart pointers can seamlessly replace rawpointers. The ideal is for client code not to care whether it is using raw pointers or smartpointers. For example, if a typedef selects whether raw or smart pointers are used throughoutthe program, changing the value of the typedef should not introduce syntax errors.C++ does not support pointer substitutes well enough to permit seamless integration.We present the desired behavior of smart pointers in terms of the semantics of raw pointersthat the smart pointers try to emulate. Then, we describe several ways of implementingsmart pointers. For each, we show cases in which the smart-pointers fail to behave like rawpointers. From among the choices, we explain which is the best for emulating the standardpointer conversions.3.1 Introduction to Smart PointersThe ability to substitute user-de�ned code for pointers is a very powerful programmingmechanism. It facilitates using C++ in domains for which the language is not specialized.For example, smart pointers [Str87] or variations thereof can be used to support distributedsystems [SDP92, SMC92], persistent object systems [MIKC92, SGH+89, Str91, pg. 244], toprovide reference counting (e.g., the ObjectStars of [MIKC92] or the counted pointers idiomof [Cop92]) or garbage collection [Ken92, Ede92c].A smart pointer encapsulates either a raw pointer or a complex handle. The smartpointer overloads the indirection operators in order to be usable with normal pointer syntax.For example, code that accesses both transient and persistent objects can be written toperform its manipulations through smart pointers. These pointers would be able to referto either normal transient objects, or to objects that reside in persistent storage. When anobject in persistent storage is referenced through the smart pointer, a copy is loaded intomemory. The smart pointers should even be able to enforce a consistency protocol if theobject is replicated or loaded into shared memory.In analyzing how e�ective a pointer substitute is, we consider two criteria: (1) howrun-time e�cient it is, and (2), how it impacts the code in terms of programming style.Smart pointers with a lot of functionality can be ine�cient; it is also possible to write verylightweight smart pointers. We do not concentrate on run-time e�ciency because that isentirely determined by the speci�c implementation. Rather, we focus on the second issue:how the use of smart pointers impacts the client code.The remainder of this chapter shows how the behavior of smart pointers diverges fromthat of raw pointers in certain common C++ constructs. Given this, we conclude thatthe C++ programming language does not support seamless smart pointers: smart pointers

26 3. Smart Pointers for Garbage Collection and Reference Countingcannot transparently replace raw pointers in all ways except declaration syntax. We showthat this conclusion also applies to accessors [Ken92].The organization of this chapter is as follows: x 3.2 very briey summarizes the behaviorof raw pointers that smart pointers try to emulate, particularly in terms of the standardtype conversions. Then, x 3.3 presents several ways of implementing smart pointers, and foreach, shows limitations and problems with it. x 3.9 shows why these results apply equallyto accessors. Finally, x 3.10 provides some advice on using smart pointers, x 3.11 and x 3.12present the smart pointers supplied with our system, and the last section concludes thechapter.3.2 Raw Pointer BehaviorIn order to evaluate the e�ectiveness of a pointer substitute, it is necessary to have abaseline for comparison. That baseline is, of course, the raw pointer, by which we mean thepointer type that is directly supported by the compiler and the hardware. The semanticsof raw pointers are too complex to list exhaustively. The most important aspect of theirbehavior for this discussion is how they undergo implicit type conversions. The problem isto design user-de�ned pointers that will behave nearly the same as raw pointers, in termsof the implicit type conversions the pointers undergo.Table 3.1 summarizes the conversions that take place on function arguments and inexpressions such as assignment. All of these type conversions are performed implicitly bythe compiler. We are not interested in explicit type coercions they can easily conceal type-errors and because they hide important semantics such as chaining of type conversions.3.3 Using Smart PointersSmart pointers are class objects that behave like raw pointers [Str87, Str91]. The smartpointers overload the indirection operators (� and ->) to be usable with normal pointersyntax. They have constructors that permit them to be initialized with raw pointers suchas new returns. Smart pointers are sometimes de�ned with a user-de�ned type conversionto void�; this permits the smart pointer instances to be used in control statements, e.g.,if (ptr) and while (ptr). The conversion to void� may also be seen as undesirable [Gau92],in which case all testing is explicit using overloaded comparison operators. Smart pointersmay optionally supply a conversion to the corresponding raw pointer types.Our goal in manipulating smart pointers is to have all the functionality of regularpointers and then some. For example, the and then some might be:� tracing garbage collection [Ede92c],� reference counting [Ken92, Mae92, MIKC92, Cop92],� convenient access to transient or persistent objects [SGH+89, Str91, HM90, SGM89,MIKC92],� uniform access to distributed objects [SDP92, Gro92, SMC92], or,� instrumenting (measuring) the code.To accomplish this, the smart pointers should look and feel, to the greatest extent possible,like raw pointers. Since it is impossible to make the smart pointer semantics a true supersetof raw pointer semantics, our goal is to make the smart pointers behave as similarly to rawpointers as possible.

27Table 3.1: Summary of implicit type conversionsThe conversion classes are listed in order of precedence. The conversions within a grouphave approximately the same precedence.Class 0: Trivial ConversionsFrom To Notes1. T T& object) reference2. T& T reference) object3. T[] T� array) pointer4. T(args) T(�)(args) function) pointer5. T const T type) const type6. T volatile T type) volatile type7. T� const T� pointer) pointer to const8. T� volatile T� pointer) pointer to volatileClass 1: Standard ConversionsFrom To Notes9. 0 T� the NULL pointer conversion10. Derived� Base� if base is accessible andderived is not const or volatile11. Derived& Base& if base is accessible andderived is not const or volatile12. T[] T� array) pointer to �rst element13. T(args) T(�)(args) except following & or before ()14. T� void� provided T is not const or volatile15. T(�)(args) void� provided su�cient bits are availableClass 2: User-de�ned Conversions16. conversion by constructor17. conversion by conversion operatorRaw pointers support numerous conversions, for example, conversion of T� to void�, ofT� to const T�, and of derived� to base�. There are two ways to de�ne smart pointers thatcan allow them to emulate these conversions:1. the smart pointer classes can use user-de�ned type conversions to emulate the standardconversions, or,2. the smart pointer classes can be related in an inheritance hierarchy.We will consider both these possibilities, sub-possibilities of each, and combinations thereof.3.4 Supporting Class HierarchiesPointers in a class hierarchy undergo a very important set of conversions. In particular aderived class pointer can be implicitly converted to a base class pointer for an accessible baseclass. This conversion, along with virtual functions, is how C++ supports polymorphism.To be general, the smart pointer classes must emulate this type conversion.

28 3. Smart Pointers for Garbage Collection and Reference Counting
C

A

B

DFigure 3.1: A sample class hierarchyThis hierarchy is rooted, but it need not be.Sections 3.4.1 through 3.4.3 require that class D be in the hierarchy. However, subse-quent �gures will only include classes A, B and C.3.4.1 User-De�ned ConversionsFirst we consider the case where the smart pointer classes do not have any subclassrelations, even though the referenced classes are (potentially) derived from each other. Inthis case, the standard conversions of raw pointers must be emulated with user-de�nedconversions. In particular, we are concerned with line 10 in Table 3.1: the derived classpointer to base class pointer conversion.Let us assume that the class hierarchy of user objects is as shown in Fig. 3.1. Thereare four client classes: A, B, C, and D. Since there are four client classes we also requirefour smart pointer classes. We call the pointer classes Pa, Pb, Pc, and Pd. With standardconversions and raw pointers, the following implicit conversions are available:B�) A� C�) A�D�) A� D�) B�C�) B� D�) C�The goal is to implement these same conversions among the smart pointer classes. Usinguser-de�ned conversions, there are two possibilities:1. every smart pointer class provides a user-de�ned conversion to the smart pointer typesthat correspond to its referent type's direct bases, or,2. every smart pointer class provides a user-de�ned conversion corresponding to everybase class, whether direct or indirect.3.4.2 Conversion to Direct BasesSuppose every smart pointer class supplies a user-de�ned conversion to the smart pointerclasses for direct base classes of the referent type. In our current example, this would providethe following user-de�ned conversions:

29Pb) Pa Pc) PbPc) Pa Pd) PcUnder this scheme, there is no implicit conversion from Pd to Pa. This is because user-de�ned conversions cannot be implicitly chained together. By contrast, with raw pointersthe corresponding conversion is available. The failure to support conversion to an indirectbase pointer is a substantial shortcoming of this implementation.3.4.3 Conversion to All BasesInstead of supplying user-de�ned conversions only to direct bases, we can instead provideconversions to all bases, direct and indirect. This scheme requires the following user-de�nedconversions: Pb) Pa Pc) PbPc) Pa Pd) PaPd) Pb Pd) PcThis supplies the conversion from Pd to Pa that was missing from the previous imple-mentation. However, consider the following code:void f(Pa);void f(Pc);int main(void) {Pd pd = new D;f(pd);return 0;} The call to f() is ambiguous. There are conversions to match both of the overloadedfunctions and there is no way to choose between them. In contrast, the equivalent codewith raw pointers is unambiguous because, with raw pointers, conversion to a direct base ispreferred over conversion to an indirect base, thus, f(C�) would be called. This problem isless severe than the problem stemming from conversion to a pointer to a direct base class.3.5 Smart Pointer Inheritance HierarchyIn the previous section, we discussed emulating the standard pointer conversions withuser-de�ned conversions. It is also possible to emulate them using the standard referenceconversions [Ken92]. We arrange the smart pointer classes in a class hierarchy that parallelsthe object hierarchy. Figure 3.2 illustrates this.Since class Pc derives from Pb, any instance of Pc can be converted to an instance of Pbthrough the standard Derived& to Base& conversion. This reference conversion from Pc toPb can thus be used to emulate the corresponding standard pointer conversion from C� toB�. The reference conversion has the same precedence as the pointer conversion, and alsofavors conversion to a direct base class over conversion to an indirect base class.This scheme emulates the usual base class/derived class pointer conversions as follows.Assume that an instance of Pc (as shown in Fig. 3.2) must be converted to an instance ofPb, perhaps to initialize a temporary or to match a function parameter. Since class Pc isderived from class Pb, an instance of Pc contains an instance of Pb as a subobject. Thestandard conversion (Table 3.1, line 11) converts the Pc object to a Pb object by using the

30 3. Smart Pointers for Garbage Collection and Reference Counting
A

B

C

Pa

Pb

Pc

A, B, C:

Pa, Pb, Pc:

Public virtual derivation of B from A

Smart pointer classes for A, B, and C

User classes

B AFigure 3.2: A pointer hierarchy for an object hierarchyPb subobject in place of the complete object. No user-de�ned code needs to be or may beprovided to perform this conversion. The conversion simply changes the `logical' address ofthe object from the beginning of the object to the beginning of the Pb subobject.In an inheritance hierarchy of smart pointers, there is a choice to be made: What classde�nes the pointer instance data? Every class could potentially declare a pointer datamember. Alternatively, either the root of the hierarchy or some other class can provide thedata.3.5.1 Replicated DataIt is plausible for every smart pointer class in the smart pointer class hierarchy to de�nea new data member. Any derived class smart pointer then contains one pointer memberadded by the derived class, plus one pointer member for every direct or indirect base class.For example, suppose that Pb is a subclass of Pa, then a Pb contains a B� and the Pasubobject contains an A�.A derived class smart pointer contains a subobject for each of its base classes; convertinga derived class smart pointer to a base type uses the corresponding base class subobjectin place of the complete object. After a conversion, the overloaded operators (such asindirection) use the base class pointer member rather than the derived class pointer member.To correctly emulate raw pointers, these base class pointers must all point into the sameobject as the main derived pointer, which is also called the most derived pointer. Therefore,assigning to a smart pointer under this implementation must update all of the componentpointers. Failure to do this results in a derived class smart pointer that cannot be correctlyconverted to a base class smart pointer.This implementation does not require any explicit type conversions, and emulates thestandard pointer conversions well: conversion of a smart pointer to a base class smartpointer favors conversion to a direct base over conversion to an indirect base; this eliminatesthe problem discussed in x 3.4.3 in which a choice between converting to a direct baseor an indirect base is ambiguous. It also works correctly in the presense of multipleinheritance. However, it is ine�cient because updating a derived class smart pointer requires

31
A

B

C

Pa

Pb

Pc

Ptr

User classes

Smart pointer classes for A, B, and C

Public virtual derivation of B from A

Base class to supply the pointer datum

Pa, Pb, Pc:

A, B, C:

Ptr:

B AFigure 3.3: A smart pointer hierarchy with an abstract base to supply the dataan operation per base class. In addition, this scheme permits an incorrect type conversion.The alternative described in the following subsection su�ers from the same error, so wedefer the discussion until x 3.5.3.3.5.2 Nonreplicated DataTo improve the e�ciency of the previous organization, we make every smart pointercontain exactly one pointer as its instance data. This is done by de�ning an abstract virtualbase class that supplies the pointer datum; call this class Ptr. (Smart pointer classes thatare indirectly derived from Ptr need not also be directly derived from it.) This way, eachsmart pointer class contains only one instance pointer. It also contains invisible pointers thatimplement the virtual derivation, but these pointers do not get modi�ed during assignment.Figure 3.3 demonstrates this organization.Since they use a virtual base class, under most C++ implementations, these smart point-ers will have size larger than one word. Nonetheless, in contrast with the previous solution,assigning to one of these smart pointers only requires one indirect memory reference.This organization supports conversion to a direct or indirect base class, and conversionto a direct base is preferred. Conversion to a base pointer is also preferred over conversionto void�. However, these smart pointers do not work with multiple inheritance.Under multiple inheritance (and some implementations of single inheritance) a baseclass subobject may have a nonzero o�set within a derived class object. With raw pointers,converting a derived pointer to a base pointer for such a base class adds the correct o�setto the value of the pointer; this redirects the pointer from the beginning of the main objectto the beginning of the base class subobject. For example, in Fig. 3.3, an object of class Ccontains a subobject of class B whose o�set is probably nonzero. Converting a C� to a B�

32 3. Smart Pointers for Garbage Collection and Reference Countingclass BASE { ... };class DER1 : public BASE { ... };class DER2 : public BASE { ... };void f(BASE** p1, BASE** p2) { *p1 = *p2; }int main(void){ DER1 * d1 = new DER1;DER2 * d2 = new DER2;f(&d1,&d2); // Illegal, but what if?return 0;} Figure 3.4: Why a derived�� may not be converted to a base��If a derived�� could be converted to a base��, then this code would assign a DER1� to aDER2�. However, there is no relationship between classes DER1 and DER2 that wouldjustify such an assignment.redirects the pointer from the beginning of the C object to the beginning of the B subobjectby adding a positive o�set to the pointer.The corresponding conversion is performed on these smart pointers using the standardderived& to base& conversion shown on Line 11 of Table 3.1. The conversion causes the basesmart pointer subobject to be used in place of the derived smart pointer object. This doesnot add the requisite o�set to the value of the pointer. Instead, it simply reinterprets thesame pointer value as a pointer of the base class type. Thus, these smart pointers cannotbe converted to base class smart pointers for subobjects with nonzero o�sets.Expressed di�erently, the problem is that the derived class operation operator base&()cannot be overloaded. This is a built-in standard conversion that causes the compiler tosubstitute the base subobject in place of the derived object. If this operator could beoverloaded such that it altered the value of the pointer, then the error could be avoided.Note, the current language de�nition does not explicitly forbid overloading this operator,nor does it explicitly permit it [ANS93], however, it seems inevitable that overloading thisoperator will eventually be prohibited.3.5.3 Another Error with Pointer HierarchiesThere is one other error that the schemes presented in the last two subsections bothshare: they both permit an incorrect, implicit type conversion.Every C++ programmer is familiar with the conversion from Derived� to Base�. How-ever, the conversion from Derived�� to Base�� is prohibited because it introduces a gapinghole in the otherwise (mostly) safe type system. Speci�cally, given two objects whose classesare di�erent but have a common base, this conversion allows you to incorrectly compare orassign pointers to these objects [Sal92]. Figure 3.4 provides a example of how this conversionallows assignment between two incompatible pointer types.

33void f(PtrBASE* p1, PtrBASE* p2) { *p1 = *p2; }int main(void){ PtrDER1 d1 = new DER1;PtrDER2 d2 = new DER2;// Legal and wrong with a pointer hierarchyf(&d1,&d2);return 0;} Figure 3.5: The invalid conversion with smart pointersSince the smart pointer classes are related through inheritance, the compiler permitsthe type conversion, even though this assigns incompatible objects.With a class hierarchy of smart pointers, this conversion is not just between Derived��and Base��; it is also between Derived� and Base� because the smart pointer classes arerelated through inheritance. The compiler permits the conversion because it uses thestandard base class pointer conversion listed on Line 10 of Table 3.1. Figure 3.5 showsthe same incorrect code using smart pointers. The di�erence is that the code using smartpointers compiles without error and crashes at runtime.To show that this error also occurs with accessors, the code of Figure 3.6, written usingOATH accessors and library classes, encounters this bug and dies with a segmentationviolation. This error exists because the pointer hierarchy provides the incorrect conversionof Derived�� to Base��. (For those readers not acquainted with OATH accessors, there is adiscussion of the di�erences between them and smart pointers in x 3.9.)3.5.4 Class Hierarchies SummaryWe have presented four ways of organizing smart pointers to support class hierarchies.These ways include two that depend on user-de�ned conversions and two that use a parallelclass hierarchy.With user-de�ned conversions, it is best to supply conversions to both direct and indirectbase classes. Given that, the problem is that the compiler cannot choose between convertingto a direct base and converting to an indirect base, nor between converting to a base class andconverting to void�. Consequently, certain overloaded function invocations are ambiguous,whereas they are legal using raw pointers.The alternative to user-de�ned conversions is to use a parallel class hierarchy of smartpointers. This uses standard reference conversions to convert a derived class smart pointerto a base class smart pointer. It is ine�cient to replicate the pointer data in each class, soan abstract base class is used to supply a void� instance datum. However, this scheme doesnot support multiple inheritance, and it permits an incorrect pointer conversion.

34 3. Smart Pointers for Garbage Collection and Reference Counting#include <iostream.h>#include "oath/minString.h"void f(objA & a, objA & b) { a = b; }int main(void){ characterA ch = characterA::make('A');stringA str = minStringA::make();str << "hello\n";cout << str;f(str,ch); // incompatible assignmentcout << str; // This causes a core dump.return 0;} Figure 3.6: How to misuse the conversion that smart pointer hierarchies permitThis example uses OATH accessors [Ken92, x 3.9].Of the possibilities discussed, we suggest using user-de�ned type conversions to directand indirect base classes. The programmer may need to disambiguate some overloadedfunction calls that would be legal using raw pointers.3.6 Supporting const Type ConversionsSupporting the base class conversions is one problem. Supporting the conversion of T�to const T� is equally or more important because of the major role that const plays indocumenting and structuring C++ programs.Using raw pointers, there are two ways to modify a pointer declaration using const:Pointer Type Meaningconst T� The referent is const.T� const The pointer is const.These uses of const are not mutually exclusive, thus, \const T � const" is the type of apointer for which both the referent and the value are const.With smart pointers, on the other hand, const only can be used one way:const PtrT ptr;.This does not declare a smart pointer to a const object. Rather, this declares a smart pointerwhose value may not change. The reader may argue that this discussion does not applygiven templates because with templates we can declare both Ptr<T> and Ptr<const T>.However, these are two distinct types. Being de�ned from a template does not provide animplicit type conversion from Ptr<T> to Ptr<const T>.

35For this reason, one class of smart pointer cannot reference both const and mutableobjects; instead, we need two smart-pointer classes. Let PtrT be the smart pointer classthat replaces pointers of type T�, and let CPtrT be the smart pointer class that replacespointers of type const T�. An overloaded indirection operator of CPtrT returns a constobject; this allows the compiler to complain about attempts to modify an object through aCPtrT. For these smart pointers to resemble raw pointers, there must be a conversion fromPtrT to CPtrT.The conversion from PtrT to CPtrT can be implemented two ways: either there can bea user-de�ned conversion between them, or PtrT can be a derived class of CPtrT. The useof the user-de�ned conversion is self-explanatory. If the one is a derived class of the other,then the standard reference conversion can be used in place of the normal standard pointerconversion, as we have described previously.Assume that the conversion between the two smart pointer classes is user-de�ned. Hereare two classes of code that are a�ected:1. The following works �ne with raw pointers, but when the conversion from PtrTto CPtrT is user-de�ned, the code is illegal because it requires two user-de�nedconversions.struct S {S(CPtrT);};S func(PtrT p) { return p; }2. If a function is overloaded on types void� and CPtrT, it cannot be invoked with aPtrT because the call would be ambiguous. With raw pointers, the call would favorconversion to const T� over conversion to void�.A better way to implement the const pointer conversion is to make the class PtrT aderived class of CPtrT through public non-virtual derivation. They can share the samepointer data member so that instances of each class occupy only one word of storage.Figure 3.7 presents the basic structure of this organization. This uses a standard referenceconversion to emulate the standard pointer conversion. The di�erence will be unnoticeablefor most programs, except for the declaration syntax.3.7 Overall Smart Pointer Support for Type ConversionsWe have identi�ed 7 properties that a smart pointer organization should provide. Theyare (with keywords for future reference):dir implicit conversion to a direct base pointer;indir implicit conversion to an indirect base pointer;pref a preference for converting to a direct base over an indirect base;mult support for multiple inheritance;safe no conversion from derived�� to base��;const the ability to reference normal and const objects, with compiler enforcement ofthe const attribute, and a conversion from non-const to const;fast the organization should be intrinsically e�cient.

36 3. Smart Pointers for Garbage Collection and Reference Counting// smart pointer class to replace 'const T *'class CPtrT {protected:union {T * ptr;const T * cptr;} value;public:...};// smart pointer class to replace 'T *'class PtrT : public CPtrT {public:...}; Figure 3.7: A smart pointer hierarchy for constTable 3.2: Strengths and weaknesses of smart pointer organizationsMethod x dir indir pref mult safe const fastuserdef direct 3.4.2 � � p p puserdef all 3.4.3 � p p phier replicated 3.5.1 p p p p � p �hier abstract 3.5.2 p p p � � p phybrid 3.7 � p p p pOATH accessors 3.9 p p p � � � pp good behavior[] a user-de�ned conversion replaces a standard one� incorrect behaviorIn general, any type conversion among the smart pointers should have the same prece-dence as the conversion to which it corresponds among raw pointers. For example, theconversion from derived� to base� is Class 1 (a standard conversion), as shown in Table 3.1.Therefore, it would be best for the corresponding conversion among smart pointers alsoto be Class 1. If this is done, the smart pointers closely resemble raw pointers in termsof overloaded function resolution and implicit conversions. Table 3.2 shows how well eachorganization that we've presented satis�es these goals.As shown in Table 3.2, a class hierarchy of smart pointers emulates the derived class/baseclass conversion and the const pointer conversion well. However, it only supports inheritancewhen all subobjects have o�set zero, and thus it fails to support multiple inheritance. Inaddition, it introduces the erroneous derived�� to base�� conversion. Therefore, a classhierarchy of smart pointers is good for implementing the const conversion, but not forimplementing the base class conversions.

37
A

B

C

Pa

Ra

Rb

Pb
Rc

Pc

User classes

Smart pointer classes for A*, B*, and C*

Smart pointer classes for const A*, etc.

A, B, C:

Pa, Pb, Pc:

Ra, Rb, Rc:

User-defined type conversion

Public derivationFigure 3.8: The �nal smart pointer organization for the indicated object classes.By contrast, user-de�ned conversions are less desirable in all cases because they replacea standard or trivial conversion with a user-de�ned conversion; this di�erence is noticeablein terms of overloaded function resolution and chaining of type conversions. In spite ofthat disadvantage, however, user-de�ned conversions allow the smart pointers to supportthe base class/derived class conversion, even under multiple inheritance, and do not permitthe erroneous conversion.These two observations lead to our recommended overall organization. We suggest usinguser-de�ned conversions to emulate the base class/derived class conversions because this issafe and correct. Simultaneously, the smart pointers should use a smart pointer inheritancehierarchy to emulate the const conversions.A diagram of this organization is shown in Fig. 3.8. This shows an application classhierarchy and the corresponding smart pointer classes, including both the smart pointerclasses for regular objects, and those for const pointers. For each of the application'sclasses there are two smart pointer classes, one that references mutable objects and onethat references const objects. The smart pointer class that references mutable objects is aderived class of the one that references const objects. This supplies a standard conversionfrom pointer to mutable to pointer to const. In addition, the smart pointer classes fordistinct application classes are related through user-de�ned type conversions. If class B is aderived class of A, then Pb provides a user-de�ned type conversion to Pa, and CPb providesa user-de�ned type conversion to CPa. (CPb is the smart pointer class for const Bs.)The use of user-de�ned conversions between distinct types PtrX and PtrY supportsmultiple inheritance and avoids the erroneous conversion. The classes PtrX and CPtrX arerelated by inheritance because it gives better behavior without allowing false conversions;the compiler can correctly enforce the const attribute of a referent of CPtrX.

38 3. Smart Pointers for Garbage Collection and Reference CountingTable 3.3: Some ways our smart pointers do not behave like raw pointersCase Raw Pointers Smart PointersConvert either to pointer to direct baseor to pointer to indirect base Convert to directbase AmbiguousConvert either to pointer to base or tovoid� Convert to base AmbiguousChain conversion to pointer to basewith another user-de�ned conversion Legal IllegalMember of a union Legal Illegal3.7.1 An Unrooted Class HierarchyWhile we have only discussed using the smart pointers in a class hierarchy with a uniqueroot, this does not make any di�erence in the implementation that has been suggested.Any type conversion that is legal among raw pointers can be implemented by the smartpointers by encapsulating the raw pointer conversion within a user-de�ned type conversion.Of course, as we have mentioned, whenever a user-de�ned conversion replaces a built-inconversion, some cases of overloading and chaining of conversions do not behave as desired.3.8 Weaknesses in the Smart Pointer Support for Type Conversions3.8.1 Pointers to volatile ObjectsWe have discussed const but not volatile. Pointers to volatile objects must be supportedin exactly the same way as pointers to const objects. In particular, for a single applicationclass, distinct smart pointer classes are required to reference:1. normal objects2. const objects3. volatile objects4. const volatile objectsThis plethora of classes adds a certain amount of notational complexity to the program.3.8.2 Conversion PrecedenceThe proposed organization appears to be the best of the ones that have been consideredbecause it is both safe and e�cient. However, it emulates the standard derived� to base�conversions with user-de�ned type conversions. User-de�ned type conversions have lowerprecedence than the standard conversions. Therefore, there are many situations, primarilyinvolving function overloading, in which these smart pointers do not behave the same as thecorresponding raw pointers. Table 3.3 lists some of the cases in which these smart pointersbehave di�erently from raw pointers.

393.8.3 Pointer LeakageIt is essentially impossible to prevent smart pointers from leaking raw pointers to theapplication (e.g., this pointers). In some cases (though not all), it is desirable to preventthis. For example, if smart pointers are used to implement copying garbage collection, thenafter a garbage collection, all dynamically allocated objects have been moved and any rawpointer no longer has the correct value.As another example, [Ken92] discusses why the problem of raw pointer leakage makessmart pointers unsafe for reference counting. The basic idea is that the application canobtain a reference counted pointer as a temporary expression, perhaps as the return valuefrom a function. The application may then dereference the reference counted pointer byinvoking the overloaded operator ->, which returns a raw pointer, which will in turn bedereferenced. Once the raw pointer is returned from the overloaded operator ->, thereference counted pointer has served its purpose and may be destroyed. However, destroyingthe reference counted pointer decrements the object's reference count and may cause theobject to be deallocated. If the object is deallocated, then the raw pointer, which is aboutto be dereferenced, is a dangling reference.In other cases, it is not critical that the application be prevented from obtaining rawpointers. For example, mark-and-sweep garbage collectors can normally tolerate the exis-tence of raw pointers, provided the raw pointers point at objects that are also referencedby smart pointers [Ede92c].Smart pointers leak raw pointers because of the de�nition in C++ of the overloadedindirect member access operator, ->. When the compiler sees an expression of the formX->Y, where X is an expression of class type, the compiler evaluates X.operator->(). Thelanguage de�nition requires that this operator return a raw pointer.1 This is a potentialproblem because if the smart pointer was a temporary object, the compiler may destroy itas soon as the raw pointer is obtained. However, as shown for the case of reference counting,for example, destroying the smart pointer may cause the raw pointer to become a danglingreference. This is the main problem that accessors solve.3.9 Accessors as an Alternative to Smart PointersKennedy describes accessors in OATH [Ken92] as an alternative to smart pointers. Thecentral di�erence between accessors and smart pointers is that accessors do not overloadthe indirection operators; instead, like stubs [DMS92], they duplicate all the public memberfunctions of the referent object and forward those calls through a pointer to the object.Accessors are somewhere in between smart pointers and smart references, because theyimplement pointer semantics, but use `.' rather than `->' to access the underlying object.Figure 3.9 gives the general idea behind how accessors work. This �gure does not attemptto reproduce all the functionality described in [Ken92], instead, it just shows the relationbetween the application class and the accessor class.Accessors are clearly superior to smart pointers because they prevent raw pointer leak-age. However, they are di�cult to declare because every member function of the applicationclass must also be declared in the accessor class. Macros can abbreviate this, but the codelooks signi�cantly di�erent from standard C++ class de�nitions and complex macros canhinder debugging.1These operators may be chained together, but must eventually return a raw pointer.

40 3. Smart Pointers for Garbage Collection and Reference Counting// A sample application class.class Thing {friend class ThingA;private:int value;Thing(int initial) : value(initial) { }void set(int val) { value = val; }int get() { return value; }...};// A class for accessing Things.class ThingA {private:Thing * ptr;public:ThingA() : ptr(0) { }void make(int i) { ptr = new Thing(i); }void set(int i) { ptr->set(i); }int get() { return ptr->get(); }...}; Figure 3.9: An object class and an accessor-type reference classThe accessor class contains a raw pointer as its instance datum. All of the client class'member functions are duplicated in the accessor class and accessed with `.'. Therefore,the accessor class does not need to overload the indirection operators.The accessors in OATH are organized into a class hierarchy that parallels the data objecthierarchy. The reference conversions are used to convert one accessor class into a di�erentone. The class hierarchy is rooted in the class oathCoreA; it is this class that supplies thepointer data member. This organization was discussed in Sect. 3.5.2. (Indeed, it was OATHthat led us to consider this organization.)The OATH class hierarchy uses only single inheritance; the class hierarchy, therefore,forms a tree. If it used multiple inheritance, then its implementation would su�er fromthe incorrect o�set problem described in 3.5.2. In particular, for a pointer conversion thatchanges the value of the pointer, the corresponding reference conversion is incorrect becauseit changes the type of the accessor without changing the value of the pointer. Even usingonly single inheritance, this scheme permits the incorrect type conversion of derived�� tobase�� that we discuss in 3.5.3 (see Fig. 3.6). Finally, the hierarchy of OATH uses a singleaccessor class per object class; therefore, it is unable to represent pointers to const objects(x 3.6).Accessors su�er from the same problems, with respect to type conversions, as smartpointers. However, the accessor model is safer than the smart pointer model. By not

41overloading ->, accessors avoid leaking raw pointers in a way that may ressingleult indangling references if the compiler is aggressive in destroying temporary objects.3.10 Writing Maintainable Code Using Smart PointersCertain programming habits can make code that uses smart pointers more maintainableand easier to debug. This section presents some guidelines.3.10.1 Typedef Pointer Type NamesA program that frequently manipulates pointers to objects rather than objects them-selves should use typedef names for pointer type names. This is particularly true if theprogram does or may later use smart pointers.For example, support a program manipulates many dynamically allocated Node objectsthrough pointers. Those pointers might reasonably be de�ned in any of the following ways:1. As regular pointers:Node * ptr;ptr = new Node;2. As smart pointers de�ned from non-template classes:class NodePointer {public:Node * operator -> ();...private:Node * ptr_value;};...NodePointer ptr;ptr = new Node;3. As smart pointers de�ned from a template class:template<class T>class Pointer {public:T * operator -> ();...private:T * ptr_value;};...Pointer<Node> ptr;ptr = new Node;Each of these styles results in a di�erent syntax for de�ning pointers, number 1 uses a �symbol to de�ne a pointer. Number 2 uses what looks like a typedef name, and number 3 usesthe < and > symbols to instantiate a template. Unfortunately, a program might want toswitch between these styles. For example, if smart pointers are used for garbage collection, itmight be desirable to debug the program by using regular pointers with automatic memoryreclamation deactivated. If the smart pointers have been de�ned with template syntax,however, this change requires invasive changes throughout the code.

42 3. Smart Pointers for Garbage Collection and Reference CountingThe best way to de�ne pointers, therefore, is using typedefs. De�ne a typedef that de�nesthe pointer type to be a raw pointer or a smart pointer as desired. The program can thenswitch between raw pointers and smart pointers, or between kinds of smart pointers, just bychanging one line of code. Thus, the three cases demonstrated above turn into the following:1. Using regular pointers:typedef Node * NodePtr;...NodePtr ptr;ptr = new Node;2. As smart pointers de�ned from non-template classes:class NodePointer {public:Node * operator -> ();...private:Node * ptr_value;};typedef NodePointer NodePtr;...NodePtr ptr;ptr = new Node;3. As smart pointers de�ned from a template class:template<class T>class Pointer {public:T * operator -> ();...private:T * ptr_value;};typedef Pointer<Node> NodePtr;...NodePtr ptr;ptr = new Node;3.10.2 Avoid Smart Pointer Member FunctionsIt is occasionally necessary to extract the raw pointer from a smart pointer. For example,converting to a base class pointer may require starting from a derived class raw pointer.One feasible syntax for this is an appropriate member function of the smart pointer class.template<class T>class Pointer {public:T * operator -> ();T & operator * ();...T * value(); // extract raw pointerprivate:

43T * ptr;};class base { ... };typedef Pointer<base> BasePtr;class derived : public base { ... };typedef Pointer<derived> DerPtr;DerPtr pder = new derived;BasePtr pbase = pder.value(); // Standard pointer conversionThis requires the pointer type to have member functions. It is therefore impossible tochange the pointer typedefs to use raw pointers. Doing so introduces a syntax error becauseraw pointers do not have a value() member function.An undesirable solution is to use an explicit type conversion that invokes a conversionoperator of the smart pointer class. This is undesirable because explicit type conversionscan hide type errors from the compiler.The better solution is to use a global function that extracts and returns the raw pointer.This function can be de�ned inline as a template so there is practically no coding overheadand no runtime overhead. This function can call a smart pointer member function becauseswitching to raw pointers requires only simple localized changes.template<class T>inline T * ptr_value(Pointer<T> smptr){ return smptr.value();}DerPtr pder = new derived;BasePtr pbase = ptr_value(pder); // Standard ptr conversionIf a program is written this way, it is easy to switch to raw pointers. The templatefunction ptr value is changed to return its argument.template<class T>inline T * ptr_value(T * ptr){ return ptr;}3.10.3 Intermediate VariablesSometimes a desired an implicit type conversion is illegal because it either is ambiguousor requires chaining two user-de�ned type conversions. The programmer can force thedesired conversion by inserting an explicit type conversion, or cast. However, a bettersolution is to assign to an intermediate variable. The intermediate variable breaks previoussingle conversion into two smaller ones, both of which are legal (by design). This convertsthe type of an expression without hiding type errors.

44 3. Smart Pointers for Garbage Collection and Reference CountingFor example, one desirable operation is converting one smart pointer to another usinga conversion operator from the former chained with a constructor of the latter. Thistype conversion involves two user-de�ned type conversions, and therefore is not implicitlyapplied by the compiler. One way to obtain the desired type conversion is by insertingcasts to call one or both user-de�ned type conversion. Casts, however, hide type errors,such as assignment of a void� value to a pointer of incorrect type. Inserting a temporaryvariable obtains the same result without casts. Type errors are detected either as incorrectinitializations of the temporary object, or as incorrect assignments of the temporary to thedestination.typedef char * STEP1;struct Src {operator STEP1() { return "step1"; }} src;struct Dst {Dst() { }Dst(char *) { }} dst;int main(void){ dst = (char*) src; // bad: explicit type coercion{ // curly braces explicitly limit tmp_var's lifetimeregister char *tmp_var = src;dst = tmp_var;}}3.11 Smart Pointer Examples: Reference CountingOne of the classic memory management techniques is reference counting [Col60, Knu73].In reference counting, every object carries with it a count of the pointers that reference theobject. Every pointer operation such as creating, copying, or destroying a pointer keeps thereference counts correct. When any reference count is decremented from one to zero, thecorresponding object's memory is reclaimed.The advantages of reference counting are reclaimable memory is detected incrementallyand quickly, and the overhead imposed by the algorithm is bounded and predictable.However, the algorithm fails to collect cyclic data structures because within a cycle, everyobject is referenced by some other object, so no reference count is ever decremented to zero.In addition, reference counting imposes substantial overhead.Despite its overhead, its simplicity and e�ectiveness for acyclic structures make referencecounting a very useful technique. This is one of the common uses of smart pointers (andaccessors) in C++ [Str91, Cop92].

45Most C++ implementations of reference counting are based on the traditional algorithm,described above. There are many variations that can be more e�cient. Any variationshould be an available, replaceable component of a program. If programmers follow theadvice o�ered in x 3.10, a typedef can determine the exact implementation of the referencecounting smart pointers, permitting a variety of optimizations and di�erent algorithms.3.11.1 Optimized Reference CountingCreating, destroying, or copying a reference counted pointer requires dereferencing thepointer to modify the object's reference count. However, a pointer whose value is zero mustnot be dereferenced. Thus, these operations often incur additional overhead from testingfor the NULL pointer. An optimization known in other languages can also be implementedby C++ smart pointers to make these operations more e�cient. This optimization haspreviously been suggested for smart pointers to a class that is not in a polymorphic classhierarchy, but the suggestions of x 3.10.2 allow this also to work in the presense of the classhierarchy pointer type conversions.The optimization involves how the null pointer is stored. The null pointer is a pointervalue that does not reference any object. It is typically represented by the constantzero. Most reference counted pointers store zero for the NULL reference counted pointer.However, since NULL does not reference an object, there is no associated reference count,therefore, a NULL reference counted pointer must not be dereferenced to increment ordecrement its reference count. This leads to ine�ciency because every reference countedpointer initialization, assignment, and destruction requires additional instructions to avoiddereferencing the NULL pointer.The usual optimization is to use the address of a distinguished object as the NULLpointer. This way the NULL pointer does have a corresponding object and need not betreated as a special case. This solution can be applied in C++ if some care is taken. Ininheritance hierarchies, standard pointer conversions can add o�sets to pointers. Value-changing conversions are particularly prevalent when multiple inheritance is used. Thisoptimization is only correct if these pointer operations map the NULL pointer back to itself.(The language guarantees this for normal pointers; the programmer must guarantee it forsmart pointers.)The optimization can be implemented in C++ with the following change:1. Converting a smart pointer to a regular pointer converts the NULL smart pointer tothe NULL regular pointer, and,2. Pointer conversions are applied to regular pointers rather than smart pointers.With these properties, the pointer conversions correctly map the NULL pointer to itself.The optimized class is more e�cient in that just about every constructor, destructor andassignment operator requires one less compare and conditional branch. However, testing anoptimized pointer against NULL requires an additional compare and conditional branch.3.11.2 Deferred Reference CountingDeferred Reference Counting is another optimization of the standard reference countingalgorithm [DB76]. In this variation, reference counts from local variables are ignored;only reference counts of global pointers and within objects are considered. This increasesdramatically the e�ciency of traversing a structure with a local variable (or a function

46 3. Smart Pointers for Garbage Collection and Reference Countingparameter). The rami�cation of this is, however, when a reference count is decrementedto zero, there may still be a local variable referencing the object. Therefore, objects withzero reference count are placed on a special list. These objects are only reclaimed after aconservative scan of the stack con�rms they are unreachable. Figure 3.10 illustrates this.This algorithm is much more e�cient than classic reference counting, however it losessome of the real-time incrementality of the original algorithm since memory cannot bereclaimed immediately. However, in the context of C++ there is another advantage tothis algorithm. Subsections 3.8.3 and 3.9 discuss a possible error when smart pointers areused for reference counting, in that a reference count may be decremented to zero while araw pointer to the object still exists. With standard reference counting, this results in adangling reference. However, if instead the Deferred Reference Counting (DRC) algorithmis used, the error does not exist because the dynamically allocated object is not reclaimedas long as the raw pointer exists.
Runtime

Stack

Refs
Objects

Free List

1

2

0

0

0Figure 3.10: Deferred Reference CountingWhen a reference count drops to zero, the object is placed on a free list. The object isreclaimed only after a conservative scan of the stack indicates there are no remainingpointers to the object.

473.12 Smart Pointer Examples: GC Roots and Weak PointersOur garbage collection components use smart pointers that implement indirectionthrough pointer tables, the tables being called root tables. All of the direct pointers areconcentrated in a root table and can therefore be located by the collector. These smartpointers are used to implement two kinds of special pointers: roots and weak pointers. Eachkind of special pointer has its own root table. The term root is used to refer to the smartpointers for roots; weak root refers to the smart pointers that implement weak pointers. Incontrast to both, the built-in pointers, i.e., the pointers that are directly supported by thecompiler and the hardware, are called raw pointers.The roots are pointers that the collector traces during collection. Thus, an objectreferenced by a root is guaranteed to be preserved during garbage collection. Furthermore,if the garbage collector relocates objects, then roots will have their values updated to reectobject motion.Weak pointers are frequently found in systems that support garbage collection with�nalization [Mil87, Hay92]. The weak pointers are not traced during collection. Rather,after collection, any weak pointer that references an just-collected object has its pointervalue overwritten with NULL. Figure 3.11 shows a diagram of a system with a weak pointerto an unreferenced object. In �gure 3.12, the object has been reclaimed and the collectorhas nulled the weak pointer.3.12.1 A Root TableThe data structure that allows the collector to �nd the root set is the root table. It itimplemented as a linked list of cell arrays. Each cell array contains its list link and manydirect pointer cells. A cell may be active, in which case it contains a direct pointer value,or it may be free, in which case it is in the free list. A diagram of this data structure ispresented in Fig. 3.13.The application's smart pointers point to pointer cells rather than directly to objects; thecells, in turn, contain the direct pointers. C++ objects implement this in the following way.The initialization code for a root, i.e., the constructor, gets a cell from the free list, optionallyinitializes the cell, and makes the root point to the cell. The de-initialization code for a root,the destructor, adds the root's cell to the free list. The overloaded indirection operators�rst dereference the indirect pointer to fetch the direct pointer and then dereference thedirect pointer. The overloaded assignment operator causes assignment to a root to assignto the direct pointer rather than to the indirect pointer.Linked list removal usually requires a test and conditional branch to check for the endof the list. In this implementation, however, when a cell is removed from the free list, itsvalue is immediately fetched. That fetch is used to avoid the test and branch. The lastpage of the last cell array is read-protected [AL91]. Attempting to load the link stored inthe �rst cell on the read-protected page causes the program to receive a signal. The signalhandler unprotects the page, links in and initializes a new cell array, and read-protects thelast page of the new array. A new diagram of a cell array is presented in Fig. 3.14; theshaded area illustrates the read-protected region.

48 3. Smart Pointers for Garbage Collection and Reference Counting
The ‘‘Data Structure’’ (The Heap)

Global data

The stack

The registers

Weak
PointersFigure 3.11: A weak pointer to an unreferenced object.3.12.2 Smart Pointer Class De�nitionsThe root and weak root classes are identical, di�ering only in how the collector usesthem during collection. The roots are described below in the understanding that the weakroots are de�ned in an identical manner.For every application class there are two root smart pointer classes. One of thememulates pointers to mutable objects and the other emulates pointers to const objects.When the application classes are related through inheritance, the precompiler gives thederived class smart pointers user-de�ned type conversions to the base class smart pointertypes. A detailed description of the best organization can be found in [Ede92d]. A typicalsmart pointer class is shown in Fig. 3.15.3.12.3 Smart Pointer E�ciencyEach smart pointer takes up two words in memory, one for the indirect pointer and onefor the direct pointer. The actual space overhead is greater than that because the root tablegrows in increments of 8 kilobytes.Measurements of the e�ciency of these smart pointers show them to be more expensivethan raw pointers but less expensive than reference counted pointers [Ede92a]. If a globalregister can be dedicated to the Root Table, then initializing a new smart pointer requires

49
The ‘‘Data Structure’’ (The Heap)

Global data

The stack

The registers

Weak
PointersFigure 3.12: A nulled weak pointer to a collected object.When the object is reclaimed, the collector overwrites the weak pointer with NULL.two memory references and destroying one requires one memory reference. Without adedicated global register, the cost of each of construction and destruction is increased byone memory reference. Accesses through a smart pointer pay a one memory referencepenalty due to the level of indirection.3.13 Conclusion on Using Smart Pointers for Garbage CollectionPointer substitutes, whether smart pointers or accessors, are a powerful programmingparadigm. They assist type-speci�c storage management in several ways. C++ supportsthem, but not to the extent of allowing them to integrate seamlessly into a program. Thereare two main limitations: (1) supporting pointers to const objects, and (2) supporting thestandard pointer conversions.Programmers that use smart pointers for garbage collection are inconvenienced in severalways. This chapter has described those limitations. We have also analyzed several ways oforganizing the smart pointers, and presented the one we consider best.Changes to C++ could allow it to support smart pointers better. Some possible changesinclude allowing some user-de�ned conversions to chain, or permitting user-de�ned code to

50 3. Smart Pointers for Garbage Collection and Reference Counting
F

L

Global data

The stack

The registers

Dynamic Objects
Root Table

Link in list of cell arrays

F

L

Head of the free list of cells

Head of list of cell arrays

Link in free list of cells

Direct or indirect object pointerFigure 3.13: The root tableThe root table consists of cell arrays that are linked into a list. The �rst word of eacharray contains its link. Active cells contain direct pointers to objects; free cells arelinked into a free list.
Dynamic Objects

Global data

The stack

The registers

Root Table

F

X

X

L

The specific cell that causes a trap

The read-protected memory regionFigure 3.14: The protected page of a cell arrayThe last cell array has its last page read protected. When the protection violationoccurs, a new array is allocated and linked to the others.

51template<class T>class Root {protected:const T * * iptr; // The indirect pointerpublic:const T & operator*() const { return **iptr; }const T * operator->() const { return *iptr; }const Root<T> & operator=(const T * p){ *iptr = p; return *this; }const Root<T> & operator=(const Root<T> r){ *iptr = *r.iptr; return *this; }int operator==(const void * vp) const { return *iptr == vp; }int operator==(const T * tp) const { return *iptr == tp; }int operator!=(const void * vp) const { return *iptr != vp; }int operator!=(const T * tp) const { return *iptr != tp; }int operator==(const Root<T> r) { return *iptr == *r.iptr; }int operator!=(const Root<T> r) { return *iptr != *r.iptr; }const T * value() const { return *iptr; }Root(const Root<T> & r){ iptr = (T**) _gc_RootTable.pop(*r.iptr); }Root() { iptr = (T**) _gc_RootTable.pop(); }Root(const T * p) { iptr = (T**) _gc_RootTable.pop(p); }~Root() { _gc_RootTable.push(iptr); }}; Figure 3.15: A smart pointer class for const objects of type Timplement the derived::operator base&() conversion. However, smart pointers are usefulenough that it is important to identify how best to implement them given the availabletools.

52 4. Fault Interpretation for Implementing the GC Remembered Set4. Fault Interpretation for Implementing the GCRemembered SetVirtual memory (VM) page protection can be used to improve the e�ciency of garbagecollection algorithms. (See [AL91] for a survey of uses of VM protection for GC and forother uses.) VM protection is often used to implement the remembered set in generationalcollectors, e.g., in generational collectors by both Boehm and Bartlett. To maintain theremembered set, the collector is looking for pointers from an older generation to a youngergeneration, called back pointers. Assuming an older generation page is known not to containany back pointers, then until there is a write to the page, it will continue not to containany back pointers. Thus, detecting writes gives the collector a way of knowing which pagesmay contain back pointers.When this style of VM protection is used, after a page is written, the page is leftunprotected. Thereafter and until the next collection, the page may be written many times.Thus, collector does not know what locations on the page were written and must examine theentire page. This coarse granularity leads to substantial cost in maintaining the rememberedset. This chapter shows how to use standard VM hardware to obtain �ne-grain informationabout page accesses. This can be used to detect every write to a page, thus giving thecollector exact information about what locations on a page are written. The technique hasbeen encapsulated in a library called FI for Fault Interpretation. We discuss a varietyof applications of this technique including garbage collection and consistency/replicationprotocols for transparent distributed shared memory.The remainder of this chapter is organized as follows: First x 4.1 gives an overviewwith a small example. Then, x 4.2 discusses applications and x 4.3 presents a C libraryinterface that encapsulates the functionality. Finally, x 4.4 describes the implementation,x 4.5 presents e�ciency measurements, x 4.6 discusses the availability of the library andsome caveats, and x 4.7 concludes the discussion of fault interpretation.4.1 Fault Interpretation: Memory Access MonitoringFault interpretation allows an application to detect all reads and/or writes to selectedpages of its virtual address space. The library uses the mprotect system call to disallowaccesses to monitored pages.1 An access to a protected page causes a fault, which Unixpasses to the application as a signal. The FI signal handler unprotects the page and noti�esthe application of the access. Then, the faulting instruction is restarted; it succeeds becausethe page is unprotected. Control returns immediately to the FI library, which noti�es theapplication again, re-protects the page, and resumes the application at the next instruction.As just described, the application can be noti�ed twice per access. These two functioninvocations are referred to as pre-access noti�cation and post-access noti�cation. The twocalls permit a wide variety of semantics, for example, pre-access noti�cation might be usedto read a page over the network, to obtain a write-lock on a page, or simply to record theaddress of the access. Post-access noti�cation might release a write lock or send an updatedpage to other hosts. It might also be used by a debugger to detect that a variable has beenaccessed.1This system call is not uniformly supported, but is becoming increasing available due in part to itsinclusion in Unix System V Release 4.

53Arguments to the notify function indicate the address of the access, its type (read,write or swap) and how many bytes are involved; the access type and number of bytes areobtained by decoding the instruction. During noti�cation, the accessed page is unprotected,permitting the notify function to access the page without faulting.FI utilizes the Unix mprotect system call and traps the resulting signal, which istypically either SEGV or BUS. When the signal is caught, the operating system passesthe handler information about the faulting context. To support fault interpretation, thisinformation must include the program counter and the other registers. FI uses thisinformation to determine what access the program was performing and to alter the usualow of control.The FI signal handler can coexist peacefully with other signal handlers, provided theyare not both trying to catch the same kinds of signals on the same memory pages. WhenFI traps a signal from a fault on an unmonitored page, the signal is propagated to anyother handler that is installed for the signal.The biggest di�erence between this and common uses of virtual memory (VM) pro-tection is that the faulting instruction is (e�ectively) single-stepped, rather than resumednormally. After the instruction succeeds, control returns to the library's reprotect block,which performs the post-access noti�cation, reprotects the page, and resumes the applica-tion. Thus, the page is only unprotected for the one instruction that faults (as well as duringnoti�cation); all accesses to the page can be trapped. This e�ect could be accomplishedusing the ptrace system call but that does not permit a process to monitor itself; it can onlymonitor another process.The best way to demonstrate the exact e�ect obtained is through an example. Wepresent a small test application that obtains some protected memory and causes faults.The handler displays the address and the type of every fault. The application is shown inFig. 4.1. The output of the application follows in Fig. 4.2. As this example demonstrates, anapplication can very easily obtain a region of managed memory. Thereafter, the applicationwill be noti�ed upon every access to the region.4.2 Applications of FIPossible applications of this technique include: write-detection in generational or incre-mental garbage collection, and consistency/replication protocols for shared memory.4.2.1 Generational Garbage CollectionThe idea behind generational garbage collection (GC) is that some objects are likely toremain reachable for the immediate future, thus, attempting to reclaim their memory is notworthwhile. [DWH+90, LH83, Moo84]. Typically, young objects are expected to becomegarbage relatively soon [Ung84], therefore, the garbage collector concentrates its e�ort onthe young objects.A garbage collection of the young objects (the younger generation) requires locating allpointers to young objects. Such pointers are of three types:1. pointers on the stack, in global data, and in registers,2. pointers in young objects, or,3. pointers in old objects.

54 4. Fault Interpretation for Implementing the GC Remembered Set#include <stdio.h>#include "fi.h"#define PGSIZE 4096/* notify prints the address and type of the access */void notify(void * addr, size_t nb, fi_flags_t type) {printf("NOTIFY: Access 0x%p for %d bytes, type ",addr,nb);if (type & FI_PREREAD) printf("PREREAD ");if (type & FI_PREWRITE) printf("PREWRITE ");if (type & FI_POSTREAD) printf("POSTREAD ");if (type & FI_POSTWRITE) printf("POSTWRITE ");printf("\n");}int main() {int i, * addr;fi_initialize();/* Allocate one page of managed memory */addr = (int*) fi_alloc(PGSIZE,fi_noaccess,notify,FI_ALL);printf("Causing four faults now!\n");addr[0] = 6;addr[121] = 999;i = addr[40];i = addr[400];printf("Permit READ accesses without faulting.\n");fi_setprot(addr, PGSIZE, fi_readonly);printf("Causing two faults now!\n");addr[0] = 6;addr[121] = 999;i = addr[40]; /* no fault: read access permitted */i = addr[400]; /* no fault: read access premitted */fi_free(addr);return 0;} Figure 4.1: A small FI applicationPointers of the �rst two types are common to all GC algorithms and do not introduce newdi�culties. Pointers of the third kind are called back pointers and they introduce a problemthat is unique to generational garbage collectors. These pointers must be located to avoiderroneously reclaiming live objects. However, since the collector is concentrating on youngobjects, it does not want to examine the old objects to locate these pointers. Thus, thetask is to e�ciently locate the set of all these pointers.Some collectors add a run-time test to every (pointer) assignment to see if a back pointeris being created. Other collectors do not attempt to locate each individual pointer, butrather identify the set of pages that might contain such pointers, the remembered pages.

55Causing four faults now!NOTIFY: Access at 0x7000 for 4 bytes of type PREWRITENOTIFY: Access at 0x7000 for 4 bytes of type POSTWRITENOTIFY: Access at 0x71e4 for 4 bytes of type PREWRITENOTIFY: Access at 0x71e4 for 4 bytes of type POSTWRITENOTIFY: Access at 0x70a0 for 4 bytes of type PREREADNOTIFY: Access at 0x70a0 for 4 bytes of type POSTREADNOTIFY: Access at 0x7640 for 4 bytes of type PREREADNOTIFY: Access at 0x7640 for 4 bytes of type POSTREADChange page to READONLY.Causing two faults now!NOTIFY: Access at 0x7000 for 4 bytes of type PREWRITENOTIFY: Access at 0x7000 for 4 bytes of type POSTWRITENOTIFY: Access at 0x71e4 for 4 bytes of type PREWRITENOTIFY: Access at 0x71e4 for 4 bytes of type POSTWRITEFigure 4.2: Output of the small FI applicationDuring garbage collection, every object on a remembered page is scanned for back pointers.This has been implemented using page protection [DWH+90]. The garbage collector write-protects all of the older-generation pages. Every fault indicates that there has been anassignment to an older generation object; the page is added to the remembered set. Uponcollection, the remembered pages are scanned for back pointers. If a page contains no backpointers, then it is deleted from the remembered set. Otherwise, it is left in the set.This implementation of the remembered set unprotects a page every time a fault occurs,permitting any number of writes to the page. Since it does not know what addresses werewritten, the collector must scan every object on every remembered page looking for backpointers. Even if only one word on the page is modi�ed, the collector still must check every�eld of every object. In contrast, through memory access monitoring, the collector canhave available the exact list of address that are modi�ed. It is not necessarily desirableto remember the exact list, since that could be quite expensive. Instead, the collector cankeep N remembered addresses per page. For the �rst N faults that occur on a page, thecollector stores the fault address. Upon the next fault after that, the collector unprotectsthe page and treats the page the same as in the old system. This bounds the maximumtime and space overhead due to faulting.The exact value of N depends on two things: the e�ciency of handling a fault, and thecost of scanning a page. If every �eld on a page can be scanned in less time than it takes tohandle a fault, then fault interpretation should not be used. However, if scanning objectsis relatively expensive, then remembering several stored addresses may improve e�ciency.4.2.2 Incremental Garbage CollectionIncremental garbage collection is a family of algorithms in which the collector neverstops the application for an extended period of time. The �rst such algorithm was Baker'scopying collector [Bak78] with many other algorithms based on it. To avoid annoyingpauses, the collector does its work in short chunks. Incremental garbage collectors areoften concurrent, in which case protected pages of memory can serve as medium grainsynchronization mechanism between the collector and the application [AEL88].

56 4. Fault Interpretation for Implementing the GC Remembered SetIncremental Mark-and-Sweep CollectionIncremental mark-and-sweep garbage collection has been implemented previously usingvirtual memory page protection [BDS91]. The normal implementation provides one bit ofinformation per page: there was or was not a fault. Pages on which a fault occurred mustbe entirely rescanned. This is another case in which fault interpretation can provide �nergranularity information, possibly increasing the e�ciency of the algorithm.Incremental mark-and-sweep collectors do their work in short bursts. During each burst,the collector follows pointers and may discover that some additional objects are accessible.The collector marks the accessible objects so they will not be deallocated at the end ofthe collection. After chasing some pointers and marking some objects, the cycle ends andthe collector returns control to the application. A burst in which the collector runs out ofpointers signals the end of the mark phase.Each time the collector returns control to the application, the application is free tomodify marked objects. The application may store in a marked object the only pointer to anunmarked object. If the collector never again examines the marked object, the pointer willnot be discovered: the unmarked object remains unmarked and is incorrectly deallocatedby the collector. Thus, marked objects that are subsequently modi�ed must be reexamined.VM protection can be used to detect this case. Any page that contains marked objects iswrite-protected. If a fault occurs, the page is agged. After the mark phase has nominally�nished, all the agged pages are scanned for marked objects with pointers to unmarkedobjects. When any such pointer is found, the data structure reachable from the pointer ismarked.Fault interpretation can be used to remember the �rst N fault addresses per page. OnlyN addresses per page are remembered to bound the total time spent servicing faults. Afterthe mark phase has terminated, the pages that had between 1 and N faults can be servicedvery quickly because the addresses of the writes have been saved.4.2.3 Consistency and Replication ControlFI can be used to implement arbitrary replication and consistency protocols on top oftransparent distributed shared memory [LH89]. The contribution of FI is the ability toexecute application code before and after memory pages are accessed. This code might, forexample, implement a voting algorithm [Lon88]. The consistency protocol runs transpar-ently; the client accesses the memory with normal load and store instructions.One possible implementation is the following. Shared memory pages are replicated onall the participating sites. Upon a write, the pre-access handler of the process that iswriting sends packets over the network to lock the location. When the lock is obtained, thewrite executes. Then, the post-access handler unlocks the location. For reads, if there arecurrently no locks on a page, the page does not need to be read-protected. If there is at leastone lock on a page, the page is protected so that read accesses cannot occur concurrentlywith a write access at the same location. The pre-access handler for reads checks thatthe location is not locked, and if it is not, allows the read to complete. If the location islocked, the handler blocks until the location is unlocked. Post-access read noti�cation isnot required.

574.3 The FI LibraryThe FI library encapsulates the functionality that is described in the previous section.The library includes calls to obtain managed memory, to change the state or attributes ofthe memory, and to release the memory when it is no longer needed.When a fault occurs, the exact sequence of events is the following:1. An instruction attempts to access a protected page; the instruction faults. Theoperating system invokes the FI-installed signal handler.2. The FI signal handler veri�es that the fault occurred on a page that is managed byFI. If not, the signal is propagated to any previously installed signal handler. If thepage is managed, the page will not be unprotected.3. If pre-access noti�cation has been requested, the application is noti�ed. The noti�-cation function is passed the fault address, the number of bytes, and ags indicatingwhether the access is a read or write (or both) and that the noti�cation is pre-access.The noti�cation function can examine or modify the page.4. The faulting instruction is executed again. Since the page is not protected, the accesssucceeds. Control returns immediately to FI.5. If post-access noti�cation has been requested, FI calls the noti�cation function. Thesame arguments are passed except that the ags indicate post-access.6. FI returns the page to its previous protection state and resumes the application. Theapplication continues with the instruction following the one that caused the fault.The library is written in C [ANS89, ISO90] using Unix system call extensions. It canalso be compiled as C++ code. In order to avoid name clashes, all external identi�ers usedin FI begin with � .Managed memory is obtained in segments whose size is an integral number of pages.Within a segment, the protection state, noti�cation, and notify function of each page maybe independently speci�ed.The library interface de�nes a small number of types, constants and functions. The �rsttype is an enumeration that indicates what protection state the application requires for apage. The type is de�ned as follows: ptypedef enum {fi_noaccess,fi_readonly,fi_readwrite} fi_prot_t;The enumeration constants mean:fi noaccess No accesses to the page are permitted, meaning all accesses resultin faults.fi readonly Read accesses do not fault.fi readwrite Both reads and writes are permitted without faulting.Another set of ags de�nes the types of noti�cation. The ags are bit values that maybe ORed together. The values of the constants are omitted.typedef unsigned char fi_flags_t;#define FI_PREREAD /* Pre-access notification for reads */#define FI_PREWRITE /* Pre-access notification for writes */

58 4. Fault Interpretation for Implementing the GC Remembered Setvoid fi_initialize(void);void* fi_alloc(size_t, fi_prot_t, fi_notify_t, fi_flags_t);void* fi_addpages(void*,size_t,fi_prot_t,fi_notify_t,fi_flags_t);int fi_free(void* addr);int fi_setprot(void* pgaddr, size_t nb, fi_prot_t nw);int fi_setnotify(void* pageaddr, size_t nb, fi_notify_t nw);int fi_setflags(void* pgaddr, size_t nb, fi_flags_t nw);int fi_getprot(void* pgaddr, fi_prot_t* old);int fi_getnotify(void* pageaddr, fi_notify_t* old);int fi_getflags(void* pgaddr, fi_flags_t* old);Figure 4.3: FI function prototypes#define FI_PRE /* Pre-access notification for all accesses */#define FI_POSTREAD /* Post-access notification for reads */#define FI_POSTWRITE /* Post-access notification for writes */#define FI_POST /* Post-access notification for all accesses */#define FI_READ /* Pre and post notification for reads */#define FI_WRITE /* Pre and post notification for writes */#define FI_ALL /* Pre and post notification for all accesses*/When obtaining pages of managed memory, the application supplies a pointer to anoti�cation function. The type of that function pointer is the following:typedef void (*fi_notify_t)(caddr_t, size_t, fi_flags_t);The caddr t argument is the address of the fault. The size t argument is the numberof bytes involved in the access. The � ags t argument indicates the type of access andwhether the noti�cation is pre-access or post-access.Finally, the last part of the interface is the prototypes of the library functions. Theseprototypes are summarized in Fig. 4.3. The meanings of the functions are the following:� initialize This function must be called �rst to initialize the library.� alloc This routine allocates new monitored memory. The function returns a pointerto the allocated pages. The initial protection state and notify function areparameters to the function, as is the number of pages to allocate.� addpages As with � alloc this function adds more managed memory. However,this routine allows the user to supply the address of the memory, rather thanobtaining the memory from valloc or sbrk.� free This free routine tells the library to stop using a set of pages. If the pageswere obtained with � alloc they are deallocated.� setprot This function sets the protection state of one or more managed pages. Thisdetermines what kinds of accesses, reads or writes, cause faults.� setnotify This function sets the notify function pointer associated with one or morepages.� setags The � setags interface is used to set the kind of noti�cation required:pre-access and/or post-access.� getprot This function returns the protection state of a page.� getnotify This function returns the notify function pointer associated with a page.� getags This routine returns the noti�cation ags of a page.

594.4 The Implementation of FIThere are a number of ways that fault interpretation can be implemented. By andlarge, they are architecture speci�c and require reading the state of the CPU when the faultoccurs. Thus, this technique is less portable and less general than those discussed by Appel[AL91]. Nonetheless, it has several uses and may let some programs run more e�ciently.4.4.1 Code Modi�cationWhen the signal handler is invoked after a fault, it determines what instruction hasfaulted. The instruction immediately following the faulting instruction is overwritten withan unconditional branch to the block of handler code called the reprotect block.2 Then, thesignal handler unprotects the page and returns, allowing the operating system to resumethe application.When it resumes, the application re-executes the instruction that caused the fault.Since the page is now unprotected, this succeeds. Then, control follows the branch to thereprotect block. This block performs post-access noti�cation, reprotects the page, restoresthe instruction sequence that was modi�ed, and branches back to the application.4.4.2 Register Modi�cationThe SPARC architecture permits a much simpler implementation that does not requirecode modi�cation. The SPARC has a register called npc for next program counter. Thisregister contains the address of the instruction that will execute after the current instructioncompletes. This register is used to implement delayed branches. The npc register makes itparticularly easy to implement FI.Upon a fault, the signal handler can read and modify the CPU state at the faultinginstruction. This state includes the contents of npc. The previous value of this register issaved, and the address of the reprotect block is assigned to the register. Then, the signalhandler unprotects the page and returns. The application again executes the instructionthat faulted; this time the access succeeds. Since npc points to handler code, control jumpsto the reprotect block. As before, the application is noti�ed, the page is restored to its formerprotection state, and control branches back to the application. This is the implementationused in the current version of the FI library.4.4.3 Instruction interpretationAnother way of executing a single instruction is to parse and interpret the instruction.On a RISC processor this is not very di�cult or ine�cient, provided the operating systemmakes the entire context of the faulting instruction available. This also requires being ableto restart the instruction following the faulted instruction. One advantage of this is theinterpreter can take advantage of extra information. For example, if the fault page is alsomapped without protection elsewhere in the address space [AL91, Wil92a], the interpretercan use that version to avoid needing to unprotect and reprotect the page.2On delayed branch architectures, a nop is written after the branch.

60 4. Fault Interpretation for Implementing the GC Remembered Set4.4.4 ParallelizationThe FI code is currently sequential. However, the majority of it could be parallelized.There are two main issues that must be resolved. The �rst is the use of global data. Twoparts of the FI library communicate through global variables. In a parallel implementation,this data would have to be replicated on a per-thread basis.The second issue is the following: If any thread is executing when a page is unprotected,the thread can access the page without being monitored. Thus, whenever FI unprotects apage, it must �rst stop all the threads in the system. They remain stopped until the page'sprotection is restored.4.5 E�ciency of Fault InterpretationThe key operations in terms of e�ciency are changing the protection state of a page andhandling a fault. The times for these two operations are presented in Table 4.1. The timinginformation was obtained with the SunOS version 4.1.1 getrusage system call. The testswere performed on a Sun IPX with a cycle time of 25 ns (40Mhz). The cycles-per-operation�gures are obtained by dividing the time per operation by the cycle time.The time to protect a page was obtained by making the mprotect system call in a loop.The time this call requires to execute depends on whether the page in question is accessedor not, and whether it is clean or dirty. Therefore, this test was repeated for unaccessedpages, pages that had been read from, and pages that had been written to. In each case,the page was entirely initialized to zeros before beginning the test. The data for each classof page are presented. This was repeated several times with the total time and the totalnumber of iterations summed and averaged.The time for handling a fault was obtained by writing a fault handler that leaves the pageprotected N � 1 times so that restarting the instruction causes another fault. Then, on theN th iteration, the handler unprotects the page and the instruction completes successfully.The time for protect + fault + unprotect was obtained by protecting a page, faulting,and unprotecting the page, all in a loop. This is a test whose e�ciency is also measured in[AL91] and is repeated here to provide a baseline for comparison.The time for fault interpret is the time to interpret a fault, i.e., to access a protectedpage and have the application's notify function informed that the access has occurred,while �nishing with the page still protected. This consists of fault+unprotect+protect+smalloverhead. The application's notify function for this test returns immediately.Lastly, we present the time for handling a page fault. This data was obtained byallocating more virtual memory than the machine has physical memory and repeatedlysequentially touching every page. This was done once with pages being read and once withpages being read and written. In both cases, page accesses are sequential. This informationis provided to o�er a comparison between the e�ciency of handling protection faults andpage faults.The data show that this implementation of fault interpretation is about 5% more ex-pensive than standard fault handling (for substantially greater functionality). Nonetheless,protection faults are very expensive, costing approximately 20,000 cycles each. This cost interms of memory references is much di�erent, of course, probably closer to 8000 memoryreferences. Therefore, if taking a fault can save more than 8000 memory references, therewill be an increase in e�ciency.

61Table 4.1: E�ciency of the component operationsThe measurements were taken on a 40Mhz Sun IPX. Unaccessed means the page hasneither been read nor written. Clean means the page has been read since the last call tomprotect. Dirty means the page has been written since the last call to mprotect. RW-RW means successive calls to mprotect always grant full access to the page. RO-RWmeans successive calls to mprotect alternate between restricting access and restoringaccess. Operation Count Total Time per Cycles perTime Operation Operation (est.)mprotect, unaccessed 80,000 4.0s 50�s 2000mprotect RO-RW, clean 80,000 14.4s 179�s 7160mprotect RW-RW, clean 80,000 22.1s 275�s 11000mprotect RW-RW, dirty 80,000 21.2s 265�s 10600handle a fault 500,000 81.7s 163�s 6520protect+fault+unprotect 500,000 258.5s 517�s 20680fault interpret 500,000 270.0s 540�s 21600page fault, reading 20,480 480.0s 23,437�s 937,480page fault, writing 20,480 757.0s 36,963�s 1,478,520One thing is clear|page faults are expensive. If we can save a single page fault, thenwe can interpret roughly 45 protection faults and still see an increase in e�ciency (basedon the relative costs of a page fault and fault interpretation). A generational collectorthat stores generation counters in objects, or an incremental mark-and-sweep collector thatstores mark bits with objects, could signi�cantly improve e�ciency with fault interpretation.For transparent persistent memory, the fault time is inconsequential compared to the timeto write the data to disk. Similarly, assuming that the time for a network message for arelatively fast protocol such as UDP is on the order of 1.5ms [Mak89], fault handling shouldnot be the bottleneck in implementing distributed shared memory.Lastly, we observe that disk and network latencies do not scale with processor speeds,whereas fault handling latency does increase with faster CPUs, subject to memory accesstime. Thus, relative to disk and network I/O, the e�ciency of fault interpretation willimprove with faster CPUs. It will also improve if operating system implementors providefaster trap handling.4.6 Availability of the FI LibraryThe FI library has been implemented for the SPARC processor. The code will compileeither as an ANSI/ISO C program or as a C++ program. The source code is available viaanonymous ftp from ftp.cse.ucsc.edu (128.114.134.19) in pub/csl/vm-trace.tar.Z. It can alsobe obtained from ftp.inria.fr (128.93.1.26) in INRIA/c++-gc/vm-fault.tar.Z.All of the test programs that were used for our e�ciency measurements are availablewith the library. The names of the �les (and their purposes) are as follows:

62 4. Fault Interpretation for Implementing the GC Remembered SetFile Purposet0.c Measure the e�ciency of mprotectt1.c Sample FI application, obtain and exercise managed memoryt2.c Measure the e�ciency of trapping the signal upon a memory protec-tion faultt3.c Measure the time required to protect a page, fault on it, and thenunprotect itt4.c Measure the time required to interpret a faultt5.c Measure the time required to handle a page fault when readingsequential pagest6.c Measure the time required to handle a page fault when writingsequential pagest7.c Measure the e�ciency of mprotect (more detail than t0.c)4.7 Conclusion on the Functionality of FIWe have presented a library that provides more functionality than is usually obtainedfrom standard virtual memory hardware and operating system software. This permits VM-based generational collectors to maintain the remembered set with �ner granularity. Thisis particularly useful for conservative partially-copying collectors since reducing the numberof conservatively-found pointers can permit more copying and compaction. In addition togenerational collectors, FI is also useful for non-generational incremental garbage collectors.We have incorporated FI into a VM-synchronized version of Bartlett's generationalconservative collector. That's discussed in chapter 5.

635. Integrated Garbage Collection ComponentsOur research is concerned with compiler-independent, e�cient and exible type-speci�cgarbage collection for imperative object-oriented programming languages such as C++. Weprovide several garbage collection components including weak pointers, strong pointers, andtwo compiler-independent garbage collectors based on versions of the collectors of Boehmand Bartlett. We also have developed a precompiler that prepares C++ code for compilationwith garbage collection. Pragmas permit individual data structures to be augmented foreither garbage collector.The precompiler augments a C++ program with code that locates internal pointerswithin objects. The augmented C++ program is compiled and linked with several othergarbage collection components: smart pointers for GC roots, smart pointers for weakpointers, and the two core memory allocators and garbage collectors. This chapter describesall these components, as well as some memory allocator interfaces and implementations thatfurther modularize the memory-management components of the program.5.1 Introduction to GC in C++The lack of garbage collection (GC) in C++ decreases productivity and increases mem-ory management errors. This situation persists principally because the common ways ofimplementing GC are deemed inappropriate for C++. In particular, tagged pointers areunacceptable because of the impact they have on the e�ciency of integer arithmetic, andbecause the cost is not localized.In spite of the di�culty, an enormous amount of work has been done and continues tobe done in attempting to provide garbage collection in C++. Indeed, at the time of thiswriting, garbage collection is receiving an unprecedented amount of attention in the twoC++-related Usenix newsgroups: comp.lang.c++ and comp.std.c++. Previous proposalsspan the spectrum of techniques including:� compiler-based concurrent atomic mostly-copying garbage collection [Det90],� library-based reference counting and mark-and-sweep GC [Ken92],� library-based mostly copying generational garbage collection [Bar89],� library-based reference counting through smart pointers [MIKC92, Mae92],� library-based mark-and-sweep GC using smart pointers [Ede92a],� compiler-based GC using smart pointers [Gin91],� library-based mark-and-sweep and generational copying collection using macros[Fer91], and,� library-based conservative generational mark-and-sweep GC [BW88, DWH+90].The vast number of proposals, without the widespread acceptance of any one, reects howhard the problem is.In [Ede90], we proposed implementing GC strictly in application-code: GC implementedin a library. The problem with this approach is that it requires too much e�ort on the partof the end-user. The user must �rst customize/instantiate the library, and then follow itsrules. This is a tedious and error-prone process.

64 5. Integrated Garbage Collection ComponentsTo achieve compiler-independence, while keeping the associated complexity to the userto a minimum, we have developed a precompiler for C++ programs to augment them forgarbage collection. The user still needs to cooperate with the collector, but the likelihoodof errors is reduced.1Sometimes, a program can bene�t from customized memory management code that fallsshort of automatic reclamation. If the memory allocator interface has been standardized,a special allocation algorithm can be transparently substituted. We discuss and presentseveral memory allocator interfaces and implementations at the end of this chapter.5.2 Garbage Collecting C++ CodeThe program's dynamically allocated garbage collected objects are collectively referredto as the data structure. The collector's job is to determine which objects in the datastructure are no longer in use and to reclaim their memory. Any object in the data structurethat can be reached by following a chain of references from any application pointer isreachable, also called alive. The other objects are garbage and should be reclaimed. Thetwo hard problems are: 1) �nding the roots, and 2), locating pointers inside objects, calledinternal pointers.The application has pointers into the data structure; these pointers consist of roots,which are a form of smart pointers, and of raw pointers, which are only permitted on thestack. The application also has available smart pointers implementing weak pointers intothe data structure. These are pointers that do not prevent the referenced objects frombeing collected. When a referenced object is garbage collected, all weak pointers to theobject have their values overwritten with NULL [Mil87]. The roots and the weak pointersconstitute a form of shared data between the application and the collector, as shown in�gure 5.1.In fact, �gure 5.1 is somewhat simplistic because it shows only one collector. Figure 5.2extends the picture to two collectors. (In the interest of clarity, the symbols for the pointersand for the objects are omitted.)A class may have an associated �nalization function. When an object is collected, if�nalization has been enabled for the object, the �nalization function will be invoked. Theprecompiler detects whether or not the user gives a class a �nalization function. If so, codeis emitted to ensure that that function is invoked when objects of the class are garbagecollected. (Note: only one of our two existing collectors supports �nalization functions.)Our system gives the programmer the following:1. a choice of garbage collection algorithms, usable concurrently within an application,2. smart pointers for type-accurate garbage collection roots,3. smart pointers for garbage collection weak pointers,4. �nalization,5. a variety of high-performance memory allocators, for when GC is not desired, so thatprogrammers can re-use our code rather than rewrite it from scratch, and,6. an architecture that permits integrating new GC algorithms.1The precompiler makes debugging slightly more di�cult, but at least the precompiler output is readableand editable.

65
CollectorApplication

Objects

= Weak pointer= GC Root

= Raw pointer on the stackFigure 5.1: Sharing of Smart Pointers Between a Collector and an ApplicationThe application and the collector both have access to the roots and weak pointers. Theapplication may also have, on the stack, normal pointers to collected objects (picturedas small squares).5.3 Locating Internal PointersLocating pointers within managed objects is one of the main tasks of the precompiler:the precompiler parses type de�nitions and emits appropriate declarations based on whichcollector is being used with the type being parsed. The programmer uses pragmas to tellthe precompiler which collector is used for a type.The exact interface for identifying internal pointer o�sets depends on which garbagecollector is being used. The mark-and-sweep collector (derived from an early version ofBoehm's) uses macros and inline functions we have supplied which are shown in x 5.3.1.The collector derived from Bartlett's collector uses Bartlett's macros for this purpose [Bar89]as shown in x 5.3.2.22We use an experimental version of Bartlett's collector that has not yet been made generally available,however, the programmatic interface is the same as in the available version.

66 5. Integrated Garbage Collection Components
Data

Shared

Application

Collector BCollector AFigure 5.2: Sharing of Smart Pointers Between Several Collectors and an Appli-cationThe application and all the collectors have access to the roots and weak pointers.5.3.1 Internal Pointers and Type Tags: Mark-and-SweepFor every type managed by the mark-and-sweep garbage collector, the precompiler emitsan gctrace() function. When the precompiler cannot be used, e.g., due to limitations of itsgrammar, the programmer is responsible for writing this function. The gctrace() functioninvokes gc ptr() of every pointer member of an object. In the existing mark-and-sweepcollector, the ip() function pushes internal pointer values onto the mark stack.The precompiler emits code to register each managed type with the collector. Regis-tration consists of a call to gc register() that passes in the type's gc() function pointer.Each such registration causes the garbage collector to generate and return a new type tag.Subsequent memory allocation requests pass in the tag, which is stored by the allocator inmeta-information associated with every newly allocated object.Three type tags are prede�ned: one for objects that contain no pointers, one for objectsthat are entirely pointers, and one for foreign objects. Foreign objects are only reclaimedmanually, i.e., they are never garbage collected, and there is no type information availablefor them. They are called foreign because they are ignorant of the presence of the garbagecollector. Support for foreign objects permits this memory allocator to be the only one inthe program; it can satisfy the dynamic memory needs of the standard libraries by treatingtheir allocation calls as requests for foreign objects. Foreign objects are not examined by thecollector; they should only reference collected objects through smart pointers, not throughraw pointers.The C++ feature that makes this process convenient is overloadable dynamic storageallocation operators: new and delete. These operators permit every class to supply functions

67#include "gc.h"#pragma GCON CLclass CL {CL * ptr1;OTHER * ptr2;static void finalize(CL *); /* optional */...}; Figure 5.3: A class with internal pointersto handle memory allocation and deletion. In this case, operator new for a managed classpasses in the type tag to the memory allocator. The default, global operator new passes inthe type tag for foreign objects. A call to malloc(), which circumvents new, also allocates aforeign object.There are two main changes for a program that uses the precompiler for GC. Firstly,pragmas are used to indicate three things:1. which application classes are collected,2. which collector applies to which classes, and,3. that the standard library classes are not collected.Secondly, global and foreign pointers are de�ned to be smart pointers rather than rawpointers. In conjunction with the copying collector, it may additionally be desirable tode�ne certain stack pointers to be smart pointers; this can reduce the number of pointersthat are found conservatively, thereby allowing more objects to be copied and compacted.Figure 5.3 shows some sample input to the precompiler; the transformations for locatinginternal pointers are shown in Fig. 5.4. These transformations are performed either by theprecompiler or by the programmer.5.3.2 Internal Pointers and Type Tags: Bartlett's CollectorClasses that are collected with the generational mostly-copying algorithm undergo a sim-ilar transformation. The necessary augmentation is the one de�ned by Bartlett's collector.The corresponding post-precompiler code is shown in �gure 5.5.5.3.3 FinalizationIf the programmer speci�es a static member function T:: gc �nalize(T*), then that be-comes the �nalization function for objects of type T. As in Cedar, �nalization can be enabledor disabled for individual objects; the collector maintains a bit with every object indicatingwhether or not the object needs �nalization. By default, �nalization is enabled for an objectwhose class has a �nalization function; a library call is available to disable or to re-enable�nalization for any object.There are no restrictions on what a �nalization function can do. This means that a�nalization function, which is only called when the object is unreachable, may make theobject reachable. Therefore, in order not to create dangling references, an object is never

68 5. Integrated Garbage Collection Componentsclass CL {CL * ptr1;OTHER * ptr2;static void finalize(CL *);.../* begin GC members */private:static gc_tag _gctag;static void _gctrace(CL *);public:void* operator new(size_t sz) { return gcalloc(sz,_gctag);}void operator delete(void* p) { }};// A sample _gcptr function implementation . . .inline void _gc_ip_(void * ptr) { _gc_MarkStack.push(ptr); }// The following code is emitted in exactly one .C file ...void CL::_gctrace(CL * ptr) // class CL's trace function{ gc_ptr(ptr->ptr1);gc_ptr(ptr->ptr2);}// register type CL with the collectorgc_tag CL::_gctag = gc_register(sizeof(CL), finalize, _gctrace);Figure 5.4: Sample Code Augmented for Mark-and-Sweep CollectionThis modi�ed code is produced by either the precompiler or the programmer.reclaimed in a turn when it is �nalized; it is only reclaimed after another collection con�rmsthat it is unreachable and that �nalization is disabled for it [Ell92, Rov84].A �nalize function must be static, therefore, it may not be virtual (i.e., dynamicallybound). However, since it is allowed to invoke virtual functions, the e�ect of a virtual�nalize function is easily obtained. In addition, using the syntax ptr->T:: �T(), it is trivialto make the �nalization function call the destructor, thus ensuring destruction of all baseclass and member sub-objects. Only the mark-and-sweep collector supports �nalization,not the mostly-copying collector.5.4 Special PointersAs discussed in x 3.12, this system uses two kinds of special pointers: GC roots and weakpointers. These are implemented with C++ smart pointers that themselves implementindirection through a root table. Many collectors may be integrated into this system, butany collector must correctly interact with the special pointers. Speci�cally, collectors are

69class CL {CL * ptr1;OTHER * ptr2;.../* begin GC members */GCCLASS(message);};// GC Definitions, emitted in only one .C file . . .GCPOINTERS(CL) {gcpointer(ptr1);gcpointer(ptr2);} Figure 5.5: Sample Code Augmented for Mostly-Copying Collectionrequired to treat the roots as non-conservative GC roots. Also, weak pointers to collectedobjects must be nulled after collection. Thus, whatever collector is used, the programmercan depend on the semantics of the roots and weak pointers. The lists of tables used in theimplementation of these pointers were presented in x 3.12. The code for roots and weakpointers is presented in x C.3.5.5 Coexisting Garbage CollectorsIt is normally di�cult for a garbage collector to locate pointers contained in dynamicallyallocated memory that the collector does not itself manage. For example, in �gure 5.6, itis di�cult for collector B to locate the pointer from an A object to a B object.However, having smart pointer roots available provides a solution for the problem. Byusing a root rather than a raw pointer, collector B is guaranteed to �nd the pointer, andthus to avoid collecting the object.5.5.1 The Mark-and-Sweep CollectorOur mark-and-sweep garbage collector is derived from a version of Boehm's conservativecollector that we have modi�ed to support type tags, �nalization, roots and weak roots[BW88]. The collector divides the heap into blocks that are used to allocate objects ofuniform size. Using an integer division operation and knowledge of where blocks beginand end, the collector is able to make a pointer to the interior of an object (an interiorpointer) point to the beginning of the object. This is potentially expensive because integerdivision can be expensive on RISC processors. Nonetheless, this ability is needed because apointer to the beginning of the object is necessary to locate the object's type tag and markbit. Forbidding interior pointers is impossible, �rstly because the collector is sometimesconservative, also because multiple inheritance in C++ is generally implemented usinginterior pointers.Garbage collection begins by examining every cell of the root table. For each cell, thecollector determines if the cell points to a page that is part of the heap. If so, the value is

70 5. Integrated Garbage Collection Components
Application

a

a

b

b

Collector A Collector BFigure 5.6: A pointer between objects managed by di�erent collectorsIt is not easy for one collector to �nd pointers within another collector's objects.pushed onto the mark stack. After all the roots have been pushed, the collector begins themarking traversal.Every time a value is popped from the mark stack, the collector determines whether ornot the value points into the heap, and if so, what object it references. The collector fetchesthe object's mark bit. If the mark bit was already set, the pointer is ignored. Otherwise,the bit is set and the type tag is fetched from the allocator's meta-information. The typetag indexes into an array of type descriptors that contain the gc() and �nalization functionpointers. The gc() function is called with a pointer to the object; the gc() function pushesthe internal pointers onto the mark stack.After the mark phase, the collector performs �nalization, weak pointer nulling, andreclamation. For every object, one of three cases is true:1. The object is unmarked and has �nalization enabled: The object is �nalized and its�nalization bit is unset.2. The object is allocated, unmarked, has �nalization disabled, and is not a foreignobject: The object is marked for reclamation.3. Neither of the above is true: No action is taken.Before objects are reclaimed, all the weak roots are examined. Any weak root that referencesan unmarked object has its value overwritten with NULL. Finally, the reclaimable objectshave their memory deallocated. At this time, free pages are identi�ed and reused as well.After this, garbage collection is �nished and the application resumes execution.

71
Application

a

a

b

b

Collector A Collector BFigure 5.7: A root between objects managed by di�erent collectorsUsing a root rather than a raw pointer makes it simple for the collector to �nd thepointer. This is because any collector in the system is required to examine all the roots.5.6 Stack PointersUsing accessors, it would almost be possible to keep the application from obtaining rawpointers [Ken92]. However, there would remain the problem of this pointers on the stack.Overall, for both convenience and e�ciency, it does not appear desirable to attempt toprevent absolutely the creation of raw pointers on the stack. Therefore, the two collectorswe supply both make conservative scans of the stack during collection. Thus, the GC rootsinclude the stack (conservatively) and the root tables (accurately).For the mark-and-sweep collector, the smart pointer roots are primarily used for globaland foreign pointers, which are pointers in objects that are dynamically allocated by adi�erent memory manager or collector. With the mostly-copying collector, the conservativestack scan allows the programmer to use fast raw pointers in time-critical code. Less criticalcode can use smart pointers to decrease the collector's conservatism, pin fewer objects dueto conservative references, and increase compaction.5.7 Controlling the PrecompilerBy default, all of the class, struct, and union types that the precompiler sees are assumedto be garbage collected. Thus, for all such types, the precompiler performs its transforma-tions. In fact, a great many of these types are likely not to be managed. For example, while

72 5. Integrated Garbage Collection ComponentsTable 5.1: Pragmas recognized by the precompiler#pragma Meaninggcon class-list Causes the precompiler to transform classes in class-listgcoff class-list Causes the precompiler not to transform classes in class-listgccopy class-list Indicates classes in class-list should be transformed for copyingcollection using Bartlett's algorithmgcpush on Push state on, meaning transform subsequent classesgcpush off Push state off, meaning do not transform subsequent classesgcpop Pop current state (return to previous state)the vast majority of C++ �les include the standard header �le <iostream.h>, it would vi-olate C++'s one de�nition rule to transform the I/O Stream classes [ANS93]. Therefore,there are #pragmas to control the garbage collection transformation, either at the granu-larity of the individual type, or at much coarser granularity. (This functionality permitsprogrammers to take control of storage management for certain types if they so choose.)5.7.1 Precompiler File ManagementThe precompiler processes every �le in a multi-�le program. Therefore, it is likely to seethe class de�nitions multiple times. Some of the transformations are performed every time a�le is compiled; others must be performed more selectively. In particular, the modi�cationsto the class de�nitions must always performed. However, the function and static datade�nitions must be emitted exactly once because emitting multiple copies would cause link-time multiple de�nition errors. This is controlled with the following heuristic. If a garbagecollected class is de�ned in �le.h, the precompiler emits the necessary function and staticdata de�nitions when precompiling �le.C.35.7.2 Precompiler PragmasThe precompiler recognizes #pragma directives to control which classes are transformed.The precompiler's behavior is controlled internally with a stack of states. Each state is eitheron or o�; When the current state is on, classes are transformed. When the state is o�, classesare not transformed. In addition, transformation may be enabled or disabled for individualclasses. The pragmas are presented in table 5.1.5.8 Memory Allocator InterfacesEven when garbage collection is not practical or not desired, programs that allocatedynamic memory intensively can sometimes bene�t from customized dynamic memoryallocators. Customized allocators use knowledge of a particular data structure to improvea program's e�ciency. For example, homogeneous data structures and data structures thatare deallocated all at once are two classes of data structures that can be more e�cientlyallocated with customized memory allocators.3This actual �le su�x need not be .C; it can be anything other than .h.

73The functionality supported by a particular memory allocator de�nes an interface.Allocators with the same interface are interchangeable, di�ering mainly in performance.Thus, we can de�ne a abstract class hierarchy of memory allocator interfaces, along withconcrete implementations of these interfaces.By formalizing the interface of a memory allocator, the exact requirements of a datastructure are documented (and enforced) in the choice of memory allocator interface; anymemory allocator that conforms to the interface may be used by the program. This makesit easier to reuse allocators because it is clear when an allocator supports the requiredfunctionality: it must conform to the indicated interface. It is easy to modify a datastructure to use a new allocator because allocators are polymorphic. Thus, the conceptof subclassing, used in object-oriented programming of both applications and operatingsystems, is now being applied to memory management algorithms within a programmingenvironment.A possible argument against this technique is memory allocation can be a critical-pathoperation, in which case the added overhead of dynamic binding, implicit in object-orientedprogramming, may be viewed as undesirable. In fact, this is false since optimizations canmake common cases fast, while deferring dynamic binding for the non-critical-path cases,as we will show.5.8.1 Allocator InterfacesThere are several kinds of memory allocators. Certain of them provide subsets of thefunctionality of others, making the latter subtypes of the former. Thus, a class hierarchycan capture the relations between these types.All memory allocators have an operation to allocate an object. Certain allocators,though not all, add the ability to delete an object. An allocator may also be able to deleteall the currently allocated objects in a single operation. In practice, every allocator musthave one of these two delete operations (or something similar) to be able to reuse memory.Some allocators may in fact support both these operations.Class AllocWithFreeOne common type of memory allocator supports allocation and deletion of objects.This is the paradigm used by most programs written in imperative programming languageslacking garbage collection. We use the class AllocatorWithFree as an abstract base class forallocators of this type.class AllocWithFree {public:virtual void * alloc(size_t nbytes) = 0;virtual void free(void * addr) = 0;AllocWithFree();virtual ~AllocWithFree();};AllocWithFree::AllocWithFree() { }AllocWithFree::~AllocWithFree() { }

74 5. Integrated Garbage Collection ComponentsClass AllocWithFreeAllSome data structures are used in cycles where at the end of a cycle, all the allocatedobjects are deleted. Customized allocators can exploit this behavior by providing a FreeAllmethod that reuses the memory occupied by all currently allocated objects more e�cientlythan deleting every object individually. The class AllocWithFreeAll is an abstract base classfor allocators of this type. These allocators can not necessarily delete individual objects.class AllocWithFreeAll {public:virtual void * alloc(size_t nbytes) = 0;virtual void Free_all() = 0;AllocWithFreeAll();virtual ~AllocWithFreeAll();};AllocWithFreeAll::AllocWithFreeAll() { }AllocWithFreeAll::~AllocWithFreeAll() { }Class AllocWithFreeOneAllAn allocator that supports both of these delete operations is a subclass of both of theprevious base classes. We call this class AllocWithFreeOneAll.class AllocWithFreeOneAll :public AllocWithFree,public AllocWithFreeAll {public:virtual void * alloc(size_t nbytes) = 0;virtual void free(void * addr) = 0;virtual void Free_all() = 0;AllocWithFreeOneAll();virtual ~AllocWithFreeOneAll();};AllocWithFreeOneAll::AllocWithFreeOneAll() { }AllocWithFreeOneAll::~AllocWithFreeOneAll() { }5.8.2 Quick AllocationPreviously in subsection 5.8, we mentioned that some allocators optimize the commonallocation path, and thus a virtual allocation routine may be undesirable. One importantfamily of such allocators are the so-called pool allocators. These memory allocators are forobjects of uniform size. The allocator maintains a free-list of objects that permits manyallocation requests to to be satis�ed with only a couple machine instructions.This behavior, too, can be captured in an interface. The main elements of the interfaceare:

75

Effective when the objects are of uniform size....

Free
Allocated

Available

Chunk N

Chunk N-1

Free List

Figure 5.8: A Quick Allocator Memory LayoutAllocation requests �rst check the free list. If the free-list is empty, the memory is takenfrom the main bu�er. When the bu�er is also empty, another block is obtained fromthe system and linked into the list.1. An allocator is initialized with a size, which is the size objects the allocator willallocate.2. An allocator maintains a free-list of objects of the indicated size.3. An allocation request �rst checks the free-list, and only invokes a more complicatedalgorithm if the free list is empty.As with other allocators, Pool allocators can support deletion of individual elements,deletion of the entire space, or both. A diagram of a quick allocator is shown in �gure 5.8.Class PoolAllocThe class PoolAlloc de�nes an interface for fast allocators of homogeneous objects basedon the object pool, or object free-list. This abstract class de�nes not just an interface,but also part of an implementation. This is necessary to make it possible to write thecritical path operations of allocation and deletion as inline functions. The auxiliary typepool free obj is used for elements of the free object list, and will also be used by the otherpool allocators presented subsequently in this section.

76 5. Integrated Garbage Collection Components// Actual size of these objects variesstruct pool_free_obj { pool_free_obj * next; };class PoolAlloc {public:void * alloc(size_t nbytes);PoolAlloc();virtual ~PoolAlloc();protected:pool_free_obj * slow_alloc(size_t nbytes);virtual pool_free_obj * virt_alloc(size_t nbytes) = 0;pool_free_obj * free_list;};PoolAlloc::PoolAlloc() : free_list(0) { }PoolAlloc::~PoolAlloc() { }pool_free_obj *PoolAlloc::slow_alloc(size_t nbytes){ return virt_alloc(nbytes);}inline void * PoolAlloc::alloc(size_t nbytes){ pool_free_obj * retval = free_list;if (retval)free_list = free_list->next;elseretval = slow_alloc(nbytes);return retval;} This homogeneous object allocator interface has an allocation function that compiles toeleven inline SPARC instructions, of which eight are executed in the fast case. The slowcase requires at least an additional function call and an additional virtual function call.Individual instances of this allocator di�er in how they implement the virtual allocationfunction. (The virtual allocation call is made from a regular non-inline function to move thevirtual function dispatch code out of the inline alloc routine, thus reducing code size andhopefully improving cache performance.) A diagram of a pool allocator is shown in �gure5.9.Class PoolAllocWithFreeThis interface adds to the PoolAlloc class an inline method for deleting individual objects.The deletion method adds the object to the list of free objects.

77
Chunk N

Chunk N-1

Effective when the entire space is freed in one swell foop...

Free
Allocated

Available

Figure 5.9: A Pool Allocator Memory LayoutAllocation requests a satis�ed from the main bu�er. When the bu�er is empty, anotherone is obtained from the system and linked into the list. Individual objects cannot bedeallocated; instead, upon the user's request, all the blocks are recycled at once.class PoolAllocWithFree : public PoolAlloc {public:void free(void * addr);PoolAllocWithFree();virtual ~PoolAllocWithFree();};PoolAllocWithFree::PoolAllocWithFree() { }PoolAllocWithFree::~PoolAllocWithFree() { }inline void PoolAllocWithFree::free(void * addr){ ((pool_free_obj *) addr)->next = free_list;free_list = (pool_free_obj*) addr;}

78 5. Integrated Garbage Collection ComponentsClass PoolAllocWithFreeOneAllThe class PoolAllocWithFreeAll is nearly identical to the previous class, except it addsthe ability to recycle the entire space with the free all member. There is no pool allocatorwithout individual object deletion because pool allocation derives its e�ciency from thedeletion of individual objects.class PoolAllocWithFreeOneAll : public PoolAllocWithFree {public:virtual void free_all() = 0;PoolAllocWithFreeOneAll();virtual ~PoolAllocWithFreeOneAll();};PoolAllocWithFreeOneAll::PoolAllocWithFreeOneAll() { }PoolAllocWithFreeOneAll::~PoolAllocWithFreeOneAll() { }5.8.3 Memory Allocator ImplementationsThe classes presented in this chapter are interfaces that represent families of memoryallocators. Sample implementations are presented in appendix B.5.9 E�ciencyThe following measurements were performanced on a Sun Sparcstation IPX with 40megabytes of main memory running SunOS 4.1.2. On this machine, pages are four kilobytes.5.9.1 E�ciency of the Hypercube SimulationThe �rst application we report is a hypercube simulation.4David Detlefs modi�ed the code slightly and used it to test his implementation ofdeferred reference counting. We compiled and executed this code on sample input usingfour memory reclamation techniques: manual reclamation, our two collectors, and Detlef'simplementation of Deferred Reference Counting. The results are reported in Table 5.2.The �gures show manual reclamation to be the fastest technique for this application. Theprogram ran in approximately the same time using each of our collectors, and those timesare roughly 25% larger than the time using manual reclamation. Finally, using Detlefs'Reference Counting the program took about 60% longer to execute than with manualreclamation.Finally, the graph in Figure 5.10 shows estimated process sizes for the hypercubesimulation application with each of the reclamation techniques. These process sizes areestimated based on the maximum resident size in pages, returned as the mx parameter fromthe rusage command of SunOS 4.1.2. Again, manual reclamation has the best performance,and the mostly copying collector is second best. With both Deferred Reference Countingand Mark-and-Sweep collection, the application has a signi�cantly larger resident set.4Comments in the code indicate it is by D. C. Lindsay at Carnegie Mellon University, copyright 1988.Comments when the program executes indicate it is copyright 1988 by Archons/CMU.

79Table 5.2: Execution Time for the Hypercube SimulationTime (seconds)Memory Management Algorithm �x min max 99% �Manual reclamation 9.26 8.60 10.00 9.16{9.36 0.53Generational mostly coping GC 11.70 11.10 12.30 11.60{11.80 0.53Mark-and-sweep GC 11.79 11.70 12.10 11.78{11.80 0.58Detlefs' Deferred Ref. Counting 15.49 14.90 16.30 15.40{15.59 0.53
Manual reclamation

Deferred reference counting

Mark-and-sweep collection

Generational mostly-copying collection

E
st

im
at

ed
 S

iz
e

(p
ag

es
)

250

500

750

1000

580

960 917

760Figure 5.10: Resident Set Size for the Hypercube Simulation5.9.2 Lisp Interpreter and Database ApplicationThe next application is a Lisp interpreter provided to the author by Kelvin Nilsen, andwhich Nilsen credits to Timothy Budd. It does not make extensive e�ort to reclaim memory,originally using reference counting only on selected objects. The tests were performed withthe interpreter running a small database application. The results are reported in Figure 5.3.In this case, the application ran as fast using mark-and-sweep collection as it didreclaiming some objects with reference counts. The application ran more slowly when it usedthe copying collector. Figure 5.11 shows the approximate resident size for the applicationusing the three memory reclamation techniques. As this shows, for this application themark-and-sweep collector is the best of the three techniques because it ties for fastest anduses the least memory.

80 5. Integrated Garbage Collection Components
E

st
im

at
ed

 S
iz

e
(p

ag
es

)

Mark-and-sweep collection

Generational mostly copying collection

100

200

300

400
440

162
106

Partial reference counting

Figure 5.11: Resident Set Sizes for the Lisp Application5.9.3 E�ciency of the Text Processing ApplicationWe modi�ed the GNU gro� text formatter to use garbage collection for some of itsdynamically allocated data. In particular, just the class hierarchies of registers and macros,i.e., the classes derived from object, were so modi�ed. All other dynamically allocated datacontinued to be managed manually. The results of using this application to format the 76page perl manual page are shown in Table 5.4.5.10 Status of the Type-Speci�c Garbage Collection ComponentsWe have integrated two garbage collectors. One is a conservative mark-and-sweepcollector derived from a version of Boehm's collector [BW88]. This other is derived from anexperimental version of Bartlett's VM-synchronized generational mostly-copying collectorTable 5.3: Execution Time for the Lisp Interpreter and Database ApplicationPartial reference counting means the application reclaimed some objects using referencecounting and made no attempt to reclaim the rest of the objects.Time (seconds)Memory Management Algorithm �x min max 99% �Partial reference counting 8.28 8.10 8.95 8.27{8.29 0.48Generational mostly coping GC 10.80 10.50 11.10 10.76{10.78 0.11Mark-and-sweep GC 8.30 8.23 9.03 8.29{8.31 0.09

81[Bar89]. Both collectors were modi�ed to support type-accurate scans of the root tables, aswell as to correctly scan and update the weak pointer tables. The mark-and-sweep collectorwas additionally modi�ed to support type-accurate object-scanning and �nalization. Thecopying-collector uses our FI library (chapter 4) to be able to maintain the remembered setwith �ne granularity. The problem of foreign pointers between the two collectors is solvedusing smart pointer roots.The precompiler recognizes a variety of pragmas that cause it to alter classes for col-lection with either of the collectors. Due to the grammar upon which it is based, theprecompiler cannot parse code using templates or nested classes.The SOR group at INRIA Rocquencourt has designed and is developing a distributedgarbage collection algorithm [SDP92, PS92]. The distributed garbage collector requireslocal garbage collectors with support for �nalization. This mark-and-sweep collector servesas the foundation for the distributed garbage collector.Future implementations of C++ will support overloaded memory allocation operatorsfor arrays [ANS93]. However, the lack of such language support in current implementationsmakes it impossible to garbage collect arrays of objects.5.11 Concluding Remarks on Type Speci�c Garbage CollectionThe complexity of the semantics of C++ is daunting. Adding to that complexity byrequiring manual storage reclamation makes programming in C++ di�cult and error-prone.We supply a library with two garbage collectors having very di�erent characteristics,smart pointers for non-stacked garbage collection roots and foreign pointers, and weakpointers. The garbage collectors are type-accurate anywhere possible; the main remainingconservatism is on the stack.Having multiple collectors allows the programmer to select whichever is most appropri-ate for their data structures, e.g., copying for long-lived data structures or mark-and-sweepfor short-lived data structures. In addition, other garbage collectors with di�erent char-acteristics may be added to the system; the only requirements are that all the collectorsexamine the root tables and examine and update the weak pointer tables.Precompiling C++ programs for garbage collection is more convenient for the program-mer than a pure library-based approach. Simultaneously, it is portable and not tied to anyparticular compiler technology.There are a number of bene�ts to our approach. We supply compiler-independentgarbage collection; the programmer can choose one of our collection algorithms or supplyTable 5.4: Execution Time to Format the perl.1 Manual PageTime (seconds)Memory Management Algorithm �x min max 99% �Reference Counting 22.24 21.50 49.80 21.74{22.74 2.7Generational mostly coping GC 21.74 21.50 24.60 21.69{21.80 0.3Mark-and-sweep GC 22.03 21.50 27.40 21.90{22.16 0.7

82 5. Integrated Garbage Collection Componentsone of their own; �nalization and weak pointers are available, and precompilation makesusing these collectors reasonably convenient and less error-prone than a pure library-basedapproach would be. The collector makes programming in C++ less complex and safer, andmay make garbage collection available to a large part of the C++ programming community.In addition, the garbage collection costs remain localized and the programmer can choosewhat GC features to utilize by selecting the collector for each data structure.

836. ConclusionIn this thesis we have presented a number of techniques to help programmers managedynamically allocated memory. These techniques work together to increase the convenience,safety, and sometimes the e�ciency of the programming task.The fault interpretation library presented in Chapter 4 has a wide variety of applicationsincluding generational and incremental garbage collection. It has been incorporated into anexperimental version of Bartlett's Generational Mostly Copying garbage collector.We analyzed how seamlessly smart pointers can replace raw pointers in C++ programs.We found that the behavior of smart pointers diverges in important ways from that of rawpointers. However, we gave advice for overcoming these limitations, and for writing codethat can be conveniently and safely switched between smart pointers and raw pointers.Our Type Speci�c Storage Management components include garbage collectors, smartpointers, and a precompiler. These components permit the programmer to take advantageof garbage collection for selected data structures, while using manual reclamation on thosedata structures for which it is appropriate. These components are not tied to particularGC algorithms, but are designed to permit various algorithms to coexist.Taken together, these chapters provide support for tasks ranging from the implemen-tation of a new garbage collector to the coding of a new application. This improves thesoftware process by making garbage collection more readily available. Having GC avail-able reduces dangling references and memory leaks. The result is increased programmerproductivity and program reliability.

84 Appendix A. GlossaryAppendix A. Glossaryaccessible A object is accessible if it can be reached by following a sequence of pointersbeginning with any root.collector This term refers to the garbage collector. It can refer to either the algorithm orto a concurrent garbage collection process (thread).conservative Some garbage collectors do not distinguish between pointers and integers. Acollector is called conservative if it decides whether or not a word is a pointer withoutany type information. Any word that might be a pointer is so interpreted.constructor A C++ method that is used for initialization: If a class has one (or more)constructors, then every time the class is instantiated a constructor is executed toinitialize the newly created object.data structure This is the graph of all the dynamically allocated objects.destructor A C++ method that is used to de-initialize objects.foreign A pointer that is foreign to a garbage collector is a pointer that is dynamicallyallocated by a di�erent garbage collector or memory allocator.forwarding pointer Copy collectors move objects, in the process storing a pointer to thenew location at the old location. That pointer is called a forwarding pointer. It isused to prevent objects from being copied more than once.inaccessible Any allocated object that is not accessible is inaccessible. Intuitively, thismeans that the application is unable to reference the object, and thus the objectshould be deleted.internal pointer An internal pointer is a reference contained within the data structure.That is, it is a reference contained within a dynamically allocated object.garbage The term \garbage" refers to an inaccessible object, or collectively to all inac-cessible objects.mutator The mutator is the application. It acts to change, or mutate, the data structure.If the application is a parallel program then there are multiple mutators.reachable This term is synonymous with \accessible".root A root is a pointer that the application can use to access the data structure. Thus,the roots are all the pointers on the stack, in static data, and in the registers, thatreference objects in the heap.structure tag A structure tag is a �eld contained within an object that identi�es thetype of the object. This facilitates garbage collection because the collector can usethis �eld to infer where within the object there are internal pointers. C++ does notuse structure tags.tagged pointer A system based on tagged pointers uses one bit to distinguish betweenpointers and integers. A garbage collector can then locate pointers by searching forwords with their bit set (or not set, as per the implementation.) This either requirescustom hardware, or else reduces the range of integers.type-accurate A type-accurate garbage collector is able to determine which values arepointers and which are not. Only values that are pointers are interpreted as pointers.unreachable This is synonymous with \inaccessible".

85unsure pointer An unsure pointer is a value whose static type does not determinewhether the value is or is not a pointer. For example, a union containing both apointer and an int is an unsure pointer.virtual function A C++ function that is not fully bound at compile time. Such functionsare used to implement polymorphism.

86 Appendix B. Memory Allocator ImplementationsAppendix B. Memory Allocator ImplementationsB.1 Sample Class AllocWithFree#include <stdlib.h>class BasicAllocWithFree : public AllocWithFree {virtual void * alloc(size_t nbytes);virtual void free(void * addr);};void * BasicAllocWithFree::alloc(size_t nbytes){ return new char[nbytes];}void BasicAllocWithFree::free(void * addr){ delete [] addr;}B.2 Sample Class AllocWithFreeAll#include <iostream.h>#include <stdlib.h>class BasicAllocWithFreeAll : public AllocWithFreeAll {public:void * alloc(size_t nbytes);void free_all();BasicAllocWithFreeAll();~BasicAllocWithFreeAll();private:enum { SIZE = 2048 };struct Chunk {Chunk * next;};Chunk * listhead;char * spacep;size_t avail;};BasicAllocWithFreeAll::BasicAllocWithFreeAll(): avail(0), listhead(NULL){}

87BasicAllocWithFreeAll::~BasicAllocWithFreeAll(){ free_all();}void BasicAllocWithFreeAll::::free_all(){ Chunk * next;while (listhead) {next = listhead->next;delete [] listhead;listhead = next;}listhead = NULL;avail = 0;}template<class T> T max(T t1, T t2){ T result;if (t1 > t2)result = t1;elseresult = t2;return result;}void * BasicAllocWithFreeAll::::alloc(size_t sz){ void * result;sz = (sz + 3) & ~3; // Alignif (avail < sz) {avail = max((unsigned)SIZE, sz);spacep = new char [avail];Chunk * newChunk = (Chunk*) spacep;newChunk->next = listhead;listhead = newChunk;}result = spacep;spacep += sz;avail -= sz;return result;}

88 Appendix B. Memory Allocator ImplementationsB.3 Sample Class PoolAllocWithFree#include <stdlib.h>#include <assert.h>class SamplePoolAlloc : public PoolAllocWithFree {public:pool_free_obj * virt_alloc(size_t nbytes);SamplePoolAlloc(int);~SamplePoolAlloc();private:enum { SIZE = 2048 };struct Chunk {Chunk * next;};const int mysize;Chunk * chunklist;char * spacep;size_t avail;};// The constructor initializes the object size and chunk list.SamplePoolAlloc::SamplePoolAlloc(int sz): mysize(sz), chunklist(0), avail(0){}// The destructor returns all of the chunks to the systemSamplePoolAlloc::~SamplePoolAlloc(){ Chunk * next;while (chunklist) {next = chunklist->next;delete [] chunklist;chunklist = next;}}pool_free_obj * SamplePoolAlloc::virt_alloc(size_t sz){ pool_free_obj * result;assert(sz == mysize);if (avail < sz) {avail = SIZE;

89spacep = new char [avail];Chunk * newChunk = (Chunk*) spacep;newChunk->next = chunklist;chunklist = newChunk;}result = (pool_free_obj*) spacep;spacep += sz;avail -= sz;return result;}B.4 Sample Class PoolAllocWithFreeOneAllclass SamplePoolWithFreeAll : public PoolAllocWithFreeOneAll {public:pool_free_obj * virt_alloc(size_t nbytes);void free_all();SamplePoolWithFreeAll(int);~SamplePoolWithFreeAll();private:enum { SIZE = 2048 };struct Chunk {Chunk * next;};const int mysize;Chunk * chunklist;char * spacep;size_t avail;};// The constructor initializes the object size and chunk list.SamplePoolWithFreeAll::SamplePoolWithFreeAll(int sz): mysize(sz), chunklist(0), avail(0){}// The destructor returns all of the chunks to the systemSamplePoolWithFreeAll::~SamplePoolWithFreeAll(){ free_all();}// The free_all member returns all the chunks to the system

90 Appendix B. Memory Allocator Implementationsvoid SamplePoolWithFreeAll::free_all(){ Chunk * next;while (chunklist) {next = chunklist->next;delete [] chunklist;chunklist = next;}}pool_free_obj * SamplePoolWithFreeAll::virt_alloc(size_t sz){ pool_free_obj * result;assert(sz == mysize);if (avail < sz) {avail = SIZE;spacep = new char [avail];Chunk * newChunk = (Chunk*) spacep;newChunk->next = chunklist;chunklist = newChunk;}result = (pool_free_obj*) spacep;spacep += sz;avail -= sz;return result;}

91Appendix C. Smart Pointer ExamplesC.1 Reference CountingReference counting requires objects to contain counters. It is convenient to associatewith the counters increment and decrement operations. We de�ne a class that provides thisbehavior. Classes that are reference counted with out reference counting smart pointersshould derive from this Counter class. This class uses an unsigned int for the referencecount.class Counter {public:typedef unsigned int counter_type;counter_type inc() { return ++count; }counter_type dec() { return --count; }Counter() : count(0) { }Counter(const Counter &) : count(0) { }private:counter_type count;}; Class Ref<T> is the smart pointer class. It's parameterized by the type of objectreferenced. This type is expected to be a class publicly derived from Counter above.template<class T>class Ref {public:Ref();Ref(T * p);Ref(const Ref& r);~Ref();const Ref<T>& operator=(T * p);T & operator*() const { return *ptr; }T * operator->() const { return ptr; }int operator==(const void * p) const { return ptr==p; }int operator==(const T * p) const { return ptr==p; }int operator==(const Ref<T>& r) const { return ptr==r.ptr;}int operator!=(const void * p) const { return ptr!=p; }int operator!=(const T * p) const { return ptr!=p; }int operator!=(const Ref<T>& r) const { return ptr!=r.ptr;}operator T *() const { return ptr; }T * value() { return ptr; }

92 Appendix C. Smart Pointer Examplesprivate:T * ptr;}; The overloaded indirection operators make this a smart pointer class. In keeping withthe advice of section 3.10.2, a global function makes available the raw pointer value of asmart pointer.template<class T>T * value(const Ref<T> & ref){ return ref.value();} The other key operations are construction, destruction, and assignment. All theseoperations manipulate reference counts. They delete an object whose reference count fallsto zero.template<class T>Ref<T>::Ref() : ptr(NULL){}template<class T>Ref<T>::Ref(T * p) : ptr(p){ if (p)p->inc();}template<class T>Ref<T>::Ref(const Ref<T> & r) : ptr(r.ptr){ if (r.ptr)r->inc();}template<class T>Ref<T>::~Ref(){ if (ptr)if (ptr->dec() == 0)delete ptr;}template<class T>const Ref<T> &Ref<T>::operator=(T * p){ if (p)p->inc();

93if (ptr)if (ptr->dec() == 0)delete ptr;ptr = p;return *this;}C.2 Optimized Reference CountingAs with regular reference counting smart pointers, the optimized pointers use a baseclass to supply the reference count. An instance of this class is used for the null object,whose address serves as the special null pointer.class Counter {public:typedef unsigned int counter_type;counter_type inc() { return ++count; }counter_type dec() { return --count; }Counter() : count(0) { }Counter(counter_type c) : count(c) { }Counter(const Counter &) : count(0) { }private:counter_type count;} nullobj(1);const void * const null = (const void *) &nullobj;The smart pointer class is nearly the same. The di�erence is that the operators that testif a pointer is NULL must compare the pointer to the special null value. These operationsare the conversion to int and the operator !.template<class T>class Ref {public:Ref();Ref(T * p);Ref(const Ref & r);~Ref();const Ref<T> & operator=(T * p);T & operator*() const { assert(value()); return *ptr; }T * operator->() const { assert(value()); return ptr; }int operator==(const void * p) const { return value()==p; }int operator!=(const void * p) const { return value()!=p; }int operator==(const Ref<T>& r) const { return ptr==r.ptr;}int operator!=(const Ref<T>& r) const { return ptr!=r.ptr;}

94 Appendix C. Smart Pointer Examplesoperator int () const { return ptr != null; }int operator ! () const { return ptr == null; }T * value() const { return ptr == null ? 0 : ptr; }private:T * ptr;}; The constructors and destructor do not need to avoid dereferencing the NULL pointer,making the routines more e�cient. Assigning or initializing a smart pointer does need tomap the NULL regular pointer to the corresponding smart pointer value.template<class T>Ref<T>::Ref() : ptr((T*) null) // Special null value{ ptr->inc();}template<class T>Ref<T>::Ref(T * p) : ptr(p){ p->inc();}template<class T>Ref<T>::Ref(const Ref<T> & r) : ptr(r.ptr){ r->inc();}template<class T>Ref<T>::~Ref(){ if (ptr->dec() == 0)delete ptr;}template<class T>const Ref<T> &Ref<T>::operator=(T * p){ if (p == 0) // Beware of NULLp = (T*) null;p->inc();if (ptr->dec() == 0)delete ptr;

95ptr = p;return *this;}C.3 RootsThe following code implements smart pointers that are indirect through a pointer table.The table automatically grows as additional pointers are created.#include <stdio.h>#include <stdlib.h>// ROOTS/** A cell in the table of direct pointers may either* be free or in use. If it is in use, it contains a* direct (T) pointer. If it is free, it is in a linked list* and therefore contains a cell pointers.*/union gccell {void * ptr;gccell * link;};#define TABSIZE (1024 * 3)/** This is the type for each array of direct pointer cells.*/struct gctable {/* the direct pointer cells */gccell vec[TABSIZE];/* our link in the linked list of vectors */gctable * next;gctable();gctable(gctable * nx);};/** The type of the abstract data type: Root Table*/class RootTable {friend void mark_all();private:

96 Appendix C. Smart Pointer Examples/* A flag to help in initializing global objects */int done_init;/* the array of direct pointers for this table */gctable tab;/* The end of the free list */gccell * tail;/* the memory manager, for read protection faulting */mmanager manager;/* lock (memory protect) the last page of the vector */void lock(gctable * tabp, int size);void unlock();/* To avoid causing a trap during marking */gctable * locked_tab;gccell * locked_addr;/* take apart and restore the free list */void unlist();void relist();gccell * get_free() { return gc_head; }void set_free(gccell * p) { gc_head = p; }private:void operator=(RootTable &) {} /* forbidden */RootTable(const RootTable &) {} /* forbidden */public:void init();RootTable() { init(); } /* construct a root tab */~RootTable(); /* destroy a root tab *//* grow the table */void grow();/* allocate a gccell */gccell * get(register void * initial) {register gccell * ptr = get_free();/* Advance the free list to the next gccell */set_free(ptr->link);/* Initialize the direct pointer */ptr->ptr = initial;return ptr;}

97gccell * get() {register gccell * ptr = get_free();set_free(ptr->link);return ptr;}// deallocate a cellvoid put(register gccell * cellp){ cellp->link = get_free();set_free(cellp);}static void mark();};extern RootTable gctab;template<class Foo>class Root {private:/* the indirect pointer */gccell * iptr;public:Root() { iptr = gctab.get(); }Root(Foo * p) { iptr = gctab.get(p); }Root(const Root & r){ iptr = gctab.get(); iptr->ptr = r.iptr->ptr; }~Root() { gctab.put(iptr); }Foo & operator*() const{ return *(Foo*)iptr->ptr; }Foo * operator->() const{ return (Foo*) iptr->ptr; }const Root<Foo> & operator=(Foo * p){ iptr->ptr = p; return *this; }int operator==(const void * vp) const{ return iptr->ptr == vp; }int operator==(const Foo * vp) const{ return iptr->ptr == (void*) vp; }int operator!=(const void * vp) const{ return iptr->ptr != vp; }int operator!=(const Foo * vp) const{ return iptr->ptr != (void*) vp; }int operator==(const Root & r) const{ return iptr->ptr == r.iptr->ptr; }int operator!=(const Root & r) const{ return iptr->ptr != r.iptr->ptr; }

98 Appendix C. Smart Pointer Examplesoperator Foo *() const{ return (Foo*) iptr->ptr; }Foo * value() { return (Foo*) iptr->ptr; }};

99References[ADH+89] R. Atkinson, Alan Demers, Carl Hauser, Christian Jacobi, Peter Kessler, andMark Weiser. Experiences creating a portable Cedar. SIGPLAN Notices,24(7):261{269, July 1989.[AEL88] Andrew W. Appel, John R. Ellis, and Kai Li. Real-time concurrent collec-tion on stock multiprocessors. In Proc. Programming Languages Design andImplementation, pages 11{20, July 1988. SIGPLAN Notices 23(7).[AL91] Andrew W. Appel and Kai Li. Virtual memory primitives for user programs.In Proc. International Conference on Architectural Support for ProgrammingLanguages and Operating Systems, pages 96{107, Santa Clara, CA, April 1991.SIGPLAN Notices 26(4).[ANS89] ANSI X3.159-1989, 1989. American national standard for the C programminglanguage.[ANS93] Draft proposed international standard for information systems|Programminglanguage C++, January 1993. ANSI document X3J16/93{0010, ISO documentWG21/N0218.[App87] Andrew W. Appel. Garbage collection can be faster than stack allocation.Information Processing Letters, 25(4):275{279, June 1987.[App89a] Andrew W. Appel. Runtime tags aren't necessary. In Lisp and SymbolicComputation, volume 2, pages 153{162, 1989.[App89b] Andrew W. Appel. Simple generational garbage collection and fast allocation.Software { Practice and Experience, 19(2):171{183, February 1989.[Bak78] H. G. Baker. List processing in real time on a serial computer. Communicationsof the ACM, 21(4):280{294, April 1978.[Bar88] Joel F.Bartlett. Compacting garbage collection with ambiguous roots. TechnicalReport 88/2, Digital Equipment Corporation, Western Research Laboratory,Palo Alto, California, February 1988.[Bar89] Joel F. Bartlett. Mostly copying garbage collection picks up generations andC++. Technical Report TN{12, DEC WRL, October 1989.[BDS91] Hans-J. Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel garbagecollection. In Proc. Programming Languages Design and Implementation, pages157{164. ACM, June 1991. SIGPLAN Notices 26(6).[Bea91] Barbara Beaudoing. Recycler-en-Marquant : un algorithme de gestion dem�emoire en temps r�eel, �Etude et implantation. Ph.D. thesis, Universit�e deParis VI, 1991.[Boe91] Hans-J. Boehm. Simple GC-safe compilation. Workshop on GC in ObjectOriented Systems at OOPSLA '91, 1991.[Bud91] Timothy Budd. An Introduction to Object-Oriented Programming. Addison-Wesley, 1991.[BW88] Hans-Juergen Boehm and MarkWeiser. Garbage collection in an uncooperativeenvironment. Software { Practice and Experience, 18(9):807{820, September1988.

100 Appendix C. Smart Pointer Examples[Cam71] J. A. Campbell. A note on an optimal-�t method for dynamic allocation ofstorage. Computer Journal, 14(1):7{9, February 1971.[CDG+88] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow, and G. Nelson.Modula-3 report. Technical report, Digital SystemsResearchCenter andOlivettiResearch Center, Palo Alto, CA, 1988.[Coh81] Jacques Cohen. Garbage collection of linked data structures. ACM ComputingSurveys, 13(3):341{367, September 1981.[Col60] G. E. Collins. A method of overlapping and erasure of lists. Communicationsof the ACM, 3(12):655{657, December 1960.[Cop92] James Coplien. Advanced C++ Programming Styles and Idioms. Addison-Wesley, 1992.[DB76] L. P. Deutch and D. G. Bobrow. An e�cient incremental automatic garbagecollector. Communications of the ACM, 19(9):522{526, September 1976.[Dep91a] Department of Defense. Mapping Rational, volume I of Ada 9X Mapping.Cambridge, MA, August 1991.[Dep91b] Department of Defense. Mapping Rational, volume II of Ada 9X Mapping.Cambridge, MA, August 1991.[Det90] David Detlefs. Concurrent garbage collection for C++. Technical Report CMU-CS-90-119, Carnegie Mellon, 1990.[Dic92] Peter Dickman. Trading space for time in the garbage collection of actors. Inunpublished form, 1992.[DLM+78] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M.Ste�ens. On-the-y garbage collection: An excercise in cooperation. Commu-nications of the ACM, 21(11):966{974, November 1978.[DMH92] Amer Diwan, Eliot Moss, and Richard Hudson. Compiler support for garbagecollection in a statically typed language. InProc.ProgrammingLanguagesDesignand Implementation, pages 273{282. ACM, June 1992. SIGPLAN Notices 27(7).[DMS92] PeterDickman, MessacMakpangou, andMarc Shapiro. Contrasting fragmentedobjects with uniform transparent object references for distributed programming.In Proc. SIGOPS 1992 European Workshop on Models and Paradigms for Dis-tributed Systems Structuring, 1992.[DN66] O. J. Dahl and K. Nygaard. Simula|An Algol-based simulation language.Communications of the ACM, 9:671{678, 1966.[DWH+90] Alan Demers, Mark Weiser, Barry Hayes, Hans Boehm, Daniel Bobrow, andScott Shenker. Combining generational and conservative garbage collection:Framework and implementations. In Proc. Principles of Programming Lan-guages, pages 261{269. ACM, January 1990.[ED93] John R. Ellis and David L. Detlefs. Safe, e�cient garbage collection for C++,February 1993. Draft in unpublished form, currently available via anonymousftp from ftp.parc.xerox.com (13.1.64.94) in pub/ellis/gc/�.[Ede90] Daniel Edelson. Dynamic storage reclamation in C++. Technical Report UCSC-CRL-90-19, Computer and InformationScience, University ofCalifornia at SantaCruz, June 1990. M.S. Thesis.

101[Ede92a] Daniel R. Edelson. Comparing two garbage collectors for C++. Technical ReportUCSC-CRL-93-20, Computer and Information Science, University of California,Santa Cruz, 1992.[Ede92b] Daniel R. Edelson. A mark-and-sweep collector for C++. In Proc. Principlesof Programming Languages, pages 51{58. ACM, ACM, January 1992.[Ede92c] Daniel R. Edelson. Precompiling C++ for garbage collection. In Proc. Interna-tional Workshop on Memory Management, pages 299{314. Spring-Verlag, 1992.Lecture Notes in Computer Science Number 637.[Ede92d] Daniel R. Edelson. Smart pointers: They're smart but they're not pointers.In Proc. Usenix C++ Technical Conference, pages 1{19. Usenix Association,August 1992.[Ell92] John R. Ellis. Con�rmation of unreachability after �nalization, 1992. Privatecommunication.[Ell93] John R. Ellis. No attempt to reclaim cycles of �nalizable objects, February 1993.Private communication.[EP92] Daniel R. Edelson and Ira Pohl. A copying collector for C++. In Proc. UsenixC++ Technical Conference, pages 85{102. Usenix Association, August 1992.[Fer91] Paulo Ferreira. Garbage collection in C++. Workshop onGC in ObjectOrientedSystems at OOPSLA '91, July 1991.[FY69] R. Fenichel and J. Yochelson. A LISP garbage-collector for virtual-memorysystems. Communications of the ACM, 12(11):611{612, November 1969.[Gab85] Richard Gabriel. Performance and Evaluation of LISP Systems. MIT Press,1985.[Gau92] Philippe Gautron. Don't convert smart pointers to void�, 1992. Private commu-nication.[Gin91] AndrewGinter. Cooperative garbage collectors using smart pointers in the C++programming language. Master's thesis, Dept. of Computer Science, Universityof Calgary, December 1991. Tech. Rpt. 91/451/45.[Gol92] Benjamin Goldberg. Tag-free garbage collection for strongly typed programminglanguages. In Proc. Programming Languages Design and Implementation, pages165{176. ACM, 1992. SIGPLAN Notices 26(6).[GR83] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Imple-mentation. Addison-Wesley Publishing Company, Reading, MA, 1983.[Gro92] Ed Grossman. Using smart pointers for transparent access to objects on disk oracross a network, 1992. Private communication.[Hay92] Barry Hayes. Finalization in the collector interface. In Proc. InternationalWorkshop on Memory Management. Spring-Verlag, 1992. Lecture Notes inComputer Science Number 637.[HM90] Antony L. Hosking and J. Eliot B. Moss. Towards compile-time optimizationsfor persistence. In Fourth InternationalWorkshop on Persistent Object Systems,pages 17{27. Morgan Kaufman (1991), 1990.[HMDW91] Richard L. Hudson, J. Eliot B.Moss, AmerDiwan, andChristopher F.Weight. Alanguage-independent garbage collector toolkit. Technical ReportCoins 91{47,University of Massachusetts, Amherst, MA 01003, September 1991.

102 Appendix C. Smart Pointer Examples[Hud91] Richard L. Hudson. Finalization in a garbage collected world. UniversityComputing Services, University of Massachusetts, Amherst, MA 01003, October1991.[ISO90] ISO 9899-1990, 1990. International standard for the C programming language.[Kar89] Kevin Karplus. Using if-then-else DAGs for multi-level logic minimization. InCharles L. Seitz, editor,AdvancedResearch inVLSI:Proceedingsof the DecennialCaltech Conference on VLSI, pages 101{118, Pasadena, CA, 20-22 March 1989.MIT Press.[Ken92] Brian Kennedy. The features of the object-oriented abstract type hierarchy(OATH). In Proc. Usenix C++ Technical Conference, pages 41{50. UsenixAssociation, August 1992.[Knu73] Donald E. Knuth. The Art of Computer Programming, volume 1. Addison,Wesley, Reading, Mass., 1973. Second ed.[KWN90] Dennis Kafura, DougWashabaugh, and Je�Nelson. Garbage collection of actors.In Proc. OOPSLA/ECOOP, pages 126{134, October 1990. SIGPLAN Notices25(10).[LH83] Henry Lieberman and Carl Hewitt. A real-time garbage collector based on thelifetimes of objects. Communications of the ACM, 26(6):419{429, June 1983.[LH89] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.ACM Transactions on Computer Systems, 7(4):321{359, November 1989.[Lon88] Darrell D. E. Long. The Management of Replication in a Distributed System.Ph.D. dissertation, University of California at San Diego, August 1988.[Mae92] Roman E. Maeder. A provably correct reference count scheme for a symboliccomputation system. In unpublished form, 1992.[Mak89] Mesaac Mounchili Makpangou. Protocoles de communication et programmationpar objets : l'exemple de SOS. Ph.D. thesis, Universit�e Paris VI, Paris (France),February 1989.[McC60] J. McCarthy. Recursive functions of symbolic expressions and their computationby machine. Communications of the ACM, 3:184{195, 1960.[MIKC92] Peter W. Madany, Nayeem Islam, Panos Kougiouris, and Roy H. Campbell.Rei�cation and reection in C++: An operating systems perspective. TechnicalReport UIUCDCS{R{92{1736, Dept. of Computer Science, University of Illinoisat Urbana-Champaign, March 1992.[Mil87] J. S. Miller. Multischeme: A Parallel Processing System Based on MIT Scheme.Ph.D. thesis, MIT, 1987. MIT/LCS/Tech. Rep.-402.[Min63] M. L.Minsky. ALISP garbage collector algorithmusing serial secondary storage.TechnicalReportMemo58 (rev.), ProjectMac,MIT,Cambridge,MA,December1963.[Moo84] David Moon. Garbage collection in a large LISP system. In Proc. Symposiumon Lisp and Functional Programming, pages 235{246. ACM, 1984.[Nil91] Kelvin Nilsen. A high-performance architecture for real-time garbage collection.Workshop on GC in Object Oriented Systems at OOPSLA '91, 1991.[Poh93] Ira Pohl. Object-Oriented Programming Using C++. Benjamin-Cummings,1993.

103[PS92] David Plainfoss�e and Marc Shapiro. A distributed GC in an object-supportoperating system. In Luis-Felipe Cabrera, Vince Russo, and Shapiro Marc,editors, Proc. Workshop on Object Orientation in Operating Systems, Dourdan,France, October 1992. IEEE, IEEE Computer Society Press.[QBQ89] Christian Queinnec, Barbara Beaudoing, and Jean-Pierre Queille. Mark DUR-ING sweep rather thanmark THEN sweep. In Proc. PARLE '89, pages 224{237.Springer-Verlag, March 1989.[Rov84] Paul Rovner. On adding garbage collection and runtime types to a strongly-typed, statically checked, concurrent language. Technical Report CSL{84{7,Xerox PARC, 1984.[Rus91a] Vincent Russo. Garbage collecting an object-oriented operating system kernel.Workshop on GC in Object Oriented Systems at OOPSLA '91, 1991.[Rus91b] Vincent Russo. Using the parallel Boehm/Weiser/Demers collector in an oper-ating system, 1991. Private communication.[Sal92] Hayssam Saleh. Conception et r�ealisation d'un syst�eme pour la programmationd'applications objets concurrentes et r�eparties sur machines parall�eles. Ph.D.thesis, Universit�e de Paris VI, 1992.[Sam92] A. Dain Samples. Garbage collection cooperative C++. In Proc. InternationalWorkshop on Memory Management. Spring-Verlag, 1992. Lecture Notes inComputer Science Number 637.[SDP92] Marc Shapiro, Peter Dickman, and David Plainfoss�e. Robust, distributedreferences and acyclic garbage collection. In Proc. Symposium on Principlesof Distributed Computing, Vancouver, Canada, August 1992. ACM.[SGH+89] Marc Shapiro, YvonGourhant, Sabine Habert, Laurence Mosseri, Michel Ru�n,and C�eline Valot. SOS: An object-oriented operating system|Assessment andperspectives. Computing Systems, 2(4):287{338, December 1989.[SGM89] Marc Shapiro, Philippe Gautron, and Laurence Mosseri. Persistence and migra-tion forC++ objects. In Stephen Cook, editor,Proc. Third EuropeanConferenceon Object-Oriented Programming, British Computer Society Workshop Series,pages 191{204, Nottingham (GB), July 1989. The British Computer Society,Cambridge University Society.[SJ84] Guy L. Steele Jr. Common Lisp: The Language. Digital Press, Burlington, MA,1984.[SMC92] Marc Shapiro, Julien Maisonneuve, and Pierre Collet. Implementing referencesas chains of links. InProc.Workshop onObjectOrientation inOperatingSystems,1992.[SN91] William J. Schmidt and Kelvin Nilsen. Architectural support for garbage-collected memory in hard real-time systems, 1991. In unpublished form.[Sta80] Thomas A. Standish. Data Structure Techniques. Addison-Wesley, 1980.[Str87] Bjarne Stroustrup. The evolution of C++ 1985 to 1987. In Proc. Usenix C++Workshop, pages 1{22. Usenix Association, November 1987.[Str91] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, secondedition, 1991.

104 Appendix C. Smart Pointer Examples[UJ88] David Ungar and Frank Jackson. Tenuring policies for generation-based storagereclamation. In Proc. Object-Oriented Programming Systems Languages andApplications, pages 1{17, September 1988. SIGPLAN Notices 23(11).[Ung84] David Ungar. Generation Scavenging: A non{disruptive high performancestorage reclamation algorithm. InSymposiumonPractical SoftwareDevelopmentEnvironments, pages 157{167. ACM, April 1984. SIGPLAN Notices 19(2).[Ung86] David Ungar. The Design and Evaluation of a High Performance SmalltalkSystem. The MIT Press, Cambridge, MA, 1986.[War87] The Soft Warehouse. muLISP Reference Manual. Honolulu, 1987.[Wei76] Charles B. Weinstock. Dynamic Storage Allocation. Ph.D. thesis, Carnegie-Mellon University, 1976.[Wen88] E. P. Wentworth. An environment for investigating functional languages andimplementations. Ph.D. thesis, University of Port Elizabeth, South Africa, 1988.[Wen90] E. P. Wentworth. Pitfalls of conservative garbage collection. Software { Practiceand Experience, pages 719{727, July 1990.[Wik87] Ake Wikstrom. Functional programming using standard ML. Prentice Hall,1987.[Wil92a] Paul Wilson, 1992. Private communication.[Wil92b] Paul Wilson. Uniprocessor garbage collection techniques. In Proc. InternationalWorkshop on Memory Management. Spring-Verlag, 1992. Lecture Notes inComputer Science Number 637.[YY91] Masahiro Yasugi and Akinori Yonezawa. Towards user (application) language-level garbage collection in object-oriented concurrent languages. In Proc. Work-shop on GC in Object Oriented Systems at OOPSLA '91, 1991.[Zor92] Benjamin Zorn. Themeasured cost of conservative garbage collection. TechnicalReport CU-CS-573-92, University of Colorado at Boulder, 1992.

