
Debugging Optimized CodeWithout Being MisledMax CoppermanUCSC-CRL-93-21June 11, 1993Board of Studies in Computer and Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064max@cse.ucsc.edu

iABSTRACTOptimizing compilers produce code that impedes source-level debugging. Examples aregiven in which optimization changes the behavior of a program even when the optimizeris correct, showing that in some circumstances it is not possible to completely debug anunoptimized version of a program. Source-level debuggers designed for unoptimized codemay mislead the debugger user when invoked on optimized code.One situation that can mislead the user is a mismatch between where the user expectsa breakpoint to be located and the breakpoint's actual location. A mismatch may occurdue to statement reordering or discontiguous code generated from a statement. This workdescribes a mapping between statements and breakpoint locations that ameliorates thisproblem. The mapping enables debugger behavior on optimized code that approximatesdebugger behavior on unoptimized code closely enough that the user need not make severechanges in debugging strategies.Another situation that can mislead the user is when optimization has caused the valueof a variable to be noncurrent|to di�er from the value that would be predicted by aclose reading of the source code. This work presents a method of determining when thishas occurred, proves the method correct, and shows how a debugger can describe therelevant e�ects of optimization. The determination method is more general than previouslypublished methods, handling global optimization, ow graph transformations, and not beingtightly coupled to optimizations performed by a particular compiler. The information acompiler must make available to the debugger for this task is also described.A third situation that can mislead the user is when optimization has eliminated in-formation in the run-time (procedure activation) stack that the debugger uses (on somearchitectures) to provide a call stack trace. This work gives several methods of providingthe expected stack trace when the run-time stack does not contain this information.Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debug-ging | debugging aids; D.2.6 [Software Engineering]: Programming Environments; D.3.4[Programming Languages]: Processors | code generation, compilers, optimizationGeneral Terms: Algorithms, LanguagesAdditional Keywords and Phrases: debugging, compiler optimization, reaching de�nitions,noncurrent variables, call stack trace, run-time stackAcknowledgementsI thank my family, who have given my life balance during this enterprise, and my advisor,Charlie McDowell, whose help at times acted as a lubricant and at times as a hammer.

ii CONTENTSContentsI Introduction and Background Material 31 Introduction : 52 Optimization May Change the Behavior of a Program : : : : : : : : : : : : 62.1 Approaches to the Problem : 73 Background : 94 The E�ects of Optimization : 105 The Problems Optimization Causes Source-Level Debuggers : : : : : : : : : 105.1 Associating Source Code Locations with Machine Code Locations : : 115.2 Trap Location Reporting : 125.3 Breakpoint Location Determination : : : : : : : : : : : : : : : : : : 125.4 Execution Context Reporting : 135.5 Data Value Reporting : 135.6 Data Modi�cation : 145.7 Code Modi�cation : 156 A Survey of Related Work : 167 A Partial Survey of Today's Compilers and Debuggers : : : : : : : : : : : : 237.1 Survey Results : 25II Producing an Accurate Call-Stack Trace in the Occasional Absenceof Frame Pointers 298 Producing an Accurate Call-Stack Trace in the Occasional Absence of FramePointers : 319 The Call-Stack Trace : 319.1 The Calling Sequence : 329.2 Optimization of the Calling Sequence : : : : : : : : : : : : : : : : : 329.3 Debugger Use of Frame Pointers : 3510 The Problem : 3511 Solutions : 3611.1 The Debugger Maintains Its Own Frame Pointers : : : : : : : : : : : 3711.2 A Cheaper Method: The Debugger Maintains Only the Missing FramePointers : 3911.3 Non-Local Gotos : 3911.4 A \Free" Method: The Compiler Does the Work : : : : : : : : : : : 4212 Implementation : 4413 Solution Summary and Comparison : 45

CONTENTS iiiIII Currency Determination 4914 Introduction to Currency Determination : 5115 Breakpoint Model : 5315.1 Treatment of Program Traps : 5315.2 Debugger Capabilities at a Breakpoint in Optimized Code : : : : : : 5315.3 Breakpoint Locations (Representative Instructions) : : : : : : : : : : 5515.4 A Summary of the Proposed Breakpoint Model : : : : : : : : : : : : 5716 Currency : 5917 Currency Determination : 6517.1 Paired Reaching Sets : 6517.2 The Flow Graph Data Structure : 6617.3 Constraints on the DS-Graph : 6817.4 Dataow on DS-Pairs : 7917.5 Paired Reaching Sets at Block Boundaries : : : : : : : : : : : : : : : 8017.6 Paired Reaching Sets at Breakpoints : : : : : : : : : : : : : : : : : : 8117.7 A Variable's Currency : 8218 When a Variable is Endangered : 8319 Transparency : 8419.1 Assignments Through Aliases : 8419.2 De�nitions and Stores Revisited : 8419.3 � Revisited : 8419.4 Constrained Transparency: Transparent Assignments Without Elim-ination or Code Motion : 8519.5 Unconstrained Transparency: Elimination and Code Motion of Trans-parent Assignments : 8819.6 Currency in the Presence of Unconstrained Transparency : : : : : : 9120 Cases in which the Algorithm May Err : 9321 Non-conforming Optimizations : 9621.1 A Mechanism for Truthful Behavior : : : : : : : : : : : : : : : : : : 9621.2 Interaction with the Breakpoint Model : : : : : : : : : : : : : : : : : 9722 Design Issues : 9822.1 Data Structures Used During Compilation : : : : : : : : : : : : : : : 9822.2 Data Structures Used After Compilation : : : : : : : : : : : : : : : : 10323 Side bene�ts of DS-graphs : 10624 Cost : 10724.1 Cost to Produce the DS-graph (During Compilation) : : : : : : : : : 10724.2 Cost to Use the DS-graph (After Compilation) : : : : : : : : : : : : 10825 Open Problem: When a Breakpoint has Moved : : : : : : : : : : : : : : : : 11026 Currency and Residency : 11227 Summary of Part III : 11427.1 Future Work : 11528 Conclusion : 116A Can a Noncurrent Pointer be Assigned Through? : : : : : : : : : : : : : : : 117

iv LIST OF TABLESB Proof of the Validity of the DS-graph : 119C Proof of Correctness of the Data Flow Algorithms : : : : : : : : : : : : : : 126C.1 Proof of Correctness of Algorithm PRS and Algorithm PRSCT 126C.2 Proof of Correctness of Algorithm PRST : : : : : : : : : : : : : : 131References : 141List of Tables5.1 Line Table : 1112.1 Compilation Times and Object Module Sizes for Fchain and Fsize/Fchain : 4519.1 This rede�nition of � overgenerates ds-pairs. : : : : : : : : : : : : : : : : : 8519.2 (e; t) � (d; s) for Constrained Transparency : : : : : : : : : : : : : : : : : : : 8627.1 Some Optimizations Handled by this Currency Determination Technique : : 114List of Figures2.1 Optimization Changes Program Behavior: Example 1 : : : : : : : : : : : : 72.2 Optimization Changes Program Behavior: Example 2 : : : : : : : : : : : : 85.1 A Statement May Have Discontiguous Generated Code : : : : : : : : : : : : 125.2 Statements May Be Reordered : 137.1 Test Code with Inlining : 237.2 Test Code with Constant and Copy Propagation and Dead Store Elimination 247.3 Test Code with Constant Propagation, Copy Propagation, and Dead StoreElimination : 269.1 Unoptimized Calling Sequence : 339.2 Optimized Calling Sequence : 349.3 Optimized Call-Stack : 369.4 The Fchain Method of Displaying a Call-Stack Trace : : : : : : : : : : : : : 3711.1 The Dstack/Fchain Method of Displaying a Trace of an Optimized Call-Stack 4011.2 Call-Stack After Non-Local Goto : 4111.3 The Fsize/Fchain Method of Displaying a Trace of an Optimized Call-Stack 4414.1 Potentially Confusing Optimizations : 5115.1 Semantic and Syntactic Breakpoint Locations : : : : : : : : : : : : : : : : : 5615.2 Breakpoint Location Choices for Statement (2) : : : : : : : : : : : : : : : : 5715.3 The Branch is a Sequence Point for Dependences : : : : : : : : : : : : : : : 5716.1 Variable a is current at bkpt : 6016.2 Variable a is current at bkpt in the presence of relevant optimization : : : : 6016.3 Variable a is noncurrent at bkpt : 6016.4 Variable a is noncurrent at bkpt due to code motion : : : : : : : : : : : : : 6116.5 Variable a is endangered at bkpt : 6217.1 Flow Graph Transformation 1: Introducing a Block : : : : : : : : : : : : : : 7017.2 Flow Graph Transformation 2: Deleting a Block : : : : : : : : : : : : : : : 7117.3 Flow Graph Transformation 3: Deleting an Edge : : : : : : : : : : : : : : : 7317.4 Flow Graph Transformation 4: Coalescing Two Blocks : : : : : : : : : : : : 74

LIST OF FIGURES 117.5 Flow Graph Transformation 5: Inlining a Subroutine : : : : : : : : : : : : : 7517.6 Flow Graph Transformation 6: Unrolling a Loop : : : : : : : : : : : : : : : 7718.1 A Warning Enabled by Currency Determination : : : : : : : : : : : : : : : 8319.1 An Infeasible Ds-pair : 8619.2 An Infeasible and a Feasible Ds-pair : 8919.3 Ds-list-pairs : 9020.1 Cases in which the Algorithm May Err : 9422.1 Major Data Structures Needed During Compilation : : : : : : : : : : : : : : 9922.2 Major Data Structures Needed After Compilation : : : : : : : : : : : : : : : 10425.1 Oddly enough, a is current at bkpt : 11125.2 To no-one's surprise, a is endangered at bkpt : : : : : : : : : : : : : : : : : 11126.1 i is available in R1 or R2 at the same time. : : : : : : : : : : : : : : : : : : 11226.2 Which location holds i? : 113A.1 If u and v are dead on exit from block 2, the assignment to p in block2 can be eliminated, thus p is endangered at its use in block 3, withoutviolating program semantics. Presumably, foo() can return the address ofsome variable that is live in block 3. : 117

2 LIST OF FIGURES

3
Part IIntroduction and Background Material

1. Introduction 51 IntroductionIt is possible for a source-level debugger to provide expected or truthful behavior in thepresence of a large class of sequential optimizations.It is important because the alternatives, debugging at the assembly level, disablingoptimization, or being misled by the debugger, add to the cost of software production.I show how to provide expected behavior relative to providing a call-stack trace in thepresence of a stack-frame optimization. I show how to provide expected behavior relativeto breakpoint location determination when possible, and I show how to provide truthfulbehavior relative to breakpoint location determination that approximates expected behaviorclosely enough that debugger users can use standard debugging strategies. I show how todetermine when expected behavior relative to data value reporting is possible, and how toprovide expected behavior when possible and truthful behavior otherwise, in the presence ofa large class of sequential optimizations. Previous techniques have worked in the presence oflocal optimization and have been tightly coupled to the particular optimizations that havebeen performed. My technique works in the presence of local and global optimization, andis not speci�c to particular optimizations. It also works in the presence of optimizationsthat transform the optimized program's ow graph.Debugging is a major component of the software life cycle. The cost of the debuggingcomponent has dropped in recent years for common platforms because of the availability ofsource-level debuggers with good interfaces and many features. However, it is still typicalof compilers that enabling the production of information designed to allow source-leveldebugging has the e�ect of automatically disabling optimization.The problem is that the compiler-debugger interface that allows source-level debugging ofunoptimized code is not rich enough to allow accurate source-level debugging of optimizedcode. In fact, many of the compilers that produce source-level debugging informationfor optimized code modify their optimizations to minimize the inaccurate reporting ofinformation by the debugger. In general, it is impossible for a source-level debugger toprovide the user with accurate information about a program being debugged if the programis optimized and the debugging information is restricted to the typical compiler-debuggerinterface.There are three myths in the software industry that have misdirected attention awayfrom this problem. One is that debugging is done in the development phase of the softwarelife cycle and is not (or is rarely) done subsequently. The second is that optimization isnot important until the production phase. The third is that if the behavior of an optimizedversion of a program di�ers from the behavior of an unoptimized version of the programrun on the same input (in particular, if one exhibits a bug and the other does not), theerror must be in the compiler.Combined, these myths suggest that an unoptimized version of the software can bedeveloped and debugged, and successfully recompiled with optimization enabled once thedevelopment phase is completed. They are myths, however.� All large software systems, including products that have been on the market for years,have bugs. Bugs are rife in the production phase. Debugging is a large piece of themaintenance component of the software life cycle.� Optimization is often routine during development. For some applications, optimiza-tion is necessary. These include applications that must run in limited-resource envi-ronments, such as embedded applications, real-time systems, or MS-DOS programs,

6 2. Optimization May Change the Behavior of a Programand applications that require large amounts of time or space as many scienti�c pro-grams do|some of them run for hours when automatically parallelized; if run withoutparallelization they would run for days.� Program bugs can cause the behavior of a correctly compiled optimized version of aprogram to di�er from the behavior of a correctly compiled unoptimized version ofthe program. Optimization can mask or unmask an existing bug.These three facts underscore the fact that it is sometimes necessary to debug optimizedcode. If a program is to be optimized, it is also cheaper to debug optimized code, avoidingrecompilation steps, version (optimized versus unoptimized) problems, and entirely avoidingbugs that simply don't show up in the optimized version. Debuggers are also used forperformance enhancement; clearly this must be done on the optimized version of theprogram.It is common for optimized code to be debugged at the assembly level either becausesource-level debugging information is unavailable or because the information provided bya source-level debugger is not trustworthy. This is typically slower than source-level de-bugging. It is also common for optimized code to be debugged at the source level andfor programmer time to be wasted because the information provided by the debugger isinaccurate.This work describes methods of enriching the compiler-debugger interface to allow adebugger to provide accurate information about sequential optimized code. Part I showshow optimization can change the behavior of a program, describes the problems thatoptimization introduces into the debugging process, and reviews previous and currentresearch in source-level debugging of optimized code. Part II describes several possiblesolutions to the problem of providing an accurate call-stack trace when the frame pointersnormally present in the run-time stack have been optimized away. This problem is particularto architectures on which there is a stack pointer that is modi�ed in the process of evaluatingexpressions. One of the solutions has been implemented and results are described. Part IIIdescribes a general breakpoint model and a general solution to the currency determinationproblem; the problem of determining whether optimization has a�ected the value of avariable at a breakpoint in such a way that the value may mislead the user.2 Optimization May Change the Behavior of a ProgramA program compiled with optimization enabled may behave di�erently from the sameprogram compiled with optimization disabled|that is, when optimization is turned o�, thebug may go away. Optimizations are correctness-preserving transformations which, if thecompiler is correct, will not change the behavior of a correct program. However, a programthat is being debugged is certi�ably not a correct program, and correctness-preservingtransformations are not guaranteed to preserve the behavior of an incorrect program.It is a misconception that if optimization changes the behavior of a program, the compilermust be incorrect.1 There are two circumstances in which correct optimization may changethe behavior of a program.1If the compiler is incorrect, there are three options: get a di�erent compiler, get the broken compiler�xed, or work around the bug. In practice the �rst two options may not be viable. The third optionrequires the programmer to �nd the code that causes the compiler bug to show up and replace it withsemantically equivalent code on which the compiler functions correctly. The programmer still has to debugthe (incorrectly) optimized code! Even if the choice is made to have the compiler �xed, the programmertypically has to debug the optimized code enough to convince the compiler vendor that it is a compiler bug.

2. Optimization May Change the Behavior of a Program 7void uses_uninitialized_variable() {int x,y;return y;}Figure 2.1: Optimization Changes Program Behavior: Example 1� Loose semantics:A language may contain constructs whose semantics allow multiple correct translationswith distinct behaviors. Most common general purpose programming languages docontain such constructs. The most commonly known area of \loose semantics" isevaluation order. A correct optimized translation of a program containing code withloose semantics may have di�erent behavior from a correct unoptimized translationof that program.� Buggy programs:A correct optimized translation of a program containing a bug may have di�erentbehavior from a correct unoptimized translation of that program. This is a commonlyoverlooked case that is important because a program that is being debugged is knownto have bugs.It is common for even experienced software engineers to be surprised at the fact thata program can behave one way when not optimized and a di�erent way when optimizedwhen it has been compiled with a correct compiler . Figure 2.1 is almost a parody of a verycommon type of bug that can cause such a behavior change. The bug is using a variablethat is not properly initialized. When uses uninitialized variable is called, a stackframe is allocated for it, within which x and y are located. It is possible that on somecall to uses uninitialized variable, the stack was left in a state in which 0 was in thelocation allocated to x and 1 was in the location allocated to y, in which case 1 is returned.Because x is not used, its storage may be optimized away. In the optimized version, y islocated where x falls in the unoptimized version|and 0 is returned.The bug in Figure 2.2 (writing one byte past the end of b) has an e�ect when theprogram is not optimized. It is benign (\goes away") when data fetches are optimized byaligning data structures on 4 byte boundaries. If each data object is aligned to a four byteboundary, there will be two bytes of padding between the end of array b and character c,and the bug will have no e�ect on program behavior. If data objects are not aligned, therewill be no padding between b and c; c will be overwritten. Note that program misbehavior,which is the external evidence of the bug, could occur when the program is not optimizedand go away when the program is optimized by changing the sense of the conditional |that is, by adding another bug. Regardless of which version exhibits the symptom of thebug, the behavior changes depending on the presence or absence of optimization.Because optimization can change the behavior of a program, it is necessary, uponoccasion, to either debug optimized code or never optimize the code.2.1 Approaches to the ProblemGeneral approaches to the problem have been:� to restrict the optimizations performed by the compiler to those that do not provokethe problem ([WS78], [ZJ90]),

8 2. Optimization May Change the Behavior of a Programint i;char b[10], c;void walk_on_c() {c = getchar();for (i=0; i<=10; i++) {b[i] = '\0';}if (c == '\0') {program misbehaves}}Figure 2.2: Optimization Changes Program Behavior: Example 2� to restrict the capabilities of the debugger to those that do not exhibit the problem([WS78], [Gup90], [ZJ90]),� to recompile, without optimization, during an interactive debugging session, the regionof code that is to be debugged ([FM80], [ZJ90]), and� to have the compiler provide information about the optimizations that it has per-formed and to have the debugger use that information to provide appropriate behav-ior ([WS78], [Hen82], [Zel84], [CMR88], [ZJ90], [Gup90], [PS91], [Coh91], [CM91b],[BHS92], [PS92], [Cop92], [BW93], [AG93a]).A larger problem is lowering the cost of debugging production quality software. Muchif not most production quality software produced in this country is heavily optimized,and the �rst approach, restricting optimization, would result in compilers that would notget used; their use would degrade the quality of the software. The second approach,restricting the capabilities of the debugger, is clearly undesirable, though possibly preferableto being misled by the debugger. The third approach, recompiling without optimizationwhile debugging, requires a software engineering environment that provides incrementalcompilation. Such environments are not in general use and even should they becomecommonplace, the approach is problematic because optimization may change the behaviorof the program.This work follows the fourth approach, using compile-time information about optimiza-tion to provide appropriate debugger behavior. Some of the previous work that has takenthis approach has resulted in compiler/debugger pairs that are able to provide acceptablebehavior when debugging optimized code because the debuggers have been specialized tohandle the particular optimizations performed by the compiler. Because much of the indus-try allows compilers and debuggers to be mixed and matched, solutions that do not requirethe compilers and debuggers to be tightly coupled are preferable. While not without re-strictions, this work is general in that the debugger need not be specialized to a particularset of optimizations.This work is applicable in the presence of any sequential optimizations that either do notmodify the ow graph of the program or modify the ow graph in a constrained manner.Blocks may be added, deleted, coalesced, or copied; edges may be deleted, but control owmay not be radically changed. The constraints are described in detail in Section 17.3. Thiswork applies in the presence of

3. Background 9� local common subexpression elimination� global common subexpression elimination� constant and copy propagation� constant folding� dead code elimination� dead store elimination� cross-jumping� local instruction scheduling� global instruction scheduling� strength reductions� code hoisting� partial redundancy elimination� other code motion� induction-variable elimination� loop unrolling� inlining (procedure integration)as well as any other optimizations that observe the constraints. As an example of anoptimization that does not observe the constraints, it does not apply to the portion of aprogram that has had loops interchanged.3 BackgroundAutomatic translation of high-level language programs into machine language was oncean arti�cial intelligence problem. By the late 1960's or early 1970's, there was a well-founded body of scanning, parsing, and type-checking theory and a considerable number ofe�ective code-generation techniques. The research in the area of high-level programminglanguages has been moving the languages toward the problem domains, providing languageconstructs that allow programs to describe problems and solutions in ways that are moreunderstandable by the programmer. This moves the languages further from the machine-level description of the computation. The recent research in the area of translation ofhigh-level programming languages to machine languages has been in optimization, whichmoves the code generated from the program toward the machine-level description of thecomputation. The \semantic gap", the gap between the source program and the generatedcode, has been growing.This has consequences for the process of debugging. Compilation is a mapping fromsource code to machine code. Debugging is the art of determining from a program's\misbehavior" the source constructs responsible for the misbehavior. Misbehavior is adi�erence in behavior from intended behavior, and is discernible in the e�ects of the machinecode. This involves following the mapping backward from machine code to source code. Theless straightforward the mapping, the more di�cult this process becomes.Assembly-level debuggers have no di�culty with optimized code; they deal only in ma-chine entities (addresses and instructions) and do no association of these entities with sourceentities (symbol names and source constructs). In recent years, source-level debuggers havebecome available. Source-level debuggers must be able to associate machine entities andsource entities, as they translate user's requests in terms of source entities into actions in

10 4. The E�ects of Optimizationterms of machine entities. Programmers can debug code faster with a source-level debuggerbecause it automates much of the reverse mapping process. This is done by having thecompiler create a machine-code to source-code mapping, including information about thesource code in the object module; information such as the type and address of data objectsand the address of the start of the code generated from each source line.The machine-code to source-code mappings in general use today are su�cient to describethe relatively straightforward mapping from unoptimized code to source code, but they arenot su�cient to describe the (potentially convoluted) mapping from optimized code tosource code.4 The E�ects of OptimizationUnoptimized code has several characteristics that aid in the ability to do source-leveldebugging. In unoptimized code1. statements are translated to a contiguous set of instructions.22. In straight-line code, the set of instructions for a statement S immediately precedesthe set of instructions for the statement following S. This extends in a natural way tostatements that involve branching such that if execution is halted at the code for S,the code for statements appearing in the source code before S will have been executedand the code for statements appearing in the source code after S will not have beenexecuted.33. Each variable has exactly one location.4. The value in a variable's location matches the that value the source code would leadone to expect the variable to have, at all statement boundaries.Optimized code does not necessarily have any of these characteristics.5 The Problems Optimization Causes Source-Level DebuggersThe following low-level debugger capabilities are made di�cult by optimization:1. the association of source code locations with machine code locations, and in particular,(a) trap location reporting, and(b) breakpoint location determination2. execution context reporting (for example, providing a call-stack trace)3. data value reporting, with distinct subproblems(a) data location determination(b) data currency determination4. data modi�cation2This is not the case for all constructs. For example, loops often involve two discontiguous sets ofinstructions, a test and a jump, separated by the body of the loop. Case or switch statements may involvemultiple discontiguous sets of instructions for correctly addressing the target. The discontiguity is presentin the source code, but it still causes problems in trap location reporting and breakpoint location for theseconstructs. As described below, these problems are endemic in optimized code.3For source statements in a loop, we can distinguish executions of the statements by subscripting themwith the loop iteration value. If execution is halted at Si (at S in the ith iteration of the loop), Successor(S)i�1will have been executed and Successor(S)i will not have been executed.

5. The Problems Optimization Causes Source-Level Debuggers 11Table 5.1: Line TableCode Address Source Line Number... ...3F6 173FC 18404 19... ...5. code modi�cationAt a higher level, how the debugger presents information about the program to theuser becomes a more di�cult problem in the presence of optimization. Zellweger [Zel84]introduced terms for two methods of removing or ameliorating the confusion introducedinto the debugging process by optimization. The preferred method is to have the debuggerresponses to queries and commands on an optimized version of a program be identical toits responses to the same set of queries and commands on an unoptimized version of theprogram. This is known as providing expected behavior. It may not always be possibleto provide expected behavior, so the next best thing is to provide truthful behavior, inwhich the debugger avoids misleading the user, either by describing in some fashion theoptimizations that have occurred or by warning the user that it cannot execute a commandor give a correct answer to a query.If a debugger were always able to provide expected behavior, optimization would presentno additional interface problems for a debugger. Truthful behavior has attendant interfaceproblems because it requires that the debugger expose the e�ects of optimization in away that is meaningful to a possibly naive user. Consider the problem of telling the userin source terms where a program has halted when loops may have been unrolled, fused,and interchanged. For the most part, these interface issues are beyond the scope of thiswork. Part II concentrates on providing expected behavior in the presence of a particularoptimization. Part III shows how to determine when expected behavior is possible (relativeto data value reporting) in the presence of a large class of optimizations. Attention is givento producing the information that the debugger needs to expose the e�ects of optimizationwhen expected behavior is not possible, but little attention is given to the form of thepresentation of that information.5.1 Associating Source Code Locations with Machine Code LocationsSource-level debuggers commonly use a line table to associate source code locationswith machine code locations. A line table is a table of haddress , line numberi pairs in whichaddress is the address of the �rst instruction generated from the source line at line number .In unoptimized code, all instructions between one code address entry and the next aregenerated from the referenced source line. In addition, all entries (code addresses and linenumbers) are monotonically increasing. If program execution were halted before executionof the instruction at code address entry A associated with source line S, all instructionsgenerated from source lines previous to S and no instructions generated from source linessubsequent to S would have been executed.

12 5. The Problems Optimization Causes Source-Level Debuggersfoo(); call foo load r1, q*p = *q; => load r1, q => load r1, [r1]load r1, [r1] call fooload r2, p load r2, pstore [r2], r1 store [r2], r1Figure 5.1: A Statement May Have Discontiguous Generated Code5.2 Trap Location ReportingWhen a program terminates due to a trap, the debugger must be able to report thestatement in the source program that generated the instruction causing the trap. In theabsence of optimization, the line table is su�cient. The debugger determines into whichcode address set the program counter falls and returns the associated source line number.In the presence of optimization, the line table is not su�cient. Its use in trap locationreporting crucially depends on the instructions generated from a statement being contigu-ous. Consider the source code, machine code, and transformed machine code shown inFigure 5.1. There is no way to correctly report a trap caused by p containing trash and atrap caused by q containing trash with a single entry in a line table (assuming that the callto foo also has an entry).This problem is addressed is Section 15.1. It is also addressed in some of the moremodern symbol table formats. Examples include the symbol table put out by the MIPScompiler for use by dbx and the symbol table put out by the Convex compiler for use bythe Convex debugger Cxdb [Str91], [BHS92].5.3 Breakpoint Location DeterminationWhen the user requests a breakpoint at a source line L, the debugger must be able toset the breakpoint at an appropriate address. In the absence of optimization, the line tableis su�cient. By de�nition, the code address entry whose corresponding source line entryis L is an appropriate address: all previous lines and no subsequent lines will have beenexecuted when the program breaks.In the presence of optimization, the line table is again insu�cient. Its use in breakpointlocation determination depends not only on the instructions generated from a statementbeing contiguous, but also on the statements being executed in the order they appear in thesource code. Optimization can cause source statements to be reordered in their entirety.Reordering of source statements as shown in Figure 5.2 presents a di�erent sort of problemfrom trap location reporting. In the case of trap location reporting, expected behaviorcould be provided if the necessary information were available. In this particular example ofbreakpoint location determination, the line table may contain information about where thecode for each statement resides, but it is not clear what to do with the information. Assumethe user requests a breakpoint at line 2. If a breakpoint is set before the code for statement2, the user may be confused by the fact that statement 1 has not yet been executed. If abreakpoint is set after the code for statement 1, the user may be confused by the fact thatstatement 2 has already been executed.Additionally, if the instructions for a statement are not contiguous, the �rst instructiongenerated from a statement may not be an appropriate choice for the breakpoint location

5. The Problems Optimization Causes Source-Level Debuggers 131 a = b; 2 c = d;2 c = d; => 1 a = b;3 e = f; 3 e = f;Figure 5.2: Statements May Be Reorderedfor the statement. The �rst instruction generated from a statement S may have been movedfar from the rest of the instructions generated for S, across the code for other statements, itmay have no user-visible e�ect on program state (it may be part of an address computation,for example). The rest of the instructions for the statement, or at least the ones that resultin user-visible e�ects (such as branches and stores), may not have been moved at all |even if they have been moved, one of them may be a better candidate for the breakpointlocation than the �rst instruction.This problem is addressed is Section 15. It is also addressed by Zellweger [Zel84], Coutantet al [CMR88], Zurawski and Johnson [ZJ90], Streepy [Str91] and Brooks et al [BHS92],and Wism�uller [BW93]. Di�erent approaches allow di�erent debugger capabilities. None ofthe approaches in the literature, including mine, provide a complete solution.5.4 Execution Context ReportingWhen the debugger gains control of a halted program, it provides the user with infor-mation about where the program halted. Most debuggers by default provide source �leand line information. From this information, in unoptimized code, the user can determinea great deal about what source code has been executed and what has not. In optimizedcode, the user can determine considerably less. Worse, the user may be led to believe thatcode has been executed when it has not, or vice-versa. Simple code motion is enough tocause the latter problem. Loop transformations can compound the problem. This problemis addressed to some extent by Streepy [Str91] and Brooks et al [BHS92].The user can request more context in the form of a call-stack trace.4 Two optimizations,inlining and the stack-frame pointer optimization discussed in Part II of this work, can causea call-stack trace to be inaccurate and misleading. Zellweger [Zel84] shows how to provideexpected behavior in the presence of inlining, and Part II shows how to provide expectedbehavior in the presence of the stack-frame pointer optimization.5.5 Data Value ReportingSource-level debuggers commonly use symbol table entries to associate source code dataobjects with memory locations. Symbol table entries di�er from object module format toobject module format, but generally contain the name, type, size, and location of a dataobject. Some symbol table formats require the location information to reference memory(registers are not allowed). Many formats allow only a single location to be associated witha data object, although allowing multiple locations is more common in recent years.4The call-stack trace is also known as a stack trace, stack dump, procedure traceback, or backtrace.

14 5. The Problems Optimization Causes Source-Level DebuggersData Location DeterminationIn optimized code, a data object may reside in more than one location, or nowhereat all, over the duration of its lifetime. A debugger that retrieves an object's value fromthe location given in the symbol table entry when the object actually resides elsewhere (ornowhere) may give the user incorrect information.This problem is addressed by a number of modern symbol table formats, includingMicrotec Research, Inc.'s format for their Xray debugger [Wan91], the DWARF DebuggingInformation Format [Sil92], the symbol table put out by a prototype modi�cation of HewlettPackard's C compiler for the HP9000 series 800 for use by a prototype modi�cation of thedebugger for that machine [CMR88], and the symbol table put out by the Convex compilerfor use by Cxdb [Str91]. Although the symbol table formats are general, the informationstored in them is usually derived from live range information computed for use by theoptimizer. This is not optimal for use by the debugger, for reasons described in Section 26.Adl-Tabatabai and Gross [AG93a] show how data-ow analysis can be used to determineoptimal variable location range information. Wism�uller [BW93] also approaches the problemusing data-ow analysis.How this problem interacts with my solution to the next problem is discussed in Sec-tion 26.Data Currency DeterminationEven if a data object's location is correctly determined, that location may not have thevalue the user expects. For example:Unoptimized Optimizeda = expression1; a = expression1;... /* a is used. */ ...a = expression2;foo(a); /* Last use of a. */ foo(expression2);The user may break at the call to foo and ask for the value of a in order to �nd out whatwas passed to foo. If the dead store into a has been eliminated, the value in the locationassociated with a may mislead the user.This problem is addressed for local optimizations only (speci�cally, register promotioncombined with local instruction scheduling) by Coutant et al [CMR88], Adl-Tabatabai andGross [AG93a], and Streepy [Str91] and Brooks et al [BHS92]. It is also addressed forlocal and global optimization by Hennessy [Hen82], Wism�uller and others [BW93], and byPart III of this work.5.6 Data Modi�cationThe user may want to modify a data object's value while in the debugger and continueexecution of the program using the modi�ed value to modify the program's behavior.Optimization can defeat the process. Consider:

5. The Problems Optimization Causes Source-Level Debuggers 15#define DEBUG 0a = DEBUG;... /* No assignments to a. */if (a)print();Since the value of a is known to be 0 at compile time, the conditional is known to alwaysbe false and can be eliminated, along with the call to print. If the user sets a to 1, it willnot cause print to be called.This problem has not been addressed. It is generally considered too di�cult, but thedata structure developed by Pollock and So�a for incremental global optimization [PS88],[PS92] should be applicable.5.7 Code Modi�cationThe user may want to modify existing code or execute arbitrary code while in thedebugger. Debuggers are far from uniform in the manner in which they provide this sortof facility. Some do not allow it at all. Others allow anything that can be done by writingto memory or to registers. Some allow any existing procedure to be called, while othersprovide facilities speci�cally for patching code, either in assembly or high level languages.In the presence of optimization, the results may be unexpected. In the following example,optimization causes v to contain the value it receives from foo() rather than the value 5at breakpoint. If, from within the debugger while the program is stopped at breakpoint, theuser calls a routine that uses v, the routine may perform in an unexpected manner.Unoptimized Optimized... ...v = foo(); v = foo();... ...v = 5;b = v; /* Last use of v. */ b = 5;breakpoint|call routine(v) from the debuggerProviding expected behavior or useful truthful behavior in the presence of code modi�-cation has not been addressed. It is generally considered too di�cult.Now that we have reviewed the problems, let us review the research that has been donein the area.

16 6. A Survey of Related Work6 A Survey of Related WorkThis section surveys the work that has been done on providing a mapping from ma-chine code to source code to support source-level debuggers that can e�ectively assist indebugging optimized code. Summaries of published papers are presented in approximatelychronological order. Discussions of each paper are headed by the title of the paper.\Design of the FDS interactive debugging system"In July of 1978, Warren and Schlaeppi produced an IBM research report [WS78] theintended debugging system for the Research Division's Firmware Development System(FDS). The problem that they attacked was to design an interactive source level debuggingsystem for microcode that would allow full optimization with attendant debugging problemsor full debugging with constraints on optimization, without recompilation or modi�cationof the source program. While their system was designed for microcode as opposed togeneral software, the problems inherent in debugging optimized code are identical, thustheir approaches are valid for a general discussion of debugging optimized code.This paper opened the discussion of how to do source-level debugging of optimized code.It contains a discussion of information needed from the compiler to implement a debuggerthat provides messages about the e�ect of optimizations on source code|what has sincebeen termed truthful behavior.\Symbolic Debugging of Optimized Code"Hennessy published the �rst journal paper [Hen82] on the topic, and it has been inu-ential. His paper is concerned with currency determination and expected value recovery.When a variable is not current, expected value recovery is the act of computing the valuethe variable would have had if it were current.Hennessy's work sets the context for future work on debugging optimized code. He intro-duces the notion that the debugger should, when possible, hide the e�ects of optimizationfrom the programmer.5 He introduces the notion of noncurrent and endangered variables,and the notion of recovery of expected values for noncurrent variables.He describes a model of code generation and local optimization for which he can docurrency determination and (often) recovery, augmenting a code generation DAG withinformation used by his currency determination algorithms. He also considers limited globaloptimization, with weaker results.Technical correspondence about Hennessy`s work has appeared twice. \A note onHennessy's Symbolic Debugging of Optimized Code", by Wall, Srivastava, and Templin[WST85] corrects an error in the algorithm used to determine the currency of variables,using Hennessy's data structures. \A further note on Hennessy's Symbolic Debugging ofOptimized Code", by Copperman and McDowell [CM93] points out that his techniqueassumes that after optimization, programs have only one store to a variable within anybasic block. This was a reasonable assumption in 1982 but is a restrictive assumptiontoday.5This approach, when successful, has subsequently been termed providing expected behavior .

6. A Survey of Related Work 17\An Incremental Programming Environment"In 1980 Feiler and Medina-Mora produced a report at Carnegie-Mellon University aboutone part of a software engineering environment, the Incremental Programming Environment(IPE), in which editing, compiling, linking, and debugging are performed on a commonrepresentation of a program by integrated tools.Compilation is incremental on a procedure-by-procedure basis. Debugging is accom-plished by modifying the code and (automatically) recompiling the modi�ed procedure withoptimization disabled. The language de�nition is extended to include debugging constructs,and these are programmed in the same manner as other language constructs.Incremental recompilation has the advantage that debugging can be done without anyof the problems discussed in Section 5. The disadvantage is that no debugging supportis provided for the situation in which disabling optimization changes the behavior of theprogram.\The Debugging of Optimized Code"This is an unpublished draft by Teeple and Anderson from March 1980. It describesa problem with determining breakpoint locations in the presence of cross-jumping. Whiletheir proposed solution was not correct, it contained the genesis of Zellweger's completeand correct algorithm [Zel84], and appears to have contained the genesis of her invisiblebreakpoints and path determiners.\A Systematic Approach to Advanced Debugging through IncrementalCompilation"Fritzson [Fri83] investigated using incremental compilation to supply advanced debug-ging features. He was not focussed on debugging optimized code, but his system has theadvantages and disadvantages of any incremental compilation system with regard to de-bugging optimized code. His incremental compiler was based on the portable C compiler,thus optimizations were local to a statement. This allowed him to incrementally recompileat statement granularity without needing an optimization history like that of Pollock andSo�a [PS88], [PS92].\Interactive Debug Requirements"Seidner and Tindall published IBM's market requirements statement for an interactivedebugger [ST83]. It catalogs what a good debugger (as seen from 1983) should not bewithout, with a good rationale for each suggested feature. It is interesting how manydebuggers today are without some of these features. Source-level debugging of optimizedcode was considered a requirement for an interactive debugger. The paper lists the problemsoptimization causes for a debugger and the behavior that solutions to the problems shouldsupport.\An Interactive High-Level Debugger for Control-Flow Optimized Programs"Zellweger [Zel84] produced the �rst dissertation on debugging optimized code. The �rstpart of her thesis provides a coherent discussion of terminology for debugging optimizedcode and the related issues. Terminology she introduced includes:

18 6. A Survey of Related Work� expected versus truthful behavior� semantic and syntactic breakpoints� invisible breakpoints� path determinersExpected Versus Truthful Behavior Zellweger de�nes two properties of debuggers,neither of which holds for commonly used debuggers when applied to optimized code.A debugger that provides expected behavior always responds exactly as it would for anunoptimized version of the same program. The e�ects of optimization are hidden from theuser. The debugger must create a view of the (optimized) machine state that conforms tothe (unoptimized) source-level program state.A debugger that provides truthful behavior avoids misleading the user. For a given queryor attempted action,� it may do nothing, stating that any response would be incorrect due to optimization,� it may provide a response but warn that the response may be incorrect due tooptimization, or� its response may include a description of the relevant e�ects of optimization.The e�ects of optimization are described to the user. The user now has the task of creatinga view that conforms to the (unoptimized) source-level program state. The debugger maystill be able to do much of the machine-state to source-level program state translation.A debugger that provides neither expected not truthful behavior is likely to give incorrectand/or confusing responses to queries about an optimized program. Even truthful behaviormay be confusing to a user unfamiliar with the possible e�ects of optimization. Expectedbehavior is clearly the superior choice. However, expected behavior may be impossibleto provide. For example, if induction variable elimination has removed all references toa variable V from the machine code for a loop, and the compiler has left no informationabout how to reconstruct the variable's value, the debugger cannot provide its expectedvalue if asked for it within the loop. The ability to provide expected behavior dependson the information provided by the compiler. In some cases it is impractical to providethe information necessary to allow a debugger to provide expected behavior. In general,the investigation into source-level debugging of optimized code involves determining howto provide expected behavior, determining when that is impossible or impractical, and ifimpossible or impractical, determining what sort of truthful behavior is appropriate.Semantic and Syntactic Breakpoints A semantic breakpoint for a statement is lo-cated at the machine code generated from the statement. It is called semantic becausethe breakpoint is associated with where the statement \happens". A syntactic breakpointlocation is chosen according to the syntactic positional relationship of source statements.In unoptimized code, semantic and syntactic breakpoint locations are identical. However,if a code motion optimization has been performed such that the code for a statement S hasbeen moved relative to other statements, a semantic breakpoint will be placed wherever thecode for S ends up, while a syntactic breakpoint will be placed wherever the code for Sstarted out. Given a sequence of statements S1, S2, ..., Sn, for two statements Si and Sj ,if i < j then the syntactic breakpoint for Si will never follow the syntactic breakpoint for

6. A Survey of Related Work 19Sj .6 This condition does not hold for semantic breakpoints. Semantic breakpoints requireknowing where the code for a statement is moved to, and problems arise if the instruc-tions generated from a statement are not contiguous in the �nal machine code. Zellwegerdiscusses �ve possible re�nements of the semantic breakpoint de�nition for noncontiguouscode generated from a single statement S . The breakpoint could be set:1. on the �rst instruction generated from S ,2. on the �rst instruction of each contiguous set of instructions generated from S ,3. on the �rst instruction generated from S that corresponds to any user-visible changein execution state,4. on the �rst instruction generated from S that corresponds to any change to a user-visible variable,5. on the �rst instruction generated from S that corresponds to the \core semantic e�ect"of S , where the core semantic e�ect would ideally by de�ned by the language.Invisible Breakpoints An invisible breakpoint is a breakpoint set by the debugger, atwhich the debugger takes some action and continues execution of the program withoutgiving control to the user.Path Determiners A path determiner is Zellweger's technique for using an invisiblebreakpoint to determine what execution path is taken.Control Flow Optimizations The main body of Zellweger's work describes algorithmsfor providing expected behavior (most of the time) in the presence of cross-jumping andprocedure inlining. In the presence of inlining, extra work is required to display a call-stacktrace that alerts the user that an inlined routine is active. This is the only research in theliterature that deals with a problem similar to the one I address in Part II. Zellweger hassuccessfully implemented her algorithms in the Cedar programming environment at XeroxPARC.\DOC: a Practical Approach to Source-Level Debugging of GloballyOptimized Code"At Hewlett Packard, Coutant, Meloy, and Ruscetta [CMR88] modi�ed a compiler anddebugger to produce a prototype called DOC that can debug the optimized code the com-piler produces. The debugger was designed to handle global register allocation, inductionvariable elimination, constant and copy propagation, and delay slot scheduling.A major goal was to inform the debugger of a variable's location at a given point in aprogram. The compiler provides the debugger with live-range information, including thelocation(s) a variable is mapped to within a live range. It also provides information aboutwhether a variable is current, which can be done inexpensively because no global codemotion is done. Eliminated induction variables are handled by storing a recovery function,which is a function from the value of a named compiler temporary to the value of theeliminated user variable which the debugger can evaluate.6The syntactic breakpoint locations for Si and Sj may be in the same location. This will occur if bothstatements have been moved.

20 6. A Survey of Related Work\Incremental Global Reoptimization of Programs : : :"In two articles [PS88], [PS92], Pollock and So�a explore the potential of incrementaloptimization. The earlier paper focusses on incrementally reoptimizing when an optimiza-tion has made it impossible to satisfy a debugging request. The later paper focusses onincrementally reoptimizing when a program is edited.They develop a data structure in which an optimization history is recorded, and use itto incrementally recompile and reoptimize the program in response to debugging requestsor program edits. The optimization history contains information about the extent of anoptimization (what regions of code or further optimizations it a�ects), so that when anoptimization must be reversed, any dependent optimizations can also be reversed.While it has not been investigated in this regard, their data structure should be applica-ble to the data modi�cation problem|at least to allow truthful behavior. I have not seenany other approaches that might apply to this problem.\A Uni�ed Approach to the Debugging of Optimised Programs : : :"Shu [Shu89], [Shu91], [Shu92], [ST83], did his dissertation on debugging optimizedcode. I cite his work for completeness, but I only recently became aware of it and amnot familiar with the content. From my limited acquaintance with his work, it appears thathe has concentrated on breakpoint mapping and formalizing the e�ects of optimization ina composable set of rewrite rules.\Debugging Code Reorganized by a Trace Scheduling Compiler"Gupta [Gup90] investigated debugging code that has been automatically parallelizedby a trace scheduling compiler. To allow the compiler freedom to exploit any parallelismpresent in the program, \the power of the debugger is compromised". Monitoring commandsmust be compiled into the program. The debugger can then enable and disable any of these,and monitor those variables or expressions, at those points in the program (which might bespeci�c loop iterations) that were selected for monitoring at compile time.\Debugging Optimized Code With Expected Behavior"At the University of Illinois at Urbana-Champaign, Zurawski and Johnson [ZJ90] mod-i�ed the standard Smalltalk debugger and an optimizing compiler for Typed Smalltalk.They are always able to provide expected behavior by a combination of compiler-generatedinformation, incremental compilation, and restricting points at which a debugger can takecontrol of a program.\Source Level Debugging of Automatically Parallelized Code"Cohn [Coh91] describes a method for providing a sequential view of programs that havebeen automatically parallelized for distributed memory MIMD machines by transformationsthat can be decomposed into thread splitting and sequential optimizations. He de�nesfunctions that the debugger can often use to reconstruct a sequential state that correspondsto the execution state of a halted parallelized program. He de�nes techniques that can beused when no sequential state corresponds to the current execution state of the program,

6. A Survey of Related Work 21to minimize the cost of achieving a debuggable state (the worst case involves re-executingthe program with synchronization code).\Debugging Parallelized Code Using Code Liberation Techniques"Pineo [PS91] describes a di�erent method for providing a sequential view of automat-ically parallelized programs. Global renaming is used to convert the sequential programto single assignment form. Subsequently, parallelizing transformations can be performed.Finally, the large storage requirements of single assignment code are reduced by reclaimingnames that are not useful for parallelization or debugging.\A New Approach to Debugging Optimized Code : : :"At Convex, Streepy [Str91] and Brooks et al [BHS92] break with the by now conventionalview that the debugger should hide the e�ects of optimization. Their view is that thedebugger should aid the user in understanding what is actually happening in the presence ofaggressive optimization and parallelization. To this end, they describe an enriched compiler-debugger interface and a debugger user interface that can visually display the e�ects ofoptimization. Their debugger CXdb incorporates capabilities �rst published in Coutant etal [CMR88], handling induction variable elimination and providing live range and variablelocation information (although in a di�erent format). From a research perspective, theircontribution is a �ner granularity in the mapping from source entities to machine codeaddresses. They have eliminated the line table used for mapping source lines to codeaddresses and replaced it with a mapping between source units and sets of address ranges.A source unit can be an expression, a statement, a block, a loop, or a routine. This allowsstepping at any of these granularities, as well as accurate trap location reporting. Theirmethod of stepping involves breaking once for each contiguous sequence of instructionsgenerated from a unit. This is a signi�cant departure from the line-by-line stepping strategyemployed by many debugger users, which involves breaking once per line. In Section 15 Ipresent a breakpoint model that does not require such a departure. The two models can becombined to provide additional debugging capabilities without losing existing capabilities.\Evicted Variables and the Interaction of Global Register Allocation andSymbolic Debugging : : :"Adl-Tabatabai and Gross [AG92], [AG93a], [AG93b] address the data location problem.This problem has been addressed by others [CMR88], [Wan91], [Str91], [BHS92], buttypically by providing live-range information to the debugger. This may unnecessarilytruncate the range across which a variable is available, because the live-range informationcomputed by the compiler terminates at the last use of a variable, not at the point whereit no longer resides in memory or a register. Adl-Tabatabai and Gross show how data-owanalysis can be used to determine the actual availability of a variable. This is discussedfurther in Section 26 and is addressed by Wism�uller [BW93].\Source-Level Debugging of Optimized Programs Using Data Flow Analysis: : :"Wism�uller is currently investigating data location, currency determination and expectedvalue recovery (with Bemmerl [BW92], and with Berger [BW93]). His approach is similar

22 6. A Survey of Related Workto my approach to currency determination. The scope of his work is quite ambitious. As ofthis writing [Wis93] his breakpoint model is more general than that presented in Section 15,he incorporates recovery into his currency determination technique, and he addresses thedata location problem. He does not address optimizations that modify the shape of the owgraph. If his work comes to successful fruition, it will be a valuable addition to the �eld.

7. A Partial Survey of Today's Compilers and Debuggers 237 A Partial Survey of Today's Compilers and DebuggersI have claimed that optimized code causes debuggers to give misleading responses, whilenoting that there is work being done in the area, both in academia and industry. This sectionis intended to give a few data points regarding how some commonly available compilers anddebuggers respond in the presence of optimization.Two simple programs were used as probes. The �rst of these, shown in Figure 7.1,investigates debuggers' call-stack-trace facility in the presence of inlining. The second,shown in Figure 7.2, investigates debuggers' breakpoint and data display facilities in thepresence of constant and copy propagation and dead store elimination.7 It is far from acomplete examination of these facilities, but does show some common unexpected behavior.Clearly, debugger responses depend on the debugger. They also depend on thecompiler|on the generated code and the symbol table information. Compilers and de-buggers were chosen strictly on the basis of ease of availability (to me).Compilers and Debuggers Surveyed On personal computers, I have coupled compilersand debuggers from the same vendors:� Borland's Turbo C/C++ compiler and Borland's Turbo debugger, running on Mi-crosoft's OS/2 on an IBM pc.7Minor editing of these programs was necessary to satisfy all the surveyed compilers. None of the changeshad any semantic import. Figure 7.1: Test Code with Inlining#include<stdio.h>void a() {}inline int b() {a();return 1;}int c(int x) {int y = b();return x+y;}int d() {return c(5);}int main(unsigned argc, char **argv) {printf("%d\n", d());return 1;}

24 7. A Partial Survey of Today's Compilers and Debuggers1 #include <stdio.h>2 int main(unsigned argc, char **argv) {3 /* int main(argc, argv) unsigned argc; char **argv; {*/4 int w, x, y, z = 0;56 x = atoi(argv[1]);78 printf("%d\n", x);910 x = 5;1112 y = x;1314 if (y > 2) {15 printf("y > 2");16 }17 else {18 printf("y <= 2");19 }2021 if (z) {22 printf("z");23 }24 else {25 printf("not z");26 }2728 }Figure 7.2: Test Code with Constant and Copy Propagation and Dead StoreElimination� MetaWare's High C compiler and MetaWare's mdb debugger, running on MS-DOSwith Phar Lap's DOS Extender on an IBM pc.On the UNIX system I have mixed and matched debuggers and compilers because that isa common mode of operation on that system. All tests were done on Sun Sparcstations.Compilers:� Sun's Ansi C compiler acc� The Portable C compiler cc� ATT's Cfront C++ translator CC� The Free Software Foundation's C compiler gccDebuggers:� dbx� The Free Software Foundation's debugger gdb

7. A Partial Survey of Today's Compilers and Debuggers 257.1 Survey ResultsHistorically, compilers have either produced debugging information or optimized thegenerated code, but not both.8 This trend is changing but has not yet disappeared. Thefollowing occur when attempting compile to with both -g and -O:� cc gives the messagecc: Warning: -O conflicts with -g. -O turned off.� For High C, -g suppresses inlining (with a warning) and silently suppresses dead-storeelimination.� For acc, -O silently suppresses production of debugging information.The Call-Stack Trace Facility I surveyed the call-stack trace facility in the presenceof inlining by setting a breakpoint in routine a() of the program shown in Figure 7.1 andrequesting a call-stack trace. If expected behavior is provided, when execution is suspendedin a(), a call-stack trace will show that a() was called from b(), b() was called from c(),c() was called from d(), and d() was called from main(). The optimization is to expandb() inline, so b() has no stack frame in the optimized version. A call-stack trace that reliessolely on information in the call stack will not provide expected behavior. b() will notappear in the call-stack trace, which will suggest that a() was called from c() rather thanfrom b(), and that b() is not active.Inlining is not a part of ANSI Standard C, so acc was not among the compilers surveyed.In the other cases, routine b was expanded inline by the compiler (or translator/compilerpair, in the case of CC/cc).� High C/mdb: I did not get to the point of requesting a call-stack trace, because with-g, b was not expanded inline, and without -g, I could not set the breakpoint viasource-level debugging (I could not set a breakpoint at a() by function name.)� CC/cc/dbx: b() does not appear in the call-stack trace.� CC/cc/gdb: b() does not appear in the call-stack trace.� gcc/dbx: b() does not appear in the call-stack trace.� gcc/gdb: b() does appear in the call-stack trace. Of the compiler/debugger pairssurveyed, this is the only one that provides expected behavior for its call-stack tracefacility.� Turbo C++/Turbo Debugger Neither b() nor c() appear in the call-stack trace.the call-stack trace suggests that a() was called from d(), and d() was called frommain(). The compiler optimizes the stack frame of d() as described in Part II of thiswork, causing the additional unexpected behavior in the call-stack trace.The Breakpoint and Data Display Facilities I surveyed the breakpoint and datadisplay facilities in the presence of constant and copy propagation and dead store eliminationvia the program shown in Figure 7.2. The optimized code generated from this program, foreach compiler, is shown (in source terms) in Figure 7.3. High C produces code equivalent tothat produced by acc, cc, and gcc when -O is speci�ed and -g is not. As mentioned above,when both are speci�ed, dead-store elimination is suppressed in order to allow debugger8By convention, -g is the ag passed to the compiler to cause it to produce debugging information and-O is the ag that enables optimization.

26 7. A Partial Survey of Today's Compilers and DebuggersHigh C acc, cc, gcc Turbo C2 int main(...) { int main(...) { int main(...) {6 x = atoi(argv[1]); x = atoi(argv[1]);8 printf("%dnn", x); printf("%dnn", x); printf("%dnn", atoi(argv[1]));10 x = 5;12 y = x;15 printf("y > 2"); printf("y > 2"); printf("y > 2");25 printf("not z"); printf("not z"); printf("not z");28 } } }Figure 7.3: Test Code with Constant Propagation, Copy Propagation, and DeadStore Eliminationusers to examine the values of variables. This has the advantage of aiding debugger usersand the disadvantage that the code runs slower and is not identical to the code producedwhen -g is not speci�ed.To investigate the breakpoint facility, I set a breakpoint at a line of code that waseliminated by optimization and ran the program. None of the debuggers surveyed providedexpected behavior. Truthful behavior requires the debugger to warn the user, at the pointthat a breakpoint is set at such a line, that the request cannot be honored as given, and todescribe the action taken (for example, that the breakpoint was actually set at some otherline).� High C/mdb: The breakpoint command was accepted with no suggestion that it wasnot possible to stop at the referenced line. The breakpoint was reached at a subsequentline (the syntactic breakpoint for the eliminated line), with a message displaying theline number of the line the program actually halted at.� acc/gdb: Because -O suppresses debugging information, my attempt to set a break-point at line 12 produced the message:No line 12 in file "const-prop.c"Attempts to set breakpoints at other lines produced similar messages. Because thesuppression of debugging information is silent, this was unexpected and misleading.� acc/dbx dbx exited immediately upon loading the compiled program, after producingthis message:warning: stab entry unrecognized: name ,ntype 62, desc 0, value 0warning: stab entry unrecognized: name ,ntype 38, desc 0, value 0warning: stab entry unrecognized: name ,ntype 38, desc 0, value 0warning: stab entry unrecognized: name Xt ; g ; O ; V=2.0,ntype 3c,desc 0, value 2bf5522ddbx: internal error: unexpected value 98 at line 2620 in file../common/object.c� cc: Because -g suppresses optimization, I was unable to test the source-level break-point facility of any debuggers with code compiled with cc. Because the suppressionof optimization is made explicit with a warning at compilation time, this was expectedand not misleading (though not helpful).

7. A Partial Survey of Today's Compilers and Debuggers 27� gcc/dbx, gcc/gdb: The breakpoint command was accepted with no suggestion thatit was not possible to stop at the referenced line. The breakpoint was reached ata subsequent line (the syntactic breakpoint for the eliminated line), with a messagedisplaying the line number of the line the program actually halted at.� Turbo C/Turbo Debugger Source lines that have executable code associated with themare shown in a di�erent color from lines that do not. An attempt to set a breakpointat a line that has no code associated with it has no e�ect (the lack of a stop-signglyph makes it clear that the attempt to set the breakpoint failed). Breakpoints canbe set at a line that has executable code associated with it, and the program halts atthat line. Of the compiler/debugger pairs surveyed, this is the only one that providestruthful behavior for its breakpoint facility.To investigate the data display facility, I ran the same program (giving it the argument8) past the point that the assignment to y should have taken place. I then attempted todisplay w, x, y, and z. Expected behavior would be to display whatever value happened tobe on the stack for w (we see that expected behavior is not always helpful either) and thevalues 5, 5, and 0, for x, y, and z, respectively. If data has been eliminated (as is the casefor most compilers in this instance), truthful behavior would be to say so.� acc/gdb: Because -O suppresses debugging information, my attempt to display w byname produced the message:No symbol "w" in current context.Attempts to display other variables produced similar messages. This would have beenunexpected and misleading, but I'd already failed to set breakpoints at the sourcelevel, which warned me.� acc/dbx No debugging could be attempted because dbx could not load the program.� cc: Because -g suppresses optimization, I was unable to test the source-level datadisplay facility of any debuggers with code compiled with cc.� gcc/dbx, gcc/gdb: gcc eliminated w, y, and z. Attempts to display them by nameproduced the message:"symbol name" is not definedfrom dbx and the message:No symbol "symbol name" in current context.from gdb. For both debuggers, my attempt to display x by name gave the value 8 (xis noncurrent). This is unexpected and misleading behavior.� Turbo C/Turbo Debugger Because copy propagation eliminated the use of x in line 8,the assignment to x was eliminated, thus Turbo C eliminated all four variables. At-tempts to display them by name produced a message saying that they were unavailablebecause optimization had eliminated them. This is truthful behavior.� High C/mdb: Because -g suppresses dead store elimination, all variables were availablefor display. The values given were 4055, 5, 5, and 0, for w, x, y, and z, respectively.This is expected behavior.Though far from an exhaustive test either in breadth (of compilers and debuggerssurveyed and facilities investigated) or depth (of optimizations performed), this brief surveygives a feel for how today's compilers and debuggers respond in the presence of optimization:� Some compiler/debugger pairs provided expected or truthful behavior for some ex-amined facilities.� Some compiler/debugger pairs did not provide expected or truthful behavior for anyexamined facilities.

28 7. A Partial Survey of Today's Compilers and Debuggers� No compiler/debugger pair provided expected or truthful behavior provided for allexamined facilities.It is also worth noting that neither expected nor truthful behavior always corresponds tothe most helpful behavior.

29
Part IIProducing an Accurate Call-Stack Trace in theOccasional Absence of Frame Pointers

8. Producing an Accurate Call-Stack Trace in the Occasional Absence of Frame Pointers 318 Producing an Accurate Call-Stack Trace in the Occasional Absenceof Frame PointersDebuggers have the capability of displaying the current execution context as a list ofactive routines and their arguments, in reverse order of invocation. Many terms have beenused to describe this list of active routines, including call-stack trace, stack trace, stackdump, procedure traceback and backtrace. I use the term call-stack trace in the face of alack of unanimity of usage.On architectures in which there is a stack pointer that is modi�ed in the process ofevaluating expressions, this facility relies on information provided by code within eachactive routine. If this code is eliminated due to optimization, the call-stack trace will containinaccurate and incomplete information, which may mislead the user. It would be preferableto provide either an admittedly incomplete stack trace containing only accurate informationor a stack trace that is identical to that which would be produced if the optimization hadnot been performed.Providing a call-stack trace requires the ability to locate the callers's stack frame andsymbol table information given the called routine's stack frame. Typically a call-stack tracedisplays the arguments of active routines but does not display local variables. A debuggermay also allow the user to change the apparent context of execution so that any chosenactive routine can be treated as the focus of debugging. The user can request the display ormodi�cation of arguments or local variables of the routine that is the focus of debugging.To ful�ll such requests, the debugger needs the same capability that it needs to provide acall-stack trace: the ability to locate the callers's stack frame and symbol table informationgiven the called routine's stack frame. Subsequently, only providing an accurate call-stacktrace is discussed. In particular, I do not further discuss the display of local variables.This problem has not been discussed in the literature. Zellweger [Zel84] provides asolution to the problem of providing an accurate call-stack trace in the presence of procedureintegration (inlining).I show how an optimizing compiler and interactive debugger can cooperate so thatthe debugger can provide an accurate call-stack trace while making subroutine calls asinexpensive as possible.9 The Call-Stack TraceIn order to provide a call-stack trace, a debugger uses information that is provided bythe standard code sequence that implements a subroutine call, termed the calling sequence.In the presence of an optimization of the calling sequence, some of the information currentlyused by debuggers will be missing, causing the debugger to provide an inaccurate call-stacktrace.TerminologyAt any point in an executing program, some sequence of routines is active. The namingconvention used within this paper for such a sequence is F0, F1, : : :, Fn where F0 is the�rst routine called and Fn is the currently executing routine. Thus for an arbitrary activeroutine Fi, its caller is Fi�1 and the active routine that it called is Fi+1.In the �gures, ip denotes the instruction pointer register, fp denotes the frame pointerregister, and sp denotes the stack pointer register,

32 9. The Call-Stack Trace9.1 The Calling SequenceIn a running program, the currently executing routine must have access to its arguments,the return address, local variables, and compiler temporaries. The standard method inmany of today's machine architectures for providing such access is to provide storage foreach active routine on a procedure call stack. The storage associated with the routine isknown as the routine's stack frame. A machine register contains a pointer to the base ofthe currently executing routine's stack frame, and the arguments and local variables areaccessed as o�sets from that pointer. The pointer is called the frame pointer, and themachine register that by convention contains the frame pointer is called the frame pointerregister (this name is sometimes shortened to frame pointer as well|context is used todistinguish the two).When one routine Fi�1 calls another routine Fi, Fi�1 (typically) pushes Fi's argumentson the stack. The call instruction itself pushes the return address on the stack. Code withinFi, called Fi's prologue, gets the machine ready for the body of Fi to execute. This includes(but is not limited to) making space for Fi's local variables and providing access to Fi'slocal variables and parameters. Access to Fi's local variables and parameters is providedby setting the frame pointer register to point to Fi's stack frame. However, after Fi hascompleted and control has been returned to Fi�1, the frame pointer register must containFi�1's frame pointer. Fi�1's frame pointer is therefore saved in Fi's stack frame prior tomodifying the frame pointer register to point to Fi's stack frame. Space for Fi's locals isallocated on the stack by adjusting the stack pointer. Immediately prior to returning, codewithin Fi pops Fi�1's frame pointer from the stack into the frame pointer register. SeeFigure 9.1 for an example of a standard calling sequence.9.2 Optimization of the Calling SequenceUnder some circumstances, the code that pushes Fi�1's frame pointer and sets the framepointer register to point to Fi's stack frame is unnecessary overhead and can be eliminated.Figure 9.2 gives an example of a calling sequence upon which this optimization has beenperformed. If Fi is optimized in this manner and Fi+1 is not, Fi+1 will save Fi�1's framepointer, not Fi's as in the unoptimized case. See Figure 9.3 for an example of such asituation.This optimization is possible when the frame pointer register is not used in Fi's code.This register is used for two purposes:1. to access Fi's arguments and local variables, and2. to restore the stack pointer to the position following Fi�1's return address (in prepa-ration for the execution of Fi's return instruction).Clearly, if Fi has no arguments or local variables, or has them but does not reference them,9it will not use its frame pointer for the �rst purpose. Even if Fi does reference its locals orarguments, a compiler often has enough information to reference them through the stackpointer rather than the frame pointer, although doing so may add to the complexity of thecompiler. In addition, a compiler often has enough information to restore the stack pointerto the position following Fi�1's return address without using the frame pointer. Correctcode for Fi can be produced without saving Fi�1's frame pointer unless at some instruction9A routine may have arguments and/or local variables but not access them due to carelessness, consistencyrequirements on a set of routines, or the use of stub routines during the development process.

9. The Call-Stack Trace 33Fi�2: ...Fi�1Fi�2
copy fp into sp
.Fi�1:Fi: arguments to Fi spfpretpop fp. . .add sp, < locals-size > Fi�2's frame pointerFi�1's local variablesFi�1's temporariesreturn address..copy sp into fppush fpip pop arguments. . .call Fi. . .push arguments

Fi�2:
add sp, < locals-size >pop argumentspush arguments ...Fi�2

Fi
Fi�1 Fi�1's frame pointer

Fi�2's frame pointer
Fi's local variables
Fi�1's local variablesFi�1's temporariescopy fp into sp arguments to FiFi�1: .push fp. . ..Fi: .

. . .pop fpret. . .copy sp into fp. . .call Fi. . . return address
return address fpip sp

Just Before The Call

Completed Calling SequenceFigure 9.1: Unoptimized Calling Sequencewithin Fi, Fi's frame is not constant in size across all calls to Fi. This is infrequent, buthappens if the stack is used for dynamic allocation or if the stack pointer is modi�ed alongone execution path but not along another.10 Note that the compiler cannot reference local10One way that the stack pointer can be modi�ed along one execution path but not along another is ifparameters are not popped immediately following a call (a routine may be called on one path and not onanother; its parameters a�ect the size of the stack). Another way is if storage for a (conditionally executed)

34 9. The Call-Stack TraceFi�2: ..

add sp, < locals-size >call FiFi:sub sp, < locals-size >ip ret. . . sp

pop argumentsFi:ip . . .sub sp, < locals-size >add sp, < locals-size >. . .ret ..
..

return address fpreturn address...
.. . .. return addressFi�1's temporariesFi�1's local variables fpspJust Before The CallFi�2's frame pointer

Fi�1:
Fi�1: call Fi

Fi�1's temporariesFi�1's local variablesFi�2's frame pointer.
Fi�1Fi�2
Fi�2Fi�1Fi

push arguments

Fi's local variablesarguments to Fipush argumentspop argumentsFi�2:
Completed Calling SequenceFigure 9.2: Optimized Calling Sequencevariables and arguments through the stack pointer in the same circumstances that it cannotrestore the stack pointer to the position following Fi�1's return address without using theframe pointer.Such optimization of a routine's prologue and epilogue is most commonly done forroutines that have neither parameters nor local variables, because less analyis is neededon the part of the compiler.local block is allocated when the block is entered but not deallocated when the block is exited. The stackpointer may not need to be adjusted for each such allocation or set of parameters because an unoptimizedprologue restores the stack pointer by setting it to the value in the frame-pointer register.

10. The Problem 359.3 Debugger Use of Frame PointersThe frame pointers that have been pushed onto the call stack by calling sequences forma linked list of pointers to active routine stack frames, with the value in the frame pointerregister heading the list. In the unoptimized case, this list contains a pointer to the frameof every active routine, and the frame-pointer register points to the frame of the currentlyexecuting routine. A pointer to a routine's frame can be used to locate and access itsarguments.Given an address within a routine, the debugger can �nd the name and parameter listof the routine by looking in the symbol table. The code address used to �nd the symboltable entry for the currently executing routine is the address in the instruction pointer whenthe breakpoint is reached.11 The code address used to �nd the symbol table entry for eachroutine Fi that is not currently executing is the return address stored in the stack frame ofroutine Fi+1.Let us consider in detail how the debugger will construct the call-stack trace. In followingthe general description given here, it may be helpful to refer to the example call stack inFigure 9.1. The debugger begins with the currently executing routine Fn. An addresswithin Fn is available from the instruction pointer. From that address, the parameter listand name of Fn are retrieved from the symbol table. The values of the arguments to Fnare available through the frame pointer register. They are displayed formatted accordingto the type information in the parameter list retrieved from the symbol table.The return address in Fn's stack frame is an address within the previously invokedroutine Fn�1. The debugger uses that address to retrieve the parameter list and nameof Fn�1 from the symbol table. The stored frame pointer in Fn's stack frame points toFn�1's stack frame. The values of the arguments to Fn�1 are retrieved by the debuggerthrough this stored frame pointer, formatted appropriately, and displayed. The debuggerrepeats this process, using information found in the stack frame of the just-displayed routineto display that routine's caller until all routines have been displayed. I will call this theFchain method.An algorithm to construct a call-stack trace using the Fchain method is given in Fig-ure 9.4.10 The ProblemIf one or more of the frame pointers have been optimized away, a debugger using theFchain method will construct a call-stack trace that is inaccurate. If a single frame pointer(for routine Fi) has been optimized away, the debugger will construct a call-stack tracethat associates Fi's name with the stack frame of Fi�1 (formatting the values found thereaccording to the symbol table entry for Fi), and neither Fi�1's name nor Fi's argumentswill appear. If the frame pointers for routines Fi through Fi+j have been optimized away,the debugger will construct a call-stack trace that associates Fi+j 's name with the stackframe of Fi�1 and no information about Fi through Fi+j�1 will appear. Figure 9.3 shows acall stack containing four active routines, one of which has had this optimization performedon it. The call-stack trace produced by the Fchain method on this call stack is:11A debugger saves the values that are in the machine registers when it takes control at a breakpoint, thuswhen we use the terms \instruction pointer", \frame pointer register", and \stack pointer register" we areactually referring to the debugger's copy of the values that were in these registers when the breakpoint wasreached.

36 11. Solutions
F2's local variablesarguments to F2F1F0 F1's temporaries.

. F0's frame pointerarguments to F1
F3:F2:
F1:F0:
...

return addressF1's local variables..

ip
.....

...

spfp
return addressreturn addressarguments to F3F1's frame pointerF2's temporariesF3's local variablesF3's temporaries

F2F3Figure 9.3: Optimized Call-StackF3's name(F3's arguments)F2's name(garbage)F0's name(F0's arguments)Although four routines are active, the call-stack trace contains only three entries, one ofwhich is inaccurate.11 SolutionsThe general approach to the problem is to have the debugger use an alternative methodof constructing the call-stack trace that does not rely on the frame pointers in the call stack.Several solutions are presented.

11. Solutions 37Figure 9.4: Debugger Algorithm to Display a Call-Stack Traceusing the Fchain MethodIn the following algorithm, ip is the instruction pointer register, fp is the framepointer register, and we assume the debugger has the following routines availableto it:� get-symbol-table-information, which takes a code address and determineswhich symbol table entry corresponds to the routine containing that address,then returns the name and parameter type list from the symbol table entry,� display-routine-entry, which takes a routine name, a parameter type list, anda frame pointer, and �nds the arguments in the stack frame pointed to bythe frame pointer, formats them according to the type list, and displays theroutine name and appropriately formatted arguments,� get-return-address, which takes a frame pointer and returns the return addressthat is stored in the stack frame pointed to by that frame pointer, and� get-frame-pointer, which takes a frame pointer and returns the frame pointerthat is stored in the stack frame pointed to by that frame pointer.The termination condition given here is when the \main" routine (the entry point ofthe user's code) has been displayed. This is somewhat arbitrary; actual terminationconditions are system dependent.Algorithm Fchain-Call-Trace:routine-address ipframe-pointer fprepeatname, parameter-types get-symbol-table-information(routine-address)display-routine-entry(name, parameter-types, frame-pointer)routine-address get-return-address(frame-pointer)frame-pointer get-frame-pointer(frame-pointer)until name = \main"11.1 The Debugger Maintains Its Own Frame PointersThe debugger can maintain its own copy of the information that it currently gets from thecall stack. The debugger can use invisible breakpoints [Zel84] or program patching [CT93],[BK92], [CH91], [Kes90] to collect the information. An invisible breakpoint is a breakpointat which the debugger halts the executing program, takes some action, and continuesexecution without ever giving control to the user. Program patching can accomplish thesame result without the high cost of context switches between the executing program andthe debugger. Simply put, the debugger inserts code into the program to take the desiredaction at the desired points. The information must be maintained in the data-space ofthe executing program. While program patching is a general technique applicable beyonddebugging, its use here is limited to implementing fast invisible breakpoints. Therefore Iuse the terminology `invisible breakpoint'.As we have seen, in order to construct the call-stack trace, the debugger needs for eachroutine F :� an address of some instruction within F , which it uses to locate the symbol tableentry for F , and� a pointer to the base of F 's stack frame, where it �nds F 's arguments.

38 11. SolutionsRecall that the �rst instruction in a routine's prologue pushes the caller's frame pointerinto the current stack frame (following the return address). Once that push has occurred,the stack pointer register points to the location that by convention is considered the base ofthe routine's stack frame. If the debugger were to take control immediately after the �rstinstruction in the prologue, it could make a copy of the value in the stack pointer register,which would give it a pointer to the base of the stack frame, and it could make a copy of thevalue in the instruction pointer register, which would give it an address of an instructionwithin the routine. By setting an invisible breakpoint at the second instruction in eachroutine, the debugger can get the information that it needs for a call-stack trace.Note that if the debugger set its invisible breakpoint at the �rst instruction in theprologue, it can still get the information that it needs for the call-stack trace. As in theabove case, the instruction pointer contains an address within the routine. The stack pointerregister contains at this point a value that must be o�set by the size of the frame pointerthat is about to be pushed in order to get a pointer to the base of the stack frame.This scenario assumes an unoptimized stack frame. We are interested in the optimizedcase, when the push of the caller's frame pointer into the stack frame does not occur.However, we have just seen that the debugger can get the information it needs by settingits invisible breakpoint at the �rst instruction in the prologue. Since the debugger canget this information before the instruction executes, it clearly doesn't matter whether thatinstruction saves the caller's frame pointer.The debugger must set a breakpoint at the �rst instruction of every routine. Each timea routine is called, the debugger copies two pieces of information into its own workspace.12It uses this information rather than the information that may (not) be stored in the callstack to construct the call-stack trace.Clearly, for this to be correct, the debugger must also set an invisible breakpoint at thereturn instruction of every routine so that it can remove the information for the about-to-return routine from its workspace|otherwise, it would be maintaining not a call-stacktrace, but a subroutine-call history. That is, the debugger must store this information in astack of its own, pushing when a routine is called and popping when the routine returns. Icall the debugger's stack the dstack. Assuming the debugger correctly maintains its dstack,it can use the information therein just as it would have used the corresponding informationthat it would �nd in the program's call stack, to examine the symbol table and to accessparameters and local variables. We will call this the Dstack method.The locations at which invisible breakpoints must be set are call and return instructions.The locations of the call instructions are available from the symbol table. Either additionalcompiler support is needed to ensure that the locations of the return instructions are alsoplaced in the symbol table or the debugger must scan the executable and locate them beforeexecuting the program.In today's most common software production environments, using the debugger involvesexplicitly invoking the debugger before running the to-be-debugged program|all debuggingis expected debugging activity [Zel84]. In a growing number of software production envi-ronments, the debugger is always available and the program need not be restarted to bedebugged. In such an environment, unexpected debugging activity is possible|for example,a program trap or user interrupt may invoke the debugger on a running program. In this12If invisible breakpoints are implemented with program patching technology, this workspace must be inthe address space of the executing program.

11. Solutions 39case, the dstack has not been maintained and a stack trace may be inaccurate. It wouldnot make sense for the Dstack method to be employed by default in such an environment,because although it would provide for an accurate stack trace in the case of unexpecteddebugging activity, the overhead cost would be greater than the savings from the originaloptimization. In such an environment, the user should be given a choice between restart-ing the program with the Dstack method enabled, or enabling the Dstack method at thetime the debugging activity begins. In the latter case, a stack trace would be accurate forsubroutines called subsequently, but might be inaccurate for those already on the stack.11.2 A Cheaper Method: The Debugger Maintains Only the MissingFrame PointersSubroutine calls are extremely common. The Dstack method has a considerable amountof overhead with two invisible breakpoints per call. If setting the invisible breakpointsinvolves context switches between the executing program and the debugger, this wouldbe an untenable amount of overhead. If the invisible breakpoints are implemented withprogram patches, the overhead is two very small subroutine calls for each existing call inthe program. The Dstack method and the Fchain method can be combined to lower theoverhead. The dstack is entirely redundant if the frame pointer is set up by every routine. Itis partially redundant if the frame pointer is optimized away by some routines. Redundancycan be limited by only creating entries in the dstack for routines that do not set up a framepointer. The compiler can tell the debugger which routines set up frame pointers. Thesymbol table entry for a routine must be extended to include a �eld with a boolean entryrecording the presence or absence of a frame pointer. There is now overhead of two invisiblebreakpoints per call only for those routines that do not use a frame pointer.Even so, the dstack remains partially redundant. It contains only frame-pointers thatare not present in the call stack. But each dstack entry also contains an address. Theaddress in the entry for Fi is redundant with the return address which has been placed inthe stack frame of Fi+1 by the call instruction. The dstack can therefore be simpli�ed tocontain only frame pointers. I will call this the Dstack/Fchain method.Consider how the debugger will construct the call-stack trace given an optimized callstack and a dstack. The basic di�erence is where a pointer to the stack frame of each routineis found. Note that the frame pointers stored in the call stack still form a linked list, butnow they chain only stack frames of routines that use frame pointers. If Fi uses a framepointer (indicated by Fi's symbol table entry), then either the frame pointer register or theframe pointer in the stack frame of subsequently called active routine Fi+j points to Fi'sstack frame, where Fi+j is the next routine that uses a frame pointer. If Fi does not use aframe pointer, then the dstack contains a pointer to its stack frame.An algorithm to construct a call-stack trace for an optimized call stack using theDstack/Fchain method is given in Figure 11.1.11.3 Non-Local GotosCommonly used procedural languages provide some form of jump from the middle of aroutine to the middle of some other previously invoked active routine, a jump that is notsimply a return to the calling routine. Sometimes this is provided in the language as partof the goto facility (as in Pascal), and it is from there that the name non-local goto was

40 11. SolutionsAlgorithm Dstack/Fchain-Call-Trace:routine-address ipcall-stack-frame-pointer fptemp-dstack dstack // copy dstack so pops are not destructivedstack-frame-pointer pop(temp-dstack)repeatname, parameter-types get-symbol-table-information(routine-address)if (uses-frame-pointer(routine-address))frame-pointer call-stack-frame-pointercall-stack-frame-pointer get-frame-pointer(frame-pointer)else frame-pointer dstack-frame-pointerdstack-frame-pointer pop(temp-dstack)display-routine-entry(name, parameter-types, frame-pointer)routine-address get-return-address(frame-pointer)until name = \main"Figure 11.1: Algorithm to Display a Call-Stack Tracein the Occasional Absence of Frame Pointers using theDstack/Fchain Methodcoined|it is a goto whose target is not local to the routine that the goto is in. In otherlanguages, library routines perform the same function (e.g., in C, setjmp and longjmp).Other languages provide some form of exception handling, which can have the same e�ect.Any of these forms of non-local goto cause di�culties for the Dstack and Dstack/Fchainmethods. In order to maintain correctness in its dstack, the debugger must reach invisiblebreakpoints at both the beginning and the end of each routine that does not set up aframe pointer. If a non-local goto occurs, the end of such an active routine may never beencountered, since the routine does not perform a normal return. Instead, the return isperformed for it by restoring the machine to an earlier saved state. There is a problem if aroutine Fi that does not set up a frame pointer has been called and has not returned, and thetarget of the goto is code in a routine Fi�j called earlier than Fi. Fi will not return normally,the invisible breakpoint at Fi's return statement will not be reached, and the debugger willnot pop its entry for Fi from the dstack. Let us assume there is a routine Fi�j�k that wascalled earlier than Fi�j (thus is active after the non-local goto) and Fi�j�k does not set upa frame pointer. After the non-local goto, the debugger is asked for a call-stack trace. Anexample of such a situation is shown in Figure 11.2. The debugger algorithm displays thecall-stack trace entries accurately until it attempts to display Fi�j�k . It determines fromthe symbol table entry for Fi�j�k that Fi�j�k has not set up a frame pointer, so it usesthe entry on the top of dstack to continue the construction of the call-stack trace. This, ofcourse, is the wrong entry|it is the entry for Fi. Two solutions to this problem are givenbelow.One Solution: Cleaning Up the DstackIf immediately after a non-local goto was executed the debugger took control, it couldremove any inappropriate entries from the top of the dstack. Any entry with a frame pointer

11. Solutions 41..
arguments to F4F4's local variables
F2's local variablesarguments to F2

F5F4
F3F2
F1F0

F4's temporariesF5's temporaries
F3's temporariesF2's temporaries
F5's local variables
F3's local variables

.

goto x:
x:

F3's frame pointer
F1's frame pointer
F0's frame pointer

arguments to F5
arguments to F3
arguments to F1

F5:F4:F3:F2:F1:F0:.

ip

F1's temporariesreturn addressreturn address
return addressreturn address
return addressF1's local variables..............

...

dstack
spfp

Figure 11.2: Call-Stack After Non-Local Gotopointing higher on the stack than the value in the stack-pointer register is an entry thatshould be removed, since such entries must be for routines that have \returned" via the non-local goto.13 The debugger must take this action right away, since subsequent subroutinecalls will cause the stack to grow.For languages like C, in which non-local gotos are implemented by library routines, thedebugger can set an invisible breakpoint at the library routine that implements the goto,13On many architectures the stack grows down, so higher on the stack may mean a lesser value in theframe pointer.

42 11. Solutionsand when it reaches such a breakpoint, the debugger can clean up the dstack. A similartechnique may work for languages with exception handling as well.Languages with direct jumps in the code require some work on the part of the compilerif the invisible breakpoint cleanup solution is to be used. The debugger must be told whereto set its invisible breakpoints, so the compiler must provide a list of such addresses to thedebugger.Another Solution: Leaving Redundancy in the DstackIn the Dstack method, because the dstack alone is used to construct call-stack traces,each entry must contain both a frame pointer and a code address. I noted above that whenboth the call stack and the dstack are used, the code addresses in the dstack are redundant.This redundancy can be exploited.In constructing a call-stack trace, when the debugger needs to use a dstack entry, italready has a code addressA within the routine that is to be displayed next (the code addressthat was the return address found in the stack frame of the routine that was previouslydisplayed). If the code address in the current dstack entry and A are not addresses withinthe same routine, the debugger can simply ignore the dstack entry and go on to the nextentry. Whenever the invisible breakpoint for the return of a routine that does not use aframe pointer is reached, all dstack entries must be popped until (and including) the entrywhose code address is in the same routine as the return instruction.14This scheme does not require that the debugger take control immediately after a non-local goto, and thus does not require any special e�ort on the part of the compiler. It doesincrease the expense of constructing a call-stack trace, since more code addresses must bematched with the routines that contain them.11.4 A \Free" Method: The Compiler Does the WorkCompile-time information can be used to solve this problem with no run-time overhead.I thank Dr. Polle Zellweger and an anonymous reviewer for the essential insight that thesize of the caller's stack frame at each call site can be recorded by the compiler and lookedup by the debugger.A routine may contain numerous calls to other routines. Assume routine A calls routinesB and C. The size of A's stack frame at the point of the call to B may di�er from the sizeof its stack frame at the point of the call to C. However, the size of A's stack frame at thepoint of the call to B may be the same every time A is active. If the size of a routine's frameis constant at the point that it makes a call, the size can be determined by the compiler.The return address stored in the stack frame of the called routine is a unique identi�er ofthe call. A table Fsize of <return address, size of caller's stack frame at point of call>pairs can be provided by a compiler. We can use such a table to compute the appropriateposition for each frame pointer without looking in the run-time stack (thus optimizationof the calling sequence does no harm). Assuming a lookup function get-frame-size for thistable that takes a return address and returns the associated stack frame size, and function14If an invalid entry is on the top of the dstack when a call-stack trace is being constructed, it can bepopped from the dstack then. However, an entry may be buried on the dstack because subsequent to thenon-local goto other routines were called.

11. Solutions 43get-return-address as de�ned in Figure 9.4, the position FPi of the (logical) frame pointerfor the ith function on the stack can be determined by:FPi = FPi+1 � get-frame-size(get-return-address(FPi+1)) (11:1)The algorithm given in Figure 9.4 can be used to display the call-stack trace if functionget-frame-pointer is rede�ned to return FPi as de�ned in equation 11.1.15 No invisiblebreakpoints need to be set by the debugger. I call this the Fsize method. The Fsizemethodis elegant but incomplete:1. it fails for routines whose stack-frame size is not constant at the point of a call madeby the routine, and2. it fails if the return address of an active routine is not available. Once a frame pointer isavailable, the return address of all previously invoked routines can be found. However,if the routine that was executing when the debugger gained control (hereafter thecurrent routine) does not set up a frame pointer, the frame-pointer register cannotbe used to �nd the return address of its caller. That return address is present on thestack, but its location is not exactly identi�ed.When the Frame Size VariesIf the size of a routine's stack frame at the point of a particular call is not constant, thecompiler must save the caller's frame pointer, that is, it cannot perform the optimizationon the prologue and epilogue of the called function. The chain of frame pointers stored inthe stack can be used to locate stack frames of such routines while the Fsize table can beused to locate stack frames of routines that do not save the frame-pointer register. I callthis the Fsize/Fchain method, and it is the solution that I implemented.An algorithm to construct a call-stack trace for an optimized call stack using theFsize/Fchain method is given in Figure 11.3.When the Current Routine Has No Frame PointerIf the current routine does not set up a frame pointer, the location of the return addressof its caller is not exactly identi�ed. One option is to search the stack for the return address.The search is bounded on one side by the value in the stack pointer register and on theother by the value in the frame pointer register. The stack search may be complex (it mayhave to be done more than once, starting at di�erent alignments), but the return addressis guaranteed to be on the stack. There is a chance of �nding a value in the stack thatmatches an Fsize return-address entry but is not the caller's return address. This chance isprobably fairly small (unless the program is a compiler or debugger), but is nonzero. Theprobability of such an error can be decreased considerably by checking the consistency ofthe resulting stack trace. In a consistent stack trace, the return address of the entry forfunction Fi points to an instruction following a call to Fi. If a consistent stack trace that15The problem would be much simpler if the size of A's stack frame were identical for all calls madeby A. The stack-frame size could be included in A's symbol table entry, eliminating the need for Fsize.Unfortunately, if the stack pointer is used to reference temporaries, �xing the stack frame size would requiremodi�cation of the stack pointer prior to and following calls, which would cost more than is saved byoptimizing the calling sequence. However, in some architectures, such as Mips, the stack pointer is not usedin this manner, and this approach is taken [Cor91].

44 12. ImplementationAlgorithm Fsize/Fchain-Call-Trace:routine-address ipcall-stack-frame-pointer fprepeatname, parameter-types get-symbol-table-information(routine-address)if (uses-frame-pointer(routine-address))frame-pointer call-stack-frame-pointercall-stack-frame-pointer get-frame-pointer(frame-pointer)else frame-pointer frame-pointer - get-frame-size(get-return-address(frame-pointer))display-routine-entry(name, parameter-types, frame-pointer)routine-address get-return-address(frame-pointer)until name = \main"Figure 11.3: Algorithm to Display a Call-Stack Trace in theOccasional Absence of Frame Pointers using the Fsize/FchainMethodaccounts for the entire stack cannot be constructed starting with a potential return addressfound during a search of the stack, that potential return address is discarded and the searchcontinues.12 ImplementationI have a prototype implementation of the Fsize/Fchain method using MetaWare Incor-porated's High C compiler and The Free Software Foundation's gdb debugger, running onan MC68000 based Sun workstation.Compiler modi�cations involved adding approximately 50 lines of code spread acrossseven source �les, none of it inside loops. The `pushes fp' bit was integrated into theexisting symbol table format at no space cost. Fsize takes eight bytes per call (four bytesfor the return address, four bytes for the frame size) plus four bytes per �le (to record thenumber of entries). One Fsize table per source �le is written to the program's data spaceas static data and a dbx stab is used to allow the debugger to locate the beginning of eachtable.I used compiler benchmarks to compare compilation times and object module sizes forthe Fchain and Fsize/Fchainmethods. Table 12.1 gives the time to compile one benchmarkprogram consisting of 13,511 lines of C code (in 44 source �les), using each method. Thetable also gives the sum of the sizes of the object modules produced. For both compilationtime and object module size, the increase due to the Fsize/Fchain method is given as apercentage of the time or size associated with the Fchainmethod. Individual object-modulesize increases varied from less than one per cent to 34 per cent. No attempt was made tooptimize for space.1616There is considerable potential for space optimization in Fsize, at the cost of added complexity in readingthe table. The return address could be entered as an o�set from the function entry point. Typical stackframe sizes can be expressed in a few bits rather than four bytes. If Fsize were optimized for space, theFsize version could probably be implemented in half the space of our existing implementation.

13. Solution Summary and Comparison 45Total Compilation Time Sum of Object Module SizesFchain 804.3 seconds 490987Fsize/Fchain 825.4 seconds 589113increase 2.5 per cent 20 per centTable 12.1: Compilation times and object module sizes for the Fchain andFsize/Fchain methods. A compiler benchmark consisting of 44 source �les con-taining a total of 13,511 lines of C code was compiled.Debugger modi�cations involved adding approximately 150 lines of code spread across�ve source �les. The time the modi�ed debugger spent on call-stack traces was not percep-tibly di�erent from the time spent by an unmodi�ed debugger.13 Solution Summary and ComparisonThe enabling technology for producing an accurate call-stack trace in the occasionalabsence of frame pointers is either the dstack or Fsize. In this section we summarize andcompare the Dstack/Fchain and Fsize/Fchain methods. First we break the methods downby what is required of the compiler and debugger. We include the e�ect on the symboltable format, because it is often the limiting factor in what information is passed from thecompiler to the debugger.� Dstack/FchainThe debugger must be able to determine where the �rst instruction in each routine islocated, and where the routine exits (return instructions) are located. The debuggercould determine this information by scanning the executable code. This would slowdebugger start-up, but would allow this method to be used with no compiler support.We assume, however, that the task of producing this information would fall to thecompiler. In addition, the debugger must be able to determine whether a routine'sprologue pushes a copy of the frame pointer register. As before, while the debuggercould determine this information by scanning the executable code, we assume thatthe compiler will be responsible for supplying the information to the debugger.{ Symbol Table FormatThe symbol table already has a place for the location of the �rst instruction ina routine. It must be augmented to include the routine exit locations, and toinclude a `pushes fp' bit encoding whether a routine's prologue pushes a copy ofthe frame pointer register.{ CompilerThe compiler must set the `pushes fp' bit and record each routine exit locationin the augmented symbol table.{ DebuggerThe debugger must read the augmented symbol table and place invisible break-points at the entry and exit of each routine whose `pushes fp' bit is o�, priorto running the target program. On reaching an invisible breakpoint at routineentry, the debugger must push the stack pointer onto the dstack; on reaching an

46 13. Solution Summary and Comparisoninvisible breakpoint at routine exit, the debugger must pop the dstack. The de-bugger must use dstack entries to locate frames of these routines, and use framepointers saved in the call stack to locate frames of other routines.� Fsize/Fchain{ Symbol Table FormatThe symbol table must be augmented to include the Fsize table of <return ad-dress, framesize> tuples. It must also include the `pushes fp' bit in the entry fora routine, as above.{ CompilerFor each call, the compiler must record in Fsize the caller's framesize at the pointof the call instruction along with the address of the following instruction. Foreach routine, the compiler must set the `pushes fp' bit in the routine's symboltable entry.{ DebuggerThe debugger must use Fsize entries instead of frame pointers saved in the callstack to locate frames of routines whose `pushes fp' bit is o�. The debuggermust use frame pointers saved in the call stack to locate frames of other routines.Because Fsize is indexed by return addresses, if the current routine's `pushes fp'bit is o�, the debugger must either1. print its name only, warn the user that the stack trace may be incomplete,and provide a stack trace beginning with the routine whose frame is pointedto by the frame-pointer register, or2. search the stack for a return address that appears in the �rst �eld of someFsize entry; the debugger must use that Fsize entry to locate the currentroutine's stack frame, and if that entry does not give a consistent call-stacktrace, the search must be repeated.Next we summarize the advantages and disadvantages of these method relative to eachother.� Dstack/Fchain{ DisadvantagesThis method requires additional complexity in the debugger. If invisible break-points involve context switches, then when invisible breakpoints are set, theDstack method has an overhead of hundreds, perhaps thousands, of instructionsper call of routines that do not save frame pointers in their stack frame. If invisi-ble breakpoints do not involve context switches, then when invisible breakpointsare set, the Dstack method has an overhead of between ten and �fty instructionsper call of routines that do not save frame pointers in their stack frame. Wheninvisible breakpoints are not set, the Dstack method has no run-time overhead.The symbol table entry for every routine must be read, and the invisible break-points set, before the Dstack method can be used. This can cause a signi�cantdelay in debugger start-up. The location of routine exits must be available tothe debugger. This either adds to the complexity of the symbol table and thecompiler and to the size of the object modules and executable (typically 4 bytesper routine for the routine exit and one `pushes fp' bit per routine) or adds tothe start-up time and complexity of the debugger.

13. Solution Summary and Comparison 47{ AdvantagesThe Dstack/Fchain method can be implemented in a debugger without a depen-dence on compiler support. It can always provide an accurate call-stack trace.� Fsize/Fchain{ DisadvantagesThis method requires additional complexity in the symbol table, the compiler,and the debugger. The size of the object modules and executable increasessigni�cantly. Compilation time increases a little, as does the time required toread the symbol table. In the case that the current routine does not save theframe-pointer register, the method is either incomplete or may be inaccurate.{ AdvantagesThe time cost to the debugger of a larger symbol table is more than o�set bythe ability to read the table on demand: unlike the Dstack/Fchain method, theFsize/Fchain method only requires the symbol table entry for a routine to beread if the routine is active when the call-stack trace is performed. The methodhas no run-time overhead.The method used today by interactive debuggers to provide a call-stack trace relies on aframe pointer being set up within the stack frame of each active subroutine. I have describedseveral ways to support a debugger's call-stack trace facility in the circumstance that, dueto optimization, some routines do not set up a frame pointer. These methods vary in theircosts: there is a trade-o� between run-time overhead for the debugger and required symboltable and compiler support.

48 13. Solution Summary and Comparison

49
Part IIICurrency Determination

14. Introduction to Currency Determination 5114 Introduction to Currency DeterminationA source-level debugger should have the capability of setting a breakpoint in a programat the executable code location corresponding to a source statement. When a breakpoint atsome point P is reached, presumably the user wishes to examine the state of the program,often by querying the value of a variable V . Commonly available debuggers, upon receivingsuch a query, will display the value in V 's storage location. Unfortunately, this value maybe misleading due to optimization. For example, due to a code motion optimization, anassignment to V may have been done earlier than the source code would lead one to expect.Since one aspect of debugging is examining potential anomalies, the debugger user mayexpend time and e�ort attempting to determine why V contains the value that has beendisplayed when the source code suggests that V should contain some other value.Figure 14.1 is an example of such a situation caused by constant propagation followed bydead store elimination. Assume that the only use of x following the assignment of constantto x is the assignment of x to y. Constant propagation removes that use of x as shown inthe second column of the �gure. With that use eliminated, the assignment of constant tox may be eliminated as shown in the third column. If a breakpoint is reached anywherefollowing the eliminated assignment to x and the debugger is asked to display the valueof x, typical debuggers will display expression. The user, looking at the original sourcecode, may be confused by the fact that the displayed value is not constant, or may believewrongly that the value being assigned to y is expression. At such a breakpoint, x is callednoncurrent [Hen82], and determining whether optimization has caused a variable's value tobe misleading is called currency determination. Some solution to the problem of currencydetermination is necessary for providing expected or truthful behavior.Optimization may also introduce confusion over where execution is suspended in theprogram being debugged. The straightforward mapping of statement boundaries ontomachine-code locations in unoptimized code is insu�cient for optimized code.The source-level debugger user probes the state of a halted executable while lookingat the source code from which it was compiled. Much of the user's activity consists ofinference based on the source code and the state information provided by the debugger.This state information includes the location at which execution is halted and the values ofvariables. One implicit assumption is that the value of each variable in the halted executablecorresponds one-to-one to the value that would be predicted by examining the source codeand knowing the relevant context, such as within which iteration of a loop execution issuspended. Another implicit assumption is that the location at which execution is haltedcorresponds to a location in the source code speci�ed by the user. These assumptions maybe violated by the presence of optimization, and the inferences that the user draws may beincorrect. Figure 14.1: Potentially Confusing OptimizationsOriginal Source Code After Constant Propagation After Dead-Store Eliminationx = expression; x = expression; x = expression;...x = constant; x = constant;...y = x; y = constant; y = constant;...

52 14. Introduction to Currency DeterminationSection 15 presents a mapping from statements to executable code that allows the userto break at a statement and step source statement by source statement in an optimizedprogram. Using this mapping, subsequent sections present a currency determination tech-nique to determine whether a variable has the value the user would expect when executionis suspended at one of these breakpoints. In response to a query about a variable V , thiswork enables a debugger to� display V 's value without comment if it can be determined that optimization has notgiven it a misleading value, or� display V 's value with a warning if optimization may have given it a misleading value.The warning can describe how the variable may have gotten the misleading value.The debugger can distinguish the cases in which V is known to have an unexpectedvalue from the cases in which (because of unknown control ow) it may or may not,and adjust the warning accordingly.

15. Breakpoint Model 5315 Breakpoint ModelIn an unoptimized translation of a program, code is generated for every source codestatement in the order in which it appears in the source code, and the code generated frommost statements is contiguous.17 It is possible to halt unoptimized code at a point thatcorresponds exactly to a statement boundary in the source code by halting at (before exe-cution of) the �rst instruction generated from the statement. When execution is suspendedat statement S in unoptimized code, all \previous" statements have completed, that is, allcode that was generated from statements on the path to S has been executed. No \subse-quent" statements have begun, that is, no code that was generated from any statement onthe path from S (including code generated from S itself) has been executed. Because of thestraightforward nature of the translation, the value in each variable's location matches thevalue of the variable that would be predicted by a close reading of the source code. Usersnot versed in optimizing technology expect these characteristics to hold when execution issuspended at a statement boundary.The state of a suspended program is the context in which debugging takes place, calledthe actual debugging context. In contrast, the expected debugging context is the state thatwould be predicted by an examination of the source code of a program suspended at anidenti�ed point. The actual debugging context matches the expected debugging context foran unoptimized program suspended at a statement boundary.15.1 Treatment of Program TrapsThe actual debugging context may not match the expected debugging context, even forunoptimized code, if the program halts on a non-statement boundary, which can happendue to a trap. A program may trap in the middle of an update to a variable, leaving thatvariable in a decidedly unexpected state. The most important piece of information when aprogram traps is \What statement caused the trap?", that is, which statement generatedthe instruction that trapped. This information can be provided by tagging each instructionwith a reference to the statement that generated it. This can be encoded in a table bylisting the address of the �rst instruction of each set of contiguous instructions generatedfrom a source statement with a reference to that source statement, thus the trap locationreporting problem can be solved by a simple extension of the line table currently emittedby most compilers. The remainder of this work considers programs that are suspended atsource-level user-speci�ed locations (breakpoints) only.15.2 Debugger Capabilities at a Breakpoint in Optimized CodeOptimization may well make it impractical to provide the user with the expected debug-ging context. Because code may be reordered or eliminated and the instructions generatedfrom a given source statement may not be contiguous, when execution is suspended atstatement S in optimized code, no matter what code location is chosen to represent S, some17Code generated from looping or branching statements is typically not contiguous. However, this lack ofcontiguity is present in the source code as well as the generated code. It can cause debugging anomalies inunoptimized code. For example, placing a breakpoint at a C for loop can cause several commonly availabledebuggers to either break once before loop entry or break each time through the loop, depending on thepresence or absence of initialization code.

54 15. Breakpoint Modelof the code from previous statements may not yet have been executed and some of the codefrom subsequent statements may have been executed early.The debugger user makes inferences based upon the source code and the state of thehalted program. This is problematic for debugging optimized code because the inferencesare also based upon the implicit assumption that the actual debugging context is equivalentto the expected debugging context.Of course, it is not possible to prevent a user from making invalid inferences, regardlessof the presence of optimization. The best the debugger can do is provide a means ofdetermining when optimization has broken an otherwise valid chain of inference, that is,when an inference that would be valid in the absence of optimization is invalid in its presence.To this end, the debugger acts satisfactorily upon optimized code if at a breakpoint it canreport the ways in which the actual debugging context di�ers from the expected debuggingcontext.At a breakpoint, the user should be informed of salient di�erences between the actualdebugging context and the expected debugging context. If the user asks to see the value of avariable, the debugger should o�er information as to whether its value would be misleading,and why. The user should be able to ask whether a given statement has been executed outof order, and if so, whether it has been executed early or will be executed late. Thesecapabilities allow the user the same power to probe the state of an optimized programat a breakpoint that is available currently for unoptimized programs, because they licensevalid inferences based on the source code and the state of the suspended program and theyprovide information that can be used to prevent invalid inferences.Only those e�ects of optimization that a�ect the validity of the user's inferences need tobe reported by the debugger. As noted by Coutant et al [CMR88], much of the optimizationperformed upon a program is irrelevant to the user. It is only optimization that a�ects user-visible entities, such as source code variables and statement ow-of-control, that the userneeds to be informed about. Informing the user of optimization on compiler temporaries islikely to make the debugging job harder, not easier. The same is true of optimization of codegenerated from the right-hand-side of assignments|the store of the result a�ects the stateof the program as seen from the source-level view, but how that result is computed doesnot a�ect the source-level view of program state. Similarly, optimization of an expressionwhose result determines the outcome of a conditional branch should be invisible to a userdebugging at the source level if the branch itself is una�ected.18 Many statements that startearlier in optimized code than in unoptimized code do so due to code motion of parts of thestatements (such as address computations) that are irrelevant to the user's inquiry. Thoughthe optimization of these statements does cause the actual debugging context to di�er fromthe expected debugging context, it does not invalidate user inferences, therefore it is notnecessary for the debugger to report that these statements have begun early. Statementsthat begin early due to source-level-invisible optimization but that otherwise exhibit nosource-level-visible e�ects from optimization are not considered to be executed out of order.18There are circumstances in which it is important for the debugger to reveal the e�ects of optimizationat this level of detail, such as allowing the user to track down a code-generation bug. In such circumstances,it is appropriate to shift to machine-level debugging.

15. Breakpoint Model 5515.3 Breakpoint Locations (Representative Instructions)Commonly, when setting a breakpoint on a statement, the debugger user wants tobreak exactly once each time the statement is executed at some location that correspondsto the statement boundary. This is problematic for optimized code, but not providingor closely approximating this capability puts a heavy burden on the user not well-versedin optimizer technology. The capability is necessary to support two common debuggingstrategies: running until a selected statement is reached, and stepping through the programstatement by statement.In Section 15.1's treatment of program traps, every instruction generated from a state-ment is associated with that statement. This is possible and appropriate because theprogram may trap at an arbitrary location that is mapped back to the source code. Abreakpoint is speci�ed in source terms and must be mapped onto the machine code. It isinappropriate to associate every instruction generated from a statement with that statementfor the purposes of setting breakpoints, because if the instructions are not contiguous, manybreakpoints may be reached for a single statement. In contrast, Streepy [Str91] and Brookset al [BHS92] describe a source-code/breakpoint-location mapping that allows breakpointsto be set at various levels of granularity, including expressions, basic blocks, and subrou-tines. In the debugger described by Streepy and by Brooks et al, when a statement isselected as the level of granularity, a breakpoint is set at the beginning of each sequence ofcontiguous instructions generated from the statement.Under the mapping described in this section, the instruction generated from a statementS that best corresponds to the statement boundary is selected to represent S, and is calledthe representative instruction for S. The address of this instruction is a breakpoint locationfor S.19 Where no confusion will result, the representative instruction itself may be referredto as the breakpoint location. The mapping described herein is not in conict with thatdescribed by Streepy [Str91]; each enables debugger capabilities missing from the other.This paper does not concern itself further with breakpoints for language entities other thanstatements, except to state that the results hold in the presence of such breakpoints.The choice of a machine instruction as the breakpoint location for a statement shouldbe based on why the user wants to break at that statement. It may be that the user setsa breakpoint at some statement within a loop because it looks like a convenient place tosee how the program state is changing on subsequent iterations of the loop. There maybe nothing about the chosen statement relevant to the user's purpose except its locationwithin the loop. If that statement were moved out of the loop by optimization, it would beappropriate to set the breakpoint where it used to be, so the breakpoint would be reachedeach time through the loop. On the other hand, the user may set a breakpoint at somestatement to check the values of variables used in an expression in that statement. In thatcase, if the statement were moved out of the loop by optimization, it would be appropriate19In the most common case, a single instruction will serve as the breakpoint location for a statement.Statements with multiple side e�ect on user variables will require multiple breakpoint locations, one for eachside e�ect. Optimizations that cause code duplication may require breakpoint location duplication as well|procedure integration (inlining), partial redundancy elimination, and loop unrolling are examples. Even inunoptimized code some statements may require more than a single instruction to represent their breakpointlocations. Loop constructs are an example. The appropriate location to break the �rst time (before the loopis entered) may be at a di�erent instruction than the appropriate location to break subsequently (each timethrough the loop).

56 15. Breakpoint Model
g

Unoptimized Syntactic BreakpointSemantic Breakpointwhile (condition) fa = 5;b = fcn();. . .g while (condition) fa = 5;b = fcn();. . .Optimized
Figure 15.1: Semantic and Syntactic Breakpoint Locationsto set the breakpoint where it ended up, so the values the debugger displays are the actualvalues used in the expression.Zellweger [Zel84] introduced the terms syntactic and semantic breakpoints. If no codemotion or elimination has occurred, these are identical. In the presence of code motion orelimination, the order in which syntactic breakpoints are reached reects the syntactic orderof source statements; the syntactic breakpoint for statement n is prior to or at the samelocation as the syntactic breakpoint for statement n + 1. It will be at the same location ifthe code for n is moved or eliminated. If the code generated from statement n is moved outof a loop, a syntactic breakpoint for n remains inside the loop.The semantic breakpoint location for a statement is the point at which the actionspeci�ed by the statement takes place. This does not preserve any particular order. Ifthe code generated from a statement is contiguous, the semantic breakpoint location is thelocation at which the code for the statement has ended up. If the code generated fromstatement S is discontiguous, the semantic breakpoint location is the location at which theinstruction chosen to represent S has ended up.Figure 15.1 provides an example of the syntactic and semantic breakpoints for a loopfrom which optimization has moved an invariant statement.The choice of a breakpoint location for a statement S a�ects the correspondence betweenthe actual debugging context and the expected debugging context considerably. Zellweger[Zel84] has a discussion of possible semantic breakpoint locations for statements whosegenerated code is discontiguous. The view taken in this work is that the best breakpointlocation for a programming language construct is the location that corresponds most closelyto the source level view of the program: the breakpoint location for a statement should bethe address of the instruction that most closely reects the e�ect of the statement on user-visible entities (program variables and control ow). For each construct in a programminglanguage, the breakpoint location (equivalently, the representative instruction) should bechosen appropriately.For statements involving program-variable updates, the instruction that stores into thevariable is the right choice. A \store" in this context need not be a store into a memorylocation. It can be a computation into a register, or a register copy, if that is the instructionthat implements the semantics of the source statement. This is illustrated by Figure 15.2,which gives a fragment of source code and an optimized sequence of instructions that couldresult. One might want to break at statement (2) and examine a. If the �rst instructiongenerated from a statement is the representative instruction for that statement, a breakpoint

15. Breakpoint Model 57
B2B1 store d R2mpy f R2load e R2store a R1add c R1load b R1(2) d = e * f;(1) a = b + c; Resulting Instruction SequenceSource Code

Figure 15.2: Breakpoint Location Choices for Statement (2)R1 = b + c * dUnoptimized Optimizedif (R1)a = x;e = a;elsee = -a;e = -a;elsee = a;if (b + c * d)a = x;Figure 15.3: The Branch is a Sequence Point for Dependencesat statement (2) would suspend execution at B1, resulting in examining a when it has not yethad b + c stored into it. If, instead, the store instruction is the representative instructionfor an assignment, the breakpoint will be reached at B2 and the store into a will haveoccurred. (Note that it may not be possible to choose a representative instruction forstatement (2) that gives expected results: for example, if the optimizer has reversed theorder of the stores into a and d, then either a or d will have an unexpected value.)For control-ow statements (branching or looping constructs), the instruction that ac-complishes the control transfer (typically a conditional branch) is the appropriate choice; itprovides a natural sequence point for program dependences. Consider the code fragment inFigure 15.3. The computation of (b + c * d) can be computed before the assignment intoa, however, the jump to the then or else case must follow the assignment if correctness isto be maintained.15.4 A Summary of the Proposed Breakpoint ModelA debugger may have the capability of suspending the execution of a program at anarbitrary instruction. The results described in the remainder of this paper hold not atarbitrary instructions but at syntactic breakpoints. The entire set of breakpoints (syntacticand semantic) is the set of representative instructions as described above: for a variablemodi�cation that appears in the source code, the store into the variable is the associ-ated breakpoint. An assignment that has side e�ects will have more than one associated

58 15. Breakpoint Modelbreakpoint. For branching and looping constructs, the branch instruction is the associatedbreakpoint. The C statementif ((i = j++) == k)has three representative instructions (and therefore three breakpoint locations), one at thestore into j, one at the store into i, and one at the branch to the then or else case.Choosing the store as the breakpoint location for variable modi�cations is crucial to thecorrectness of the work presented in the remainder of the paper. Additional breakpoints,such as those described by Streepy [Str91], could easily be incorporated into this model.The proposed breakpoint model supports both syntactic and semantic breakpoints.This does not increase the number of breakpoint locations, but it a�ects the mappingbetween source-level speci�cations of breakpoints and breakpoint locations. A source-levelspeci�cation of a breakpoint is a speci�cation of its type (syntactic or semantic) and areference to a statement or side e�ect within a statement. This work does not specify auser interface, so it does not describe the form of such a reference.20The remainder of this work addresses the problem of currency determination, assumingthe use of this breakpoint model, restricted to syntactic breakpoints. Section 25 discussesthe problems semantic breakpoints introduce for currency determination.

20An implementation could accept a statement reference (such as a line number) and set breakpoints atevery valid breakpoint contained therein. The user would not need to specify the type of breakpoint nor theside e�ect within a statement. However, for some statements the debugger would gain control more thanonce during the execution of the statement, and the location at which the debugger gains control may notbe the location the user expects. As always, the debugger should provide enough information that the useris not misled. The advantage of this scenario is that user that is naive about optimization can still use thedebugger e�ectively. The debugger could even gently educate the naive user about the di�erent types ofbreakpoints.

16. Currency 5916 CurrencyWhen the user asks the debugger to display the value of a variable, the user is misledif optimization has caused the value displayed to be di�erent from the value that would bepredicted by examining the source code.The actual value of a variable V when execution is suspended at a breakpoint is thevalue in V 's storage location. A variable's expected value when execution is suspended at abreakpoint is the value that would be predicted by examining the source code and knowingthe relevant context, such as within which iteration of a loop execution is suspended.Abstractly, this would-be-predicted value is the value that would be given to the variableif the program were running on a machine whose instruction set is the source language.In unoptimized code, at each breakpoint the expected value of every variable is identicalto its actual value. In optimized code, as we have seen, the actual value of a variable at somepoint may di�er from its expected value at that point. Hennessy [Hen82] introduced theterms current, noncurrent, and endangered to describe the relationship between a variable'sactual value and its expected value at a breakpoint. This relationship is described on thebasis of a static analysis, one that has no information about how the breakpoint was reached.Informally, a variable V is current at a breakpoint B if its actual value at B is guaranteedto be the same as its expected value at B no matter what path was taken to B. Examples ofcurrent variables are given in Figures 16.1 and 16.2. All examples use program ow graphs.Nodes in the ow graphs represent basic blocks and edges represent basic block connectivity.For clarity of exposition, the example graphs are minimal (for example, there is at mostone instruction within a basic block). The language of the examples includes assignment (a= x denotes the assignment of x into a) and a distinguished symbol bkpt which representsthe instruction at which the breakpoint has been reached. Assignment instructions withthe same right hand side assign the result of the equivalent computations into the lefthand side; this is how the relationship between assignments in the unoptimized code andassignments in the optimized code is shown. While a statement in a source language thatcorresponds to either an assignment or a breakpoint may compile to more than a singlemachine instruction, assignments and breakpoints appearing in ow graphs are referred toas instructions, because a single representative instruction is chosen for each statement.The examples should be understood as ow graph pieces that contain all the relevantinformation about a variable at a breakpoint. An example ow graph is representative ofthe family of ow graphs that contain the example graph with arbitrary other edges, nodes,and instructions, so long as these additional elements do not change which de�nitions ofshown variables reach shown points within the example graph.Figure 16.1 shows the simplest case of a variable that is current at a breakpoint. Thereis a single assignment into a prior to the breakpoint, and this assignment is una�ected byoptimization. There is only one way to reach bkpt in both versions of the program, and inboth versions, along the only path to bkpt, a receives its value from the same assignment.A variable may be current at a breakpoint even if optimization has a�ected assignmentsinto the variable. Figure 16.2 shows a case in which an assignment into a has been moved.Variable a is still current at bkpt, because the code motion has not changed the fact thatalong each path a receives its value from the same assignment in the unoptimized andoptimized versions of the program.V is noncurrent at B if its actual value at B may di�er from its expected value at Bno matter what path is taken to B (though the two values may happen to be the same

60 16. Currencya = xa = x OptimizedUnoptimized bkptbkptFigure 16.1: Variable a is current at bkptUnoptimized Optimized
bkptbkpta = x a = x a = ya = y

Figure 16.2: Variable a is current at bkpt in the presence of relevant optimizationa = x OptimizedUnoptimized bkptbkptFigure 16.3: Variable a is noncurrent at bkpton some particular input). Figure 16.3 is a simple example of a noncurrent variable, andcould be a result of dead store elimination. There is only one way to reach bkpt in bothversions of the program. There is a single assignment into a prior to the breakpoint in theunoptimized code, but in the optimized code there is no corresponding assignment into aalong the only path to bkpt.Code motion can also make a variable noncurrent. In Figure 16.4, the assignment into areaches bkpt in the unoptimized code but does not reach bkpt in the optimized code, thusa is noncurrent at bkpt. Clearly there is a corresponding situation in which the store into

16. Currency 61OptimizedUnoptimizedbkpt bkpta = x
a = x

Figure 16.4: Variable a is noncurrent at bkpt due to code motiona does not move but the breakpoint does. Motion of the breakpoint raises questions thatare explored in Section 25.V is endangered at B if there is at least one path to B along which V 's actual value atB may di�er from its expected value at B. Endangered includes noncurrent as a specialcase.In Figure 16.5, along the left-hand path the assignment into a that reaches bkpt in theunoptimized code corresponds to the assignment into a that reaches bkpt in the optimizedcode, but along the right-hand path this is not the case. a is endangered by virtue of theright-hand path, and is not noncurrent by virtue of the left-hand path.The use of the terms current and noncurrent extends to particular paths: in Figure 16.5,a is current along the left-hand path and noncurrent along the right-hand path. Whenexecution is suspended at bkpt during some particular run of the program, a is eithercurrent or noncurrent, depending on the path taken to bkpt. However, static analysiscannot determine which, because knowledge of the path taken is absent. A debugger that hasno access to execution history information can do no better than static analysis. Completeinformation about the execution path taken could be large, and collecting it could be invasiveand time consuming. An open problem, termed dynamic currency determination, is how adebugger can collect the minimal information needed to determine whether an endangeredvariable is current or noncurrent when execution is suspended at a breakpoint. This workassumes such information is unavailable to the debugger.In order to talk about V 's currency along a particular path, a path must be de�nedin such a way that it makes sense in both the unoptimized and optimized versions of theprogram, as optimization may modify the program's ow graph.De�nition 16.1: A path-pair p is a pair < pu; po > where pu is a path throughthe ow graph of an unoptimized version of a program and po is a path throughthe ow graph of an optimized version of the same program such that pu andpo are taken on the same set of inputs.Because a path describes an entire execution, call blocks are expanded. A call blocksappears on a path, followed by the blocks visited in the called subroutine, followed by thecall block's successor.

62 16. CurrencyOptimizedbkptbkptUnoptimizeda = x a = y a = xFigure 16.5: Variable a is endangered at bkptI have been using the term `unoptimized version' as if there were a canonical unoptimizedtranslation of a program, and similarly I have used the term `optimized version' as ifthere were a canonical optimized translation. Of course, there are no such canonicaltranslations. What is necessary is that there be a mapping between these `versions'.The nature of the mapping will be discussed in Section 17.3. For the purposes of thissection, simply assume all versions are produced by the same (correct) compiler, whichhas the same information available to it whether producing an unoptimized version or anoptimized version. An implementation would most likely use a single compilation to produceunoptimized intermediate code, providing all necessary knowledge about what I refer to asthe unoptimized version without actually generating machine code from it. It would thenoptimize that intermediate code to produce the optimized version.Parts of a path-pair are of interest, i.e., a path-pair to a breakpoint or a path-pair fromone point to another.De�nition 16.2: A path-pair p to a block B, where B is visited in both versions,is a sub-path-pair of a path-pair p0 where pu is a pre�x of p0u ending in anoccurrence of B and po is a pre�x of p0o ending in the same occurrence of B.De�nition 16.3: A path-pair p from block A to block B, where A and B arevisited in both versions, is a sub-path-pair of a path-pair p0 where pu is asubsequence of p0u starting at an occurrence of A and ending at an occurrenceof B and po is the subsequence of p0o starting at the same occurrence of A andending at the same occurrence of B.I speak loosely of a path-pair to a breakpoint, or a path-pair from one representativeinstruction to another. In these cases, I mean a path-pair to the block containing the break-point, or from the block containing one representative instruction to the block containingthe other.I have made a simplifying assumption that a variable resides in a single location through-out its lifetime. A discussion of the interplay between currency determination and multiplelocations appears in Section 26. Relaxing this assumption is a topic for future research.Both assignments to a variable and side e�ects on that variable modify the value stored inthat variable's location. These terms do not distinguish whether the source code or gener-ated code is under discussion. Furthermore, they do not distinguish between unoptimizedgenerated code and optimized generated code. These distinctions are needed in this workbecause it compares reaching de�nitions computed on unoptimized code with reaching de�-nitions computed on optimized code. Henceforth the term assignment refers to assignmentsand side e�ects in the source code.

16. Currency 63It is convenient to have a term de�nition that can denote either an assignment orits representative instruction in unoptimized code. This does not introduce ambiguitybecause either one identi�es the other, and the order of occurrence is the same in thesource code and unoptimized code generated from it. In contrast, the term store denotesa representative instruction for an assignment in optimized code. As with de�nitions, astore has a corresponding assignment, but unlike de�nitions, an assignment may have nocorresponding store, and the order of occurrence of stores in the machine code may di�erfrom the order of occurrence of assignments in the source code.An optimizing compiler may be able to determine that two assignments to a variable areequivalent and produce a single instance of generated code for the two of them, or it maygenerate multiple instances of generated code from a single assignment. Such optimizationsessentially make equivalent de�nitions (or stores) indistinguishable from one another. Wewill be concerned with determining whether a store that reaches a breakpoint was generatedfrom a de�nition that reaches the breakpoint. If de�nitions d and d0 are equivalent, andstore s was generated from d while s0 was generated from d0, the compiler is free to eliminates0 so long as s reaches all uses of d0. To account for this, s needs to be treated as if it wasgenerated from either d or d0.De�nition 16.4: A de�nition of V is an equivalence class of assignments toV occurring in the source code of a program that have been determined bya compiler to represent the same or equivalent computations, or the set ofrepresentative instructions generated from members of such an equivalence classin an unoptimized version of the program.De�nition 16.5: A store into V is the set of representative instructions occur-ring in an optimized version of a program that were generated from any memberof the equivalence class denoted by a de�nition.21We can now formally de�ne some of the terms described previously. The following de�-nitions assume that the breakpoint location is the same in the optimized and unoptimizedversion, that is, either that the representative instruction for the statement at which thebreakpoint is set has not been moved by optimization or that a syntactic breakpoint hasbeen speci�ed.The de�nition of current is complicated by the fact that an assignment through a pointer(or similar alias) must not kill previous assignments, because the pointer might not bepointing at the variable of interest. In the presence of aliases, a sequence of de�nitions of avariable V and a sequence of stores into V might reach a breakpoint B along a given pathp|this is treated in detail in Section 19. Only one de�nition (store) in the sequence is thelast to assign into V , but with static analysis it is not known which one, because it is notknown which pointer is an alias for V . If some de�nition through a pointer is an alias forV , the semantics of the program may require that some other de�nition through a pointeris also an alias for V (e.g., if the value of the pointer has not changed). Also, we assumethat on a given input, a pointer in the optimized version points to the same thing as thesame pointer in the unoptimized version. This implies that if some de�nition through apointer is an alias for V , the semantics of the program may require that some store througha pointer is also an alias for V .21A store is an equivalence class by the same equivalence relation applied to de�nitions (having beendetermined by a compiler to represent the same or equivalent computations).

64 16. CurrencyDe�nition 16.6: A de�nition d of V is turned o� if it is assumed not to be analias for V , and d is turned on if it is assumed to be an alias for V . If d is analias for V , all de�nitions and stores program semantics thereby require to bealiases for V are turned o� if and only if d is turned o�.A symmetric treatment of turned o� applies to stores, exchanging the roles ofde�nitions and stores above.The ith de�nition of V along a path is written di and the ith store into V along a pathis written si.De�nition 16.7: A store si quali�ed-reaches a point Bk with de�nition dj alonga path p to Bk if dj reaches Bk along p and if, when every dt, t > j, that followsd on p is turned o� (consequently turning o� other de�nitions and stores), andall other transparent de�nitions of V are on, si is the store that assigns into Valong p. A de�nition di quali�ed-reaches a point Bk with store sj along a path psimilarly, exchanging the roles of stores and de�nitions in the previous sentence.De�nition 16.8: In the absence of assignments through aliases: a variable Vis current at a breakpoint B along path-pair p i� the store into V that reachesB along po was generated from the de�nition of V that reaches B along pu.In the presence of assignments through aliases: V is current at a breakpoint Balong path-pair p i� for all instances of de�nitions dj and instances of stores sisuch that either si quali�ed-reaches B with dj or dj quali�ed-reaches B with sialong p, si is generated from dj .Clearly, assignments through aliases are a crucial part of most procedural programminglanguages. Because of the complexity they introduce, a treatment of currency determinationin their absence is given in Section 17, and throughout that section the simpler form of thede�nition can be assumed. The solution is then generalized to handle assignments throughaliases in Section 19.De�nition 16.9: V is endangered at B along p if it is not current at B alongp.De�nition 16.10: In the absence of assignments through aliases: V is noncur-rent at B along p i� no store into V that reaches B along po was generated froma de�nition of V that reaches B along pu.In the presence of assignments through aliases: V is noncurrent at B along p i�for all instances of de�nitions dj and instances of stores si such that either siquali�ed-reaches B with dj or dj quali�ed-reaches B with si along p, si is notgenerated from dj .De�nition 16.11: V is current at B i� V is current at B along each path-pairto B.De�nition 16.12: V is endangered at B i� it is endangered at B along at leastone path-pair to B.De�nition 16.13: V is noncurrent at B i� V is noncurrent at B along eachpath-pair to B.We turn now to how to determine which state of currency a variable is in at a breakpoint.

17. Currency Determination 6517 Currency DeterminationThis section describes how to determine a variable's currency at a breakpoint. Myapproach to currency determination involves solving a set of a dataow equations. Thisrequires control ow information and within-basic-block ordering information for de�nitionsin the unoptimized program, and the same information for stores in the optimized program.It also requires a mapping between the unoptimized and optimized control ow information.In this section, we assume that no aliasing is present in the program. This simpli�esthe presentation. One consequence of this assumption is that only one de�nition and onestore may reach a breakpoint along a single path. In Section 19 we present the mechanismsneeded to allow aliasing.Section 17.1 introduces paired reaching sets, which make up the data in the dataow com-putation. Section 17.2 discusses the data structure on which the computation is performed,and its relationship to the unoptimized and optimized versions of a program. Section 17.4discusses the aspects of the dataow computation that are particular to the problem ofcurrency determination, Section 17.5 gives an algorithm for computing paired reaching setsat block boundaries, Section 17.6 extends it to compute paired reaching sets at breakpoints,and Section 17.7 describes how the results are used to determine the currency of a variable.Appendices B and C.1 o�er proofs of the correctness of the work presented in this section.17.1 Paired Reaching SetsI have introduced the terms de�nition and store to distinguish an assignment occurring inthe source or unoptimized code from an assignment occurring in the optimized (or machine)code. I am now going to use de�nition/store pairs to convey some information about botha de�nition and the store generated from it.De�nition 17.1: A ds-pair is a pair (d; s), where d is a de�nition of a variableV and s is a store into V .Ds-pairs bear the same relation to the currency determination dataow computation thatde�nitions bear to a standard reaching de�nitions computation. I allow `dotting into' a ds-pair: if P is the ds-pair (x; y), P:d is the de�nition element x and P:s is the store elementy, giving the tautologies (x; y):d= x and (x; y):s = y.Because both de�nitions and stores are represented, the set of ds-pairs that reaches abreakpoint provides complete information about what should reach and what does reachthe breakpoint. These sets are called Paired Reaching Sets: PRSVB is the set of ds-pairsrelevant to V that reach a breakpoint B. Loosely, (d; s) 2 PRSVB means d is a de�nition ofV that should reach B and s is a store into V that does reach B. More precisely, given ade�nition d of V and a store s into V , independent of whether s was generated from d, Iwill show that:� (d; s) 2 PRSVB means there is a path-pair p such that d reaches B along pu and sreaches B along po.I will also show how to compute PRSVB , and subsequently I will show that,� V is current at B i� 8(d; s) 2 PRSVB , s was generated from d;� V is endangered at B i� 9(d; s) 2 PRSVB such that s was not generated from d;� V is noncurrent at B i� 8(d; s) 2 PRSVB , s was not generated from d.

66 17. Currency DeterminationCaveat:An infeasible path in a ow graph is one that cannot be taken in any execution, anda feasible path is one that can be taken in some execution. Infeasible paths introduceconservative error under this currency determination technique. The claims I have just madehold for programs without infeasible paths. If (d; s) is in PRSVB by virtue of an infeasiblepath, and s was not generated from d, this technique will claim that V is endangered thoughit may be current. However, we can do no better than the compiler, and like the compiler,we must make the conservative assumption that all paths are feasible. More precisely:� V is current at B if 8(d; s) 2 PRSVB , s was generated from d;� V is endangered at B i� 9(d; s) 2 PRSVB such that s was not generated from d and(d; s) was placed into PRSVB by virtue of a feasible path-pair (an untestable condition);� V is noncurrent at B if 8(d; s) placed into PRSVB by virtue of a feasible path-pair, swas not generated from d.The claims are weaker, but in defense of the technique let me point out that the conservativeerror is in the data (which is the program), not in the modelling of the program or inthe currency determination algorithm. One could try to de�ne the weakness away byarguing that people cannot in all cases distinguish feasible paths from infeasible paths, sothe formalization of human expectation in the terms current, endangered, and noncurrentshould not distinguish them either. Rather than de�ne it away, I will ignore it, stickingwith the original formulation of the claims, with the understanding that the results may beconservative when infeasible paths contribute to them.17.2 The Flow Graph Data StructureThe relationship between the optimized and unoptimized code must be captured ina data structure that can be used by the currency determination algorithm. It may bepossible to perform currency determination using information produced by a compilerabout an unoptimized version of a program and information produced by a (possiblydi�erent) compiler about an optimized version of the same program. We assume thatthe information used to do currency determination on a compilation unit is produced ina single compilation. Also, information about the unoptimized version of the program istaken from the compiler's intermediate representation of the program prior to the optimizingphases (independent of whether code is generated for an unoptimized version), thus the fullfacilities of the compiler are available to produce information about the relationship betweenthe unoptimized `version' and the optimized version.Currency determination needs the following:� The assignments that constitute a de�nition,� the `generated from' relationship between de�nitions and stores (from these twopieces of information, the machine-code instructions that constitute a store can bedetermined);� the execution order of statements and side e�ects within a basic block, for blocks inboth the optimized and unoptimized versions, and� the correspondence between the ow graphs for each version.The particular encoding of the information is not important here. One possible encodingis described in Section 22. Here we assume that the �rst three items are available and discussthe fourth.

17. Currency Determination 67Some data structures must represent the ow graphs for each version and the correspon-dence between them. Hereafter, the term source ow graph, or simply source graph refersto the ow graph for the unoptimized version, and object ow graph, or object graph refersto the ow graph for the optimized version. DS-graph refers to the data structure used tomap between them, upon which the data ow computation is performed.The DS-graph construction is constrained such that a node in the DS-graph is derivedfrom a block in the source graph, from a block in the object graph, or from both. Theconstraints are described in Section 17.3. A node B in the DS-graph selects the block(s)it is derived from: B selects at most one basic block Bu in the source graph and B selectsat most one basic block Bo in the object graph. B contains ordering information aboutde�nitions occurring in Bu in a de�nition list. If no block Bu is selected, B contains anempty de�nition list. Similarly, B contains ordering information about stores occurringin Bo in a store list|if no block Bo is selected, B contains an empty store list. A pathp through the DS-graph selects pu where pu is the sequence of blocks in the source graphselected by the sequence of nodes in p, and p selects sequence po in the object graph similarly.We shall see that by DS-graph construction, pu forms a path through the source graph andpo forms a path through the object graph, and < pu; po > is a path-pair.The correspondence between blocks and edges in the source and object graph is imme-diate (represented by the identity mapping) when optimization has not caused the objectgraph to di�er in shape from the source graph. When optimization causes changes in theobject graph, these changes must be reected in the DS-graph.If (d; s) 2 PRSVB is to mean that there is a path-pair < pu; po > such that d reaches Balong pu and s reaches B along po, then the path through the DS-graph that caused (d; s)to be placed into PRSVB must select < pu; po >.A feasible path in the DS-graph is one that selects paths that can be taken in someexecution. The DS-graph will contain infeasible paths (i.e., paths that select path-pairsthrough which execution cannot proceed) if the object graph contains infeasible paths.These paths may contribute information that makes the results of currency determinationconservative, i.e., a variable may appear to be endangered due to an infeasible path, asdiscussed in Section 17.1. It would clearly be preferable to construct the DS-graph so thatit contains only feasible paths. Unfortunately, it is not possible in general to determinewhich paths through a ow graph are feasible.De�nition 17.2: A DS-graph is valid if and only if every path p through theDS-graph denotes a path-pair, that is, the pair of paths < pu; po > selected byp is a path pair, and every feasible path-pair is denoted by some path throughthe DS-graph.For the purposes of this discussion, we assume that for each node in the DS-graph,� there is a list of the de�nitions that are in the block in the source graph selectedby the node, in execution order. Because this list contains de�nitions, I call it thede�nition list. This is equivalent to a list of statements and side e�ects that appearin that block, in the order in which they appear in the source code.� there is a list of the stores that are in the block in the object graph selected by thenode, in execution order. Because this list contains stores, I call it the store list. Thisis again equivalent to a list of statements and side e�ects that appear in that block,but execution order in the optimized version is not equivalent to source order.

68 17. Currency DeterminationThe de�nition list must order de�nitions relative to possible breakpoint locations. Simi-larly, the store list must order stores relative to possible breakpoint locations. As discussedin Section 15.3 I believe that de�nitions and stores are appropriate breakpoint locationsfor assignments and side e�ects, and this work assumes that de�nitions, stores, and break-points have a uniform representation. If breakpoints at non-statement-level granularity(e.g., expressions or loops) are to be considered, or if a di�erent choice is made for therepresentative instruction for assignments and side e�ects, the algorithms presented herewill work properly assuming that the de�nition and store lists order de�nitions and storesrelative to whatever representative instructions are chosen as breakpoint locations. (Thechoice of representative instructions models the debugger user's expectation. No choice inoptimized code provides a perfect reection of the behavior of unoptimized code.)These assumptions guarantee that if a node appears in a path through the DS-graph,the code in the unoptimized version represented by that node is the code that would beexecuted (in proper order) if the block represented by that node were visited on that path,and we have the analogous guarantee relative to the optimized version.A node n in the DS-graph may select a block in one version that does not exist in theother version, in which case n does not select any block in the latter version. The DS-graphis constructed so that the appropriate list (de�nition or store) is empty for n. For example,if a loop pre-header were introduced by optimization, the DS-graph will have a node thatselects the pre-header in the object graph and does not select any block in the source graph.That node will have an empty de�nition list.Store lists reference a subset of instructions, with some additional information. In animplementation, the store lists could be contained in the object graph blocks rather thanin the DS-graph nodes. The de�nition lists must be kept in the DS-graph nodes becausesome optimizations require de�nition lists to be copied in such a way that each copy of ade�nition is in a distinct equivalence class. For simplicity of presentation, the discussionassumes that both de�nition and store lists reside in DS-graph nodes.17.3 Constraints on the DS-GraphThe DS-graph begins isomorphic to the source graph, with de�nition lists replacingthe code within blocks, and where each node selects the block it maps to. Before anyoptimizations change its shape, it is clearly valid.Some notation:V S is the set of vertices and ES is the set of edges in the source graph.V D is the set of vertices and ED is the set of edges in the DS-graph.V O is the set of vertices and EO is the set of edges in the object graph.DS-Graph Creation Rule:� A DS-graph is created before any optimization has been performed. At the same time,the object graph is created. The object graph is a copy of the source graph. For eachblock Bu in the source graph, a DS-graph node B is created such that B selects Buand Bo. The de�nition list for B is abstracted from the code in Bu and copied to thestore list for B. For each edge (hu; tu) 2 ES, edge (ho; to) is placed in EO. and edge(h; t) is placed in ED. The name of a block in the source graph is subscripted by uand the name of a block in the object graph is subscripted by o, thus Bo is a copy ofBu.

17. Currency Determination 69Any changes made to the shape of the ow graph by optimization are reected in changesto the shape of the DS-graph and are constrained by the graph transformations below, whichmaintain the validity of the DS-graph. The currency determination method presented inthis work applies only to optimizations that change the ow graph in a manner that can bemodelled by iterative application of these transformations. A transformation on the objectgraph and the accompanying transformation on the DS-graph are described together. Atransformation is applied to the DS-graph only when the accompanying transformation isapplied to the object graph, thus a transformation is applied only if it is semantically valid.Let Oi denote the object graph prior to a graph transformation, and Oi+1 denote thetransformed object graph. Let DSi denote the DS-graph prior to the graph transformation,and DSi+1 denote the transformed DS-graph. Let S denote the source graph, which isunchanged by transformations.A block boundary marker is a distinguished instruction used to represent a position inthe code stream. A block boundary marker may be selected by a node in the DS-graph, andis considered to be a block in the object graph. When two blocks A and B are coalesced, ablock boundary markerM is placed in the code stream of the resulting block C following thelast instruction from A and preceding the �rst instruction from B. Suppose A was selectedby node nA and B was selected by node nB prior to the coalescing of A and B. Subsequentto coalescing, C is selected by nA, and nA's store list comprises the instructions from thetop of C down to M . M is selected by nB , and nB 's store list comprises the instructionsfollowing M to the bottom of C (or to the next block boundary marker).Oselects is a set of functions from DS-graph nodes to object graph blocks that returnsthe block selected by the argument node. Each such function applies to a particular DS-graph and the corresponding object graph, and is indexed as DS and O are indexed.Thus Oselectsi(n) = no means that node n in DSi selects block no in Oi. Sselectsis similar but maps nodes to source graph blocks. Oselectsi+1(n) = Oselectsi(n) andSselectsi+1(n) = Sselectsi(n) unless explicitly changed. For clarity, nodes or blocks createdduring transformations will be distinguished by an overbar (e.g., v).Some of the graph transformations copy nodes in the DS-graph when at �rst glance itseems unnecessary. The reason for these copies is that when transformations are composed,operations are done on all subpaths in the DS-graph that correspond to an edge in the objectgraph. If a node in the DS-graph were on more than one such subpath, the transformationscould not successfully be composed.Graph Transformations:1. Introducing a block.An example of this transformation is shown in Figure 17.1.The object graph transformation:A block is introduced between a complete bipartite subgraph of Oi with vertex setsHO (for Head) and TO (for Tail). It is typical (but not necessary) for either HO orTO to be a singleton set.22Let b be the block introduced by the transformation.Oi = (V O; EO), HO � V O, TO � V O, and HO \ TO = ;Del = f(h; t)jh 2 HO; t 2 TOg22If a single condition governs the exit of a basic block, TO can have cardinality at most two, since blocksin TO end up as successors of the introduced block.

70 17. Currency Determination1 1 24 4 5 53 21 23 4 5 1 24 52 23 4 46 6 6 65 5
1 1A nodeselects block j in S andblock k in Oi. in DSikj 1 2

4 56
S DSn On

DSn+1 On+1
Figure 17.1: Graph Transformation 1: introducing a block. In the object graph,a block is introduced between a complete bipartite subgraph. In DSn, there is apath corresponding to each edge deleted in the object graph transformation. Anode selecting the introduced block is added to the end of each such path.AddH = f(h; b)jh 2 HOgAddT = f(b; t)jt 2 TOgOi+1 = (V O [fbg; (EO �Del)[AddH [AddT)Maintaining the semantics of a program imposes the following constraint on thistransformation of the object graph: path pi is taken through Oi on input I if and onlyif path pi+1 is taken through Oi+1 on I , where pi+1 is derived from pi by replacingeach edge (h; t) where h 2 HO and t 2 TO with the subpath < h; b; t >.The DS-graph transformation:A subpath in the DS-graph may correspond to an edge in the object graph. Node n(selecting b) is introduced at the end of each such subpath.DSi = (V DS ; EDS)SubPaths = fsjs = <v1; v2; : : : ; as=vlength(s�1); bs=vlength(s)>; vj 2 V DS ;Oselectsi(v1) 2 HO;Oselectsi(bs) 2 TO; and Oselectsi(vk) = Null for 1 < k <length(s)gNewNodes = fnsjs 2 SubPathsgOselectsi+1(ns 2 NewNodes) = bSselectsi+1(ns 2 NewNodes) = Null

17. Currency Determination 71
kj

1 23 45 6 1 1 2 23 4 45 5 661 1 2 23 35 5 44 4 46 6
1 24 651 25 6A nodeblock k in Oi.

S DSn On
DSn+1 On+1in DSiselects block j in S andFigure 17.2: Graph Transformation 2: deleting a block. In the object graph,predecessors and successors of the deleted block form a complete bipartite subgraphin the resulting graph. In the DS-graph, one path is constructed for each edgeintroduced in the object graph transformation. Nodes are duplicated so that eachsuch path selects the requisite blocks in the source graph.DelEdges = f(as; bs)js 2 SubPathsgNewEdges = f(as; ns)j(as; bs) 2 DelEdgesg [f(ns; bs)j(as; bs) 2 DelEdgesgDSi+1 = (V DS [NewNodes; (EDS �DelEdges)[NewEdges)2. Deleting a block.An example of this transformation is shown in Figure 17.2.The object graph transformation:When a block is deleted, its predecessors and successors form a complete bipartitesubgraph in the resulting object graph. This is the inverse of the previous trans-formation. It is typical (but not necessary) for either HO or TO to be a singletonset.23Let b be the block deleted by the transformation.Oi = (V O; EO)HO = fhj(h; b) 2 EO and h 6= bgTO = ftj(b; t) 2 EO and t 6= bg23If a single condition governs the exit of a basic block, TO can have cardinality at most two, since blocksin TO are successors of the deleted block prior to the transformation.

72 17. Currency DeterminationDel = f(h; b)j(h; b)2 EOg [f(b; t)j(b; t)2 EOgAdd = f(h; t)jh 2 HO and t 2 TOgOi+1 = (V O � fbg; (EO�Del)[Add)Maintaining the semantics of a program imposes the following constraint on thistransformation of the object graph: if path pi is taken through Oi on input I , thenpath pi+1 is taken through Oi+1 on I , where pi+1 is derived from pi by replacing eachsubpath < h; b; t > with the subpath < h; t >.The DS-graph transformation:New paths are constructed in the DS-graph corresponding to the new edges in theobject graph. There may be nodes on the path from the node that selects a predecessorof the eliminated block to the node that selects a successor of the eliminated blockthat do not select any object blocks. These nodes, as well as the node that selectsthe eliminated block, are duplicated so that there is one copy for each new path.Unlike the transformations on the object graph, this DS-graph transformation is notthe inverse of the previous transformation.Let vs;j denote the jth node on subpath s.DSi = (V DS ; EDS)SubPaths = fsjs =< hs=vs;1; vs;2; : : : ; ts = vs;length(s) >;Oselectsi(hs) 2 HO;Oselectsi(ts) 2 TO; 9j such that 1 < j < length(s) and Oselectsi(vs;j) = b;and Oselectsi(vs;l) = Null for l 6= j and 1 < l < length(s)gDelNodes = fvs;j js 2 SubPaths and 1 < j < length(s)gNewNodes = fvs;j jvs;j 2 V DS ; s 2 SubPaths and 1 < j < length(s)g24Oselectsi+1(v 2 NewNodes) = NullSselectsi+1(v 2 NewNodes) = Sselectsi(v)DelEdges= feje is on some s 2 SubPathsgNewEdges= f(vs;j ; vs;j+1)jvs;j 2 V DS ; vs;j+1 2 V DS ; and s 2 Subpaths ;for 1 < j < length(s)g [f(hs; vs;2); (vs;length(s)�1; ts)js 2 SubpathsgDSi+1 = ((V DS �DelNodes)[NewNodes; (EDS �DelEdges)[NewEdges)3. Deleting an edge.An example of this transformation is shown in Figure 17.3.The object graph transformation:Let (h; t) be the edge deleted by the transformation.Oi = (V O; EO)Oi+1 = (V O; EO � f(h; t)g)Maintaining the semantics of a program imposes the following constraint on thistransformation of the object graph: there is no input that causes a path throughOi containing the subpath < ho; to > to be taken.The DS-graph transformation:When an edge is eliminated from the object graph, the corresponding edges are elim-inated from the DS-graph, and the closure of edges out of subsequentlysubsequent-lyreachable nodes are also eliminated from the DS-graph.24vs;j may be on more than one subpath in SubPaths. Thus vs;j = vs0;j0 does not imply that s = s0 orj = j0. However, a copy is made for each subpath in SubPaths, so vs;j = vs0;j0 does imply that s = s0 andj = j0.

17. Currency Determination 731 245 63
1 23 45 61 25 64
1 23 45 61 25 64

1 2
1 245 6

45 6A nodeselects block j in S andblock k in Oi. in DSikj
S DSn On

DSn+1 On+1
Figure 17.3: Graph Transformation 3: deleting an edge. An edge is deleted in theobject graph. Paths selecting that edge in DSn are deleted, and all edges out ofnodes that are subsequently unreachable are deleted.DSi = (V DS ; EDS)SubPaths = fsjs =< v1; v2; : : : ; vk >; vj 2 V DS ;Oselectsi(v1) = h;Oselectsi(vk) = t; and Oselectsi(vj) = Null for 1 < j < kgDelPaths = feje is on some s 2 SubPathsg�(X) = X [f(n; succ)j8(pred; n) 2 EDS; (pred; n) 2 XgDelEdges = the closure of DelPaths under �DSi+1 = (V DS ; EDS �DelEdges)4. Coalescing two blocks into a single block.An example of this transformation is shown in Figure 17.4.The object graph transformation:Let `j' be a code concatenation operator, Code be a function from blocks to the codethey contain, and M be a block boundary marker.Let h be the �rst of the to-be-coalesced blocks, and t be the second of the to-be-coalesced blocks: t is eliminated by the transformation.Oi = (V O; EO)Codei+1(h) = Codei(h)jM jCodei(t)Del = f(h; t)g [f(t; x)j(t; x) 2 EOg

74 17. Currency Determination
kj

123 4 12 123 3 4 412 13 3 4 4M 13 4(2) M
123 4

A nodeselects block j in S andblock k in Oi. in DSi
S DSn On

DSn+1 On+1
Figure 17.4: Graph Transformation 4: coalescing two blocks.Add = f(h; x)j(t; x)2 EOgOi+1 = (V O � ftg; (EO �Del)[Add)Maintaining the semantics of a program imposes the following constraint on thistransformation of the object graph: there is no input that causes a path throughOi containing the subpath < h; x >, for x 6= t, to be taken, and there is no input thatcauses a path through Oi containing the subpath < x; t >, for x 6= h, to be taken.The DS-graph transformation:Without adding or removing any nodes or edges, modify the selection of nodes so thata path through the DS-graph selects the right path through the object graph.DSi = (V DS ; EDS)For t 2 V DS such that Oselectsi(t) = t, let Oselectsi+1(t) = MDSi+1 = (V DS ; EDS)5. Inlining a subroutine.An example of this transformation is shown in Figure 17.5.The object graph transformation:The object graph must model a call as a basic block, and this exposition assumes thatsubroutines have single exits.

17. Currency Determination 751 2 1 2call start
1 2

1
1

StartCall 1
1 2 2

22 Start
call1 call2 startstartA nodeselects block j in S andblock k in Oi. DSn+1 On+1Succ succ

succ
succCall Call Start

ExitCall callSucc
succexit Exit exitstart

Exit exit exitstart
startexitStartExitSucc exit

S DSn On
in DSikj

Figure 17.5: Graph Transformation 5: inlining a subroutine. The duplication ofthe call node is necessary to preserve DS-graph characteristics needed by othertransformations.Let start be the entry block of the subroutine being inlined, and exit be the exit blockof the subroutine. Let call be the block containing the call, and succ be the successorof call. Because a call comprises a block, there can be no conditional branch and thussucc is the only successor of call.25Oi = (V O; EO)Del = f(x; call)j(x; call)2 EOg [f(call; succ)gNewBlocks = fnjn = start, or n is reachable from startgAdd = f(h; t)jh 2 NewBlocks and t 2 NewBlocks and (h; t) 2 EOg [f(x; start)j(x; call) 2 EOg [f(exit; succ)gOi+1 = ((VO � fcallg)[NewBlocks; (EO �Del)[Add)The DS-graph transformation:Like the object graph transformation, the DS-graph transformation copies a subgraphand grafts it in the place of the call. Unlike the object graph transformation, the DS-graph transformation keeps a copy of the call node on each path that enters the inlinedroutine.25By transformation 4, call and succ could be coalesced. We can assume that call blocks and theirsuccessors are not coalesced prior to inlining the call, because the compiler would have to undo the coalescingin order to do the inlining. After inlining, of course, coalescing can take place.

76 17. Currency DeterminationUnlike the introduction of a new node in transformation 1, where the new node doesnot select a block in the source graph and has an empty de�nition list, a node createdby this transformation does select a block in the source graph, and has the de�nitionlist of that block, modi�ed so that a copied de�nition is not in the same equivalenceclass as the original.Let Start be the entry node of the subroutine being inlined, and Exit be the exitnode of the subroutine. Let Call be the node containing the call, and Succ be the(sole) successor of Call.DSi = (V DS ; EDS)DelEdges= f(x; Call)j(x;Call) 2 EOg [f(Call; Succ)gInlinedNodes = fnjn = start, or n is reachable from StartgCallNodes = fCallij0 � i � the in-degree of CallgOselectsi+1(n 2 InlinedNodes) = Oselectsi(n)Oselectsi+1(Calli 2 CallNodes) = NullSselectsi+1(n 2 InlinedNodes) = Sselectsi(n)Sselectsi+1(n 2 CallNodes) = Sselectsi(Call)NewEdges= f(h; t)jh 2 InlinedNodes and t 2 InlinedNodes and (h; t) 2 EDSg [f(Exit; Succ)g [f(Calli; Start)jCalli 2 CallNodesg [f(x; Calli)jx is the ith predecessor of Call and Calli 2 CallNodesgDSi+1 = (V DS [CallNodes [InlinedNodes; (EDS �DelEdges)[NewEdges)6. Unrolling a loop.An example of this transformation is shown in Figure 17.6.The object graph transformation:This exposition assumes that loops are structured so that a loop has a single successorand that there are no jumps into the middle of a loop. The transformation can beextended to loop structures that do not conform to these constraints.Let a loop in the object graph be described by a set NLO of blocks with a fewdistinguished blocks: e is the loop entry and b is the bottom of the loop so that(b; e) is the back edge. All other blocks in NLO are within the loop. succ is the loopsuccessor. The loop is unrolled I times, requiring I copies of blocks in NLO ; these aredistinguished by superscripts.Oi = (V O; EO)NLO = the set of blocks in the loop, as described above.NewBlocks = fnijn 2 NLO and 0 < i � IgAdd = f(hi; succ)jhi 2 NewBlocks and h 2 NLO and (h; succ) 2 EOg [f(b; e1); (bI ; e)je1 2 NewBlocks and bI 2 NewBlocksg [f(bi; ei+1)j0 < i < I and bi 2 NewBlocks and ei+1 2 NewBlocksgg [f(hi; ti)jhi 2 NewBlocks and ti 2 NewBlocks and (h; t) 2 NLO and hi 6= bigOi+1 = (V O [NewBlocks; (EO � f(b; e)g)[Add)The DS-graph transformation:As with the object graph, when the loop is unrolled I times, I copies of the subgraphof the DS-graph comprising the loop are made.Unlike the introduction of a new node in transformation 1, where a new node doesnot select a block in the source graph and has an empty de�nition list, a node created

17. Currency Determination 77EBSucc ebEBSucc succ ebsuccebEBEBSucc succ
eb

succe1 e1b1 b1
A nodeselects block j in S andblock k in Oi. in DSikj

S DSn On
On+1DSn+1

Figure 17.6: Graph Transformation 6: unrolling a loop. The loop is unrolled oncehere. The unshown body of the loop may di�er between the source graph, objectgraph, and DS-graph due to previous tranformations, but varies between On andOn+1, and between DSn and DSn+1, only in the manner shown.

78 17. Currency Determinationby this transformation does select a block in the source graph, and has the de�nitionlist of that block, modi�ed so that a copied de�nition is not in the same equivalenceclass as the original.A loop in the DS-graph is derived from a loop in the object graph. It is nonethelessnecessary to name a few of the nodes within a loop: let E be the loop entry, B be thebottom node of the loop, and Succ be the loop successor.DSi = (V DS ; EDS)NLDS = fvj jvj 2 V DS , (< v0; v1; : : : ; vk > is a subpath in DSisuch that Oselectsi(v0) 2 NLO ;Oselectsi(vk) 2 NLO , andOselectsi(vl) = Null for 0 < l < k)g, and 0 � j � kNewNodes = fnijn 2 NLDS and 0 < i � IgTop = fEijE is the loop entry and 0 < i � IgBottom = fBijB is the bottom node of the loop and 0 < i � IgNewEdges= f(hi; Succ)jhi 2 NewNodes; h 2 NLDS , and (h; Succ) 2 EDSg [f(B;E1); (BI ; E)jE1 2 Top and BI 2 Bottomg [f(Bi; Ei+1)j0 < i < I; Bi 2 Bottom ; and Ei+1 2 Topg [f(hi; ti)jhi 2 NewNodes; ti 2 NewNodes ; (h; t) 2 NLDS ; and hi 6= BigOselectsi+1(n 2 NewNodes) = Oselectsi(n)Sselectsi+1(n 2 NewNodes) = Sselectsi(n)DSi+1 = (V DS [NewNodes; (EDS � f(B;E)g)[NewEdges)7. No optimization other than those described in one of the other object graph trans-formations may modify control ow in a way that changes which block is entered ona particular input. See Section 21 for a mechanism that may allow truthful (but notexpected) behavior in the presence of optimizations that violate this constraint.Given a valid DS-graph, if any of these modi�cations are performed, the result is avalid DS-graph. This is shown in Appendix B. For this currency determination techniqueto work, optimizations that modify the shape of the ow graph may do so only in waysallowed by these rules. Optimizations that change control ow are de�ned (by Rule 7) tomodify the shape of the ow graph. It follows that optimizations that do not modify theshape of the ow graph preserve the validity of the DS-graph.Many optimizations modify the ow graph only in ways that can be modelled by theseDS-graph modi�cations, but arbitrary optimization is not modelled. For example, recogniz-ing bubblesort in the unoptimized version and replacing it with quicksort in the optimizedversion clearly involves graph modi�cations beyond the scope of these transformations.Loop interchange is disallowed because it changes the order in which blocks are entered.Leaving such high-level optimization aside, consider simply adding an edge to the owgraph. This must be reected in the DS-graph, but an edge in the DS-graph denotespotential execution in both the optimized and unoptimized version. If an edge could beadded to the DS-graph arbitrarily, a path resulting from its introduction might selecta sequence of blocks in the source graph that is not a path through the source graph.Information about de�nitions that reach along such a path through the DS-graph would bewrong.The apparent introduction of such a new path by an optimization may be an artifactof how an optimization is modelled. For example, cross-jumping can be implemented byintroducing a jump. Assume blocks A and B share successors, that A contains the codesequence pq, and thatB contains the code sequence q. A jump toB can be inserted following

17. Currency Determination 79p in A. This could be modelled as eliminating q in A, deleting the original edges out of A,and adding an edge from A to B. It cannot be modelled that way by iterative application ofthe graph-modi�cation rules. It could also be modelled as introducing a new block C whosepredecessors are A and B and whose successors are the successors of A and B, and movingq into C (from both A and B). It can be modelled in this fashion by iterative applicationof the graph-modi�cation rules.26A valid DS-graph is the graph on which the dataow computation is performed. Weturn now to the nature of that computation.17.4 Dataow on DS-PairsThe Gen DS-PairAnalogous to the Gen set of standard data-ow algorithms, a Gen ds-pair containsinformation about what is generated in a block. In the absence of aliasing, there is exactlyone Gen ds-pair for a given variable in each block. The Gen ds-pair for a variable V and ablock B is written GenVB. GenVB is (d; s), where d is the last de�nition of V on B's de�nitionlist or null if there is none, and s is the last store into V on B's store list or null if there isnone.Only Gen ds-pairs may have null entries. Ds-pairs with null entries do not appear inthe In or Out sets of a block or in PRSVB .The � OperationIn a standard dataow computation, a de�nition in a block kills de�nitions (of thesame variable) that reach the entry of the block. In the currency determination dataowcomputation given in Algorithm PRS, de�nitions kill de�nitions, and stores kill stores. IfGenVB .d = d, ds-pairs reaching the exit of B contain d as their de�nition element. If GenVB .d= null, ds-pairs reaching the exit of B contain the same de�nition element they had at theentry of B. Stores are handled analogously. This is represented with the operator �:De�nition 17.3: (e; t) � (null; null) = (e; t)(e; t) � (d; null) = (d; t)(e; t) � (null; s) = (e; s)(e; t) � (d; s) = (d; s)The �[OperationMultiple ds-pairs may reach the entry of a block. The �[operation de�nes the ds-pairsthat reach the exit of a block, given all of the pairs that reach block entry. The �[operationtakes a set (the In set for a block) as its left operand, whereas the � operation takes a singleds-pair as its left operand. If the block generates both a store and a de�nition, its Out setwill contain the ds-pair consisting of that store and de�nition, and if it contains a null ineither position (or both), its Out set depends on the In set. Because every variable is de�ned26There is an independent argument for representing cross-jumping this way: B might contain the sequenceoq, requiring a jump from the middle of A to the middle of B. The second method of modelling cross-jumpingcan model this, the �rst cannot.

80 17. Currency Determinationto have an initial de�nition and store, propagation will eventually cause any reachable blockto have a nonempty In set.If the In set is empty, the Out set is the set of complete ds-pairs (those containing nonulls) in the Gen set, and if the In set is not empty, the Out set is the set of ds-pairsproduced by individual � operations between each ds-pair in R and the ds-pair S:De�nition 17.4: Complete(S) = (; if d = null or s = null(d; s) otherwiseDe�nition 17.5: R �[S = (Complete(S) if R = ;fr � Sjr 2 Rg otherwise17.5 Paired Reaching Sets at Block BoundariesAlgorithm PRS computes paired reaching sets at block boundaries for a DS-graphcomponent (a subroutine). A source node, Start, is grafted on to the component toprovide a place for initial de�nitions (d-init) and stores (s-init) representing the creationof variables. The algorithm consists of an initialization step and an iterative step. (Ifthe DS-graph component is a subroutine, line 1 of Initialize should set GenVStart to (d-incoming,s-incoming) when V is a parameter.)InitializeInput:a component of the DS-graph, modi�ed by the addition of a Start node;Output:the Gen sets of each variable for each block.Step 1:0 for each variable V1 GenVStart = (d-init; s-init)2 for each node B other than Start3 set GenVB :d to the last de�nition of V in the de�nition list of Bor to null if there is none4 set GenVB :s to the last store into V in the store list of Bor to null if there is noneEnd of InitializeIterateInput:a component of the DS-graph, modi�ed by the addition of a Start node,the Gen sets of each variable for each block;Output:the paired reaching sets of each variable at each block boundary.0 for each variable V1 for each block B2 InVB = OutVB = ;3 iteratively compute InVB and OutVB until convergence, according to the following,4 for each block B5 InVB = SP OutVP for P predecessors of B6 for each block B

17. Currency Determination 817 OutVB =InVB �[GenVBEnd of IterateAlgorithm PRSInput:a component of the DS-graph, modi�ed by the addition of a Start node,Output:the paired reaching sets of each variable at each block boundary.0 Initialize1 IterateEnd of Algorithm PRS17.6 Paired Reaching Sets at BreakpointsAlgorithm PRS provides In and Out sets at block boundaries. Our goal is to determinea variable's currency at a breakpoint, which may be in the middle of a block rather thanat a block boundary. The de�nitions of current, noncurrent, and endangered refer to `abreakpoint B' that lies on a path-pair. This is well-de�ned for syntactic breakpoints, but notfor semantic breakpoints whose representative instruction has been moved by optimization,so we compute paired reaching sets at syntactic breakpoints only. The consequences of thisare that a block containing the breakpoint is present in both the source and the objectgraphs, and the breakpoint is on both the de�nition list and the store list for some block inthe DS-graph. Note that for a syntactic breakpoint for a statement that has been moved oreliminated, the element on the store list representing the breakpoint is the representativeinstruction for a following statement.PRSVBk, the set of ds-pairs relevant to V that reach a breakpoint Bk, is derived fromthe In sets computed by Algorithm PRS.Initialize-BKInput:a variable V , a syntactic breakpoint Bk, and the node B containing Bk;Output:The Gen set of V for B at Bk;0 Set GenVBk:d to the last de�nition of V prior to Bk on B's de�nition list,or to null if there is none.1 Set GenVBk:s to the last store into V prior to Bk on B's store list,or to null if there is none.End of Initialize-BKAlgorithm PRS-BKInput:a variable V , a syntactic breakpoint Bk, the node B containing Bk, and InVB ;Output:The paired reaching set of V at Bk;0 Initialize-BK1 PRSVBk = InVB �[GenVBk

82 17. Currency DeterminationEnd of Algorithm PRS-BK17.7 A Variable's CurrencyThe contents of PRSVBk tell us V 's currency:Theorem 17.6: PRSVBk = ; i� either V is not in scope at Bk or Bk is unreach-able. Otherwise:V is current at Bk i� 8(d; s) 2 PRSVBk, s was generated from d;V is endangered at Bk i� 9(d; s) 2 PRSVBk such that s was not generated fromd;V is noncurrent at Bk i� 6 9(d; s) 2 PRSVBk such that s was generated from d.Theorem 17.6 is proven in Appendix C.1.

18. When a Variable is Endangered 8318 When a Variable is EndangeredWhen the debugger is asked to display a variable, it determines whether the variableis current. If the variable is current, the debugger displays its value without comment. Ifthe variable is endangered, in addition to displaying its value, the debugger can give theuser some help in understanding why the value is endangered. The general avor of whatthe debugger can do is given by the following sample message that might accompany thedisplay of variable a when the optimization shown in Figure 18.1 has occurred.\Breakpoint 1 has been reached at line 339. a should have been set at line 327.However, optimization has moved the assignment to a at line 342 to near line336. a was actually set at one of lines 327 or 342."The information contained in this message is available from the paired reaching setPRSa339 and the unoptimized and optimized ow graphs. The description of the e�ects ofoptimization will vary in speci�city as the e�ects of optimization vary in complexity.
Figure 18.1: The display of a could be accompanied by this message: \Breakpoint1 has been reached at line 339. a should have been set at line 327. However,optimization has moved the assignment to a at line 342 to near line 336. a wasactually set at one of lines 327 or 342."

(342)Unoptimized Optimized
bkpt
a = y
a = x

327 336339342 339 336327a = xa = y
bkpt

84 19. Transparency19 Transparency19.1 Assignments Through AliasesConsider an assignment �P through a pointer (or through an array element where theindex is a variable) that could point to V . When execution is suspended at a breakpointB, �P may be an alias for V . �P must be considered to be a de�nition of V that reachesB. If �P is not an alias for V in some particular execution, the value that V contains atthe breakpoint came from whatever de�nition would have reached if �P were not present.Therefore, this de�nition must also be considered to reach B. For any language that allowssuch aliasing, the assumption of a single de�nition reaching along a given path-pair doesnot hold.If there are multiple de�nitions of V that reach B along p, all of them but one (theone furthest from B on p) must be assignments through aliases, because other kinds ofassignments kill prior de�nitions. An assignment through an alias is de�ned as such byits ambiguity about whether V is assigned into, because if it can be determined that anassignment through a pointer does assign into V every time, that assignment kills priorde�nitions, and if it can be determined that an assignment through a pointer never assignsinto V , the assignment is not a de�nition of V .19.2 De�nitions and Stores RevisitedThe computation of paired reaching sets depends on the de�nition of � given in Sec-tions 17.4, which in turn depends on the assumption that a data object assigned a valuewithin a basic block is unconditionally a�ected by the assignment. This plays out as anassumption that de�nitions kill de�nitions and stores kill stores. This assumption holds fordirect assignments but not for assignments through aliases. Because we have two kinds ofassignments with di�erent characteristics, we need two kinds of de�nitions and stores. Def-initions and stores that are unambiguous as to the variable that is a�ected we call opaque.De�nitions and stores that a�ect one of a set of variables such that it cannot be determinedat compile time which variable will be a�ected, we call transparent . Thus *p = 0; is atransparent de�nition of V unless the compiler determines that p cannot point to V at thatassignment. V is one member of the set of variables that might be a�ected by the de�nition.p is called a transparent de�ner.It may be that p never points to V , but the compiler cannot determine that. Thedebugger can do no better than the compiler, and we must treat assignments through p asif they can a�ect V .It can be shown that a compiler can make an assignment through a pointer that is notcurrent without violating program semantics. An example is given in Appendix A. Thecircumstances under which a compiler can do so are su�ciently constrained that for theremainder of this work, I assume that transparent de�ners are current at each of their uses.19.3 � RevisitedThe introduction of transparent de�nitions requires a rede�nition of the � operator sothat transparent de�nitions and stores do not kill elements that should reach subsequentpoints in the program. The right operand of � is doing the killing, so we do not need toworry about the transparency of the left operand. We could rede�ne � by independently

19. Transparency 85(e; t) � (d; s) d is null d is opaque d is transparents is null (e; t) (d; t) (e; t)(d; t)s is opaque (e; s) (d; s) (e; s)(d; s)s is transparent (e; t) (d; t) (e; t)(e; s) (d; s) (d; s)(e; s)(d; t)Table 19.1: This rede�nition of � overgenerates ds-pairs.letting an opaque de�nition of V kill other de�nitions of V , transparent and opaque alike,and letting an opaque store into V kill stores into V , transparent and opaque alike, whilenot letting a transparent de�nition of V kill de�nitions of V and not letting a transparentstore into V kill stores into V . Such a de�nition is given in Table 19.1. However, thisovergenerates ds-pairs.As a motivating example, suppose there is a block B containing the de�nition d whosesource code is *p = x, where p may point to V and the store s generated from d hassurvived the optimizer without being moved or eliminated. GenVB is (d; s), and d and s aretransparent. Assume that no optimization has a�ected assignments into p. Then on a givenexecution, either V is a�ected (p points to V) or V isn't a�ected (p doesn't point to V).In this case, although (d; t) 2 (e; t)�(d; s), there is no input on which d reaches the exit ofB in the unoptimized version and t reaches the exit of B in the optimized version. This isillustrated in Figure 19.1.In general, let s be a store through some pointer, d be the de�nition that generated s,and B be a breakpoint. If in every execution in which s can a�ect V at B, d reaches B,then at B, any ds-pair (d; x) where x 6= s or (x; s) where x 6= d is called infeasible. Such ads-pair does not represent a de�nition that reaches B in the unoptimized code and the storethat reaches B on the same input in the optimized code. The de�nition of � in Table 19.1places infeasible ds-pairs in paired reaching sets, and its use would result in conservativeerrors in the results.19.4 Constrained Transparency: Transparent Assignments WithoutElimination or Code MotionMany compilers do not do su�cient pointer analysis to optimized transparent assign-ments. Suppose transparent assignments are present but are not optimized, that is, noelimination or motion of transparent assignments occurs. Consequently, if a block containsa transparent assignment, both the associated de�nition and the store it generated are inthe block.Assume GenVB = (d; s) and InVB = f(e; t)g. If d and s are transparent, neither d nors may be null, and s was generated from d. The transparent de�nition may a�ect V , soOutVB must contain (d; s). The transparent de�nition may not a�ect V , so OutVB mustcontain (e; t), regardless of whether e or t are transparent. If d and s are not transparent,the original de�nition of � is correct even if e or t is transparent. Table 19.2 rede�nes �

86 19. Transparencye, t < e; t >< e; t >d,s < d; t >< d; s >< e; s >
p = &V;: : :if (cond) {: : :*p = x; // This is d.p = &W;}

Figure 19.1: e is a de�nition of V and t is a store into V . Whether d is a de�nition ofV and s is a store into V depends on which assignment to p reaches the assignmentthrough p. (d; t) is an infeasible ds-pair because d de�nes V only when s storesinto V , in which case s kills t. (e; s) is an infeasible ds-pair for similar reasons.(e; t) � (d; s) d is null d is opaque d is transparents is null (e; t) (d; t)s is opaque (e; s) (d; s)s is transparent (e; t)(d; s)Table 19.2: (e; t) � (d; s): This de�nition assumes that no elimination or motion oftransparent assignments may occur. No infeasible ds-pairs are generated.by combining these two cases. Blank entries in the table represent combinations that byassumption cannot occur. No infeasible ds-pairs are generated under this de�nition of �.�[in the Presence of Constrained TransparencyThe de�nition of �[must change because a block may contain many de�nitions of avariable V . Only the last opaque de�nition of V reaches the exit of the block, but allsubsequent transparent de�nitions of V also reach the exit of the block. All of these belongin the Gen set. If the In set is empty, the Out set is the set of complete ds-pairs in theGen set. If the Gen set contains a complete opaque ds-pair, again the Out set is the set ofcomplete ds-pairs in the Gen set. Otherwise, the Out set is the set of ds-pairs produced byindividual � operations between each ds-pair in the In set and each ds-pair in the Gen set.We de�ne �[accordingly:De�nition 19.1: Complete(S) = f(d; s) 2 Sjd 6= null and s 6= nullg

19. Transparency 87De�nition 19.2: R �[S = 8><>: Complete(S) if R = ;Complete(S) if 9e 2 Complete(S) such that e is opaquefr � sjr 2 R; s 2 Sg otherwiseCurrency in the Presence of Constrained TransparencyHere I present algorithms modi�ed to handle constrained transparency. Most of theadditional work has been incorporated into the de�nitions of � and �[. The iterative stepof Algorithm PRS works without modi�cation, but the initialization step must constructGen sets that may contain multiple ds-pairs.InitializeCTInput:a component of the DS-graph, modi�ed by the addition of a Start node;Output:the Gen sets of each variable for each block.0 for each variable V1 GenVStart = (d-init; s-init)2 for each node B other than Start3 set d to the last opaque de�nition of V in the de�nition list of Bor to null if there is none4 set s to the last opaque store into V in the store list of Bor to null if there is none5 add (d; s) to GenVB6 set d to the next de�nition of V in the de�nition list of Band set s to the next store into V in the store list of B7 add (d; s) to GenVB8 iterate steps 6 and 7 until the end of the de�nition and store lists are reachedEnd of InitializeCTAlgorithm PRSCTInput:a component of the DS-graph, modi�ed by the addition of a Start node,Output:the paired reaching sets of each variable at each block boundary.0 InitializeCT1 IterateEnd of Algorithm PRSCTSimilarly, the initialization step of Algorithm PRS-BKCT must construct Gen sets thatmay contain multiple ds-pairs.Initialize-BKCTInput:a variable V , a syntactic breakpoint Bk, and the node B containing Bk;Output:

88 19. TransparencyThe Gen set of V for B at Bk;0 set d to the last opaque de�nition of V prior to Bk on B's de�nition list,or to null if there is none1 set s to the last opaque store into V prior to Bk on B's store list,or to null if there is none2 add (d; s) to GenVB3 for each subsequent transparent de�nition d of V prior to Bk on B's de�nition list,and each subsequent transparent store s into V prior to Bk on B's store list,4 add (d; s) to GenVBEnd of Initialize-BKCTAlgorithm PRS-BKCTInput:a variable V , a syntactic breakpoint Bk, the node B containing Bk, and InVB ;Output:The paired reaching sets of V at Bk;0 Initialize-BKCT1 PRSVBk = InVB �[GenVBkEnd of Algorithm PRS-BKCTAs before, the contents of PRSVBk tell us V 's currency. Theorem 17.6 holds in thepresence of constrained tranparency. It is proven in Appendix C.1.19.5 Unconstrained Transparency: Elimination and Code Motion ofTransparent AssignmentsSuppose we allow elimination and motion of transparent assignments. Now a transparentds-pair in a Gen set may contain nulls. Furthermore, a block may contain a de�nition dand a store s not generated from d. As a consequence, there are circumstances in which anyof the ds-pairs produced by the de�nition of � given in Table 19.1 are feasible. However,as described in Section 19.3 and shown in Figure 19.1, sometimes some of those ds-pairsare infeasible. Figure 19.2 exempli�es the impossibility of producing only feasible ds-pairsin the presence of unconstrained transparency with the mechanisms presented so far. It ispossible to distinguish the circumstances in which � will produce an infeasible ds-pair fromthe circumstances in which it will produce a feasible ds-pair, but only with knowledge ofwhich de�nitions or stores are generated along the same path|information not available to�. To capture this further information, ds-pairs are extended to ds-list-pairs|pairs of listsrather than pairs of elements. The de�nition element in a ds-list-pair for a variable V is thelist of de�nitions of V that reach a block B along a path p, in the order that they occur onp. The store element is the list of stores into V that reach B along p, similarly ordered. Itfollows that the �rst element in each list is opaque and the rest are transparent. Figure 19.3is the example from Figure 19.2 using ds-list-pairs instead of ds-pairs. .The data that is the input to � has been modi�ed to contain the information it waslacking, and in the process, it has become necessary to rede�ne � to work on the new formof the data. The list operations are the same for de�nitions and stores, and are performed

19. Transparency 89e, td2 f, u3s4(e; t)(e; s)(d; s)(f; u)(f; s)(d; t) (f; u)(e; t)(d; t)(e; t)1

Figure 19.2: If transparent store s is not generated from transparent de�nition d,all ds-pairs in the Out set of node 4 are feasible. If s is generated from d, (d; t)and (e; s) are infeasible. However, (f; s) is feasible. The salient di�erence between(e; s) and (f; s) is that e and d reach node 4 along the same path, while f and ddo not.independently on de�nitions and stores, so I introduce a list operator `. The empty list isexpressed as null, and j is used as a list concatenation operator. Given two lists x and y:De�nition 19.3: x ` y = 8><>: x if y = nully if an element of y is opaquexjy if all elements of y are transparentThen given two ds-list-pairs (el; tl) and (dl; sl):De�nition 19.4: (el; tl)�(dl; sl) = (el ` dl; tl ` sl)With multiple assignments encoded in a single ds-list-pair, we return to a situation inwhich the Gen set for a block is a single entity.�[in the Presence of UnConstrained TransparencyComplete must be rede�ned to act on ds-list-pairs:De�nition 19.5: Complete((dl ; sl)) = (; if dl or sl is null(dl; sl) otherwise

90 19. Transparencye, t1 d2 s4(ed; t)(e; t)
(ed; ts)(f; us)

3 f, u(f; u)
Figure 19.3: This is the example from Figure 19.2 recast to use ds-list-pairs.Encoded in the ds-list-pairs is the fact that e and d reach node 4 along the samepath while f and d do not.De�nition 19.4 de�nes � as an append operation on transparent de�nitions. Repeated� operations on a loop containing only transparent de�nitions of V result in lists that growinde�nitely, as the de�nitions and stores within the loop get appended ad in�nitum.The purpose of ds-list-pairs is to capture for any particular path those transparentde�nitions (or stores) that might reach a breakpoint along that path. In any particularexecution, exactly one de�nition (and store) actually reaches along a particular path (i.e.,the last transparent or opaque de�nition that actually refers to V). Intuitively then, we donot need to record all transparent de�nitions since the last opaque de�nition but insteadneeds to record which one could be last, second to last (in case the last one doesn't actuallyrefer to V), etc. For example, if a de�nition could be last and nth from last and it actuallypoints to V, then it is the last one that reaches (not the nth from last). More generally, ifit could be mth from last and nth from last, where m < n, then the mth from last de�nitionwill reach the breakpoint provided the de�nitions following it on that path do not actuallyrefer to V . This is captured formally in Lemma C.12.It follows from this intuition that we can construct ds-list-pairs that do not growinde�nitely by including only the last occurrence of any duplicated de�nitions and stores.There are cases in which information about currency is lost unless the last two instances ofa de�nition or store are included in the ds-list-pairs. In these cases, the choice is between analgorithm that has the potential for non-conservative error (in which an endangered variablemay be reported as current) and a more complex algorithm that has greater potential forconservative error (a current variable may be reported as endangered). These cases arediscussed in Section 20. For reasons presented in that section, I have chosen the former ofthese alternatives, thus the algorithm presented below has the potential for non-conservativeerror.The ds-list-pair construction method given below preserves the characteristic that theith store in a ds-list-pair is generated from the ith de�nition in that ds-list-pair for all i if

19. Transparency 91and only if V is current along the path from which that ds-list-pair is derived, except in thecases discussed in Section 20 (this is shown in Appendix C).De�nition 19.6: Let xl =< x1; x2; : : : ; xi; : : : ; xj; : : : ; xn > where xi and xj ,are in the same equivalence class. Thenlast(xl) =< x1; x2; : : : ; xi�1; xi+1; : : : ; xj; : : : ; xn >, andlast�(xl) is the result of applying last to xl repeatedly until each equivalenceclass is represented at most once.Last(dl; sl) = (last�(dl); last�(sl))R �[S = 8><>: Last(Complete(S)) if R = ;Last(Complete(S)) if 9e 2 Complete(S) such that e is opaquefLast(r � s)jr 2 R; s 2 Sg otherwise19.6 Currency in the Presence of Unconstrained TransparencyHere I present algorithms modi�ed to handle unconstrained transparency. Again, most ofthe additional work has been incorporated into the de�nition of �[, so only the initializationphase of each algorithm needs modi�cation.InitializeTInput:a component of the DS-graph, modi�ed by the addition of a Start node;Output:the Gen sets of each variable for each block.0 for each variable V1 GenVStart = (d-init; s-init)2 for each node B other than Start3 dl = null4 for each de�nition d of V in B's de�nition list, in order of appearance5 dl = dl ` d6 sl = null7 for each store s into V in B's store list, in order of appearance8 sl = sl ` s9 GenVB = (dl; sl)End of InitializeTAlgorithm PRSTInput:a component of the DS-graph, modi�ed by the addition of a Start node,Output:the paired reaching sets of each variable at each block boundary.0 InitializeT1 IterateEnd of Algorithm PRSInitialize-BKTInput:

92 19. Transparencya variable V , a syntactic breakpoint Bk, and the node B containing Bk;Output:The Gen set of V for B at Bk;0 dl = null1 for each de�nition d of V prior to Bk on B's de�nition list, in order of appearance2 dl = dl ` d3 sl = null4 for each store s into V prior to Bk on B's store list, in order of appearance5 sl = sl ` s6 GenVBk = (dl; sl)End of Initialize-BKTAlgorithm PRS-BKTInput:a variable V , a syntactic breakpoint Bk, the node B containing Bk, and InVB ;Output:The paired reaching sets of V at Bk;0 Initialize-BKT1 PRSVBk = InVB �[GenVBkEnd of Algorithm PRS-BKTOnce again, the contents of PRSVBk tell us V 's currency. Excepting the cases discussedin Section 20:� The ith store in a ds-list-pair is generated from the ith de�nition in that ds-list-pair ifand only if V is current along the path from which that ds-list-pair is derived.� Each ds-list-pair e tells us whether V is current along the set of paths from which eis derived.� All paths are represented by some ds-list-pair in PRSVBk.In other words, PRSVBk contains the interesting ds-list-pairs, that is, PRSVBk contains a setof ds-list-pairs that is (nearly) su�cient to determine V ' currency.De�nition 19.7: V is current at Bk by ds-list-pair e i� V is current along eachpath p to Bk such that e is is derived from p.The following theorem does not hold in the cases discussed in Section 20.Theorem 19.8: PRSVBk = ; i� either V is not in scope atB orB is unreachable.Otherwise:V is current at Bk i� V is current at Bk by e, 8e 2 PRSVBk;V is endangered at Bk i� 9e 2 PRSVBk such that V is not current at Bk by e;V is noncurrent at Bk i� 6 9e 2 PRSVBk such that V is current at Bk by e.In Appendix C.2, Theorem 19.8 is proven for most cases. It is shown how it fails forsome exceptional cases, which are discussed below.

20. Cases in which the Algorithm May Err 9320 Cases in which the Algorithm May ErrConsider the case in which a loop-invariant transparent assignment to V is moved to aloop pre-header. Let the loop be L, the invariant de�nition of V in L be dx and the storegenerated from dx be sx. (In general, I use the naming convention that a de�nition dxgenerates the store sx.) Let p be a path to a breakpoint Bk (where Bk is after L) thatcontains two or more iterations of L. Although the argument made here does not depend onit, for simplicity of presentation assume that no other transparent assignments to V reachBk. Then the sequence of de�nitions of V that reach Bk along p is < d1; d2; d3; : : :dn >where there are n � 1 interations of L in p, and d2 through dn are instances of dx. Thesequence of stores into V that reach Bk along p is < s1; s2 > where s2 is sx, in the pre-header. d1 and s1 are the opaque de�nition of V and store into V that reach Bk from abovethe loop.Assuming that s1 is generated from d1, V is current at Bk: either s1 quali�ed reachesBk with d1 or s2 quali�ed reaches Bk with dn. (s2 cannot quali�ed reach with di, 1 < i < n,because that would turn o� dn, which would turn o� not only s2 but also di.) This caseis handled correctly|ds-list-pair (< d1; dx >;< s1; sx >) is derived from p. This sameds-list-pair is derived no matter how many times p traverses L.Note that if the last two duplicate de�nitions in a loop were recorded in ds-list-pairs,then we would have the ds-list-pair above from a path that traverses L once, and we wouldhave ds-list-pair (< d1; dx; dx >;< s1; sx >) from paths that that traverse L more thanonce, and we would report that V is endangered, because of the mismatching ds-list-pair.Now suppose instead that the left-hand-side of dx and sx is not loop invariant. Turningo� some di, i > 1, does not turn o� all di, so s1 quali�ed reaches Bk with any di. In thiscase, V is endangered, but would be reported as current. Note that if the last two duplicatede�nitions in a loop were recorded in ds-list-pairs, then we would report V as endangered.This is a semantically pathological case, as the compiler could only move sx to a pre-headerif it determined that all data that sx can a�ect is dead, in which case it should eliminatesx entirely.There are a number of cases involving two assignments in a loop in which we wouldreport V as current when V is endangered. The proof of Lemma C.12 delimits the cases inwhich this kind of non-conservative error can occur. Most involve two assignments withina loop, one or (in some cases) both with non-loop-invariant left-hand-sides, a�ected byoptimization in such a way that some variable they both can a�ect is current if the loopis traversed once, but endangered if the loop is traversed more than once. The compilermust have determined that all variables potentially a�ected by both assignments are dead.Syntactically, they can be described by the sequences of de�nitions and stores that reach abreakpoint along a path that traverses the loop twice. Sequences for four cases are shown inFigure 20.1. Because they are symmetric with respect to de�nitions and stores, four otherscan be derived by exchanging the roles of de�nitions and stores in the �ve shown. In thesequences, the loop iteration boundaries are marked by vertical bars (`j'). The �rst of thesecases is the one described above.This source of non-conservative error could perhaps be eliminated by recording in theds-list-pairs the last two duplicate de�nitions or stores that occur within a loop, rather thanthe last one, but that would introduce conservative error in the commonly occurring case ofloop-invariant code motion, as well as in the above case in the circumstance that the datasx can a�ect is disjoint from the data sy can a�ect. To eliminate both the non-conservative

94 20. Cases in which the Algorithm May Err1. De�nitions: < d1; jd2 = dx; jd4 = dxj >Stores: < s1; s2 = sx; j >2. De�nitions: < d1; jd2 = dx; d3 = dy; jd4 = dx; d5 = dyj >Stores: < s1; s2 = sx; js3 = syjs4 = sy > j3. De�nitions: < d1; jd2 = dx; d3 = dy; jd4 = dxj >Stores: < s1; s2 = sx; js3 = syj >4. De�nitions: < d1; jd2 = dy; d3 = dx; jd4 = dxj >Stores: < s1; s2 = sx; js3 = sy; s4 = sxj >Figure 20.1: Cases in which the Algorithm May Err: Along some paths thattraverse a loop more than once, a variable will be reported as current when it isendangered. This can not happen unless sequences of de�nitions and stores similarto those shown above occur on such paths, and may not happen even if they do.The vertical bars (`j') mark loop iteration boundaries. Other cases can be derivedfrom those shown by exchanging the roles of de�nitions and stores.error and the error in the case of loop-invariant code motion, an algorithm must distinguishtransparent assignments whose left-hand-sides are loop invariant from those whose left-hand-sides are not. Perhaps future research will uncover a method of distinguishing theseand using the information felicitously. Until that time, I prefer the non-conservative errorbecause the algorithm is more elegant, errors will occur less frequently, and the errors thatdo occur occur in possibly pathological cases involving pointers.An example follows involving two assignment within a loop, presented in detail. Thisexample corresponds to the second case shown in Figure 20.1. Assume that the path pLthrough L contains a transparent de�nition dx of V but no store sx. Assume furtherthat following dx on pL there is a transparent de�nition dy of V , dy 6= dx, and thatsomewhere on pL is a transparent store sy into V , and that the left-hand-sides of dy (andsy) are not loop invariant. (dy might be an assignment into a[i] where i is not loopinvariant, or an assignment through a pointer p where p is not loop invariant.) We makeno assumption about whether the left-hand-side of dx (and sx) is loop invariant. Finally,assume that there is an instance of sx immediately prior to L. This could occur throughcode motion (out of L) or through serendipity (perhaps the programmer wrote the sameassignment above and inside the loop). Again, for simplicity of presentation assume thatno other transparent assignments to V reach Bk. Let p be a path to Bk that traversesL once. Ds-list-pair (< d1; dx; dy >;< s1; sx; sy >) derives from p. (Again, d1 and s1are the opaque de�nition and store reaching from above, and we assume s1 is generatedfrom d1). V appears to be current along p, and in fact, V is current along p. Let p0 bea path to Bk that traverses L twice. The sequence of de�nitions of V encountered alongp0 are < d1; d2 = dx; d3 = dy; d4 = dx; d5 = dy >, and the sequence of stores into Vencountered along p0 are < s1; s2 = sx; s3 = sy; s4 = sy >. Because the left-hand-sideof the assignments to V are not loop invariant, turning o� d5 turns o� s4 but does notturn o� d3 or s3. s3 quali�ed reaches with d4, and V is endangered along p0, according toDe�nitions 16.7, 16.8, and 16.9. However, V appears to be current because the ds-list-pairderived from p0 (and from all paths that traverse L multiple times) by Algorithm PRS-BKTis (< d1; dx; dy >;< s1; sx; sy >), since only the last instance of duplicated de�nitions andstores is recorded in the ds-list-pair.V is in fact noncurrent along p0 when d4 and s3 are aliases for V but d5 and s4 are not.

20. Cases in which the Algorithm May Err 95This is possible if the compiler has determined that either the data sx can a�ect is disjointfrom the data sy can a�ect, or all data that both sx and sy can a�ect is dead. If there isno data that both sx and sy can a�ect, then no variables are endangered, which is whatwill be reported. If the compiler has determined that everything that sy can a�ect is dead,then the compiler should not generate sy at all. Likewise, if the compiler has determinedthat everything that sx can a�ect is dead, then the compiler should not generate sx at all.We can therefore expect that an error will occur only when the compiler has determinedthat sx can a�ect some non-empty set Vx of variables, sy can a�ect some non-empty set Vyof variables, some element in Vx is live, some element in Vy is live, Vx \ Vy is non-empty,and every element in Vx \Vy is dead. This introduces the potential for misleading behavior(the currency determination technique may claim a variable in Vx \Vy is current when it isactually endangered).

96 21. Non-conforming Optimizations21 Non-conforming OptimizationsThere are useful optimizations that cannot be modelled by a valid DS-graph. Perhapsfuture research will discover graph transformations to model some or all of these. In theabsence of such transformations, some accommodation must be made for such optimizations,or the debugger may not provide truthful behavior in their presence. I describe below amechanism to accommodate such optimizations.21.1 A Mechanism for Truthful BehaviorLet R be a region in the DS-graph that correlates to a region of the object graph thatis to be transformed in a manner other than one of the allowable graph transformations. Itmust be true of R that if node N has a predecessor in R and N has a successor in R alonga forward edge, then N is in R.27 Once R is delimited, no DS-graph transformations areperformed upon it, regardless of the object graph transformations that might be performedon the part of the object graph represented (however poorly) by the region.Each node N in the DS-graph is augmented by a set A�ectedN of variables that must beassumed to be endangered because of non-conforming optimizations. For a node M outsideof R, A�ectedM is empty. Any e�ects of the non-conforming optimization that reach beyondR are handled by the existing data-ow mechanism using the distinguished de�nitions andstore described below.A variable V may be endangered if it is de�ned in a region of the object graph towhich some non-conforming transformation has been applied. , and thus V Let dVe be adistinguished opaque de�nition whose presence in a paired reaching set will signal to thedebugger that this has occurred. dVe is added to the bottom of the de�nition list of eachnode in R that has a successor outside of R.The compiler may be able to ensure that although V is de�ned in R, V is not endangeredoutside R by optimization within R. Let dVok be a distinguished opaque de�nition and sVokbe a distinguished opaque store whose presence will signal to the debugger that this hasoccurred. In determining currency, the debugger acts as though sVok was generated fromdVok. If V is known to be current on exit from R, dVok replaces dVe , and sVok is added to thebottom of the store list of the same set of nodes. The procedure is as follows:for each variable V that is de�ned within Rfor each node N in Radd V to A�ectedNif N has a successor outside Rif V is known to be current on exit from Radd dVok to the bottom of N 's de�nition listadd sVok to the bottom of N 's store listelse add dVe to the bottom of N 's de�nition list27This is a su�cient condition for being in R, but not a necessary condition. Unless R comprises theentire DS-graph, some nodes in R will not meet this condition. R is speci�ed by the compiler.

21. Non-conforming Optimizations 97This mechanism will allow the debugger to �nd accurate currency information forvariables not de�ned within R, and to provide truthful behavior regarding currency forvariables de�ned within R. When a breakpoint is reached and the debugger takes control,the debugger �nds the node in the DS-graph that selects the block the breakpoint is in.When the user makes a query about a variable V , if V is in the A�ected set for that node, awarning is issued. Otherwise, the currency determination algorithms are run to determineV 's currency.A second order concern may require a simple modi�cation to the DS-graph. If the DS-graph contains a node N within R that has a successor S within R and a successor outsideR, then dVok and sVok are propagated into S (and possibly further within R). This does nota�ect currency determination, as the A�ected set is checked �rst for nodes in R. However,it may a�ect the paired reaching sets of nodes within R. While these sets are admittedlysuspect due to the nature of R, the debugger may use them to produce warnings. To preventthem from being tainted by dVok and sVok , the DS-graph can be transformed so that there isno node within R that has a successor within R and a successor outside R. A new node N 0can be added in R between N and S.There is a separate behavior issue for the debugger having to do with breakpointlocations that requires the debugger to know whether a breakpoint is within R.21.2 Interaction with the Breakpoint ModelThe method of �nding syntactic breakpoints described in Section 22 is not correct whenblocks have been re-ordered. A syntactic breakpoint for statement n is de�ned to be priorto or at the same location as the syntactic breakpoint for statement n + 1. In particular,the syntactic breakpoint for statement S in block B precedes the syntactic breakpoint forstatement S 0 in block B0 if B must precede B0. But the method for �nding syntacticbreakpoints uses no information about the relative order of B and B0, and is incorrect iftheir relative order has changed.A non-conforming optimization may change the relative order of blocks. To providetruthful behavior, a debugger must either use a stronger method of determining syntacticbreakpoint locations, or be able to tell that a breakpoint is located within a region of theobject graph where the order of blocks may have changed, so that it can warn the userwhen such a breakpoint is reached. A debugger can do the latter by testing A�ectedNfor emptiness, where N selects the block the breakpoint is in. A user-interface issue: thedebugger should give a warning when the user sets a problematic breakpoint (not just whenit is reached). At that point, it would be possible for the debugger to �nd the nearestancestors and descendants of N outside of R and provide a list of breakpoints where theuser can be given accurate information.Wism�uller [BW93] is working on a more general breakpoint model. His work may address(or �nesse) this problem.

98 22. Design Issues22 Design IssuesThe material in this section is an architectural design to guide in the implementation ofthe presented method of currency determination. This method of currency determinationrequires considerable support from the compiler. If the debugger is to run the algorithmspresented in Sections 17 and 19, the compiler must produce the DS-graph for the debuggerto run them on.The DS-graph is not a static object. As optimization transforms the object graph,the DS-graph gets transformed. In Sections 17 and 19, we assumed that the de�nitionand store lists were correct at each point. These also, of course, will be modi�ed asoptimization proceeds. Both the graph transformations and the de�nition and store listmodi�cations have implications for the compiler's data structures. The data structuresthat are appropriate during compilation are di�erent from those that are appropriate oncecompilation has completed. Section 22.1 describes an abstraction of a set of data structuresfor the DS-graph and part of the object graph that can easily be mapped to an imperativeprogramming language.Once compilation is complete, the DS-graph must be emitted for use by the debugger.It di�ers somewhat in organization from the DS-graph used during compilation, and thedi�erences are described in Section 22.2.22.1 Data Structures Used During CompilationThere are two di�erences between the structures described here and the abstractionsdescribed in Sections 17 and 19:1. The source graph is not needed by the compiler or debugger. It is included inthe discussions in Sections 17 and 19 to motivate the approach and referred to inAppendix B to demonstrate its correctness.2. The store lists reside in the object graph, as part of the instruction lists used togenerate code, rather than in the DS-graph.A DS-graph node contains all necessary information about the source block that it selects,so the source block itself can be dispensed with. Figure 22.1 shows the abstract intercon-nections between the major structures used for currency determination during compilation:nodes in the DS-graph, which contain de�nition lists, blocks in the object graph, whichcontain instruction lists, and mapping information between them.De�nition and Instruction Lists and the `Generated-from' GraphSection 17 mentioned that currency determination needs the following:� The assignments that constitute a de�nition,� the `generated from' relationship between de�nitions and stores, and� the execution order of statements and side e�ects within a basic block, for blocks inboth the optimized and unoptimized versions.We assumed they would be available, and that execution order would be provided byde�nition lists and store lists.Viewed abstractly, the `generated from' relationship between de�nitions and stores formsa bipartite graph, which we shall henceforth call the G-graph, where de�nitions comprisethe nodes in one partition, stores comprise the nodes in the other, and an edge is presentbetween pairs of nodes for which the `generated from' (or `generates') relation holds.

22. Design Issues 99
... ...instruction listde�nition list

node node block block
to startnodeSVarEquivSref

DS-graphStmt DL ILObject graphblock/nodenode
Moved OVarInstr

... ...Pref
Figure 22.1: This shows the abstract interconnections between the major datastructures used for currency determination during compilation: nodes in the DS-graph, which contain de�nition lists, blocks in the object graph, which containinstruction lists, and mapping information between them.De�nition nodes in the G-graph are represented as Stmt structures, each representing astatement.28 Each DS-graph node contains a de�nition list DL which lists, in source order,the Stmts that occur in the source code for the DS-graph node. Store nodes in the G-graphare represented as Instr structures, each representing an intermediate language instruction(and eventually, a machine instruction). I describe only the part of the Instr structure thatis relevant to currency determination, but it is assumed to include the intermediate languageexpression describing the instruction, and any other information the compiler needs aboutthe instruction. That is, the Instr structure is the compiler data structure that encodesintermediate language instructions, which is extended for currency determination. Eachobject graph block contains an instruction list IL, which lists, in execution order, the Instrsthat occur in the intermediate language representation of the program. Every intermediateinstruction in the object code has an entry in some IL, but only representative instructions28A Stmt may represent part of a statement; see the discussion below.

100 22. Design Issuesare of interest for currency determination. Speci�cally, only representative instructions arerepresented as store nodes in the G-graph. Each Instr structure must contain informationas to whether it is a representative instruction. Embedded in the IL for a block is the storelist of the block, which consists of those Instrs that are representative instructions.Note that every statement has a Stmt structure, whether it is an assignment or not,and every statement for which code is generated has an Instr structure that comprises astore node.DL and IL look like arrays in Figure 22.1 because it is a convenient way to representthem visually. This should not bias an implementation|they are lists of nodes, and anyconvenient data structure for representing lists can be used. Elements in IL get movedby optimization, so an array representation of that list may not be e�cient. (BecauseIL is a compiler data structure used whether currency determination is done or not,its representation is likely to be �xed before this currency determination technique isimplemented in a compiler.)The `generated from' relationship between de�nitions and stores is represented in Fig-ure 22.1 by pointers between Stmts and Instrs. Again, this should not bias an implemen-tation. The G-graph may be represented by any convenient data structure for representinggraphs.A de�nition is an equivalence class of Stmts. Often a Stmt comprises a de�nition byitself, but in the case when a de�nition is comprised of more than one Stmt, some mechanismmust associate them. I give Stmts a �eld Equiv to represent the de�nition|assignments inthe same equivalence class have the same value in their Equiv �eld.Stmt and Instr StructuresA Stmt structure for a statement S has the following �elds:� Sref|a source reference for S (�le name or id and line number, and perhaps whichstatement on the line, if the debugger is to handle lines with multiple statements),� SVar|the variables that can be de�ned by S: if S is opaque, SVar identi�es thesingle variable de�ned by S; if S is transparent, SVar identi�es all variables that canbe a�ected by S, if S does not assign into a variable, the SVar �eld is null,� Equiv|the equivalence class that a de�nition falls into,� Moved|a bit set if the representative instruction has been moved or eliminated, usedto locate syntactic bkpts, and� Pref|for de�nitions through pointers: a reference to the pointer.An Instr structure that is a representative instruction for a statement S has the following�elds:� Any �elds needed by the compiler to generate code, and� OVar|the variables that can be de�ned by S: if S is opaque, OVar identi�es thesingle variable de�ned by S; if S is transparent, OVar identi�es all variables that canbe a�ected by S, if S does not assign into a variable, the OVar �eld is null.A compiler could recognize that part of a variable's storage is not referenced. Supposestatement S is the aggregate assignment x = y. If the compiler can determine that onlyone �eld of x is subsequently used, it can optimize the code to assign only into that �eld ofx.29 If a debugger user were to inspect some other �eld of x subsequent to the assignment,29I know of no compiler that does this, but there is no reason that one could not.

22. Design Issues 101she might be misled. The OVar �eld identi�es the part of that variable assigned into by S,if such optimization has occurred. This enables the currency determination algorithm toidentify other �elds of x as noncurrent or endangered.In the context of computing paired reaching sets for a variable V , the SVar and OVar�elds are used to �nd de�nitions of V and stores into V to construct the Gen set for eachblock.A distinct Stmt (and Instr) is produced for each modi�cation to each program variable,so more than one Stmt is produced for a statement that has side e�ects.30 For example, thefollowing code causes three Stmts to be produced:a = 0; (Produces one Stmt.)b = c++; (Produces two Stmts: one for theassignment into b, and one for the side e�ect on c.)G-graph Modi�cation and MaintenanceDuring optimization, code may be deleted, moved, copied, or shared. Associatingstore nodes with the compiler's representation of instructions by augmenting the Instrstructure means existing optimizer technology takes care of updating the ILs. However,these operations may modify the G-graph, or may necessitate updating of the data structurechosen to represent the G-graph. Let the G-graph G = (V D [V S ; E) where V D arede�nitions (Stmts) and V S are stores (Instrs that are representative instructions) and letI be in V S . G is an undirected graph, thus (x; y) and (y; x) represent the same edge. Forconsistency, I always list the store node in an edge prior to the de�nition node.In earlier sections, I assume that the generated-from relationships are known, and thatthe de�nition and store lists are correct, implying that they are correctly updated whenoptimization is done. The generated-from relationships is encoded in G, and the followingdescribe how to generate a new G-graph G from G when an optimization a�ects thoserelationships. I also describe how to update �elds in the de�nition and store lists whenoptimization a�ects them.1. Delete I:V S = V S � fIgE = E � f(I; x)jx 2 V DgG = (V D [V S ; E)x :Moved = 1 for all x such that (I; x) 2 E.2. Move I :The structure of G does not change, but the underlying data structure may change.x :Moved = 1 for all x such that (I; x) 2 E.3. Copy I :V S = V S [fIjI is a copy of IgE = E [f(I; x)j(I; x) 2 EgG = (V D [V S ; E)30More than one Stmt is produced for a statement that has more than one location at which user-visiblechanges occur. This is true of statements with side e�ects. It is also true of many loop constructs. A C forloop may have three places of interest to the user corresponding to its three expressions, and each needs aStmt if the debugger is to be able to break at each one.

102 22. Design Issues4. Sharing:Let J be in V S . Assume that the result of the code sharing is that I becomes therepresentative instruction for J 's Stmts as well as its own.V S = V S � fJgE = E [f(I; x)j(J; x)2 Eg � f(J; x)jx 2 V DgG = (V D [V S ; E)x :Moved = 1 for all x such that (J; x) 2 E.I :Ovar = I :Ovar [J :OvarFor all x such that (J; x) 2 E and some y such that (I; y) 2 E, x :Equiv = y :Equiv .The graph transformations impose some requirements on the data structures. Many ofthe transformations require �nding the node n such that Oselects(n) = b for some block binvolved in the object graph transformation. Nselects, the inverse mapping of Oselects, isneeded to make this e�cient. Because of block coalescing, the range of Oselects and thedomain of Nselects must include block boundary markers as well as object graph blocks.Some DS-graph and object graph transformations involve updating the de�nition orinstruction lists. Transformations 5 and 6 share a characteristic that blocks in the objectgraph and nodes in the DS-graph get copied. As described informally in Section 17.3, thede�nitions in the de�nition list in a new node are in a di�erent equivalence class from thede�nitions in the de�nition list in the node it is a copy of. Store equivalence classes arederived from de�nition equivalence classes. This means that when DS-graph node N iscopied to N , the Stmts in N 's DL are new nodes in the G-graph. Similarly, when objectgraph node B is copied to B, the Instrs in B's IL are new nodes in the G-graph. I describebelow how to generate the new G-graph nodes and edges when an inlining or unrollingtransformation is performed on the DS-graph.In the following, I use the convention that xi denotes the ith copy of Stmt or Instr xintroduced in the transformation. The subscript is needed for loop unrolling, where theremay be many copies of x introduced in a single transformation. The �elds in xi have thesame value as the �elds in x unless explicitly stated otherwise.5. Unrolling or Inlining:Let CopiedDLs be the set of DLs in nodes that were copied in in the DS-graphtransformation.Let DLCopies be the set of copies of the DLs in CopiedDLs.Let CopiedILs be the set of ILs in blocks that were copied in the DS-graph transfor-mation.Let ILCopies be the set of copies of the ILs in CopiedILs.NewStmts = fSjS is a Stmt in a DL in CopiedDLsgNewInstrs = fI jI is an Instr in an IL in CopiedILsgBothEdgesInside = f(S; I)jS 2 NewStmts and I 2 NewInstrs and (S; I) 2 EgStmtEdgeInside = f(S; I)jS 2 NewStmts and (S; I) 2 E and I 62 NewInstrsgInstrEdgeInside = f(S; IjI) 2 NewInstrs and (S; I) 2 E and S 62 NewStmtsgV D = V D [NewStmtsV S = V S [NewInstrsE = E [BothEdgesInside [StmtEdgeInside [InstrEdgeInsideG = (V D [V S ; E)

22. Design Issues 103To set the Equiv �eld of the new Stmts, NewStmts must be partitioned accordingto the equivalence classes in the Stmts they are copies of. Each partition is given aunique Equiv value:For S 2 NewStmts and S0 2 NewStmts, S :Equiv = S 0:Equiv if and only if S :Equiv =S 0:Equiv . S :Equiv 6= X :Equiv for X 62 NewStmts.22.2 Data Structures Used After CompilationOnce compilation has completed, the DS-graph becomes a static object. The datastructures for this object should be chosen to make the object small and the debugger's usesof the object e�cient, rather than making maintenance of the object e�cient. Informationabout representative instructions must be moved from the object graph into the DS-graph,because the object graph does not survive code generation as an explicit data structure.Figure 22.2 shows the abstract interconnections between the major data structures usedfor currency determination after compilation. As is clear from comparing Figure 22.1 andFigure 22.2, IL is moved from the object graph to the DS-graph. Only representativeinstructions are placed in the version of IL that is moved to the DS-graph. Also, the Instrstructure changes: information used to generate code is discarded, but the address of thegenerated code for a representative instruction is added in the Cref (Code reference) �eld,so that the DS-graph can be used for locating breakpoints.31Let N be a node in the version of the DS-graph used during compilation. Let B be theblock in the object graph selected by N . Let N 0 be the node corresponding to N in theversion of the DS-graph used after compilation.N 0:DL = N:DLN 0:IL =< I1; I2; : : : ; In >, where each Ii is an Instr in B:IL that is a representativeinstruction, and for Ii and Ij in N 0:IL, i < j if and only if Ii precedes Ij in B:IL.Given that the DS-graph is available to the debugger, we need to ensure that thedebugger has all the information it needs to determine the currency of variables. Thefollowing debugger tasks relate to currency determination:1. When a user sets a breakpoint at a source statement, �nd the breakpoint location(s).A method for �nding breakpoint locations is given below.This requires one additionalmap from source statements to Stmts. When the breakpoint is set, the sourcestatement and breakpoint locations must be saved in a debugger data structure BrList.2. When the program stops, �nd out which breakpoint it has halted at. This can bedone by comparing the program counter against breakpoint locations found in BrList,3. When the user asks for the value of a variable, run the currency determinationalgorithms and respond to the query. The currency algorithms take as input thevariable name, a syntactic breakpoint Bk, and the node B containing Bk. Thevariable name is supplied by the user, and the debugger has determined Bk. TheDS-graph data structure must allow B to be found given Bk.31At the point that the compiler emits this address, it has only relocatable addresses. At the point thedebugger uses it, it needs the relocated addresses. One way of dealing with this problem is to have thecompiler emit a label at each representative instruction, and have the Cref �eld contain the label name. Thelinker will do the necessary relocation and the debugger can refer to the addresses symbolically.

104 22. Design Issues
...to startnode

de�nition list store list
node

node
...

....node....
SrefSVarEquivMoved

DS-graph
Stmt OVar

DL IL
InstrCrefPref

Figure 22.2: This shows the abstract interconnections between the major datastructures needed by the debugger for currency determination: nodes in the DS-graph which contain de�nition lists and store lists and mapping information be-tween them.Finding Breakpoint LocationsGiven a reference to a source statement, a debugger must be able to �nd the machinecode addresses at which to set breakpoints. Existing mechanisms do not support syntacticbreakpoints, so I describe one way syntactic breakpoint locations can be found.The Cref �eld of an Instr I encodes a semantic breakpoint location for all statements forwhich I is the representative instruction.32 Given the other information in the DS-graph,32Currency determination using the technique presented herein cannot be performed at the semantic

22. Design Issues 105Cref can be used to �nd the syntactic breakpoint location for a Stmt for which I is therepresentative instruction. We need some mapping M from source statements to Stmts.This may be a one-to-many mapping (due to inlining or unrolling).Syntactic Breakpoint Locations The syntactic breakpoint locations for a source state-ment are found by using M to �nd all Stmts that represent it, then �nding the syntacticbreakpoint location L for each such Stmt S as follows (described in English, and again interms of the de�ned structures):If a representative instruction for S has not been movedL is the address of that instruction.If there is no unmoved representative instruction for Sif the block that originally contained S does not appear at all in the optimized code,L is unde�ned,else if any representative instructions for statements following Swithin the block containing S have not been moved,L is the location of the �rst of these,else L is the location of the last representative instruction within the block containing S.Let Node(S) be the node containing Stmt S. A syntactic breakpoint location is desig-nated by the Cref �eld of an Instr that has never been moved, which can be determinedby checking the Moved �eld of the Stmt that generates the Instr . A Stmt may generatemultiple Instrs, through copying or sharing. The original Instr generated by the Stmt , if ithas not been moved, holds the syntactic breakpoint location for the Stmt . Any others gen-erated by the Stmt via copying or sharing do not represent syntactic breakpoint locationsfor the Stmt . The copying transformation on the G-graph does not set the Moved �eld ofthe Stmt that generates the new Instr because if it did, no syntactic breakpoint could beset for the Stmt . However, the original Instr must be distinguished from any copies, as itrepresents the only syntactic breakpoint location for the Stmt . In what follows, we assumethe edges E in the G-graph are ordered so that the edge between a Stmt and the originalInstr generated from it is the �rst edge out of the Stmt.If S.Moved is not setL = I.Cref where (I; S) is the �rst edge out of S in Eelse if Oselects(Node(S)) == NullL is unde�ned,else let S 0 be the �rst Stmt subsequent to S in Node(S) such that S 0:Moved is not set,or if there are none, let S 0 be the last Stmt in Node(S)L = I.Cref where (I; S) is the �rst edge out of S 0 in Ebreakpoint location for a statement S whose code has been moved. However, it is possible to break at asemantic breakpoint location for S, �nd a statement S0 for which it is a syntactic breakpoint location, anddetermine a variable`s currency relative to S0 (informing the user that the variable is current or endangeredat S0|this does not tell us whether it is current at S).

106 23. Side bene�ts of DS-graphs23 Side bene�ts of DS-graphsControl ow information can be used by a debugger for purposes other than currencydetermination. For example, statement stepping (often called source-line stepping) is oneof the more di�cult debugger capabilities to implement because it is di�cult to determinewhere the next breakpoint(s) should be set. With control ow information, this problembecomes simple. Using the program ow graphs and Stmt and Instr structures described inthis section, if S is the Stmt for the current statement, the current breakpoint is at I.Crefwhere (I; S) is the �rst edge out of S in the G-graph. For conciseness, I will call I.Cref `theCref for S'.If S is not the last Stmt in its node, the next breakpoint can be set at the Cref for thenext Stmt in the node. If S is the last Stmt in the node, breakpoints can be set at the Cref sfor the �rst Stmt of each successor node.Data ow information can be used by a debugger for purposes other than currencydetermination as well. A debugger user who has just displayed the value of a variable V ata breakpoint B may well want to know where V was last set. This information is availablein PRSVB .

24. Cost 10724 CostThere are four distinct costs that might be considered relevant to evaluating this methodof currency determination:1. the cost of either not debugging optimized code at the source level or being occasion-ally misled by the debugger,2. the engineering cost of modifying a compiler and debugger,3. the additional space and time the compiler takes to produce the DS-graph, and4. the additional space and time the debugger takes to run the currency determinationalgorithms.The �rst should be weighed against the rest to determine whether the enterprise is worth-while. Unfortunately, they are not comparable, hard to measure, and are incurred bydi�erent groups. For the most part, academia and industry did not consider the enterpriseworthwhile until the late 1980's or early 1990's. Currently there is activity in both academiaand industry. If the balance of these costs has shifted, it can be seen as a continuation ofthe trend of the cost of programmers rising relative to the cost of computers, coupled withimproved optimization technology and widespread availability of that technology.The cost of not debugging optimized code at the source level includes programmer frus-tration, time spent recompiling to enable and disable optimization, disk space to store bothoptimized and unoptimized object modules and executables, time spent communicatingwith compiler vendors incorrectly claiming the compiler has a bug, time spent debuggingthe wrong thing because the debugger gave misleading information, and time spent �ndingbugs via assembly-level debugging (minus the time it would have taken via source-leveldebugging, were that an option). Quantitative measures of these are not available.The engineering cost of modifying a compiler and debugger is also not available. Ingeneral, it depends on the organization of the compiler and debugger that are to be modi�ed,and the capabilities of the engineers that do the modi�cation. No implementation has beendone to date, and any estimate I made would be subject to the same poor correlationbetween estimates and actual costs of software production that is endemic to the industry.The additional space and time a compiler needs to produce the DS-graph can beestimated with greater con�dence.24.1 Cost to Produce the DS-graph (During Compilation)The DS-graph is linear in the size of the object graph. The space used by a compilerless-than-doubles, because the compiler has data structures other than the object graph.The time to construct the DS-graph is linear in the size of the object graph as well.The costs of Transformations 1 and 2 are linear in the size of the DS-graph for pathologicalprograms, but will typically be constant time operations. The total cost of applications ofTransformation 3 is linear in the size of the DS-graph, since each edge can be removed atmost once. Transformation 4 is a constant time operation. The cost of Transformation 5 islinear in the size of the subroutine being inlined, and the cost of Transformation 6 is linearin the size of the loop being unrolled and the number of times it is unrolled.Slists and Dlists could be as large as the number of assignments in the program, forpathological programs. Typically, their maximum length will be some small constant, so thetime to update them will be linear in the number of optimizations that a�ect representativeinstructions. The time spent in optimization will less-than-double because the time spent

108 24. Costconstructing and maintaining the DS-graph will be similar to the time spent constructingand maintaining the object graph, but much of the time spent in optimization is in analysis,which has no cost counterpart in maintaining the structures needed to perform currencydetermination.24.2 Cost to Use the DS-graph (After Compilation)Algorithm PRS is a special case of Algorithm PRSCT and is not separately analyzed.SpaceThe DS-graph need not be made a part of the executable, so it does not a�ect thedebugger's ability to load the program. As with symbol tables, if the debugger has to readthe entire DS-graph at once, there may be an unacceptably long delay while this is done.But as with symbol tables, the DS-graph can be read in on demand, because only onecomponent (subroutine) is needed at a time.Currency determination increases space usage by the size of the In, Out, and PRS sets.The space usage of the In and Out sets dominates that used by the PRS sets, because thereis an In and Out set per block. Let n be the number of nodes in the DS-graph and m bethe number of assignments to V in the program.For Algorithm PRSCT , the In and Out sets can take O(nm2) space, because there is anIn and Out set per node, and the ds-pairs are from de�nitions � stores, both of which areO(m) in size. These sets can be constructed as needed, so the total space for In and Outsets is O(qnm2), where q is the number of variables about which the user queries.For Algorithm PRST , the In and Out sets can take O(nm(m!2)) space. There is an Inand Out set per node (O(n)), the maximum size of a ds-list-pair is O(m) (m de�nitionsplus m stores), and the number of elements in InVB is O(m!2), giving a worst case bound onthe space for In and Out sets of O(qnm(m!2)). The bound on the number of elements inInVB is derived by taking all permutations of de�nitions � all permutations of stores. In theexpected case, the number of de�nitions and stores that reach B is limited, and the orderin which they reach along di�erent paths will include few of the possible permutations. Thesquaring of m! is from allowing de�nitions and stores to be ordered independently. Butthey are not independent|a store can only move via optimization. If many de�nitions orstores reach along some path, then there are many assignments through pointers, and theoptimizer probably can't move many of them. I believe in practice the number of elementsin any In set will be small, and would be surprised if it exceeds m.TimeAlgorithms PRS-BPCT and PRS-BPT , and the initialization phases of AlgorithmsPRSCT and PRST , are inexpensive relative to the iteration phase of Algorithms PRSCTand PRST , and will not be discussed further.Algorithm PRSCT : The worst-case asymptotic cost of Algorithm PRSCT is poor,though polynomial.The algorithm is presented as being run for all variables. However, it is reasonable forthe debugger to run it on a single variable. The cost described here is for a single variable.

24. Cost 109The worst case asymptotic cost is O(n3m2). However, we will see that in practice twofactors of n and a factor of m can be replaced with constant factors, for an O(nm) runningtime.Computing In and Out sets is done with an iterative algorithm that runs until itconverges. The equations areInVB = SP OutVP for P predecessors of BOutVB =InVB �[GenVBand these are computed iteratively over all nodes B until no In or Out set changes.Within each iteration the computation of OutB is cheaper than the computation of InB .Computing InB involves iterating over the (up to n) predecessors of B, and InB is computedfor each of n blocks, so the union operation is performed n2 times. The union operation isa merging of sets containing at most m elements, which can be done in time proportionalto m, so each iteration has worst case cost of n2m.In the worst case, each iteration could add one de�nition to one block, so the totalnumber of iterations could be nm, for an O(n3m2) total worst case running time.If a ow graph is traversed in the right order, on average 5 iterations are su�cientfor convergence for a standard reaching de�nitions algorithm [ASU86], replacing factors ofnm with a factor of 5. While this algorithm di�ers from a standard reaching de�nitionsalgorithm, we expect that some small constant number of iterations will be su�cient forconvergence, removing a factor of nm from the running time.Two factors of n come from iterating over n blocks with n predecessors each. A fullyconnected ow graph is pathological. Most blocks have one or two predecessors, though somehave many (e.g., the block following a case or switch statement). Generally, the number ofpredecessors is some small constant, and in the exceptional cases it is a somewhat largerconstant|which gives us an O(nm) running time.Algorithm PRST : The analysis of Algorithm PRST is identical except for the unionoperation, which is merging of sets containing at most (m!2) elements, for a worst-caseasymptotic running time of O(n3m(m!2)) and an expected running time of an O(nm).In the union operation, � and Last are applied once for each element in the In set,which contains O(n) elements. � and Last involve O(m) work, so the union operation hasan O(nm) cost, contrasted to the O(m) cost for Algorithm PRSCT .ParametersThe parameters that a�ect the cost are:� n, the number of basic blocks in a routine,� m, the number of assignments to a variable within a routine, including assignmentsthrough pointers that might point to that variable,� the number of paths to a block, and� the number of predecessors and successors per block.These depend considerably on program characteristics and coding style. In particular,because each subroutine is a ow-graph component, the cost increases with the size ofsubroutines. The cost also increases with the use of pointers.

110 25. Open Problem: When a Breakpoint has Moved25 Open Problem: When a Breakpoint has MovedSemantic breakpoints introduce additional complexity into currency determination.Under the breakpoint model given in Section 15, there is no guarantee that a semanticbreakpoint is reached in optimized code if and only if it would be reached in unoptimizedcode. When a semantic breakpoint is reached, the point in the optimized code at whichexecution is suspended (and the user examines a variable's actual value) may not correspondto the point at which the user expects execution to be suspended (the point at which theuser intended to examine the value). There are four distinct situations that can arise witha semantic breakpoint for a statement S:1. The code for S has not been moved. The semantic breakpoint is the same as thesyntactic breakpoint, and no additional work is required for currency determination.2. The code for S has been moved. In a particular execution, the semantic breakpointlocation and the syntactic breakpoint location are reached along the same path.3. The code for S has been moved. In a particular execution, the syntactic breakpointlocation is reached but the semantic breakpoint location is not. This is a source ofunexpected behavior, but no additional work is required for currency determinationbecause the user never gets to ask for the value of a variable at the semantic breakpoint.4. The code for S has been moved. In a particular execution, the semantic breakpointlocation is reached but the syntactic breakpoint location is not. This is unexpectedbehavior already.In situations 2 and 4 we want to determine whether the actual value of a variable at arepresentative instruction R (the semantic breakpoint, where the user examines the value)can di�er from its expected value at a representative instruction R0 6= R (the syntacticbreakpoint, where the user expects to be examining the value). Note that in general adebugger cannot distinguish situation 2 from situation 4.An approach taken by Bemmerl and Wism�uller [BW92] is to use a more exible mappingbetween source statements and breakpoints. They attempt to map a source statement to abreakpoint location in such a way that the breakpoint is reached if and only if it would bereached in unoptimized code.There is a further problem. Consider Figure 25.1. For bkpt to be reached in theoptimized code, one of the right-hand paths must be taken. If the unoptimized codeis run on the same inputs, one of the right-hand paths will be taken, so optimizationdoes not a�ect the value that a will have at the semantic breakpoint for bkpt: a iscurrent at bkpt. Bemmerl and Wism�uller's current approach [Wis93] would claim thata is endangered at bkpt. Suppose we allowed semantic breakpoint locations using myapproach to currency determination. Let S be the semantic breakpoint location for bkpt.PRSaS = f(a = x; a = x); (a = y; a = y)g. In each pair, the store is generated from thede�nition, suggesting that a is current at the �nal location of bkpt.Now consider Figure 25.2. In this case, bkpt may be reached in the optimized codeby any path. In particular, the left-hand path may be taken, so optimization a�ects thevalue that a may have at the semantic breakpoint for bkpt: a is endangered at bkpt.Bemmerl and Wism�uller's approach would not allow a breakpoint to be set at bkpt. Undermy approach, the wrong result is obtained: Let S be the semantic breakpoint location forbkpt. PRSaS = f(a = z; a = z); (a = x; a = x); (a = y; a = y)g. In each pair, the store isgenerated from the de�nition, suggesting that a is current at the �nal location of bkpt.

25. Open Problem: When a Breakpoint has Moved 111OptimizedUnoptimized a = y a = x a = y
bkpt

OptimizedUnoptimized a = y a = x a = ybkpta = z a = xa = x a = zFigure 25.1: Oddly enough, a is current at bkpt
OptimizedUnoptimized OptimizedUnoptimizeda = z bkpt a = ya = x a = ya = x a = xa = xa = z a = y

bkpt
a = y

Figure 25.2: To no-one's surprise, a is endangered at bkpt

112 26. Currency and Residency26 Currency and ResidencyThe work on currency determination makes a simplifying assumption that a variableresides in a single location throughout its lifetime.V is resident [AG92] at some point P if and only if there is a storage location (whichcould be a register) that holds V at P , otherwise V is nonresident at P . V must be residentthroughout its live ranges (else the compiler is in error). The last use in one of V 's def-usechain is the end of one of V 's live ranges. The point at which V 's location is used to holdsomething else (which cannot be earlier but may be later) is the end of V 's residency inthat location, so V is likely to be resident outside its live ranges.It is increasingly common for a compiler to provide live-range and variable locationinformation to a debugger [CMR88], [Wan91], [Str91], [BHS92]. If a debugger does notsupply the value of a variable outside of its live ranges, there will be points at which thevariable is in some storage location but the debugger will not display it to the user.Adl-Tabatabai and Gross [AG92], [AG93a], [AG93b] show how data-ow analysis can beused to determine the residency of variables. Their technique �nds a unique location for avariable at a point or considers it nonresident at that point, but a simple modi�cation will�nd all locations holding (possibly di�erent values of) the variable at a point. Berger andWism�uller's current work ([BW93]) incorporates residency and currency determination.Figure 26 is an example in which variable i is available in two locations, containing twodi�erent values, over a range of code.33 It could be valuable to a debugger user to be ableto query the debugger for all available values of a variable and the de�nitions associatedwith each value, whether the variable is current or not. This is orthogonal to the questionof currency, but arises when the assumption that a variable resides in a single location isrelaxed.Another issue that arises when that assumption is relaxed is where the value of a variableis to be found. In the example in Figure 26.2, i is current at bkpt1, but a static analysiscannot tell whether i is in R1 or in R2 which without knowing which path was taken. Atbkpt2, i is endangered, and a static analysis can determine that R2 does not hold i.. Ibelieve that these cases can be handled by extensions to the algorithms given earlier inwhich a store contains information about the stored-into location, but this falls into thecategory of future work.In such cases, the debugger cannot simply display i, because of the ambiguity about i'slocation. But the user may know (or be able to determine) which path was taken, and somay be able to take advantage of information the debugger has.33Thanks to Dror Zernik for this example.Figure 26.1: i is available in R1 or R2 at the same time.Line # Source Inst# Unoptimized Optimized Object==1 i=0 I R1=0 a(I) R1=02 x=i II x=R1 b(III) R2=13 i=1 III R2=1 c(II) x=R14 y=i IV y=R2 d(IV) y=R2

26. Currency and Residency 113
Unoptimized Optimizedbkpt1bkpt1
bkpt2 bkpt2

i = x i = y R1 = x R2 = y
R2 = zFigure 26.2: At bkpt1, i is current, but is it in R1 or in R2? At bkpt2, i isendangered, and is only in R2.

114 27. Summary of Part III27 Summary of Part IIIThe mapping between statements and breakpoints used for unoptimized code is prob-lematic for optimized code. If such a mapping is used by a debugger on optimized code,the debugger is likely to mislead the debugger user. This work has described a mappingbetween statements and breakpoints that provides a reasonable approximation to whatthe naive user would expect when used on optimized code (and provides exactly what thenaive user would expect on unoptimized code). The mapping allows the debugger user tobreak where a statement occurs or execute a statement at a time on a program in whichstatements may have been reordered and instructions generated from a statement are notnecessarily contiguous. The mapping enables debugger behavior that more closely approxi-mates the behavior provided by current debuggers on unoptimized code than other proposedmappings, and thereby neither requires debugger users to be experts on optimization norrequires users to modify their debugging strategies.Using any such mapping, optimization can cause a debugger to provide an unexpectedand potentially misleading value when asked to display an endangered variable. A debuggermust be able to determine the currency of a variable if it is to provide truthful behavioron optimized code. Other researchers have given solutions to special cases of the currencydetermination problem. Sections 17 and 25 describe a general solution to the problem fora large class of sequential optimizations, including optimizations that modify the shape ofthe ow graph. These results hold in the presence of both local and global optimizations,including those listed in Table 27.1, and require no information about which optimizationshave been performed.This work has described the information a compiler must make available to the debuggerfor this task, as well as the nature of the information the debugger can provide to thedebugger user when the user asks for the value of an endangered variable.For most optimizations, the results described in this paper are precise (i.e., a variableclaimed to be current is current, a variable claimed to be endangered is endangered, etc.).In some circumstances involving assignments through pointers, there is a trade-o� betweenrare non-conservative results and more common non-conservative results, which is discussedRepresentative Optimizationsinlining dead store elimination partial redundancy eliminationcode hoisting strength reductions local instruction schedulingconstant folding constant propagation global instruction schedulingcross-jumping copy propagation local common subexpression eliminationloop unrolling dead code elimination global common subexpression eliminationother code motion induction-variable eliminationTable 27.1: The currency determination technique is applicable in the presenceof any sequential optimizations, including all of the listed optimizations, thateither do not modify the ow graph of the program or modify the ow graph ina constrained manner. Blocks may be added, deleted, coalesced, or copied; edgesmay be deleted, but control ow may not be radically changed. As an exampleof an optimization that does not observe the constraints, it does not apply to aportion of a program that contains interchanged loops.

27. Summary of Part III 115at length in Section 20. There are two other circumstances in which the results areconservative:� when a variable is current along all feasible paths but noncurrent along some infeasiblepath, in which case it will be claimed to be endangered.� when a variable is endangered along some path due to an assignment through an alias,but there is no execution in which that path is taken and that variable is a�ected bythat assignment.27.1 Future WorkCurrency determination at semantic breakpoints remains an open question (this topicis discussed in Section 25).Once a debugger user has found a suspicious variable (one that due to program logic,not optimization, contains an unexpected value), the next question is `How did it get thatvalue?'. The sets of reaching de�nitions used for currency determination can be used ina straightforward manner to answer this question (`x was set at one of lines 323 or351'). One direction for future research is how to e�ciently be even more helpful; how to giveresponses such as `x was set at line 566 to foo(y,z). At that point, z had thevalue 3.141 (set at line 370) and y had the value 17; y was set at line 506 toy+bar(w).'. This was called owback analysis by Balzer [Bal69], and has been investigatedby others ([MC91], [Kor88]); reaching sets may be adaptable to this purpose.Another research direction is dynamic currency determination, which is how a debuggercan collect the minimal execution history information needed to determine whether anendangered variable is current or noncurrent when execution is suspended at a breakpoint.Useful in conjunction with this or as an alternative is recovery, which is to have thedebugger compute and display the value that a variable would have had if optimizationhad not endangered the variable. Finally, an exciting possibility is extending the breakpointmodel and currency determination techniques to parallel code, which is rife with noncurrentvariables.

116 28. Conclusion28 ConclusionDebugging optimized code is a di�cult problem, but it is worth solving for the followingreasons:� It is not always possible to completely debug an unoptimized version of a program.Examples have been given in which optimization changes the behavior of a programeven when the optimizer is correct. This is not a new result, but such examples havenot previously appeared in the literature.� Source-level debuggers give misleading information in the presence of optimization,and will continue to do so without additional capabilities and support from compilers.� Both source-level debugging based on misleading information and assembly-level de-bugging are more time consuming than source-level debugging based on accurateinformation.These facts clearly demonstrate that additional debugger capabilities and compilersupport for debugging optimized code are needed to lower the cost of software production.I have described new debugger capabilities and the compiler support on which they arebased that make it possible for debuggers to present accurate information in circumstanceswhere formerly they would present misleading information:� When no frame pointer is set up within the stack frame of some active subroutine|Part II describes several ways to support a expected behavior from a debugger'scall-stack trace facility in this circumstance. These methods vary in their costs: thereis a trade-o� between run-time overhead for the debugger and required symbol tableand compiler support. One method has been implemented and results are given.� When the instructions generated from a statement are not contiguous|Section 15describes a breakpoint model that enables truthful behavior in this case.� When optimization has caused the storage location for a variable to contain anunexpected value|Part III describes a graph data structure to track optimizationsthat modify a program's ow graph, and algorithms on that data structure thatdetermine whether a variable is current at a breakpoint. An architectural design isgiven from which an implementation should be straightforward, and the correctnessof the algorithms is shown.

A. Can a Noncurrent Pointer be Assigned Through? 117021
3 ;

p = foo();
*p = x;

p = &u;p = &v;
Figure A.1: If u and v are dead on exit from block 2, the assignment to p in block2 can be eliminated, thus p is endangered at its use in block 3, without violatingprogram semantics. Presumably, foo() can return the address of some variablethat is live in block 3.A Can a Noncurrent Pointer be Assigned Through?Must it be the case that p is current at a trasnparent assignment through p (such as*p = x)? After all, How can a compiler make an assignment through a pointer that is notcurrent? It would seem as though that would violate program semantics. While it may beunlikely, it is possible to arrive at an example in which such an assignment is legal. Anexample is given in Figure A.1.Though perhaps unlikely, it is conceivable that V could be endangered because of sucha situation. The di�culty for currency determination is that if V is endangered in thismanner, it is due not to optimization a�ecting de�nitions of V , which is what we have beendealing with so far, but to optimization a�ecting de�nitions of p.While in some cases it would be easy to determine that p is current, in general if inorder to determine the currency of one variable we need to know the currency of anothervariable, we have a costly and potentially circular de�nition of currency determination. Thecircumstances under which a compiler can make a transparent de�ner (here p) noncurrent atthe point of the transparent de�nition are su�ciently constrained that many compilers willnever do it. It may be that those that do will, through the pointer analysis, determinep's currency at subsequent assignments through p. Returning to Figure A.1, perhapsthe compiler could determine for what variables p is noncurrent (u and v) and at whattransparent de�nition (*p = x; in block 3). The compiler could tag that de�nition as

118 A. Can a Noncurrent Pointer be Assigned Through?unreliable for those variables.34 However, the compiler's ability to produce this informationis an open question. For the remainder of this work, I assume that transparent de�ners arecurrent at each of their uses.

34If the compiler could determine a pointer's currency, why would it not determine an arbitrary variable'scurrency? First, for the purpose at hand, we need a pointer's currency only at subsequent uses of the pointer,whereas we need to be able to determine a variable's currency at any breakpoint. Second, if the compilerdoes determine a pointer's currency, it is through additional complex analysis.

B. Proof of the Validity of the DS-graph 119B Proof of the Validity of the DS-graphTheorem 17.6 relies on the correctness of Algorithm PRS, which in turn relies on thecorrectness of the DS-graph construction.In this appendix I show that a DS-graph constructed as described in Section 17.3 isvalid.In Appendix C I show that the In sets are correctly computed: if there is a ds-pairin an In set, there is a path through the DS-graph along which that ds-pair reaches theentry of the block. Assume DS-graph node B selects source graph block Bu and objectgraph block Bo. I then show that (d; s) 2 InVB means, loosely speaking, that there is asource graph path to Bu such that d reaches the entry of Bu along that path, also thatthere is a corresponding object graph path Bo such that s reaches the entry of Bo alongthe object graph path. This and an examination of how PRSVBk is computed (where Bk isa breakpoint, not a node) allows us to conclude that (d; s) 2 PRSVBk i� d and s reach thebreakpoint along corresponding paths.Theorem 17.6 follows from this latter conclusion and the de�nitions of current, noncur-rent, and endangered.Let j be a path concatenation operator with the natural semantics.Object graph and DS-graph transformations are coupled, so that Oi refers to the objectgraph corresponding to DSi.Lemma B.1: If Oselectsi(n) = Null, then n has at most one predecessor andat most one successor.Proof: By induction on the number of applications of DS-graph transformations.Base Case:A DS-graph DS0 created according to the DS-graph Creation Rule contains no nodes n forwhich Oselects(n) = Null.Inductive Hypothesis:Assume that Lemma B.1 holds for any DS-graph DSn following n graph transformations.Inductive Step:Show that Lemma B.1 holds for a DS-graph DSn+1 following n+ 1 graph transformations.Transformations 1, 3, and 4 do not introduce any nodes that do not select blocks in theobject graph, do not increase the number of successors or predecessors of existing nodesthat do not select blocks in the object graph, and do not change the object graph blockselection of any node to Null. Thus the Lemma holds for these transformations by theinductive hypothesis.Transformation 2:This transformation does not increase the number of successors or predecessors ofexisting nodes that do not select blocks in the object graph. It does not change theobject graph block selection of any node to Null.It does remove a node that selects a block in the object graph and replaces it withcopies that do not select any block in the object graph, but the replacements havea single predecessor and a single successor. It also replaces nodes that do not selecta block in the object graph with copies that do not select any block in the objectgraph, but again, the replacements have a single predecessor and a single successor.This can be seen by considering the interaction between NewEdges and a replacementnode vs;k 2 NewNodes . vs;k becomes the head of one new edge and the tail of onenew edge.

120 B. Proof of the Validity of the DS-graphTransformation 5:This transformation does not increase the number of successors or predecessors ofexisting nodes that do not select blocks in the object graph. It does not change theobject graph block selection of any node to Null.It does remove the call node, which selects a block in the object graph, and replacesit with copies that do not select any block in the object graph, but the replacementshave a single predecessor and a single successor. This can be seen by considering theinteraction between NewEdges and a replacement node Callk 2 CallNodes. Start isCallk 's only successor, and the kth predecessor of Call is Callk's only predecessor.The transformation also copies a subgraph, but because the selection and connectivityof the copy matches the selection and connectivity of the subgraph of which it is acopy, the inductive hypothesis guarantees that the Lemma holds for nodes within thecopy.Transformation 6:This transformation does not increase the number of successors or predecessors ofexisting nodes that do not select blocks in the object graph. It does not change theobject graph block selection of any node to Null.It may introduce nodes that do not select blocks in the object graph by makingcopies of the body of a loop. The selection and connectivity of each copy matchesthe selection and connectivity of the loop of which it is a copy, with the exceptionthat copies of back edges and copies of edges out of the loop are replaced. They arereplaced one-for-one, so the selection and number of edges in and out of each node inthe copy matches the selection and number of edges in and out of the node of whichit is a copy, so the inductive hypothesis guarantees that the Lemma holds for nodeswithin the copy.We overload the function Sselects to take a subpath in DSi and return a subpath inS, and we overload Oselects to take a subpath in DSi and return a subpath in Oi, in thenatural way.Theorem B.2: A DS-graph created according to the DS-graph Creation Ruleand modi�ed by iterative application of DS-graph transfomations is valid.Recall the de�nition of valid:A DS-graph is valid if and only if every path p through the DS-graph denotes apath-pair, that is, the pair of paths < pu; po > selected by p is a path pair, andevery feasible path-pair is denoted by some path through the DS-graph.Proof: By induction on the number of applications of DS-graph transformations.Base Case:Let DS0 be a DS-graph created according to the DS-graph Creation Rule. DS0, the sourcegraph, and object graph are isomorphic { clearly the DS-graph is valid.Inductive Hypothesis:Assume that a DS-graph DSn created according to the DS-graph Creation Rule and sub-sequently modi�ed by n graph transformations is valid.Inductive Step:Show that a DS-graph DSn+1 created according to the DS-graph Creation Rule and sub-sequently modi�ed by n+ 1 graph transformations is valid.

B. Proof of the Validity of the DS-graph 121Sselectsn = Sselectsn+1 and Oselectsn = Oselectsn+1 except where explicitly mentioned.Sselectsn+1 subsumes Sselectsn; its domain may be larger because the n+1st transformationmay introduce DS-graph nodes, but its value on a node present in DSn is the same as thevalue of Sselectsn on that node.Let p be a path in DSn+1 where Sselectsn+1(p) = pu and Oselectsn+1(p) = po.If p is present in DSn and Oselectsn(p) = po then by the inductive hypothesis, p denotesa path-pair (since Sselectsn+1 subsumes Sselectsn). Otherwise, we have a case analysisbased on which transformation was last applied.Transformation 1:Since p was a�ected by the transformation, p can be expressed as:p = pre�x j < as; ns; bs > jsu�xfor some s 2 Subpaths, where pre�x does not contain any nodes in NewNodes .If p is not a simple path, su�x may contain nodes in NewNodes . Induction on thenumber of nodes in NewNodes contained in p can be used to show that p denotesa path-pair. I present only the base case here, in which su�x contains no nodes inNewNodes .pu = Sselectsn+1(pre�x)j < Sselectsn+1(as); Sselectsn+1(bs) > jSselectsn+1(su�x)po = Oselectsn+1(pre�x)j < Oselectsn+1(as); b;Oselects(bs) > jOselectsn+1(su�x)9p0 = pre�x j < as; bs > jsu�x , in DSnp0u = Sselectsn(pre�x)j < Sselectsn(as); Sselectsn(bs) > jSselectsn(su�x)p0o = Oselectsn(pre�x)j < Oselectsn(as);Oselectsn(bs) > jOselectsn(su�x)On input I ,1. po is taken i� p0o is taken, by semantic constraint.2. p0u is taken i� p0o is taken, by the inductive hypothesis.3. pu is taken i� p0u is taken, because pu = p0u.4. pu is taken i� po is taken, by 1, 2, and 3.Therefore p denotes a path-pair.It remains to show that every feasible path-pair through S and On+1 is denoted bysome path through DSn+1. Assume < pu; po > is a feasible path-pair through S andOn+1 taken on input I .If po does not contain b, then < pu; po > is a feasible path-pair through S and On,and is denoted by some path p through DSn, by the inductive hypothesis. p is notmodi�ed by this transformation and thus is a path through DSn+1 also, and denotes< pu; po > in S and On+1.If po does contain b, then assume without loss of generality that po = po. Then p0ois in On, which by the inductive hypothesis implies p0 is in DSn denoting path-pair< p0u; p0o > through S and On taken on I . The DS-graph transformation constructs pin DSn+1 from p0, where p does indeed select po. By 3, pu is taken on I and thereforepu = pu. Thus p is a path through Dn+1 that denotes path-pair < pu; po >.Transformation 2:Since p was a�ected by the transformation, p can be expressed as:p = pre�x jsjsu�xwhere s is composed of nodes in NewNodes and is a copy of some s 2 Subpaths,and pre�x does not contain any nodes in NewNodes

122 B. Proof of the Validity of the DS-graphIf p is not a simple path, su�x may contain copies of paths in Subpaths. Inductionon the number of copies of paths in Subpaths contained in p can be used to show thatp denotes a path-pair. I present only the base case here, in which su�x contains nonodes in NewNodes .Oselectsn+1(s) =< h; t >, for some h 2 HO and some t 2 TO.Oselectsn(s) =< h; b; t >pu = Sselectsn+1(pre�x)jSselectsn+1(s)jSselectsn+1(su�x)po = Oselectsn+1(pre�x)j < h; t > jOselectsn+1(su�x)9p0 = pre�x jsjsu�x , in DSnp0u = Sselectsn(pre�x)jSselectsn(s)jSselectsn(su�x)p0o = Oselectsn(pre�x)j < h; b; t > jOselectsn(su�x)Sselectsn+1(s) = Sselectsn(s)On input I ,1. po is taken i� p0o is taken, by semantic constraint.2. p0u is taken i� p0o is taken, by the inductive hypothesis.3. pu is taken i� p0u is taken, because pu = p0u.4. pu is taken i� po is taken, by 1, 2, and 3.Therefore p denotes a path-pair.It remains to show that every feasible path-pair through S and On+1 is denoted bysome path through DSn+1. Assume < pu; po > is a feasible path-pair through S andOn+1 taken on input I .If po does not contain < h; t > for h 2 HO and t 2 TO, then < pu; po > is a feasiblepath-pair through S and On, and is denoted by some path p through DSn, by theinductive hypothesis. p is not modi�ed by this transformation and thus is a paththrough DSn+1 also, and denotes < pu; po > in S and On+1.If po does contain < h; t >, then assume without loss of generality that po = po. Thenp0o is in On, which by the inductive hypothesis implies p0 is in DSn denoting path-pair< p0u; p0o > through S and On taken on I . The DS-graph transformation constructs pin DSn+1 from p0, where p does indeed select po. By 3, pu is taken on I and thereforepu = pu. Thus p is a path through Dn+1 that denotes path-pair < pu; po >.Transformation 3:Every path in DSn+1 denotes a path-pair by the inductive hypothesis, since everypath in DSn+1 is present in DSn.Assume < pu; po > is a feasible path-pair through S and On+1 that is not denoted byany path through DSn+1. < pu; po > is also a feasible path-pair through S and On.By the inductive hypothesis there is a path p through DSn that denotes < pu; po >.If p were present in DSn+1, it would denote < pu; po >, so at least one edge in p mustbe removed by the DS-graph transformation. Let e be the �rst such edge in p.No internal node in a subpath s 2 SubPaths selects a block in the object graph, so byLemma B.1, each edge on s is on no other subpath in SubPaths .Suppose e is in DelEdges . Then e is on exactly one s 2 SubPaths, and p contains s.Oselectsn(s) is the subpath in On consisting of the edge that gets deleted from On.Oselectsn(s) is in po, so po contains the deleted edge. This contradicts the assumptionthat < pu; po > is a feasible path-pair through S and On+1.

B. Proof of the Validity of the DS-graph 123e must then be in the transitive closure of �(DelEdges). Then the edge prior to e onp is in the transitive closure of �(DelEdges), so the edge prior to e on p is removed,contradicting the assumption that e is the �rst edge on p that is removed.Transformation 4:If p is not a simple path, it may contain multiple nodes that select the block boundarymarkerM . Induction on the number of such nodes can be used to show that p denotesa path-pair. Again, I present only the base case, in which p contains a single suchnode:p is present in DSn. Let p0u = Sselectsn(p) and p0o = Oselectsn(p). < p0u; p0o > is apath-pair through S and On by the inductive hypothesis.po = pre�x j < h;M; x > jsu�x for some x 2 EOp0o = pre�x j < h; t; x > jsu�xIt follows from the semantic constraint on the object graph transformation that if< h; t; x > is taken in On on some input I, then < h; x > is taken in On+1 on I.Because M selects a position internal to h, for purposes of block entry M can beignored, so po is taken on the same set of inputs as p0o.On input I ,1. po is taken i� p0o is taken, by semantic constraint.2. p0u is taken i� p0o is taken, by the inductive hypothesis.3. pu is taken i� p0u is taken, because pu = p0u.4. pu is taken i� po is taken, by 1, 2, and 3.Therefore p denotes a path-pair.The object graph transformation introduces no new paths. The DS-graph transfor-mation maintains the relationship between DS-graph paths and feasible paths, andremoves no DS-graph paths. Therefore every feasible path-pair through S and On+1is denoted by some path through DSn+1.Transformation 5:Since p was a�ected by the transformation, p can be expressed as:p = pre�x j < Call > jsj < Succ > jsu�x ,where Call is the �rst copy of Call on p,and s is composed of nodes in InlinedNodes .If p is not a simple path, su�x may contain nodes in CallNodes and InlinedNodes .Induction on the number of nodes in CallNodes contained in p can be used to showthat p denotes a path-pair. I present only the base case here, in which su�x does notcontain nodes in CallNodes or InlinedNodes :pu = Sselectsn+1(pre�x)j < Sselectsn+1(Call) > jSselectsn+1(s)j < Sselectsn+1(Succ) >jSselectsn+1(su�x)po = Oselectsn+1(pre�x)jOselectsn+1(s)j < Oselectsn+1(Succ) > jOselectsn+1(su�x)9p0 = pre�x j < Call > jsj < Succ > jsu�x , in DSn,where Call is the only instance of Call on p, and s is composed of nodes in theto-be-inlined subroutine. The ith node in s is a copy of the ith node in s.p0u = Sselectsn(pre�x)j < Sselectsn(Call) > jSselectsn(s)j < Sselectsn(Succ) >jSselectsn(su�x)p0o = Oselectsn(pre�x)j < Oselectsn(Call) > jOselectsn(s)j < Oselectsn(Succ) >jOselectsn(su�x)

124 B. Proof of the Validity of the DS-graphSselectsn+1(Call) = Sselectsn(Call)Sselectsn+1(s) = Sselectsn(s)Oselectsn+1(Call) = nullOn input I ,1. po is taken i� p0o is taken, because s is the inlined version of < Call > js.2. p0u is taken i� p0o is taken, by the inductive hypothesis.3. pu is taken i� p0u is taken, because pu = p0u.4. pu is taken i� po is taken, by 1, 2, and 3.Therefore p denotes a path-pair.It remains to show that every feasible path-pair through S and On+1 is denoted bysome path through DSn+1. Assume < pu; po > is a feasible path-pair through S andOn+1 taken on input I .If po does not contain any nodes in CallNodes or InlinedNodes , then < pu; po > is afeasible path-pair through S and On, and is denoted by some path p through DSn,by the inductive hypothesis. p is a path through DSn+1 also, and denotes < pu; po >in S and On+1.Otherwise, assume without loss of generality that po = po. Then p0o is in On, which bythe inductive hypothesis implies p0 is in DSn denoting path-pair < p0u; p0o > throughS and On taken on I . The DS-graph transformation constructs p in DSn+1 from p0,where p does indeed select po. By 3, pu is taken on I and therefore pu = pu. Thus pis a path through Dn+1 that denotes path-pair < pu; po >.Transformation 6:Since p was a�ected by the transformation, p can be expressed as:p = pre�x jsj < Succ > jsu�x ,where s is composed of nodes in NewNodes and consists of theloop body unrolled i times.If p is not a simple path, su�x may contain nodes in NewNodes . Induction on thenumber of sequences of nodes in NewNodes contained in p can be used to show thatp denotes a path-pair. I present only the base case here, in which su�x does notcontain nodes in NewNodes :pu = Sselectsn+1(pre�x)jSselectsn+1(s)j < Sselectsn+1(Succ) > jSselectsn+1(su�x)po = Oselectsn+1(pre�x)jOselectsn+1(s)j < Oselectsn+1(Succ)> jOselectsn+1(su�x)9p0 = pre�x jsj < Succ > jsu�x , in DSn,where s consists of i traversals of the to-be-unrolled loop.The ith node in s is a copy of the ith node in s.p0u = Sselectsn(pre�x)jSselectsn(s)j < Sselectsn(Succ) > jSselectsn(su�x)p0o = Oselectsn(pre�x)jOselectsn(s)j < Oselectsn(Succ) > jOselectsn(su�x)Sselectsn+1(s) = Sselectsn(s)On input I ,1. po is taken i� p0o is taken, because s is the unrolled version of s.2. p0u is taken i� p0o is taken, by the inductive hypothesis.3. pu is taken i� p0u is taken, because pu = p0u.4. pu is taken i� po is taken, by 1, 2, and 3.

B. Proof of the Validity of the DS-graph 125Therefore p denotes a path-pair.It remains to show that every feasible path-pair through S and On+1 is denoted bysome path through DSn+1. Assume < pu; po > is a feasible path-pair through S andOn+1 taken on input I .If po does not contain any nodes in NewNodes , then < pu; po > is a feasible path-pairthrough S and On, and is denoted by some path p through DSn, by the inductivehypothesis. p is a path through DSn+1 also, and denotes < pu; po > in S and On+1.Otherwise, assume without loss of generality that po = po. Then p0o is in On, which bythe inductive hypothesis implies p0 is in DSn denoting path-pair < p0u; p0o > throughS and On taken on I . The DS-graph transformation constructs p in DSn+1 from p0,where p does indeed select po. By 3, pu is taken on I and therefore pu = pu. Thus pis a path through Dn+1 that denotes path-pair < pu; po >.

126 C. Proof of Correctness of the Data Flow AlgorithmsC Proof of Correctness of the Data Flow AlgorithmsIn Section C.1 I �rst show that Algorithm PRS and Algorithm PRSCT are correct,then that Algorithm PRS-BK and Algorithm PRS-BKCT are correct. These proofsnaturally fall together because Algorithm PRS is a special case of Algorithm PRSCTand Algorithm PRS-BK is a special case of Algorithm PRS-BKCT . I then show thatTheorem 17.6 follows from this latter conclusion and the de�nitions of current, noncurrent,and endangered.In Section C.2 I show that Algorithm PRST is correct, then than Algorithm PRS-BKT is correct. I then show that Theorem 19.8 follows from this latter conclusion and thede�nitions of current, noncurrent, and endangered.C.1 Proof of Correctness of Algorithm PRS and Algorithm PRSCTLemma C.1: Initialize and InitializeCT terminate with (d; s) 2 GenVB i� eitherd = null and there are no de�nitions of V in B's de�nition list or d is a de�nitionof V in B's de�nition list and d reaches the exit of B, and either s = null andthere are no stores into V in B's de�nition list or s is a store into V in B's storelist and s reaches the exit of B.Proof: Inspection of Initialize and InitializeCT , coupled with the assumption that thede�nition and store lists for each block are correct, is su�cient to show that the Lemmaholds.Theorem C.2:Algorithm PRS and Algorithm PRSCT terminate with e 2 InVB i� there isa path p to B in the DS-graph such that e reaches the entry of B along p.Algorithm PRS is a special case of Algorithm PRSCT where no transparent de�-nitions are present. I prove the Theorem for the general case (Algorithm PRSCT). Toapply the proof to Algorithm PRS, convert the Gen elements in that algorithm to Gensets that have a single element, and assume that all de�nitions and stores are opaque.Proof: TerminationInitialize and InitializeCT terminate because there are a �nite number of variables andde�nitions.Iterate terminates because� no element is ever removed from an In or Out set,� an element is added to at least one In or Out set on every iteration but the last, and� elements are from de�nitions � stores, which is a �nite set.Only if:If e is in InVB , then there is a path p to B such that e reaches the entry of B along p.I will show the existence of the desired path using induction on the number of iterationsbefore e is placed in InVB the �rst time.Base Case: e is placed into InVB for the �rst time on the second iteration.By line 2 of Iterate, InVB and OutVB are empty before the �rst iteration. By line 5 ofIterate and because OutVB is empty the �rst time through, InVB is empty immediately afterthe �rst iteration. Since e is placed into InVB in the second iteration, e is placed into OutVPin the �rst iteration, for some predecessor P of B, (line 5 of Iterate). Because InVP is emptyin the �rst iteration, line 7 of Iterate reduces to OutVP = Complete(GenVP).

C. Proof of Correctness of the Data Flow Algorithms 127By Lemma C.1 (d; s) 2 GenVP implies d reaches the exit of P and s reaches the exit ofP . Let p0 be a path to P . p0 exists because if there were no path to P , the edge from P toB would have been deleted (DS-graph transformation 3). Let p be p0j < P;B >. Then ereaches the entry of B along p.Inductive hypothesis: Assume that if e is placed into InVB for the �rst time on theith iteration for 2 � i < n, then there is a path p to B such that e reaches the entry of Balong p.Inductive step: Show that if e is placed into InVB for the �rst time on the nth iteration,then there is a path p to B such that e reaches the entry of B along p.If e is placed into InVB for the �rst time on the nth iteration, then by line 5 of Iterate,e 2OutVP for some predecessor P of B for the �rst time in iteration n� 1.e's presence in OutVP is due to the execution of line 7 of Iterate. If InVP were emptyin iteration n � 1, then as in the base case, GenVP would have to contain e. But then ewould have been placed into InVB for the �rst time on the 2nd iteration, contrary to ourassumption, so e is not in GenVP and InVP is not empty in iteration n � 1.Since InVP is non-empty in iteration n� 1, by de�nition of �[, 9f 2 InVP in iteration n� 1such that e 2 f � GenVP . By the inductive hypothesis, there is a path p0 to P such that freaches the entry of P along p0. Let p be p0j < B >. Let e = (d; s). We have a case analysisbased on the ways (e) can be placed into OutVP .Case 1: (null; null) 2 GenVP and f = e. By Lemma C.1, B contains no de�nitions of Vand no stores into V , so e reaches P 's exit.Case 2: (null; s) 2 GenVP and f = (d; s0). By Lemma C.1, s reaches P 's exit and Bcontains no de�nitions of V . Then d also reaches P 's exit, so e reaches P 's exit.Case 3: (d; null) 2 GenVP and f = (d0; s). By Lemma C.1, d reaches P 's exit and Bcontains no stores into V . Then s also reaches P 's exit, so e reaches P 's exit.By choice of P and p, e reaches the entry of B along p. Note that if e is transparent,Case 1 must apply.If:If there is a path p to B in the DS-graph such that e reaches the entry of B along p,then e is in InVB .The proof is by induction on the length of p.Base Case: jpj = 1. Then B's predecessor P is the start node. Initialize or InitializeCTwill place e into GenVP (where e = (d-init; s-init)). In the �rst iteration, e is placed intoOutVP by line 7 of Iterate. In the second and all subsequent iterations, e is placed into InVBby line 5 of Iterate.Inductive hypothesis: Assume that if there is a path p to B of length i, 1 � i < n,such that e reaches the entry of B along p, then e 2 InVB .Inductive step: Show that if there is a path p to B of length n such that e reachesthe entry of B along p, then e 2 InVB .Let P be the predecessor of B on p. Because e reaches the entry of B along p, e reachesthe exit of P along p. We have a case analysis of the di�erent ways that e can reach theexit of P along p.Case 1: e = (d; s) where d and s are in P . Since e reaches the exit of P , by Lemma C.1,e 2 GenVP . In every iteration, OutVP is placed into feg by line 7 of Iterate. In thesecond and all subsequent iterations, feg is placed into InVB by line 5 of Iterate.

128 C. Proof of Correctness of the Data Flow AlgorithmsCase 2: e = (d; s) where d is in P and s is not. Then e is opaque. Since e reaches theexit of P , (d0; s) reaches the entry of P , for some d0, and by Lemma C.1, (d; null) 2GenVP . By the inductive hypothesis, (d0; s) 2 InVP . Assume (d0; s) was �rst placed intoInVP in iteration j. (d0; s) � (d; null) = (d; s) = e, so line 7 of Iterate places e intoOutVP in iteration j and all subsequent iterations. In iteration j+1 and all subsequentiterations, line 5 of Iterate places e into InVB .Case 3: e = (d; s) where s is in P and d is not. Then e is opaque. Since e reaches theexit of P , (d; s0) reaches the entry of P , for some s0, and by Lemma C.1, (null; s) 2GenVP . By the inductive hypothesis, (d; s0) 2 InVP . Assume (d; s0) was �rst placed intoInVP in iteration j. (d; s0) � (null; s) = (d; s) = e, so line 7 of Iterate places e intoOutVP in iteration j and all subsequent iterations. In iteration j+1 and all subsequentiterations, line 5 of Iterate places e into InVB .Case 4: e = (d; s) where neither d nor s arE in P . Then e reaches the entry ofP . Since e reaches the exit of P , by Lemma C.1, (null; null) 2 GenVP . By theinductive hypothesis, e 2 InVP . Assume e was �rst placed into InVP in iteration j.e � (null; null) = e, so line 7 of Iterate places e into OutVP in iteration j and allsubsequent iterations. In iteration j+1 and all subsequent iterations, line 5 of Iterateplaces e into InVB .The following theorem relies on the assumption that a store is not generated if thecompiler can determine that the store would never be executed; in particular, stores are notgenerated for unreachable blocks. If B is an unreachable block, then InVB remains empty(by DS-graph transformation 3). GenVBk contains a null, because B's store list is empty. 35Until this point, it has not been important to distinguish an entry in a de�nition orstore list from the representative instruction in the source or object graph that it denotes.The distinction is relevant for the following lemma and theorem. Following now-establishedpractice, for a de�nition list entry d, let du be the representative instruction in the sourcegraph that it denotes. For a store list entry s, let so be the representative instruction inthe object graph that it denotes. For Bk a breakpoint in the DS-graph, let Bku denotethe breakpoint location in the source graph, and Bko denote the breakpoint location in theobject graph.Lemma C.3: Initialize-BK and Initialize-BKCT terminate with (d; s) 2GenVBk i� either d = null and there are no de�nitions of V in Bu prior toBku or d is a de�nition of V prior to Bku in Bu and d reaches Bku, and eithers = null and there are no stores into V in Bo prior to Bko or s is a store into Vprior to Bko in Bo and s reaches Bko.Proof: This can be seen by Inspection of Initialize-BK and Initialize-BKCT , coupledwith the assumption that the de�nition and store lists for each block are correct.Theorem C.4: For a syntactic breakpoint Bk, (d; s) 2 PRSVBk i� there is apath-pair p to Bk such that du is a de�nition of V that reaches Bku along puand so is a store into V that reaches Bko along po.35If this assumption is violated, the proof does not go through, but it is not clear that there are any badresults in practice. We may have nonempty OutVB sets for unreachable nodes, but since the edges out ofthose nodes have been eliminated, no incorrect information ows from them, and no breakpoint in such anode can be reached, so no query about the currency of a variable will be asked at such a node.

C. Proof of Correctness of the Data Flow Algorithms 129Proof: Let B be the node in the DS-graph containing Bk. The fact that Bk is a syntacticbreakpoint guarantees (by de�nition) that Bk is in B's de�nition list and in B's store list,and also that B selects a block Bu in the source graph and a block Bo in the object graph.The assumption that de�nition lists and store lists are correct guarantee that Bku appearsin Bu and Bko appears in Bo.If: Assume (d; s) 2 PRSVBk where Bk is a syntactic breakpoint. I show by a case analysisof how (d; s) can be placed into PRSVBk that there is a path-pair p to Bk such that du is ade�nition of V that reaches Bku along pu and so is a store into V that reaches Bko alongpo.Case 1: (null; null) 2 GenVBk and (d; s) 2 InVB . By Theorem C.2, there is a path p toB such that (d; s) reaches the entry of B along p. By Lemma C.3, B contains node�nition of V and no store into V , and thus (d; s) reaches Bk.Case 2: (d; null) 2 GenVBk and (x; s) 2 InVB (for some x). By Lemma C.3, d reaches Bkalong every path to Bk and B contains no store into V . By Theorem C.2, there is apath p to B such that (x; s) reaches the entry of B along p, and because B containsno store into V , s reaches Bk along p.Case 3: (null; s) 2 GenVBk and (d; x) 2 InVB . By Lemma C.3, s reaches Bk along everypath to Bk and B contains no de�nition of V . By Theorem C.2, there is a path p to Bsuch that (d; x) reaches the entry of B along p, and because B contains no de�nitionof V , d reaches Bk along p.Case 4: (d; s) 2 GenVBk. GenVBk contains a store, so B is reachable. Because an initial ds-pair is placed in GenVStart, some ds-pair is in InVB . Let (x; y) 2 InVB . By Theorem C.2,there is a path p to B such that (x; y) reaches the entry of B along p. By Lemma C.3,d and s reach Bk along every path through the DS-graph, and in particular, along p.By Theorem B.2, p is a path-pair. By assumption, the de�nition lists and store lists arecorrect, so du reaches Bku along pu, and so reaches Bko along po.Note that if (d; s) is transparent, Case 1 or Case 4 must apply.Only if: Assume there is a path-pair p to a syntactic breakpoint Bk such that du is ade�nition of V that reaches Bku along pu and so is a store into V that reaches Bko alongpo. I show that (d; s) 2 PRSVBk.The assumption that de�nition lists and store lists are correct imply that d reaches Bkalong p and s reaches Bk along p, which in turn implies that (d; s) reaches Bk along p. Wehave a case analysis of the ways that (d; s) can reach Bk along p.Case 1: Neither d nor s are in B, B contains no opaque de�nitions of V or opaque storesinto V , and (d; s) reaches the entry of B along p. By Lemma C.3, (null; null) 2GenVBk. By Theorem C.2, (d; s) 2 InVB .Case 2: d is in B and s is not, no opaque stores into V are in B, and s reaches the entryof B along p. By Lemma C.3, (d; null) 2 GenVBk. Some de�nition x of V reaches theentry of B along p (the initial de�nition, if no other). By Theorem C.2, (x; s) 2 InVB .Case 3: s is in B and d is not, no opaque de�nitions of V are in B, and d reaches theentry of B along p. By Lemma C.3, (null; s) 2 GenVBk. Some store x into V reachesthe entry of B along p. By Theorem C.2, (d; x) 2 InVB .Case 4: d and s are both in B. By Lemma C.3, (d; s) 2 GenVBk. Some de�nition x of Vand store y into V reach the entry of B along p. By Theorem C.2, (x; y) 2 InVB .

130 C. Proof of Correctness of the Data Flow AlgorithmsThen by line 1 of Algorithm PRS-BK or Algorithm PRS-BKCT , (d; s) 2 PRSVBk.I can now prove Theorem 17.6, restated here for convenience. Note that in Theorem 17.6,B represents a breakpoint, not a node. Theorem 17.6:PRSVB = ; i� B is unreachable or V is not in scope in the ow graph componentcontaining B. Otherwise:V is current at B i� 8(d; s) 2 PRSVB , s was generated from d;V is endangered at B i� 9(d; s) 2 PRSVB such that s was not generated from d;V is noncurrent at B i� 6 9(d; s) 2 PRSVB such that s was generated from d.Proof: Algorithm PRS and Algorithm PRSCT terminate with e 2 InVB i� there is apath p to B in the DS-graph such that e reaches the entry of B along p.Assume PRSVB = ;. Then by line 1 of Algorithm PRS-BK or Algorithm PRS-BKCT , InVB is empty and Complete(GenVBk) = ;. If V is in scope at B, we assume an initialde�nition of V and an initial store into V , ensuring that at some de�nition of V and storeinto V reach B along every path. But then there would be some ds-pair in InVB . Since thereis not, either there are no de�nitions of V or stores into V in the ow graph component,implying that V is not in scope, or there are no paths to B.Assume B is unreachable. Then InVB is empty (by lines 2 and 4 of Iterate. We assumethat there are no stores in an unreachable block, therefore Complete(GenVBk) = ;, so byline 1 of Algorithm PRS-BK or Algorithm PRS-BKCT , PRSVB = ;.Assume V is not in scope. Then there are no de�nitions of V or stores into V in anyblock in the ow graph component, implying that InVB is empty and GenVBk = (null; null),so by line 1 of Algorithm PRS-BK or Algorithm PRS-BKCT , PRSVB = ;.Assume PRSVB 6= ;, V is in scope, and B is reachable. For any path pair p, Theorem C.4and De�nitions 16.8 and 16.10 relate the pair (d; s) 2 PRSVB that reaches along p, alongwith whether s was generated from d, to V 's currency. The bidirectional nature of theimplication in Theorem C.4 gives the iteration over all paths required by De�nitions 16.11,16.13 and 16.12, and the theorem follows.

C. Proof of Correctness of the Data Flow Algorithms 131C.2 Proof of Correctness of Algorithm PRSTLemma C.5: InitializeT terminates with GenVB = (dl; sl) i� either dl = nulland B's de�nition list contains no de�nitions of V or dl =< d1; d2; : : : ; dm >,each di appears in B's de�nition list, the di are in the same order as they appearin B's de�nition list, and each di reaches the exit of B, and either sl = null andB's store list contains no store into V or sl =< s1; s2; : : : ; sn >, each si appearsin B's store list, the si are in the same order as they appear in B's store list,and each si reaches the exit of B.Proof: The Lemma follows from the assumption that the de�nition and store lists for eachblock are correct, inspection of InitializeT , and the de�nition of `.De�nition C.6: A ds-list-pair for a point P is a pair (dl; sl) of sequences suchthat� dl =< d1; d2; : : : ; dm >, where the di are distinct de�nitions of V that reachP (no two are in the same equivalence class),� sl =< s1; s2; : : : ; sn >, where the si are distinct stores into V that reachP ,� d1 and s1 are opaque,� all other di and si are transparent, and� there is a path, p, to P in the DS-graph such that for all i < j, dj occursafter all instances of di on p (after all de�nitions from the equivalence classof di), and sj occurs after all instances of si on p.The �nal constraint on a ds-list-pair says that if multiple instances of the same de�nitionreach P along p, the last of them is in the ds-list-pair for B. To illustrate this point, supposede�nitions< d1; d2; : : : ; df : : : ; dg; : : : ; dh; : : : ; dm > reach P along p, where df and dh are the samede�nition and all other di are distinct.< d1; d2; : : : ; df : : : ; dg; : : : ; dh; : : : ; dm > can not be a component of a ds-list-pair for Pbecause df and dh are not distinct.< d1; d2; : : : ; df : : : ; dg; : : : ; dh�1; dh+1; : : : ; dm > can not be a component of a ds-list-pairfor P because dh occurs after dg on p.< d1; d2; : : : ; df�1; df+1; : : : ; dg; : : : ; dh; : : : ; dm > can not be a component of a ds-list-pair for P .Theorem C.7: AlgorithmPRST terminates with e 2 InVB i� e is a ds-list-pairfor B.Proof: TerminationInitializeT terminates because there are a �nite number of variables and de�nitions.Iterate terminates because� no element is ever removed from an In or Out set,� an element is added to at least one In or Out set or an element already present in anIn or Out set grows on every iteration but the last,� elements have a �nite size (by the de�nition of �[, an instance of a de�nition or storeappears at most once in a ds-list-pair, and there are a �nite number of instances ofde�nitions and stores), and

132 C. Proof of Correctness of the Data Flow Algorithms� elements are from lists-of-de�nitions � lists-of-stores, which is a �nite set.If:If e is a ds-list-pair for the entry of B then e is in InVB .That e is a ds-list-pair for the entry of B guarantees that there is a path p to B alongwhich the de�nitions and stores in e occur.The proof is by induction on the length of p.Base Case: jpj = 1. Then B's predecessor P is the start node. InitializeT will placee into GenVP (where e = (< d-init >;< s-init >)). In the �rst iteration, e is placed intoOutVP by line 7 of Iterate. In the second and all subsequent iterations, e is placed into InVBby line 5 of Iterate.Inductive hypothesis: Assume that if there is a path p to B of length i, 1 � i < n,such that e is a ds-list-pair for the entry of B along p, then e is in InVB .Inductive step: Show that if there is a path p to B of length n such that e is ads-list-pair for the entry of B along p, then e is in InVB .Let P be the predecessor of B on p. Because e reaches the entry of B along p, e reachesthe exit of P along p. We have a case analysis of the di�erent ways that e can reach theexit of P along p.Case 1: e consists entirely of de�nitions and stores in P . By Lemma C.5 and De�ni-tion 19.6, OutVP is set to feg by line 7 of Iterate in the �rst iteration. In the secondand all subsequent iterations feg is placed into InVB by line 5 of Iterate.Case 2: No de�nitions or stores in e are in P . P cannot contain any de�nitions ofV or stores into V , or they would either kill or be appended to the sequences ine. By Lemma C.5, GenVP = (null; null). Then e is a ds-list-pair for P , so by theinductive hypothesis, e 2 InVP . Assume e was �rst placed into InVP in iteration i.Last(e � (null; null)) = e, so line 7 of Iterate places e into OutVP in iteration i andall subsequent iterations. In iteration i + 1 and all subsequent iterations, line 5 ofIterate places e into InVB .Case 3: Some, but not all, de�nitions or stores in e are in P . Let these be eP . ByLemma C.5 and De�nition 19.6, Last(GenVP) = eP . Then the rest of the de�nitionsand stores in e reach the entry of P . By the inductive hypothesis, there is some ds-list-pair e0 2 InVP that includes these. Any other element in e0 is in the same equivalenceclass as some element in eP , else it would be in e.Assume e0 was �rst placed into InVP in iteration i. Last(e0 � eP) = e, so line 7 ofIterate places e into OutVP in iteration i and all subsequent iterations. In iterationi+ 1 and all subsequent iterations, line 5 of Iterate places e into InVB .Only If:If e is in InVB , then e is a ds-list-pair for the entry of B.By the de�nition of �, all elements in InVB are pairs of sequences of de�nitions of V andstores into V that have an opaque �rst element in each sequence and transparent subsequentelements.I will show the existence of the required path using induction on the number of iterationsbefore e is placed in InVB the �rst time; the distinctness of de�nitions and stores in e andthe ordering constraints on them are by the de�nitions of � and Last.Base Case: e is placed into InVB for the �rst time on the second iteration.

C. Proof of Correctness of the Data Flow Algorithms 133By line 2 of Iterate, InVB and OutVB are empty before the �rst iteration. By line 5of Iterate and because OutVB is empty the �rst time through, InVB is empty immediatelyafter the �rst iteration. Since e is placed into InVB in the second iteration, e is placed intoOutVP in the �rst iteration, for some predecessor P of B, (line 5 of Iterate). A path p0to P exists because otherwise the edge from P to B would have been deleted (DS-graphtransformation 3). Let p be p0j < B >. By Lemma C.5, Complete(GenVP) reaches the exitof P .Because InVP is empty in the �rst iteration, line 7 of Iterate reduces to OutVP =Last(Complete(GenVP)), so e = Last(Complete(GenVP)) and the di and si in e occur alongp. The de�nitions of � and Last guarantee the distinctness and ordering of de�nitions andstores in e.Inductive hypothesis: Assume that if e is placed into InVB for the �rst time on the ithiteration for 2 � i < n, then e is a ds-list-pair for the entry of B.Inductive step: Show that if e is placed into InVB for the �rst time on the nth iteration,then e is a ds-list-pair for the entry of B.If e is placed into InVB for the �rst time on the nth iteration, then by line 5 of Iterate,e 2OutVP for some predecessor P of B for the �rst time in iteration n� 1.The presence of e in OutVP is due to the execution of line 7 of Iterate. If InVP wereempty in iteration n � 1, then as in the base case, e = Last(Complete(GenVP)). But thene would have been placed into InVB for the �rst time on the 2nd iteration, contrary to ourassumption, so e 6= Last(Complete(GenVP)) and InVP is not empty in iteration n� 1.It follows, by the de�nition of �[, that there is some (dl; sl) 2 InVP in iteration n� 1 suchthat e = Last((dl; sl)� GenVP). By the inductive hypothesis, (dl; sl) is a ds-list-pair for theentry of P . Let p0 be the path to P guaranteed by the inductive hypothesis. Let p be pathp0j < B > to B. Lemma C.5 guarantees the correctness of GenVP . The de�nitions of � andLast guarantee the distinctness and ordering of de�nitions and stores in e.Lemma C.8: Initialize-BKT terminates with GenVBk = (dl; sl) i� either dl =null and B's de�nition list contains no de�nitions of V prior to Bk or dl =<d1; d2; : : : ; dm >, each di appears in B's de�nition list prior to Bk, the di arein the same order as they appear in B's de�nition list, and each di reaches Bk,and either sl = null and B's store list contains no store into V prior to Bk orsl =< s1; s2; : : : ; sn >, each si appears in B's store list prior to Bk, the si arein the same order as they appear in B's store list, and each si reaches Bk.Proof: The Lemma follows from inspection of Initialize-BKT , coupled with the assumptionthat the de�nition and store lists for each block are correct.Theorem C.9: Algorithm PRS-BKT terminates with e 2 PRSVBk i� e is a ds-list-pair for Bk.Proof:Initialize-BKT terminates because there is a �nite number of de�nitions and stores in anode.Algorithm PRS-BKT terminates because InVB is a �nite set.If:If e is a ds-list-pair for Bk then e is in PRSVBk.Let B be the node containing Bk.

134 C. Proof of Correctness of the Data Flow AlgorithmsCase 1: e consists entirely of de�nitions and stores prior to Bk in B. By Lemma C.8 andDe�nition 19.6, PRSVBK is set to feg by line 1 of Algorithm PRS-BKT .Case 2: No de�nitions or stores in e are prior toBk in B. B cannot contain any de�nitionsof V or stores into V , or they would either kill or be appended to the sequences in e.By Lemma C.8, GenVBk = (null; null). Then e is a ds-list-pair for the entry of B, andby Theorem C.7, e 2 InVP . e is placed in PRSVBK by line 1 of Algorithm PRS-BKT .Case 3: Some, but not all, de�nitions or stores in e are prior to Bk in B. Let these beeBk. By Lemma C.5 and De�nition 19.6, Last(GenVBk) = eBk. Then the rest of thede�nitions and stores in e reach the entry of B. By Theorem C.7, there is some ds-list-pair e0 2 InVP that includes these. Any other element in e0 is in the same equivalenceclass as some element in eP , else it would be in e. e = Last(e0 � GenVBk), so e is placedin PRSVBK by line 1 of Algorithm PRS-BKT .Only If:If e is in PRSVBk, then e is a ds-list-pair for Bk.By line 1 of Algorithm PRS-BPT , e 2 InVB �[GenVBk. By Theorem C.7, all elements inInVB are ds-list-pairs for the entry of B. By Lemma C.8 GenVBk is correct. It follows that allde�nitions and stores in e occur along the same path. �[maintains the required distinctnessand ordering conditions on de�nitions and stores (by De�nition 19.6). Thus all elements ofInVB �[GenVBk are ds-list-pairs for Bk.De�nition C.10: A p-list-pair for a point P is a pair (dl; sl) of sequences suchthat� dl =< d1; d2; : : : ; dm >, where the di are distinct de�nitions of V that reachP ,� sl =< s1; s2; : : : ; sn >, where the si are distinct stores into V that reachP ,� d1 and s1 are opaque,� all other di and si are transparent, and� there is a path-pair, < pu; po >, to P such that for all i < j, dj occurs afterall instances of di on pu, and sj occurs after all instances of si on po.Theorem C.11: Algorithm PRS-BPT terminates with e 2 PRSVBk i� e is ap-list-pair for Bk.Proof: Theorem C.11 follows from Theorems C.7, C.9, B.2, and the assumption that thede�nition and store lists are correct.When some instance of a de�nition d is not an alias for V , other instances of d outsideof any loop or in the same iteration of a loop are not aliases for V , else the compiler couldnot have put them in the same equivalence class. However, the same instance of d in adi�erent iteration of a loop may alias V , because code in the loop can change what variabled aliases (suppose the source for the de�nition is A[i] = x).When ds-list-pairs are constructed along a path p, all but the last de�nition fromeach equivalence class that occurs along p are eliminated|similarly for stores. Supposea transparent de�nition that occurs within a loop aliases V on one iteration and anothervariable on a later iteration, and V is endangered by virtue of the earlier de�nition. Wemust ensure that we do not lose this information when we eliminate the earlier de�nition

C. Proof of Correctness of the Data Flow Algorithms 135from the ds-list-pair. We do not, as we can �nd a shorter path along which that instanceof that de�nition occurs at most once and along which V is endangered. There is oncecircumstance in which we would need two instances of a de�nition (or store) to ensurethat we have correct information, and I will argue that this circumstance is semanticallypathological and unlikely. In constructing a shorter path, we may eliminate loop iterations(termed short-circuiting), add iterations, or re-order iterations.The following Lemma assumes that there is at most one instance of any de�nition ofV or store into V on any path through a loop. If there is more than one such instance onsome path through a loop, either all of them are aliases for V or none of them are aliasesfor V , so we need only record one of them in a ds-list-pair.Notational note: di is the ith de�nition of V that occurs along pu and si is the ithstore into V that occurs along po. Again, I use the naming convention that a de�nition dxgenerates the store sx.Lemma C.12: If there is a path-pair p to a point Bk such that si quali�ed-reaches Bk with dj along p where dj is the kth occurrence of some de�nition dxin a loop L, and si is an instance of some store sy where sy was not generatedfrom dx, then there is a path-pair p0 =< p0u; p0o > to Bk such that there are atmost k occurrences of dx in L on pu and either� some sl quali�ed-reaches Bk with dm along p0, or� some dm quali�ed-reaches Bk with sl along p0,where sl was not generated from dm.Proof: Let p0 be derived by short-circuiting to Bk directly after the loop iterationcontaining dj . If si quali�ed-reaches Bk with dj along p0, the Lemma is satis�ed. If not,there is some sq that quali�ed-reaches Bk with dj along p0. If sq was not generated fromdj , the Lemma is satis�ed. Assume sq was generated from dj . Let dp be the last de�nitionof V prior to entering L on p (and thus on all constructed paths). Let sp be the last storeinto V prior to entering L on p (and thus on all constructed paths).Case 1|q > i : Then sq was turned o� on p by an instance of dx in a later iteration ofL. Note that the left-hand-side of dx and sx cannot be loop invariant, because thenprogram semantics would require that if sq was turned o�, all instances of dx and sxwould be turned o�, including dj|but dj reaches Bk by assumption. Therefore thereis some path pL:sx through L that contains an instance of dx but does not contain aninstance of sx. This implies that V is dead on pL:sx and at Bk: because the left-hand-side of sx is not loop-invariant, sx cannot be eliminated or moved out of the loopwithout possibly eliminating an assignment into V . However, V may be live on someother path through L (V must be de�ned before its use on that path). Let p00 be thepath resulting from replacing all iterations of L on p with a single iteration of pL:sx.Case 1.a pL:sx contains a store sz.Case 1.a.1 pL:sx does not dz following dx. Then p00 satis�es the Lemma withsl being sz and dm being the instance of dx in pL:sx.Case 1.a.2 dz follows dx on pL:sx. The Lemma does not hold for this case forj = 1. Assume j > 1. Let q be the path resulting from adding a seconditeration of pL:sx. Then q satis�es the Lemma with dm being the instanceof dx in the second iteration of pL:sx and sl being the instance of sz in the�rst iteration of pL:sx. If j = 1, the Lemma is not satis�ed because althoughsl is not generated from dm, two instances of dx are in L on q. This casecan be broken down into a good many subcases, a number of which satisfy

136 C. Proof of Correctness of the Data Flow Algorithmsthe Lemma for j = 1. Some of the subcases cannot be satis�ed for j = 1.Any reader preparing to read further deserves to be spared further subcasesgiven the many cases that follow.Case 1.b pL:sx does not contain a store.Case 1.b.1 sp is not an instance of sx. Then p00 satis�es the Lemma with l = pand dm being the instance of dx in pL:sx.Case 1.b.2 sp is an instance of sx.Case 1.b.2.a There is a path pLsz through L containing an instance of sz,sz 6= sx, but not containing dx. Let p000 be the path resulting frominserting pLsz into p00 prior to pL:sx.Case 1.b.2.a.1 pLsz does not contain sx following sz.Case 1.b.2.a.1.a pL:sx contains an instance of dz that turns o� sz.Reverting to p00, the Lemma is satis�ed with l = p and with dmbeing dz.Case 1.b.2.a.1.b pL:sx does not contain a de�nition dz that turnso� sz. Then p000 satis�es the Lemma with sl being sz and dm beingthe instance of dx in pL:sx.Case 1.b.2.a.2 pLsz contains sx following sz.Case 1.b.2.a.2.a An instance of dz follows dx on pL:sx. Then p000satis�es the Lemma with dm being the instance of dz on pLnegsx andsl being the instance of sx on pLszCase 1.b.2.a.2.b dp is an instance of dx and no instance of dz followsdx on pL:sx.%itemCase 1.b.2.a.2.b.1Neither pLsz nor pL:sx contains an instanceof dz. Then p000 satis�es the Lemma with m = p and sl being sz.Case 1.b.2.a.2.b.2 pLsz contains an instance of dz. Then let q be thepath resulting from removing pL:sx from p000. q satis�es the Lemmawith dm being the dz, and sl being the sx, from pLsz .Case 1.b.2.a.2.b.3 pLsz does not contain an instance of dz and aninstance of dz precedes dx on pL:sx. The Lemma does not hold forthis case for j = 1. Assume j > 1. Let q be the path resultingfrom replacing all iterations of L on p with two iterations of pL:sx.q satis�es the Lemma with dm being the instance of dx from thesecond iteration of pL:sx and sl being the last store prior to sp thatis not an instance of sx. (Any instances of sx immediately precedingsp must be turned o� if sp is turned o�, since outside of a loop, twoinstances of a store must target the same location.) If j = 1, theLemma is not satis�ed because although sl is not generated fromdm, two instances of dx are in L on q. There are subcases for whichthe Lemma is satis�ed, but as the Lemma cannot be satis�ed for allof them, any reader that has gotten this far is to be congratulatedand spared further subcases.Case 1.b.2.a.2.c dp is not an instance of dx. Then let q be the pathresulting from removing pL:sx from p000. q satis�es the Lemma withm = p and sl being sx (from pLsz).

C. Proof of Correctness of the Data Flow Algorithms 137Case 1.b.2.b Every path pLsz through L containing an instance of sz,sz 6= sx, contains dx. The Lemma does not hold for this case for j = 1.Assume j > 1. Let q be the path resulting from replacing all iterations ofL on p with a single iteration of such a pLsz followed by a single iterationof pL:sx.Case 1.b.2.b.1 Some pLsz does not contain sx following sz. q satis�esthe Lemma with dm being the instance of dx from pL:sx and sl beingthe instance of sz from pLsz .Case 1.b.2.b.2 Every pLsz contains sx following sz. q satis�es theLemma with dm being the instance of dx from pLsz and sl being theinstance of sz from pLsz , because the instance of dx from pL:sx turns o�the instance of sx from from pLsz .In both subcases, if j = 1, the Lemma is not satis�ed because althoughsl is not generated from dm, two instances of dx are in L on q. Thiscase can be broken down into a good many subcases, a number of whichsatisfy the Lemma for j = 1, based on the existence and placement ofdz and whether dp is an instance of dx. Some of the subcases cannotbe satis�ed for j = 1. Any reader that has gotten this far is to becongratulated and spared further subcases.Case 1.b.2.c There is no path pLsz through L containing sz, sz 6= sx. Thensi must be before L.Case 1.b.2.c.1 There is a path pLdz through L containing dz, dz 6= dx.Let q be the path resulting from replacing all iterations of L on p witha single iteration of pLdz . q satis�es the Lemma with sl = sp and dmbeing dz.Case 1.b.2.c.2 There is no path pLdz through L containing dz, dz 6= dx.The Lemma does not hold for this case for j = 1. Suppose j > 1. Letq be the path resulting from replacing all iterations of L on p with twoiterations of pL:sx. q satis�es the Lemma with dm being the instance ofdx from the second iteration of pL:sx and sl being the last store priorto sp that is not an instance of sx. (Any instances of sx immediatelypreceding sp must be turned o� if sp is turned o�, since outside of aloop, two instances of a store must target the same location.) If j = 1,the Lemma is not satis�ed because although sl is not generated fromdm, two instances of dx are in L on q.Case 2|q < i : Then si was in a later iteration of L and killed sq. Let the subpath of ptaken through L on the iteration containing dj be pLj . There is some subpath pLy of ptaken through L that contains sy but does not contain dy, or si would not quali�edreach with dj along p.Case 2.a: pLy does not contain an instance of dx. Let p00 be the path resulting frominserting pLy into p0 immediately following pLj . p00 satis�es the Lemma with slbeing the instance of sy on pLy and m = j.Case 2.b: pLy contains an instance of dx.Case 2.b.1: sx does not follow sy on pLy . Let p00 be the path resulting fromreplacing pLj with pLy on p0. Again, p00 satis�es the Lemma with sl being theinstance of sy on pLy and m = j.

138 C. Proof of Correctness of the Data Flow AlgorithmsCase 2.b.2: sx follows sy on pLy . Let p0 be constructed from p by replacing alliterations of L on p with pLy .Case 2.b.2.a: dp is not an instance of dy. p0 satis�es the Lemma with slbeing the instance of sy on pLy and m = p.Case 2.b.2.a: dp is an instance of dy. (While in this case, a store (sy)has been moved into a loop, in the corresponding case in the corollary,the store has been moved out of the loop.) The Lemma does not holdfor this case for j = 1. Suppose j > 1. Let q be the path resulting fromreplacing all iterations of L on p with two iterations of pLy . q satis�es theLemma with dm being the instance of dx from the �rst iteration of pLyand sl being the instance of sy from the second iteration of pLy .If j = 1, the Lemma is not satis�ed because although sl is not generatedfrom dm, two instances of dx are in L on q.Corollary C.13: If there is a path-pair p to a point Bk such that di quali�ed-reaches Bk with sj along p where sj is the kth occurrence of some store sx intoV in a loop L, k >= 2, and di is an instance of some de�nition dy of V wheredy was not generated from sx, then there is a path-pair p0 =< p0u; p0o > to Bksuch that there are at most k occurrences of sx in L on pu and either� some dl quali�ed-reaches Bk with sm along p0, or� some sm quali�ed-reaches Bk with dl along p0,where sm was not generated from dl.Proof: The proof follows the same arguments as the previous proof, with the roles ofde�nitions and stores reversed.Notational note: In the following theorems, dix is the ith instance of the de�nition atposition x in some speci�ed p-list-pair, so dix and djx are instances of the same de�nition. Ap-list-pair (< d1; d2; : : : ; dn >;< s1; s2; : : : ; sm >) is said to mismatch if for i � max(n;m),si was not generated from di. If a p-list-pair does not mismatch, then n = m and itdoes not matter which end we start from in an attempt to match the di and si. We areinterested in the �rst mismatch encountered when the matching on the p-list-pair is donefrom back to front: a p-list-pair (< d1; d2; : : : ; dn >;< s1; s2; : : : ; sm >) mismatches at di; sjif n � i = m � j and i and j are the largest such indices such that sj was not generatedfrom di. Given a path-pair p, Defs(p) is the sequence of de�nitions of V that occur alongpu, and Stores(p) is the sequence of stores into V that occur along po,Theorem C.14: If a p-list-pair for a point Bk mismatches then there is a path-pair p to Bk such thatsiy quali�ed-reaches Bk with djx, ordjx quali�ed-reaches Bk with siyalong p, and siy is not generated from djx.Proof: Let (< d1; d2; : : : ; dn >;< s1; s2; : : : ; sm >) be a p-list-pair for Bk that mismatchesat da; sb. Let da be an instance of da and sb be an instance of sb. From De�nition C.10,there is a path p =< pu; po > such thatDefs(pu) = �j < dia > j�, where � contains no instances of da, andStores(pu) = j < sjb > j�, where � contains only instances of sb.

C. Proof of Correctness of the Data Flow Algorithms 139Because da; sb is the �rst mismatch (starting from the end), each store in � is generatedfrom some de�nition in � and each de�nition in � generates some store in �. There may bemultiple instances of some of these de�nitions and stores in beta and delta. If these are notin the right order or numeric correspondence, some dq; sq in � and � satis�es the Theorem,or one of dia or sjb satis�es the Theorem with some sq in � or dq in �. Otherwise, dia; sjbsatis�es the Theorem. .Theorem C.15: If there is a path-pair p to Bk such thatsiy quali�ed-reaches Bk with djx, ordjx quali�ed-reaches Bk with siyalong p, and siy is not generated from djx, then there is a p-list-pair for Bk thatmismatches.Proof: LetDefs(pu) = �j < djx > j�, andStores(pu) = j < siy > j�.Assume siy quali�ed-reaches Bk with djx (a symmetric argument applies if instead djxquali�ed-reaches Bk with siy). Note that sx does not quali�ed-reach Bk with djx, wheresx is generated from djx. If there is some dkx in �, we can apply Lemma C.12 or Corol-lary C.13 to �nd a shorter path to B that has the conditions required by the Theorem,except in the cases where we have noted that Lemma C.12 and Corollary C.13 do not hold.This Theorem therefore does not hold in those cases either. (Note that if the left-hand-sideof djx is loop invariant, there is no dkx in �, because if there were, siy could not quali�ed reachbk with djx.)We can therefore assume there are no dkx in �. Then there are no skx in � else(siy would notquali�ed-reach Bk with djx) and there is a p-list-pair pl = (< : : : ; dx > jA;< : : : ; sy > jB)where every store in B is generated from some de�nition in A but sy is not generated froma de�nition in A. Therefore PL either mismatches in A;B (due to the ordering of thede�nitions and stores), mismatches at dA; sy where dA is in A, mismatches at dx; sB wheresB is in B, or mismatches at dx; sy.I can now prove Theorem 19.8, restated here for convenience.Theorem 19.8:PRSVB = ; i� either V is not in scope at B or B is unreachable. Otherwise:V is current at Bk i� V is current at Bk by e, 8e 2 PRSVBk;V is endangered at Bk i� 9e 2 PRSVBk such that V is not current at Bk by e;V is noncurrent at Bk i� 6 9e 2 PRSVBk such that V is current at Bk by e.Proof: Assume PRSVB 6= ;, V is in scope, and B is reachable.By Theorem C.11 and De�nition C.10, PRSVBk contains p-list-pairs for all paths to Bk.Theorem 19.8 follows from that fact, Theorems C.14 and C.15, and De�nitions 16.11, 16.12,and 16.13. The Theorem does not hold for the cases for which Theorem C.15 does not hold.Assume PRSVB = ;. Then by line 1 of Algorithm PRS-BKT , InVB is empty andComplete(GenVBk) = ;. If V is in scope at B, we assume an initial de�nition of V andan initial store into V , ensuring that at some de�nition of V and store into V reach B alongevery path. But then there would be some ds-pair in InVB . Since there is not, either thereare no de�nitions of V or stores into V in the ow graph component, implying that V isnot in scope, or there are no paths to B.

140 C. Proof of Correctness of the Data Flow AlgorithmsAssume B is unreachable. Then InVB is empty (by lines 2 and 4 of Iterate. We assumethat there are no stores in an unreachable block, therefore Complete(GenVBk) = ;, so byline 1 of Algorithm PRS-BKT , PRSVB = ;.Assume V is not in scope. Then there are no de�nitions of V or stores into V in anyblock in the ow graph component, implying that InVB is empty and GenVBk = (null; null),so by line 1 of Algorithm PRS-BKT , PRSVB = ;.

References 141References[AG93a] A. Adl-Tabatabai, T. Gross, \Evicted Variables and the Interaction of Global Reg-ister Allocation and Symbolic Debugging," Proceedings of the POPL`93, The Twen-tieth Annual ACM SIGACT-SIGPLAN Symposium on Principles of ProgrammingLanguages, Charleston, South Carolina, January 1993.[AG93b] A. Adl-Tabatabai, T. Gross, \Detection and Recovery of Endangered VariablesCaused by Instruction Scheduling," To appear in the Proceedings of the PLDI`93,ACM SIGPLAN/93 Conference on Programming Language Design and Implemen-tation, Albuquerque, New Mexico, June 1993.[AG92] A. Adl-Tabatabai, T. Gross, \The E�ects of Register Allocation and InstructionScheduling of Symbolic Debugging," Proceedings of the Supercomputer DebuggingWorkshop , Dallas, Texas, October 1992.[ASU86] A. V. Aho, R. Sethi, J. D. Ullman, \Compilers Principles, Techniques, and Tools,"Addison-Wesley, Menlo Park, CA, 1986.[AU77] A. V. Aho, J. D. Ullman, \Principles of Compiler Design," Addison-Wesley, MenloPark, CA, 1977.[Bal69] R. M. Balzer, \EXDAMS - EXtendable Debugging and Monitoring System," Pro-ceedings of AFIPS Spring Joint Computer Conference, Vol 34 pp. 125-134, 1969.[BHS92] G. Brooks, G. J. Hansen, and S. Simmons, \A New Approach to DebuggingOptimized Code," Proceedings of the ACM SIGPLAN Conference on ProgrammingLanguage Design and Implementation, SIGPLAN Notices, Vol. 27, No. 7, pp. 1-11,San Francisco, California, June 1992.[BK92] J. Brown, R. Klamann, \The Application of Code Instrumentation Technology inthe Los Alamos Debugger", Proceedings of the Supercomputer DebuggingWorkshop`92, Dallas, Texas, October 1992. October 1992.[Bro91] J. S. Brown, \The Los Alamos Debugger ldb", Proceedings of the SupercomputerDebugging Workshop `91, Albuquerque, New Mexico, November 1991.[BW92] T. Bemmerl, R. Wism�uller, \Quellcode-Debugging von global optimierten Pro-grammen", GI-ITGWorkshop \Parallelrechner und Programmiersprachen", SchlossDagstuhl, Germany, Feb. 26-28, 1992 (in German)[BW93] L. Berger, R. Wism�uller, \Source-Level Debugging of Optimized Programs UsingData Flow Analysis", unpublished draft from the Department of Computer Science,Munich Institute of Technology, Germany, 1993.[CH91] B. Chase, R. Hood, \Debugging with Lightweight Instrumentation", Proceedings ofthe Supercomputer Debugging Workshop `91, Albuquerque, New Mexico, November1991.[Coh91] R. Cohn, \Source Level Debugging of Automatically Parallelized Code,"Proceedingsof the ACM/ONR Workshop on Parallel and Distributed Debugging, May 1991,SIGPLAN Notices, Vol. 26, No. 12, pp. 132-143 December 1991.[CM93] M. Copperman, C. E. McDowell, \A Further Note on Hennessy's \Symbolic De-bugging of Optimized Code", ACM Transactions on Programming Languages andSystems Vol. 15, No. 2, pp. 357-365, April 1993.[CM91b] M.Copperman, C. E.McDowell, \Debugging Optimized CodeWithout Surprises,"Proceedings of the Supercomputer Debugging Workshop , Albuquerque, New Mexico,November 1991.

142 References[Cop92] M. Copperman, \Debugging Optimized Code: Currency Determination withDataFlow," Proceedings of the Supercomputer Debugging Workshop , Dallas, Texas,October 1992.[Cop92] M. Copperman, \Debugging Optimized Code Without Being Misled," UCSC Tech-nical Report UCSC-CRL-92-01, January 1992. Submitted for publication to ACMTransactions on Programming Languages and Systems.[Cop90] M. Copperman, \Source-Level Debugging of Optimized Code: Detecting Unex-pected Data Values," University of California, Santa Cruz technical report UCSC-CRL-90-23, May 1990.[CT93] M. Copperman, J. Thomas \Poor Man's Watchpoints," University of California,Santa Cruz technical report UCSC-CRL-93-12, March 1993.[Cor91] Steve Correll, personal communication, Borland International, Scotts Valley, CA,April 1991[CMR88] D. Coutant, S. Meloy, M. Ruscetta \DOC: a Practical Approach to Source-LevelDebugging ofGloballyOptimizedCode," Proceedings of the SIGPLAN`88Conferenceon Programming Language Design and Implementation, pp. 125-134, 1988.[FM80] P. H. Feiler, R. Medina-Mora, \An Incremental Programming Environment,"Carnegie Mellon University Computer Science Department Report, April 1980.[Fri83] P. Fritzon, \A Systematic Approach to Advanced Debugging through IncrementalCompilation", Proceedings of the ACM SIGSOFT/SIGPLAN Software EngineeringSymposium on High-Level Debugging, Paci�c Grove, California, March 1983, alsopublished as SIGPLAN Notices, Vol. 18, No. 8, pp. 130-139 Aug. 1983.[Gup90] R. Gupta, "Debugging Code Reorganized by a Trace Scheduling Compiler," Struc-tured Programming, Vol. 11, No. 3, pp.1-10, July 1990.[Hen82] J. Hennessy, \Symbolic Debugging of Optimized Code," ACM Transactions onProgramming Languages and Systems, Vol. 4, No. 3, pp. 323-344, 1982.[Hen90] Hennessy, J., Center for Integrated Systems, Stanford University, Stanford, CA,personal communication regarding \Symbolic Debugging of Optimized Code," 1991.[Mel90] Meloy, S., Hewlett-Packard, 3345 Mount Pleasant Rd., Lincoln, CA, personal com-munication regarding DOC, 1990.[Kes90] P. Kessler, \Fast Breakpoints: Design and Implementation", Proceedings of theSIGPLAN '90 Conference on Programming Language Design and Implementation,White Plains, New York, June 1990.[Kor88] B. Korel, \PELAS Program Error-Locating Assistant System," IEEE Transactionson Software Engineering, Vol. 14, No. 9, pp. 1253-1260, September 1988.[MC88] B.Miller, J. Choi, \AMechanism for E�cient Debugging of Parallel Programs,"Pro-ceedings of the SIGPLAN/SIGOPSWorkshop on Parallel and Distributed Debugging,pp. 125-134, Madison, Wisconsin, 1988.[MC91] B. Miller, J. Choi, \Techniques for Debugging Parallel Programs with FlowbackAnalysis," ACMTransactions on Programming Languages and Systems, Vol. 13, No.4, pp. 491-530, 1991.[Pic90] D. Pickens, MetaWare Incorporated, Santa Cruz, CA, personal communicationregarding the MetaWare High C compiler.

References 143[PS91] P. P. Pineo, M. L. So�a, \Debugging Parallelized Code Using Code LiberationTechniques," Proceedings of the ACM/ONR Workshop on Parallel and DistributedDebugging, May 1991, SIGPLAN Notices, Vol. 26, No. 12, pp. 108-119 December1991.[PS88] L. L. Pollock, M. L. So�a, \High Level Debugging with the Aid of an IncrementalOptimizer," Hawaii International Conference on System Sciences, January 1988.[PS92] L. L. Pollock, M. L. So�a, \Incremental Global Reoptimization of Programs," ACMTransactions on Programming Languages and Systems, Vol. 14, No. 2, pp. 173-200,1992.[ST83] R. Seidner, N. Tindall, \Interactive Debug Requirements", Proceedings of the ACMSIGSOFT/SIGPLAN Software Engineering Symposium on High-Level Debugging,Paci�c Grove, California, March 1983, also published as SIGPLANNotices, Vol. 18,No. 8, pp. 130-139 Aug. 1983.[Shu89] W. S. Shu, \A Uni�ed Approach to the Debugging of Optimized Programs", Ph.D.Disssertation, Department of Computer Science, University of Nottingham, England,UK, 1989.[Shu91] W. S. Shu, \AFormal Characterisation of the E�ects ofOptimization onDebugging",Technical Report TR003-WSS-91, Department of Computer Science, University ofYaound�e, Cameroon, 1991.[Shu92] W. S. Shu, \A New Basis for Debugging : : : from Optimized Programs", FirstInternational Conference on Research in Computer Science, Yaound�e, Cameroon(published by INRIA, France) 1992.[ST83] W. S. Shu, \Adapting A Debugger for Optimized Programs", SIGPLAN Notices,Vol. 28, No. 4, pp. 39-44 April 1993.[Sil92] J. Silverstein, ed., \DWARF Debugging Information Format," Proposed Standard,UNIX International Programming Languages Special Interest Group, April 1992,personal communication regarding DWARF.[Str91] L. Streepy, \CXdb ANew View On Optimization," Proceedings of the SupercomputerDebugging Workshop , Albuquerque, November 1991.[WST85] D. Wall, A. Srivastava, R. Templin, \A note on Hennessy's Symbolic Debugging ofOptimized Code," ACM Transactions on Programming Languages and Systems, Vol.7, No. 1, pp. 176-181, Jan. 1985.[Wan91] Wang, F., Microtec Research, Inc., Santa Clara, CA, January 1992, personalcommunication regarding Microtec Research, Inc.'s Xray Debugger.[Wis93] Wismueller, R., Institut fur Informatik, Technische Universitat Munchen, Munich,Germany, personal communication regarding current research, February 1993.[WS78] H. S.Warren, Jr., H. P. Schlaeppi, \Design of the FDS interactive debugging system,"IBM Research Report RC7214, IBM Yorktown Heights, July 1978.[Ze83a] P. Zellweger, \Interactive Source-Level Debugging of Optimized Programs," Re-search Report CSL-83-1, Xerox Palo Alto Research Center, Palo Alto, CA, Jan.1983.[Ze83b] P. Zellweger, \An Interactive High-Level Debugger for Control-Flow OptimizedPrograms," SIGPLAN Notices, Vol. 18, No. 8, pp. 159-172 Aug. 1983.

144 References[Zel84] P. Zellweger, \Interactive Source-Level Debugging of Optimized Programs," Re-search Report CSL-84-5, Xerox Palo Alto Research Center, Palo Alto, CA, May1984.[ZJ90] L. W. Zurawski, R. E. Johnson, \Debugging Optimized CodeWith Expected Behav-ior,"Unpublished draft fromUniversity of Illinois at Urbana-ChampaignDepartmentof Computer Science, August 1990.

