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ABSTRACT

Optimizing compilers produce code that impedes source-level debugging. Fxamples are
given in which optimization changes the behavior of a program even when the optimizer
is correct, showing that in some circumstances it is not possible to completely debug an
unoptimized version of a program. Source-level debuggers designed for unoptimized code
may mislead the debugger user when invoked on optimized code.

One situation that can mislead the user is a mismatch between where the user expects
a breakpoint to be located and the breakpoint’s actual location. A mismatch may occur
due to statement reordering or discontiguous code generated from a statement. This work
describes a mapping between statements and breakpoint locations that ameliorates this
problem. The mapping enables debugger behavior on optimized code that approximates
debugger behavior on unoptimized code closely enough that the user need not make severe
changes in debugging strategies.

Another situation that can mislead the user is when optimization has caused the value
of a variable to be noncurrent—to differ from the value that would be predicted by a
close reading of the source code. This work presents a method of determining when this
has occurred, proves the method correct, and shows how a debugger can describe the
relevant effects of optimization. The determination method is more general than previously
published methods, handling global optimization, flow graph transformations, and not being
tightly coupled to optimizations performed by a particular compiler. The information a
compiler must make available to the debugger for this task is also described.

A third situation that can mislead the user is when optimization has eliminated in-
formation in the run-time (procedure activation) stack that the debugger uses (on some
architectures) to provide a call stack trace. This work gives several methods of providing
the expected stack trace when the run-time stack does not contain this information.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debug-
ging — debugging aids; D.2.6 [Software Engineering]: Programming Environments; D.3.4
[Programming Languages|: Processors — code generation, compilers, optimization
General Terms: Algorithms, Languages

Additional Keywords and Phrases: debugging, compiler optimization, reaching definitions,
noncurrent variables, call stack trace, run-time stack
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1. Introduction 5

1 Introduction

It is possible for a source-level debugger to provide expected or truthful behavior in the
presence of a large class of sequential optimizations.

It is important because the alternatives, debugging at the assembly level, disabling
optimization, or being misled by the debugger, add to the cost of software production.

I show how to provide expected behavior relative to providing a call-stack trace in the
presence of a stack-frame optimization. I show how to provide expected behavior relative
to breakpoint location determination when possible, and 1 show how to provide truthful
behavior relative to breakpoint location determination that approximates expected behavior
closely enough that debugger users can use standard debugging strategies. I show how to
determine when expected behavior relative to data value reporting is possible, and how to
provide expected behavior when possible and truthful behavior otherwise, in the presence of
a large class of sequential optimizations. Previous techniques have worked in the presence of
local optimization and have been tightly coupled to the particular optimizations that have
been performed. My technique works in the presence of local and global optimization, and
is not specific to particular optimizations. It also works in the presence of optimizations
that transform the optimized program’s flow graph.

Debugging is a major component of the software life cycle. The cost of the debugging
component has dropped in recent years for common platforms because of the availability of
source-level debuggers with good interfaces and many features. However, it is still typical
of compilers that enabling the production of information designed to allow source-level
debugging has the effect of automatically disabling optimization.

The problem is that the compiler-debugger interface that allows source-level debugging of
unoptimized code is not rich enough to allow accurate source-level debugging of optimized
code. In fact, many of the compilers that produce source-level debugging information
for optimized code modify their optimizations to minimize the inaccurate reporting of
information by the debugger. In general, it is impossible for a source-level debugger to
provide the user with accurate information about a program being debugged if the program
is optimized and the debugging information is restricted to the typical compiler-debugger
interface.

There are three myths in the software industry that have misdirected attention away
from this problem. One is that debugging is done in the development phase of the software
life cycle and is not (or is rarely) done subsequently. The second is that optimization is
not important until the production phase. The third is that if the behavior of an optimized
version of a program differs from the behavior of an unoptimized version of the program
run on the same input (in particular, if one exhibits a bug and the other does not), the
error must be in the compiler.

Combined, these myths suggest that an unoptimized version of the software can be
developed and debugged, and successfully recompiled with optimization enabled once the
development phase is completed. They are myths, however.

o All large software systems, including products that have been on the market for years,
have bugs. Bugs are rife in the production phase. Debugging is a large piece of the
maintenance component of the software life cycle.

e Optimization is often routine during development. For some applications, optimiza-
tion is necessary. These include applications that must run in limited-resource envi-
ronments, such as embedded applications, real-time systems, or MS-DOS programs,
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and applications that require large amounts of time or space as many scientific pro-
grams do—some of them run for hours when automatically parallelized; if run without
parallelization they would run for days.

e Program bugs can cause the behavior of a correctly compiled optimized version of a
program to differ from the behavior of a correctly compiled unoptimized version of
the program. Optimization can mask or unmask an existing bug.

These three facts underscore the fact that it is sometimes necessary to debug optimized
code. If a program is to be optimized, it is also cheaper to debug optimized code, avoiding
recompilation steps, version (optimized versus unoptimized) problems, and entirely avoiding
bugs that simply don’t show up in the optimized version. Debuggers are also used for
performance enhancement; clearly this must be done on the optimized version of the
program.

It is common for optimized code to be debugged at the assembly level either because
source-level debugging information is unavailable or because the information provided by
a source-level debugger is not trustworthy. This is typically slower than source-level de-
bugging. It is also common for optimized code to be debugged at the source level and
for programmer time to be wasted because the information provided by the debugger is
inaccurate.

This work describes methods of enriching the compiler-debugger interface to allow a
debugger to provide accurate information about sequential optimized code. Part I shows
how optimization can change the behavior of a program, describes the problems that
optimization introduces into the debugging process, and reviews previous and current
research in source-level debugging of optimized code. Part II describes several possible
solutions to the problem of providing an accurate call-stack trace when the frame pointers
normally present in the run-time stack have been optimized away. This problem is particular
to architectures on which there is a stack pointer that is modified in the process of evaluating
expressions. One of the solutions has been implemented and results are described. Part 111
describes a general breakpoint model and a general solution to the currency determination
problem; the problem of determining whether optimization has affected the value of a
variable at a breakpoint in such a way that the value may mislead the user.

2 Optimization May Change the Behavior of a Program

A program compiled with optimization enabled may behave differently from the same
program compiled with optimization disabled—that is, when optimization is turned off, the
bug may go away. Optimizations are correctness-preserving transformations which, if the
compiler is correct, will not change the behavior of a correct program. However, a program
that is being debugged is certifiably not a correct program, and correctness-preserving
transformations are not guaranteed to preserve the behavior of an incorrect program.

It is a misconception that if optimization changes the behavior of a program, the compiler
must be incorrect.! There are two circumstances in which correct optimization may change
the behavior of a program.

'If the compiler is incorrect, there are three options: get a different compiler, get the broken compiler
fixed, or work around the bug. In practice the first two options may not be viable. The third option
requires the programmer to find the code that causes the compiler bug to show up and replace it with
semantically equivalent code on which the compiler functions correctly. The programmer still has to debug
the (incorrectly) optimized code! Even if the choice is made to have the compiler fixed, the programmer
typically has to debug the optimized code enough to convince the compiler vendor that it is a compiler bug.
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void uses_uninitialized_variable() {
int x,y;
return y;

¥

Figure 2.1: Optimization Changes Program Behavior: Example 1

e Loose semantics:
A language may contain constructs whose semantics allow multiple correct translations
with distinct behaviors. Most common general purpose programming languages do
contain such constructs. The most commonly known area of “loose semantics” is
evaluation order. A correct optimized translation of a program containing code with
loose semantics may have different behavior from a correct unoptimized translation
of that program.

e Buggy programs:

A correct optimized translation of a program containing a bug may have different
behavior from a correct unoptimized translation of that program. This is a commonly
overlooked case that is important because a program that is being debugged is known
to have bugs.

It is common for even experienced software engineers to be surprised at the fact that
a program can behave one way when not optimized and a different way when optimized
when it has been compiled with a correct compiler. Figure 2.1 is almost a parody of a very
common type of bug that can cause such a behavior change. The bug is using a variable
that is not properly initialized. When uses uninitialized variable is called, a stack
frame is allocated for it, within which x and y are located. It is possible that on some
call to uses_uninitialized variable, the stack was left in a state in which 0 was in the
location allocated to x and 1 was in the location allocated to y, in which case 1 is returned.
Because x is not used, its storage may be optimized away. In the optimized version, y is
located where x falls in the unoptimized version—and 0 is returned.

The bug in Figure 2.2 (writing one byte past the end of b) has an effect when the
program is not optimized. It is benign (“goes away”) when data fetches are optimized by
aligning data structures on 4 byte boundaries. If each data object is aligned to a four byte
boundary, there will be two bytes of padding between the end of array b and character c,
and the bug will have no effect on program behavior. If data objects are not aligned, there
will be no padding between b and c; ¢ will be overwritten. Note that program misbehavior,
which is the external evidence of the bug, could occur when the program is not optimized
and go away when the program is optimized by changing the sense of the conditional —
that is, by adding another bug. Regardless of which version exhibits the symptom of the
bug, the behavior changes depending on the presence or absence of optimization.

Because optimization can change the behavior of a program, it is necessary, upon
occasion, to either debug optimized code or never optimize the code.

2.1 Approaches to the Problem

General approaches to the problem have been:

e to restrict the optimizations performed by the compiler to those that do not provoke

the problem ([WS78], [ZJ90]),
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int i;
char b[10], c;

void walk_on_c() {

c = getchar();

for (i=0; i<=10; i++) {
b[i] = ’\0’;
}

if (c == ’\0") {
program misbehaves
}

}

Figure 2.2: Optimization Changes Program Behavior: Example 2

e to restrict the capabilities of the debugger to those that do not exhibit the problem
(IWSTS], [Gup90], [2J90]),

e torecompile, without optimization, during an interactive debugging session, the region

of code that is to be debugged ([FM80], [ZJ90]), and

e to have the compiler provide information about the optimizations that it has per-
formed and to have the debugger use that information to provide appropriate behav-
ior ([WS78], [Hen82], [Zel84], [CMRS&S8], [ZJ90], [Gup90], [PSI1], [Coh91], [CMI1b],
[BHS92], [PS92], [Cop92], [BWI3], [AGI3a]).

A larger problem is lowering the cost of debugging production quality software. Much
if not most production quality software produced in this country is heavily optimized,
and the first approach, restricting optimization, would result in compilers that would not
get used; their use would degrade the quality of the software. The second approach,
restricting the capabilities of the debugger, is clearly undesirable, though possibly preferable
to being misled by the debugger. The third approach, recompiling without optimization
while debugging, requires a software engineering environment that provides incremental
compilation. Such environments are not in general use and even should they become
commonplace, the approach is problematic because optimization may change the behavior
of the program.

This work follows the fourth approach, using compile-time information about optimiza-
tion to provide appropriate debugger behavior. Some of the previous work that has taken
this approach has resulted in compiler/debugger pairs that are able to provide acceptable
behavior when debugging optimized code because the debuggers have been specialized to
handle the particular optimizations performed by the compiler. Because much of the indus-
try allows compilers and debuggers to be mixed and matched, solutions that do not require
the compilers and debuggers to be tightly coupled are preferable. While not without re-
strictions, this work is general in that the debugger need not be specialized to a particular
set of optimizations.

This work is applicable in the presence of any sequential optimizations that either do not
modify the flow graph of the program or modify the flow graph in a constrained manner.
Blocks may be added, deleted, coalesced, or copied; edges may be deleted, but control flow
may not be radically changed. The constraints are described in detail in Section 17.3. This
work applies in the presence of
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e Jocal common subexpression elimination
e global common subexpression elimination
e constant and copy propagation
e constant folding
e dead code elimination
e dead store elimination
e cross-jumping
e local instruction scheduling
e global instruction scheduling
e strength reductions
e code hoisting
e partial redundancy elimination
e other code motion
e induction-variable elimination
e loop unrolling
e inlining (procedure integration)
as well as any other optimizations that observe the constraints. As an example of an

optimization that does not observe the constraints, it does not apply to the portion of a
program that has had loops interchanged.

3 Background

Automatic translation of high-level language programs into machine language was once
an artificial intelligence problem. By the late 1960’s or early 1970’s, there was a well-
founded body of scanning, parsing, and type-checking theory and a considerable number of
effective code-generation techniques. The research in the area of high-level programming
languages has been moving the languages toward the problem domains, providing language
constructs that allow programs to describe problems and solutions in ways that are more
understandable by the programmer. This moves the languages further from the machine-
level description of the computation. The recent research in the area of translation of
high-level programming languages to machine languages has been in optimization, which
moves the code generated from the program toward the machine-level description of the
computation. The “semantic gap”, the gap between the source program and the generated
code, has been growing.

This has consequences for the process of debugging. Compilation is a mapping from
source code to machine code. Debugging is the art of determining from a program’s
“misbehavior” the source constructs responsible for the misbehavior. Misbhehavior is a
difference in behavior from intended behavior, and is discernible in the effects of the machine
code. This involves following the mapping backward from machine code to source code. The
less straightforward the mapping, the more difficult this process becomes.

Assembly-level debuggers have no difficulty with optimized code; they deal only in ma-
chine entities (addresses and instructions) and do no association of these entities with source
entities (symbol names and source constructs). In recent years, source-level debuggers have
become available. Source-level debuggers must be able to associate machine entities and
source entities, as they translate user’s requests in terms of source entities into actions in
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terms of machine entities. Programmers can debug code faster with a source-level debugger
because it automates much of the reverse mapping process. This is done by having the
compiler create a machine-code to source-code mapping, including information about the
source code in the object module; information such as the type and address of data objects
and the address of the start of the code generated from each source line.

The machine-code to source-code mappings in general use today are sufficient to describe
the relatively straightforward mapping from unoptimized code to source code, but they are
not sufficient to describe the (potentially convoluted) mapping from optimized code to
source code.

4 The Effects of Optimization

Unoptimized code has several characteristics that aid in the ability to do source-level
debugging. In unoptimized code

1. statements are translated to a contiguous set of instructions.?

2. In straight-line code, the set of instructions for a statement .5 immediately precedes
the set of instructions for the statement following 5. This extends in a natural way to
statements that involve branching such that if execution is halted at the code for .5,
the code for statements appearing in the source code before § will have been executed
and the code for statements appearing in the source code after S will not have been
executed.?

3. Each variable has exactly one location.

4. The value in a variable’s location matches the that value the source code would lead
one to expect the variable to have, at all statement boundaries.
Optimized code does not necessarily have any of these characteristics.

5 The Problems Optimization Causes Source-Level Debuggers

The following low-level debugger capabilities are made difficult by optimization:

1. the association of source code locations with machine code locations, and in particular,
(a) trap location reporting, and

(b) breakpoint location determination
2. execution context reporting (for example, providing a call-stack trace)

3. data value reporting, with distinct subproblems
(a) data location determination

(b) data currency determination

4. data modification

2This is not the case for all constructs. For example, loops often involve two discontignous sets of
instructions, a test and a jump, separated by the body of the loop. Case or switch statements may involve
multiple discontiguous sets of instructions for correctly addressing the target. The discontiguity is present
in the source code, but it still causes problems in trap location reporting and breakpoint location for these
constructs. As described below, these problems are endemic in optimized code.

?For source statements in a loop, we can distinguish executions of the statements by subscripting them
with the loop iteration value. If execution is halted at .S; (at S in the i*? iteration of the loop), Successor(S)i—1
will have been executed and Successor(S)i will not have been executed.
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Table 5.1: Line Table

‘ Code Address ‘ Source Line Number ‘

316 17

3FC 18
404 19

5. code modification

At a higher level, how the debugger presents information about the program to the
user becomes a more difficult problem in the presence of optimization. Zellweger [Zel84]
introduced terms for two methods of removing or ameliorating the confusion introduced
into the debugging process by optimization. The preferred method is to have the debugger
responses to queries and commands on an optimized version of a program be identical to
its responses to the same set of queries and commands on an unoptimized version of the
program. This is known as providing ezpected behavior. It may not always be possible
to provide expected behavior, so the next best thing is to provide truthful behavior, in
which the debugger avoids misleading the user, either by describing in some fashion the
optimizations that have occurred or by warning the user that it cannot execute a command
or give a correct answer to a query.

If a debugger were always able to provide expected behavior, optimization would present
no additional interface problems for a debugger. Truthful behavior has attendant interface
problems because it requires that the debugger expose the effects of optimization in a
way that is meaningful to a possibly naive user. Consider the problem of telling the user
in source terms where a program has halted when loops may have been unrolled, fused,
and interchanged. For the most part, these interface issues are beyond the scope of this
work. Part I concentrates on providing expected behavior in the presence of a particular
optimization. Part III shows how to determine when expected behavior is possible (relative
to data value reporting) in the presence of a large class of optimizations. Attention is given
to producing the information that the debugger needs to expose the effects of optimization
when expected behavior is not possible, but little attention is given to the form of the
presentation of that information.

5.1 Associating Source Code Locations with Machine Code Locations

Source-level debuggers commonly use a line table to associate source code locations
with machine code locations. A line table is a table of (address, line number) pairs in which
address is the address of the first instruction generated from the source line at line number.

In unoptimized code, all instructions between one code address entry and the next are
generated from the referenced source line. In addition, all entries (code addresses and line
numbers) are monotonically increasing. If program execution were halted before execution
of the instruction at code address entry A associated with source line 5, all instructions
generated from source lines previous to 5 and no instructions generated from source lines
subsequent to S would have been executed.
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foo(); call foo load ri, q

*p = *q;  => load rl, q => load ri1, [ri]
load r1, [ri] call foo
load r2, p load r2, p
store [r2], ri store [r2], ri

Figure 5.1: A Statement May Have Discontiguous Generated Code

5.2 Trap Location Reporting

When a program terminates due to a trap, the debugger must be able to report the
statement in the source program that generated the instruction causing the trap. In the
absence of optimization, the line table is sufficient. The debugger determines into which
code address set the program counter falls and returns the associated source line number.

In the presence of optimization, the line table is not sufficient. Its use in trap location
reporting crucially depends on the instructions generated from a statement being contigu-
ous. Consider the source code, machine code, and transformed machine code shown in
Figure 5.1. There is no way to correctly report a trap caused by p containing trash and a
trap caused by q containing trash with a single entry in a line table (assuming that the call
to foo also has an entry).

This problem is addressed is Section 15.1. It is also addressed in some of the more
modern symbol table formats. Examples include the symbol table put out by the MIPS
compiler for use by dbx and the symbol table put out by the Convex compiler for use by
the Convex debugger Cxdb [Str91], [BHS92].

5.3 Breakpoint Location Determination

When the user requests a breakpoint at a source line I, the debugger must be able to
set the breakpoint at an appropriate address. In the absence of optimization, the line table
is sufficient. By definition, the code address entry whose corresponding source line entry
is L is an appropriate address: all previous lines and no subsequent lines will have been
executed when the program breaks.

In the presence of optimization, the line table is again insufficient. Its use in breakpoint
location determination depends not only on the instructions generated from a statement
being contiguous, but also on the statements being executed in the order they appear in the
source code. Optimization can cause source statements to be reordered in their entirety.
Reordering of source statements as shown in Figure 5.2 presents a different sort of problem
from trap location reporting. In the case of trap location reporting, expected behavior
could be provided if the necessary information were available. In this particular example of
breakpoint location determination, the line table may contain information about where the
code for each statement resides, but it is not clear what to do with the information. Assume
the user requests a breakpoint at line 2. If a breakpoint is set before the code for statement
2, the user may be confused by the fact that statement 1 has not yet been executed. If a
breakpoint is set after the code for statement 1, the user may be confused by the fact that
statement 2 has already been executed.

Additionally, if the instructions for a statement are not contiguous, the first instruction
generated from a statement may not be an appropriate choice for the breakpoint location
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1 a=b; 2 c=d;
2 = d; => 1 = b;
3 = f; 3 e=f;

Figure 5.2: Statements May Be Reordered

for the statement. The first instruction generated from a statement .5 may have been moved
far from the rest of the instructions generated for 5, across the code for other statements, it
may have no user-visible effect on program state (it may be part of an address computation,
for example). The rest of the instructions for the statement, or at least the ones that result
in user-visible effects (such as branches and stores), may not have been moved at all —
even if they have been moved, one of them may be a better candidate for the breakpoint
location than the first instruction.

This problem is addressed is Section 15. It is also addressed by Zellweger [Zel84], Coutant
et al [CMR88], Zurawski and Johnson [ZJ90], Streepy [Str91] and Brooks et al [BHS92],
and Wismiiller [BW93]. Different approaches allow different debugger capabilities. None of
the approaches in the literature, including mine, provide a complete solution.

5.4 Execution Context Reporting

When the debugger gains control of a halted program, it provides the user with infor-
mation about where the program halted. Most debuggers by default provide source file
and line information. From this information, in unoptimized code, the user can determine
a great deal about what source code has been executed and what has not. In optimized
code, the user can determine considerably less. Worse, the user may be led to believe that
code has been executed when it has not, or vice-versa. Simple code motion is enough to
cause the latter problem. Loop transformations can compound the problem. This problem
is addressed to some extent by Streepy [Str91] and Brooks et al [BHS92].

The user can request more context in the form of a call-stack trace.* Two optimizations,
inlining and the stack-frame pointer optimization discussed in Part IT of this work, can cause
a call-stack trace to be inaccurate and misleading. Zellweger [Zel84] shows how to provide
expected behavior in the presence of inlining, and Part II shows how to provide expected
behavior in the presence of the stack-frame pointer optimization.

5.5 Data Value Reporting

Source-level debuggers commonly use symbol table entries to associate source code data
objects with memory locations. Symbol table entries differ from object module format to
object module format, but generally contain the name, type, size, and location of a data
object. Some symbol table formats require the location information to reference memory
(registers are not allowed). Many formats allow only a single location to be associated with
a data object, although allowing multiple locations is more common in recent years.

*The call-stack trace is also known as a stack trace, stack dump, procedure traceback, or backtrace.
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Data Location Determination

In optimized code, a data object may reside in more than one location, or nowhere
at all, over the duration of its lifetime. A debugger that retrieves an object’s value from
the location given in the symbol table entry when the object actually resides elsewhere (or
nowhere) may give the user incorrect information.

This problem is addressed by a number of modern symbol table formats, including
Microtec Research, Inc.’s format for their Xray debugger [Wan91], the DWARF Debugging
Information Format [Sil92], the symbol table put out by a prototype modification of Hewlett
Packard’s C compiler for the HP9000 series 800 for use by a prototype modification of the
debugger for that machine [CMRS88], and the symbol table put out by the Convex compiler
for use by Cxdb [Str91]. Although the symbol table formats are general, the information
stored in them is usually derived from live range information computed for use by the
optimizer. This is not optimal for use by the debugger, for reasons described in Section 26.
Adl-Tabatabai and Gross [AG93a] show how data-flow analysis can be used to determine
optimal variable location range information. Wismiiller [BW93] also approaches the problem
using data-flow analysis.

How this problem interacts with my solution to the next problem is discussed in Sec-
tion 26.
Data Currency Determination

Even if a data object’s location is correctly determined, that location may not have the
value the user expects. For example:

Unoptimized Optimized

a = expressionl; a = expressionl;
/* a is used. */

a = expression2;

foo(a); /* Last use of a. */ foo(expression2);

The user may break at the call to foo and ask for the value of a in order to find out what
was passed to foo. If the dead store into a has been eliminated, the value in the location
associated with a may mislead the user.

This problem is addressed for local optimizations only (specifically, register promotion
combined with local instruction scheduling) by Coutant et al [CMR88], Adl-Tabatabai and
Gross [AG93a], and Streepy [Str91] and Brooks et al [BHS92]. It is also addressed for
local and global optimization by Hennessy [Hen82], Wismiiller and others [BW93], and by
Part III of this work.

5.6 Data Modification

The user may want to modify a data object’s value while in the debugger and continue
execution of the program using the modified value to modify the program’s behavior.
Optimization can defeat the process. Consider:
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#define DEBUG O

a = DEBUG;
ce /* No assignments to a. */
if (a)

print();

Since the value of a is known to be 0 at compile time, the conditional is known to always
be false and can be eliminated, along with the call to print. If the user sets a to 1, it will
not cause print to be called.

This problem has not been addressed. It is generally considered too difficult, but the
data structure developed by Pollock and Soffa for incremental global optimization [PS88],
[PS92] should be applicable.

5.7 Code Modification

The user may want to modify existing code or execute arbitrary code while in the
debugger. Debuggers are far from uniform in the manner in which they provide this sort
of facility. Some do not allow it at all. Others allow anything that can be done by writing
to memory or to registers. Some allow any existing procedure to be called, while others
provide facilities specifically for patching code, either in assembly or high level languages.
In the presence of optimization, the results may be unexpected. In the following example,
optimization causes v to contain the value it receives from foo() rather than the value 5
at breakpoint. If, from within the debugger while the program is stopped at breakpoint, the
user calls a routine that uses v, the routine may perform in an unexpected manner.

Unoptimized Optimized
v = foo(); v = foo();
v = 5;

b = v; /* Last use of v. */ b = 5;

breakpoint—call routine(v) from the debugger

Providing expected behavior or useful truthful behavior in the presence of code modifi-
cation has not been addressed. It is generally considered too difficult.

Now that we have reviewed the problems, let us review the research that has been done
in the area.



16 6. A Survey of Related Work
6 A Survey of Related Work

This section surveys the work that has been done on providing a mapping from ma-
chine code to source code to support source-level debuggers that can effectively assist in
debugging optimized code. Summaries of published papers are presented in approximately
chronological order. Discussions of each paper are headed by the title of the paper.

“Design of the FDS interactive debugging system”

In July of 1978, Warren and Schlaeppi produced an IBM research report [WS78] the
intended debugging system for the Research Division’s Firmware Development System
(FDS). The problem that they attacked was to design an interactive source level debugging
system for microcode that would allow full optimization with attendant debugging problems
or full debugging with constraints on optimization, without recompilation or modification
of the source program. While their system was designed for microcode as opposed to
general software, the problems inherent in debugging optimized code are identical, thus
their approaches are valid for a general discussion of debugging optimized code.

This paper opened the discussion of how to do source-level debugging of optimized code.
It contains a discussion of information needed from the compiler to implement a debugger
that provides messages about the effect of optimizations on source code—what has since
been termed truthful behavior.

“Symbolic Debugging of Optimized Code”

Hennessy published the first journal paper [Hen82] on the topic, and it has been influ-
ential. His paper is concerned with currency determination and expected value recovery.
When a variable is not current, expected value recovery is the act of computing the value
the variable would have had if it were current.

Hennessy’s work sets the context for future work on debugging optimized code. He intro-
duces the notion that the debugger should, when possible, hide the effects of optimization
from the programmer.® He introduces the notion of noncurrent and endangered variables,
and the notion of recovery of expected values for noncurrent variables.

He describes a model of code generation and local optimization for which he can do
currency determination and (often) recovery, augmenting a code generation DAG with
information used by his currency determination algorithms. He also considers limited global
optimization, with weaker results.

Technical correspondence about Hennessy‘s work has appeared twice. “A note on
Hennessy’s Symbolic Debugging of Optimized Code”, by Wall, Srivastava, and Templin
[WST85] corrects an error in the algorithm used to determine the currency of variables,
using Hennessy’s data structures. “A further note on Hennessy’s Symbolic Debugging of
Optimized Code”, by Copperman and McDowell [CM93] points out that his technique
assumes that after optimization, programs have only one store to a variable within any
basic block. This was a reasonable assumption in 1982 but is a restrictive assumption
today.

®This approach, when successful, has subsequently been termed providing ezpected behavior.
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“An Incremental Programming Environment”

In 1980 Feiler and Medina-Mora produced a report at Carnegie-Mellon University about
one part of a software engineering environment, the Incremental Programming Environment
(IPE), in which editing, compiling, linking, and debugging are performed on a common
representation of a program by integrated tools.

Compilation is incremental on a procedure-by-procedure basis. Debugging is accom-
plished by modifying the code and (automatically) recompiling the modified procedure with
optimization disabled. The language definition is extended to include debugging constructs,
and these are programmed in the same manner as other language constructs.

Incremental recompilation has the advantage that debugging can be done without any
of the problems discussed in Section 5. The disadvantage is that no debugging support
is provided for the situation in which disabling optimization changes the behavior of the
program.

“The Debugging of Optimized Code”

This is an unpublished draft by Teeple and Anderson from March 1980. It describes
a problem with determining breakpoint locations in the presence of cross-jumping. While
their proposed solution was not correct, it contained the genesis of Zellweger’s complete
and correct algorithm [Zel84], and appears to have contained the genesis of her invisible
breakpoints and path determiners.

“A Systematic Approach to Advanced Debugging through Incremental
Compilation”

Fritzson [Fri83] investigated using incremental compilation to supply advanced debug-
ging features. He was not focussed on debugging optimized code, but his system has the
advantages and disadvantages of any incremental compilation system with regard to de-
bugging optimized code. His incremental compiler was based on the portable C compiler,
thus optimizations were local to a statement. This allowed him to incrementally recompile
at statement granularity without needing an optimization history like that of Pollock and

Soffa [PS88], [PS92].

“Interactive Debug Requirements”

Seidner and Tindall published IBM’s market requirements statement for an interactive
debugger [ST83]. It catalogs what a good debugger (as seen from 1983) should not be
without, with a good rationale for each suggested feature. It is interesting how many
debuggers today are without some of these features. Source-level debugging of optimized
code was considered a requirement for an interactive debugger. The paper lists the problems
optimization causes for a debugger and the behavior that solutions to the problems should
support.

“An Interactive High-Level Debugger for Control-Flow Optimized Programs”

Zellweger [Zel84] produced the first dissertation on debugging optimized code. The first
part of her thesis provides a coherent discussion of terminology for debugging optimized
code and the related issues. Terminology she introduced includes:
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expected versus truthful behavior
e semantic and syntactic breakpoints
e invisible breakpoints

e path determiners

Expected Versus Truthful Behavior Zellweger defines two properties of debuggers,
neither of which holds for commonly used debuggers when applied to optimized code.
A debugger that provides expected behavior always responds exactly as it would for an
unoptimized version of the same program. The effects of optimization are hidden from the
user. The debugger must create a view of the (optimized) machine state that conforms to
the (unoptimized) source-level program state.

A debugger that provides truthful behavior avoids misleading the user. For a given query
or attempted action,

e it may do nothing, stating that any response would be incorrect due to optimization,

e it may provide a response but warn that the response may be incorrect due to
optimization, or

e its response may include a description of the relevant effects of optimization.
The effects of optimization are described to the user. The user now has the task of creating
a view that conforms to the (unoptimized) source-level program state. The debugger may
still be able to do much of the machine-state to source-level program state translation.

A debugger that provides neither expected not truthful behavior is likely to give incorrect
and/or confusing responses to queries about an optimized program. Even truthful behavior
may be confusing to a user unfamiliar with the possible effects of optimization. Expected
behavior is clearly the superior choice. However, expected behavior may be impossible
to provide. For example, if induction variable elimination has removed all references to
a variable V' from the machine code for a loop, and the compiler has left no information
about how to reconstruct the variable’s value, the debugger cannot provide its expected
value if asked for it within the loop. The ability to provide expected behavior depends
on the information provided by the compiler. In some cases it is impractical to provide
the information necessary to allow a debugger to provide expected behavior. In general,
the investigation into source-level debugging of optimized code involves determining how
to provide expected behavior, determining when that is impossible or impractical, and if
impossible or impractical, determining what sort of truthful behavior is appropriate.

Semantic and Syntactic Breakpoints A semantic breakpoint for a statement is lo-
cated at the machine code generated from the statement. It is called semantic because
the breakpoint is associated with where the statement “happens”. A syntactic breakpoint
location is chosen according to the syntactic positional relationship of source statements.
In unoptimized code, semantic and syntactic breakpoint locations are identical. However,
if a code motion optimization has been performed such that the code for a statement S has
been moved relative to other statements, a semantic breakpoint will be placed wherever the
code for S ends up, while a syntactic breakpoint will be placed wherever the code for 5
started out. Given a sequence of statements 57, S5, ..., S5, for two statements 5; and 5},
if © < j then the syntactic breakpoint for 5; will never follow the syntactic breakpoint for
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5;.% This condition does not hold for semantic breakpoints. Semantic breakpoints require
knowing where the code for a statement is moved to, and problems arise if the instruc-
tions generated from a statement are not contiguous in the final machine code. Zellweger
discusses five possible refinements of the semantic breakpoint definition for noncontiguous
code generated from a single statement 5. The breakpoint could be set:

1. on the first instruction generated from .9,

2. on the first instruction of each contiguous set of instructions generated from 9,

3. on the first instruction generated from S that corresponds to any user-visible change
in execution state,

4. on the first instruction generated from S that corresponds to any change to a user-
visible variable,

5. on the first instruction generated from S that corresponds to the “core semantic effect”
of S, where the core semantic effect would ideally by defined by the language.

Invisible Breakpoints An invisible breakpoint is a breakpoint set by the debugger, at
which the debugger takes some action and continues execution of the program without
giving control to the user.

Path Determiners A path determiner is Zellweger’s technique for using an invisible
breakpoint to determine what execution path is taken.

Control Flow Optimizations The main body of Zellweger’s work describes algorithms
for providing expected behavior (most of the time) in the presence of cross-jumping and
procedure inlining. In the presence of inlining, extra work is required to display a call-stack
trace that alerts the user that an inlined routine is active. This is the only research in the
literature that deals with a problem similar to the one I address in Part II. Zellweger has
successfully implemented her algorithms in the Cedar programming environment at Xerox

PARC.

“DOC: a Practical Approach to Source-Level Debugging of Globally
Optimized Code”

At Hewlett Packard, Coutant, Meloy, and Ruscetta [CMRS&8] modified a compiler and
debugger to produce a prototype called DOC that can debug the optimized code the com-
piler produces. The debugger was designed to handle global register allocation, induction
variable elimination, constant and copy propagation, and delay slot scheduling.

A major goal was to inform the debugger of a variable’s location at a given point in a
program. The compiler provides the debugger with live-range information, including the
location(s) a variable is mapped to within a live range. It also provides information about
whether a variable is current, which can be done inexpensively because no global code
motion is done. Eliminated induction variables are handled by storing a recovery function,
which is a function from the value of a named compiler temporary to the value of the
eliminated user variable which the debugger can evaluate.

®The syntactic breakpoint locations for S; and S; may be in the same location. This will occur if both
statements have been moved.
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“Incremental Global Reoptimization of Programs ...”

In two articles [PS88], [PS92], Pollock and Soffa explore the potential of incremental
optimization. The earlier paper focusses on incrementally reoptimizing when an optimiza-
tion has made it impossible to satisfy a debugging request. The later paper focusses on
incrementally reoptimizing when a program is edited.

They develop a data structure in which an optimization history is recorded, and use it
to incrementally recompile and reoptimize the program in response to debugging requests
or program edits. The optimization history contains information about the extent of an
optimization (what regions of code or further optimizations it affects), so that when an
optimization must be reversed, any dependent optimizations can also be reversed.

While it has not been investigated in this regard, their data structure should be applica-
ble to the data modification problem—at least to allow truthful behavior. I have not seen
any other approaches that might apply to this problem.

2

“A Unified Approach to the Debugging of Optimised Programs ...
Shu [Shu89], [Shu91l], [Shu92], [ST83], did his dissertation on debugging optimized

code. I cite his work for completeness, but I only recently became aware of it and am
not familiar with the content. From my limited acquaintance with his work, it appears that
he has concentrated on breakpoint mapping and formalizing the effects of optimization in
a composable set of rewrite rules.

“Debugging Code Reorganized by a Trace Scheduling Compiler”

Gupta [Gup90] investigated debugging code that has been automatically parallelized
by a trace scheduling compiler. To allow the compiler freedom to exploit any parallelism
present in the program, “the power of the debugger is compromised”. Monitoring commands
must be compiled into the program. The debugger can then enable and disable any of these,
and monitor those variables or expressions, at those points in the program (which might be
specific loop iterations) that were selected for monitoring at compile time.

“Debugging Optimized Code With Expected Behavior”

At the University of Illinois at Urbana-Champaign, Zurawski and Johnson [ZJ90] mod-
ified the standard Smalltalk debugger and an optimizing compiler for Typed Smalltalk.
They are always able to provide expected behavior by a combination of compiler-generated
information, incremental compilation, and restricting points at which a debugger can take
control of a program.

“Source Level Debugging of Automatically Parallelized Code”

Cohn [Coh91] describes a method for providing a sequential view of programs that have
been automatically parallelized for distributed memory MIMD machines by transformations
that can be decomposed into thread splitting and sequential optimizations. He defines
functions that the debugger can often use to reconstruct a sequential state that corresponds
to the execution state of a halted parallelized program. He defines techniques that can be
used when no sequential state corresponds to the current execution state of the program,
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to minimize the cost of achieving a debuggable state (the worst case involves re-executing
the program with synchronization code).

“Debugging Parallelized Code Using Code Liberation Techniques”

Pineo [PS91] describes a different method for providing a sequential view of automat-
ically parallelized programs. Global renaming is used to convert the sequential program
to single assignment form. Subsequently, parallelizing transformations can be performed.
Finally, the large storage requirements of single assignment code are reduced by reclaiming
names that are not useful for parallelization or debugging.

2

“A New Approach to Debugging Optimized Code ...

At Convex, Streepy [Str91] and Brooks et al [BHS92] break with the by now conventional
view that the debugger should hide the effects of optimization. Their view is that the
debugger should aid the user in understanding what is actually happening in the presence of
aggressive optimization and parallelization. To this end, they describe an enriched compiler-
debugger interface and a debugger user interface that can visually display the effects of
optimization. Their debugger CXdb incorporates capabilities first published in Coutant et
al [CMR88], handling induction variable elimination and providing live range and variable
location information (although in a different format). From a research perspective, their
contribution is a finer granularity in the mapping from source entities to machine code
addresses. They have eliminated the line table used for mapping source lines to code
addresses and replaced it with a mapping between source units and sets of address ranges.
A source unit can be an expression, a statement, a block, a loop, or a routine. This allows
stepping at any of these granularities, as well as accurate trap location reporting. Their
method of stepping involves breaking once for each contiguous sequence of instructions
generated from a unit. This is a significant departure from the line-by-line stepping strategy
employed by many debugger users, which involves breaking once per line. In Section 15 1
present a breakpoint model that does not require such a departure. The two models can be
combined to provide additional debugging capabilities without losing existing capabilities.

“Evicted Variables and the Interaction of Global Register Allocation and
Symbolic Debugging ...”

Adl-Tabatabai and Gross [AG92], [AG93a], [AG93b] address the data location problem.
This problem has been addressed by others [CMR88], [Wan91], [Str91], [BHS92], but
typically by providing live-range information to the debugger. This may unnecessarily
truncate the range across which a variable is available, because the live-range information
computed by the compiler terminates at the last use of a variable, not at the point where
it no longer resides in memory or a register. Adl-Tabatabai and Gross show how data-flow

analysis can be used to determine the actual availability of a variable. This is discussed
further in Section 26 and is addressed by Wismiiller [BW93].

“Source-Level Debugging of Optimized Programs Using Data Flow Analysis

2

Wismiiller is currently investigating data location, currency determination and expected
value recovery (with Bemmerl [BW92], and with Berger [BW93]). His approach is similar
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to my approach to currency determination. The scope of his work is quite ambitious. As of
this writing [Wis93] his breakpoint model is more general than that presented in Section 15,
he incorporates recovery into his currency determination technique, and he addresses the
data location problem. He does not address optimizations that modify the shape of the flow
graph. If his work comes to successful fruition, it will be a valuable addition to the field.
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7 A Partial Survey of Today’s Compilers and Debuggers

I have claimed that optimized code causes debuggers to give misleading responses, while
noting that there is work being done in the area, both in academia and industry. This section
is intended to give a few data points regarding how some commonly available compilers and
debuggers respond in the presence of optimization.

Two simple programs were used as probes. The first of these, shown in Figure 7.1,
investigates debuggers’ call-stack-trace facility in the presence of inlining. The second,
shown in Figure 7.2, investigates debuggers’ breakpoint and data display facilities in the
presence of constant and copy propagation and dead store elimination.” It is far from a
complete examination of these facilities, but does show some common unexpected behavior.

Clearly, debugger responses depend on the debugger. They also depend on the
compiler—on the generated code and the symbol table information. Compilers and de-
buggers were chosen strictly on the basis of ease of availability (to me).

Compilers and Debuggers Surveyed On personal computers, [ have coupled compilers
and debuggers from the same vendors:
e Borland’s Turbo C/C++ compiler and Borland’s Turbo debugger, running on Mi-
crosoft’s 0OS/2 on an IBM pc.

"Minor editing of these programs was necessary to satisfy all the surveyed compilers. None of the changes
had any semantic import.

Figure 7.1: Test Code with Inlining

#include<stdio.h>

void a() {
¥

inline int b() {
a();
return 1;

¥

int c(int x) {
int y = b();
return x+y;

¥

int d() {
return c(5);

¥

int main(unsigned argc, char *xargv) {
printf("%d\n", d());
return 1;

¥
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1 #include <stdio.h>

2 int main(unsigned argc, char *xargv) {
3 /* int main(argc, argv) unsigned argc; char xxargv; {*/
4 int w, x, y, 2 = 0;

5

6 x = atoi(argv[1]);

7

8 printf ("%d\n", x);

9

10 x = 5;

11

12 y = X;

13

14 if (y > 2) {

15 printf("y > 2");
16 by

17 else {

18 printf("y <= 2");
19 3

20

21 if (2) {

22 printf("z");
23}

24 else {

25 printf("not z");
26 by

27

28 by

Figure 7.2: Test Code with Constant and Copy Propagation and Dead Store
Elimination

e MetaWare’s High C compiler and MetaWare’s mdb debugger, running on MS-DOS
with Phar Lap’s DOS Extender on an IBM pc.

On the UNIX system I have mixed and matched debuggers and compilers because that is
a common mode of operation on that system. All tests were done on Sun Sparcstations.
Compilers:

e Sun’s Ansi C compiler acc
e The Portable C compiler cc
o ATT’s Cfront C++ translator CC

e The Free Software Foundation’s C compiler gcc

Debuggers:
e dbx

e The Free Software Foundation’s debugger gdb
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7.1 Survey Results

Historically, compilers have either produced debugging information or optimized the
generated code, but not both.® This trend is changing but has not yet disappeared. The
following occur when attempting compile to with both -g and -O:

e cc gives the message

cc: Warning: -0 conflicts with -g. -0 turned off.

e lor High C, -g suppresses inlining (with a warning) and silently suppresses dead-store
elimination.

e Lor acc, -0 silently suppresses production of debugging information.

The Call-Stack Trace Facility I surveyed the call-stack trace facility in the presence
of inlining by setting a breakpoint in routine a() of the program shown in Figure 7.1 and
requesting a call-stack trace. If expected behavior is provided, when execution is suspended
in a(), a call-stack trace will show that a() was called from b(), b() was called from c(),
c() was called from d(), and d() was called from main(). The optimization is to expand
b() inline, so b() has no stack frame in the optimized version. A call-stack trace that relies
solely on information in the call stack will not provide expected behavior. b() will not
appear in the call-stack trace, which will suggest that a() was called from c() rather than
from b(), and that b() is not active.
Inlining is not a part of ANSI Standard C, so acc was not among the compilers surveyed.
In the other cases, routine b was expanded inline by the compiler (or translator/compiler
pair, in the case of CC/cc).
e High C/mdb: I did not get to the point of requesting a call-stack trace, because with
-g, b was not expanded inline, and without -g, I could not set the breakpoint via
source-level debugging (I could not set a breakpoint at a() by function name.)

e CC/cc/dbx: b() does not appear in the call-stack trace.
e CC/cc/gdb: b() does not appear in the call-stack trace.
e gcc/dbx: b() does not appear in the call-stack trace.

e gcc/gdb: b() does appear in the call-stack trace. Of the compiler/debugger pairs
surveyed, this is the only one that provides expected behavior for its call-stack trace
facility.

e Turbo C++4/Turbo Debugger Neither b() nor c() appear in the call-stack trace.
the call-stack trace suggests that a() was called from d(), and d() was called from
main(). The compiler optimizes the stack frame of d() as described in Part II of this
work, causing the additional unexpected behavior in the call-stack trace.

The Breakpoint and Data Display Facilities 1 surveyed the breakpoint and data
display facilities in the presence of constant and copy propagation and dead store elimination
via the program shown in Figure 7.2. The optimized code generated from this program, for
each compiler, is shown (in source terms) in Figure 7.3. High C produces code equivalent to
that produced by acc, cc, and gcc when -0 is specified and -g is not. As mentioned above,
when both are specified, dead-store elimination is suppressed in order to allow debugger

®By convention, -g is the flag passed to the compiler to cause it to produce debugging information and
-0 is the flag that enables optimization.



26 7. A Partial Survey of Today’s Compilers and Debuggers
High C acc, cc, gcc Turbo C
2 int main(...) A int main(...) A int main(...) A
6 x = atoi(argv[1]); x = atoi(argv[1]);
8 printf("%d\n", x); printf("%d\n", x); printf("%d\n", atoi(argv[1]));
10 x = 5;
12y = x;
15 printf("y > 2"); printf("y > 2"); printf("y > 2");
25  printf("not z"); printf ("not z"); printf("not z");
28 } + +

Figure 7.3: Test Code with Constant Propagation, Copy Propagation, and Dead
Store Elimination

users to examine the values of variables. This has the advantage of aiding debugger users
and the disadvantage that the code runs slower and is not identical to the code produced
when -g is not specified.

To investigate the breakpoint facility, I set a breakpoint at a line of code that was
eliminated by optimization and ran the program. None of the debuggers surveyed provided
expected behavior. Truthful behavior requires the debugger to warn the user, at the point
that a breakpoint is set at such a line, that the request cannot be honored as given, and to
describe the action taken (for example, that the breakpoint was actually set at some other
line).

e High C/mdb: The breakpoint command was accepted with no suggestion that it was
not possible to stop at the referenced line. The breakpoint was reached at a subsequent
line (the syntactic breakpoint for the eliminated line), with a message displaying the
line number of the line the program actually halted at.

e acc/gdb: Because -0 suppresses debugging information, my attempt to set a break-
point at line 12 produced the message:

No line 12 in file "const-prop.c"
Attempts to set breakpoints at other lines produced similar messages. Because the
suppression of debugging information is silent, this was unexpected and misleading.

e acc/dbx dbx exited immediately upon loading the compiled program, after producing
this message:

warning: stab entry unrecognized: name ,ntype 62, desc 0, value O
warning: stab entry unrecognized: name ,ntype 38, desc 0, value O
warning: stab entry unrecognized: name ,ntype 38, desc 0, value O
warning: stab entry unrecognized: name Xt ; g ; 0 ; V=2.0,ntype 3c,

desc 0, value 2bf5522d
dbx: internal error:
../common/object.c

unexpected value 98 at line 2620 in file

e cc: Because -g suppresses optimization, I was unable to test the source-level break-
point facility of any debuggers with code compiled with cc. Because the suppression
of optimization is made explicit with a warning at compilation time, this was expected
and not misleading (though not helpful).



7. A Partial Survey of Today’s Compilers and Debuggers 27

gce/dbx, gcc/gdb: The breakpoint command was accepted with no suggestion that
it was not possible to stop at the referenced line. The breakpoint was reached at
a subsequent line (the syntactic breakpoint for the eliminated line), with a message
displaying the line number of the line the program actually halted at.

Turbo C/Turbo Debugger Source lines that have executable code associated with them
are shown in a different color from lines that do not. An attempt to set a breakpoint
at a line that has no code associated with it has no effect (the lack of a stop-sign
glyph makes it clear that the attempt to set the breakpoint failed). Breakpoints can
be set at a line that has executable code associated with it, and the program halts at
that line. Of the compiler/debugger pairs surveyed, this is the only one that provides
truthful behavior for its breakpoint facility.

To investigate the data display facility, I ran the same program (giving it the argument
8) past the point that the assignment to y should have taken place. I then attempted to
display w, x, y, and z. Expected behavior would be to display whatever value happened to
be on the stack for w (we see that expected behavior is not always helpful either) and the
values 5, 5, and 0, for x, y, and z, respectively. If data has been eliminated (as is the case
for most compilers in this instance), truthful behavior would be to say so.

acc/gdb: Because -0 suppresses debugging information, my attempt to display w by
name produced the message:

No symbol "w'" in current context.

Attempts to display other variables produced similar messages. This would have been
unexpected and misleading, but I'd already failed to set breakpoints at the source
level, which warned me.

acc/dbx No debugging could be attempted because dbx could not load the program.

cc: Because -g suppresses optimization, I was unable to test the source-level data
display facility of any debuggers with code compiled with cc.

gce/dbx, gee/gdb: gee eliminated w, y, and z. Attempts to display them by name
produced the message:

Ysymbol name" is not defined

from dbx and the message:

No symbol '"symbol name" in current context.

from gdb. For both debuggers, my attempt to display x by name gave the value 8 (x
is noncurrent). This is unexpected and misleading behavior.

Turbo C/Turbo Debugger Because copy propagation eliminated the use of x in line 8,
the assignment to x was eliminated, thus Turbo C eliminated all four variables. At-
tempts to display them by name produced a message saying that they were unavailable
because optimization had eliminated them. This is truthful behavior.

High C/mdb: Because -g suppresses dead store elimination, all variables were available
for display. The values given were 4055, 5, 5, and 0, for w, x, y, and z, respectively.
This is expected behavior.

Though far from an exhaustive test either in breadth (of compilers and debuggers
surveyed and facilities investigated) or depth (of optimizations performed), this brief survey
gives a feel for how today’s compilers and debuggers respond in the presence of optimization:

Some compiler/debugger pairs provided expected or truthful behavior for some ex-
amined facilities.

Some compiler/debugger pairs did not provide expected or truthful behavior for any
examined facilities.
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e No compiler/debugger pair provided expected or truthful behavior provided for all
examined facilities.
It is also worth noting that neither expected nor truthful behavior always corresponds to
the most helpful behavior.
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8 Producing an Accurate Call-Stack Trace in the Occasional Absence
of Frame Pointers

Debuggers have the capability of displaying the current execution context as a list of
active routines and their arguments, in reverse order of invocation. Many terms have been
used to describe this list of active routines, including call-stack trace, stack trace, stack
dump, procedure traceback and backtrace. I use the term call-stack trace in the face of a
lack of unanimity of usage.

On architectures in which there is a stack pointer that is modified in the process of
evaluating expressions, this facility relies on information provided by code within each
active routine. If this code is eliminated due to optimization, the call-stack trace will contain
inaccurate and incomplete information, which may mislead the user. It would be preferable
to provide either an admittedly incomplete stack trace containing only accurate information
or a stack trace that is identical to that which would be produced if the optimization had
not been performed.

Providing a call-stack trace requires the ability to locate the callers’s stack frame and
symbol table information given the called routine’s stack frame. Typically a call-stack trace
displays the arguments of active routines but does not display local variables. A debugger
may also allow the user to change the apparent context of execution so that any chosen
active routine can be treated as the focus of debugging. The user can request the display or
modification of arguments or local variables of the routine that is the focus of debugging.
To fulfill such requests, the debugger needs the same capability that it needs to provide a
call-stack trace: the ability to locate the callers’s stack frame and symbol table information
given the called routine’s stack frame. Subsequently, only providing an accurate call-stack
trace is discussed. In particular, I do not further discuss the display of local variables.

This problem has not been discussed in the literature. Zellweger [Zel84] provides a
solution to the problem of providing an accurate call-stack trace in the presence of procedure
integration (inlining).

I show how an optimizing compiler and interactive debugger can cooperate so that
the debugger can provide an accurate call-stack trace while making subroutine calls as
inexpensive as possible.

9 The Call-Stack Trace

In order to provide a call-stack trace, a debugger uses information that is provided by
the standard code sequence that implements a subroutine call, termed the calling sequence.
In the presence of an optimization of the calling sequence, some of the information currently
used by debuggers will be missing, causing the debugger to provide an inaccurate call-stack
trace.

Terminology

At any point in an executing program, some sequence of routines is active. The naming
convention used within this paper for such a sequence is Fy, Fi, ..., F, where Fy is the
first routine called and F), is the currently executing routine. Thus for an arbitrary active
routine F}, its caller is F;_y and the active routine that it called is Fj4q.

In the figures, ip denotes the instruction pointer register, fp denotes the frame pointer
register, and sp denotes the stack pointer register,
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9.1 The Calling Sequence

In a running program, the currently executing routine must have access to its arguments,
the return address, local variables, and compiler temporaries. The standard method in
many of today’s machine architectures for providing such access is to provide storage for
each active routine on a procedure call stack. The storage associated with the routine is
known as the routine’s stack frame. A machine register contains a pointer to the base of
the currently executing routine’s stack frame, and the arguments and local variables are
accessed as offsets from that pointer. The pointer is called the frame pointer, and the
machine register that by convention contains the frame pointer is called the frame pointer
register (this name is sometimes shortened to frame pointer as well—context is used to
distinguish the two).

When one routine F;_; calls another routine F;, F;_y (typically) pushes F;’s arguments
on the stack. The call instruction itself pushes the return address on the stack. Code within
F;, called F;’s prologue, gets the machine ready for the body of F; to execute. This includes
(but is not limited to) making space for F}’s local variables and providing access to F}’s
local variables and parameters. Access to F;’s local variables and parameters is provided
by setting the frame pointer register to point to F;’s stack frame. However, after F; has
completed and control has been returned to F;_q1, the frame pointer register must contain
F;_1’s frame pointer. F;_{’s frame pointer is therefore saved in F;’s stack frame prior to
modifying the frame pointer register to point to F;’s stack frame. Space for F;’s locals is
allocated on the stack by adjusting the stack pointer. Immediately prior to returning, code
within F; pops F;_1’s frame pointer from the stack into the frame pointer register. See
Figure 9.1 for an example of a standard calling sequence.

9.2 Optimization of the Calling Sequence

Under some circumstances, the code that pushes F;_1’s frame pointer and sets the frame
pointer register to point to F;’s stack frame is unnecessary overhead and can be eliminated.
Figure 9.2 gives an example of a calling sequence upon which this optimization has been
performed. If F; is optimized in this manner and F;4q is not, F;4q will save F;_1’s frame
pointer, not F;’s as in the unoptimized case. See Figure 9.3 for an example of such a
situation.

This optimization is possible when the frame pointer register is not used in F;’s code.
This register is used for two purposes:

1. to access F;’s arguments and local variables, and

2. to restore the stack pointer to the position following F;_1’s return address (in prepa-
ration for the execution of F}’s return instruction).

Clearly, if F; has no arguments or local variables, or has them but does not reference them,”
it will not use its frame pointer for the first purpose. Even if F; does reference its locals or
arguments, a compiler often has enough information to reference them through the stack
pointer rather than the frame pointer, although doing so may add to the complexity of the
compiler. In addition, a compiler often has enough information to restore the stack pointer
to the position following F;_1’s return address without using the frame pointer. Correct
code for F; can be produced without saving F;_1’s frame pointer unless at some instruction

? A routine may have arguments and/or local variables but not access them due to carelessness, consistency
requirements on a set of routines, or the use of stub routines during the development process.



9. The Call-Stack Trace 33
Fio
Fiq
T — return address
push arguments [T TT77 A
— call F | __Fi—g’s frame pointer | <——— | g,
pop arguments )
.. F;_1’s local variables
F R
push fp ] F;_1’s temporaries
copy sp intofp |
add sp, < locals-size >
c. arguments to F;
] copy fp into sp
I:I P pop Ip [I Sp
ret
Just Before The Call
Fio
iy ' [ _return address |
s F;_9’s frame pointer —
push arguments ~ [TTTTT T T oo oI oo oo oo
call F; F;_1’s local variables
pop argumen I
F;: F;_1’s temporaries
pushfp  \ b
copy sp into fp ) arguments to F;
add sp, < locals-size >
copy fp into sp | return address |
pop fp F;_y’s frame pointer -1 | ¢
P p
F; F;’s local variables
ip Sp

Completed Calling Sequence

Figure 9.1: Unoptimized Calling Sequence

within F;, F;’s frame is not constant in size across all calls to F;. This is infrequent, but
happens if the stack is used for dynamic allocation or if the stack pointer is modified along
one execution path but not along another.!'® Note that the compiler cannot reference local

One way that the stack pointer can be modified along one execution path but not along another is if
parameters are not popped immediately following a call (a routine may be called on one path and not on
another; its parameters affect the size of the stack). Another way is if storage for a (conditionally executed)
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Fio
Fio
Fiy |
s h . return address
push arguments [T TTT oo Too- b=
——— call I} | __Fizy’s frame pointer 1< L] 4
op arguments Fi_
P .p. & ot F;_1’s local variables
0 ettty
. F;_1’s temporaries
add sp, < locals-size > EI
C sp
ip sub sp, < locals-size >
ret
Just Before The Call
Fio
Fia: o [_ _return address _____
. . . 2 [} . —
push arguments __ Aiza’s frame pointer | &E fp
call F; I , )
pop argument i—1 F;_1’s local variables
F: F;_1’s temporaries

add sp, < locals-size >
arguments to F;

— =

sub sp, < locals-size >
ret

return address

F; F;’s local variables

sp

ip

Completed Calling Sequence

Figure 9.2: Optimized Calling Sequence

variables and arguments through the stack pointer in the same circumstances that it cannot
restore the stack pointer to the position following F;_1’s return address without using the
frame pointer.

Such optimization of a routine’s prologue and epilogue is most commonly done for
routines that have neither parameters nor local variables, because less analyis is needed
on the part of the compiler.

local block 1s allocated when the block is entered but not deallocated when the block is exited. The stack
pointer may not need to be adjusted for each such allocation or set of parameters because an unoptimized
prologue restores the stack pointer by setting it to the value in the frame-pointer register.
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9.3 Debugger Use of Frame Pointers

The frame pointers that have been pushed onto the call stack by calling sequences form
a linked list of pointers to active routine stack frames, with the value in the frame pointer
register heading the list. In the unoptimized case, this list contains a pointer to the frame
of every active routine, and the frame-pointer register points to the frame of the currently
executing routine. A pointer to a routine’s frame can be used to locate and access its
arguments.

Given an address within a routine, the debugger can find the name and parameter list
of the routine by looking in the symbol table. The code address used to find the symbol
table entry for the currently executing routine is the address in the instruction pointer when
the breakpoint is reached.!! The code address used to find the symbol table entry for each
routine F; that is not currently executing is the return address stored in the stack frame of
routine Fi 4.

Let us consider in detail how the debugger will construct the call-stack trace. In following
the general description given here, it may be helpful to refer to the example call stack in
Figure 9.1. The debugger begins with the currently executing routine F,. An address
within F,, is available from the instruction pointer. From that address, the parameter list
and name of F), are retrieved from the symbol table. The values of the arguments to F),
are available through the frame pointer register. They are displayed formatted according
to the type information in the parameter list retrieved from the symbol table.

The return address in F,’s stack frame is an address within the previously invoked
routine F,_1. The debugger uses that address to retrieve the parameter list and name
of F,_4 from the symbol table. The stored frame pointer in F,’s stack frame points to
F,_1’s stack frame. The values of the arguments to F,_; are retrieved by the debugger
through this stored frame pointer, formatted appropriately, and displayed. The debugger
repeats this process, using information found in the stack frame of the just-displayed routine
to display that routine’s caller until all routines have been displayed. I will call this the
Fchain method.

An algorithm to construct a call-stack trace using the Fchain method is given in Fig-
ure 9.4.

10 The Problem

If one or more of the frame pointers have been optimized away, a debugger using the
Fchain method will construct a call-stack trace that is inaccurate. If a single frame pointer
(for routine F};) has been optimized away, the debugger will construct a call-stack trace
that associates F;’s name with the stack frame of F;_; (formatting the values found there
according to the symbol table entry for F}), and neither F;_1’s name nor F;’s arguments
will appear. If the frame pointers for routines F; through F;;; have been optimized away,
the debugger will construct a call-stack trace that associates Fj;;’s name with the stack
frame of F;_; and no information about F; through F;y; ; will appear. Figure 9.3 shows a
call stack containing four active routines, one of which has had this optimization performed
on it. The call-stack trace produced by the Fchain method on this call stack is:

11 A debugger saves the values that are in the machine registers when it takes control at a breakpoint, thus
when we use the terms “instruction pointer”; “frame pointer register”, and “stack pointer register” we are
actually referring to the debugger’s copy of the values that were in these registers when the breakpoint was
reached.
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Figure 9.3: Optimized Call-Stack

F3’s name(F3’s arguments)
Fy’s name(garbage)
Fy’s name(Fy’s arguments)

sp

Although four routines are active, the call-stack trace contains only three entries, one of

which is inaccurate.

11 Solutions

The general approach to the problem is to have the debugger use an alternative method
of constructing the call-stack trace that does not rely on the frame pointers in the call stack.

Several solutions are presented.
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Figure 9.4: Debugger Algorithm to Display a Call-Stack Trace
using the Fchain Method

In the following algorithm, ip is the instruction pointer register, fp is the frame

pointer register, and we assume the debugger has the following routines available
to 1it:

o get-symbol-table-information, which takes a code address and determines

which symbol table entry corresponds to the routine containing that address,

then returns the name and parameter type list from the symbol table entry,

o display-routine-entry, which takes a routine name, a parameter type list, and
a frame pointer, and finds the arguments in the stack frame pointed to by
the frame pointer, formats them according to the type list, and displays the
routine name and appropriately formatted arguments,

o get-return-address, which takes a frame pointer and returns the return address
that is stored in the stack frame pointed to by that frame pointer, and

e get-frame-pointer, which takes a frame pointer and returns the frame pointer
that is stored in the stack frame pointed to by that frame pointer.

The termination condition given here is when the “main” routine (the entry point of
the user’s code) has been displayed. This is somewhat arbitrary; actual termination
conditions are system dependent.

Algorithm Fchain-Call-Trace:

routine-address < 1p

frame-pointer «— fp

repeat
name, parameter-types — get-symbol-table-information(routine-address)
display-routine-entry(name, parameter-types, frame-pointer)
routine-address < get-return-address(frame-pointer)
frame-pointer — get-frame-pointer(frame-pointer)

until name = “main”

11.1 The Debugger Maintains Its Own Frame Pointers

The debugger can maintain its own copy of the information that it currently gets from the
call stack. The debugger can use invisible breakpoints [Zel84] or program patching [CT93],
[BK92], [CHI1], [Kes90] to collect the information. An invisible breakpoint is a breakpoint
at which the debugger halts the executing program, takes some action, and continues
execution without ever giving control to the user. Program patching can accomplish the
same result without the high cost of context switches between the executing program and
the debugger. Simply put, the debugger inserts code into the program to take the desired
action at the desired points. The information must be maintained in the data-space of
the executing program. While program patching is a general technique applicable beyond
debugging, its use here is limited to implementing fast invisible breakpoints. Therefore 1
use the terminology ‘invisible breakpoint’.

As we have seen, in order to construct the call-stack trace, the debugger needs for each
routine F"

e an address of some instruction within F, which it uses to locate the symbol table

entry for F, and

e a pointer to the base of F’s stack frame, where it finds F’s arguments.
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Recall that the first instruction in a routine’s prologue pushes the caller’s frame pointer
into the current stack frame (following the return address). Once that push has occurred,
the stack pointer register points to the location that by convention is considered the base of
the routine’s stack frame. If the debugger were to take control immediately after the first
instruction in the prologue, it could make a copy of the value in the stack pointer register,
which would give it a pointer to the base of the stack frame, and it could make a copy of the
value in the instruction pointer register, which would give it an address of an instruction
within the routine. By setting an invisible breakpoint at the second instruction in each
routine, the debugger can get the information that it needs for a call-stack trace.

Note that if the debugger set its invisible breakpoint at the first instruction in the
prologue, it can still get the information that it needs for the call-stack trace. As in the
above case, the instruction pointer contains an address within the routine. The stack pointer
register contains at this point a value that must be offset by the size of the frame pointer
that is about to be pushed in order to get a pointer to the base of the stack frame.

This scenario assumes an unoptimized stack frame. We are interested in the optimized
case, when the push of the caller’s frame pointer into the stack frame does not occur.
However, we have just seen that the debugger can get the information it needs by setting
its invisible breakpoint at the first instruction in the prologue. Since the debugger can
get this information before the instruction executes, it clearly doesn’t matter whether that
instruction saves the caller’s frame pointer.

The debugger must set a breakpoint at the first instruction of every routine. Fach time
a routine is called, the debugger copies two pieces of information into its own workspace.!?
It uses this information rather than the information that may (not) be stored in the call
stack to construct the call-stack trace.

Clearly, for this to be correct, the debugger must also set an invisible breakpoint at the
return instruction of every routine so that it can remove the information for the about-
to-return routine from its workspace—otherwise, it would be maintaining not a call-stack
trace, but a subroutine-call history. That is, the debugger must store this information in a
stack of its own, pushing when a routine is called and popping when the routine returns. I
call the debugger’s stack the dstack. Assuming the debugger correctly maintains its dstack,
it can use the information therein just as it would have used the corresponding information
that it would find in the program’s call stack, to examine the symbol table and to access
parameters and local variables. We will call this the Dstack method.

The locations at which invisible breakpoints must be set are call and return instructions.
The locations of the call instructions are available from the symbol table. Fither additional
compiler support is needed to ensure that the locations of the return instructions are also
placed in the symbol table or the debugger must scan the executable and locate them before
executing the program.

In today’s most common software production environments, using the debugger involves
explicitly invoking the debugger before running the to-be-debugged program—all debugging
is expected debugging activity [Zel84]. In a growing number of software production envi-
ronments, the debugger is always available and the program need not be restarted to be
debugged. In such an environment, unexpected debugging activity is possible—for example,
a program trap or user interrupt may invoke the debugger on a running program. In this

121f invisible breakpoints are implemented with program patching technology, this workspace must be in
the address space of the executing program.
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case, the dstack has not been maintained and a stack trace may be inaccurate. It would
not make sense for the Dstack method to be employed by default in such an environment,
because although it would provide for an accurate stack trace in the case of unexpected
debugging activity, the overhead cost would be greater than the savings from the original
optimization. In such an environment, the user should be given a choice between restart-
ing the program with the Dstack method enabled, or enabling the Dstack method at the
time the debugging activity begins. In the latter case, a stack trace would be accurate for
subroutines called subsequently, but might be inaccurate for those already on the stack.

11.2 A Cheaper Method: The Debugger Maintains Only the Missing
Frame Pointers

Subroutine calls are extremely common. The Dstack method has a considerable amount
of overhead with two invisible breakpoints per call. If setting the invisible breakpoints
involves context switches between the executing program and the debugger, this would
be an untenable amount of overhead. If the invisible breakpoints are implemented with
program patches, the overhead is two very small subroutine calls for each existing call in
the program. The Dstack method and the Fchain method can be combined to lower the
overhead. The dstack is entirely redundant if the frame pointer is set up by every routine. It
is partially redundant if the frame pointer is optimized away by some routines. Redundancy
can be limited by only creating entries in the dstack for routines that do not set up a frame
pointer. The compiler can tell the debugger which routines set up frame pointers. The
symbol table entry for a routine must be extended to include a field with a boolean entry
recording the presence or absence of a frame pointer. There is now overhead of two invisible
breakpoints per call only for those routines that do not use a frame pointer.

Even so, the dstack remains partially redundant. It contains only frame-pointers that
are not present in the call stack. But each dstack entry also contains an address. The
address in the entry for F; is redundant with the return address which has been placed in
the stack frame of F; 1 by the call instruction. The dstack can therefore be simplified to
contain only frame pointers. I will call this the Dstack/Fchain method.

Consider how the debugger will construct the call-stack trace given an optimized call
stack and a dstack. The basic difference is where a pointer to the stack frame of each routine
is found. Note that the frame pointers stored in the call stack still form a linked list, but
now they chain only stack frames of routines that use frame pointers. If F; uses a frame
pointer (indicated by F;’s symbol table entry), then either the frame pointer register or the
frame pointer in the stack frame of subsequently called active routine F;;; points to F}’s
stack frame, where I, ; is the next routine that uses a frame pointer. If F; does not use a
frame pointer, then the dstack contains a pointer to its stack frame.

An algorithm to construct a call-stack trace for an optimized call stack using the
Dstack/ Fchain method is given in Figure 11.1.

11.3 Non-Local Gotos

Commonly used procedural languages provide some form of jump from the middle of a
routine to the middle of some other previously invoked active routine, a jump that is not
simply a return to the calling routine. Sometimes this is provided in the language as part
of the goto facility (as in Pascal), and it is from there that the name non-local goto was
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Algorithm Dstack/ Fchain-Call-Trace:
routine-address «— ip
call-stack-frame-pointer «— fp
temp-dstack < dstack // copy dstack so pops are not destructive
dstack-frame-pointer < pop(temp-dstack)
repeat
name, parameter-types — get-symbol-table-information(routine-address)
if (uses-frame-pointer(routine-address))
frame-pointer < call-stack-frame-pointer
call-stack-frame-pointer «— get-frame-pointer(frame-pointer)
else
frame-pointer «— dstack-frame-pointer
dstack-frame-pointer — pop(temp-dstack)
display-routine-entry(name, parameter-types, frame-pointer)
routine-address — get-return-address(frame-pointer)
until name = “main”

Figure 11.1: Algorithm to Display a Call-Stack Trace
in the Occasional Absence of Frame Pointers using the
Dstack/ Fchain Method

coined—it is a goto whose target is not local to the routine that the goto is in. In other
languages, library routines perform the same function (e.g., in C, setjmp and longjmp).
Other languages provide some form of exception handling, which can have the same effect.

Any of these forms of non-local goto cause difficulties for the Dstack and Dstack/ Fchain
methods. In order to maintain correctness in its dstack, the debugger must reach invisible
breakpoints at both the beginning and the end of each routine that does not set up a
frame pointer. If a non-local goto occurs, the end of such an active routine may never be
encountered, since the routine does not perform a normal return. Instead, the return is
performed for it by restoring the machine to an earlier saved state. There is a problem if a
routine F; that does not set up a frame pointer has been called and has not returned, and the
target of the goto is code in a routine F;_; called earlier than F;. F; will not return normally,
the invisible breakpoint at F;’s return statement will not be reached, and the debugger will
not pop its entry for F; from the dstack. Let us assume there is a routine F;_;_; that was
called earlier than F;_; (thus is active after the non-local goto) and F;_;_;, does not set up
a frame pointer. After the non-local goto, the debugger is asked for a call-stack trace. An
example of such a situation is shown in Figure 11.2. The debugger algorithm displays the
call-stack trace entries accurately until it attempts to display F;_;_j. It determines from
the symbol table entry for F;_;_; that F;_;_; has not set up a frame pointer, so it uses
the entry on the top of dstack to continue the construction of the call-stack trace. This, of
course, is the wrong entry—it is the entry for F;. Two solutions to this problem are given
below.

One Solution: Cleaning Up the Dstack

If immediately after a non-local goto was executed the debugger took control, it could
remove any inappropriate entries from the top of the dstack. Any entry with a frame pointer
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pointing higher on the stack than the value in the stack-pointer register is an entry that
should be removed, since such entries must be for routines that have “returned” via the non-

local goto.!® The debugger must take this action right away, since subsequent subroutine
calls will cause the stack to grow.

For languages like C, in which non-local gotos are implemented by library routines, the
debugger can set an invisible breakpoint at the library routine that implements the goto,

'20On many architectures the stack grows down, so higher on the stack may mean a lesser value in the

frame pointer.
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and when it reaches such a breakpoint, the debugger can clean up the dstack. A similar
technique may work for languages with exception handling as well.

Languages with direct jumps in the code require some work on the part of the compiler
if the invisible breakpoint cleanup solution is to be used. The debugger must be told where
to set its invisible breakpoints, so the compiler must provide a list of such addresses to the
debugger.

Another Solution: Leaving Redundancy in the Dstack

In the Dstack method, because the dstack alone is used to construct call-stack traces,
each entry must contain both a frame pointer and a code address. I noted above that when
both the call stack and the dstack are used, the code addresses in the dstack are redundant.
This redundancy can be exploited.

In constructing a call-stack trace, when the debugger needs to use a dstack entry, it
already has a code address A within the routine that is to be displayed next (the code address
that was the return address found in the stack frame of the routine that was previously
displayed). If the code address in the current dstack entry and A are not addresses within
the same routine, the debugger can simply ignore the dstack entry and go on to the next
entry. Whenever the invisible breakpoint for the return of a routine that does not use a
frame pointer is reached, all dstack entries must be popped until (and including) the entry

whose code address is in the same routine as the return instruction.'*

This scheme does not require that the debugger take control immediately after a non-
local goto, and thus does not require any special effort on the part of the compiler. It does
increase the expense of constructing a call-stack trace, since more code addresses must be
matched with the routines that contain them.

11.4 A “Free” Method: The Compiler Does the Work

Compile-time information can be used to solve this problem with no run-time overhead.
I thank Dr. Polle Zellweger and an anonymous reviewer for the essential insight that the
size of the caller’s stack frame at each call site can be recorded by the compiler and looked
up by the debugger.

A routine may contain numerous calls to other routines. Assume routine A calls routines
B and C. The size of A’s stack frame at the point of the call to B may differ from the size
of its stack frame at the point of the call to C'. However, the size of A’s stack frame at the
point of the call to B may be the same every time A is active. If the size of a routine’s frame
is constant at the point that it makes a call, the size can be determined by the compiler.
The return address stored in the stack frame of the called routine is a unique identifier of
the call. A table Fsize of <return address, size of caller’s stack frame at point of call>
pairs can be provided by a compiler. We can use such a table to compute the appropriate
position for each frame pointer without looking in the run-time stack (thus optimization
of the calling sequence does no harm). Assuming a lookup function get-frame-size for this
table that takes a return address and returns the associated stack frame size, and function

MTf an invalid entry is on the top of the dstack when a call-stack trace is being constructed, it can be
popped from the dstack then. However, an entry may be buried on the dstack because subsequent to the
non-local goto other routines were called.
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get-return-address as defined in Figure 9.4, the position FP; of the (logical) frame pointer
for the 7" function on the stack can be determined by:

FP; = FPy1 — get-frame-size(get-return-address(FP;11)) (11.1)

The algorithm given in Figure 9.4 can be used to display the call-stack trace if function
get-frame-pointer is redefined to return FP; as defined in equation 11.1.'° No invisible
breakpoints need to be set by the debugger. I call this the Fsize method. The Fsize method
is elegant but incomplete:

1. it fails for routines whose stack-frame size is not constant at the point of a call made

by the routine, and

2. it fails if the return address of an active routine is not available. Once a frame pointer is
available, the return address of all previously invoked routines can be found. However,
if the routine that was executing when the debugger gained control (hereafter the
current routine) does not set up a frame pointer, the frame-pointer register cannot
be used to find the return address of its caller. That return address is present on the
stack, but its location is not exactly identified.

When the Frame Size Varies

If the size of a routine’s stack frame at the point of a particular call is not constant, the
compiler must save the caller’s frame pointer, that is, it cannot perform the optimization
on the prologue and epilogue of the called function. The chain of frame pointers stored in
the stack can be used to locate stack frames of such routines while the Fsize table can be
used to locate stack frames of routines that do not save the frame-pointer register. I call
this the Fsize/ Fchain method, and it is the solution that I implemented.

An algorithm to construct a call-stack trace for an optimized call stack using the
Fsize/ Fchain method is given in Figure 11.3.

When the Current Routine Has No Frame Pointer

If the current routine does not set up a frame pointer, the location of the return address
of its caller is not exactly identified. One option is to search the stack for the return address.
The search is bounded on one side by the value in the stack pointer register and on the
other by the value in the frame pointer register. The stack search may be complex (it may
have to be done more than once, starting at different alignments), but the return address
is guaranteed to be on the stack. There is a chance of finding a value in the stack that
matches an Fsize return-address entry but is not the caller’s return address. This chance is
probably fairly small (unless the program is a compiler or debugger), but is nonzero. The
probability of such an error can be decreased considerably by checking the consistency of
the resulting stack trace. In a consistent stack trace, the return address of the entry for
function F; points to an instruction following a call to F;. If a consistent stack trace that

1>The problem would be much simpler if the size of A’s stack frame were identical for all calls made
by A. The stack-frame size could be included in A’s symbol table entry, eliminating the need for Fsize.
Unfortunately, if the stack pointer is used to reference temporaries, fixing the stack frame size would require
modification of the stack pointer prior to and following calls; which would cost more than is saved by
optimizing the calling sequence. However, in some architectures, such as Mips, the stack pointer is not used
in this manner, and this approach is taken [Cor91].
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Algorithm Fsize/ Fchain-Call-Trace:
routine-address « 1p
call-stack-frame-pointer «— fp
repeat
name, parameter-types < get-symbol-table-information(routine-address)
if (uses-frame-pointer(routine-address))
frame-pointer «— call-stack-frame-pointer
call-stack-frame-pointer — get-frame-pointer(frame-pointer)
else
frame-pointer — frame-pointer - get-frame-size(get-return-address(frame-pointer))
display-routine-entry(name, parameter-types, frame-pointer)
routine-address — get-return-address(frame-pointer)
until name = “main”

Figure 11.3: Algorithm to Display a Call-Stack Trace in the
Occasional Absence of Frame Pointers using the Fsize/ Fchain

Method

accounts for the entire stack cannot be constructed starting with a potential return address
found during a search of the stack, that potential return address is discarded and the search
continues.

12 Implementation

I have a prototype implementation of the Fsize/Fchain method using MetaWare Incor-
porated’s High C compiler and The Free Software Foundation’s gdb debugger, running on
an MC68000 based Sun workstation.

Compiler modifications involved adding approximately 50 lines of code spread across
seven source files, none of it inside loops. The ‘pushes fp’ bit was integrated into the
existing symbol table format at no space cost. Fsize takes eight bytes per call (four bytes
for the return address, four bytes for the frame size) plus four bytes per file (to record the
number of entries). One Fsize table per source file is written to the program’s data space
as static data and a dbx stab is used to allow the debugger to locate the beginning of each
table.

I used compiler benchmarks to compare compilation times and object module sizes for
the Fchain and Fsize/ Fchain methods. Table 12.1 gives the time to compile one benchmark
program consisting of 13,511 lines of C code (in 44 source files), using each method. The
table also gives the sum of the sizes of the object modules produced. For both compilation
time and object module size, the increase due to the Fsize/Fchain method is given as a
percentage of the time or size associated with the Fechain method. Individual object-module
size increases varied from less than one per cent to 34 per cent. No attempt was made to
optimize for space.®

Y$There is considerable potential for space optimization in Fsize, at the cost of added complexity in reading
the table. The return address could be entered as an offset from the function entry point. Typical stack
frame sizes can be expressed in a few bits rather than four bytes. If Fsize were optimized for space, the
Fsize version could probably be implemented in half the space of our existing implementation.
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Total Compilation Time | Sum of Object Module Sizes

Fchain 804.3 seconds 490987
Fsize/ Fchain 825.4 seconds 589113
increase 2.5 per cent 20 per cent

Table 12.1: Compilation times and object module sizes for the Fchain and
Fsize/ Fchain methods. A compiler benchmark consisting of 44 source files con-
taining a total of 13,511 lines of C code was compiled.

Debugger modifications involved adding approximately 150 lines of code spread across
five source files. The time the modified debugger spent on call-stack traces was not percep-
tibly different from the time spent by an unmodified debugger.

13 Solution Summary and Comparison

The enabling technology for producing an accurate call-stack trace in the occasional
absence of frame pointers is either the dstack or Fsize. In this section we summarize and
compare the Dstack/ Fchain and Fsize/Fchain methods. First we break the methods down
by what is required of the compiler and debugger. We include the effect on the symbol
table format, because it is often the limiting factor in what information is passed from the
compiler to the debugger.

e Dstack/ Fchain
The debugger must be able to determine where the first instruction in each routine is
located, and where the routine exits (return instructions) are located. The debugger
could determine this information by scanning the executable code. This would slow
debugger start-up, but would allow this method to be used with no compiler support.
We assume, however, that the task of producing this information would fall to the
compiler. In addition, the debugger must be able to determine whether a routine’s
prologue pushes a copy of the frame pointer register. As before, while the debugger
could determine this information by scanning the executable code, we assume that
the compiler will be responsible for supplying the information to the debugger.
— Symbol Table Format
The symbol table already has a place for the location of the first instruction in
a routine. It must be augmented to include the routine exit locations, and to
include a ‘pushes fp’ bit encoding whether a routine’s prologue pushes a copy of
the frame pointer register.

— Compiler
The compiler must set the ‘pushes fp’ bit and record each routine exit location
in the augmented symbol table.

— Debugger
The debugger must read the augmented symbol table and place invisible break-
points at the entry and exit of each routine whose ‘pushes fp’ bit is off, prior
to running the target program. On reaching an invisible breakpoint at routine
entry, the debugger must push the stack pointer onto the dstack; on reaching an
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invisible breakpoint at routine exit, the debugger must pop the dstack. The de-
bugger must use dstack entries to locate frames of these routines, and use frame
pointers saved in the call stack to locate frames of other routines.

o lFsize/Fchain
— Symbol Table Format
The symbol table must be augmented to include the Fsize table of <return ad-
dress, framesize> tuples. It must also include the ‘pushes fp’ bit in the entry for
a routine, as above.

— Compiler
For each call, the compiler must record in Fsize the caller’s framesize at the point
of the call instruction along with the address of the following instruction. For
each routine, the compiler must set the ‘pushes fp’ bit in the routine’s symbol
table entry.

— Debugger
The debugger must use Fsize entries instead of frame pointers saved in the call
stack to locate frames of routines whose ‘pushes fp’ bit is off. The debugger
must use frame pointers saved in the call stack to locate frames of other routines.
Because Fsize is indexed by return addresses, if the current routine’s ‘pushes fp’
bit is off, the debugger must either
1. print its name only, warn the user that the stack trace may be incomplete,
and provide a stack trace beginning with the routine whose frame is pointed
to by the frame-pointer register, or

2. search the stack for a return address that appears in the first field of some
Fsize entry; the debugger must use that Fsize entry to locate the current
routine’s stack frame, and if that entry does not give a consistent call-stack
trace, the search must be repeated.
Next we summarize the advantages and disadvantages of these method relative to each
other.

o Dstack/ Fchain
— Disadvantages

This method requires additional complexity in the debugger. If invisible break-
points involve context switches, then when invisible breakpoints are set, the
Dstack method has an overhead of hundreds, perhaps thousands, of instructions
per call of routines that do not save frame pointers in their stack frame. If invisi-
ble breakpoints do not involve context switches, then when invisible breakpoints
are set, the Dstack method has an overhead of between ten and fifty instructions
per call of routines that do not save frame pointers in their stack frame. When
invisible breakpoints are not set, the Dstack method has no run-time overhead.
The symbol table entry for every routine must be read, and the invisible break-
points set, before the Dstack method can be used. This can cause a significant
delay in debugger start-up. The location of routine exits must be available to
the debugger. This either adds to the complexity of the symbol table and the
compiler and to the size of the object modules and executable (typically 4 bytes
per routine for the routine exit and one ‘pushes fp’ bit per routine) or adds to
the start-up time and complexity of the debugger.
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— Advantages
The Dstack/ Fchain method can be implemented in a debugger without a depen-
dence on compiler support. It can always provide an accurate call-stack trace.

o Fsize/Fchain
— Disadvantages
This method requires additional complexity in the symbol table, the compiler,
and the debugger. The size of the object modules and executable increases
significantly. Compilation time increases a little, as does the time required to
read the symbol table. In the case that the current routine does not save the
frame-pointer register, the method is either incomplete or may be inaccurate.

— Advantages
The time cost to the debugger of a larger symbol table is more than offset by
the ability to read the table on demand: unlike the Dstack/Fchain method, the
Fsize/ Fchain method only requires the symbol table entry for a routine to be
read if the routine is active when the call-stack trace is performed. The method
has no run-time overhead.

The method used today by interactive debuggers to provide a call-stack trace relies on a
frame pointer being set up within the stack frame of each active subroutine. I have described
several ways to support a debugger’s call-stack trace facility in the circumstance that, due
to optimization, some routines do not set up a frame pointer. These methods vary in their
costs: there is a trade-off between run-time overhead for the debugger and required symbol
table and compiler support.
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14 Introduction to Currency Determination

A source-level debugger should have the capability of setting a breakpoint in a program
at the executable code location corresponding to a source statement. When a breakpoint at
some point P is reached, presumably the user wishes to examine the state of the program,
often by querying the value of a variable V. Commonly available debuggers, upon receiving
such a query, will display the value in V’s storage location. Unfortunately, this value may
be misleading due to optimization. For example, due to a code motion optimization, an
assignment to ¥V may have been done earlier than the source code would lead one to expect.
Since one aspect of debugging is examining potential anomalies, the debugger user may
expend time and effort attempting to determine why V contains the value that has been
displayed when the source code suggests that V should contain some other value.

Figure 14.1 is an example of such a situation caused by constant propagation followed by
dead store elimination. Assume that the only use of x following the assignment of constant
to x is the assignment of x to y. Constant propagation removes that use of x as shown in
the second column of the figure. With that use eliminated, the assignment of constant to
x may be eliminated as shown in the third column. If a breakpoint is reached anywhere
following the eliminated assignment to x and the debugger is asked to display the value
of x, typical debuggers will display expression. The user, looking at the original source
code, may be confused by the fact that the displayed value is not constant, or may believe
wrongly that the value being assigned to y is expression. At such a breakpoint, x is called
noncurrent [Hen82], and determining whether optimization has caused a variable’s value to
be misleading is called currency determination. Some solution to the problem of currency
determination is necessary for providing expected or truthful behavior.

Optimization may also introduce confusion over where execution is suspended in the
program being debugged. The straightforward mapping of statement boundaries onto
machine-code locations in unoptimized code is insufficient for optimized code.

The source-level debugger user probes the state of a halted executable while looking
at the source code from which it was compiled. Much of the user’s activity consists of
inference based on the source code and the state information provided by the debugger.
This state information includes the location at which execution is halted and the values of
variables. One implicit assumption is that the value of each variable in the halted executable
corresponds one-to-one to the value that would be predicted by examining the source code
and knowing the relevant context, such as within which iteration of a loop execution is
suspended. Another implicit assumption is that the location at which execution is halted
corresponds to a location in the source code specified by the user. These assumptions may
be violated by the presence of optimization, and the inferences that the user draws may be
incorrect.

Figure 14.1: Potentially Confusing Optimizations

Original Source Code After Constant Propagation After Dead-Store Elimination
X = expression; X = expression; X = expression;
X = constant; X = constant;

X; constant; constant;

«
N}
«
N}
«
N}



52 14. Introduction to Currency Determination

Section 15 presents a mapping from statements to executable code that allows the user
to break at a statement and step source statement by source statement in an optimized
program. Using this mapping, subsequent sections present a currency determination tech-
nique to determine whether a variable has the value the user would expect when execution
is suspended at one of these breakpoints. In response to a query about a variable V', this
work enables a debugger to

o display V'’s value without comment if it can be determined that optimization has not

given it a misleading value, or

o display V'’s value with a warning if optimization may have given it a misleading value.

The warning can describe how the variable may have gotten the misleading value.
The debugger can distinguish the cases in which V is known to have an unexpected
value from the cases in which (because of unknown control flow) it may or may not,
and adjust the warning accordingly.
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15 Breakpoint Model

In an unoptimized translation of a program, code is generated for every source code
statement in the order in which it appears in the source code, and the code generated from
most statements is contiguous.!” It is possible to halt unoptimized code at a point that
corresponds exactly to a statement boundary in the source code by halting at (before exe-
cution of) the first instruction generated from the statement. When execution is suspended
at statement S in unoptimized code, all “previous” statements have completed, that is, all
code that was generated from statements on the path to S has been executed. No “subse-
quent” statements have begun, that is, no code that was generated from any statement on
the path from S (including code generated from S'itself) has been executed. Because of the
straightforward nature of the translation, the value in each variable’s location matches the
value of the variable that would be predicted by a close reading of the source code. Users
not versed in optimizing technology expect these characteristics to hold when execution is
suspended at a statement boundary.

The state of a suspended program is the context in which debugging takes place, called
the actual debugging context. In contrast, the expected debugging context is the state that
would be predicted by an examination of the source code of a program suspended at an
identified point. The actual debugging context matches the expected debugging context for
an unoptimized program suspended at a statement boundary.

15.1 Treatment of Program Traps

The actual debugging context may not match the expected debugging context, even for
unoptimized code, if the program halts on a non-statement boundary, which can happen
due to a trap. A program may trap in the middle of an update to a variable, leaving that
variable in a decidedly unexpected state. The most important piece of information when a
program traps is “What statement caused the trap?”, that is, which statement generated
the instruction that trapped. This information can be provided by tagging each instruction
with a reference to the statement that generated it. This can be encoded in a table by
listing the address of the first instruction of each set of contiguous instructions generated
from a source statement with a reference to that source statement, thus the trap location
reporting problem can be solved by a simple extension of the line table currently emitted
by most compilers. The remainder of this work considers programs that are suspended at
source-level user-specified locations (breakpoints) only.

15.2 Debugger Capabilities at a Breakpoint in Optimized Code

Optimization may well make it impractical to provide the user with the expected debug-
ging context. Because code may be reordered or eliminated and the instructions generated
from a given source statement may not be contiguous, when execution is suspended at
statement S'in optimized code, no matter what code location is chosen to represent 5, some

17Code generated from looping or branching statements is typically not contiguous. However, this lack of
contiguity is present in the source code as well as the generated code. It can cause debugging anomalies in
unoptimized code. For example, placing a breakpoint at a C for loop can cause several commonly available
debuggers to either break once before loop entry or break each time through the loop, depending on the
presence or absence of initialization code.



54 15. Breakpoint Model

of the code from previous statements may not yet have been executed and some of the code
from subsequent statements may have been executed early.

The debugger user makes inferences based upon the source code and the state of the
halted program. This is problematic for debugging optimized code because the inferences
are also based upon the implicit assumption that the actual debugging context is equivalent
to the expected debugging context.

Of course, it is not possible to prevent a user from making invalid inferences, regardless
of the presence of optimization. The best the debugger can do is provide a means of
determining when optimization has broken an otherwise valid chain of inference, that is,
when an inference that would be valid in the absence of optimization is invalid in its presence.
To this end, the debugger acts satisfactorily upon optimized code if at a breakpoint it can
report the ways in which the actual debugging context differs from the expected debugging
context.

At a breakpoint, the user should be informed of salient differences between the actual
debugging context and the expected debugging context. If the user asks to see the value of a
variable, the debugger should offer information as to whether its value would be misleading,
and why. The user should be able to ask whether a given statement has been executed out
of order, and if so, whether it has been executed early or will be executed late. These
capabilities allow the user the same power to probe the state of an optimized program
at a breakpoint that is available currently for unoptimized programs, because they license
valid inferences based on the source code and the state of the suspended program and they
provide information that can be used to prevent invalid inferences.

Only those effects of optimization that affect the validity of the user’s inferences need to
be reported by the debugger. As noted by Coutant et al [CMRS88], much of the optimization
performed upon a program is irrelevant to the user. It is only optimization that affects user-
visible entities, such as source code variables and statement flow-of-control, that the user
needs to be informed about. Informing the user of optimization on compiler temporaries is
likely to make the debugging job harder, not easier. The same is true of optimization of code
generated from the right-hand-side of assignments—the store of the result affects the state
of the program as seen from the source-level view, but how that result is computed does
not affect the source-level view of program state. Similarly, optimization of an expression
whose result determines the outcome of a conditional branch should be invisible to a user
debugging at the source level if the branch itself is unaffected.!® Many statements that start
earlier in optimized code than in unoptimized code do so due to code motion of parts of the
statements (such as address computations) that are irrelevant to the user’s inquiry. Though
the optimization of these statements does cause the actual debugging context to differ from
the expected debugging context, it does not invalidate user inferences, therefore it is not
necessary for the debugger to report that these statements have begun early. Statements
that begin early due to source-level-invisible optimization but that otherwise exhibit no
source-level-visible effects from optimization are not considered to be executed out of order.

8 There are circumstances in which it is important for the debugger to reveal the effects of optimization
at this level of detail, such as allowing the user to track down a code-generation bug. In such circumstances,
it is appropriate to shift to machine-level debugging.
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15.3 Breakpoint Locations (Representative Instructions)

Commonly, when setting a breakpoint on a statement, the debugger user wants to
break exactly once each time the statement is executed at some location that corresponds
to the statement boundary. This is problematic for optimized code, but not providing
or closely approximating this capability puts a heavy burden on the user not well-versed
in optimizer technology. The capability is necessary to support two common debugging
strategies: running until a selected statement is reached, and stepping through the program
statement by statement.

In Section 15.1’s treatment of program traps, every instruction generated from a state-
ment is associated with that statement. This is possible and appropriate because the
program may trap at an arbitrary location that is mapped back to the source code. A
breakpoint is specified in source terms and must be mapped onto the machine code. It is
inappropriate to associate every instruction generated from a statement with that statement
for the purposes of setting breakpoints, because if the instructions are not contiguous, many
breakpoints may be reached for a single statement. In contrast, Streepy [Str91] and Brooks
et al [BHS92] describe a source-code/breakpoint-location mapping that allows breakpoints
to be set at various levels of granularity, including expressions, basic blocks, and subrou-
tines. In the debugger described by Streepy and by Brooks et al, when a statement is
selected as the level of granularity, a breakpoint is set at the beginning of each sequence of
contiguous instructions generated from the statement.

Under the mapping described in this section, the instruction generated from a statement
S that best corresponds to the statement boundary is selected to represent 5, and is called
the representative instruction for 5. The address of this instruction is a breakpoint location
for 5.1 Where no confusion will result, the representative instruction itself may be referred
to as the breakpoint location. The mapping described herein is not in conflict with that
described by Streepy [Str91]; each enables debugger capabilities missing from the other.
This paper does not concern itself further with breakpoints for language entities other than
statements, except to state that the results hold in the presence of such breakpoints.

The choice of a machine instruction as the breakpoint location for a statement should
be based on why the user wants to break at that statement. It may be that the user sets
a breakpoint at some statement within a loop because it looks like a convenient place to
see how the program state is changing on subsequent iterations of the loop. There may
be nothing about the chosen statement relevant to the user’s purpose except its location
within the loop. If that statement were moved out of the loop by optimization, it would be
appropriate to set the breakpoint where it used to be, so the breakpoint would be reached
each time through the loop. On the other hand, the user may set a breakpoint at some
statement to check the values of variables used in an expression in that statement. In that
case, if the statement were moved out of the loop by optimization, it would be appropriate

In the most common case, a single instruction will serve as the breakpoint location for a statement.
Statements with multiple side effect on user variables will require multiple breakpoint locations, one for each
side effect. Optimizations that cause code duplication may require breakpoint location duplication as well—
procedure integration (inlining), partial redundancy elimination, and loop unrolling are examples. Even in
unoptimized code some statements may require more than a single instruction to represent their breakpoint
locations. Loop constructs are an example. The appropriate location to break the first time (before the loop
is entered) may be at a different instruction than the appropriate location to break subsequently (each time
through the loop).
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Unoptimized Optimized
Semantic Breakpoint /a = b
while (condition while (condition) {
. ~  Syntactic Breakpoint — -
a=bh;

b = fen(); b = fen();
} }
Figure 15.1: Semantic and Syntactic Breakpoint Locations
to set the breakpoint where it ended up, so the values the debugger displays are the actual
values used in the expression.

Zellweger [Zel84] introduced the terms syntactic and semantic breakpoints. If no code
motion or elimination has occurred, these are identical. In the presence of code motion or
elimination, the order in which syntactic breakpoints are reached reflects the syntactic order
of source statements; the syntactic breakpoint for statement n is prior to or at the same
location as the syntactic breakpoint for statement n + 1. It will be at the same location if
the code for n is moved or eliminated. If the code generated from statement n is moved out
of a loop, a syntactic breakpoint for n remains inside the loop.

The semantic breakpoint location for a statement is the point at which the action
specified by the statement takes place. This does not preserve any particular order. If
the code generated from a statement is contiguous, the semantic breakpoint location is the
location at which the code for the statement has ended up. If the code generated from
statement S is discontiguous, the semantic breakpoint location is the location at which the
instruction chosen to represent 5 has ended up.

Figure 15.1 provides an example of the syntactic and semantic breakpoints for a loop
from which optimization has moved an invariant statement.

The choice of a breakpoint location for a statement § affects the correspondence between
the actual debugging context and the expected debugging context considerably. Zellweger
[Zel84] has a discussion of possible semantic breakpoint locations for statements whose
generated code is discontiguous. The view taken in this work is that the best breakpoint
location for a programming language construct is the location that corresponds most closely
to the source level view of the program: the breakpoint location for a statement should be
the address of the instruction that most closely reflects the effect of the statement on user-
visible entities (program variables and control flow). For each construct in a programming
language, the breakpoint location (equivalently, the representative instruction) should be
chosen appropriately.

For statements involving program-variable updates, the instruction that stores into the
variable is the right choice. A “store” in this context need not be a store into a memory
location. It can be a computation into a register, or a register copy, if that is the instruction
that implements the semantics of the source statement. This is illustrated by Figure 15.2,
which gives a fragment of source code and an optimized sequence of instructions that could
result. One might want to break at statement (2) and examine a. If the first instruction
generated from a statement is the representative instruction for that statement, a breakpoint
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Source Code Resulting Instruction Sequence
()a=b+ ¢ load b R1
(2)d =e*f: Bl —— pad e R2

mpy f R2

add ¢ R1

store a R1

B2 —— Store d R2
Figure 15.2: Breakpoint Location Choices for Statement (2)

Unoptimized Optimized
Rl=b+c*d
a = Xj a = Xj
if (b4 c¢*d) if (R1)
e = a; € = aj
else else
e = -a; e = -a;

Figure 15.3: The Branch is a Sequence Point for Dependences

at statement (2) would suspend execution at B1, resulting in examining a when it has not yet
had b + c stored into it. If, instead, the store instruction is the representative instruction
for an assignment, the breakpoint will be reached at B2 and the store into a will have
occurred. (Note that it may not be possible to choose a representative instruction for
statement (2) that gives expected results: for example, if the optimizer has reversed the
order of the stores into a and d, then either a or d will have an unexpected value.)

For control-flow statements (branching or looping constructs), the instruction that ac-
complishes the control transfer (typically a conditional branch) is the appropriate choice; it
provides a natural sequence point for program dependences. Consider the code fragment in
Figure 15.3. The computation of (b + ¢ * d) can be computed before the assignment into
a, however, the jump to the then or else case must follow the assignment if correctness is
to be maintained.

15.4 A Summary of the Proposed Breakpoint Model

A debugger may have the capability of suspending the execution of a program at an
arbitrary instruction. The results described in the remainder of this paper hold not at
arbitrary instructions but at syntactic breakpoints. The entire set of breakpoints (syntactic
and semantic) is the set of representative instructions as described above: for a variable
modification that appears in the source code, the store into the variable is the associ-
ated breakpoint. An assignment that has side effects will have more than one associated
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breakpoint. For branching and looping constructs, the branch instruction is the associated
breakpoint. The C statement

if ((1 = j++) == k)
has three representative instructions (and therefore three breakpoint locations), one at the
store into j, one at the store into i, and one at the branch to the then or else case.
Choosing the store as the breakpoint location for variable modifications is crucial to the
correctness of the work presented in the remainder of the paper. Additional breakpoints,
such as those described by Streepy [Str91], could easily be incorporated into this model.

The proposed breakpoint model supports both syntactic and semantic breakpoints.
This does not increase the number of breakpoint locations, but it affects the mapping
between source-level specifications of breakpoints and breakpoint locations. A source-level
specification of a breakpoint is a specification of its type (syntactic or semantic) and a
reference to a statement or side effect within a statement. This work does not specify a
user interface, so it does not describe the form of such a reference.?’

The remainder of this work addresses the problem of currency determination, assuming
the use of this breakpoint model, restricted to syntactic breakpoints. Section 25 discusses
the problems semantic breakpoints introduce for currency determination.

20 An implementation could accept a statement reference (such as a line number) and set breakpoints at
every valid breakpoint contained therein. The user would not need to specify the type of breakpoint nor the
side effect within a statement. However, for some statements the debugger would gain control more than
once during the execution of the statement, and the location at which the debugger gains control may not
be the location the user expects. As always, the debugger should provide enough information that the user
is not misled. The advantage of this scenario is that user that is naive about optimization can still use the
debugger effectively. The debugger could even gently educate the naive user about the different types of
breakpoints.
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16 Currency

When the user asks the debugger to display the value of a variable, the user is misled
if optimization has caused the value displayed to be different from the value that would be
predicted by examining the source code.

The actual value of a variable V' when execution is suspended at a breakpoint is the
value in Vs storage location. A variable’s expected value when execution is suspended at a
breakpoint is the value that would be predicted by examining the source code and knowing
the relevant context, such as within which iteration of a loop execution is suspended.
Abstractly, this would-be-predicted value is the value that would be given to the variable
if the program were running on a machine whose instruction set is the source language.

In unoptimized code, at each breakpoint the expected value of every variable is identical
toits actual value. In optimized code, as we have seen, the actual value of a variable at some
point may differ from its expected value at that point. Hennessy [Hen82] introduced the
terms current, noncurrent, and endangered to describe the relationship between a variable’s
actual value and its expected value at a breakpoint. This relationship is described on the
basis of a static analysis, one that has no information about how the breakpoint was reached.

Informally, a variable V is current at a breakpoint B if its actual value at B is guaranteed
to be the same as its expected value at B no matter what path was taken to B. Examples of
current variables are given in Figures 16.1 and 16.2. All examples use program flow graphs.
Nodes in the flow graphs represent basic blocks and edges represent basic block connectivity.
For clarity of exposition, the example graphs are minimal (for example, there is at most
one instruction within a basic block). The language of the examples includes assignment (a
= x denotes the assignment of x into a) and a distinguished symbol bkpt which represents
the instruction at which the breakpoint has been reached. Assignment instructions with
the same right hand side assign the result of the equivalent computations into the left
hand side; this is how the relationship between assignments in the unoptimized code and
assignments in the optimized code is shown. While a statement in a source language that
corresponds to either an assignment or a breakpoint may compile to more than a single
machine instruction, assignments and breakpoints appearing in flow graphs are referred to
as instructions, because a single representative instruction is chosen for each statement.

The examples should be understood as flow graph pieces that contain all the relevant
information about a variable at a breakpoint. An example flow graph is representative of
the family of flow graphs that contain the example graph with arbitrary other edges, nodes,
and instructions, so long as these additional elements do not change which definitions of
shown variables reach shown points within the example graph.

Figure 16.1 shows the simplest case of a variable that is current at a breakpoint. There
is a single assignment into a prior to the breakpoint, and this assignment is unaffected by
optimization. There is only one way to reach bkpt in both versions of the program, and in
both versions, along the only path to bkpt, a receives its value from the same assignment.

A variable may be current at a breakpoint even if optimization has affected assignments
into the variable. Figure 16.2 shows a case in which an assignment into a has been moved.
Variable a is still current at bkpt, because the code motion has not changed the fact that
along each path a receives its value from the same assignment in the unoptimized and
optimized versions of the program.

V' is noncurrent at B if its actual value at B may differ from its expected value at B
no matter what path is taken to B (though the two values may happen to be the same
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Unoptimized

bkpt

Unoptimized

a=y

Figure 16.1: Variable a is current at bkpt

Currency

bkpt

16.
Optimized
a=x
bkpt
Optimized
a = X a=y
bkpt

Figure 16.2: Variable a is current at bkpt in the presence of relevant optimization

Unoptimized

Optimized

bkpt

bkpt

Figure 16.3: Variable a is noncurrent at bkpt

on some particular input). Figure 16.3 is a simple example of a noncurrent variable, and
could be a result of dead store elimination. There is only one way to reach bkpt in both
versions of the program. There is a single assignment into a prior to the breakpoint in the
unoptimized code, but in the optimized code there is no corresponding assignment into a
along the only path to bkpt.

Code motion can also make a variable noncurrent. In Figure 16.4, the assignment into a
reaches bkpt in the unoptimized code but does not reach bkpt in the optimized code, thus
a is noncurrent at bkpt. Clearly there is a corresponding situation in which the store into
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Unoptimized Optimized
a=x
bkpt bkpt
a=x

Figure 16.4: Variable a is noncurrent at bkpt due to code motion

a does not move but the breakpoint does. Motion of the breakpoint raises questions that
are explored in Section 25.

V' is endangered at B if there is at least one path to B along which V’s actual value at
B may differ from its expected value at B. Endangered includes noncurrent as a special
case.

In Figure 16.5, along the left-hand path the assignment into a that reaches bkpt in the
unoptimized code corresponds to the assignment into a that reaches bkpt in the optimized
code, but along the right-hand path this is not the case. a is endangered by virtue of the
right-hand path, and is not noncurrent by virtue of the left-hand path.

The use of the terms current and noncurrent extends to particular paths: in Figure 16.5,
a is current along the left-hand path and noncurrent along the right-hand path. When
execution is suspended at bkpt during some particular run of the program, a is either
current or noncurrent, depending on the path taken to bkpt. However, static analysis
cannot determine which, because knowledge of the path taken is absent. A debugger that has
no access to execution history information can do no better than static analysis. Complete
information about the execution path taken could be large, and collecting it could be invasive
and time consuming. An open problem, termed dynamic currency determination, is how a
debugger can collect the minimal information needed to determine whether an endangered
variable is current or noncurrent when execution is suspended at a breakpoint. This work
assumes such information is unavailable to the debugger.

In order to talk about V’s currency along a particular path, a path must be defined
in such a way that it makes sense in both the unoptimized and optimized versions of the
program, as optimization may modify the program’s flow graph.

Definition 16.1: A path-pair p is a pair < p,, p, > where p, is a path through
the flow graph of an unoptimized version of a program and p, is a path through
the flow graph of an optimized version of the same program such that p, and
p, are taken on the same set of inputs.

Because a path describes an entire execution, call blocks are expanded. A call blocks
appears on a path, followed by the blocks visited in the called subroutine, followed by the
call block’s successor.
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Unoptimized Optimized

bkpt bkpt

Figure 16.5: Variable a is endangered at bkpt

I have been using the term ‘unoptimized version’ as if there were a canonical unoptimized
translation of a program, and similarly I have used the term ‘optimized version’ as if
there were a canonical optimized translation. Of course, there are no such canonical
translations. What is necessary is that there be a mapping between these ‘versions’.
The nature of the mapping will be discussed in Section 17.3. For the purposes of this
section, simply assume all versions are produced by the same (correct) compiler, which
has the same information available to it whether producing an unoptimized version or an
optimized version. An implementation would most likely use a single compilation to produce
unoptimized intermediate code, providing all necessary knowledge about what I refer to as
the unoptimized version without actually generating machine code from it. It would then
optimize that intermediate code to produce the optimized version.

Parts of a path-pair are of interest, i.e., a path-pair to a breakpoint or a path-pair from
one point to another.

Definition 16.2: A path-pair p to a block B, where B is visited in both versions,
is a sub-path-pair of a path-pair p’ where p, is a prefix of p!, ending in an
occurrence of B and p, is a prefix of p/ ending in the same occurrence of B.

Definition 16.3: A path-pair p from block A to block B, where A and B are
visited in both versions, is a sub-path-pair of a path-pair p’ where p, is a
subsequence of p!, starting at an occurrence of A and ending at an occurrence
of B and p, is the subsequence of p/, starting at the same occurrence of A and
ending at the same occurrence of B.

I speak loosely of a path-pair to a breakpoint, or a path-pair from one representative
instruction to another. In these cases, I mean a path-pair to the block containing the break-
point, or from the block containing one representative instruction to the block containing
the other.

I have made a simplifying assumption that a variable resides in a single location through-
out its lifetime. A discussion of the interplay between currency determination and multiple
locations appears in Section 26. Relaxing this assumption is a topic for future research.
Both assignments to a variable and side effects on that variable modify the value stored in
that variable’s location. These terms do not distinguish whether the source code or gener-
ated code is under discussion. Furthermore, they do not distinguish between unoptimized
generated code and optimized generated code. These distinctions are needed in this work
because it compares reaching definitions computed on unoptimized code with reaching defi-
nitions computed on optimized code. Henceforth the term assignment refers to assignments
and side effects in the source code.
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It is convenient to have a term definition that can denote either an assignment or
its representative instruction in unoptimized code. This does not introduce ambiguity
because either one identifies the other, and the order of occurrence is the same in the
source code and unoptimized code generated from it. In contrast, the term store denotes
a representative instruction for an assignment in optimized code. As with definitions, a
store has a corresponding assignment, but unlike definitions, an assignment may have no
corresponding store, and the order of occurrence of stores in the machine code may differ
from the order of occurrence of assignments in the source code.

An optimizing compiler may be able to determine that two assignments to a variable are
equivalent and produce a single instance of generated code for the two of them, or it may
generate multiple instances of generated code from a single assignment. Such optimizations
essentially make equivalent definitions (or stores) indistinguishable from one another. We
will be concerned with determining whether a store that reaches a breakpoint was generated
from a definition that reaches the breakpoint. If definitions d and d are equivalent, and
store s was generated from d while s’ was generated from d’, the compiler is free to eliminate
s’ so long as s reaches all uses of d’. To account for this, s needs to be treated as if it was
generated from either d or d'.

Definition 16.4: A definition of V is an equivalence class of assignments to
V' occurring in the source code of a program that have been determined by
a compiler to represent the same or equivalent computations, or the set of
representative instructions generated from members of such an equivalence class
in an unoptimized version of the program.

Definition 16.5: A store into V is the set of representative instructions occur-
ring in an optimized version of a program that were generated from any member
of the equivalence class denoted by a definition.?!

We can now formally define some of the terms described previously. The following defi-
nitions assume that the breakpoint location is the same in the optimized and unoptimized
version, that is, either that the representative instruction for the statement at which the
breakpoint is set has not been moved by optimization or that a syntactic breakpoint has
been specified.

The definition of current is complicated by the fact that an assignment through a pointer
(or similar alias) must not kill previous assignments, because the pointer might not be
pointing at the variable of interest. In the presence of aliases, a sequence of definitions of a
variable V and a sequence of stores into V' might reach a breakpoint B along a given path
p—this is treated in detail in Section 19. Only one definition (store) in the sequence is the
last to assign into V', but with static analysis it is not known which one, because it is not
known which pointer is an alias for V. If some definition through a pointer is an alias for
V', the semantics of the program may require that some other definition through a pointer
is also an alias for V' (e.g., if the value of the pointer has not changed). Also, we assume
that on a given input, a pointer in the optimized version points to the same thing as the
same pointer in the unoptimized version. This implies that if some definition through a
pointer is an alias for V', the semantics of the program may require that some store through
a pointer is also an alias for V.

21 A store is an equivalence class by the same equivalence relation applied to definitions (having been
determined by a compiler to represent the same or equivalent computations).
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Definition 16.6: A definition d of V is turned off if it is assumed not to be an
alias for V', and d is turned on if it is assumed to be an alias for V. If d is an
alias for V, all definitions and stores program semantics thereby require to be
aliases for V' are turned off if and only if d is turned off.

A symmetric treatment of turned off applies to stores, exchanging the roles of
definitions and stores above.

The i*" definition of V along a path is written d; and the 7" store into V along a path
1s written s;.
Definition 16.7: A store s; qualified-reaches a point Bk with definition d; along
a path p to Bkif d; reaches Bk along p and if, when every d;, t > j, that follows
d on p is turned off (consequently turning off other definitions and stores), and
all other transparent definitions of V' are on, s; is the store that assigns into V'
along p. A definition d; qualified-reaches a point Bk with store s; along a path p
similarly, exchanging the roles of stores and definitions in the previous sentence.

Definition 16.8: In the absence of assignments through aliases: a variable V'
is current at a breakpoint B along path-pair p iff the store into V that reaches
B along p, was generated from the definition of V' that reaches B along p,.

In the presence of assignments through aliases: V is current at a breakpoint B
along path-pair p iff for all instances of definitions d; and instances of stores s;
such that either s; qualified-reaches B with d; or d; qualified-reaches B with s;
along p, s; is generated from d;.

Clearly, assignments through aliases are a crucial part of most procedural programming
languages. Because of the complexity they introduce, a treatment of currency determination
in their absence is given in Section 17, and throughout that section the simpler form of the
definition can be assumed. The solution is then generalized to handle assignments through
aliases in Section 19.

Definition 16.9: V' is endangered at B along p if it is not current at B along
p.
Definition 16.10: In the absence of assignments through aliases: V' is noncur-

rent at B along p iff no store into V' that reaches B along p, was generated from
a definition of V' that reaches B along p,.

In the presence of assignments through aliases: V' is noncurrent at B along p iff
for all instances of definitions d; and instances of stores s; such that either s;
qualified-reaches B with d; or d; qualified-reaches B with s; along p, s; is not
generated from d;.

Definition 16.11: V is current at B iff V is current at B along each path-pair
to B.
Definition 16.12: V' is endangered at B iff it is endangered at B along at least

one path-pair to B.

Definition 16.13: V' is noncurrent at B iff V' is noncurrent at B along each
path-pair to B.

We turn now to how to determine which state of currency a variable is in at a breakpoint.
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17 Currency Determination

This section describes how to determine a variable’s currency at a breakpoint. My
approach to currency determination involves solving a set of a dataflow equations. This
requires control flow information and within-basic-block ordering information for definitions
in the unoptimized program, and the same information for stores in the optimized program.
It also requires a mapping between the unoptimized and optimized control flow information.

In this section, we assume that no aliasing is present in the program. This simplifies
the presentation. One consequence of this assumption is that only one definition and one
store may reach a breakpoint along a single path. In Section 19 we present the mechanisms
needed to allow aliasing.

Section 17.1 introduces paired reaching sets, which make up the data in the dataflow com-
putation. Section 17.2 discusses the data structure on which the computation is performed,
and its relationship to the unoptimized and optimized versions of a program. Section 17.4
discusses the aspects of the dataflow computation that are particular to the problem of
currency determination, Section 17.5 gives an algorithm for computing paired reaching sets
at block boundaries, Section 17.6 extends it to compute paired reaching sets at breakpoints,
and Section 17.7 describes how the results are used to determine the currency of a variable.
Appendices B and C.1 offer proofs of the correctness of the work presented in this section.

17.1 Paired Reaching Sets

I have introduced the terms definition and store to distinguish an assignment occurring in
the source or unoptimized code from an assignment occurring in the optimized (or machine)
code. T am now going to use definition/store pairs to convey some information about both
a definition and the store generated from it.

Definition 17.1: A ds-pair is a pair (d,s), where d is a definition of a variable
V and s is a store into V.

Ds-pairs bear the same relation to the currency determination dataflow computation that
definitions bear to a standard reaching definitions computation. I allow ‘dotting into’ a ds-
pair: if P is the ds-pair (2,y), P.d is the definition element z and P.s is the store element
y, giving the tautologies (z,y).d = x and (z,y).s = y.

Because both definitions and stores are represented, the set of ds-pairs that reaches a
breakpoint provides complete information about what should reach and what does reach
the breakpoint. These sets are called Paired Reaching Sets: PRSE is the set of ds-pairs
relevant to V' that reach a breakpoint B. Loosely, (d,s) € PRSE means d is a definition of
V' that should reach B and s is a store into V' that does reach B. More precisely, given a
definition d of V and a store s into V, independent of whether s was generated from d, 1
will show that:

e (d,s) € PRSE means there is a path-pair p such that d reaches B along p, and s
reaches B along p,.
I will also show how to compute PRSE, and subsequently I will show that,

e Vis current at B iff V(d,s) € PRSE, s was generated from d;
o V is endangered at B iff 3(d,s) € PRSY such that s was not generated from d;

e V is noncurrent at B iff V(d, s) € PRSY, s was not generated from d.
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Caveat:

An infeasible path in a flow graph is one that cannot be taken in any execution, and
a feasible path is one that can be taken in some execution. Infeasible paths introduce
conservative error under this currency determination technique. The claims I have just made
hold for programs without infeasible paths. If (d,s) is in PRSE by virtue of an infeasible
path, and s was not generated from d, this technique will claim that V is endangered though
it may be current. However, we can do no better than the compiler, and like the compiler,
we must make the conservative assumption that all paths are feasible. More precisely:

e Vis current at B if V(d,s) € PRSE, s was generated from d;

o V is endangered at B iff 3(d,s) € PRS} such that s was not generated from d and
(d, s) was placed into PRSY by virtue of a feasible path-pair (an untestable condition );

e V is noncurrent at B if ¥(d,s) placed into PRSE by virtue of a feasible path-pair, s
was not generated from d.

The claims are weaker, but in defense of the technique let me point out that the conservative
error is in the data (which is the program), not in the modelling of the program or in
the currency determination algorithm. One could try to define the weakness away by
arguing that people cannot in all cases distinguish feasible paths from infeasible paths, so
the formalization of human expectation in the terms current, endangered, and noncurrent
should not distinguish them either. Rather than define it away, I will ignore it, sticking
with the original formulation of the claims, with the understanding that the results may be
conservative when infeasible paths contribute to them.

17.2 The Flow Graph Data Structure

The relationship between the optimized and unoptimized code must be captured in
a data structure that can be used by the currency determination algorithm. It may be
possible to perform currency determination using information produced by a compiler
about an unoptimized version of a program and information produced by a (possibly
different) compiler about an optimized version of the same program. We assume that
the information used to do currency determination on a compilation unit is produced in
a single compilation. Also, information about the unoptimized version of the program is
taken from the compiler’s intermediate representation of the program prior to the optimizing
phases (independent of whether code is generated for an unoptimized version), thus the full
facilities of the compiler are available to produce information about the relationship between
the unoptimized ‘version’ and the optimized version.

Currency determination needs the following:

e The assignments that constitute a definition,

e the ‘generated from’ relationship between definitions and stores (from these two
pieces of information, the machine-code instructions that constitute a store can be
determined);

e the execution order of statements and side effects within a basic block, for blocks in
both the optimized and unoptimized versions, and

e the correspondence between the flow graphs for each version.

The particular encoding of the information is not important here. One possible encoding

is described in Section 22. Here we assume that the first three items are available and discuss
the fourth.
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Some data structures must represent the flow graphs for each version and the correspon-
dence between them. Hereafter, the term source flow graph, or simply source graph refers
to the flow graph for the unoptimized version, and object flow graph, or object graph refers
to the flow graph for the optimized version. DS-graph refers to the data structure used to
map between them, upon which the data flow computation is performed.

The DS-graph construction is constrained such that a node in the DS-graph is derived
from a block in the source graph, from a block in the object graph, or from both. The
constraints are described in Section 17.3. A node B in the DS-graph selects the block(s)
it is derived from: B selects at most one basic block B, in the source graph and B selects
at most one basic block B, in the object graph. B contains ordering information about
definitions occurring in B, in a definition list. If no block B, is selected, B contains an
empty definition list. Similarly, B contains ordering information about stores occurring
in B, in a store list—if no block B, is selected, B contains an empty store list. A path
p through the DS-graph selects p, where p, is the sequence of blocks in the source graph
selected by the sequence of nodes in p, and p selects sequence p, in the object graph similarly.
We shall see that by DS-graph construction, p, forms a path through the source graph and
p, forms a path through the object graph, and < p,,p, > is a path-pair.

The correspondence between blocks and edges in the source and object graph is imme-
diate (represented by the identity mapping) when optimization has not caused the object
graph to differ in shape from the source graph. When optimization causes changes in the
object graph, these changes must be reflected in the DS-graph.

If (d,s) € PRSE is to mean that there is a path-pair < p,,p, > such that d reaches B
along p, and s reaches B along p,, then the path through the DS-graph that caused (d, s)
to be placed into PRSE must select < py, po >.

A feasible path in the DS-graph is one that selects paths that can be taken in some
execution. The DS-graph will contain infeasible paths (i.e., paths that select path-pairs
through which execution cannot proceed) if the object graph contains infeasible paths.
These paths may contribute information that makes the results of currency determination
conservative, i.e., a variable may appear to be endangered due to an infeasible path, as
discussed in Section 17.1. It would clearly be preferable to construct the DS-graph so that
it contains only feasible paths. Unfortunately, it is not possible in general to determine
which paths through a flow graph are feasible.

Definition 17.2: A DS-graph is valid if and only if every path p through the
DS-graph denotes a path-pair, that is, the pair of paths < p,,p, > selected by
p is a path pair, and every feasible path-pair is denoted by some path through
the DS-graph.

For the purposes of this discussion, we assume that for each node in the DS-graph,

o there is a list of the definitions that are in the block in the source graph selected
by the node, in execution order. Because this list contains definitions, I call it the
definition list. This is equivalent to a list of statements and side effects that appear
in that block, in the order in which they appear in the source code.

o there is a list of the stores that are in the block in the object graph selected by the
node, in execution order. Because this list contains stores, I call it the store list. This
is again equivalent to a list of statements and side effects that appear in that block,
but execution order in the optimized version is not equivalent to source order.
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The definition list must order definitions relative to possible breakpoint locations. Simi-
larly, the store list must order stores relative to possible breakpoint locations. As discussed
in Section 15.3 I believe that definitions and stores are appropriate breakpoint locations
for assignments and side effects, and this work assumes that definitions, stores, and break-
points have a uniform representation. If breakpoints at non-statement-level granularity
(e.g., expressions or loops) are to be considered, or if a different choice is made for the
representative instruction for assignments and side effects, the algorithms presented here
will work properly assuming that the definition and store lists order definitions and stores
relative to whatever representative instructions are chosen as breakpoint locations. (The
choice of representative instructions models the debugger user’s expectation. No choice in
optimized code provides a perfect reflection of the behavior of unoptimized code.)

These assumptions guarantee that if a node appears in a path through the DS-graph,
the code in the unoptimized version represented by that node is the code that would be
executed (in proper order) if the block represented by that node were visited on that path,
and we have the analogous guarantee relative to the optimized version.

A node n in the DS-graph may select a block in one version that does not exist in the
other version, in which case n does not select any block in the latter version. The DS-graph
is constructed so that the appropriate list (definition or store) is empty for n. For example,
if a loop pre-header were introduced by optimization, the DS-graph will have a node that
selects the pre-header in the object graph and does not select any block in the source graph.
That node will have an empty definition list.

Store lists reference a subset of instructions, with some additional information. In an
implementation, the store lists could be contained in the object graph blocks rather than
in the DS-graph nodes. The definition lists must be kept in the DS-graph nodes because
some optimizations require definition lists to be copied in such a way that each copy of a
definition is in a distinct equivalence class. For simplicity of presentation, the discussion
assumes that both definition and store lists reside in DS-graph nodes.

17.3 Constraints on the DS-Graph

The DS-graph begins isomorphic to the source graph, with definition lists replacing
the code within blocks, and where each node selects the block it maps to. Before any
optimizations change its shape, it is clearly valid.

Some notation:
V3 is the set of vertices and £ is the set of edges in the source graph.
VP is the set of vertices and EP is the set of edges in the DS-graph.

VO is the set of vertices and E© is the set of edges in the object graph.
DS-Graph Creation Rule:

o A DS-graph is created before any optimization has been performed. At the same time,
the object graph is created. The object graph is a copy of the source graph. For each
block B, in the source graph, a DS-graph node B is created such that B selects B,
and B,. The definition list for B is abstracted from the code in B, and copied to the
store list for B. For each edge (hy,t,) € E°, edge (h,,1,) is placed in E°. and edge
(h,t) is placed in EP. The name of a block in the source graph is subscripted by u
and the name of a block in the object graph is subscripted by o, thus B, is a copy of
By.
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Any changes made to the shape of the flow graph by optimization are reflected in changes
to the shape of the DS-graph and are constrained by the graph transformations below, which
maintain the validity of the DS-graph. The currency determination method presented in
this work applies only to optimizations that change the flow graph in a manner that can be
modelled by iterative application of these transformations. A transformation on the object
graph and the accompanying transformation on the DS-graph are described together. A
transformation is applied to the DS-graph only when the accompanying transformation is
applied to the object graph, thus a transformation is applied only if it is semantically valid.

Let O; denote the object graph prior to a graph transformation, and O;41 denote the
transformed object graph. Let DJS; denote the DS-graph prior to the graph transformation,
and DS;y1 denote the transformed DS-graph. Let S denote the source graph, which is
unchanged by transformations.

A block boundary marker is a distinguished instruction used to represent a position in
the code stream. A block boundary marker may be selected by a node in the DS-graph, and
is considered to be a block in the object graph. When two blocks A and B are coalesced, a
block boundary marker M is placed in the code stream of the resulting block C' following the
last instruction from A and preceding the first instruction from B. Suppose A was selected
by node n4 and B was selected by node np prior to the coalescing of A and B. Subsequent
to coalescing, C' is selected by n4, and n4’s store list comprises the instructions from the
top of €' down to M. M is selected by np, and np’s store list comprises the instructions
following M to the bottom of C' (or to the next block boundary marker).

Oselects is a set of functions from DS-graph nodes to object graph blocks that returns
the block selected by the argument node. Each such function applies to a particular DS-
graph and the corresponding object graph, and is indexed as DS and O are indexed.
Thus Oselects;(n) = n, means that node n in DS; selects block n, in O;. Sselects
is similar but maps nodes to source graph blocks. Oselects;y1(n) = Oselects;(n) and
Sselects;y1(n) = Sselects;(n) unless explicitly changed. For clarity, nodes or blocks created
during transformations will be distinguished by an overbar (e.g., 7).

Some of the graph transformations copy nodes in the DS-graph when at first glance it
seems unnecessary. The reason for these copies is that when transformations are composed,
operations are done on all subpaths in the DS-graph that correspond to an edge in the object
graph. If a node in the DS-graph were on more than one such subpath, the transformations
could not successfully be composed.

Graph Transformations:
1. Introducing a block.
An example of this transformation is shown in Figure 17.1.

The object graph transformation:

A block is introduced between a complete bipartite subgraph of O; with vertex sets
HO (for Head) and T (for Tail). It is typical (but not necessary) for either H® or
T to be a singleton set.??

Let b be the block introduced by the transformation.
0; =(VO,E%, HO cVO, 19 C VO and HONT? =)
Del = {(h,t)|h € HO,t € T}

22Tf a single condition governs the exit of a basic block, T can have cardinality at most two, since blocks
in 79 end up as successors of the introduced block.
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1 2 1 1 2 2 1 2
3 3
4 5 4 4 5 5 4 5
DSn-I—l On—l—l
1 2
A node in DS,
selects block 7 in § and
block k in O;.
6
6
4 4 5 5 4 5

Figure 17.1: Graph Transformation 1: introducing a block. In the object graph,
a block is introduced between a complete bipartite subgraph. In DS, there is a
path corresponding to each edge deleted in the object graph transformation. A
node selecting the introduced block is added to the end of each such path.

Addy = {(h,b)|h € HO}

Addy = {(b, )|t € T?}

Oiy1 = (VO U {b},(EC — Del)U Addg U Addr)

Maintaining the semantics of a program imposes the following constraint on this
transformation of the object graph: path p; is taken through O; on input [ if and only
if path p;4q1 is taken through O;1q on I, where p;1q is derived from p; by replacing
each edge (h,t) where h € H? and t € T? with the subpath < h,b,t >.

The DS-graph transformation:

A subpath in the DS-graph may correspond to an edge in the object graph. Node
(selecting b) is introduced at the end of each such subpath.

DS; = (VP EDP?)
SubPaths = {s|s = <wvy,vg,.. o> As=Viength(s—1) > 0s=Vlength(sp>> V) € Vb3,
Oselects;(v1) € HO, Oselects;(bs) € T, and Oselects;(vy) = Null for 1 < k <
length(s)}
NewNodes = {s|s € SubPaths}
Oselects;11(Tr; € NewNodes) = b
Sselects;11(Ts € NewNodes) = Null
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selects block 7 in S and
block k in O,.
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N ’ ’
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Figure 17.2: Graph Transformation 2: deleting a block. In the object graph,
predecessors and successors of the deleted block form a complete bipartite subgraph
in the resulting graph. In the DS-graph, one path is constructed for each edge

introduced in the object graph transformation. Nodes are duplicated so that each
such path selects the requisite blocks in the source graph.

DelEdges = {(as, bs)|s € SubPaths}
NewEdges = {(as,7;)|(as,bs) € Del Edges} U {(Ts, bs)|(as, bs) € Del Edges}
DS = (VPSU NewNodes, (EPS — Del Edges) U NewEdges)
2. Deleting a block.
An example of this transformation is shown in Figure 17.2.

The object graph transformation:

When a block is deleted, its predecessors and successors form a complete bipartite
subgraph in the resulting object graph. This is the inverse of the previous trans-
formation. It is typical (but not necessary) for either HY or T° to be a singleton
set.??

Let b be the block deleted by the transformation.
0, = (V9 E9)

HO = {h|(h,b) € E° and h # b}

TO = {t|(b,t) € EC and t # b}

22Tf a single condition governs the exit of a basic block, T can have cardinality at most two, since blocks
in T° are successors of the deleted block prior to the transformation.
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Del = {(h,b)|(h,b) € E°} U {(b,1)|(b,t) € E°}

Add = {(h,t)lh € H® and t € T}

O;11 = (VO = {b},(E° — Del)U Add)

Maintaining the semantics of a program imposes the following constraint on this
transformation of the object graph: if path p; is taken through O; on input I, then

path p;1q is taken through O;11 on I, where p;11 is derived from p; by replacing each
subpath < h,b,t > with the subpath < h,t >.

The DS-graph transformation:
New paths are constructed in the DS-graph corresponding to the new edges in the
object graph. There may be nodes on the path from the node that selects a predecessor
of the eliminated block to the node that selects a successor of the eliminated block
that do not select any object blocks. These nodes, as well as the node that selects
the eliminated block, are duplicated so that there is one copy for each new path.
Unlike the transformations on the object graph, this DS-graph transformation is not
the inverse of the previous transformation.
Let v, ; denote the 7" node on subpath s.
DS; = (VP EDP?)
SubPaths = {s|s =< hs=051,V52, .+, s = Vg jengtn(s) >, Oselects;(hs) € HO,
Oselects;(t;) € T, 3j such that 1 < j < length(s) and Oselects;(v, ;) = b,
and Oselects;(vs;) = Null for | # j and 1 < I < length(s)}
DelNodes = {v, ;|s € SubPaths and 1 < j < length(s)}
NewNodes = {T ;|vs j € VP s € SubPaths and 1 < j < length(s)}*!
Oselects;11(7 € NewNodes) = Null
Sselects;11(T € NewNodes) = Sselects;(v)
DelEdges = {e|e is on some s € SubPaths}
NewEdges = {(Ts ;, s j41)|vs.; € VP v, ;01 € VPS and s € Subpaths,
for 1 < j < length(s)} U{(hs,Ds2), (Vs tength(s)=1, s)|s € Subpaths}
DS;11 = ((VP® — DelNodes) U NewNodes, (EP® — Del Edges) U NewEdges)

. Deleting an edge.

An example of this transformation is shown in Figure 17.3.

The object graph transformation:

Let (h,t) be the edge deleted by the transformation.

0;=(V°,E°)

Oipr = (VO, EO — {(h,1}})

Maintaining the semantics of a program imposes the following constraint on this
transformation of the object graph: there is no input that causes a path through
O; containing the subpath < h,,t, > to be taken.

The DS-graph transformation:

When an edge is eliminated from the object graph, the corresponding edges are elim-
inated from the DS-graph, and the closure of edges out of subsequentlysubsequent-
lyreachable nodes are also eliminated from the DS-graph.

24

Vs,
i=1"

. .
J=7J-

; may be on more than one subpath in SubPaths. Thus v,; = vy ;; does not imply that s = s’ or
However, a copy is made for each subpath in SubPaths, so U.; = v ;7 does imply that s = s” and
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Figure 17.3: Graph Transformation 3: deleting an edge. An edge is deleted in the
object graph. Paths selecting that edge in DS, are deleted, and all edges out of
nodes that are subsequently unreachable are deleted.

DS; = (VDS,EDS)
SubPaths = {s|s =< vy, va,...,0p >,v; € VP9 Oselects;(vy) = h,
Oselects;(v) = t, and Oselects;(v;) = Null for 1 < j < k}
DelPaths = {e|e is on some s € SubPaths}
7(X) = X U{(n, suce)|¥(pred,n) € EPS (pred,n) € X}
DelEdges = the closure of DelPaths under 7
DSipy = (VPS5 EPS — DelEdges)
4. Coalescing two blocks into a single block.
An example of this transformation is shown in Figure 17.4.

The object graph transformation:
Let ¢’ be a code concatenation operator, C'ode be a function from blocks to the code
they contain, and M be a block boundary marker.

Let h be the first of the to-be-coalesced blocks, and ¢ be the second of the to-be-
coalesced blocks: t is eliminated by the transformation.

0; = (VO E°)
Code;y1(h) = Code;(h)|M|Code,(t)
Del = {(h,t)} U {(t,2)|(t,z) € E°}
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1 1 1 1
2 2 2 2
3 4 3 3 4 4 3 4
DSn-I—l On—l—l
1 1 1
............... M
A node| 5 k |in DS; (2)
selects block 7 in § and
block % in O;. 2 M
3 3 4 4 3 4

Figure 17.4: Graph Transformation 4: coalescing two blocks.

Add = {(h,z)|(t,z) € E°}

Oiy1 = (VO = {t},(E° — Del) U Add)

Maintaining the semantics of a program imposes the following constraint on this
transformation of the object graph: there is no input that causes a path through
O; containing the subpath < h,z >, for « # t, to be taken, and there is no input that
causes a path through O; containing the subpath < z,¢ >, for 2 # h, to be taken.

The DS-graph transformation:
Without adding or removing any nodes or edges, modify the selection of nodes so that
a path through the DS-graph selects the right path through the object graph.

DS; = (VP EDP?)

For t € VP% such that Oselects;(t) = t, let Oselects;y1(t) = M
DSipq = (VP5, EP?)

. Inlining a subroutine.

An example of this transformation is shown in Figure 17.5.

The object graph transformation:
The object graph must model a call as a basic block, and this exposition assumes that
subroutines have single exits.
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IERRER (1 1] [2 2 1] 2]
\ Start start
Call Call call call ‘
Exit Exit exit exit
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A node in DS; \|/
selects block 7 in S and Il cally Call

block k in O;. \
| Start star | Start start |

E

Exit_exil succ

Succ succ

Figure 17.5: Graph Transformation 5: inlining a subroutine. The duplication of
the call node is necessary to preserve DS-graph characteristics needed by other
transformations.

Let start be the entry block of the subroutine being inlined, and ezt be the exit block
of the subroutine. Let call be the block containing the call, and suce be the successor
of call. Because a call comprises a block, there can be no conditional branch and thus

succ is the only successor of call.?®

0; = (VO E°)

Del = {(x, call)|(z,call) € E°} U {(call, succ)}

NewBlocks = {m|n = start, or n is reachable from start}

Add = {(h,?)|h € NewBlocks and T € NewBlocks and (h,t) € E°} U
{(z,start)|(z, call) € E°} U {(exit, suce)}

Oiy1 = (VO = {call}) U NewBlocks, (EC — Del) U Add)

The DS-graph transformation:

Like the object graph transformation, the DS-graph transformation copies a subgraph

and grafts it in the place of the call. Unlike the object graph transformation, the DS-

graph transformation keeps a copy of the call node on each path that enters the inlined
routine.

2°By transformation 4, call and succ could be coalesced. We can assume that call blocks and their
successors are not coalesced prior to inlining the call, because the compiler would have to undo the coalescing
in order to do the inlining. After inlining, of course, coalescing can take place.
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Unlike the introduction of a new node in transformation 1, where the new node does
not select a block in the source graph and has an empty definition list, a node created
by this transformation does select a block in the source graph, and has the definition
list of that block, modified so that a copied definition is not in the same equivalence
class as the original.

Let Start be the entry node of the subroutine being inlined, and Fzit be the exit
node of the subroutine. Let Call be the node containing the call, and Swucc be the
(sole) successor of Call.

DS; = (VDS,EDS)

DelEdges = {(z,Call)|(z,Call) € E°}U{(Call, Succ)}
InlinedNodes = {m|n = start, or n is reachable from Start}
CallNodes = {Call;|0 < i < the in-degree of Call}
Oselects;y1(m € InlinedNodes) = Oselects;(n)
Oselects;11(Call; € CallNodes) = Null

Sselects;11(T € InlinedNodes) = Sselects;(n)

Sselects;11(m € CallNodes) = Sselects;(Call)

NewEdges = {(h,T)|h € InlinedNodes and T € InlinedNodes and (h,t) € EPS} U
{(Fzit, Suce)}y U{(Call;, Start)|Call; € CallNodes} U
{(z,Call;)|z is the i*" predecessor of Clall and Clall; € CallNodes}

DS;py = (VPS5 U CallNodes U InlinedNodes, (EPS — Del Edges)U NewEdges)

. Unrolling a loop.

An example of this transformation is shown in Figure 17.6.

The object graph transformation:

This exposition assumes that loops are structured so that a loop has a single successor
and that there are no jumps into the middle of a loop. The transformation can be
extended to loop structures that do not conform to these constraints.

Let a loop in the object graph be described by a set N(% of blocks with a few

distinguished blocks: e is the loop entry and b is the bottom of the loop so that

(b,e) is the back edge. All other blocks in N} are within the loop. succ is the loop

successor. The loop is unrolled I times, requiring I copies of blocks in Ng; these are

distinguished by superscripts.

0, =(V°,E°)

N(% = the set of blocks in the loop, as described above.

NewBlocks = {m;|n € N5 and 0 < i < I}

Add = {(h;, succ)|h; € NewBlocks and h € N§ and (h, succ) € E°} U
{(b,e1),(br,e)|e1 € NewBlocks and by € NewBlocks} U

{(6;,%41)|0 < i < I and b; € NewBlocks and ;11 € NewBlocks}} U

{(h:,%;)|h; € NewBlocks and T; € NewBlocks and (h,t) € Ng and h; #£ b;}

Oi411 = (VO U NewBlocks, (E° — {(b,e)})U Add)

The DS-graph transformation:

As with the object graph, when the loop is unrolled I times, I copies of the subgraph

of the DS-graph comprising the loop are made.

Unlike the introduction of a new node in transformation 1, where a new node does
not select a block in the source graph and has an empty definition list, a node created
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Figure 17.6: Graph Transformation 6: unrolling a loop. The loop is unrolled once
here. The unshown body of the loop may differ between the source graph, object
graph, and DS-graph due to previous tranformations, but varies between O, and
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by this transformation does select a block in the source graph, and has the definition
list of that block, modified so that a copied definition is not in the same equivalence
class as the original.

A loop in the DS-graph is derived from a loop in the object graph. It is nonetheless
necessary to name a few of the nodes within a loop: let £ be the loop entry, B be the
bottom node of the loop, and Swuce be the loop successor.

DSZ — (VDS,EDS)
NEs = {v;lv; € VP (< vo,v1,...,v5 > is a subpath in DS,
such that Oselects;(vg) € N, Oselects;(vy,) € N, and
Oselects;(v)) = Null for 0 < I < k)},and 0 < j <k
NewNodes = {Ti;|n € NEg and 0 < i < I}
Top = {E;|E is the loop entry and 0 < i < I}
Bottom = {B;|B is the bottom node of the loop and 0 < i < I}
NewFdges = {(hi, Suce)|h; € NewNodes,h € NEg, and (h, Succ) € EPS} U
{(B, E1),(B1, E)|Ey € Top and B; € Bottom} U
{(Bi,E:41)|0 < i < I, B; € Bottom, and E;y; € Top} U
{(hi, ;)|h; € NewNodes,1; € NewNodes, (h,t) € NEg, and h; # B;}
Oselects;11(m € NewNodes) = Oselects;(n)
Sselects;y1(T € NewNodes) = Sselects;(n)
DSipy = (VPS5 U NewNodes, (EP® — {(B, E)})U NewEdges)
7. No optimization other than those described in one of the other object graph trans-
formations may modify control flow in a way that changes which block is entered on
a particular input. See Section 21 for a mechanism that may allow truthful (but not
expected) behavior in the presence of optimizations that violate this constraint.

Given a valid DS-graph, if any of these modifications are performed, the result is a
valid DS-graph. This is shown in Appendix B. For this currency determination technique
to work, optimizations that modify the shape of the flow graph may do so only in ways
allowed by these rules. Optimizations that change control flow are defined (by Rule 7) to
modify the shape of the flow graph. It follows that optimizations that do not modify the
shape of the flow graph preserve the validity of the DS-graph.

Many optimizations modify the flow graph only in ways that can be modelled by these
DS-graph modifications, but arbitrary optimization is not modelled. For example, recogniz-
ing bubblesort in the unoptimized version and replacing it with quicksort in the optimized
version clearly involves graph modifications beyond the scope of these transformations.
Loop interchange is disallowed because it changes the order in which blocks are entered.

Leaving such high-level optimization aside, consider simply adding an edge to the flow
graph. This must be reflected in the DS-graph, but an edge in the DS-graph denotes
potential execution in both the optimized and unoptimized version. If an edge could be
added to the DS-graph arbitrarily, a path resulting from its introduction might select
a sequence of blocks in the source graph that is not a path through the source graph.
Information about definitions that reach along such a path through the DS-graph would be
wrong.

The apparent introduction of such a new path by an optimization may be an artifact
of how an optimization is modelled. For example, cross-jumping can be implemented by
introducing a jump. Assume blocks A and B share successors, that A contains the code
sequence pq, and that B contains the code sequence ¢. A jump to B can be inserted following
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pin A. This could be modelled as eliminating ¢ in A, deleting the original edges out of A,
and adding an edge from A to B. It cannot be modelled that way by iterative application of
the graph-modification rules. It could also be modelled as introducing a new block € whose
predecessors are A and B and whose successors are the successors of A and B, and moving
g into C' (from both A and B). It can be modelled in this fashion by iterative application
of the graph-modification rules.?¢

A valid DS-graph is the graph on which the dataflow computation is performed. We
turn now to the nature of that computation.

17.4 Dataflow on DS-Pairs
The Gen DS-Pair

Analogous to the Gen set of standard data-flow algorithms, a Gen ds-pair contains
information about what is generated in a block. In the absence of aliasing, there is exactly
one Gen ds-pair for a given variable in each block. The Gen ds-pair for a variable V' and a
block B is written Genl. Genl is (d, s), where d is the last definition of V on B’s definition
list or null if there is none, and s is the last store into V on B’s store list or null if there is
none.

Only Gen ds-pairs may have null entries. Ds-pairs with null entries do not appear in
the In or Qut sets of a block or in PRSE.

The x Operation

In a standard dataflow computation, a definition in a block kills definitions (of the
same variable) that reach the entry of the block. In the currency determination dataflow
computation given in Algorithm PRS, definitions kill definitions, and stores kill stores. If
Geng.d = d, ds-pairs reaching the exit of B contain d as their definition element. If Geng.d
= null, ds-pairs reaching the exit of B contain the same definition element they had at the
entry of B. Stores are handled analogously. This is represented with the operator x:

Definition 17.3: (e,t) K (null, null) = (e, 1)
(e,t)k (d,null)= (d,t)
(e, 1)k (null,s)= (e, s)
(e,t)k(d,s)=(d,s)

The U Operation

Multiple ds-pairs may reach the entry of a block. The ¥ operation defines the ds-pairs

that reach the exit of a block, given all of the pairs that reach block entry. The ¥ operation
takes a set (the In set for a block) as its left operand, whereas the k operation takes a single
ds-pair as its left operand. If the block generates both a store and a definition, its Out set
will contain the ds-pair consisting of that store and definition, and if it contains a null in
either position (or both), its Out set depends on the In set. Because every variable is defined

26 There is an independent argument for representing cross-jumping this way: B might contain the sequence
0q, requiring a jump from the middle of A to the middle of B. The second method of modelling cross-jumping
can model this, the first cannot.
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to have an initial definition and store, propagation will eventually cause any reachable block
to have a nonempty In set.

If the In set is empty, the Out set is the set of complete ds-pairs (those containing no
nulls) in the Gen set, and if the In set is not empty, the Out set is the set of ds-pairs

produced by individual s operations between each ds-pair in R and the ds-pair 5
.. ] 0 if d = null or s = null
Definition 17.4: Complete(S) = { (d,s) otherwise
. ) £, ) Complete(S) if R=10
Definition 17.5: RUS= { {(reS|re R} otherwise

17.5 Paired Reaching Sets at Block Boundaries

Algorithm PRS computes paired reaching sets at block boundaries for a DS-graph
component (a subroutine). A source node, Start, is grafted on to the component to
provide a place for initial definitions (d-init) and stores (s-init) representing the creation
of variables. The algorithm consists of an initialization step and an iterative step. (If
the DS-graph component is a subroutine, line 1 of Initialize should set Gengtm,t to (d-
incoming,s-incoming) when V' is a parameter.)

Initialize
Input:
a component of the DS-graph, modified by the addition of a Start node;
Output:
the Gen sets of each variable for each block.
Step 1:
0 for each variable V
1 GenY,, . = (d-init, s-init)
2 for each node B other than Start
3 set Geng.d to the last definition of V' in the definition list of B
or to null if there is none
4 set Geng.s to the last store into V' in the store list of B

or to null if there is none
End of Initialize

Iterate
Input:
a component of the DS-graph, modified by the addition of a Start node,
the Gen sets of each variable for each block;
Output:
the paired reaching sets of each variable at each block boundary.
0 for each variable V'
1 for each block B
2 Ing = Outg =0
3 iteratively compute Ing and Outg until convergence, according to the following,
4 for each block B
5 Iny, = Up Outy for P predecessors of B
6 for each block B
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7 Outg :Ing G Geng
End of Iterate

Algorithm PRS
Input:
a component of the DS-graph, modified by the addition of a Start node,
Output:
the paired reaching sets of each variable at each block boundary.
0 Initialize
1 TIterate
End of Algorithm PRS

17.6 Paired Reaching Sets at Breakpoints

Algorithm PRS provides In and Out sets at block boundaries. Our goal is to determine
a variable’s currency at a breakpoint, which may be in the middle of a block rather than
at a block boundary. The definitions of current, noncurrent, and endangered refer to ‘a
breakpoint B’ that lies on a path-pair. This is well-defined for syntactic breakpoints, but not
for semantic breakpoints whose representative instruction has been moved by optimization,
so we compute paired reaching sets at syntactic breakpoints only. The consequences of this
are that a block containing the breakpoint is present in both the source and the object
graphs, and the breakpoint is on both the definition list and the store list for some block in
the DS-graph. Note that for a syntactic breakpoint for a statement that has been moved or
eliminated, the element on the store list representing the breakpoint is the representative
instruction for a following statement.

PRSgk, the set of ds-pairs relevant to V' that reach a breakpoint Bk, is derived from
the In sets computed by Algorithm PRS.

Initialize-BK
Input:
a variable V', a syntactic breakpoint Bk, and the node B containing Bk;
Output:
The Gen set of V for B at Bk;
0 Set Gengk.d to the last definition of V' prior to Bk on B’s definition list,
or to null if there is none.
1 Set Gengk.s to the last store into V prior to Bk on B’s store list,

or to null if there is none.
End of Initialize-BK

Algorithm PRS-BK
Input:
a variable V', a syntactic breakpoint Bk, the node B containing Bk, and Ing;
Output:
The paired reaching set of V' at Bk;
0 Initialize-BK

1 PRSgk = Ing G Gengk
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End of Algorithm PRS-BK

17.7 A Variable’s Currency

The contents of PRSgk tell us V’s currency:

Theorem 17.6: PRSgk = () iff either V is not in scope at Bk or Bk is unreach-
able. Otherwise:

V is current at Bk iff V(d, s) € PRSgk, s was generated from d;

V is endangered at Bk iff 3(d,s) € PRSY, such that s was not generated from

d;

V is noncurrent at Bk iff A(d,s) € PRS), such that s was generated from d.
Theorem 17.6 is proven in Appendix C.1.
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18 When a Variable is Endangered

When the debugger is asked to display a variable, it determines whether the variable
is current. If the variable is current, the debugger displays its value without comment. If
the variable is endangered, in addition to displaying its value, the debugger can give the
user some help in understanding why the value is endangered. The general flavor of what
the debugger can do is given by the following sample message that might accompany the
display of variable a when the optimization shown in Figure 18.1 has occurred.

“Breakpoint 1 has been reached at line 339. a should have been set at line 327.
However, optimization has moved the assignment to a at line 342 to near line
336. a was actually set at one of lines 327 or 342.”

The information contained in this message is available from the paired reaching set
PRS449 and the unoptimized and optimized flow graphs. The description of the effects of
optimization will vary in specificity as the effects of optimization vary in complexity.

Figure 18.1: The display of a could be accompanied by this message: “Breakpoint
1 has been reached at line 339. a should have been set at line 327. However,
optimization has moved the assignment to a at line 342 to near line 336. a was
actually set at one of lines 327 or 342.”

Unoptimized Optimized
a=y 327 a=y 327
336 a =X 336 (342)
bkpt 339 bkpt 339

a=x 342




84 19. Transparency

19 Transparency

19.1 Assignments Through Aliases

Consider an assignment *P through a pointer (or through an array element where the
index is a variable) that could point to V. When execution is suspended at a breakpoint
B, xP may be an alias for V. *P must be considered to be a definition of V' that reaches
B. If %P is not an alias for V' in some particular execution, the value that V' contains at
the breakpoint came from whatever definition would have reached if *xP were not present.
Therefore, this definition must also be considered to reach B. For any language that allows
such aliasing, the assumption of a single definition reaching along a given path-pair does

not hold.

If there are multiple definitions of V' that reach B along p, all of them but one (the
one furthest from B on p) must be assignments through aliases, because other kinds of
assignments kill prior definitions. An assignment through an alias is defined as such by
its ambiguity about whether V is assigned into, because if it can be determined that an
assignment through a pointer does assign into V' every time, that assignment kills prior
definitions, and if it can be determined that an assignment through a pointer never assigns
into V', the assignment is not a definition of V.

19.2 Definitions and Stores Revisited

The computation of paired reaching sets depends on the definition of s given in Sec-
tions 17.4, which in turn depends on the assumption that a data object assigned a value
within a basic block is unconditionally affected by the assignment. This plays out as an
assumption that definitions kill definitions and stores kill stores. This assumption holds for
direct assignments but not for assignments through aliases. Because we have two kinds of
assignments with different characteristics, we need two kinds of definitions and stores. Def-
initions and stores that are unambiguous as to the variable that is affected we call opague.
Definitions and stores that affect one of a set of variables such that it cannot be determined
at compile time which variable will be affected, we call transparent. Thus *p = 0; is a
transparent definition of V' unless the compiler determines that p cannot point to V' at that
assignment. V' is one member of the set of variables that might be affected by the definition.
p is called a transparent definer.

It may be that p never points to V, but the compiler cannot determine that. The
debugger can do no better than the compiler, and we must treat assignments through p as
if they can affect V.

It can be shown that a compiler can make an assignment through a pointer that is not
current without violating program semantics. An example is given in Appendix A. The
circumstances under which a compiler can do so are sufficiently constrained that for the
remainder of this work, I assume that transparent definers are current at each of their uses.

19.3 & Revisited

The introduction of transparent definitions requires a redefinition of the s operator so
that transparent definitions and stores do not kill elements that should reach subsequent
points in the program. The right operand of k is doing the killing, so we do not need to
worry about the transparency of the left operand. We could redefine x by independently
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(e,t) K (d,s) d is null | d is opaque | d is transparent
s is null (e, 1) (d,t) (e, 1)
(d,1)
s is opaque (e,s) (d,s) (e,s)
(d,5)
s is transparent || (e, 1) (d,t) (e, 1)
(e,s) (d,s) (d,s)
(¢,5)
(d, 1)

Table 19.1: This redefinition of k overgenerates ds-pairs.

letting an opaque definition of V' kill other definitions of V', transparent and opaque alike,
and letting an opaque store into V kill stores into V', transparent and opaque alike, while
not letting a transparent definition of V kill definitions of V' and not letting a transparent
store into V Kkill stores into V. Such a definition is given in Table 19.1. However, this
overgenerates ds-pairs.

As a motivating example, suppose there is a block B containing the definition d whose
source code is *p = x, where p may point to V and the store s generated from d has
survived the optimizer without being moved or eliminated. Gen}, is (d,s), and d and s are
transparent. Assume that no optimization has affected assignments into p. Then on a given
execution, either V is affected (p points to V') or V isn’t affected (p doesn’t point to V).
In this case, although (d,t) € (e,t)k(d, s), there is no input on which d reaches the exit of
B in the unoptimized version and t reaches the exit of B in the optimized version. This is
illustrated in Figure 19.1.

In general, let s be a store through some pointer, d be the definition that generated s,
and B be a breakpoint. If in every execution in which s can affect V at B, d reaches B,
then at B, any ds-pair (d,z) where z # s or (z,s) where z # d is called infeasible. Such a
ds-pair does not represent a definition that reaches B in the unoptimized code and the store
that reaches B on the same input in the optimized code. The definition of x in Table 19.1
places infeasible ds-pairs in paired reaching sets, and its use would result in conservative
errors in the results.

19.4 Constrained Transparency: Transparent Assignments Without
Elimination or Code Motion

Many compilers do not do sufficient pointer analysis to optimized transparent assign-
ments. Suppose transparent assignments are present but are not optimized, that is, no
elimination or motion of transparent assignments occurs. Consequently, if a block contains
a transparent assignment, both the associated definition and the store it generated are in

the block.

Assume Genly = (d,s) and Inj; = {(e,t)}. If d and s are transparent, neither d nor
s may be null, and s was generated from d. The transparent definition may affect V', so
Outg must contain (d,s). The transparent definition may not affect V', so Outg must
contain (e,t), regardless of whether e or ¢ are transparent. If d and s are not transparent,
the original definition of k is correct even if e or ¢ is transparent. Table 19.2 redefines &
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e, t p = &V;
<ed> if (cond) {
p = &W;
}
d,s
*p = x; // This is d.
<et>
<d,t>
<e, s>
<d,s>

Figure 19.1: eis a definition of V and ¢ is a store into V. Whether d is a definition of
V and sis a store into V' depends on which assignment to p reaches the assignment
through p. (d,t) is an infeasible ds-pair because d defines V only when s stores
into V', in which case s kills ¢. (e, s) is an infeasible ds-pair for similar reasons.

(e,t) K (d,s) d is null | dis opaque | d is transparent
s is null (e, 1) (d,t)
s is opaque (e,s) (d,s)
s is transparent (e, 1)
(d;s)

Table 19.2: (e,t) x (d, s): This definition assumes that no elimination or motion of
transparent assignments may occur. No infeasible ds-pairs are generated.

by combining these two cases. Blank entries in the table represent combinations that by
assumption cannot occur. No infeasible ds-pairs are generated under this definition of .

U in the Presence of Constrained Transparency

The definition of U must change because a block may contain many definitions of a
variable V. Only the last opaque definition of V' reaches the exit of the block, but all
subsequent transparent definitions of V' also reach the exit of the block. All of these belong
in the Gen set. If the In set is empty, the Qut set is the set of complete ds-pairs in the
Gen set. If the Gen set contains a complete opaque ds-pair, again the Out set is the set of
complete ds-pairs in the Gen set. Otherwise, the Out set is the set of ds-pairs produced by
individual x operations between each ds-pair in the In set and each ds-pair in the Gen set.

We define U accordingly:

Definition 19.1: Complete(S) = {(d,s) € S|d # null and s # null}
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; Complete()5) itR=10
Definition 19.2: RUS =< Complete(S5) if de € Complete(S) such that e is opaque
{reslre R,s € S} otherwise

Currency in the Presence of Constrained Transparency

Here I present algorithms modified to handle constrained transparency. Most of the

additional work has been incorporated into the definitions of x and U. The iterative step
of Algorithm PRS works without modification, but the initialization step must construct
Gen sets that may contain multiple ds-pairs.

Initialize®”
Input:
a component of the DS-graph, modified by the addition of a Start node;
Output:
the Gen sets of each variable for each block.
0 for each variable V'
1 GenY,, . = (d-init, s-init)
2 for each node B other than Start
3 set d to the last opaque definition of V' in the definition list of B
or to null if there is none

4 set s to the last opaque store into V' in the store list of B
or to null if there is none
5 add (d, s) to Gen},
6 set d to the next definition of V' in the definition list of B
and set s to the next store into V in the store list of B
7 add (d, s) to Gen)
8 iterate steps 6 and 7 until the end of the definition and store lists are reached

End of Initialize¢”

Algorithm PRS?
Input:
a component of the DS-graph, modified by the addition of a Start node,
Output:
the paired reaching sets of each variable at each block boundary.
0 Initialize®”
1 TIterate
End of Algorithm PRS”

Similarly, the initialization step of Algorithm PRS-BK®? must construct Gen sets that
may contain multiple ds-pairs.

Initialize-BK“7
Input:

a variable V', a syntactic breakpoint Bk, and the node B containing Bk;
Output:
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The Gen set of V for B at Bk;
0 set d to the last opaque definition of V prior to Bk on B’s definition list,
or to null if there is none
1 set s to the last opaque store into V prior to Bk on B’s store list,
or to null if there is none
2 add (d,s) to Gen},
3 for each subsequent transparent definition d of V prior to Bk on B’s definition list,
and each subsequent transparent store s into V' prior to Bk on B’s store list,
4 add (d, s) to Gen},
End of Initialize-BK“”

Algorithm PRS-BK”
Input:
a variable V', a syntactic breakpoint Bk, the node B containing Bk, and Ing;
Output:
The paired reaching sets of V' at Bk;
0 Initializee BK“T
1 PRSgk = Ing 0 Gengk
End of Algorithm PRS-BK®?

As before, the contents of PRSgk tell us V’s currency. Theorem 17.6 holds in the
presence of constrained tranparency. It is proven in Appendix C.1.

19.5 Unconstrained Transparency: Elimination and Code Motion of
Transparent Assignments

Suppose we allow elimination and motion of transparent assignments. Now a transparent
ds-pair in a Gen set may contain nulls. Furthermore, a block may contain a definition d
and a store s not generated from d. As a consequence, there are circumstances in which any
of the ds-pairs produced by the definition of x given in Table 19.1 are feasible. However,
as described in Section 19.3 and shown in Figure 19.1, sometimes some of those ds-pairs
are infeasible. Figure 19.2 exemplifies the impossibility of producing only feasible ds-pairs
in the presence of unconstrained transparency with the mechanisms presented so far. It is
possible to distinguish the circumstances in which s will produce an infeasible ds-pair from
the circumstances in which it will produce a feasible ds-pair, but only with knowledge of
which definitions or stores are generated along the same path—information not available to
K.

To capture this further information, ds-pairs are extended to ds-list-pairs—pairs of lists
rather than pairs of elements. The definition element in a ds-list-pair for a variable V' is the
list of definitions of V' that reach a block B along a path p, in the order that they occur on
p. The store element is the list of stores into V' that reach B along p, similarly ordered. It
follows that the first element in each list is opaque and the rest are transparent. Figure 19.3
is the example from Figure 19.2 using ds-list-pairs instead of ds-pairs. .

The data that is the input to k has been modified to contain the information it was
lacking, and in the process, it has become necessary to redefine k to work on the new form
of the data. The list operations are the same for definitions and stores, and are performed
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Figure 19.2: If transparent store s is not generated from transparent definition d,
all ds-pairs in the Out set of node 4 are feasible. If s is generated from d, (d,1)
and (e, s) are infeasible. However, (f,s) is feasible. The salient difference between

(e,s) and (f,s) is that e and d reach node 4 along the same path, while f and d
do not.

independently on definitions and stores, so I introduce a list operator £. The empty list is
expressed as null, and | is used as a list concatenation operator. Given two lists « and y:

x if y = null
Definition 19.3: xly=+< y if an element of y is opaque
x|y if all elements of y are transparent

Then given two ds-list-pairs (e, ;) and (d;, s;):
Definition 19.4: (e, tr)k(dy, s1) = (er L dy, 11 € sp)

With multiple assignments encoded in a single ds-list-pair, we return to a situation in
which the Gen set for a block is a single entity.

U in the Presence of UnConstrained Transparency

Complete must be redefined to act on ds-list-pairs:

Definition 19.5: Complete((d;, s1)) = { ?dl 5) gtﬁie:\ii;le is null
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(ed,1) (f,u)
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(f,us)

Figure 19.3: This is the example from Figure 19.2 recast to use ds-list-pairs.
Encoded in the ds-list-pairs is the fact that e and d reach node 4 along the same
path while f and d do not.

Definition 19.4 defines k as an append operation on transparent definitions. Repeated
k operations on a loop containing only transparent definitions of V' result in lists that grow
indefinitely, as the definitions and stores within the loop get appended ad infinitum.

The purpose of ds-list-pairs is to capture for any particular path those transparent
definitions (or stores) that might reach a breakpoint along that path. In any particular
execution, exactly one definition (and store) actually reaches along a particular path (i.e.,
the last transparent or opaque definition that actually refers to V). Intuitively then, we do
not need to record all transparent definitions since the last opaque definition but instead
needs to record which one could be last, second to last (in case the last one doesn’t actually
refer to V), etc. For example, if a definition could be last and nt" from last and it actually
points to V, then it is the last one that reaches (not the n'” from last). More generally, if
it could be m* from last and n'* from last, where m < n, then the m!”* from last definition
will reach the breakpoint provided the definitions following it on that path do not actually
refer to V. This is captured formally in Lemma C.12.

It follows from this intuition that we can construct ds-list-pairs that do not grow
indefinitely by including only the last occurrence of any duplicated definitions and stores.
There are cases in which information about currency is lost unless the last two instances of
a definition or store are included in the ds-list-pairs. In these cases, the choice is between an
algorithm that has the potential for non-conservative error (in which an endangered variable
may be reported as current) and a more complex algorithm that has greater potential for
conservative error (a current variable may be reported as endangered). These cases are
discussed in Section 20. For reasons presented in that section, I have chosen the former of
these alternatives, thus the algorithm presented below has the potential for non-conservative
error.

The ds-list-pair construction method given below preserves the characteristic that the
ith store in a ds-list-pair is generated from the i** definition in that ds-list-pair for all ¢ if
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and only if V' is current along the path from which that ds-list-pair is derived, except in the
cases discussed in Section 20 (this is shown in Appendix C).

Definition 19.6: Let 2; =< 21,22,...,%,...,%4,..., &, > Where z; and z;,
are in the same equivalence class. Then
last(21) =< 21, %9, .., T, Tig1y oo oy Tjy. .., Ty >, and
last*(x;) is the result of applying last to z; repeatedly until each equivalence
class is represented at most once.

Last(dy, s;) = (last™(d;), last*(s;))
; Last(Complete(5)) itR=10
RUS =< Last(Complete(5)) if de € Complete(.S) such that e is opaque
{Last(rks)|r € R,s € S} otherwise

19.6 Currency in the Presence of Unconstrained Transparency

Here I present algorithms modified to handle unconstrained transparency. Again, most of

the additional work has been incorporated into the definition of G, so only the initialization
phase of each algorithm needs modification.

Initialize”
Input:
a component of the DS-graph, modified by the addition of a Start node;
Output:
the Gen sets of each variable for each block.
0 for each variable V'
1 GenY,, . = (d-init, s-init)
2 for each node B other than Start
3 d; = null
4 for each definition d of V in B’s definition list, in order of appearance
5 dy=dtd
6 s; = null
7 for each store s into V in B’s store list, in order of appearance
8 sp=s;ds
9 Gen, = (di, ;)

End of Initializel

Algorithm PRS”
Input:
a component of the DS-graph, modified by the addition of a Start node,
Output:
the paired reaching sets of each variable at each block boundary.
0 Initialize”
1 TIterate
End of Algorithm PRS

Initialize-BK?
Input:
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a variable V', a syntactic breakpoint Bk, and the node B containing Bk;

Output:
The Gen set of V for B at Bk;
0 d; = null
1 for each definition d of V' prior to Bk on B’s definition list, in order of appearance
2 di=d;ld
3 s = null
4 for each store s into V prior to Bk on B’s store list, in order of appearance
5 si=s;Ls
6 Genly, = (d;,s))

End of Initialize-BK”

Algorithm PRS-BK7”
Input:
a variable V', a syntactic breakpoint Bk, the node B containing Bk, and Ing;
Output:
The paired reaching sets of V' at Bk;
0 Initialize- BKT
1 PRSgk = Ing 0 Gengk
End of Algorithm PRS-BK”

Once again, the contents of PRSgk tell us V’s currency. Excepting the cases discussed
in Section 20:

o The i*" store in a ds-list-pair is generated from the i** definition in that ds-list-pair if

and only if V' is current along the path from which that ds-list-pair is derived.

e Each ds-list-pair e tells us whether V' is current along the set of paths from which e
is derived.

e All paths are represented by some ds-list-pair in PRSgk.

In other words, PRSgk contains the interesting ds-list-pairs, that is, PRSgk contains a set
of ds-list-pairs that is (nearly) sufficient to determine V'’ currency.

Definition 19.7: V' is current at Bk by ds-list-pair e iff V' is current along each
path p to Bk such that e is is derived from p.

The following theorem does not hold in the cases discussed in Section 20.

Theorem 19.8: PRSgk = (iff either V is not in scope at B or B is unreachable.
Otherwise:

V is current at Bk iff V is current at Bk by e, Ve € PRSY,;
V' is endangered at Bk iff de € PRSEk such that V' is not current at Bk by e;
V is noncurrent at Bk iff Ze € PRS}, such that V is current at Bk by e.

In Appendix C.2, Theorem 19.8 is proven for most cases. It is shown how it fails for
some exceptional cases, which are discussed below.
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20 Cases in which the Algorithm May Err

Consider the case in which a loop-invariant transparent assignment to V' is moved to a
loop pre-header. Let the loop be L, the invariant definition of V in L be dz and the store
generated from dz be sz. (In general, I use the naming convention that a definition dz
generates the store sz.) Let p be a path to a breakpoint Bk (where Bk is after L) that
contains two or more iterations of L. Although the argument made here does not depend on
it, for simplicity of presentation assume that no other transparent assignments to V reach
Bk. Then the sequence of definitions of V that reach Bk along pis < dy,dy,ds,...d, >
where there are n — 1 interations of L in p, and dy through d,, are instances of dx. The
sequence of stores into V' that reach Bk along p is < s1,$2 > where s3 is sz, in the pre-
header. dy and sy are the opaque definition of V' and store into V' that reach Bk from above
the loop.

Assuming that sy is generated from dy, V' is current at Bk: either sy qualified reaches
BE with dy or s3 qualified reaches Bk with d,,. (s2 cannot qualified reach with d;, 1 < ¢ < n,
because that would turn off d,,, which would turn off not only sy but also d;.) This case
is handled correctly—ds-list-pair (< dy,dz >,< s1,sz >) is derived from p. This same
ds-list-pair is derived no matter how many times p traverses L.

Note that if the last two duplicate definitions in a loop were recorded in ds-list-pairs,
then we would have the ds-list-pair above from a path that traverses L once, and we would
have ds-list-pair (< dy,dz,dx >,< s1,sz >) from paths that that traverse I more than
once, and we would report that V is endangered, because of the mismatching ds-list-pair.

Now suppose instead that the left-hand-side of dz and sz is not loop invariant. Turning
off some d;, © > 1, does not turn off all d;, so s; qualified reaches Bk with any d;. In this
case, V' is endangered, but would be reported as current. Note that if the last two duplicate
definitions in a loop were recorded in ds-list-pairs, then we would report V' as endangered.
This is a semantically pathological case, as the compiler could only move sz to a pre-header
if it determined that all data that sz can affect is dead, in which case it should eliminate
sz entirely.

There are a number of cases involving two assignments in a loop in which we would
report V' as current when V is endangered. The proof of Lemma C.12 delimits the cases in
which this kind of non-conservative error can occur. Most involve two assignments within
a loop, one or (in some cases) both with non-loop-invariant left-hand-sides, affected by
optimization in such a way that some variable they both can affect is current if the loop
is traversed once, but endangered if the loop is traversed more than once. The compiler
must have determined that all variables potentially affected by both assignments are dead.
Syntactically, they can be described by the sequences of definitions and stores that reach a
breakpoint along a path that traverses the loop twice. Sequences for four cases are shown in
Figure 20.1. Because they are symmetric with respect to definitions and stores, four others
can be derived by exchanging the roles of definitions and stores in the five shown. In the
sequences, the loop iteration boundaries are marked by vertical bars (*|”). The first of these
cases is the one described above.

This source of non-conservative error could perhaps be eliminated by recording in the
ds-list-pairs the last two duplicate definitions or stores that occur within a loop, rather than
the last one, but that would introduce conservative error in the commonly occurring case of
loop-invariant code motion, as well as in the above case in the circumstance that the data
sz can affect is disjoint from the data sy can affect. To eliminate both the non-conservative
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1. Definitions: < dy,|dy = dz, |dy = dz| >
Stores: < $1,83 = sx,| >
2. Definitions: < dy,|dy = dx,ds = dy, |dy = dz,ds = dy| >
Stores: < $1,83 = Sx,|s3 = sy|sq = sy > |
3. Definitions: < dy,|dy = dx,ds = dy, |dq = dz| >
Stores: < $1,83 = sz, |s3 = sy| >
4. Definitions: < dy, |dy = dy,ds = dx,|dq = dz| >
Stores: < s1,8y = sx,|s3 = sy, 84 = sx| >

Figure 20.1: Cases in which the Algorithm May Err: Along some paths that
traverse a loop more than once, a variable will be reported as current when it is
endangered. This can not happen unless sequences of definitions and stores similar
to those shown above occur on such paths, and may not happen even if they do.
The vertical bars (‘) mark loop iteration boundaries. Other cases can be derived
from those shown by exchanging the roles of definitions and stores.

error and the error in the case of loop-invariant code motion, an algorithm must distinguish
transparent assignments whose left-hand-sides are loop invariant from those whose left-
hand-sides are not. Perhaps future research will uncover a method of distinguishing these
and using the information felicitously. Until that time, I prefer the non-conservative error
because the algorithm is more elegant, errors will occur less frequently, and the errors that
do occur occur in possibly pathological cases involving pointers.

An example follows involving two assignment within a loop, presented in detail. This
example corresponds to the second case shown in Figure 20.1. Assume that the path p”
through I contains a transparent definition da of V' but no store sx. Assume further
that following dz on p” there is a transparent definition dy of V, dy # dx, and that
somewhere on p' is a transparent store sy into V, and that the left-hand-sides of dy (and
sy) are not loop invariant. (dy might be an assignment into a[i] where i is not loop
invariant, or an assignment through a pointer p where p is not loop invariant.) We make
no assumption about whether the left-hand-side of da (and sz) is loop invariant. Finally,
assume that there is an instance of sz immediately prior to L. This could occur through
code motion (out of L) or through serendipity (perhaps the programmer wrote the same
assignment above and inside the loop). Again, for simplicity of presentation assume that
no other transparent assignments to V' reach Bk. Let p be a path to Bk that traverses
L once. Ds-list-pair (< dy,dz,dy >,< s1,sx,sy >) derives from p. (Again, d; and s;
are the opaque definition and store reaching from above, and we assume sy is generated
from dy). V appears to be current along p, and in fact, V' is current along p. Let p’ be
a path to Bk that traverses I twice. The sequence of definitions of V' encountered along
pare < dy,dy = du,ds = dy,dy = dx,ds = dy >, and the sequence of stores into V
encountered along p’ are < s1,89 = sw,83 = sy,s4 = sy >. Because the left-hand-side
of the assignments to V' are not loop invariant, turning off ds turns off s4 but does not
turn off ds or s3. s3 qualified reaches with dy, and V' is endangered along p’, according to
Definitions 16.7, 16.8, and 16.9. However, V' appears to be current because the ds-list-pair
derived from p’ (and from all paths that traverse I, multiple times) by Algorithm PRS-BK”
is (< dy,dz,dy >, < s1,sx,sy >), since only the last instance of duplicated definitions and
stores is recorded in the ds-list-pair.

V is in fact noncurrent along p’ when d4 and s3 are aliases for V' but ds and s4 are not.
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This is possible if the compiler has determined that either the data sz can affect is disjoint
from the data sy can affect, or all data that both sz and sy can affect is dead. If there is
no data that both sz and sy can affect, then no variables are endangered, which is what
will be reported. If the compiler has determined that everything that sy can affect is dead,
then the compiler should not generate sy at all. Likewise, if the compiler has determined
that everything that sx can affect is dead, then the compiler should not generate sz at all.
We can therefore expect that an error will occur only when the compiler has determined
that sz can affect some non-empty set V, of variables, sy can affect some non-empty set V,
of variables, some element in V. is live, some element in V) is live, V;, NV, is non-empty,
and every element in V,, NV, is dead. This introduces the potential for misleading behavior
(the currency determination technique may claim a variable in V,, NV}, is current when it is
actually endangered).
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21 Non-conforming Optimizations

There are useful optimizations that cannot be modelled by a valid DS-graph. Perhaps
future research will discover graph transformations to model some or all of these. In the
absence of such transformations, some accommodation must be made for such optimizations,
or the debugger may not provide truthful behavior in their presence. 1 describe below a
mechanism to accommodate such optimizations.

21.1 A Mechanism for Truthful Behavior

Let R be a region in the DS-graph that correlates to a region of the object graph that
is to be transformed in a manner other than one of the allowable graph transformations. It
must be true of R that if node N has a predecessor in R and N has a successor in R along
a forward edge, then N is in R.?2” Once R is delimited, no DS-graph transformations are
performed upon it, regardless of the object graph transformations that might be performed
on the part of the object graph represented (however poorly) by the region.

Each node N in the DS-graph is augmented by a set Affectedy of variables that must be
assumed to be endangered because of non-conforming optimizations. For a node M outside
of R, Affectedys is empty. Any effects of the non-conforming optimization that reach beyond
R are handled by the existing data-flow mechanism using the distinguished definitions and
store described below.

A variable V' may be endangered if it is defined in a region of the object graph to
which some non-conforming transformation has been applied. , and thus V Let d¥ be a
distinguished opaque definition whose presence in a paired reaching set will signal to the
debugger that this has occurred. dY is added to the bottom of the definition list of each
node in R that has a successor outside of R.

The compiler may be able to ensure that although V' is defined in R, V is not endangered
outside R by optimization within R. Let dl/k be a distinguished opaque definition and sl/k
be a distinguished opaque store whose presence will signal to the debugger that this has
occurred. In determining currency, the debugger acts as though sl/k was generated from
dl/k- If V is known to be current on exit from R, dl/k replaces dY, and Sl/k is added to the
bottom of the store list of the same set of nodes. The procedure is as follows:

for each variable V' that is defined within R
for each node NV in R
add V to Affectedy
if N has a successor outside R
if V is known to be current on exit from R
add dl/k to the bottom of N’s definition list
add sl/k to the bottom of N’s store list
else
add d¥ to the bottom of N’s definition list

2TThis is a sufficient condition for being in R, but not a necessary condition. Unless R comprises the
entire DS-graph, some nodes in R will not meet this condition. R is specified by the compiler.
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This mechanism will allow the debugger to find accurate currency information for
variables not defined within R, and to provide truthful behavior regarding currency for
variables defined within R. When a breakpoint is reached and the debugger takes control,
the debugger finds the node in the DS-graph that selects the block the breakpoint is in.
When the user makes a query about a variable V, if V' is in the Affected set for that node, a
warning is issued. Otherwise, the currency determination algorithms are run to determine
V’s currency.

A second order concern may require a simple modification to the DS-graph. If the DS-
graph contains a node N within R that has a successor S within R and a successor outside
R, then dl/k and sl/k are propagated into S (and possibly further within R). This does not
affect currency determination, as the Affected set is checked first for nodes in R. However,
it may affect the paired reaching sets of nodes within R. While these sets are admittedly
suspect due to the nature of R, the debugger may use them to produce warnings. To prevent
them from being tainted by d})/k and sl/k, the DS-graph can be transformed so that there is
no node within R that has a successor within R and a successor outside R. A new node N’
can be added in R between N and 5.

There is a separate behavior issue for the debugger having to do with breakpoint
locations that requires the debugger to know whether a breakpoint is within R.

21.2 Interaction with the Breakpoint Model

The method of finding syntactic breakpoints described in Section 22 is not correct when
blocks have been re-ordered. A syntactic breakpoint for statement n is defined to be prior
to or at the same location as the syntactic breakpoint for statement n + 1. In particular,
the syntactic breakpoint for statement 5 in block B precedes the syntactic breakpoint for
statement S’ in block B’ if B must precede B’. But the method for finding syntactic
breakpoints uses no information about the relative order of B and B’, and is incorrect if
their relative order has changed.

A non-conforming optimization may change the relative order of blocks. To provide
truthful behavior, a debugger must either use a stronger method of determining syntactic
breakpoint locations, or be able to tell that a breakpoint is located within a region of the
object graph where the order of blocks may have changed, so that it can warn the user
when such a breakpoint is reached. A debugger can do the latter by testing Affectedy
for emptiness, where N selects the block the breakpoint is in. A user-interface issue: the
debugger should give a warning when the user sets a problematic breakpoint (not just when
it is reached). At that point, it would be possible for the debugger to find the nearest
ancestors and descendants of N outside of R and provide a list of breakpoints where the
user can be given accurate information.

Wismiiller [ BW93]is working on a more general breakpoint model. His work may address
(or finesse) this problem.
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22 Design Issues

The material in this section is an architectural design to guide in the implementation of
the presented method of currency determination. This method of currency determination
requires considerable support from the compiler. If the debugger is to run the algorithms
presented in Sections 17 and 19, the compiler must produce the DS-graph for the debugger
to run them on.

The DS-graph is not a static object. As optimization transforms the object graph,
the DS-graph gets transformed. In Sections 17 and 19, we assumed that the definition
and store lists were correct at each point. These also, of course, will be modified as
optimization proceeds. Both the graph transformations and the definition and store list
modifications have implications for the compiler’s data structures. The data structures
that are appropriate during compilation are different from those that are appropriate once
compilation has completed. Section 22.1 describes an abstraction of a set of data structures
for the DS-graph and part of the object graph that can easily be mapped to an imperative
programming language.

Once compilation is complete, the DS-graph must be emitted for use by the debugger.
It differs somewhat in organization from the DS-graph used during compilation, and the
differences are described in Section 22.2.

22.1 Data Structures Used During Compilation

There are two differences between the structures described here and the abstractions
described in Sections 17 and 19:

1. The source graph is not needed by the compiler or debugger. It is included in
the discussions in Sections 17 and 19 to motivate the approach and referred to in
Appendix B to demonstrate its correctness.

2. The store lists reside in the object graph, as part of the instruction lists used to
generate code, rather than in the DS-graph.

A DS-graph node contains all necessary information about the source block that it selects,
so the source block itself can be dispensed with. Figure 22.1 shows the abstract intercon-
nections between the major structures used for currency determination during compilation:
nodes in the DS-graph, which contain definition lists, blocks in the object graph, which
contain instruction lists, and mapping information between them.

Definition and Instruction Lists and the ‘Generated-from’ Graph

Section 17 mentioned that currency determination needs the following:

e The assignments that constitute a definition,

o the ‘generated from’ relationship between definitions and stores, and

e the execution order of statements and side effects within a basic block, for blocks in

both the optimized and unoptimized versions.

We assumed they would be available, and that execution order would be provided by
definition lists and store lists.

Viewed abstractly, the ‘generated from’ relationship between definitions and stores forms
a bipartite graph, which we shall henceforth call the G-graph, where definitions comprise
the nodes in one partition, stores comprise the nodes in the other, and an edge is present
between pairs of nodes for which the ‘generated from’ (or ‘generates’) relation holds.
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Figure 22.1: This shows the abstract interconnections between the major data
structures used for currency determination during compilation: nodes in the DS-
graph, which contain definition lists, blocks in the object graph, which contain
instruction lists, and mapping information between them.

Definition nodes in the G-graph are represented as Stmt structures, each representing a
statement.?® Each DS-graph node contains a definition list DL which lists, in source order,
the Stmis that occur in the source code for the DS-graph node. Store nodes in the G-graph
are represented as Instr structures, each representing an intermediate language instruction
(and eventually, a machine instruction). I describe only the part of the Instr structure that
is relevant to currency determination, but it is assumed to include the intermediate language
expression describing the instruction, and any other information the compiler needs about
the instruction. That is, the Instr structure is the compiler data structure that encodes
intermediate language instructions, which is extended for currency determination. Fach
object graph block contains an instruction list /'L, which lists, in execution order, the Instrs
that occur in the intermediate language representation of the program. Every intermediate
instruction in the object code has an entry in some I'L, but only representative instructions

28 A Strt may represent part of a statement; see the discussion below.
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are of interest for currency determination. Specifically, only representative instructions are
represented as store nodes in the G-graph. Each I'nstr structure must contain information
as to whether it is a representative instruction. Embedded in the I'L for a block is the store
list of the block, which consists of those Instrs that are representative instructions.

Note that every statement has a Stmt structure, whether it is an assignment or not,
and every statement for which code is generated has an Instr structure that comprises a
store node.

DL and IL look like arrays in Figure 22.1 because it is a convenient way to represent
them visually. This should not bias an implementation—they are lists of nodes, and any
convenient data structure for representing lists can be used. FElements in IL get moved
by optimization, so an array representation of that list may not be efficient. (Because
IL is a compiler data structure used whether currency determination is done or not,
its representation is likely to be fixed before this currency determination technique is
implemented in a compiler.)

The ‘generated from’ relationship between definitions and stores is represented in Fig-
ure 22.1 by pointers between Stmts and Instrs. Again, this should not bias an implemen-
tation. The G-graph may be represented by any convenient data structure for representing
graphs.

A definition is an equivalence class of Stmis. Often a Stmt comprises a definition by
itself, but in the case when a definition is comprised of more than one Stmt, some mechanism
must associate them. I give Stmis a field Fquiv to represent the definition—assignments in
the same equivalence class have the same value in their Fquiv field.

Stmt and Instr Structures

A Stmt structure for a statement S has the following fields:
e Sref—a source reference for 9 (file name or id and line number, and perhaps which
statement on the line, if the debugger is to handle lines with multiple statements),

o SVar—the variables that can be defined by S: if § is opaque, SVar identifies the
single variable defined by 55 if 5 is transparent, SVar identifies all variables that can
be affected by .5, if .5 does not assign into a variable, the SVar field is null,

e Fquiv—the equivalence class that a definition falls into,

e Moved—a bit set if the representative instruction has been moved or eliminated, used
to locate syntactic bkpts, and
o Pref—for definitions through pointers: a reference to the pointer.
An Instr structure that is a representative instruction for a statement .5 has the following
fields:
o Any fields needed by the compiler to generate code, and

o OVar—the variables that can be defined by S: if 5 is opaque, OVar identifies the
single variable defined by 55 if 5 is transparent, OVar identifies all variables that can
be affected by .5, if 5 does not assign into a variable, the OVar field is null.

A compiler could recognize that part of a variable’s storage is not referenced. Suppose
statement S is the aggregate assignment & = y. If the compiler can determine that only
one field of z is subsequently used, it can optimize the code to assign only into that field of
2.29 If a debugger user were to inspect some other field of z subsequent to the assignment,

2°T know of no compiler that does this, but there is no reason that one could not.
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she might be misled. The OVar field identifies the part of that variable assigned into by 5,
if such optimization has occurred. This enables the currency determination algorithm to
identify other fields of # as noncurrent or endangered.

In the context of computing paired reaching sets for a variable V', the SVar and OVar
fields are used to find definitions of V' and stores into V' to construct the Gen set for each
block.

A distinct Stmt (and Instr) is produced for each modification to each program variable,
so more than one Stmt is produced for a statement that has side effects.®® For example, the
following code causes three Stmts to be produced:

a = 0; (Produces one Stmt.)
b = c++; (Produces two Stmts: one for the
assignment into b, and one for the side effect on c.)

G-graph Modification and Maintenance

During optimization, code may be deleted, moved, copied, or shared. Associating
store nodes with the compiler’s representation of instructions by augmenting the Instr
structure means existing optimizer technology takes care of updating the IlLs. However,
these operations may modify the G-graph, or may necessitate updating of the data structure
chosen to represent the G-graph. Let the G-graph G = (VP U V¥ E) where VP are
definitions (Stmts) and V° are stores (Instrs that are representative instructions) and let
I be in V°. G is an undirected graph, thus (z,y) and (y,2) represent the same edge. For
consistency, [ always list the store node in an edge prior to the definition node.

In earlier sections, I assume that the generated-from relationships are known, and that
the definition and store lists are correct, implying that they are correctly updated when
optimization is done. The generated-from relationships is encoded in &, and the following
describe how to generate a new G-graph G from G when an optimization affects those
relationships. I also describe how to update fields in the definition and store lists when
optimization affects them.

1. Delete I:

VS =VS {1}

E=FE-{I,z)xeVP}
G=(VPuVSE)

z.Moved = 1 for all  such that (I,2) € E.

2. Move I:

The structure of GG does not change, but the underlying data structure may change.
z.Moved = 1 for all  such that (I,2) € E.
3. Copy I:
VS = VS U{I|T is a copy of I}
T =B {(To)|(le)€ )
G=(VPUuVvs E)

3More than one Stmt is produced for a statement that has more than one location at which user-visible
changes occur. This is true of statements with side effects. It is also true of many loop constructs. A C for
loop may have three places of interest to the user corresponding to its three expressions, and each needs a
Stmt if the debugger is to be able to break at each one.
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4. Sharing:
Let J be in V°. Assume that the result of the code sharing is that I becomes the
representative instruction for J’s Stmts as well as its own.
VS =V {J}
E=FEu{(l,2)|(J,z)c B} —{(J,z)|z € VP}
G=(VPUVSE)
z.Moved = 1 for all z such that (J,z) € F.
1.Ovar = I.Ovar U J.Ovar
For all # such that (J,2) € F and some y such that (I,y) € F, z.Equiv = y.Equiv.
The graph transformations impose some requirements on the data structures. Many of
the transformations require finding the node n such that Oselects(n) = b for some block b
involved in the object graph transformation. Nselects, the inverse mapping of Oselects, is

needed to make this efficient. Because of block coalescing, the range of Oselects and the
domain of Nselects must include block boundary markers as well as object graph blocks.

Some DS-graph and object graph transformations involve updating the definition or
instruction lists. Transformations 5 and 6 share a characteristic that blocks in the object
graph and nodes in the DS-graph get copied. As described informally in Section 17.3, the
definitions in the definition list in a new node are in a different equivalence class from the
definitions in the definition list in the node it is a copy of. Store equivalence classes are
derived from definition equivalence classes. This means that when DS-graph node N is
copied to N, the Stmts in N’s DL are new nodes in the G-graph. Similarly, when object
graph node B is copied to B, the Instrs in B’s IL are new nodes in the G-graph. I describe
below how to generate the new G-graph nodes and edges when an inlining or unrolling
transformation is performed on the DS-graph.

In the following, I use the convention that 7; denotes the " copy of Stmt or Instr x
introduced in the transformation. The subscript is needed for loop unrolling, where there
may be many copies of x introduced in a single transformation. The fields in Z; have the
same value as the fields in x unless explicitly stated otherwise.

5. Unrolling or Inlining:
Let CopiedDLs be the set of DLs in nodes that were copied in in the DS-graph
transformation.
Let DL Copies be the set of copies of the DLs in CopiedDLs.
Let CopiedILs be the set of I'Ls in blocks that were copied in the DS-graph transfor-
mation.
Let ILCopies be the set of copies of the I'Ls in CopiedILs.
NewStmts = {S|S is a Stmt in a DI in CopiedDLs}
Newlnstrs = {I|I is an Instrin an IL in CopiedILs}
BothEdgesInside = {(5,1)|S € NewStmts and I € Newlnstrs and (5,1) € E}
StmitEdgelnside = {(5,1)|S € NewStmts and (S,1) € F and I ¢ Newlnstrs}
InstrEdgelnside = {(S,I|T) € Newlnstrs and (S,I) € F and S ¢ NewStmis}
VD = VP U NewStmts
VS = VS U Newlnstrs
E = FE U BothEdgesInside U StmtEdgelInside U InstrEdgelnside

G = (VDUVS,T)
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To set the Fquiv field of the new Stmts, NewStmts must be partitioned according
to the equivalence classes in the Stmts they are copies of. Each partition is given a
unique Fquiv value:

For § € NewStmts and S € NewStmts, S.Equiv = ?l.Equz’v if and only if 5. Fquiv =
S'.Equiv. S.FEquiv # X.Equiv for X ¢ NewStmts.

22.2 Data Structures Used After Compilation

Once compilation has completed, the DS-graph becomes a static object. The data
structures for this object should be chosen to make the object small and the debugger’s uses
of the object efficient, rather than making maintenance of the object efficient. Information
about representative instructions must be moved from the object graph into the DS-graph,
because the object graph does not survive code generation as an explicit data structure.

Figure 22.2 shows the abstract interconnections between the major data structures used
for currency determination after compilation. As is clear from comparing Figure 22.1 and
Figure 22.2, I'L is moved from the object graph to the DS-graph. Only representative
instructions are placed in the version of I'L, that is moved to the DS-graph. Also, the Instr
structure changes: information used to generate code is discarded, but the address of the
generated code for a representative instruction is added in the Cref (C'ode re ference) field,
so that the DS-graph can be used for locating breakpoints.®!

Let N be a node in the version of the DS-graph used during compilation. Let B be the
block in the object graph selected by N. Let N’ be the node corresponding to N in the
version of the DS-graph used after compilation.

N'.DL=N.DL

N'IL =< I, I5,...,I, >, where each [; is an Instrin B.IL that is a representative
instruction, and for I; and I; in N'.IL, ¢ < j if and only if I; precedes I; in B.IL.

Given that the DS-graph is available to the debugger, we need to ensure that the
debugger has all the information it needs to determine the currency of variables. The
following debugger tasks relate to currency determination:

1. When a user sets a breakpoint at a source statement, find the breakpoint location(s).
A method for finding breakpoint locations is given below.This requires one additional
map from source statements to Stmis. When the breakpoint is set, the source
statement and breakpoint locations must be saved in a debugger data structure BrList.

2. When the program stops, find out which breakpoint it has halted at. This can be
done by comparing the program counter against breakpoint locations found in BrList,

3. When the user asks for the value of a variable, run the currency determination
algorithms and respond to the query. The currency algorithms take as input the
variable name, a syntactic breakpoint Bk, and the node B containing Bk. The
variable name is supplied by the user, and the debugger has determined Bk. The
DS-graph data structure must allow B to be found given Bk.

*1 At the point that the compiler emits this address, it has only relocatable addresses. At the point the
debugger uses it, it needs the relocated addresses. One way of dealing with this problem is to have the
compiler emit a label at each representative instruction, and have the Creffield contain the label name. The
linker will do the necessary relocation and the debugger can refer to the addresses symbolically.
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Figure 22.2: This shows the abstract interconnections between the major data
structures needed by the debugger for currency determination: nodes in the DS-
graph which contain definition lists and store lists and mapping information be-
tween them.

Finding Breakpoint Locations

Given a reference to a source statement, a debugger must be able to find the machine
code addresses at which to set breakpoints. Existing mechanisms do not support syntactic
breakpoints, so I describe one way syntactic breakpoint locations can be found.

The Creffield of an Instr I encodes a semantic breakpoint location for all statements for
which [ is the representative instruction.>* Given the other information in the DS-graph,

*2Currency determination using the technique presented herein cannot be performed at the semantic
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Cref can be used to find the syntactic breakpoint location for a Stmt for which I is the
representative instruction. We need some mapping M from source statements to Stmts.
This may be a one-to-many mapping (due to inlining or unrolling).

Syntactic Breakpoint Locations The syntactic breakpoint locations for a source state-
ment are found by using M to find all Stmis that represent it, then finding the syntactic
breakpoint location L for each such Stmt S as follows (described in English, and again in
terms of the defined structures):

If a representative instruction for S has not been moved
L is the address of that instruction.
If there is no unmoved representative instruction for 9
if the block that originally contained S does not appear at all in the optimized code,
L is undefined,
else if any representative instructions for statements following 5
within the block containing S have not been moved,
L is the location of the first of these,
else L is the location of the last representative instruction within the block containing 5.

Let Node(S) be the node containing Stmt 5. A syntactic breakpoint location is desig-
nated by the Cref field of an Instr that has never been moved, which can be determined
by checking the Mowved field of the Stmt that generates the Instr. A Stmt may generate
multiple Instrs, through copying or sharing. The original Instr generated by the Stmt, if it
has not been moved, holds the syntactic breakpoint location for the Stmt. Any others gen-
erated by the Stmt via copying or sharing do not represent syntactic breakpoint locations
for the Stmt. The copying transformation on the G-graph does not set the Moved field of
the Stmt that generates the new Instr because if it did, no syntactic breakpoint could be
set for the Stmt. However, the original Instr must be distinguished from any copies, as it
represents the only syntactic breakpoint location for the Stmit. In what follows, we assume
the edges IV in the G-graph are ordered so that the edge between a Stmt and the original
Instr generated from it is the first edge out of the Stmdt.

If S.Moved is not set
L = 1.Cref where (1,5) is the first edge out of 5 in F
else
if Oselects(Node(S)) == Null
L is undefined,
else
let 57 be the first Stmt subsequent to S in Node(S) such that S".Moved is not set,
or if there are none, let S’ be the last Stmt in Node(S)
L = I.Cref where (I,5) is the first edge out of S" in E

breakpoint location for a statement S whose code has been moved. However, it is possible to break at a
semantic breakpoint location for S, find a statement S’ for which it is a syntactic breakpoint location, and
determine a variable‘s currency relative to S’ (informing the user that the variable is current or endangered
at S'—this does not tell us whether it is current at .S).
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23 Side benefits of DS-graphs

Control flow information can be used by a debugger for purposes other than currency
determination. For example, statement stepping (often called source-line stepping) is one
of the more difficult debugger capabilities to implement because it is difficult to determine
where the next breakpoint(s) should be set. With control flow information, this problem
becomes simple. Using the program flow graphs and Stmt and Instr structures described in
this section, if 5" is the Stmt for the current statement, the current breakpoint is at I Cref
where ([, 5) is the first edge out of S in the G-graph. For conciseness, I will call I.Cref ‘the
Cref for 5.

If 5 is not the last Stmt in its node, the next breakpoint can be set at the Cref for the
next Stmtin the node. If S is the last Stmtin the node, breakpoints can be set at the Crefs
for the first Stmt of each successor node.

Data flow information can be used by a debugger for purposes other than currency
determination as well. A debugger user who has just displayed the value of a variable V' at
a breakpoint B may well want to know where V' was last set. This information is available
in PRSY.



24. Cost 107

24 Cost

There are four distinct costs that might be considered relevant to evaluating this method
of currency determination:
1. the cost of either not debugging optimized code at the source level or being occasion-
ally misled by the debugger,

2. the engineering cost of modifying a compiler and debugger,
3. the additional space and time the compiler takes to produce the DS-graph, and

4. the additional space and time the debugger takes to run the currency determination
algorithms.

The first should be weighed against the rest to determine whether the enterprise is worth-
while. Unfortunately, they are not comparable, hard to measure, and are incurred by
different groups. For the most part, academia and industry did not consider the enterprise
worthwhile until the late 1980’s or early 1990’s. Currently there is activity in both academia
and industry. If the balance of these costs has shifted, it can be seen as a continuation of
the trend of the cost of programmers rising relative to the cost of computers, coupled with
improved optimization technology and widespread availability of that technology.

The cost of not debugging optimized code at the source level includes programmer frus-
tration, time spent recompiling to enable and disable optimization, disk space to store both
optimized and unoptimized object modules and executables, time spent communicating
with compiler vendors incorrectly claiming the compiler has a bug, time spent debugging
the wrong thing because the debugger gave misleading information, and time spent finding
bugs via assembly-level debugging (minus the time it would have taken via source-level
debugging, were that an option). Quantitative measures of these are not available.

The engineering cost of modifying a compiler and debugger is also not available. In
general, it depends on the organization of the compiler and debugger that are to be modified,
and the capabilities of the engineers that do the modification. No implementation has been
done to date, and any estimate I made would be subject to the same poor correlation
between estimates and actual costs of software production that is endemic to the industry.

The additional space and time a compiler needs to produce the DS-graph can be
estimated with greater confidence.

24.1 Cost to Produce the DS-graph (During Compilation)

The DS-graph is linear in the size of the object graph. The space used by a compiler
less-than-doubles, because the compiler has data structures other than the object graph.

The time to construct the DS-graph is linear in the size of the object graph as well.
The costs of Transformations 1 and 2 are linear in the size of the DS-graph for pathological
programs, but will typically be constant time operations. The total cost of applications of
Transformation 3 is linear in the size of the DS-graph, since each edge can be removed at
most once. Transformation 4 is a constant time operation. The cost of Transformation 5 is
linear in the size of the subroutine being inlined, and the cost of Transformation 6 is linear
in the size of the loop being unrolled and the number of times it is unrolled.

Slists and Dlists could be as large as the number of assignments in the program, for
pathological programs. Typically, their maximum length will be some small constant, so the
time to update them will be linear in the number of optimizations that affect representative
instructions. The time spent in optimization will less-than-double because the time spent
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constructing and maintaining the DS-graph will be similar to the time spent constructing
and maintaining the object graph, but much of the time spent in optimization is in analysis,
which has no cost counterpart in maintaining the structures needed to perform currency
determination.

24.2 Cost to Use the DS-graph (After Compilation)

Algorithm PRS is a special case of Algorithm PRS®T and is not separately analyzed.

Space

The DS-graph need not be made a part of the executable, so it does not affect the
debugger’s ability to load the program. As with symbol tables, if the debugger has to read
the entire DS-graph at once, there may be an unacceptably long delay while this is done.
But as with symbol tables, the DS-graph can be read in on demand, because only one
component (subroutine) is needed at a time.

Currency determination increases space usage by the size of the In, Out, and PRS sets.
The space usage of the In and Out sets dominates that used by the PRS sets, because there
is an In and Out set per block. Let n be the number of nodes in the DS-graph and m be
the number of assignments to V' in the program.

For Algorithm PRS®”, the In and Out sets can take O(nm?) space, because there is an
In and Out set per node, and the ds-pairs are from definitions X stores, both of which are
O(m) in size. These sets can be constructed as needed, so the total space for In and Out
sets is O(gnm?), where ¢ is the number of variables about which the user queries.

For Algorithm PRST, the In and Out sets can take O(nm(m!?)) space. There is an In
and Out set per node (O(n)), the maximum size of a ds-list-pair is O(m) (m definitions
plus m stores), and the number of elements in In} is O(m!?), giving a worst case bound on
the space for In and Out sets of O(gnm(m!?)). The bound on the number of elements in
Ing is derived by taking all permutations of definitions X all permutations of stores. In the
expected case, the number of definitions and stores that reach B is limited, and the order
in which they reach along different paths will include few of the possible permutations. The
squaring of m! is from allowing definitions and stores to be ordered independently. But
they are not independent—a store can only move via optimization. If many definitions or
stores reach along some path, then there are many assignments through pointers, and the
optimizer probably can’t move many of them. I believe in practice the number of elements
in any In set will be small, and would be surprised if it exceeds m.

Time

Algorithms PRS-BPY” and PRS-BPT, and the initialization phases of Algorithms
PRSYT and PRST, are inexpensive relative to the iteration phase of Algorithms PRS®T
and PRST, and will not be discussed further.

Algorithm PRS®T: The worst-case asymptotic cost of Algorithm PRS®T is poor,
though polynomial.

The algorithm is presented as being run for all variables. However, it is reasonable for
the debugger to run it on a single variable. The cost described here is for a single variable.
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The worst case asymptotic cost is O(n®*m?). However, we will see that in practice two
factors of n and a factor of m can be replaced with constant factors, for an O(nm) running
time.

Computing In and Out sets is done with an iterative algorithm that runs until it
converges. The equations are

Iny, = Up Outh for P predecessors of B
Outg :Ing 0 Geng
and these are computed iteratively over all nodes B until no In or Qut set changes.

Within each iteration the computation of OQutp is cheaper than the computation of Ing.
Computing Inpg involves iterating over the (up to n) predecessors of B, and Inp is computed
for each of n blocks, so the union operation is performed n? times. The union operation is
a merging of sets containing at most m elements, which can be done in time proportional
to m, so each iteration has worst case cost of n?m.

In the worst case, each iteration could add one definition to one block, so the total
number of iterations could be nm, for an O(n*m?) total worst case running time.

If a flow graph is traversed in the right order, on average 5 iterations are sufficient
for convergence for a standard reaching definitions algorithm [ASUS86], replacing factors of
nm with a factor of 5. While this algorithm differs from a standard reaching definitions
algorithm, we expect that some small constant number of iterations will be sufficient for
convergence, removing a factor of nm from the running time.

Two factors of n come from iterating over n blocks with n predecessors each. A fully
connected flow graph is pathological. Most blocks have one or two predecessors, though some
have many (e.g., the block following a case or switch statement). Generally, the number of
predecessors is some small constant, and in the exceptional cases it is a somewhat larger
constant—which gives us an O(nm) running time.

Algorithm PRS7”: The analysis of Algorithm PRS” is identical except for the union
operation, which is merging of sets containing at most (m!?) elements, for a worst-case
asymptotic running time of O(n*m(m!?)) and an expected running time of an O(nm).

In the union operation, x and Last are applied once for each element in the In set,

which contains O(n) elements. « and Last involve O(m) work, so the union operation has
an O(nm) cost, contrasted to the O(m) cost for Algorithm PRST.

Parameters

The parameters that affect the cost are:

e 1, the number of basic blocks in a routine,

e m, the number of assignments to a variable within a routine, including assignments

through pointers that might point to that variable,

e the number of paths to a block, and

e the number of predecessors and successors per block.

These depend considerably on program characteristics and coding style. In particular,
because each subroutine is a flow-graph component, the cost increases with the size of
subroutines. The cost also increases with the use of pointers.
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25 Open Problem: When a Breakpoint has Moved

Semantic breakpoints introduce additional complexity into currency determination.
Under the breakpoint model given in Section 15, there is no guarantee that a semantic
breakpoint is reached in optimized code if and only if it would be reached in unoptimized
code. When a semantic breakpoint is reached, the point in the optimized code at which
execution is suspended (and the user examines a variable’s actual value) may not correspond
to the point at which the user expects execution to be suspended (the point at which the
user intended to examine the value). There are four distinct situations that can arise with
a semantic breakpoint for a statement 5
1. The code for 5 has not been moved. The semantic breakpoint is the same as the
syntactic breakpoint, and no additional work is required for currency determination.

2. The code for 5 has been moved. In a particular execution, the semantic breakpoint
location and the syntactic breakpoint location are reached along the same path.

3. The code for 5 has been moved. In a particular execution, the syntactic breakpoint
location is reached but the semantic breakpoint location is not. This is a source of
unexpected behavior, but no additional work is required for currency determination
because the user never gets to ask for the value of a variable at the semantic breakpoint.

4. The code for S has been moved. In a particular execution, the semantic breakpoint
location is reached but the syntactic breakpoint location is not. This is unexpected
behavior already.

In situations 2 and 4 we want to determine whether the actual value of a variable at a
representative instruction R (the semantic breakpoint, where the user examines the value)
can differ from its expected value at a representative instruction R’ # R (the syntactic
breakpoint, where the user expects to be examining the value). Note that in general a
debugger cannot distinguish situation 2 from situation 4.

An approach taken by Bemmerl and Wismiiller [BW92] is to use a more flexible mapping
between source statements and breakpoints. They attempt to map a source statement to a
breakpoint location in such a way that the breakpoint is reached if and only if it would be
reached in unoptimized code.

There is a further problem. Consider Figure 25.1. For bkpt to be reached in the
optimized code, one of the right-hand paths must be taken. If the unoptimized code
is run on the same inputs, one of the right-hand paths will be taken, so optimization
does not affect the value that a will have at the semantic breakpoint for bkpt: a is
current at bkpt. Bemmerl and Wismiiller’s current approach [Wis93] would claim that
a is endangered at bkpt. Suppose we allowed semantic breakpoint locations using my
approach to currency determination. Let S be the semantic breakpoint location for bkpt.
PRSE = {(a=x,a=x),(a=y,a=y)}. In each pair, the store is generated from the
definition, suggesting that a is current at the final location of bkpt.

Now consider Figure 25.2. In this case, bkpt may be reached in the optimized code
by any path. In particular, the left-hand path may be taken, so optimization affects the
value that a may have at the semantic breakpoint for bkpt: a is endangered at bkpt.
Bemmerl and Wismiiller’s approach would not allow a breakpoint to be set at bkpt. Under
my approach, the wrong result is obtained: Let S be the semantic breakpoint location for
bkpt. PRS% = {(a==z,a=2z),(a=x,a=x),(a=y,a=y)}. In each pair, the store is
generated from the definition, suggesting that a is current at the final location of bkpt.
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Unoptimized Optimized

a=z a=z bkpt

bkpt
Figure 25.1: Oddly enough, a is current at bkpt
Unoptimized Optimized
a=x a=y a=x a=y
a =7z bkpt a =7z
bkpt

Figure 25.2: To no-one’s surprise, a is endangered at bkpt
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26 Currency and Residency

The work on currency determination makes a simplifying assumption that a variable
resides in a single location throughout its lifetime.

V' is resident [AG92] at some point P if and only if there is a storage location (which
could be a register) that holds V' at P, otherwise V' is nonresident at P. V must be resident
throughout its live ranges (else the compiler is in error). The last use in one of V'’s def-use
chain is the end of one of V’s live ranges. The point at which V’s location is used to hold
something else (which cannot be earlier but may be later) is the end of V’s residency in
that location, so V' is likely to be resident outside its live ranges.

It is increasingly common for a compiler to provide live-range and variable location
information to a debugger [CMRS88], [Wan91], [Str91], [BHS92]. If a debugger does not
supply the value of a variable outside of its live ranges, there will be points at which the
variable is in some storage location but the debugger will not display it to the user.

Adl-Tabatabai and Gross [AG92], [AG93a], [AG93b] show how data-flow analysis can be
used to determine the residency of variables. Their technique finds a unique location for a
variable at a point or considers it nonresident at that point, but a simple modification will
find all locations holding (possibly different values of) the variable at a point. Berger and
Wismiiller’s current work ([BW93]) incorporates residency and currency determination.

Figure 26 is an example in which variable i is available in two locations, containing two
different values, over a range of code.®® It could be valuable to a debugger user to be able
to query the debugger for all available values of a variable and the definitions associated
with each value, whether the variable is current or not. This is orthogonal to the question
of currency, but arises when the assumption that a variable resides in a single location is
relaxed.

Another issue that arises when that assumption is relaxed is where the value of a variable
is to be found. In the example in Figure 26.2, i is current at bkpt1, but a static analysis
cannot tell whether i is in R1 or in R2 which without knowing which path was taken. At
bkpt2, i is endangered, and a static analysis can determine that R2 does not hold i.. 1
believe that these cases can be handled by extensions to the algorithms given earlier in
which a store contains information about the stored-into location, but this falls into the
category of future work.

In such cases, the debugger cannot simply display i, because of the ambiguity about i’s
location. But the user may know (or be able to determine) which path was taken, and so
may be able to take advantage of information the debugger has.

**Thanks to Dror Zernik for this example.

Figure 26.1: i is available in R1 or R2 at the same time.

Line # Source Inst# Unoptimized Optimized Object
1 i= I R1=0 a(I) R1=0
2 = II x=R1 b(III) R2=1
3 i= III R2=1 c(II) x=R1
4 =i Iv y=R2 d(IV)  y=R2
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Unoptimized Optimized
I=x 1=y Rl =x R2=y
bkptl bkptl
R2 =1z
bkpt2 bkpt2

Figure 26.2: At bkptl, i is current, but is it in R1 or in R27 At bkpt2, i is
endangered, and is only in R2.
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27 Summary of Part III

The mapping between statements and breakpoints used for unoptimized code is prob-
lematic for optimized code. If such a mapping is used by a debugger on optimized code,
the debugger is likely to mislead the debugger user. This work has described a mapping
between statements and breakpoints that provides a reasonable approximation to what
the naive user would expect when used on optimized code (and provides exactly what the
naive user would expect on unoptimized code). The mapping allows the debugger user to
break where a statement occurs or execute a statement at a time on a program in which
statements may have been reordered and instructions generated from a statement are not
necessarily contiguous. The mapping enables debugger behavior that more closely approxi-
mates the behavior provided by current debuggers on unoptimized code than other proposed
mappings, and thereby neither requires debugger users to be experts on optimization nor
requires users to modify their debugging strategies.

Using any such mapping, optimization can cause a debugger to provide an unexpected
and potentially misleading value when asked to display an endangered variable. A debugger
must be able to determine the currency of a variable if it is to provide truthful behavior
on optimized code. Other researchers have given solutions to special cases of the currency
determination problem. Sections 17 and 25 describe a general solution to the problem for
a large class of sequential optimizations, including optimizations that modify the shape of
the flow graph. These results hold in the presence of both local and global optimizations,
including those listed in Table 27.1, and require no information about which optimizations
have been performed.

This work has described the information a compiler must make available to the debugger
for this task, as well as the nature of the information the debugger can provide to the
debugger user when the user asks for the value of an endangered variable.

For most optimizations, the results described in this paper are precise (i.e., a variable
claimed to be current is current, a variable claimed to be endangered is endangered, etc.).
In some circumstances involving assignments through pointers, there is a trade-off between
rare non-conservative results and more common non-conservative results, which is discussed

Representative Optimizations

inlining dead store elimination partial redundancy elimination

code hoisting strength reductions local instruction scheduling

constant folding constant propagation  global instruction scheduling

cross-jumping copy propagation local common subexpression elimination

loop unrolling dead code elimination  global common subexpression elimination
other code motion induction-variable elimination

Table 27.1: The currency determination technique is applicable in the presence
of any sequential optimizations, including all of the listed optimizations, that
either do not modify the flow graph of the program or modify the flow graph in
a constrained manner. Blocks may be added, deleted, coalesced, or copied; edges
may be deleted, but control flow may not be radically changed. As an example
of an optimization that does not observe the constraints, it does not apply to a
portion of a program that contains interchanged loops.
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at length in Section 20. There are two other circumstances in which the results are
conservative:
e when a variable is current along all feasible paths but noncurrent along some infeasible
path, in which case it will be claimed to be endangered.

e when a variable is endangered along some path due to an assignment through an alias,
but there is no execution in which that path is taken and that variable is affected by
that assignment.

27.1 Future Work

Currency determination at semantic breakpoints remains an open question (this topic
is discussed in Section 25).

Once a debugger user has found a suspicious variable (one that due to program logic,
not optimization, contains an unexpected value), the next question is ‘How did it get that
value?’. The sets of reaching definitions used for currency determination can be used in
a straightforward manner to answer this question (‘x was set at one of lines 323 or
3517). One direction for future research is how to efficiently be even more helpful; how to give
responses such as ‘x was set at line 566 to foo(y,z). At that point, z had the
value 3.141 (set at line 370) and y had the value 17; y was set at line 506 to
y+bar(w).’. This was called flowback analysis by Balzer [Bal69], and has been investigated
by others ([MC91], [Kor88]); reaching sets may be adaptable to this purpose.

Another research direction is dynamic currency determination, which is how a debugger
can collect the minimal execution history information needed to determine whether an
endangered variable is current or noncurrent when execution is suspended at a breakpoint.
Useful in conjunction with this or as an alternative is recovery, which is to have the
debugger compute and display the value that a variable would have had if optimization
had not endangered the variable. Finally, an exciting possibility is extending the breakpoint
model and currency determination techniques to parallel code, which is rife with noncurrent
variables.
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28 Conclusion

Debugging optimized code is a difficult problem, but it is worth solving for the following

reasons:

e [t is not always possible to completely debug an unoptimized version of a program.
Examples have been given in which optimization changes the behavior of a program
even when the optimizer is correct. This is not a new result, but such examples have
not previously appeared in the literature.

e Source-level debuggers give misleading information in the presence of optimization,
and will continue to do so without additional capabilities and support from compilers.

e Both source-level debugging based on misleading information and assembly-level de-
bugging are more time consuming than source-level debugging based on accurate
information.

These facts clearly demonstrate that additional debugger capabilities and compiler

support for debugging optimized code are needed to lower the cost of software production.

I have described new debugger capabilities and the compiler support on which they are

based that make it possible for debuggers to present accurate information in circumstances
where formerly they would present misleading information:

e When no frame pointer is set up within the stack frame of some active subroutine—
Part II describes several ways to support a expected behavior from a debugger’s
call-stack trace facility in this circumstance. These methods vary in their costs: there
is a trade-off between run-time overhead for the debugger and required symbol table
and compiler support. One method has been implemented and results are given.

e When the instructions generated from a statement are not contiguous—Section 15
describes a breakpoint model that enables truthful behavior in this case.

e When optimization has caused the storage location for a variable to contain an
unexpected value—Part III describes a graph data structure to track optimizations
that modify a program’s flow graph, and algorithms on that data structure that
determine whether a variable is current at a breakpoint. An architectural design is
given from which an implementation should be straightforward, and the correctness
of the algorithms is shown.
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1 p = foo(); p = &v; 2

3 p = x5

Figure A.1: If u and v are dead on exit from block 2, the assignment to p in block
2 can be eliminated, thus p is endangered at its use in block 3, without violating
program semantics. Presumably, foo() can return the address of some variable
that is live in block 3.

A Can a Noncurrent Pointer be Assigned Through?

Must it be the case that p is current at a trasnparent assignment through p (such as
*p = x)?7 After all, How can a compiler make an assignment through a pointer that is not
current? It would seem as though that would violate program semantics. While it may be
unlikely, it is possible to arrive at an example in which such an assignment is legal. An
example is given in Figure A.1.

Though perhaps unlikely, it is conceivable that V could be endangered because of such
a situation. The difficulty for currency determination is that if V' is endangered in this
manner, it is due not to optimization affecting definitions of V', which is what we have been
dealing with so far, but to optimization affecting definitions of p.

While in some cases it would be easy to determine that p is current, in general if in
order to determine the currency of one variable we need to know the currency of another
variable, we have a costly and potentially circular definition of currency determination. The
circumstances under which a compiler can make a transparent definer (here p) noncurrent at
the point of the transparent definition are sufficiently constrained that many compilers will
never do it. It may be that those that do will, through the pointer analysis, determine
p’s currency at subsequent assignments through p. Returning to Figure A.1l, perhaps
the compiler could determine for what variables p is noncurrent (u and v) and at what
transparent definition (*p = x; in block 3). The compiler could tag that definition as
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unreliable for those variables.?* However, the compiler’s ability to produce this information
is an open question. For the remainder of this work, I assume that transparent definers are

current at each of their uses.

**1f the compiler could determine a pointer’s currency, why would it not determine an arbitrary variable’s
currency? First, for the purpose at hand, we need a pointer’s currency only at subsequent uses of the pointer,
whereas we need to be able to determine a variable’s currency at any breakpoint. Second, if the compiler
does determine a pointer’s currency, it is through additional complex analysis.
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B Proof of the Validity of the DS-graph

Theorem 17.6 relies on the correctness of Algorithm PRS, which in turn relies on the
correctness of the DS-graph construction.

In this appendix I show that a DS-graph constructed as described in Section 17.3 is
valid.

In Appendix C I show that the In sets are correctly computed: if there is a ds-pair
in an In set, there is a path through the DS-graph along which that ds-pair reaches the
entry of the block. Assume DS-graph node B selects source graph block B, and object
graph block B,. I then show that (d,s) € Ing means, loosely speaking, that there is a
source graph path to B, such that d reaches the entry of B, along that path, also that
there is a corresponding object graph path B, such that s reaches the entry of B, along
the object graph path. This and an examination of how PRSgk is computed (where Bk is
a breakpoint, not a node) allows us to conclude that (d,s) € PRSY, iff d and s reach the
breakpoint along corresponding paths.

Theorem 17.6 follows from this latter conclusion and the definitions of current, noncur-
rent, and endangered.

Let | be a path concatenation operator with the natural semantics.

Object graph and DS-graph transformations are coupled, so that O; refers to the object
graph corresponding to D.JS;.

Lemma B.1: If Oselects;(n) = Null, then n has at most one predecessor and
at most one successor.
Proof: By induction on the number of applications of DS-graph transformations.
Base Case:
A DS-graph DSy created according to the DS-graph Creation Rule contains no nodes n for
which Oselects(n) = Null.
Inductive Hypothesis:
Assume that Lemma B.1 holds for any DS-graph DS, following n graph transformations.
Inductive Step:
Show that Lemma B.1 holds for a DS-graph DS, 41 following n + 1 graph transformations.

Transformations 1, 3, and 4 do not introduce any nodes that do not select blocks in the
object graph, do not increase the number of successors or predecessors of existing nodes
that do not select blocks in the object graph, and do not change the object graph block
selection of any node to Nwull. Thus the Lemma holds for these transformations by the
inductive hypothesis.

Transformation 2:

This transformation does not increase the number of successors or predecessors of
existing nodes that do not select blocks in the object graph. It does not change the
object graph block selection of any node to Null.

It does remove a node that selects a block in the object graph and replaces it with
copies that do not select any block in the object graph, but the replacements have
a single predecessor and a single successor. It also replaces nodes that do not select
a block in the object graph with copies that do not select any block in the object
graph, but again, the replacements have a single predecessor and a single successor.
This can be seen by considering the interaction between NewFdges and a replacement
node v, € NewNodes. v, ) becomes the head of one new edge and the tail of one
new edge.
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Transformation 5:

This transformation does not increase the number of successors or predecessors of
existing nodes that do not select blocks in the object graph. It does not change the
object graph block selection of any node to Null.

It does remove the call node, which selects a block in the object graph, and replaces
it with copies that do not select any block in the object graph, but the replacements
have a single predecessor and a single successor. This can be seen by considering the
interaction between NewFEdges and a replacement node Call, € CallNodes. Start is
Clally’s only successor, and the k** predecessor of Call is C'all},’s only predecessor.

The transformation also copies a subgraph, but because the selection and connectivity
of the copy matches the selection and connectivity of the subgraph of which it is a
copy, the inductive hypothesis guarantees that the Lemma holds for nodes within the
copy.

Transformation 6:

This transformation does not increase the number of successors or predecessors of
existing nodes that do not select blocks in the object graph. It does not change the
object graph block selection of any node to Null.

It may introduce nodes that do not select blocks in the object graph by making
copies of the body of a loop. The selection and connectivity of each copy matches
the selection and connectivity of the loop of which it is a copy, with the exception
that copies of back edges and copies of edges out of the loop are replaced. They are
replaced one-for-one, so the selection and number of edges in and out of each node in
the copy matches the selection and number of edges in and out of the node of which
it is a copy, so the inductive hypothesis guarantees that the Lemma holds for nodes
within the copy.

i

We overload the function Sselects to take a subpath in DS; and return a subpath in
S, and we overload Oselects to take a subpath in D.S; and return a subpath in O;, in the
natural way.

Theorem B.2: A DS-graph created according to the DS-graph Creation Rule
and modified by iterative application of DS-graph transfomations is valid.

Recall the definition of valid:

A DS-graph is valid if and only if every path p through the DS-graph denotes a
path-pair, that is, the pair of paths < p,,p, > selected by p is a path pair, and
every feasible path-pair is denoted by some path through the DS-graph.

Proof: By induction on the number of applications of DS-graph transformations.

Base Case:

Let DSy be a DS-graph created according to the DS-graph Creation Rule. DSy, the source

graph, and object graph are isomorphic — clearly the DS-graph is valid.

Inductive Hypothesis:

Assume that a DS-graph DS, created according to the DS-graph Creation Rule and sub-
sequently modified by n graph transformations is valid.

Inductive Step:

Show that a DS-graph DS, 41 created according to the DS-graph Creation Rule and sub-
sequently modified by n + 1 graph transformations is valid.
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Sselects,, = Sselects, 11 and Oselects, = Oselects, 11 except where explicitly mentioned.
Sselects, 11 subsumes Sselects,; its domain may be larger because the n+ 1! transformation
may introduce DS-graph nodes, but its value on a node present in DS, is the same as the
value of Sselects, on that node.

Let p be a path in DS, 41 where Sselects,+1(p) = p, and Oselects, 11(p) = po.

If p is present in DS, and Oselects,(p) = p, then by the inductive hypothesis, p denotes
a path-pair (since Sselects,i; subsumes Sselects,). Otherwise, we have a case analysis
based on which transformation was last applied.

Transformation 1:

Since p was affected by the transformation, p can be expressed as:
p = prefiz| < ag, g, bs > |suffix
for some s € Subpaths, where prefix does not contain any nodes in NewNodes.
If p is not a simple path, suffir may contain nodes in NewNodes. Induction on the
number of nodes in NewNodes contained in p can be used to show that p denotes
a path-pair. I present only the base case here, in which suffix contains no nodes in
NewNodes.
pu = Sselects,11(prefiz)] < Sselects,i1(as), Sselects,11(bs) > |Sselects, 1 (suffiz)
po = Oselects,y1(prefiz)| < Oselects, y1(as), b, Oselects(b,) > | Oselects, 1 (suffir)
p’ = prefiz]| < as, bs > |suffix, in DS,
P, = Sselects, (prefiz)| < Sselects,(as), Sselects, (bs) > |Sselects, (suffiz)
pl, = Oselects,(prefiz)| < Oselects,(as), Oselects, (bs) > | Oselects,,(suffiz)
On input 1,
1. p, is taken iff p/ is taken, by semantic constraint.
2. pl is taken iff p! is taken, by the inductive hypothesis.
3. p, is taken iff p! is taken, because p, = pl.
4. p, is taken iff p, is taken, by 1, 2, and 3.
Therefore p denotes a path-pair.
It remains to show that every feasible path-pair through S and 0,41 is denoted by
some path through DS,,+1. Assume < p,, D, > is a feasible path-pair through S and
0,41 taken on input [.
If p, does not contain b, then < p,,p, > is a feasible path-pair through S and O,,
and is denoted by some path p through DS, by the inductive hypothesis. P is not
modified by this transformation and thus is a path through DS, 41 also, and denotes
< DyoP, > in S and Oy 4q.
If p, does contain b, then assume without loss of generality that p, = p,. Then p/
is in O, which by the inductive hypothesis implies p’ is in DS, denoting path-pair
< pl,pl > through S and O,, taken on /. The DS-graph transformation constructs p
in DS, 11 from p/, where p does indeed select p,. By 3, p, is taken on I and therefore
D, = Pu. Thus pis a path through D, that denotes path-pair < p,,,D, >.
Transformation 2:
Since p was affected by the transformation, p can be expressed as:
p = prefiz|3|suffiz
where 3 is composed of nodes in NewNodes and is a copy of some s € Subpaths,
and prefiz does not contain any nodes in NewNodes
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If p is not a simple path, suffix may contain copies of paths in Swubpaths. Induction
on the number of copies of paths in Subpaths contained in p can be used to show that
p denotes a path-pair. I present only the base case here, in which suffiz contains no
nodes in NewNodes.
Oselects,+1(3) =< h,t >, for some h € HY and some ¢ € T.
Oselects,(s) =< h,b,t >
pu = Sselects, 1 (prefiz)|Sselects, +1(3)|9selects, 11 (suffir)
po = Oselects, 11 (prefiz)] < h,t > |Oselects, 11 (suffir)
dp' = prefiz|s|suffiz, in DS,
P, = Sselects, (prefic)|Sselects, (s)|Sselects, (suffiz)
pl, = Oselects, (prefiz)| < h,b,t > |Oselects,,(suffiz)
Sselects,11(5) = Sselects,(s)
On input 1,

1. p, is taken iff p/ is taken, by semantic constraint.

2. pl, is taken iff p/ is taken, by the inductive hypothesis.

3. py is taken iff p! is taken, because p, = pl.

4. p, is taken iff p, is taken, by 1, 2, and 3.
Therefore p denotes a path-pair.
It remains to show that every feasible path-pair through S and 0,41 is denoted by
some path through DS,11. Assume < p,,D, > is a feasible path-pair through S and
0,41 taken on input /.
If 5, does not contain < h,t > for h € H? and t € T, then < p,,P, > is a feasible
path-pair through S and O,,, and is denoted by some path p through DJS5,, by the

inductive hypothesis. P is not modified by this transformation and thus is a path
through DS,,4+1 also, and denotes < p,,p, > in S and O,41.

If p, does contain < h,t >, then assume without loss of generality that p, = p,. Then
pl is in O, which by the inductive hypothesis implies p’ is in D5, denoting path-pair
< pl,pl > through S and O, taken on I. The DS-graph transformation constructs p
in DS,11 from p’, where p does indeed select p,. By 3, p, is taken on I and therefore
Dy = Pu. Thus pis a path through D,1; that denotes path-pair < p,,p, >.

Transformation 3:

Every path in DS, 1 denotes a path-pair by the inductive hypothesis, since every
path in DS, 11 is present in DS,,.

Assume < p,,p, > is a feasible path-pair through 5 and 0,41 that is not denoted by
any path through DS, 11. < py,p, > is also a feasible path-pair through S and O,,.
By the inductive hypothesis there is a path p through DS, that denotes < p,,p, >.
If p were present in D.S,,41, it would denote < p,,p, >, so at least one edge in p must
be removed by the DS-graph transformation. Let e be the first such edge in p.

No internal node in a subpath s € SubPaths selects a block in the object graph, so by
Lemma B.1, each edge on s is on no other subpath in SubPaths.

Suppose e is in DelFdges. Then e is on exactly one s € SubPaths, and p contains s.
Oselects,(s) is the subpath in O,, consisting of the edge that gets deleted from O,,.
Oselects,(s) is in p,, so p, contains the deleted edge. This contradicts the assumption
that < py, p, > is a feasible path-pair through S and O,,41.
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e must then be in the transitive closure of 7(DelFdges). Then the edge prior to e on

p is in the transitive closure of 7(DelEdges), so the edge prior to e on p is removed,

contradicting the assumption that e is the first edge on p that is removed.
Transformation 4:

If p is not a simple path, it may contain multiple nodes that select the block boundary
marker M. Induction on the number of such nodes can be used to show that p denotes
a path-pair. Again, I present only the base case, in which p contains a single such
node:
p is present in DS,. Let pl, = Sselects,(p) and p, = Oselects,(p). < pl,p., > is a
path-pair through 5 and O,, by the inductive hypothesis.
po = prefix| < h, M,z > |suffiz for some x € E°
pl = prefix] < h,t,z > |suffix
It follows from the semantic constraint on the object graph transformation that if
< h,t,z > is taken in O, on some input I, then < h,z > is taken in O,4; on L
Because M selects a position internal to h, for purposes of block entry M can be
ignored, so p, is taken on the same set of inputs as pl.
On input 1,
1. p, is taken iff p/ is taken, by semantic constraint.
2. pl is taken iff p! is taken, by the inductive hypothesis.
3. py is taken iff p/, is taken, because p, = pl,.
4. p, is taken iff p, is taken, by 1, 2, and 3.
Therefore p denotes a path-pair.
The object graph transformation introduces no new paths. The DS-graph transfor-
mation maintains the relationship between DS-graph paths and feasible paths, and
removes no DS-graph paths. Therefore every feasible path-pair through 5 and 0,44
is denoted by some path through DS, 41.
Transformation 5:
Since p was affected by the transformation, p can be expressed as:
p = prefiz| < Call > [3] < Succ > |suffiz,
where C'all is the first copy of C'all on p,
and s is composed of nodes in InlinedNodes.
If p is not a simple path, suffix may contain nodes in CallNodes and InlinedNodes.
Induction on the number of nodes in CallNodes contained in p can be used to show
that p denotes a path-pair. I present only the base case here, in which suffiz does not
contain nodes in CallNodes or InlinedNodes:
py = Sselects, 1 (prefiz)| < Sselects, 11(Call) > |Sselects, 11(3)] < Sselects, 1(Suce) >
| Sselects, 1 (suffix)
P, = Oselects, 11 (prefix)| Oselects,+1(5)| < Oselects,y1(Succ) > |Oselects, 1 (suffiz)
dp' = prefiz] < Call > |s| < Suce > |suffiz, in DS,
where C'all is the only instance of C'all on p, and s is composed of nodes in the
to-be-inlined subroutine. The ¥ node in 5 is a copy of the i*" node in s.
pl, = Sselects,(prefiz)] < Sselects,(Call) > |Sselects,(s)| < Sselects,(Suce) >
| Sselects, (suffir)
pl, = Oselects,(prefiz)| < Oselects,(Call) > |Oselects,(s)| < Oselects,(Suce) >
| Oselects,, (suffiz)
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Sselects,+1(Call) = Sselects,(Call)
Sselects,,+1(3) = Sselects,(s)
Oselects,11(Call) = null
On input 1,
1. p, is taken iff p] is taken, because 3 is the inlined version of < C'all > |s.

2. pl is taken iff p! is taken, by the inductive hypothesis.
3. py is taken iff p! is taken, because p, = pl.

4. p, is taken iff p, is taken, by 1, 2, and 3.
Therefore p denotes a path-pair.

It remains to show that every feasible path-pair through S and 0,41 is denoted by
some path through DS,11. Assume < p,,D, > is a feasible path-pair through S and
0,41 taken on input /.

If p, does not contain any nodes in CallNodes or InlinedNodes, then < p,,p, > is a
feasible path-pair through 5 and O,, and is denoted by some path p through DJS5,,
by the inductive hypothesis. pis a path through DS, also, and denotes < p,,,p, >
in S and Oyyq.

Otherwise, assume without loss of generality that p, = p,. Then p/ is in O,, which by
the inductive hypothesis implies p’ is in DS, denoting path-pair < p!,p! > through
S and O, taken on I. The DS-graph transformation constructs p in DS, 4, from p/,
where p does indeed select p,. By 3, p, is taken on I and therefore p, = p,. Thus p
is a path through D, 1+ that denotes path-pair < p,,,D, >.

Transformation 6:

Since p was affected by the transformation, p can be expressed as:
p = prefiz|3] < Suce > |suffiz,
where 5 is composed of nodes in NewNodes and consists of the
loop body unrolled ¢ times.

If pis not a simple path, suffir may contain nodes in NewNodes. Induction on the
number of sequences of nodes in NewNodes contained in p can be used to show that
p denotes a path-pair. I present only the base case here, in which suffix does not
contain nodes in NewNodes:

pu = Sselects, 1 (prefiz)|Sselects,11(3)| < Sselects,11(Suce) > |Sselects, 11 (suffir)
P, = Oselects, 11 (prefix)| Oselects,+1(3)| < Oselects,y1(Succ) > |Oselects, 1 (suffiz)
dp' = prefiz|s| < Suce > |suffiz, in DS,

where s consists of ¢ traversals of the to-be-unrolled loop.

The ** node in 3 is a copy of the i** node in s.

P, = Sselects, (prefiz)|Sselects,(s)| < Sselects,(Suce) > |Sselects, (suffiz)
pl, = Oselects, (prefiz)| Oselects,(s)| < Oselects,(Suce) > |Oselects, (suffix)
Sselects,,+1(5) = Sselects,(s)
On input 1,

1. p, is taken iff p] is taken, because 3 is the unrolled version of s.

2. pl is taken iff p! is taken, by the inductive hypothesis.

3. py is taken iff p/, is taken, because p, = p/,.

4. p, is taken iff p, is taken, by 1, 2, and 3.
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Therefore p denotes a path-pair.

It remains to show that every feasible path-pair through S and 0,41 is denoted by
some path through DS, 1. Assume < p,,P, > is a feasible path-pair through S and
0,41 taken on input [.

If p, does not contain any nodes in NewNodes, then < p,,,p, > is a feasible path-pair
through § and O,, and is denoted by some path p through DS, by the inductive
hypothesis. p is a path through DS, 1 also, and denotes < p,,,p, > in S and O, 41.

Otherwise, assume without loss of generality that B, = p,. Then p/ is in O, which by
the inductive hypothesis implies p’ is in D5, denoting path-pair < p/,p! > through
S and O, taken on I. The DS-graph transformation constructs p in DS,1; from p/,
where p does indeed select p,. By 3, p, is taken on I and therefore p, = p,. Thus p
is a path through D, that denotes path-pair < p,,p, >.
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C Proof of Correctness of the Data Flow Algorithms

In Section C.1 I first show that Algorithm PRS and Algorithm PRS®? are correct,
then that Algorithm PRS-BK and Algorithm PRS-BK®? are correct. These proofs
naturally fall together because Algorithm PRS is a special case of Algorithm PRS®”
and Algorithm PRS-BK is a special case of Algorithm PRS-BK®”. T then show that
Theorem 17.6 follows from this latter conclusion and the definitions of current, noncurrent,
and endangered.

In Section C.2 I show that Algorithm PRS” is correct, then than Algorithm PRS-
BK" is correct. I then show that Theorem 19.8 follows from this latter conclusion and the
definitions of current, noncurrent, and endangered.

C.1 Proof of Correctness of Algorithm PRS and Algorithm PRS“”

Lemma C.1: Initialize and Initialize®” terminate with (d,s) € Genl iff either
d = null and there are no definitions of V' in B’s definition list or d is a definition
of V in B’s definition list and d reaches the exit of B, and either s = null and
there are no stores into V in B’s definition list or s is a store into V' in B’s store

list and s reaches the exit of B.

Proof: Inspection of Initialize and Initialize®”, coupled with the assumption that the

definition and store lists for each block are correct, is sufficient to show that the Lemma

holds.

i

Theorem C.2:
Algorithm PRS and Algorithm PRS®T terminate with e € In} iff there is
a path p to B in the DS-graph such that e reaches the entry of B along p.

Algorithm PRS is a special case of Algorithm PRS®? where no transparent defi-
nitions are present. I prove the Theorem for the general case (Algorithm PRS®T). To
apply the proof to Algorithm PRS, convert the Gen elements in that algorithm to Gen
sets that have a single element, and assume that all definitions and stores are opaque.
Proof: Termination

Initialize and Initialize®” terminate because there are a finite number of variables and
definitions.

Iterate terminates because

e 10 element is ever removed from an In or Out set,

e an element is added to at least one In or Qut set on every iteration but the last, and

e elements are from definitions X stores, which is a finite set.

Only if:

If eisin Ing, then there is a path p to B such that e reaches the entry of B along p.

I will show the existence of the desired path using induction on the number of iterations
before e is placed in Ing the first time.

Base Case: e is placed into In}; for the first time on the second iteration.

By line 2 of Iterate, Ing and Outg are empty before the first iteration. By line 5 of
Iterate and because Outg is empty the first time through, Ing is empty immediately after
the first iteration. Since e is placed into Ing in the second iteration, e is placed into Outg
in the first iteration, for some predecessor P of B, (line 5 of Iterate). Because Ing is empty
in the first iteration, line 7 of Iterate reduces to Out} = Complete(Gen}).
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By Lemma C.1 (d,s) € Gen}, implies d reaches the exit of P and s reaches the exit of
P. Let p’ be a path to P. p’ exists because if there were no path to P, the edge from P to
B would have been deleted (DS-graph transformation 3). Let p be p/| < P,B >. Then e
reaches the entry of B along p.

Inductive hypothesis: Assume that if e is placed into Ing for the first time on the
ith iteration for 2 < i < n, then there is a path p to B such that e reaches the entry of B
along p.

Inductive step: Show that if e is placed into Ing for the first time on the n!” iteration,
then there is a path p to B such that e reaches the entry of B along p.

If e is placed into Ing for the first time on the n!” iteration, then by line 5 of Iterate,
e EOutg for some predecessor P of B for the first time in iteration n — 1.

€’s presence in Outg is due to the execution of line 7 of Iterate. If Ing were empty
in iteration n — 1, then as in the base case, Geng would have to contain e. But then e
would have been placed into Ing for the first time on the 27? iteration, contrary to our
assumption, so e is not in Geng and Ing is not empty in iteration n — 1.

Since InY is non-empty in iteration n — 1, by definition of G, Af € In} in iteration n — 1
such that e € [k Geng. By the inductive hypothesis, there is a path p’ to P such that f
reaches the entry of P along p’. Let p be p/| < B >. Let e = (d,s). We have a case analysis
based on the ways (e) can be placed into Out}.

Case 1: (null,null) € Geng and f = e. By Lemma C.1, B contains no definitions of V'
and no stores into V', so e reaches P’s exit.

Case 2: (null,s) € Gen} and f = (d,s'). By Lemma C.1, s reaches P’s exit and B
contains no definitions of V. Then d also reaches P’s exit, so e reaches P’s exit.

Case 3: (d,null) € Gen)% and f = (d’,s). By Lemma C.1, d reaches P’s exit and B
contains no stores into V. Then s also reaches P’s exit, so e reaches P’s exit.
By choice of P and p, e reaches the entry of B along p. Note that if e is transparent,
Case 1 must apply.

If:
If there is a path p to B in the DS-graph such that e reaches the entry of B along p,
then e is in Inl.

The proof is by induction on the length of p.

Base Case: |p| = 1. Then B’s predecessor P is the start node. Initialize or Initialize®”

will place e into Gen}, (where e = (d-init, s-init)). In the first iteration, e is placed into
Outg by line 7 of Iterate. In the second and all subsequent iterations, e is placed into Ing
by line 5 of Iterate.

Inductive hypothesis: Assume that if there is a path p to B of length ¢, 1 < ¢ < n,
such that e reaches the entry of B along p, then e € Ing.

Inductive step: Show that if there is a path p to B of length n such that e reaches
the entry of B along p, then e € Ing.

Let P be the predecessor of B on p. Because e reaches the entry of B along p, e reaches
the exit of P along p. We have a case analysis of the different ways that e can reach the
exit of P along p.

Case 1: e = (d, s) where d and s are in P. Since e reaches the exit of P, by Lemma C.1,
e € Geng. In every iteration, Outg is placed into {e} by line 7 of Iterate. In the
second and all subsequent iterations, {e} is placed into Ing by line 5 of Iterate.
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Case 2: ¢ = (d,s) where d is in P and s is not. Then e is opaque. Since e reaches the
exit of P, (d',s) reaches the entry of P, for some d’, and by Lemma C.1, (d,null) €
Gen. By the inductive hypothesis, (', s) € Ink. Assume (d’, s) was first placed into
InY in iteration j. (d’,s)x(d,null) = (d,s) = e, so line 7 of Iterate places e into
Outg in iteration j and all subsequent iterations. In iteration j+ 1 and all subsequent
iterations, line 5 of Iterate places e into Ing.

Case 3: ¢ = (d,s) where s is in P and d is not. Then e is opaque. Since e reaches the
exit of P, (d,s’) reaches the entry of P, for some ', and by Lemma C.1, (null,s) €
GenY. By the inductive hypothesis, (d,s) € Ink. Assume (d, s’) was first placed into
InY in iteration j. (d,s')x(null,s) = (d,s) = e, so line 7 of Iterate places e into
Outg in iteration j and all subsequent iterations. In iteration j+ 1 and all subsequent
iterations, line 5 of Iterate places e into Ing.

Case 4: e = (d,s) where neither d nor s arE in P. Then e reaches the entry of
P. Since e reaches the exit of P, by Lemma C.1, (null,null) € Geng. By the
inductive hypothesis, e € Ing. Assume e was first placed into Ing in iteration j.
ek (null,null) = e, so line 7 of Iterate places e into Outg in iteration j and all
subsequent iterations. In iteration 7+ 1 and all subsequent iterations, line 5 of Iterate
places e into Ing.

i
The following theorem relies on the assumption that a store is not generated if the
compiler can determine that the store would never be executed; in particular, stores are not
generated for unreachable blocks. If B is an unreachable block, then Ing remains empty
(by DS-graph transformation 3). Gengk contains a null, because B’s store list is empty. 3°
Until this point, it has not been important to distinguish an entry in a definition or
store list from the representative instruction in the source or object graph that it denotes.
The distinction is relevant for the following lemma and theorem. Following now-established
practice, for a definition list entry d, let d,, be the representative instruction in the source
graph that it denotes. For a store list entry s, let s, be the representative instruction in
the object graph that it denotes. For Bk a breakpoint in the DS-graph, let Bk, denote
the breakpoint location in the source graph, and Bk, denote the breakpoint location in the
object graph.
Lemma C.3: Initialize-BK and Initialize-BK®? terminate with (d,s) €
Gengk iffl either d = null and there are no definitions of V in B, prior to
Bk, or d is a definition of V prior to Bk, in B, and d reaches Bk,, and either
s = null and there are no stores into V' in B, prior to Bk, or s is a store into V'
prior to Bk, in B, and s reaches Bk,.

Proof: This can be seen by Inspection of Initialize-BK and Initialize-BK®”, coupled
with the assumption that the definition and store lists for each block are correct.

i
Theorem C.4: For a syntactic breakpoint Bk, (d,s) € PRSgk iffl there is a

path-pair p to Bk such that d, is a definition of V' that reaches Bk, along p,
and s, is a store into V' that reaches Bk, along p,.

3°If this assumption is violated, the proof does not go through, but it is not clear that there are any bad
results in practice. We may have nonempty Out} sets for unreachable nodes, but since the edges out of
those nodes have been eliminated, no incorrect information flows from them, and no breakpoint in such a
node can be reached, so no query about the currency of a variable will be asked at such a node.
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Proof: Let B be the node in the DS-graph containing Bk. The fact that Bk is a syntactic
breakpoint guarantees (by definition) that Bk is in B’s definition list and in B’s store list,
and also that B selects a block B, in the source graph and a block B, in the object graph.
The assumption that definition lists and store lists are correct guarantee that Bk, appears
in B, and Bk, appears in B,.

If: Assume (d,s) € PRSgk where Bk is a syntactic breakpoint. I show by a case analysis
of how (d, s) can be placed into PRSgk that there is a path-pair p to Bk such that d, is a
definition of V that reaches Bk, along p, and s, is a store into V' that reaches Bk, along

Po-
Case 1: (null,null) € Genly, and (d,s) € Injj. By Theorem C.2, there is a path p to
B such that (d,s) reaches the entry of B along p. By Lemma C.3, B contains no
definition of V' and no store into V', and thus (d, s) reaches Bk.

Case 2: (d,null) € Genl, and (z,s) € Inj (for some z). By Lemma C.3, d reaches Bk
along every path to Bk and B contains no store into V. By Theorem C.2, there is a
path p to B such that (z,s) reaches the entry of B along p, and because B contains
no store into V', s reaches Bk along p.

Case 3: (null,s) € Genk, and (d,z) € Iny. By Lemma C.3, s reaches Bk along every
path to Bk and B contains no definition of V. By Theorem C.2, there is a path p to B
such that (d, z) reaches the entry of B along p, and because B contains no definition
of V, d reaches Bk along p.

Case 4: (d,s) € Genk,. Gen%, contains a store, so B is reachable. Because an initial ds-
pair is placed in Gengtm,t, some ds-pair is in Ing. Let (z,y) € Ing. By Theorem C.2,
there is a path p to B such that (z,y) reaches the entry of B along p. By Lemma C.3,
d and s reach Bk along every path through the DS-graph, and in particular, along p.

By Theorem B.2, p is a path-pair. By assumption, the definition lists and store lists are
correct, so d, reaches Bk, along p,, and s, reaches Bk, along p,.

Note that if (d, s) is transparent, Case 1 or Case 4 must apply.

Only if: Assume there is a path-pair p to a syntactic breakpoint Bk such that d, is a
definition of V that reaches Bk, along p, and s, is a store into V' that reaches Bk, along
po- I show that (d, s) € PRSY,.

The assumption that definition lists and store lists are correct imply that d reaches Bk
along p and s reaches Bk along p, which in turn implies that (d, s) reaches Bk along p. We
have a case analysis of the ways that (d, s) can reach Bk along p.

Case 1: Neither d nor s are in B, B contains no opaque definitions of V' or opaque stores
into V', and (d, s) reaches the entry of B along p. By Lemma C.3, (null,null) €
Geny,. By Theorem C.2, (d,s) € In}.

Case 2: dis in B and s is not, no opaque stores into V' are in B, and s reaches the entry
of B along p. By Lemma C.3, (d,null) € Gengk. Some definition z of V' reaches the
entry of B along p (the initial definition, if no other). By Theorem C.2, (z,s) € Ing.

Case 3: s is in B and d is not, no opaque definitions of V' are in B, and d reaches the
entry of B along p. By Lemma C.3, (null,s) € Gengk. Some store x into V' reaches
the entry of B along p. By Theorem C.2, (d,z) € In}.

Case 4: d and s are both in B. By Lemma C.3, (d,s) € Gengk. Some definition z of V'
and store y into V' reach the entry of B along p. By Theorem C.2, (z,y) € Ing.
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Then by line 1 of Algorithm PRS-BK or Algorithm PRS-BK®?, (d,s) € PRSY,.
0

I can now prove Theorem 17.6, restated here for convenience. Note that in Theorem 17.6,

B represents a breakpoint, not a node. Theorem 17.6:
PRSE = ( iff B is unreachable or V is not in scope in the flow graph component
containing B. Otherwise:
V is current at B iff V(d,s) € PRSE, s was generated from d;
V is endangered at B iff 3(d, s) € PRS} such that s was not generated from d;
V is noncurrent at B iff Z(d,s) € PRSY such that s was generated from d.
Proof: Algorithm PRS and Algorithm PRS®T terminate with e € InY iff there is a
path p to B in the DS-graph such that e reaches the entry of B along p.

Assume PRSY = (. Then by line 1 of Algorithm PRS-BK or Algorithm PRS-
BKT, Ing is empty and Complete(Gengk) = (. If V is in scope at B, we assume an initial
definition of V' and an initial store into V', ensuring that at some definition of V' and store
into V reach B along every path. But then there would be some ds-pair in Ing. Since there
is not, either there are no definitions of V' or stores into V' in the flow graph component,
implying that V is not in scope, or there are no paths to B.

Assume B is unreachable. Then Ing is empty (by lines 2 and 4 of Iterate. We assume
that there are no stores in an unreachable block, therefore Complete(Gengk) = (), so by
line 1 of Algorithm PRS-BK or Algorithm PRS-BK®“?, PRSY, = 0.

Assume V is not in scope. Then there are no definitions of V' or stores into V' in any
block in the flow graph component, implying that Ing is empty and Gengk = (null, null),
so by line 1 of Algorithm PRS-BK or Algorithm PRS-BK“?, PRSY = 0.

Asgsume PRSE # 0,V is in scope, and B is reachable. For any path pair p, Theorem C.4
and Definitions 16.8 and 16.10 relate the pair (d,s) € PRSE that reaches along p, along
with whether s was generated from d, to V’s currency. The bidirectional nature of the
implication in Theorem C.4 gives the iteration over all paths required by Definitions 16.11,
16.13 and 16.12, and the theorem follows.

i
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C.2 Proof of Correctness of Algorithm PRS”

Lemma C.5: Initialize? terminates with Genl = (dl, sl) iff either dl = null
and B’s definition list contains no definitions of V or dl =< dy,ds, ..., d,, >,
each d; appears in B’s definition list, the d; are in the same order as they appear
in B’s definition list, and each d; reaches the exit of B, and either sl = null and
B’s store list contains no store into V' or sl =< s1,59,...,8, >, each s; appears
in B’s store list, the s; are in the same order as they appear in B’s store list,
and each s; reaches the exit of B.

Proof: The Lemma follows from the assumption that the definition and store lists for each
block are correct, inspection of Initialize”, and the definition of (.

i
Definition C.6: A ds-list-pair for a point P is a pair (dl, sl) of sequences such
that
o dl =< dy,dsy,...,d, >, where the d; are distinct definitions of V' that reach
P (no two are in the same equivalence class),
o sl =< s1,89,...,8, >, where the s; are distinct stores into V that reach
P7
e d; and sy are opaque,
e all other d; and s; are transparent, and
e there is a path, p, to P in the DS-graph such that for all 7+ < j, d; occurs
after all instances of d; on p (after all definitions from the equivalence class
of d;), and s; occurs after all instances of s; on p.

The final constraint on a ds-list-pair says that if multiple instances of the same definition
reach P along p, the last of them is in the ds-list-pair for B. To illustrate this point, suppose
definitions

<dy,dyy...,dy.. . dy, ... dp,...,dy > 1each P along p, where dy and dj, are the same
definition and all other d; are distinct.

<dj,dy,....dy...,dg,....dp,...,dy > can not be a component of a ds-list-pair for P
because dy and dj, are not distinct.

<dy,dyy...,dy.. . dy, ..., dp_1,dpy1,. .., dy > can not be a component of a ds-list-pair
for P because dj, occurs after d, on p.
< dy,dy,...,dj_y,ds4q,...,dg, ..., dp,...,d, > can not be a component of a ds-list-
pair for P.
Theorem C.T: Algorithm PRST terminates with e € In}; iff e is a ds-list-pair
for B.

Proof: Termination
Initialize! terminates because there are a finite number of variables and definitions.
Iterate terminates because
e 10 element is ever removed from an In or Out set,
e an element is added to at least one In or Out set or an element already present in an
In or Out set grows on every iteration but the last,

e clements have a finite size (by the definition of G, an instance of a definition or store
appears at most once in a ds-list-pair, and there are a finite number of instances of
definitions and stores), and
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o elements are from lists-of-definitions X lists-of-stores, which is a finite set.

If:
If e is a ds-list-pair for the entry of B then e is in Ing.

That e is a ds-list-pair for the entry of B guarantees that there is a path p to B along
which the definitions and stores in e occur.

The proof is by induction on the length of p.

Base Case: |p| = 1. Then B’s predecessor P is the start node. Initialize” will place
e into Gen}, (where e = (< d-init >, < s-init >)). In the first iteration, e is placed into
Outg by line 7 of Iterate. In the second and all subsequent iterations, e is placed into Ing
by line 5 of Iterate.

Inductive hypothesis: Assume that if there is a path p to B of length ¢, 1 < ¢ < n,
such that e is a ds-list-pair for the entry of B along p, then e is in Ing.

Inductive step: Show that if there is a path p to B of length n such that e is a
ds-list-pair for the entry of B along p, then e is in Ing.

Let P be the predecessor of B on p. Because e reaches the entry of B along p, e reaches
the exit of P along p. We have a case analysis of the different ways that e can reach the
exit of P along p.

Case 1: e consists entirely of definitions and stores in P. By Lemma C.5 and Defini-
tion 19.6, Out} is set to {e} by line 7 of Iterate in the first iteration. In the second
and all subsequent iterations {e} is placed into Ing by line 5 of Iterate.

Case 2: No definitions or stores in e are in P. P cannot contain any definitions of
V' or stores into V', or they would either kill or be appended to the sequences in
e. By Lemma C.5, Geng = (null,null). Then e is a ds-list-pair for P, so by the
inductive hypothesis, ¢ € Ing. Assume e was first placed into Ing in iteration 7.
Last(e r (null,null)) = e, so line 7 of Iterate places e into Out} in iteration i and
all subsequent iterations. In iteration ¢ + 1 and all subsequent iterations, line 5 of
Iterate places e into Ing.

Case 3: Some, but not all, definitions or stores in e are in P. Let these be ep. By
Lemma C.5 and Definition 19.6, Last(Gen}) = ep. Then the rest of the definitions
and stores in e reach the entry of P. By the inductive hypothesis, there is some ds-list-
pair €' € Ing that includes these. Any other element in €’ is in the same equivalence
class as some element in ep, else it would be in e.

Assume ¢’ was first placed into In} in iteration i. Last(e/kep) = e, so line 7 of
Iterate places e into Outg in iteration 7 and all subsequent iterations. In iteration

t 4 1 and all subsequent iterations, line 5 of Iterate places e into Ing.
Only If:

If eisin Ing, then e is a ds-list-pair for the entry of B.

By the definition of x, all elements in Ing are pairs of sequences of definitions of V' and
stores into V' that have an opaque first element in each sequence and transparent subsequent
elements.

I will show the existence of the required path using induction on the number of iterations
before e is placed in Ing the first time; the distinctness of definitions and stores in e and
the ordering constraints on them are by the definitions of k and Last.

Base Case: ¢ is placed into Ing for the first time on the second iteration.
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By line 2 of Iterate, Ing and Outg are empty before the first iteration. By line 5
of Iterate and because Outg is empty the first time through, Ing is empty immediately
after the first iteration. Since e is placed into Ing in the second iteration, e is placed into
OutY in the first iteration, for some predecessor P of B, (line 5 of Iterate). A path p/
to P exists because otherwise the edge from P to B would have been deleted (DS-graph
transformation 3). Let p be p/| < B >. By Lemma C.5, Complete(Gen},) reaches the exit
of P.

Because Ing is empty in the first iteration, line 7 of Iterate reduces to Outg =
Last(Complete(Genk)), so e = Last(Complete(Genk)) and the d; and s; in e occur along
p. The definitions of ¥ and Last guarantee the distinctness and ordering of definitions and
stores in e.

Inductive hypothesis: Assume that if e is placed into Ing for the first time on the i**
iteration for 2 < ¢ < n, then e is a ds-list-pair for the entry of B.

Inductive step: Show that if e is placed into Ing for the first time on the n!” iteration,
then e is a ds-list-pair for the entry of B.

If e is placed into Ing for the first time on the n'® iteration, then by line 5 of Iterate,
e EOutg for some predecessor P of B for the first time in iteration n — 1.

The presence of e in Outg is due to the execution of line 7 of Iterate. If Ing were
empty in iteration m — 1, then as in the base case, e = Last(Complete(Gen})). But then
e would have been placed into Ing for the first time on the 2°? iteration, contrary to our
assumption, so e # Last(Complete(GenY)) and In} is not empty in iteration n — 1.

It follows, by the definition of G, that there is some (dl, sl) € Ing in iteration n — 1 such
that e = Last((dl, sl) k Gen)). By the inductive hypothesis, (dl, sl) is a ds-list-pair for the
entry of P. Let p’ be the path to P guaranteed by the inductive hypothesis. Let p be path
p'| < B > to B. Lemma C.5 guarantees the correctness of Gen}. The definitions of x and
Last guarantee the distinctness and ordering of definitions and stores in e.

i
Lemma C.8: Initialize-BK? terminates with Genl, = (dl,sl) iff either dl =
null and B’s definition list contains no definitions of V' prior to Bk or dl =<
di,dy, ... d, >, each d; appears in B’s definition list prior to Bk, the d; are
in the same order as they appear in B’s definition list, and each d; reaches Bk,
and either sl = null and B’s store list contains no store into V' prior to Bk or
sl =< 81,892,...,8, >, each s; appears in B’s store list prior to Bk, the s; are
in the same order as they appear in B’s store list, and each s; reaches Bk.
Proof: The Lemma follows from inspection of Initialize-BK” , coupled with the assumption
that the definition and store lists for each block are correct.
i
Theorem C.9: Algorithm PRS-BK” terminates with e € PRSgk iff e is a ds-
list-pair for Bk.
Proof:
Initialize-BK” terminates because there is a finite number of definitions and stores in a
node.
Algorithm PRS-BK” terminates because In}; is a finite set.
If:
If e is a ds-list-pair for Bk then e is in PRSgk.
Let B be the node containing Bk.
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Case 1: e consists entirely of definitions and stores prior to Bk in B. By Lemma C.8 and
Definition 19.6, PRS}, is set to {e} by line 1 of Algorithm PRS-BK”.
Case 2: No definitions or stores in e are prior to Bk in B. B cannot contain any definitions
of V or stores into V', or they would either kill or be appended to the sequences in e.
By Lemma C.8, Gengk = (null,null). Then e is a ds-list-pair for the entry of B, and
by Theorem C.7, ¢ € Ing. e is placed in PRSEK by line 1 of Algorithm PRS-BK”.
Case 3: Some, but not all, definitions or stores in e are prior to Bk in B. Let these be
epr. By Lemma C.5 and Definition 19.6, Last(Gengk) = epg. Then the rest of the
definitions and stores in e reach the entry of B. By Theorem C.7, there is some ds-list-
pair ¢’ € Ing that includes these. Any other element in €’ is in the same equivalence
class as some element in ep, else it would be in e. e = Last(e' Gengk), so e is placed
in PRSY . by line 1 of Algorithm PRS-BK?T.
Only If:
If e is in PRSgk, then e is a ds-list-pair for Bk.
By line 1 of Algorithm PRS-BPT, e € In}, 0 Gengk. By Theorem C.7, all elements in
Ing are ds-list-pairs for the entry of B. By Lemma C.8 Gengk is correct. It follows that all

definitions and stores in e occur along the same path. 0 maintains the required distinctness
and ordering conditions on definitions and stores (by Definition 19.6). Thus all elements of

InVGGenV are ds-list-pairs for Bk
B B pairs for .

i

Definition C.10: A p-list-pair for a point P is a pair (dl, sl) of sequences such
that
o dl=<dy,dy,...,d, >, where the d; are distinct definitions of V' that reach
P7
o sl =< $1,89,...,8, >, where the s; are distinct stores into V' that reach
P7

e d; and s are opaque,
e all other d; and s; are transparent, and

e there is a path-pair, < p,,p, >, to P such that for all ¢ < j, d; occurs after
all instances of d; on p,, and s; occurs after all instances of s; on p,.

Theorem C.11: Algorithm PRS-BPT terminates with e € PRSY, iff e is a
p-list-pair for Bk.

Proof: Theorem C.11 follows from Theorems C.7, C.9, B.2, and the assumption that the

definition and store lists are correct.

i

When some instance of a definition d is not an alias for V', other instances of d outside
of any loop or in the same iteration of a loop are not aliases for V', else the compiler could
not have put them in the same equivalence class. However, the same instance of d in a
different iteration of a loop may alias V', because code in the loop can change what variable
d aliases (suppose the source for the definition is A[i] = x).

When ds-list-pairs are constructed along a path p, all but the last definition from
each equivalence class that occurs along p are eliminated—similarly for stores. Suppose
a transparent definition that occurs within a loop aliases V' on one iteration and another
variable on a later iteration, and V' is endangered by virtue of the earlier definition. We
must ensure that we do not lose this information when we eliminate the earlier definition
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from the ds-list-pair. We do not, as we can find a shorter path along which that instance
of that definition occurs at most once and along which V' is endangered. There is once
circumstance in which we would need two instances of a definition (or store) to ensure
that we have correct information, and I will argue that this circumstance is semantically
pathological and unlikely. In constructing a shorter path, we may eliminate loop iterations
(termed short-circuiting), add iterations, or re-order iterations.

The following Lemma assumes that there is at most one instance of any definition of
V or store into V on any path through a loop. If there is more than one such instance on
some path through a loop, either all of them are aliases for V or none of them are aliases
for V', so we need only record one of them in a ds-list-pair.

Notational note: d; is the " definition of V that occurs along p, and s; is the ith
store into V' that occurs along p,. Again, I use the naming convention that a definition dz
generates the store sz.

Lemma C.12: If there is a path-pair p to a point Bk such that s; qualified-
reaches Bk with d; along p where d; is the k" occurrence of some definition dx
in a loop L, and s; is an instance of some store sy where sy was not generated
from dx, then there is a path-pair p’ =< pl,p, > to Bk such that there are at
most k occurrences of dz in L on p, and either

e some s; qualified-reaches Bk with d,, along p’, or

e some d,, qualified-reaches Bk with s; along p/,
where s; was not generated from d,;,.

Proof: Let p’ be derived by short-circuiting to Bk directly after the loop iteration
containing d;. If s; qualified-reaches Bk with d; along p’, the Lemma is satisfied. If not,
there is some s, that qualified-reaches Bk with d; along p’. If s, was not generated from
d;, the Lemma is satisfied. Assume s, was generated from d;. Let d, be the last definition
of V prior to entering L on p (and thus on all constructed paths). Let s, be the last store
into V' prior to entering L on p (and thus on all constructed paths).

Case 1-—¢q > i : Then s, was turned off on p by an instance of dz in a later iteration of
L. Note that the left-hand-side of dz and sz cannot be loop invariant, because then
program semantics would require that if s, was turned off, all instances of dz and sz
would be turned off, including d;—but d; reaches Bk by assumption. Therefore there
is some path pZ__ through L that contains an instance of dz but does not contain an
instance of sx. This implies that V is dead on pZ,, and at Bk: because the left-hand-
side of sz is not loop-invariant, sz cannot be eliminated or moved out of the loop
without possibly eliminating an assignment into V. However, V' may be live on some
other path through L (V must be defined before its use on that path). Let p” be the
path resulting from replacing all iterations of L on p with a single iteration of pZ_ .

Case 1.a p“__ contains a store sz.

Case 1.a.1 p~_ does not dz following dz. Then p" satisfies the Lemma with
sy being s, and d,, being the instance of dx in pfsx.

Case 1.a.2 dz follows dz on p~_ . The Lemma does not hold for this case for
j = 1. Assume j > 1. Let ¢ be the path resulting from adding a second
iteration of pZ . Then ¢ satisfies the Lemma with d,, being the instance
of dz in the second iteration of pZ,_ and s; being the instance of sz in the
first iteration of p&_ . If j = 1, the Lemma is not satisfied because although
s; is not generated from d,,, two instances of dx are in L on ¢. This case
can be broken down into a good many subcases, a number of which satisfy
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the Lemma for 7 = 1. Some of the subcases cannot be satisfied for j = 1.
Any reader preparing to read further deserves to be spared further subcases
given the many cases that follow.

Case 1.b pZ,__ does not contain a store.
Case 1.b.1 s, is not an instance of sz. Then p” satisfies the Lemma with [ = p
and d,, being the instance of dz in p%_ .

Case 1.b.2 s, is an instance of sz.

Case 1.b.2.a There is a path pZ, through L containing an instance of sz,
sz # sz, but not containing dz. Let p” be the path resulting from
inserting p% into p” prior to pZ__.

Case 1.b.2.a.1 p% does not contain sz following sz.
Case 1.b.2.a.1.a p~__ contains an instance of dz that turns off sz.
Reverting to p”, the Lemma is satisfied with [ = p and with d,,
being dz.

Case 1.b.2.a.1.b pZ_ does not contain a definition d» that turns
off sz. Then p" satisfies the Lemma with s; being sz and d,, being
the instance of da in pZ__.

Case 1.b.2.a.2 pl. contains sz following sz.
Case 1.b.2.a.2.a An instance of dz follows dx on pZ_. Then p"
satisfies the Lemma with d,, being the instance of dz on pﬁegsx and
s; being the instance of sz on pl

Case 1.b.2.a.2.b d, is an instance of dz and no instance of dz follows
dz on pl,_.

%item Case 1.b.2.a.2.b.1 Neither p nor p%, contains an instance
of dz. Then p" satisfies the Lemma with m = p and s; being sz.

Case 1.b.2.a.2.b.2 pl contains an instance of dz. Then let ¢ be the
path resulting from removing p%, from p”’. ¢ satisfies the Lemma
with d,, being the dz, and s; being the sz, from p,.

Case 1.b.2.a.2.b.3 p’ does not contain an instance of dz and an
instance of dz precedes dz on p“_. The Lemma does not hold for
this case for j = 1. Assume j > 1. Let ¢ be the path resulting
from replacing all iterations of L on p with two iterations of p_ .
q satisfies the Lemma with d,, being the instance of dz from the
second iteration of pZ  and s; being the last store prior to s, that
is not an instance of sz. (Any instances of sz immediately preceding
s, must be turned off if s, is turned off, since outside of a loop, two
instances of a store must target the same location.) If j = 1, the
Lemma is not satisfied because although s; is not generated from
d,,, two instances of dx are in L on ¢. There are subcases for which
the Lemma is satisfied, but as the Lemma cannot be satisfied for all
of them, any reader that has gotten this far is to be congratulated
and spared further subcases.

Case 1.b.2.a.2.c d, is not an instance of dz. Then let ¢ be the path
resulting from removing pZ_ from p"”’. ¢ satisfies the Lemma with
m = p and s; being sz (from pl).
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Case 1.b.2.b Every path pl through I containing an instance of sz,
sz # sx, contains dz. The Lemma does not hold for this case for j = 1.
Assume 7 > 1. Let ¢ be the path resulting from replacing all iterations of
L on p with a single iteration of such a pl, followed by a single iteration
of pLy,.

Case 1.b.2.b.1 Some p’ does not contain sz following sz. ¢ satisfies
the Lemma with d,,, being the instance of dz from p%,_ and s; being
the instance of sz from p,.

Case 1.b.2.b.2 Every pl. contains sz following sz. ¢ satisfies the
Lemma with d,, being the instance of dz from p% and s; being the
instance of sz from pL , because the instance of da: from p’_ turns off
the instance of sz from from pl..

In both subcases, if j = 1, the Lemma is not satisfied because although
s; is not generated from d,,, two instances of dz are in L on ¢. This
case can be broken down into a good many subcases, a number of which
satisfy the Lemma for j = 1, based on the existence and placement of
dz and whether d, is an instance of dz. Some of the subcases cannot
be satisfied for j = 1. Any reader that has gotten this far is to be
congratulated and spared further subcases.

Case 1.b.2.c There is no path p, through L containing sz, sz # sz. Then
s; must be before L.

Case 1.b.2.c.1 There is a path p{jz through L containing dz, dz # dz.
Let ¢ be the path resulting from replacing all iterations of L on p with
a single iteration of p{jz. q satisfies the Lemma with s; = s, and d,,
being dz.

Case 1.b.2.c.2 There is no path p{jz through L containing dz, dz # dx.
The Lemma does not hold for this case for j = 1. Suppose 7 > 1. Let
¢ be the path resulting from replacing all iterations of L on p with two
iterations of p&,_ . ¢ satisfies the Lemma with d,,, being the instance of
dz from the second iteration of pZ_ and s; being the last store prior
to s, that is not an instance of sz. (Any instances of sz immediately
preceding s, must be turned off if s, is turned off, since outside of a
loop, two instances of a store must target the same location.) If j = 1,
the Lemma is not satisfied because although s; is not generated from
d,,, two instances of dx are in L on g.

Case 2—¢q < i : Then s; was in a later iteration of L and killed s,. Let the subpath of p
taken through L on the iteration containing d; be pf. There is some subpath plj/: of p
taken through L that contains sy but does not contain dy, or s; would not qualified
reach with d; along p.

Case 2.a: plj/: does not contain an instance of dx. Let p” be the path resulting from

1!

inserting plj/: into p’ immediately following pf. p"" satisfies the Lemma with s;

being the instance of sy on plj/: and m = j.
Case 2.b: plj/: contains an instance of dz.
Case 2.b.1: sz does not follow sy on plj/:. Let p” be the path resulting from
replacing pf with plj/: on p’. Again, p” satisfies the Lemma with s; being the

instance of sy on plj/: and m = j.
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Case 2.b.2: sz follows sy on pzjj. Let p’ be constructed from p by replacing all
iterations of L on p with plj/:.
Case 2.b.2.a: d, is not an instance of dy. p’ satisfies the Lemma with s;
being the instance of sy on plj/: and m = p.

Case 2.b.2.a: d, is an instance of dy. (While in this case, a store (sy)
has been moved into a loop, in the corresponding case in the corollary,
the store has been moved out of the loop.) The Lemma does not hold
for this case for j = 1. Suppose j > 1. Let ¢ be the path resulting from
replacing all iterations of L on p with two iterations of plj/:. q satisfies the
Lemma with d,, being the instance of dz from the first iteration of plj/:
and s; being the instance of sy from the second iteration of plj/:.

If y = 1, the Lemma is not satisfied because although s; is not generated
from d,,, two instances of dx are in L on q.

i

Corollary C.13: If there is a path-pair p to a point Bk such that d; qualified-
reaches BE with s; along p where s; is the k" occurrence of some store sz into
V in aloop L, k >= 2, and d; is an instance of some definition dy of V where
dy was not generated from sz, then there is a path-pair p’ =< p!,p, > to Bk
such that there are at most £ occurrences of sz in L on p, and either
e some d; qualified-reaches Bk with s,, along p’, or

e some s, qualified-reaches Bk with d; along p/,
where s, was not generated from d;.

Proof: The proof follows the same arguments as the previous proof, with the roles of
definitions and stores reversed.

i

Notational note: In the following theorems, d’ is the i*" instance of the definition at
position z in some specified p-list-pair, so d’, and d’, are instances of the same definition. A
p-list-pair (< dy,dz,...,d, >, < s1,82,...,5, >) is said to mismatch if for ¢ < maz(n,m),
s; was not generated from d;. If a p-list-pair does not mismatch, then n = m and it
does not matter which end we start from in an attempt to match the d; and s;. We are
interested in the first mismatch encountered when the matching on the p-list-pair is done
from back to front: a p-list-pair (< dy,dg,...,dy >, < 51,82,..., 5, >) mismatches at d;, s;
if n—¢=m—j and ¢ and j are the largest such indices such that s; was not generated
from d;. Given a path-pair p, Defs(p) is the sequence of definitions of V' that occur along
Pu, and Stores(p) is the sequence of stores into V' that occur along p,,

Theorem C.14: If a p-list-pair for a point Bk mismatches then there is a path-
pair p to Bk such that
sy qualified-reaches Bk with d,, or

dJ. qualified-reaches Bk with 5;

along p, and 5; is not generated from dJ.

Proof: Let (< dy,da,...,d, >,< s1,52,...,5y, >) be a p-list-pair for Bk that mismatches
at dy,sp. Let d, be an instance of da and s, be an instance of sb. From Definition C.10,
there is a path p =< p,,p, > such that

Defs(p,) = a| < di > |3, where 3 contains no instances of da, and

Stores(p,) = 7| < SZ > |6, where § contains only instances of sb.
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Because d,, sy is the first mismatch (starting from the end), each store in ¢ is generated
from some definition in # and each definition in 3 generates some store in 6. There may be
multiple instances of some of these definitions and stores in beta and delta. If these are not
in the right order or numeric correspondence, some d,, s, in 8 and ¢ satisfies the Theorem,
or one of d or SZ satisfies the Theorem with some s, in ¢ or d, in 3. Otherwise, dé,sz
satisfies the Theorem. .

i
Theorem C.15: If there is a path-pair p to Bk such that
5; qualified-reaches Bk with d7, or
. qualified-reaches Bk with 5; 4
along p, and s, is not generated from df, then there is a p-list-pair for Bk that
mismatches.
Proof: Let
Defs(p,) = a| < dJ. > |3, and
Stores(py) = 7| < s, > |8. 4 4
Assume s qualiﬁed—reaches Bk with d2 (a symmetric argument applies if insltead d’.
qualified-reaches Bk with s;). Note that s, does not qualified-reach Bk with d, where
s, is generated from d7. If there is some d* in 3, we can apply Lemma C.12 or Corol-
lary C.13 to find a shorter path to B that has the conditions required by the Theorem,
except in the cases where we have noted that Lemma C.12 and Corollary C.13 do not hold.
This Theorem therefore does not hold in those cases either. (Note that if the left-hand-side
of di is loop invariant, there is no d” in 3, because if there were, 5; could not qualified reach
bk with dJ.)

We can therefore assume there are no d% in 3. Then there are no s% in é else(sé would not
qualified-reach Bk with d7) and there is a p-list-pair pl = (< ...,d; > |4, < ...,s, > |B)
where every store in B is generated from some definition in A but s, is not generated from
a definition in A. Therefore PL either mismatches in A, B (due to the ordering of the
definitions and stores), mismatches at d4, s, where d4 is in A, mismatches at d,, sgp where
sp is in B, or mismatches at d, s,.

i

I can now prove Theorem 19.8, restated here for convenience.

Theorem 19.8:

PRSY = () iff either V is not in scope at B or B is unreachable. Otherwise:

V' is current at Bk iff V' is current at Bk by e, Ve € PRSEk;

V' is endangered at Bk iff de € PRSEk such that V' is not current at Bk by e;

V is noncurrent at Bk iff Ze € PRSY, such that V is current at Bk by e.
Proof: Assume PRSE # 0,V is in scope, and B is reachable.

By Theorem C.11 and Definition C.10, PRSgk contains p-list-pairs for all paths to Bk.
Theorem 19.8 follows from that fact, Theorems C.14 and C.15, and Definitions 16.11, 16.12,
and 16.13. The Theorem does not hold for the cases for which Theorem C.15 does not hold.

Asgsume PRSE = (. Then by line 1 of Algorithm PRS-BKT, Ing is empty and
Complete(Gengk) = (. If V is in scope at B, we assume an initial definition of V' and
an initial store into V', ensuring that at some definition of V' and store into V' reach B along
every path. But then there would be some ds-pair in Ing. Since there is not, either there
are no definitions of V' or stores into V in the flow graph component, implying that V is
not in scope, or there are no paths to B.
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Assume B is unreachable. Then Ing is empty (by lines 2 and 4 of Iterate. We assume
that there are no stores in an unreachable block, therefore Complete(Gengk) = (), so by
line 1 of Algorithm PRS-BK”, PRS}, = 0.

Assume V is not in scope. Then there are no definitions of V' or stores into V' in any
block in the flow graph component, implying that Ing is empty and Gengk = (null, null),
so by line 1 of Algorithm PRS-BK”, PRSY = 0.

i
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