
Debugging Optimized CodeWithout Being Misled: CurrencyDeterminationMax Coppermanmax@cse.ucsc.eduUCSC-CRL-93-24Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractCorrect optimization can change the behavior of an incorrent program, therefore at times it is necessaryto debug optimized code. However, optimizing compilers produce code that impedes source-level debugging.Optimization can cause an inconsistency between where the user expects a breakpoint to be locatedand the breakpoint's actual location. This paper describes a mapping between statements and breakpointlocations that ameliorates this problem. The mapping enables debugger behavior on optimized code thatapproximates debugger behavior on unoptimized code su�ciently closely for the user to use traditionaldebugging strategies.Optimization can also cause the value of a variable to be noncurrent | to di�er from the value thatwould be predicted by a close reading of the source code. This paper presents a method of determiningwhen this has occurred, and shows how a debugger can describe the relevant e�ects of optimization. Thedetermination method is more general than previously published methods; it handles global optimizationand many
ow graph transformations, and it is not tightly coupled to optimizations performed by a partic-ular compiler. Necessary compiler support is also described.Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging | debuggingaids; D.2.6 [Software Engineering]: Programming Environments; D.3.4 [Programming Languages]: Proces-sors | code generation, compilers, optimizationGeneral Terms: Algorithms, LanguagesAdditional Keywords and Phrases: debugging, compiler optimization, reaching de�nitions, noncurrent vari-ables

1. Introduction 11 Introduction1.1 The ProblemA source-level debugger has the capability of setting a breakpoint in a program at the executable codelocation corresponding to a source statement. When a breakpoint at some point P is reached, a debuggeruser can query the value of a variable V , and the debugger will display the value in V 's storage location.Optimization may have reordered, rearranged, or even suppressed assignments to V, making the value in V 'sstorage location misleading. The debugger user may expend time and e�ort attempting to determine why Vcontains the value that has been displayed when the source code suggests that V should contain some othervalue.Figure 1.1 is an example in which constant propagation followed by dead store elimination creates thepotential for the user to be misled. Assume that the only use of x following the assignment of constantto x is the assignment of x to y. Constant propagation removes that use of x as shown in the secondcolumn of the �gure. With that use eliminated, the assignment of constant to x may be eliminated, asshown in the third column. If a breakpoint is reached anywhere following the eliminated assignment to xand the debugger is asked to display the value of x, typical debuggers will display expression. The user,looking at the original source code, may be confused by the fact that the displayed value is not constant,or may believe wrongly that the value being assigned to y is expression. At such a breakpoint, x is callednoncurrent [Hen82], and determining whether optimization has caused a variable's value to be misleading iscalled currency determination.Optimization may also introduce confusion over where execution is suspended in the program being de-bugged. The straightforward mapping of statement boundaries onto machine-code locations in unoptimizedcode is insu�cient for optimized code.Zellweger [Zel84] introduced terms for two methods of removing or ameliorating the confusion introducedinto the debugging process by optimization. One method, known as providing expected behavior, is to havethe debugger responses to queries and commands on an optimized version of a program be identical to itsresponses to the same set of queries and commands on an unoptimized version of the program. It may notalways be possible to provide expected behavior, so the next best thing is to provide truthful behavior, inwhich the debugger avoids misleading the user, either by describing in some fashion the optimizations thathave occurred or by warning the user that it cannot give a correct answer to the command or query.Figure 1.1: Potentially Confusing OptimizationsOriginal Source Code After Constant Propagation After Dead-Store Eliminationx = expression; x = expression; x = expression;...x = constant; x = constant;...y = x; y = constant; y = constant;...

2 1. Introductionvoid uses_uninitialized_variable() {int x,y;return y;}Figure 1.2: Optimization Changes Program BehaviorThe misleading e�ects of optimization may sometimes be avoided by disabling optimization when debug-ging. This may be impractical, and at best it is inconvenient, because it requires extra compilation steps. Atworst, however, it may be impossible. A program compiled with optimization enabled may behave di�erentlyfrom the same program compiled with optimization disabled|that is, when optimization is turned o�, thebug may go away.Optimization May Change the Behavior of a ProgramThere are two circumstances in which correct optimization may change the behavior of a program.1� Loose semantics:A language may contain constructs whose semantics allow multiple correct translations with distinctbehaviors. Most common general purpose programming languages do contain such constructs. Themost commonly known area of \loose semantics" is evaluation order.� Buggy programs:Optimizations are correctness-preserving transformations, but correctness-preserving transformationsare not guaranteed to preserve the behavior of an incorrect program. This is commonly overlooked butimportant because a program that is being debugged is unlikely to be correct.There is a widespread misconception that if optimization changes the behavior of a program, the compilermust be incorrect. Figure 1.2 presents an incorrect program whose behavior can be changed by correctoptimization. It is a simpli�ed example of a very common bug: using a variable that is not properlyinitialized. When uses uninitialized variable is called, a stack frame is allocated for it, within which xand y are located. 0 may be in the stack location allocated to x and 1 may in the stack location allocatedto y|1 is returned. Because x is not used, its storage may be optimized away. In the optimized version, yis located where x falls in the unoptimized version|and now 0 is returned.Because optimization can change the behavior of a program, it is necessary, upon occasion, either todebug optimized code or never optimize the code.This paper presents a mapping between statements and breakpoint locations that enables debuggerbehavior on optimized code to approximate debugger behavior on unoptimized code su�ciently closely for1If program behavior changes because optimization is incorrect, there are three options: get a di�erent compiler, get thebroken compiler �xed, or work around the bug. In practice the �rst two options may not be viable. The third option requiresthe programmer to �nd the code that causes the compiler bug to show up and replace it with semantically equivalent code onwhich the compiler functions correctly. The programmer still has to debug the (incorrectly) optimized code! Even if the choiceis made to get the compiler �xed, the programmer typically has to debug the optimized code enough to convince the compilervendor that it is a compiler bug.

1. Introduction 3the user to use traditional debugging strategies.Using this mapping, this work presents a currency determination technique that determines whether avariable has the value the user would expect when execution is suspended at one of these breakpoints. Inresponse to a query about a variable V , this technique enables a debugger to� display V 's value without comment if optimization has not given it a misleading value, or� display V 's value with a warning if optimization may have given it a misleading value. The warningcan describe how the variable may have gotten the misleading value. The debugger can distinguish thecases in which V is known to have an unexpected value from the cases in which (because of unknowncontrol
ow) it may or may not, and adjust the warning accordingly.1.2 Related WorkGeneral approaches to debugging optimized code have been:� To restrict the optimizations performed by the compiler to those that do not provoke the problem([WS78], [ZJ90]). This has the drawback that it degrades the e�ciency of software compiled with sucha compiler.� To restrict the capabilities of the debugger to those that do not exhibit the problem ([WS78], [Gup90],[ZJ90]). This is clearly undesirable, though possibly preferable to being misled by the debugger.� To recompile, without optimization, during an interactive debugging session, the region of code thatis to be debugged ([FM80], [ZJ90]). This requires a software engineering environment that providesincremental compilation. Such environments are not in general use and even should they becomecommonplace, the approach is problematic because optimization may change the behavior of theprogram.� To have the compiler provide information about the optimizations that it has performed and to havethe debugger use that information to provide appropriate behavior ([WS78], [Hen82], [Zel84], [CMR88],[ZJ90], [Gup90], [PS91], [Coh91], [CM91b], [BHS92], [PS92], [Cop92], [BW93], [AG93a]). A drawbackof this approach is that it increases compilation time and symbol table size. Experience in debuggingunoptimized code has shown that the bene�ts of source-level debugging are worth the time and spacecost.My work follows the fourth approach. Some previous work that has taken this approach has resulted incompiler/debugger pairs that are able to provide acceptable behavior when debugging optimized code becausethe debuggers have been specialized to handle the particular optimizations performed by the compiler.Because much of the industry allows compilers and debuggers to be mixed and matched, solutions thatdo not require the compilers and debuggers to be tightly coupled are preferable. This paper describes acompiler/debugger interface for currency determination that does not require that the debugger be specializedto a particular set of optimizations.Hennessy introduced the problem of currency determination [Hen82]. He presents a solution for localoptimization, assuming either that no block in the unoptimized code contains more than one assignment

4 1. Introductionto a given variable or that if it does, only the last such assignment in a block assigns to the location thatthe debugger associates with the variable [CM93]. In 1982 this was not a restrictive assumption, but todaymany debugging information formats allow the location associated with a variable to be a register. He alsointroduced the concept of recovery, in which the debugger reconstructs the value a variable should have atsome point. Coutant et al [CMR88] describes a debugger that solves several problems related to debuggingoptimized code for the particular set of optimizations performed by their compiler. Much of their workapplies beyond that set of optimizations, but their solution to currency determination applies only to localoptimization. Streepy [Str91] and Brooks et al [BHS92] present a breakpoint model designed for optimizedcode with the intent of helping the user understand the e�ects of optimization as opposed to hiding thosee�ects. Their model is largely orthogonal to the one presented herein, and a combination would work well.Cool's work also aims at helping the user understand the e�ects of optimization by using di�erent levels ofhighlighting for expressions that have not been executed, that have begun execution, and that have completedexecution, for VLIW code after instruction scheduling. Wism�uller's work [BW93], like mine, uses data
owtechniques to attack currency determination. His breakpoint model is more general and he incorporatessome aspects of recovery into his currency determination algorithm. As of this writing, his work is promisingbut incomplete. No previous work explicitly addresses optimizations that change the shape of a program's
ow graph.1.3 Overview of the SolutionThe fundamental idea behind the solution to the currency determination problem is the following: if thede�nitions of a variable V that \actually" reach a point P are not the ones that \ought" to reach P , V isnot current at P . The de�nitions of V that actually reach P are those that reach P in the version of theprogram executing under debugger control. The de�nitions of V that ought to reach P are those that reachP in a strictly unoptimized version of the program.A mapping between source statements and (optimized) executable code grounds the concept of \a pointin a program".Data-
ow analysis on a graph data structure that combines pre-optimization and post-optimizationinformation �nds the de�nitions that actually reach a point and those that ought to reach that point.This data structure must be modi�ed when optimization changes the shape of the program
ow graph, inorder to combine this information correctly.Pointers add considerable complexity to the data-
ow analysis, so a solution that works in the absenceof pointers is presented �rst, then extended to handle pointers.The work in this paper is extracted from my dissertation. The breakpoint model is similar to that inmy earlier work, but the currency determination technique di�ers. In particular, in earlier work [CM91b],two reaching de�nitions computations were performed independently, one on a pre-optimization
ow graph,and one on a post-optimization
ow graph, and the results were compared. Because the computations wereindependent, a further computation (a graph search) might be required. In this work, a single reaching

1. Introduction 5de�nitions computation is performed on a data structure that incorporates both pre-optimization and post-optimization information, eliminating the need for further computation. [Cop92] is a workshop paper thathas one foot in each camp.This work is applicable in the presence of any sequential optimizations that either do not modify the
owgraph of the program or modify the
ow graph in a constrained manner. Blocks may be added, deleted,coalesced, or copied; edges may be deleted, but control
ow may not be radically changed. Allowable
ow graph transformations are summarized in Section 4.3; they are described in detail in [Cop93]. Thetechniques presented in this paper apply in the presence of local common subexpression elimination, globalcommon subexpression elimination, constant and copy propagation, constant folding, dead code elimination,dead store elimination, cross-jumping, local instruction scheduling, global instruction scheduling, strengthreductions, code hoisting, partial redundancy elimination, other code motion, induction-variable elimination,loop unrolling, and inlining (procedure integration), as well as any other optimizations that observe theconstraints. As an example of an optimization that modi�es control
ow in a manner that does not observethe constraints, the techniques do not apply to a portion of a program that has had loops interchanged.

6 2. Breakpoint Model2 Breakpoint ModelIn an unoptimized translation of a program, code is generated for every source code statement in the orderin which it appears in the source code, and the code generated from most statements is contiguous.2 It ispossible to halt unoptimized code at a point that corresponds exactly to a statement boundary in the sourcecode by halting at (before execution of) the �rst instruction generated from the statement. When executionis suspended at statement S in unoptimized code, all \previous" statements have completed, that is, all codethat was generated from statements on the path to S has been executed. No \subsequent" statements havebegun, that is, no code that was generated from any statement on the path from S (including code generatedfrom S itself) has been executed. Because of the straightforward nature of the translation, the value in eachvariable's location matches the value of the variable that would be predicted by a close reading of the sourcecode.In general, there is no point in optimized code that corresponds exactly to a statement boundary inthe source code, that is, there is no point at which optimized code can be halted such that the abovecharacteristics hold. Some choice of breakpoint location must be made nonetheless. The choice of breakpointlocation is not crucial to the correctness of the work presented in the remainder of the paper. It is crucialthat the relative ordering of variable de�nitions and breakpoints be available, and that breakpoints beat locations that exist in both the optimized and unoptimized versions of a program. We describe onesatisfactory breakpoint model which we use throughout the paper.Zellweger [Zel84] introduced the terms syntactic and semantic breakpoints. The order in which syntacticbreakpoints are reached re
ects the syntactic order of source statements; the syntactic breakpoint forstatement n is prior to or at the same location as the syntactic breakpoint for statement n + 1. If thecode generated from statement n is moved out of a loop, a syntactic breakpoint for n remains inside theloop. The semantic breakpoint location for a statement is the point at which the action speci�ed by thestatement takes place. This does not preserve any particular order. If the code generated from statementS is not contiguous, the semantic breakpoint location depends on the de�nition of `the action speci�ed bythe statement'. If no code motion or elimination has occurred, the syntactic and semantic breakpoint for astatement are one and the same.Streepy [Str91] and Brooks et al [BHS92] describe a source-code/breakpoint-location mapping that allowsbreakpoints to be set at various levels of granularity, including expressions, basic blocks, and subroutines. Inthe debugger described by Streepy and by Brooks et al, a breakpoint is set at the beginning of each sequenceof contiguous instructions generated from the speci�ed source construct.The mapping presented below di�ers in that when a breakpoint is set on a statement, it allows thedebugger to break once each time a statement is executed. It is complementary to the mapping presentedby Streepy and Brooks et al, and they could be combined to good e�ect.2Code generated from looping or branching statements is typically not contiguous. However, this lack of contiguity is presentin the source code as well as the generated code. It can cause debugging anomalies in unoptimized code. For example, placinga breakpoint at a C for loop can cause several commonly available debuggers to either break once before loop entry or breakeach time through the loop, depending on the presence or absence of initialization code.

2. Breakpoint Model 7The view taken in this work is that the best semantic breakpoint location for a statement is the addressof the instruction that most closely re
ects the e�ect of the statement on user-visible entities (programvariables and control
ow). For statements involving program-variable updates, it is the instruction thatstores into the variable. (A \store" in this context need not be a store into a memory location. It can bea computation into a register, or a register copy, if that is the instruction that implements the semanticsof the assignment.) For control-
ow statements (branching or looping constructs), it is the instruction thataccomplishes the control transfer (typically a conditional branch), because it provides a natural sequencepoint for program dependences. An instruction whose address is the breakpoint location for a statement Sis the representative instruction for S. The C statementif ((i = j++) == k)has three representative instructions (and therefore three breakpoint locations), one at the store into j, oneat the store into i, and one at the branch to the then or else case.The syntactic breakpoint location for a statement S whose representative instruction has been movedor eliminated is the semantic breakpoint location for the next statement in the same basic block whoserepresentative instruction has not been moved or eliminated. If there is none, the syntactic breakpointlocation for S is the last representative instruction in the block. If the entire block has been eliminated, Shas no syntactic breakpoint location. The results described in the remainder of this paper hold at syntacticbreakpoints, because they are locations that are guaranteed to exist in both the optimized and unoptimizedversions of a program.

8 3. Currency3 CurrencyWhen the user asks the debugger to display the value of a variable, the user is misled if optimization hascaused the value displayed to be di�erent from the value that would be predicted by examining the sourcecode.The actual value of a variable V when execution is suspended at a breakpoint is the value in V 's storagelocation. A variable's expected value when execution is suspended at a breakpoint is the value that would bepredicted by examining the source code and knowing the relevant context, such as within which iteration ofa loop execution is suspended.In unoptimized code, at each breakpoint the expected value of every variable is identical to its actualvalue. In optimized code, the actual value of a variable at some point may di�er from its expected valueat that point. Hennessy [Hen82] introduced the terms current, noncurrent, and endangered to describe therelationship between a variable's actual value and its expected value at a breakpoint. This relationshipis described on the basis of a static analysis, one that has no information about how the breakpoint wasreached.Examples of current, noncurrent, and endangered variables are presented. All examples use program
ow graphs, where nodes represent basic blocks and edges represent block connectivity. For clarity ofexposition, the examples are minimal. The language of the examples includes assignment (a = x denotesthe assignment of x into a) and a distinguished symbol bkpt which represents the instruction at whichthe breakpoint has been reached. Assignment instructions with the same right hand side assign the resultof the equivalent computations into the left hand side; this is how the relationship between assignmentsin the unoptimized code and assignments in the optimized code is shown. While a statement in a sourcelanguage that corresponds to either an assignment or a breakpoint may compile to more than a single machineinstruction, assignments and breakpoints appearing in
ow graphs are referred to as instructions, because asingle representative instruction is chosen for each statement.Informally, a variable V is current at a breakpoint B if its actual value at B is guaranteed to be the sameas its expected value at B no matter what path was taken to B.A variable may be current at a breakpoint even if optimization has a�ected assignments into the variable.Figure 3.1 shows a case in which an assignment into a has been moved. Variable a is current at bkpt, becausethe code motion has not changed the fact that along each path a receives its value from the same assignmentin the unoptimized and optimized versions of the program.V is noncurrent at B if its actual value at B may di�er from its expected value at B no matter whatpath is taken to B (though the two values may happen to be the same on some particular input). Figure 3.2is a simple example of a noncurrent variable, and could be a result of dead store elimination (a result ofcode motion into a block not shown). There is only one way to reach bkpt in both versions of the program.There is a single assignment into a prior to the breakpoint in the unoptimized code, but in the optimizedcode there is no corresponding assignment into a along the only path to bkpt.

3. Currency 9
bkpta = x a = y bkpta = x a = yUnoptimized Optimized

Figure 3.1: Variable a is current at bkpt in the presence of relevant optimizationa = xbkpt bkptUnoptimized OptimizedFigure 3.2: Variable a is noncurrent at bkptV is endangered at B if there is at least one path to B along which V 's actual value at B may di�er fromits expected value at B. Endangered includes noncurrent as a special case.In Figure 3.3, along the left-hand path the assignment into a that reaches bkpt in the unoptimized codecorresponds to the assignment into a that reaches bkpt in the optimized code, but along the right-hand paththere is no such correspondence. a is endangered by virtue of the right-hand path, and is not noncurrent byvirtue of the left-hand path.The use of the terms current and noncurrent extends to particular paths: in Figure 3.3, a is current alongthe left-hand path and noncurrent along the right-hand path. When execution is suspended at bkpt duringsome particular run of the program, a is either current or noncurrent, depending on the path taken to bkpt.However, static analysis can determine only that a could be current or noncurrent, because knowledge ofthe path taken is absent. A debugger that has no access to execution history information can do no betterthan static analysis. Complete information about the execution path taken could be large, and collecting itcould be invasive and time consuming. An open problem, termed dynamic currency determination, is how adebugger can collect the minimal information needed to determine whether an endangered variable is currentor noncurrent when execution is suspended at a breakpoint. We assume such information is unavailable tothe debugger.In order to talk about V 's currency along a particular path, a path must be de�ned in such a way thatit makes sense in both the unoptimized and optimized versions of the program, as optimization may modifythe program's
ow graph.

10 3. Currencybkpta = xa = x a = ybkptUnoptimized OptimizedFigure 3.3: Variable a is endangered at bkptDe�nition 3.1: A path-pair p is a pair < pu; po > where pu is a path through the
ow graphof an unoptimized version of a program and po is a path through the
ow graph of an optimizedversion of the same program such that pu and po are taken on the same set of inputs.Because a path describes an entire execution, call blocks are expanded. A call block appears on a path,followed by the blocks visited in the called subroutine, followed by the call block's successor.I have been using the term `unoptimized version' as if there were a canonical unoptimized translationof a program, and similarly I have used the term `optimized version' as if there were a canonical optimizedtranslation. Of course, there are no such canonical translations. What is necessary is that there be amapping between these `versions'. The nature of the mapping will be discussed in Section 4.3. Forthe purposes of this section, simply assume all versions are produced by the same (correct) compiler,which has the same information available to it whether producing an unoptimized version or an optimizedversion. An implementation would most likely use a single compilation to produce unoptimized intermediatecode, providing all necessary knowledge about what I refer to as the unoptimized version without actuallygenerating machine code from it. It would then optimize that intermediate code to produce the optimizedversion.Parts of a path-pair are of interest, i.e., a path-pair to a breakpoint or a path-pair from one point toanother.De�nition 3.2: A path-pair p to a block B, where B is visited in both versions, is a sub-path-pair of a path-pair p0 where pu is a pre�x of p0u ending in an occurrence of B and po is a pre�xof p0o ending in the same occurrence of B.De�nition 3.3: A path-pair p from block A to block B, where A and B are visited in bothversions, is a sub-path-pair of a path-pair p0 where pu is a subsequence of p0u starting at anoccurrence of A and ending at an occurrence of B and po is the subsequence of p0o starting at thesame occurrence of A and ending at the same occurrence of B.I speak loosely of a path-pair to a breakpoint, or a path-pair from one representative instruction toanother. In these cases, I mean a path-pair to the block containing the breakpoint, or from the blockcontaining one representative instruction to the block containing the other.I make a simplifying assumption that a variable resides in a single location throughout its lifetime.Relaxing this assumption is a topic for future research. Both assignments to a variable and side e�ects onthat variable modify the value stored in that variable's location. These terms do not distinguish whether the

3. Currency 11source code or generated code is under discussion. Furthermore, they do not distinguish between unoptimizedgenerated code and optimized generated code. These distinctions are needed because we compare reachingde�nitions computed on unoptimized code with reaching de�nitions computed on optimized code. Henceforththe term assignment refers to assignments and side e�ects in the source code.It is convenient to have a term de�nition that can denote either an assignment or its representativeinstruction in unoptimized code. This does not introduce ambiguity because either one identi�es the other,and the order of occurrence is the same in the source code and unoptimized code generated from it. Incontrast, the term store denotes a representative instruction for an assignment in optimized code. As withde�nitions, a store has a corresponding assignment, but unlike de�nitions, an assignment may have nocorresponding store, and the order of occurrence of stores in the machine code may di�er from the order ofoccurrence of assignments in the source code.An optimizing compiler may be able to determine that two assignments to a variable are equivalentand produce a single instance of generated code for the two of them, or it may generate multiple instancesof generated code from a single assignment. Such optimizations essentially make equivalent de�nitions (orstores) indistinguishable from one another. We will be concerned with determining whether a store thatreaches a breakpoint was generated from a de�nition that reaches the breakpoint. If de�nitions d and d0 areequivalent, and store s was generated from d while s0 was generated from d0, the compiler is free to eliminates0 so long as s reaches all uses of d0. To account for this, s needs to be treated as if it was generated fromeither d or d0.De�nition 3.4: A de�nition of V is an equivalence class of assignments to V occurring in thesource code of a program that have been determined by a compiler to represent the same orequivalent computations, or the set of representative instructions generated from members ofsuch an equivalence class in an unoptimized version of the program.De�nition 3.5: A store into V is the set of representative instructions occurring in an optimizedversion of a program that were generated from any member of the equivalence class denoted bya de�nition.3We can now formally de�ne some of the terms described previously. The following de�nitions assumethat the breakpoint location is the same in the optimized and unoptimized version, that is, either thatthe representative instruction for the statement at which the breakpoint is set has not been moved byoptimization or that a syntactic breakpoint has been speci�ed.The de�nition of current is complicated by the fact that an assignment through a pointer (or similar alias)must not kill previous assignments, because the pointer might not be pointing at the variable of interest. Inthe presence of aliases, a sequence of de�nitions of a variable V and a sequence of stores into V might reacha breakpoint B along a given path p|this is treated in detail in Section 6. Only one de�nition (store) in thesequence is the last to assign into V , but with static analysis it is not known which one, because it is not3A store is an equivalence class by the same equivalence relation applied to de�nitions (having been determined by a compilerto represent the same or equivalent computations).

12 3. Currencyknown which pointer is an alias for V . If some de�nition through a pointer is an alias for V , the semanticsof the program may require that some other de�nition through a pointer is also an alias for V (e.g., if thevalue of the pointer has not changed). Also, we assume that on a given input, a pointer in the optimizedversion points to the same thing as the same pointer in the unoptimized version. This implies that if somede�nition through a pointer is an alias for V , the semantics of the program may require that some storethrough a pointer is also an alias for V .De�nition 3.6: A de�nition d of V is turned o� if it is assumed not to be an alias for V , andd is turned on if it is assumed to be an alias for V . If d is an alias for V , each de�nition orstore that program semantics thereby requires to be an alias for V is turned o� if and only if dis turned o�.A symmetric treatment of turned o� applies to stores, exchanging the roles of de�nitions andstores above.The ith de�nition of V along a path is written di and the ith store into V along a path is written si.De�nition 3.7: A store si quali�ed-reaches a point Bk with de�nition dj along a pathpair p toBk if dj reaches Bk along pu and if, when every dt, t > j, that follows d on pu is turned o�,and all other transparent de�nitions of V are on (except those constrained to be o� by some dt),si is the store that assigns into V along po. A de�nition di quali�ed-reaches a point Bk withstore sj along a pathpair p similarly, exchanging the roles of stores and de�nitions in the previoussentence.Note that a consequence of turning o� the dt is that stores generated from some dt are turned o� as well.De�nition 3.8: In the absence of assignments through aliases: a variable V is current at abreakpoint B along path-pair p i� the store into V that reaches B along po was generated fromthe de�nition of V that reaches B along pu.In the presence of assignments through aliases: V is current at a breakpoint B along path-pair pi� for all instances of de�nitions dj and instances of stores si such that either si quali�ed-reachesB with dj or dj quali�ed-reaches B with si along p, si is generated from dj.Clearly, assignments through aliases are a crucial part of most procedural programming languages.Because of the complexity they introduce, a treatment of currency determination in their absence is givenin Section 4, and throughout that section the simpler form of the de�nition can be assumed. The solutionis then generalized in Section 6 to handle assignments through aliases.De�nition 3.9: V is endangered at B along p if it is not current at B along p.De�nition 3.10: In the absence of assignments through aliases: V is noncurrent at B along pi� no store into V that reaches B along po was generated from a de�nition of V that reaches Balong pu.In the presence of assignments through aliases: V is noncurrent at B along p i� for all instancesof de�nitions dj and instances of stores si such that either si quali�ed-reaches B with dj or djquali�ed-reaches B with si along p, si is not generated from dj .

3. Currency 13De�nition 3.11: V is current at B i� V is current at B along each path-pair to B.De�nition 3.12: V is endangered at B i� it is endangered at B along at least one path-pair toB.De�nition 3.13: V is noncurrent at B i� V is noncurrent at B along each path-pair to B.We turn now to how to determine which state of currency a variable is in at a breakpoint.

14 4. Currency Determination4 Currency DeterminationThis section describes how to determine a variable's currency at a breakpoint. My approach to currencydetermination involves solving a set of a data
ow equations. This requires control
ow information andwithin-basic-block ordering information for de�nitions in the unoptimized program, and the same informationfor stores in the optimized program. It also requires a mapping between the unoptimized and optimizedcontrol
ow information.In this section, we simplify the presentation by assuming that no aliasing is present in the program. Oneconsequence of this assumption is that only one de�nition and one store may reach a breakpoint along asingle path. In Section 6 we present the mechanisms needed to allow aliasing.Section 4.1 introduces paired reaching sets, which make up the data in the data
ow computation.Section 4.2 discusses the data structure on which the computation is performed, and its relationship tothe unoptimized and optimized versions of a program. Section 4.4 discusses the aspects of the data
owcomputation that are particular to the problem of currency determination, Section 4.5 gives an algorithm forcomputing paired reaching sets at block boundaries, Section 4.6 extends it to compute paired reaching setsat breakpoints, and Section 4.7 describes how the results are used to determine the currency of a variable.Correctness proofs are given in [Cop93].4.1 Paired Reaching SetsI have introduced the terms \de�nition" and \store" to distinguish an assignment occurring in the sourceor unoptimized code from an assignment occurring in the optimized (or machine) code. I am now going touse de�nition/store pairs to convey some information about both a de�nition and the store generated fromit.De�nition 4.1: A ds-pair is a pair (d; s), where d is a de�nition of a variable V and s is a storeinto V .If P is the ds-pair (x; y), P:d is the de�nition element x and P:s is the store element y, giving the tautologies(x; y):d = x and (x; y):s = y.Because both de�nitions and stores are represented, the set of ds-pairs that reaches a breakpoint providescomplete information about what should reach and what does reach the breakpoint. These sets are calledPaired Reaching Sets: PRSVB is the set of ds-pairs relevant to V that reach a breakpoint B. Loosely, (d; s) 2PRSVB means d is a de�nition of V that should reach B and s is a store into V that does reach B. Moreprecisely, given a de�nition d of V and a store s into V , independent of whether s was generated from d:� (d; s) 2 PRSVB means there is a path-pair p such that d reaches B along pu and s reaches B along po.Given PRSVB :� V is current at B i� 8(d; s) 2 PRSVB, s was generated from d;� V is endangered at B i� 9(d; s) 2 PRSVB such that s was not generated from d;� V is noncurrent at B i� 8(d; s) 2 PRSVB, s was not generated from d.

4. Currency Determination 15Caveat:An infeasible path in a
ow graph is one that cannot be taken in any execution, and a feasible path isone that can be taken in some execution. Infeasible paths introduce conservative error under this currencydetermination technique. The claims just made hold for programs without infeasible paths. If (d; s) is inPRSVB by virtue of an infeasible path, and s was not generated from d, this technique will claim that Vis endangered though it may be current. However, we can do no better than the compiler, and like thecompiler, we must make the conservative assumption that all paths are feasible.4.2 The Flow Graph Data StructureThe relationship between the optimized and unoptimized code must be captured in a data structure thatcan be used by the currency determination algorithm. It may be possible to perform currency determinationusing information produced by a compiler about an unoptimized version of a program and informationproduced by a (possibly di�erent) compiler about an optimized version of the same program. We assume thatthe information used to do currency determination on a compilation unit is produced in a single compilation.Also, information about the unoptimized version of the program is taken from the compiler's intermediaterepresentation of the program prior to the optimizing phases (independent of whether code is generated foran unoptimized version), thus the full facilities of the compiler are available to produce information aboutthe relationship between the unoptimized `version' and the optimized version.Currency determination needs the following:� The assignments that constitute a de�nition,� the `generated from' relationship between de�nitions and stores (from these two pieces of information,the machine-code instructions that constitute a store can be determined);� the execution order of statements and side e�ects within a basic block, for blocks in both the optimizedand unoptimized versions, and� the correspondence between the
ow graphs for each version.The particular encoding of the information is not important here. One possible encoding is described inSection 7. Here we assume that the �rst three items are available and discuss the fourth.Some data structures must represent the
ow graphs for each version and the correspondence betweenthem. Hereafter, the term source graph refers to the
ow graph for the unoptimized version, and objectgraph refers to the
ow graph for the optimized version. DS-graph refers to the data structure used to mapbetween them, upon which the data
ow computation is performed.The DS-graph construction is constrained such that a node in the DS-graph is derived from a block in thesource graph, from a block in the object graph, or from both. The constraints are described in Section 4.3.A node B in the DS-graph selects the block(s) it is derived from: B selects at most one basic block Buin the source graph and B selects at most one basic block Bo in the object graph. B contains orderinginformation about de�nitions occurring in Bu in a de�nition list. If no block Bu is selected, B contains

16 4. Currency Determinationan empty de�nition list. Similarly, B contains ordering information about stores occurring in Bo in a storelist|if no block Bo is selected, B contains an empty store list. A path p through the DS-graph selects puwhere pu is the sequence of blocks in the source graph selected by the sequence of nodes in p, and p selectssequence po in the object graph similarly. We shall see that by DS-graph construction, pu forms a paththrough the source graph and po forms a path through the object graph, and < pu; po > is a path-pair.The correspondence between blocks and edges in the source and object graph is immediate when op-timization has not caused the object graph to di�er in shape from the source graph. When optimizationcauses changes in the object graph, these changes must be re
ected in the DS-graph.If (d; s) 2 PRSVB is to mean that there is a path-pair < pu; po > such that d reaches B along pu and sreaches B along po, then the path through the DS-graph that caused (d; s) to be placed into PRSVB mustselect < pu; po >.A feasible path in the DS-graph is one that selects paths that can be taken in some execution. TheDS-graph will contain infeasible paths (i.e., paths that select path-pairs through which execution cannotproceed) if the object graph contains infeasible paths. It would clearly be preferable to construct the DS-graph so that it contains only feasible paths, but it is not possible in general to determine which pathsthrough a
ow graph are feasible.De�nition 4.2: A DS-graph is valid if and only if every path p through the DS-graph denotesa path-pair, that is, the pair of paths < pu; po > selected by p is a path pair, and every feasiblepath-pair is denoted by some path through the DS-graph.For the purposes of this discussion, we assume that for each node in the DS-graph,� there is a list of the de�nitions that are in the block in the source graph selected by the node, inexecution order. Because this list contains de�nitions, I call it the de�nition list. This is equivalent toa list of statements and side e�ects that appear in that block, in the order in which they appear in thesource code.� there is a list of the stores that are in the block in the object graph selected by the node, in executionorder. Because this list contains stores, I call it the store list. This is again equivalent to a list ofstatements and side e�ects that appear in that block, but execution order in the optimized version isnot equivalent to source order.The de�nition list must order de�nitions relative to possible breakpoint locations. Similarly, the store listmust order stores relative to possible breakpoint locations.These assumptions guarantee that if a node appears in a path through a valid DS-graph, the code in theunoptimized version represented by that node is the code that would be executed (in proper order) if theblock represented by that node were visited on that path, and we have the analogous guarantee relative tothe optimized version.A node n in the DS-graph may select a block in one version that does not exist in the other version,in which case n does not select any block in the latter version. The DS-graph is constructed so that theappropriate list (de�nition or store) is empty for n. For example, if a loop pre-header were introduced by

4. Currency Determination 17optimization, the DS-graph will have a node that selects the pre-header in the object graph, does not selectany block in the source graph, and has an empty de�nition list.4.3 Graph TransformationsThe DS-graph begins isomorphic to the source graph, with de�nition lists replacing the code withinblocks, and where each node selects the block it maps to. Before any optimizations change its shape, it isclearly valid.DS-Graph Creation Rule:� A DS-graph is created before any optimization has been performed. At the same time, the object graphis created. The object graph is a copy of the source graph. For each block Bu in the source graph,a DS-graph node B is created such that B selects Bu and Bo. The de�nition list for B is abstractedfrom the code in Bu and copied to the store list for B. For each edge (hu; tu) in the source graph, edge(ho; to) is in the object graph and edge (h; t) is in the DS-graph. The name of a block in the sourcegraph is subscripted by u and the name of a block in the object graph is subscripted by o, thus Bo isa copy of Bu.Any changes made to the shape of the
ow graph by optimization are re
ected in changes to the shapeof the DS-graph and are constrained by the graph transformations shown below and described in detail inAppendix A. These transformations maintain the validity of the DS-graph. This currency determinationmethod applies only to optimizations that change the
ow graph in a manner that can be modelled by iterativeapplication of these transformations. A transformation on the DS-graph accompanies each transformation onthe object graph. A transformation is applied to the DS-graph only when the accompanying transformationis applied to the object graph, thus a transformation is applied only if it is semantically valid.Some of the graph transformations copy nodes in the DS-graph when at �rst glance it seems unnecessary.The reason for these copies is that when transformations are composed, operations are done on all subpathsin the DS-graph that correspond to an edge in the object graph. If a node in the DS-graph were on morethan one such subpath, the transformations could not successfully be composed.Graph Transformations:1. Introducing a block. An example of this transformation is shown in Figure 4.1.2. Deleting a block (shown in Figure 4.2).3. Deleting an edge (Figure 4.3).4. Coalescing two blocks into a single block (Figure 4.4).5. Inlining a subroutine (Figure 4.5).6. Unrolling a loop (Figure 4.6).7. No optimization other than those described in one of the other object graph transformations maymodify control
ow in a way that changes the order that blocks are entered on a particular input.A mechanism that allows truthful (but not expected) behavior in the presence of optimizations thatviolate this constraint is described in [Cop93].

18 4. Currency Determination1 1 24 4 5 53 21 23 4 5 1 24 52 24 46 6 6 65 51 1 1 24 56
S DSn OnDSn+1 On+1A nodeselects block j in S andblock k in Oi. in DSikjFigure 4.1: Graph Transformation 1: Introducing a block. In the object graph, a block is introducedbetween a complete bipartite subgraph. In DSn, there is a path corresponding to each edge deletedin the object graph transformation. A node selecting the introduced block is added to the end ofeach such path. 1 23 45 6 1 1 2 23 4 45 5 661 1 2 23 35 5 44 4 46 6

1 24 651 25 6
S DSn OnDSn+1 On+1Figure 4.2: Graph Transformation 2: Deleting a block. In the object graph, predecessors andsuccessors of the deleted block form a complete bipartite subgraph in the resulting graph. In theDS-graph, one path is constructed for each edge introduced in the object graph transformation.Nodes are duplicated so that each such path selects the requisite blocks in the source graph.

4. Currency Determination 191 245 63 1 23 45 61 25 64
1 23 45 61 25 64 1 2

1 245 645 6
S DSn On

DSn+1 On+1
Figure 4.3: Graph Transformation 3: Deleting an edge. An edge is deleted in the object graph.Paths selecting that edge in DSn are deleted, and all edges out of nodes that are subsequentlyunreachable are deleted. 123 4 12 123 3 4 412 13 3 4 4M 13 4(2) M

123 4S DSn OnDSn+1 On+1Figure 4.4: Graph Transformation 4: Coalescing two blocks.

20 4. Currency Determination1 2 1 2call start1 2
1
1StartCall 1

1 2 2
22 Start

call1 call2 startstartSucc succ
succ

succCall Call Start
ExitCall callSucc

succexit Exit exitstartExit exit exitstart
startexitStartExitSucc exit

S DSn On
DSn+1 On+1

Figure 4.5: Graph Transformation 5: Inlining a subroutine. The duplication of the call node isnecessary to preserve DS-graph characteristics needed by other transformations.Given a valid DS-graph, if any of these modi�cations are performed, the result is a valid DS-graph. Notethat optimizations that do not modify the shape of the
ow graph preserve the validity of the DS-graph. Manyoptimizations modify the
ow graph only in ways that can be modelled by these DS-graph modi�cations, butarbitrary optimization is not modelled. For example, recognizing bubblesort in the unoptimized version andreplacing it with quicksort in the optimized version clearly involves graph modi�cations beyond the scope ofthese transformations. Loop interchange cannot be modelled because it changes the order in which blocksare entered.The data
ow computation is performed on the DS-graph. We turn now to the nature of that computation.4.4 Data
ow on DS-PairsThe Gen DS-Pair Analogous to the Gen set of standard data-
ow algorithms, a Gen ds-pair containsinformation about what is generated in a block. In the absence of aliasing, there is exactly one Gen ds-pairfor a given variable in each block. The Gen ds-pair for a variable V and a block B is written GenVB . GenVB is(d; s), where d is the last de�nition of V on B's de�nition list or null if there is none, and s is the last storeinto V on B's store list or null if there is none. Only Gen ds-pairs may have null entries. Ds-pairs with nullentries do not appear in the In or Out sets of a block or in PRSVB.

4. Currency Determination 21EBSucc ebEBSucc succ ebsuccebEBEBSucc succ ebsucce1 e1b1 b1
S DSn OnOn+1DSn+1

Figure 4.6: Graph Transformation 6: Unrolling a loop. The loop is unrolled once here. Theunshown body of the loop may di�er between the source graph, object graph, and DS-graph dueto previous tranformations, but varies between On and On+1, and between DSn and DSn+1, onlyin the manner shown.The � Operation In a standard data
ow computation, a de�nition in a block kills de�nitions (of thesame variable) that reach the entry of the block. In the currency determination data
ow computation givenin Algorithm PRS, de�nitions kill de�nitions, and stores kill stores. If GenVB .d = d, ds-pairs reaching theexit of B contain d as their de�nition element. If GenVB .d = null, ds-pairs reaching the exit of B containthe same de�nition element they had at the entry of B. Stores are handled analogously. This is representedwith the operator �:De�nition 4.3: (e; t)� (null; null) = (e; t)(e; t)� (d; null) = (d; t)(e; t)� (null; s) = (e; s)(e; t)� (d; s) = (d; s)The �[Operation Multiple ds-pairs may reach the entry of a block. The �[operation de�nes the ds-pairsthat reach the exit of a block, given all of the pairs that reach block entry. The �[operation takes a set (theIn set for a block) as its left operand, whereas the � operation takes a single ds-pair as its left operand.If the block generates both a store and a de�nition, its Out set will contain the ds-pair consisting of that

22 4. Currency Determinationstore and de�nition, and if it contains a null in either position (or both), its Out set depends on the In set.Since every variable is de�ned to have an initial de�nition and store, propagation will eventually cause anyreachable block to have a nonempty In set.If the In set is empty, the Out set is the set of complete ds-pairs (those containing no nulls) in the Genset, and if the In set is not empty, the Out set is the set of ds-pairs produced by individual � operationsbetween each ds-pair in R and the ds-pair S:De�nition 4.4: Complete(S) = � ; if d = null or s = null(d; s) otherwiseDe�nition 4.5: R �[S = � Complete(S) if R = ;fr � Sjr 2 Rg otherwise4.5 Paired Reaching Sets at Block BoundariesAlgorithm PRS computes paired reaching sets at block boundaries for a DS-graph component (a subrou-tine). A source node, Start, is grafted on to the component to provide a place for initial de�nitions (d-init)and stores (s-init) representing the creation of variables. The algorithm consists of an initialization stepand an iterative step. (If the DS-graph component is a subroutine, line 1 of Initialize should set GenVStart to(d-incoming,s-incoming) when V is a parameter.)InitializeInput:a component of the DS-graph, modi�ed by the addition of a Start node;Output:the Gen sets of each variable for each block.Step 1:0 for each variable V1 GenVStart = (d-init; s-init)2 for each node B other than Start3 set GenVB:d to the last de�nition of V in the de�nition list of Bor to null if there is none4 set GenVB:s to the last store into V in the store list of Bor to null if there is noneEnd of InitializeIterateInput:a component of the DS-graph, modi�ed by the addition of a Start node,the Gen sets of each variable for each block;Output:

4. Currency Determination 23the paired reaching sets of each variable at each block boundary.0 for each variable V1 for each block B2 InVB = OutVB = ;3 iteratively compute InVB and OutVB until convergence, according to the following,4 for each block B5 InVB = SP OutVP for P predecessors of B6 for each block B7 OutVB =InVB �[GenVBEnd of IterateAlgorithm PRSInput:a component of the DS-graph, modi�ed by the addition of a Start node,Output:the paired reaching sets of each variable at each block boundary.0 Initialize1 IterateEnd of Algorithm PRS4.6 Paired Reaching Sets at BreakpointsAlgorithm PRS provides In and Out sets at block boundaries. Our goal is to determine a variable'scurrency at a breakpoint, which may be in the middle of a block rather than at a block boundary. Thede�nitions of current, noncurrent, and endangered refer to `a breakpoint B' that lies on a path-pair. Thisis well-de�ned for syntactic breakpoints, but not for semantic breakpoints whose representative instructionhas been moved by optimization, so we compute paired reaching sets at syntactic breakpoints only. Theconsequences of this are that a block containing the breakpoint is present in both the source and the objectgraphs, and the breakpoint is on both the de�nition list and the store list for some block in the DS-graph.Note that for a syntactic breakpoint for a statement that has been moved or eliminated, the element on thestore list representing the breakpoint is the representative instruction for a following statement.PRSVBk, the set of ds-pairs relevant to V that reach a breakpoint Bk, is derived from the In sets computedby Algorithm PRS.Initialize-BKInput:a variable V , a syntactic breakpoint Bk, and the node B containing Bk;

24 4. Currency DeterminationOutput:The Gen set of V for B at Bk;0 Set GenVBk:d to the last de�nition of V prior to Bk on B's de�nition list,or to null if there is none.1 Set GenVBk:s to the last store into V prior to Bk on B's store list,or to null if there is none.End of Initialize-BKAlgorithm PRS-BKInput:a variable V , a syntactic breakpoint Bk, the node B containing Bk, and InVB ;Output:The paired reaching set of V at Bk;0 Initialize-BK1 PRSVBk = InVB �[GenVBkEnd of Algorithm PRS-BK4.7 A Variable's CurrencyThe contents of PRSVBk tell us V 's currency:Theorem 4.6: PRSVBk = ; i� either V is not in scope at Bk or Bk is unreachable. Otherwise:V is current at Bk i� 8(d; s) 2 PRSVBk, s was generated from d;V is endangered at Bk i� 9(d; s) 2 PRSVBk such that s was not generated from d;V is noncurrent at Bk i� 6 9(d; s) 2 PRSVBk such that s was generated from d.Theorem 4.6 is proven in [Cop93].

5. When a Variable is Endangered 255 When a Variable is EndangeredWhen the debugger is asked to display a variable, it determines whether the variable is current. Ifthe variable is current, the debugger displays its value without comment. If the variable is endangered, inaddition to displaying its value, the debugger can give the user some help in understanding why the value isendangered. The general
avor of what the debugger can do is given by the following sample message thatmight accompany the display of variable a when the optimization shown in Figure 5.1 has occurred.\Breakpoint 1 has been reached at line 339. a should have been set at line 327. However,optimization has moved the assignment to a at line 342 to near line 336. a was actually set atone of lines 327 or 342."The information contained in this message is available from the paired reaching set PRSa339 and theunoptimized and optimized
ow graphs. The description of the e�ects of optimization will vary in speci�cityas the e�ects of optimization vary in complexity.Figure 5.1: The display of a could be accompanied by this message: \Breakpoint 1 has been reachedat line 339. a should have been set at line 327. However, optimization has moved the assignmentto a at line 342 to near line 336. a was actually set at one of lines 327 or 342."
339a = y 327bkpta = x 339342 bkpt336 a = x 336a = y 327OptimizedUnoptimized (342)

26 6. Transparency6 Transparency6.1 Assignments Through AliasesConsider an assignment �P through a pointer (or through an array element where the index is a variable)that could point to V . When execution is suspended at a breakpoint B, �P may be an alias for V . �Pmust be considered to be a de�nition of V that reaches B. If �P is not an alias for V in some particularexecution, the value that V contains at the breakpoint came from whatever de�nition would have reached if�P were not present. Therefore, this de�nition must also be considered to reach B. For any language thatallows such aliasing, the assumption of a single de�nition reaching along a given path-pair does not hold.If there are multiple de�nitions of V that reach B along p, all of them but one (the one furthest fromB on p) must be assignments through aliases, because other kinds of assignments kill prior de�nitions. Anassignment through an alias is de�ned as such by its ambiguity about whether V is assigned into, because ifit can be determined that an assignment through a pointer does assign into V every time, that assignmentkills prior de�nitions, and if it can be determined that an assignment through a pointer never assigns intoV , the assignment is not a de�nition of V .6.2 De�nitions and Stores RevisitedThe computation of paired reaching sets depends on the de�nition of � given in Section 4.4, which inturn depends on the assumption that a data object assigned a value within a basic block is unconditionallya�ected by the assignment. This plays out as an assumption that de�nitions kill de�nitions and stores killstores. This assumption holds for direct assignments but not for assignments through aliases. Because wehave two kinds of assignments with di�erent characteristics, we need two kinds of de�nitions and stores.De�nitions and stores that are unambiguous as to the variable that is a�ected we call opaque. De�nitionsand stores that a�ect one of a set of variables such that it cannot be determined at compile time whichvariable will be a�ected, we call transparent . Thus *p = 0; is a transparent de�nition of V unless thecompiler determines that p cannot point to V at that assignment. V is one member of the set of variablesthat might be a�ected by the de�nition, and p is called a transparent de�ner.It may be that p never points to V , but the compiler cannot determine that. The debugger can do nobetter; we must treat assignments through p as if they can a�ect V .It can be shown that a compiler can make an assignment through a pointer that is not current withoutviolating program semantics. The circumstances under which a compiler can do so are su�ciently constrainedthat for the remainder of this work, I assume that transparent de�ners are current at each of their uses.6.3 � RevisitedThe introduction of transparent de�nitions requires a rede�nition of the � operator so that transparentde�nitions and stores do not kill elements that should reach subsequent points in the program. The rightoperand of � is doing the killing, so we do not need to worry about the transparency of the left operand. We

6. Transparency 27(e; t)� (d; s) d is null d is opaque d is transparents is null (e; t) (d; t) (e; t)(d; t)s is opaque (e; s) (d; s) (e; s)(d; s)s is transparent (e; t) (d; t) (e; t)(e; s) (d; s) (d; s)(e; s)(d; t)Table 6.1: This rede�nition of � overgenerates ds-pairs.p = &V;: : :if (cond) {: : :*p = x; // This is d.p = &W;}< e; t >< d; t >< d; s >< e; s >d,s < e; t >e, t
Figure 6.1: e is a de�nition of V and t is a store into V . Whether d is a de�nition of V and s isa store into V depends on which assignment to p reaches the assignment through p. (d; t) is aninfeasible ds-pair because d de�nes V only when s stores into V , in which case s kills t. (e; s) is aninfeasible ds-pair for similar reasons.could rede�ne � by independently letting an opaque de�nition of V kill other de�nitions of V , transparentand opaque alike, and letting an opaque store into V kill stores into V , transparent and opaque alike, whilenot letting a transparent de�nition of V kill de�nitions of V and not letting a transparent store into V killstores into V . Such a de�nition is given in Table 6.1. However, this overgenerates ds-pairs.As a motivating example, suppose there is a block B containing the de�nition d whose source code is *p= x, where p may point to V and the store s generated from d has survived the optimizer without beingmoved or eliminated. GenVB is (d; s), and d and s are transparent. Assume that no optimization has a�ectedassignments into p. Then on a given execution, either V is a�ected (p points to V) or V isn't a�ected (pdoesn't point to V). In this case, although (d; t) 2 (e; t)�(d; s), there is no input on which d reaches the exitof B in the unoptimized version and t reaches the exit of B in the optimized version. This is illustrated inFigure 6.1.In general, let s be a store through some pointer, d be the de�nition that generated s, and B be abreakpoint. If in every execution in which s can a�ect V at B, d reaches B, then at B, any ds-pair (d; x)where x 6= s or (x; s) where x 6= d is called infeasible. Such a ds-pair does not represent a de�nition that

28 6. Transparencyreaches B in the unoptimized code and the store that reaches B on the same input in the optimized code.The de�nition of � in Table 6.1 places infeasible ds-pairs in paired reaching sets, and its use would result inconservative errors in the results.Constrained Transparency Many compilers do not do su�cient pointer analysis to optimize transparentassignments, and therefore do not eliminate or move them. Handling transparency in its full generality ismore complex and costly than currency determination in the absence of transparency. The constraints thata lack of pointer analysis imposes on the optimizer allow for a middle ground in terms of cost and complexity.[Cop93] describes algorithms that take advantage of these constraints.6.4 Unconstrained TransparencyIf transparent assignments may be eliminated or moved, a transparent ds-pair in a Gen set may containnulls. Furthermore, a block may contain a de�nition d and a store s not generated from d. As a consequence,there are circumstances in which any of the ds-pairs produced by the de�nition of � given in Table 6.1 arefeasible and other circumstances in which some of them are infeasible. Figure 6.2 exempli�es the impossibilityof producing only feasible ds-pairs in the presence of unconstrained transparency with the mechanismspresented so far. It is possible to distinguish the circumstances in which � will produce an infeasible ds-pair from the circumstances in which it will produce a feasible ds-pair, but only with knowledge of whichde�nitions or stores are generated along the same path|information not available to �.To capture this further information, ds-pairs are extended to ds-list-pairs|pairs of lists rather than pairsof elements. The de�nition element in a ds-list-pair for a variable V is the list of de�nitions of V that reacha block B along a path p, in the order that they occur on p. The store element is the list of stores into Vthat reach B along p, similarly ordered. It follows that the �rst element in each list is opaque and the restare transparent. Figure 6.3 is the example from Figure 6.2 using ds-list-pairs instead of ds-pairs.The type of �'s operands has been modi�ed, so it is necessary to rede�ne �. The list operations are thesame for de�nitions and stores, and are performed independently on de�nitions and stores, so I introduce alist operator `. The empty list is expressed as null, and j is used as a list concatenation operator. Given twolists x and y:De�nition 6.1: x ` y = 8<: x if y = nully if an element of y is opaquexjy if all elements of y are transparentThen given two ds-list-pairs (el; tl) and (dl; sl):De�nition 6.2: (el; tl)�(dl; sl) = (el ` dl; tl ` sl)With multiple assignments encoded in a single ds-list-pair, we return to a situation in which the Gen setfor a block is a single entity.

6. Transparency 29e, t1 (e; t)d 32 f, u(f; u)s4(e; t)(d; t) (e; t)(e; s)(d; s)(f; u)(f; s)(d; t)Figure 6.2: If transparent store s is not generated from transparent de�nition d, all ds-pairs in theOut set of node 4 are feasible. If s is generated from d, (d; t) and (e; s) are infeasible. However,(f; s) is feasible. The salient di�erence between (e; s) and (f; s) is that e and d reach node 4 alongthe same path, while f and d do not.
(ed; ts)(f; us)
e, t12 3 f, u(e; t)d(ed; t) (f; u)4 sFigure 6.3: This is the example from Figure 6.2 recast to use ds-list-pairs. Encoded in the ds-list-pairs is the fact that e and d reach node 4 along the same path while f and d do not.

30 6. Transparency�[in the Presence of Unconstrained TransparencyComplete must be rede�ned to act on ds-list-pairs:De�nition 6.3: Complete((dl ; sl)) = � ; if dl or sl is null(dl; sl) otherwiseDe�nition 6.2 de�nes � as an append operation on transparent de�nitions. Repeated � operations ona loop containing only transparent de�nitions of V result in lists that grow inde�nitely, as the de�nitionsand stores within the loop get appended ad in�nitum. We can construct ds-list-pairs that do not growinde�nitely by including only the last occurrence of any duplicated de�nitions and stores. There are cases inwhich information about currency is lost unless the last two instances of a de�nition or store are included inthe ds-list-pairs. In these cases, the choice is between an algorithm that has the potential for non-conservativeerror (in which an endangered variable may be reported as current) and a more complex algorithm that hasgreater potential for conservative error (a current variable may be reported as endangered). These cases arediscussed in Section 6.6. For reasons presented in that section, I have chosen the former of these alternatives,thus the algorithm presented below has the potential for non-conservative error.The ds-list-pair construction method given below preserves the characteristic that the ith store in a ds-list-pair is generated from the ith de�nition in that ds-list-pair for all i if and only if V is current along thepath from which that ds-list-pair is derived, except in the cases discussed in Section 6.6 (this is shown in[Cop93]).De�nition 6.4: Let xl =< x1; x2; : : : ; xi; : : : ; xj; : : : ; xn > where xi and xj, are in the sameequivalence class. Thenlast(xl) =< x1; x2; : : : ; xi�1; xi+1; : : : ; xj; : : : ; xn >, andlast�(xl) is the result of applying last to xl repeatedly until each equivalence class is representedat most once.Last(dl; sl) = (last�(dl); last�(sl))R �[S = 8<: Last(Complete(S)) if R = ;Last(Complete(S)) if 9e 2 Complete(S) such that e is opaquefLast(r � s)jr 2 R; s 2 Sg otherwise6.5 Currency in the Presence of Unconstrained TransparencyHere I present algorithms modi�ed to handle unconstrained transparency. Again, most of the additionalwork has been incorporated into the de�nition of �[, so only the initialization phase of each algorithm needsmodi�cation.InitializeTInput:a component of the DS-graph, modi�ed by the addition of a Start node;Output:the Gen sets of each variable for each block.

6. Transparency 310 for each variable V1 GenVStart = (d-init; s-init)2 for each node B other than Start3 dl = null4 for each de�nition d of V in B's de�nition list, in order of appearance5 dl = dl ` d6 sl = null7 for each store s into V in B's store list, in order of appearance8 sl = sl ` s9 GenVB = (dl; sl)End of InitializeTAlgorithm PRSTInput:a component of the DS-graph, modi�ed by the addition of a Start node,Output:the paired reaching sets of each variable at each block boundary.0 InitializeT1 IterateEnd of Algorithm PRSInitialize-BKTInput:a variable V , a syntactic breakpoint Bk, and the node B containing Bk;Output:The Gen set of V for B at Bk;0 dl = null1 for each de�nition d of V prior to Bk on B's de�nition list, in order of appearance2 dl = dl ` d3 sl = null4 for each store s into V prior to Bk on B's store list, in order of appearance5 sl = sl ` s6 GenVBk = (dl; sl)End of Initialize-BKTAlgorithm PRS-BKTInput:a variable V , a syntactic breakpoint Bk, the node B containing Bk, and InVB ;

32 6. TransparencyOutput:The paired reaching sets of V at Bk;0 Initialize-BKT1 PRSVBk = InVB �[GenVBkEnd of Algorithm PRS-BKTOnce again, the contents of PRSVBk tell us V 's currency. Excepting the cases discussed in Section 6.6:� The ith store in a ds-list-pair is generated from the ith de�nition in that ds-list-pair if and only if V iscurrent along the path from which that ds-list-pair is derived.� Each ds-list-pair e tells us whether V is current along the set of paths from which e is derived.� All paths are represented by some ds-list-pair in PRSVBk.In other words, PRSVBk contains the interesting ds-list-pairs, that is, PRSVBk contains a set of ds-list-pairsthat is (nearly) su�cient to determine V 's currency.De�nition 6.5: V is current at Bk by ds-list-pair e i� V is current along each path p to Bksuch that e is is derived from p.The following theorem does not hold in the cases discussed in Section 6.6.Theorem 6.6: PRSVBk = ; i� either V is not in scope at B or B is unreachable. Otherwise:V is current at Bk i� V is current at Bk by e, 8e 2 PRSVBk;V is endangered at Bk i� 9e 2 PRSVBk such that V is not current at Bk by e;V is noncurrent at Bk i� 6 9e 2 PRSVBk such that V is current at Bk by e.In [Cop93], Theorem 6.6 is proven for most cases. It is shown how it fails for some exceptional cases,which are discussed below.6.6 Cases in which the Algorithm May ErrConsider the case in which a loop-invariant transparent assignment to V is moved to a loop pre-header.Let the loop be L, the invariant de�nition of V in L be dx and the store generated from dx be sx. (In general,I use the naming convention that a de�nition dx generates the store sx.) Let p be a path to a breakpointBk (where Bk is after L) that contains two or more iterations of L. Although the argument made here doesnot depend on it, for simplicity of presentation assume that no other transparent assignments to V reachBk. Then the sequence of de�nitions of V that reach Bk along p is < d1; d2; d3; : : :dn > where there aren� 1 interations of L in p, and d2 through dn are instances of dx. The sequence of stores into V that reachBk along p is < s1; s2 > where s2 is sx, in the pre-header. d1 and s1 are the opaque de�nition of V andstore into V that reach Bk from above the loop.Assuming that s1 is generated from d1, V is current at Bk: either s1 quali�ed reaches Bk with d1or s2 quali�ed reaches Bk with dn. (s2 cannot quali�ed reach with di, 1 < i < n, because that wouldturn o� dn, which would turn o� not only s2 but also di.) This case is handled correctly|ds-list-pair

6. Transparency 33(< d1; dx >;< s1; sx >) is derived from p. This same ds-list-pair is derived no matter how many times ptraverses L.Note that if the last two duplicate de�nitions in a loop were recorded in ds-list-pairs, then we wouldhave the ds-list-pair above from a path that traverses L once, and we would have ds-list-pair (< d1; dx; dx >;< s1; sx >) from paths that that traverse L more than once, and we would report that V is endangered,because of the mismatching ds-list-pair.Now suppose instead that the left-hand-side of dx and sx is not loop invariant. Turning o� some di, i > 1,does not turn o� all di, so s1 quali�ed reaches Bk with any di. In this case, V is endangered, but would bereported as current. Note that if the last two duplicate de�nitions in a loop were recorded in ds-list-pairs,then we would report V as endangered. This is a semantically pathological case, as the compiler could onlymove sx to a pre-header if it determined that all data that sx can a�ect is dead, in which case it shouldeliminate sx entirely.There are other cases involving two assignments in a loop in which we would report V as current when Vis endangered. I expect them to occur rarely, but I do not know that they are all semantically pathological.[Cop93] delimits the cases in which this kind of non-conservative error can occur. They involve assignmentswithin a loop, a�ected by optimization in such a way that some variable they both can a�ect is currentif the loop is traversed once, but endangered if the loop is traversed more than once. The compiler musthave determined that all variables potentially a�ected by both assignments are dead in order to perform theoptimization.This source of non-conservative error could perhaps be eliminated by recording in the ds-list-pairs thelast two duplicate de�nitions or stores that occur within a loop, rather than the last one, but that wouldintroduce conservative error in the commonly occurring case of loop-invariant code motion. To eliminateboth the non-conservative error and the error in the case of loop-invariant code motion, an algorithm mustdistinguish transparent assignments whose left-hand-sides are loop invariant from those whose left-hand-sidesare not. Perhaps future research will uncover a method of distinguishing these and using the informationfelicitously. Until that time, I prefer the non-conservative error because the algorithm is more elegant, errorswill occur less frequently, and the errors that do occur occur in possibly pathological cases involving pointers.

34 7. Design Issues7 Design IssuesThe material in this section is an architectural design to guide the implementation of the presentedmethod of currency determination. This method of currency determination requires considerable supportfrom the compiler. If the debugger is to run the algorithms presented in Sections 4 and 6, the compiler mustproduce the DS-graph for the debugger to run them on.The DS-graph is not a static object. As optimization transforms the object graph, the DS-graph getstransformed. In Sections 4 and 6 we assumed that the de�nition and store lists were correct at each point.These also will be modi�ed as optimization proceeds. Both the graph transformations and the de�nition andstore list modi�cations have implications for the compiler's data structures. The data structures that areappropriate during compilation are di�erent from those that are appropriate once compilation has completed.Section 7.1 describes an abstraction of a set of data structures for the DS-graph and part of the object graphthat can easily be mapped to an imperative programming language.Once compilation is complete, the DS-graph must be emitted for use by the debugger. It di�ers somewhatin organization from the DS-graph used during compilation, and the di�erences are described in Section 7.2.7.1 Data Structures Used During CompilationThere are two di�erences between the structures described here and the abstractions described in Sec-tions 4 and 6:1. The source graph is not needed by the compiler or debugger. It is included in the discussions inSections 4 and 6 to motivate the approach.2. The store lists reside in the object graph, as part of the instruction lists used to generate code, ratherthan in the DS-graph.A DS-graph node contains all necessary information about the source block that it selects, so the source blockitself can be dispensed with. Figure 7.1 shows the abstract interconnections between the major structuresused for currency determination during compilation: nodes in the DS-graph, which contain de�nition lists,blocks in the object graph, which contain instruction lists, and mapping information between them.De�nition and Instruction Lists and the `Generated-from' GraphSection 4 mentioned that currency determination needs the following:� The assignments that constitute a de�nition,� the `generated from' relationship between de�nitions and stores, and� the execution order of statements and side e�ects within a basic block, for blocks in both the optimizedand unoptimized versions.

7. Design Issues 35... ...node node block block... instruction listde�nition listto startnodeSVarEquivSref DS-graph Object graphnode
Moved OVar...Pref

block
Figure 7.1: This shows the abstract interconnections between the major data structures used forcurrency determination during compilation: nodes in the DS-graph, which contain de�nition lists,blocks in the object graph, which contain instruction lists, and mapping information between them.We assumed they would be available, and that execution order would be provided by de�nition lists andstore lists. The stores in a block are the representative instructions in the intermediate code for the block.Compilers need to maintain lists of intermediate instructions, so a store list is simply the list of representativeinstructions embedded in one of these instruction lists.Viewed abstractly, the `generated from' relationship between de�nitions and stores forms a bipartitegraph, where de�nitions comprise the nodes in one partition, stores comprise the nodes in the other, and anedge is present between pairs of nodes for which the `generated from' (or `generates') relation holds. Thisis shown in Figure 7.1 as arcs between elements in the de�nition list and elements in the instruction list.Maintenance of this relationship during optimization is discussed at length in [Cop93], but that discussionis elided here for the sake of brevity.A de�nition list element for a statement S has the following �elds:� Sref|a source reference for S (�le name or id, line number, and statement number),� SVar|the variables that can be de�ned by S: if S is opaque, SVar identi�es the single variable de�nedby S; if S is transparent, SVar identi�es all variables that can be a�ected by S, if S does not assigninto a variable, the SVar �eld is null,� Equiv|the equivalence class that a de�nition falls into,� Moved|a bit set if the representative instruction has been moved or eliminated, used to locate syntacticbkpts, and

36 7. Design Issues� Pref|for de�nitions through pointers: a reference to the pointer.An instruction list element that is a representative instruction for a statement S has the following �eld:� Any �elds needed by the compiler to generate code, and� OVar|the variables that can be de�ned by S: if S is opaque, OVar identi�es the single variable de�nedby S; if S is transparent, OVar identi�es all variables that can be a�ected by S, if S does not assigninto a variable, the OVar �eld is null.In the context of computing paired reaching sets for a variable V , the SVar and OVar �elds are used to �ndde�nitions of V and stores into V to construct the Gen set for each block.A distinct de�nition list element (and store list element) is produced for each modi�cation to each programvariable, so more than one de�nition list element is produced for a statement that has side e�ects.7.2 Data Structures Used After CompilationOnce compilation has completed, the DS-graph becomes a static object. The data structures for thisobject should be chosen to make the object small and the debugger's uses of the object e�cient, rather thanmaking maintenance of the object e�cient. Information about representative instructions must be movedfrom the object graph into the DS-graph, because the object graph does not survive code generation as anexplicit data structure.Figure 7.2 shows the abstract interconnections between the major data structures used for currencydetermination after compilation. As is clear from comparing Figure 7.1 and Figure 7.2, the store list (thoseelements of the instruction list that are representative instructions) is abstracted from the instruction listand moved from the object graph to the DS-graph. Also, the structure of elements of that list changes:information used to generate code is discarded, but the address of the generated code for a representativeinstruction is added in the Cref (Code reference) �eld, so that the DS-graph can be used for locatingbreakpoints.Given that the DS-graph is available to the debugger, we need to ensure that the debugger has all theinformation it needs to determine the currency of variables. The following debugger tasks relate to currencydetermination:1. When a user sets a breakpoint at a source statement, �nd the breakpoint location(s). A method for�nding breakpoint locations is given in [Cop93] but elided here for the sake of brevity. This requiresone additional map, from source statements to de�nition list elements. When the breakpoint is set,the source statement and breakpoint locations must be saved in a debugger data structure BrList.2. When the program stops, �nd out which breakpoint it has halted at. This can be done by comparingthe program counter against breakpoint locations found in BrList,3. When the user asks for the value of a variable, run the currency determination algorithms and respondto the query. The currency algorithms take as input the variable name, a syntactic breakpoint Bk,and the node B containing Bk. The variable name is supplied by the user, and the debugger hasdetermined Bk. The DS-graph data structure must allow B to be found given Bk.

7. Design Issues 37
...to startnode de�nition list store list

node ...SrefSVarEquivMoved
DS-graph

OVarCrefPref node....node....Figure 7.2: This shows the abstract interconnections between the major data structures needed bythe debugger for currency determination: nodes in the DS-graph which contain de�nition lists andstore lists and mapping information between them.

38 8. Cost8 CostThere are four distinct costs that might be considered relevant to evaluating this method of currencydetermination:1. the cost of either not debugging optimized code at the source level or being occasionally misled by thedebugger,2. the engineering cost of modifying a compiler and debugger,3. the additional space and time the compiler takes to produce the DS-graph, and4. the additional space and time the debugger takes to run the currency determination algorithms.The �rst should be weighed against the rest to determine whether the enterprise is worthwhile. Unfortunately,they are not comparable, hard to measure, and are incurred by di�erent groups. For the most part, academiaand industry did not consider the enterprise worthwhile until the late 1980's or early 1990's. Currently thereis activity in both academia and industry. If the balance of these costs has shifted, it can be seen as acontinuation of the trend of the cost of programmers rising relative to the cost of computers, coupled withimproved optimization technology and widespread availability of that technology.The cost of not debugging optimized code at the source level includes programmer frustration, time spentrecompiling to enable and disable optimization, disk space to store both optimized and unoptimized objectmodules and executables, time spent communicatingwith compiler vendors incorrectly claiming the compilerhas a bug, time spent debugging the wrong thing because the debugger gave misleading information, andtime spent �nding bugs via assembly-level debugging (minus the time it would have taken via source-leveldebugging, were that an option). Quantitative measures of these are not available.The engineering cost of modifying a compiler and debugger is also not available. In general, it depends onthe organization of the compiler and debugger that are to be modi�ed, and the capabilities of the engineersthat do the modi�cation. No implementation has been done to date, and any estimate I made would besubject to the same poor correlation between estimates and actual costs of software production that isendemic to the industry.The additional space and time a compiler needs to produce the DS-graph can be estimated with greatercon�dence.Cost to Produce the DS-graph (During Compilation) The space used by DS-graph is linear in thesize of the object graph. The time to construct the DS-graph is linear in the size of the object graph as well.Cost to Use the DS-graph (After Compilation) AlgorithmPRS is a special case of AlgorithmPRSCTand is not separately analyzed.Space Currency determination increases space usage by the size of the In, Out, and PRS sets. The spaceusage of the In and Out sets dominates that used by the PRS sets, because there is an In and Out set per

8. Cost 39block. Let n be the number of nodes in the DS-graph and m be the number of assignments to V in theprogram.For Algorithms PRS and PRSCT the In and Out sets can take O(nm2) space. These sets can beconstructed as needed, so the total space for In and Out sets is O(qnm2), where q is the number of variablesabout which the user queries.For Algorithm PRST , the In and Out sets can take O(nm(m!2)) space, because the number of elementsin InVB is O(m!2), giving a worst case bound on the space for In and Out sets of O(qnm(m!2)). The boundon the number of elements in InVB is derived by taking all permutations of de�nitions � all permutationsof stores. In the expected case, the number of de�nitions and stores that reach B is limited, and the orderin which they reach along di�erent paths will include few of the possible permutations. The squaring of m!is from allowing de�nitions and stores to be ordered independently. But they are not independent|a storecan only move via optimization. If many de�nitions or stores reach along some path, then there are manyassignments through pointers, and the optimizer probably can't move many of them. I believe in practicethe number of elements in any In set will be small, and would be surprised if it exceeds m.Time Algorithms PRS-BPCT and PRS-BPT , and the initialization phases of Algorithms PRSCT andPRST , are inexpensive relative to the iteration phase of Algorithms PRSCT and PRST , and will not bediscussed further.The worst-case asymptotic cost of Algorithm PRSCT is poor, though polynomial.The algorithm is presented as being run for all variables. However, it is reasonable for the debugger torun it on a single variable. The cost described here is for a single variable.The worst case asymptotic cost is O(n3m2). In practice two factors of n and a factor of m can be replacedwith constant factors, for an O(nm) running time.The worst-case asymptotic cost of Algorithm PRST is O(n3m(m!2)) (again, because of the size of the Insets), but its expected running time is also O(nm).A detailed analysis of these asymptotic costs is given in [Cop93].Parameters The parameters that a�ect the cost are:� n, the number of basic blocks in a routine,� m, the number of assignments to a variable within a routine, including assignments through pointersthat might point to that variable,� the number of paths to a block, and� the number of predecessors and successors per block.These depend considerably on program characteristics and coding style. In particular, because eachsubroutine is a
ow-graph component, the cost increases with the size of subroutines. The cost also increaseswith the use of pointers.

40 9. Open Problem: When a Breakpoint has Moved9 Open Problem: When a Breakpoint has MovedUnder the breakpoint model given in Section 2, there is no guarantee that a semantic breakpoint isreached in optimized code if and only if it would be reached in unoptimized code. The following situationscan arise with a semantic breakpoint for a statement S:1. The code for S has not been moved. The semantic breakpoint is the same as the syntactic breakpoint,and no additional work is required for currency determination.2. The code for S has been moved. In a particular execution, the semantic breakpoint location and thesyntactic breakpoint location are reached along the same path.3. The code for S has been moved. In a particular execution, the syntactic breakpoint location is reachedbut the semantic breakpoint location is not. This is unexpected behavior, but no additional work isrequired for currency determination at the semantic breakpoint, because it is never reached.4. The code for S has been moved. In a particular execution, the semantic breakpoint location is reachedbut the syntactic breakpoint location is not. This is unexpected behavior already.An approach taken by Wism�uller [BW93] is to use a more
exible mapping between source statementsand breakpoints. He attempts to map a source statement to a breakpoint location in such a way that thebreakpoint is reached if and only if it would be reached in unoptimized code.In situations 2 and 4 we want to determine whether the actual value of a variable at a representativeinstruction R (the semantic breakpoint, where the user examines the value) can di�er from its expected valueat a representative instruction R0 6= R (the syntactic breakpoint, where the user expects to be examiningthe value). Note that in general a debugger cannot distinguish situation 2 from situation 4.Even in situation 2, there is a problem arising from the fact that the user's expectation is not well de�nedif the location at which a variable is examined is di�erent from the location at which the user assumes it isbeing examined. Consider Figure 9.1. Should a debugger claim that a is current at bkpt? For bkpt to bereached in the optimized code, one of the right-hand paths must be taken. If the unoptimized code is runon the same inputs, one of the right-hand paths will be taken, so optimization does not a�ect the value thata will have at the semantic breakpoint for bkpt, suggesting that a is current at bkpt.Figure 9.1: Oddly enough, a is current at bkpt
bkpta = xa = z a = y a = xa = z a = ybkptUnoptimized Optimized

10. Summary 4110 SummaryThe mapping between statements and breakpoints used for unoptimized code is problematic for optimizedcode. If such a mapping is used by a debugger on optimized code, the debugger is likely to mislead thedebugger user. This work has described a mapping between statements and breakpoints that provides areasonable approximation to what the naive user would expect when used on optimized code (and providesexactly what the naive user would expect on unoptimized code). The mapping allows the debugger user tobreak where a statement occurs or execute a statement at a time on a program in which statements may havebeen reordered and instructions generated from a statement are not necessarily contiguous. The mappingenables debugger behavior that more closely approximates the behavior provided by current debuggers onunoptimized code than other proposed mappings, and thereby neither requires debugger users to be expertson optimization nor requires users to modify their debugging strategies.Using any such mapping, optimization can cause a debugger to provide an unexpected and potentiallymisleading value when asked to display an endangered variable. A debugger must be able to determinethe currency of a variable if it is to provide truthful behavior on optimized code. Other researchers havegiven solutions to special cases of the currency determination problem. Sections 4 and 9 describe a generalsolution to the problem for a large class of sequential optimizations, including optimizations that modify theshape of the
ow graph. These results hold in the presence of both local and global optimizations, includingthose listed in Table 10.1, and require no information about which optimizations have been performed. Inaddition, this paper has describes the nature of the information the debugger can provide to the debuggeruser when the user asks for the value of an endangered variable.For most optimizations, the results described in this paper are precise (i.e., a variable claimed to becurrent is current, a variable claimed to be endangered is endangered, etc.). In some circumstances involvingassignments through pointers, there is a trade-o� between rare non-conservative results and more commonnon-conservative results, which is discussed at length in Section 6.6. There are two other circumstances inwhich the results are conservative:Table 10.1: The currency determination technique is applicable in the presence of any sequentialoptimizations, including all of the listed optimizations, that either do not modify the
ow graphof the program or modify the
ow graph in a constrained manner. Blocks may be added, deleted,coalesced, or copied; edges may be deleted, but control
ow may not be radically changed. As anexample of an optimization that does not observe the constraints, it does not apply to a portion ofa program that contains interchanged loops.Representative Optimizationsinlining dead store elimination partial redundancy eliminationcode hoisting strength reductions local instruction schedulingconstant folding constant propagation global instruction schedulingcross-jumping copy propagation local common subexpression eliminationloop unrolling dead code elimination global common subexpression eliminationother code motion induction-variable elimination

42 10. Summary� when a variable is current along all feasible paths but noncurrent along some infeasible path, in whichcase it will be claimed to be endangered.� when a variable is endangered along some path due to an assignment through an alias, but there is noexecution in which that path is taken and that variable is a�ected by that assignment.10.1 Future WorkCurrency determination at semantic breakpoints remains an open question (this topic is discussed inSection 9).Once a debugger user has found a suspicious variable (one that due to program logic, not optimization,contains an unexpected value), the next question is `How did it get that value?'. The sets of reaching de�ni-tions used for currency determination can be used in a straightforward manner to answer this question (`x wasset at one of lines 323 or 351'). One direction for future research is how to e�ciently be even morehelpful; how to give responses such as `x was set at line 566 to foo(y,z). At that point, z hadthe value 3.141 (set at line 370) and y had the value 17; y was set at line 506 to y+bar(w).'.This was called
owback analysis by Balzer [Bal69], and has been investigated by others ([MC91], [Kor88]);reaching sets may be adaptable to this purpose.Another research direction is dynamic currency determination, which is how a debugger can collect theminimal execution history information needed to determine whether an endangered variable is current ornoncurrent when execution is suspended at a breakpoint. Useful in conjunction with this or as an alternativeis recovery, which is to have the debugger compute and display the value that a variable would have had ifoptimization had not endangered the variable. Finally, an exciting possibility is extending the breakpointmodel and currency determination techniques to parallel code, which is rife with noncurrent variables.

A. Graph Transformations 43A Graph TransformationsLet Oi denote the object graph prior to a graph transformation, and Oi+1 denote the transformed objectgraph. Let DSi denote the DS-graph prior to the graph transformation, and DSi+1 denote the transformedDS-graph. Let S denote the source graph, which is unchanged by transformations.A block boundary marker is a distinguished instruction used to represent a position in the code stream.A block boundary marker may be selected by a node in the DS-graph, and is considered to be a block inthe object graph. When two blocks A and B are coalesced, a block boundary marker M is placed in thecode stream of the resulting block C following the last instruction from A and preceding the �rst instructionfrom B. Suppose A was selected by node nA and B was selected by node nB prior to the coalescing of Aand B. Subsequent to coalescing, C is selected by nA, and nA's store list comprises the instructions fromthe top of C down to M . M is selected by nB, and nB's store list comprises the instructions followingM tothe bottom of C (or to the next block boundary marker).Oselects is a set of functions from DS-graph nodes to object graph blocks that returns the block selectedby the argument node. Each such function applies to a particular DS-graph and the corresponding objectgraph, and is indexed as DS and O are indexed. Thus Oselectsi(n) = no means that node n in DSi selectsblock no in Oi. Sselects is similar but maps nodes to source graph blocks. Oselectsi+1(n) = Oselectsi(n)and Sselectsi+1(n) = Sselects i(n) unless explicitly changed. For clarity, nodes or blocks created duringtransformations will be distinguished by an overbar (e.g., v).Some of the graph transformations copy nodes in the DS-graph when at �rst glance it seems unnecessary.The reason for these copies is that when transformations are composed, operations are done on all subpathsin the DS-graph that correspond to an edge in the object graph. If a node in the DS-graph were on morethan one such subpath, the transformations could not successfully be composed.Graph Transformations:1. Introducing a block. An example of this transformation is shown in Figure 4.1.The object graph transformation:A block is introduced between a complete bipartite subgraph of Oi with vertex sets HO (for Head)and TO (for Tail). It is typical (but not necessary) for either HO or TO to be a singleton set.4Let b be the block introduced by the transformation.Oi = (V O; EO), HO � V O, TO � V O, and HO \ TO = ;Del = f(h; t)jh 2 HO; t 2 TOgAddH = f(h; b)jh 2 HOgAddT = f(b; t)jt 2 TOgOi+1 = (V O [fbg; (EO �Del) [AddH [AddT)4If a single condition governs the exit of a basic block, TO can have cardinality at most two, since blocks in TO end up assuccessors of the introduced block.

44 A. Graph TransformationsMaintaining the semantics of a program imposes the following constraint on this transformation of theobject graph: path pi is taken through Oi on input I if and only if path pi+1 is taken through Oi+1on I, where pi+1 is derived from pi by replacing each edge (h; t) where h 2 HO and t 2 TO with thesubpath < h; b; t >.The DS-graph transformation:A subpath in the DS-graph may correspond to an edge in the object graph. Node n (selecting b) isintroduced at the end of each such subpath.DSi = (V DS ; EDS)SubPaths = fsjs = <v1; v2; : : : ; as=vlength(s�1); bs=vlength(s)>; vj 2 V DS ;Oselectsi(v1) 2 HO;Oselectsi(bs) 2 TO; and Oselectsi(vk) = Null for 1 < k < length(s)gNewNodes = fnsjs 2 SubPathsgOselectsi+1(ns 2 NewNodes) = bSselectsi+1(ns 2 NewNodes) = NullDelEdges = f(as; bs)js 2 SubPathsgNewEdges = f(as; ns)j(as; bs) 2 DelEdgesg [f(ns; bs)j(as; bs) 2 DelEdgesgDSi+1 = (V DS [NewNodes; (EDS �DelEdges) [NewEdges)2. Deleting a block. An example of this transformation is shown in Figure 4.2.The object graph transformation:When a block is deleted, its predecessors and successors form a complete bipartite subgraph in theresulting object graph. This is the inverse of the previous transformation. It is typical (but notnecessary) for either HO or TO to be a singleton set.5Let b be the block deleted by the transformation.Oi = (V O; EO)HO = fhj(h; b) 2 EO and h 6= bgTO = ftj(b; t) 2 EO and t 6= bgDel = f(h; b)j(h; b) 2 EOg [f(b; t)j(b; t) 2 EOgAdd = f(h; t)jh 2 HO and t 2 TOgOi+1 = (V O � fbg; (EO �Del) [Add)Maintaining the semantics of a program imposes the following constraint on this transformation of theobject graph: if path pi is taken through Oi on input I, then path pi+1 is taken through Oi+1 on I,where pi+1 is derived from pi by replacing each subpath < h; b; t > with the subpath < h; t >.The DS-graph transformation:New paths are constructed in the DS-graph corresponding to the new edges in the object graph. Theremay be nodes on the path from the node that selects a predecessor of the eliminated block to the node5If a single condition governs the exit of a basic block, TO can have cardinality at most two, since blocks in TO are successorsof the deleted block prior to the transformation.

A. Graph Transformations 45that selects a successor of the eliminated block that do not select any object blocks. These nodes, aswell as the node that selects the eliminated block, are duplicated so that there is one copy for eachnew path. Unlike the transformations on the object graph, this DS-graph transformation is not theinverse of the previous transformation.Let vs;j denote the jth node on subpath s.DSi = (V DS ; EDS)SubPaths = fsjs =< hs=vs;1; vs;2; : : : ; ts = vs;length(s) >;Oselectsi(hs) 2 HO;Oselectsi(ts) 2 TO; 9j such that 1 < j < length(s) and Oselectsi(vs;j) = b;and Oselectsi(vs;l) = Null for l 6= j and 1 < l < length(s)gDelNodes = fvs;jjs 2 SubPaths and 1 < j < length(s)gNewNodes = fvs;jjvs;j 2 V DS ; s 2 SubPaths and 1 < j < length(s)g6Oselectsi+1(v 2 NewNodes) = NullSselectsi+1(v 2 NewNodes) = Sselectsi(v)DelEdges = feje is on some s 2 SubPathsgNewEdges = f(vs;j; vs;j+1)jvs;j 2 V DS ; vs;j+1 2 V DS ; and s 2 Subpaths ;for 1 < j < length(s)g [f(hs; vs;2); (vs;length(s)�1; ts)js 2 SubpathsgDSi+1 = ((V DS �DelNodes) [NewNodes; (EDS �DelEdges) [NewEdges)3. Deleting an edge. An example of this transformation is shown in Figure 4.3.The object graph transformation:Let (h; t) be the edge deleted by the transformation.Oi = (V O; EO)Oi+1 = (V O; EO � f(h; t)g)Maintaining the semantics of a program imposes the following constraint on this transformation of theobject graph: there is no input that causes a path through Oi containing the subpath < ho; to > to betaken.The DS-graph transformation:When an edge is eliminated from the object graph, the corresponding edges are eliminated from theDS-graph, and the closure of edges out of subsequentlysubsequentlyreachable nodes are also eliminatedfrom the DS-graph.DSi = (V DS ; EDS)SubPaths = fsjs =< v1; v2; : : : ; vk >; vj 2 V DS ;Oselectsi(v1) = h;Oselectsi(vk) = t; and Oselectsi(vj) = Null for 1 < j < kgDelPaths = feje is on some s 2 SubPathsg� (X) = X [f(n; succ)j8(pred; n) 2 EDS ; (pred; n) 2 Xg6vs;j may be on more than one subpath in SubPaths. Thus vs;j = vs0;j0 does not imply that s = s0 or j = j0. However, acopy is made for each subpath in SubPaths, so vs;j = vs0;j0 does imply that s = s0 and j = j0.

46 A. Graph TransformationsDelEdges = the closure of DelPaths under �DSi+1 = (V DS ; EDS �DelEdges)4. Coalescing two blocks into a single block. An example of this transformation is shown in Figure 4.4.The object graph transformation:Let `j' be a code concatenation operator, Code be a function from blocks to the code they contain, andM be a block boundary marker.Let h be the �rst of the to-be-coalesced blocks, and t be the second of the to-be-coalesced blocks: t iseliminated by the transformation.Oi = (V O; EO)Codei+1(h) = Codei(h)jM jCodei(t)Del = f(h; t)g [f(t; x)j(t; x) 2 EOgAdd = f(h; x)j(t; x) 2 EOgOi+1 = (V O � ftg; (EO �Del) [Add)Maintaining the semantics of a program imposes the following constraint on this transformation ofthe object graph: there is no input that causes a path through Oi containing the subpath < h; x >,for x 6= t, to be taken, and there is no input that causes a path through Oi containing the subpath< x; t >, for x 6= h, to be taken.The DS-graph transformation:Without adding or removing any nodes or edges, modify the selection of nodes so that a path throughthe DS-graph selects the right path through the object graph.DSi = (V DS ; EDS)For t 2 V DS such that Oselectsi(t) = t, let Oselectsi+1(t) = MDSi+1 = (V DS ; EDS)5. Inlining a subroutine. An example of this transformation is shown in Figure 4.5.The object graph transformation:The object graph must model a call as a basic block, and this exposition assumes that subroutineshave single exits.Let start be the entry block of the subroutine being inlined, and exit be the exit block of the subroutine.Let call be the block containing the call, and succ be the successor of call. Because a call comprises ablock, there can be no conditional branch and thus succ is the only successor of call.7Oi = (V O; EO)Del = f(x; call)j(x; call) 2 EOg [f(call; succ)gNewBlocks = fnjn = start, or n is reachable from startg7By transformation 4, call and succ could be coalesced. We can assume that call blocks and their successors are not coalescedprior to inlining the call, because the compiler would have to undo the coalescing in order to do the inlining. After inlining, ofcourse, coalescing can take place.

A. Graph Transformations 47Add = f(h; t)jh 2 NewBlocks and t 2 NewBlocks and (h; t) 2 EOg [f(x; start)j(x; call) 2 EOg [f(exit; succ)gOi+1 = ((V O � fcallg) [NewBlocks; (EO �Del) [Add)The DS-graph transformation:Like the object graph transformation, the DS-graph transformation copies a subgraph and grafts it inthe place of the call. Unlike the object graph transformation, the DS-graph transformation keeps acopy of the call node on each path that enters the inlined routine.Unlike the introduction of a new node in transformation 1, where the new node does not select a blockin the source graph and has an empty de�nition list, a node created by this transformation does select ablock in the source graph, and has the de�nition list of that block, modi�ed so that a copied de�nitionis not in the same equivalence class as the original.Let Start be the entry node of the subroutine being inlined, and Exit be the exit node of the subroutine.Let Call be the node containing the call, and Succ be the (sole) successor of Call.DSi = (V DS ; EDS)DelEdges = f(x;Call)j(x;Call) 2 EOg [f(Call; Succ)gInlinedNodes = fnjn = start, or n is reachable from StartgCallNodes = fCallij0 � i � the in-degree of CallgOselectsi+1(n 2 InlinedNodes) = Oselectsi(n)Oselectsi+1(Calli 2 CallNodes) = NullSselectsi+1(n 2 InlinedNodes) = Sselectsi(n)Sselectsi+1(n 2 CallNodes) = Sselectsi(Call)NewEdges = f(h; t)jh 2 InlinedNodes and t 2 InlinedNodes and (h; t) 2 EDSg [f(Exit; Succ)g [f(Calli; Start)jCalli 2 CallNodesg [f(x;Calli)jx is the ith predecessor of Call and Calli 2 CallNodesgDSi+1 = (V DS [CallNodes [InlinedNodes ; (EDS �DelEdges) [NewEdges)6. Unrolling a loop. An example of this transformation is shown in Figure 4.6.The object graph transformation:This exposition assumes that loops are structured so that a loop has a single successor and that thereare no jumps into the middle of a loop. The transformation can be extended to loop structures thatdo not conform to these constraints.Let a loop in the object graph be described by a set NLO of blocks with a few distinguished blocks: eis the loop entry and b is the bottom of the loop so that (b; e) is the back edge. All other blocks inNLO are within the loop. succ is the loop successor. The loop is unrolled I times, requiring I copies ofblocks in NLO ; these are distinguished by superscripts.Oi = (V O; EO)NLO = the set of blocks in the loop, as described above.

48 A. Graph TransformationsNewBlocks = fnijn 2 NLO and 0 < i � IgAdd = f(hi; succ)jhi 2 NewBlocks and h 2 NLO and (h; succ) 2 EOg [f(b; e1); (bI ; e)je1 2 NewBlocks and bI 2 NewBlocksg [f(bi; ei+1)j0 < i < I and bi 2 NewBlocks and ei+1 2 NewBlocksgg [f(hi; ti)jhi 2 NewBlocks and ti 2 NewBlocks and (h; t) 2 NLO and hi 6= bigOi+1 = (V O [NewBlocks; (EO � f(b; e)g) [Add)The DS-graph transformation:As with the object graph, when the loop is unrolled I times, I copies of the subgraph of the DS-graphcomprising the loop are made.A node created by this transformation does select a block in the source graph, and has the de�nition listof that block, modi�ed so that a copied de�nition is not in the same equivalence class as the original.A loop in the DS-graph is derived from a loop in the object graph. It is helpful to name some of thenodes: let E be the loop entry, B be the bottom node of the loop, and Succ be the loop successor.DSi = (V DS ; EDS)NLDS = fvjjvj 2 V DS , (< v0; v1; : : : ; vk > is a subpath in DSisuch that Oselectsi(v0) 2 NLO ;Oselectsi(vk) 2 NLO , andOselectsi(vl) = Null for 0 < l < k)g, and 0 � j � kNewNodes = fnijn 2 NLDS and 0 < i � IgTop = fEijE is the loop entry and 0 < i � IgBottom = fBijB is the bottom node of the loop and 0 < i � IgNewEdges = f(hi; Succ)jhi 2 NewNodes; h 2 NLDS , and (h; Succ) 2 EDSg [f(B;E1); (BI ; E)jE1 2 Top and BI 2 Bottomg [f(Bi; Ei+1)j0 < i < I;Bi 2 Bottom; and Ei+1 2 Topg [f(hi; ti)jhi 2 NewNodes; ti 2 NewNodes; (h; t) 2 NLDS ; and hi 6= BigOselectsi+1(n 2 NewNodes) = Oselectsi(n)Sselectsi+1(n 2 NewNodes) = Sselects i(n)DSi+1 = (V DS [NewNodes; (EDS � f(B;E)g) [NewEdges)7. No optimization other than those described in one of the other object graph transformations maymodify control
ow in a way that changes which block is entered on a particular input. [Cop93]describes a mechanism that allows truthful (but not expected) behavior in the presence of optimizationsthat violate this constraint.

References 49References[AG93a] A.Adl-Tabatabai, T.Gross, \Evicted Variables and the Interaction of GlobalRegister Allocation andSymbolicDebugging,"Proceedings of the POPL`93, The Twentieth Annual ACM SIGACT-SIGPLANSymposium on Principles of Programming Languages, Charleston, South Carolina, January 1993.[AG93b] A.Adl-Tabatabai,T.Gross, \Detection andRecovery of Endangered Variables Caused by InstructionScheduling," To appear in the Proceedings of the PLDI`93, ACM SIGPLAN/93 Conference onProgramming Language Design and Implementation, Albuquerque, New Mexico, June 1993.[ASU86] A. V. Aho, R. Sethi, J. D. Ullman, \Compilers Principles, Techniques, and Tools," Addison-Wesley,Menlo Park, CA, 1986.[Bal69] R. M. Balzer, \EXDAMS - EXtendable Debugging and Monitoring System," Proceedings of AFIPSSpring Joint Computer Conference, Vol 34 pp. 125-134, 1969.[BHS92] G. Brooks, G. J. Hansen, and S. Simmons, \A New Approach to Debugging Optimized Code,"Proceedings of the ACMSIGPLANConference on ProgrammingLanguage Design and Implementation,SIGPLAN Notices, Vol. 27, No. 7, pp. 1-11, San Francisco, California, June 1992.[BW93] L. Berger, R. Wism�uller, \Source-Level Debugging of Optimized Programs Using Data Flow Analy-sis", unpublished draft from the Department of Computer Science, Munich Institute of Technology,Germany, 1993.[Coh91] R.Cohn, \SourceLevelDebuggingofAutomaticallyParallelizedCode,"Proceedings of theACM/ONRWorkshop on Parallel and Distributed Debugging, May 1991, SIGPLAN Notices, Vol. 26, No. 12, pp.132-143 December 1991.[Coo92] E. L. Cool, \Debugging VLIW Code After Instruction Scheduling," M.S. thesis, Technical ReportCS/E 92-TH-009, Oregon Graduate Institute, 1992[CM93] M. Copperman, C. E. McDowell, \A Further Note on Hennessy's \Symbolic Debugging of OptimizedCode", ACM Transactions on Programming Languages and Systems Vol. 15, No. 2, pp. 357-365, April1993.[Cop93] M. Copperman, \Debugging Optimized Code Without Being Misled," Doctoral thesis, Computerand Information Sciences, University of California, Santa Cruz, UCSC Technical Report UCSC-CRL-93-21, June 1993.[Cop92] M. Copperman, \DebuggingOptimized Code: Currency Determinationwith DataFlow,"Proceedingsof the Supercomputer Debugging Workshop , Dallas, Texas, October 1992.[CM91b] M. Copperman, C. E. McDowell, \Debugging Optimized Code Without Surprises," Proceedings ofthe Supercomputer Debugging Workshop , Albuquerque, New Mexico, November 1991.[CMR88] D. Coutant, S. Meloy, M. Ruscetta \DOC: a Practical Approach to Source-Level Debugging ofGlobally Optimized Code," Proceedings of the SIGPLAN `88 Conference on Programming LanguageDesign and Implementation, pp. 125-134, 1988.

50 References[FM80] P. H. Feiler, R. Medina-Mora, \An Incremental Programming Environment," Carnegie Mellon Uni-versity Computer Science Department Report, April 1980.[Gup90] R.Gupta, "DebuggingCodeReorganized by aTrace SchedulingCompiler," StructuredProgramming,Vol. 11, No. 3, pp.1-10, July 1990.[Hen82] J. Hennessy, \Symbolic Debugging of Optimized Code," ACM Transactions on Programming Lan-guages and Systems, Vol. 4, No. 3, pp. 323-344, 1982.[Kor88] B. Korel, \PELAS Program Error-Locating Assistant System," IEEE Transactions on SoftwareEngineering, Vol. 14, No. 9, pp. 1253-1260, September 1988.[MC91] B. Miller, J. Choi, \Techniques for Debugging Parallel Programs with Flowback Analysis," ACMTransactions on Programming Languages and Systems, Vol. 13, No. 4, pp. 491-530, 1991.[PS91] P. P. Pineo,M. L. So�a,\DebuggingParallelizedCodeUsingCode LiberationTechniques,"Proceedingsof the ACM/ONR Workshop on Parallel and Distributed Debugging, May 1991, SIGPLAN Notices,Vol. 26, No. 12, pp. 108-119 December 1991.[PS88] L. L. Pollock, M. L. So�a, \High Level Debugging with the Aid of an Incremental Optimizer," HawaiiInternational Conference on System Sciences, January 1988.[PS92] L. L. Pollock, M. L. So�a, \Incremental Global Reoptimization of Programs," ACM Transactions onProgramming Languages and Systems, Vol. 14, No. 2, pp. 173-200, 1992.[Shu89] W. S. Shu, \A Uni�ed Approach to the Debugging of Optimized Programs", Ph.D. Disssertation,Department of Computer Science, University of Nottingham, England, UK, 1989.[ST83] W. S. Shu, \Adapting A Debugger for Optimized Programs", SIGPLAN Notices, Vol. 28, No. 4, pp.39-44 April 1993.[Str91] L. Streepy, \CXdb A New View On Optimization," Proceedings of the Supercomputer DebuggingWorkshop , Albuquerque, November 1991.[Sri86] A. Srivastava, \Recovery of Noncurrent Variables in Source-level Debugging of Optimized Code,"Foundations of Software Technology and Theoretical Computer Science, Sixth Conference Proceedings,pp. 36-56, 1986.[Wis93] Wismueller, R.,[WST85] D.Wall, A. Srivastava, R. Templin, \A note on Hennessy's Symbolic Debugging of Optimized Code,"ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, pp. 176-181, Jan. 1985.[Wis93] Wismueller,R., Institut fur Informatik,Technische UniversitatMunchen, Munich, Germany, personalcommunication regarding current research, February 1993.[WS78] H. S. Warren, Jr., H. P. Schlaeppi, \Design of the FDS interactive debugging system," IBM ResearchReport RC7214, IBM Yorktown Heights, July 1978.[Ze83b] P.Zellweger, \An InteractiveHigh-LevelDebugger forControl-FlowOptimizedPrograms," SIGPLANNotices, Vol. 18, No. 8, pp. 159-172 Aug. 1983.

References 51[Zel84] P. Zellweger, \Interactive Source-Level Debugging of Optimized Programs," Research Report CSL-84-5, Xerox Palo Alto Research Center, Palo Alto, CA, May 1984.[ZJ90] L.W. Zurawski, R. E. Johnson, \Debugging Optimized CodeWith Expected Behavior," Unpublisheddraft from University of Illinois at Urbana-Champaign Department of Computer Science, August1990.

