
C++ Classes for the E�cientManipulation and Storage ofHierarchical ObjectsDean R. E. Long�UCSC-CRL-93-19May 27, 1993Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractMany applications must e�ciently store and manipulate complex objects. Oftensub-objects or entire objects are identical. Memory use can be decreased by the useof object handles which point to shared objects in place of actual objects. If theobjects are hierarchical, sub-objects can also be represented with handles, allowingmany operations to manipulate handles instead of whole objects. The copy-on-writeand object registration techniques presented here reduce the cost of storing, copying,modifying, and matching hierarchical objects. Using object registration, identicalobjects are detected and shared, allowing objects to be uniquely identi�ed by theirlocation in memory. Copy-on-write object semantics allows increased sharing andreduced copying, while hierarchical copy-on-write objects using handles allows copiesto have deep-copy behavior but shallow-copy cost.�This work, particularly work on the START program, was supported in part by NSF grant CCR-9102635.

CONTENTS 1Contents1. Introduction 51.1 Related Work : 62. Registered Copy-On-Write Objects 72.1 E�cient Operations on Handles : 72.1.1 Fast Copy : 72.1.2 Match : 72.1.3 Modify : 72.1.4 Overhead : 82.2 Hierarchical UCOW Objects : 82.3 Descriptions : 92.3.1 Registered : 92.3.2 Handle<T> : 92.3.3 LRUList<T> : 102.3.4 HashTable<T> : 112.4 Example : 132.4.1 UniqueBigNum : 132.4.2 BigNumTree : 152.4.3 Test Program : 172.4.4 Output : 183. Applications 213.1 Static Analysis Tool : 213.1.1 Introduction : 213.1.2 Algorithm : 213.1.3 Performance : 223.2 Puzzle Solver : 244. Conclusion 25Acknowledgments 26References 27A. Class Interfaces 28A.1 List : 28A.2 ListElem : 28A.3 LRU List : 29A.4 Hash Table : 29A.5 Registered : 29A.6 Handle : 30A.6.1 Public : 30A.6.2 Private : 30

CONTENTS 2B. Source Code { Interfaces 32B.1 List : 32B.2 Hash Table : 33B.3 LRU List : 34B.4 Handle : 34C. Source Code { Implementations 37C.1 List : 37C.2 Hash Table : 41C.3 LRU List : 42C.4 Handle : 44D. Classes from START 49D.1 SyncGraph : 49D.2 SyncNode : 49D.3 Action : 49D.4 List<T> : 49D.5 SortedList<T> : 50D.6 LabelList : 51D.7 TaskMap : 51D.8 NodeRep : 52D.9 ActionSet : 52D.10 Cstate : 52D.11 TaskMarker : 52D.12 TaskInCstate : 53D.13 HistNode : 53D.14 CHG : 53

LIST OF FIGURES 3List of Figures2.1 Trees of BigNums. The shared data structures for the BigNumTree programare on the left. The trees represented by the program are on the right. : : 193.1 Graphical representation of a Cstate : 22D.1 Example using the ListElem list iterator : 50

LIST OF TABLES 4List of Tables3.1 The table shows the number of objects in memory at program completionfor four input �les. : 233.2 The table shows the number of objects stored of the same object types andinput �les, but with the implementation that does not use UCOW objects.This is the number of objects that would be represented by handles in theUCOW implementation. : 233.3 Dynamic memory requirements for the two versions of START. : : : : : : : 233.4 Timing measurements in CPU seconds for the two versions of START. : : : 24

1. Introduction 51. IntroductionThis document describes the new classes I developed to solve the problems encounteredwhile writing a C++ application. The application needed to quickly copy, modify, andmatch complex objects. Two of the biggest problems were enormous memory requirementsand slow matching performance. By modifying the somewhat monolithic classes slightly sothat they were arranged in a hierarchy and by using the new classes, the matching speedand memory e�ciency improved dramatically.To address the above problem of large memory requirements when numerous objects arebeing operated on, these classes take advantage of the fact that often many objects or sub-objects in memory at any given time are identical. By registering objects, identical objectscan be detected and shared. An extra level of indirection is needed to share objects. Thisis accomplished through the use of handles. Handles also allow copy-on-write semantics tobe implemented in a straightforward way. This e�ectively allows an object copy to havethe appearance of a deep copy, but to have the performance of a shallow copy. A deep copycopies the actual object as opposed to just copying the pointer. Changes to one objectdo not a�ect the other object. A shallow copy copies the pointer only. Changes to eitherobject a�ect both objects.The new classes use C++ templates [Stroustrup and Ellis, 1991], so they are reusableand work for any type object. One base class is used to make registered objects. Anothertemplate class is used to create copy-on-write handles to registered objects. The handletemplate class also requires the use of a hash table template class, which in turn requiresthe use of a move-to-front list template class. A handle contains a pointer to a registeredobject, while a registered object contains an object plus a reference count. A registeredobject could be either a new object that is derived from the registered class, or it could bederived from an existing class and the registered class using multiple inheritance. In eithercase, a new class can be built that has the same interface as the registered class, but whichuses a handle to implement a copy-on-write version of that class. An object referencedthrough a handle is also unique; object registration is used to make sure that, for eachregistered class, all identical instances of that class share a single copy of the underlyingregistered object in memory. This must be done after a handle-referenced object has beenmodi�ed. Because all non-identical handles will have unique pointers, this allows matchingof the object handles to be as simple as comparing the two pointers. The address of anobject becomes a unique identi�er, limited by the number of objects that can be put in anaddress space. This is di�erent from computing some n-bit integer identi�er for the object,which has to be able to encode all possible objects of the type, as only those objects thatare actually created during the program's execution have identi�ers.These classes were created in the process of developing a static-analysis program that�nds the states of a parallel program. They were essential because the straightforwardimplementation was too slow and took up too much memory. A new approach was neededto gain the required speed and memory e�ciency.The static-analysis tool can be used to �nd and analyze the states, including deadlockstates, of parallel programs like the Dining Philosophers [Hoare, 1978]. One thing that theprogram needs to do quickly is to make incremental changes to complex objects and latercompare them. By taking advantage of the features provided by the handle class mentionedabove, copying, modifying, and comparing of the objects in the program is very e�cient.

1. Introduction 6The large objects are made up of smaller objects, which are themselves made up of evensmaller objects. Because of the hierarchical structure of the objects, the handles can sharesub-objects as well as entire objects. Thus the amount of space required to store a modi�edobject is only slighter more than the size of the change, not the size of the object. Theunmodi�ed sub-objects will remain unchanged.In the �rst section the classes are described, along with some examples. The next sectiondescribes the application whose requirements motivated the design of these classes. Section3.1.3 describes the e�ciency gains realized when dealing with our main test input, DiningPhilosophers. Finally, we conclude with possible ideas for future work.1.1 Related WorkCopy-on-write virtual memory is widely used in operating systems [Nelson and Ouster-hout, 1988]. Ronald White implemented copy-on-write C++ objects using base classes,inheritance, and virtual functions [White, 1991]. This is the method I would have had touse if a C++ compiler with templates was not available. While Mr. White's objects arecopy-on-write, multiple copies of the same object can still exist in memory at the sametime,1 leaving opportunities for further memory sharing. My implementation takes advan-tage of this opportunity with a uniqueness constraint that ensures that identical objectsare shared, even after being modi�ed. It also strives to make the job of the programmereasier by providing template classes, which can be simpler to use than writing the necessaryvirtual functions with the non-template approach.M. C. Cooper de�nes a data structure called a Repnet that takes advantage of therepetitions in hierarchical objects [Cooper, 1989]. His paper describes the application ofthese objects to template matching in computer vision algorithms. While a Repnet is apixel-based structure, generalizing pixels to arbitrary objects gives a structure virtually thesame as that produced by the Handle class described here. In fact, the use of the Handleclass should lead naturally to implementations of Repnets, quadtrees, octrees, or other self-similar or recursive data structures. An example of a recursive tree data structure is givenis Section 2.4.
1 Objects that do not share a common history cannot be shared.

2. Registered Copy-On-Write Objects 72. Registered Copy-On-Write ObjectsThe Handle class described in Section 2.3.2 implements a handle to a shared copy-on-write object. All the shared objects of a particular type are registered in a dictionary datastructure. This dictionary is used to determine if a new or modi�ed object matches anexisting registered object. This means that each registered object is unique, as de�ned byits == operator. This chapter describes the handles that implement unique copy-on-write(UCOW) objects and how to use them. The �rst section describes the features of theseobjects that make them desirable. The second section argues for the use of hierarchicalUCOW objects to implement certain types of large objects. The next section describesthe Handle class, which implements UCOW objects, in some detail. Finally, a full workingexample is given that demonstrates the use of these objects in a simple data structure.2.1 E�cient Operations on HandlesThis section explains the operations that Handles perform e�ciently. Handles store apointer to a shared object. Many operations can be performed by manipulating only thepointers stored in handles. The e�ciency of operations such as modify will be increasedfurther through the use hierarchical objects.2.1.1 Fast CopyA handle will be copied either by the assignment operator or a copy constructor. Foreither, the work required to copy a handle is essentially the same. The destination handlewill be assigned the pointer of the source handle, and the reference count stored in the objectwill be incremented. In the case of assignment, the object referenced by the destinationhandle will have its reference count decremented �rst.2.1.2 MatchAny two handles can be quickly compared for equivalence by comparing their respectivepointers. Since the pointers are guaranteed to point to unique objects, the objects aredi�erent if the pointers are di�erent. If the pointers are the same, the objects they pointto are therefore the same. In LISP, two lists can be EQUAL but not EQ1 [Winston andHorn, 1981]. With UCOW objects, the distinction between EQUAL and EQ goes away. If twoUCOW objects are EQUAL they must also be EQ.2.1.3 ModifyTo modify a COW object, a writable copy of the object needs to be constructed by thehandle. This requires the handle to make a deep copy of the object if its reference count isgreater than one. At �rst this may seem expensive, but if the object is composed of COWsub-objects, resulting in a hierarchical object, the deep copy will be implemented as shallowcopies of the sub-objects. This is possible because the sub-object copy is implemented byits handle. Sub-objects themselves can be built of even smaller COW objects, creating1 The former means the lists are identical, the latter means the lists are actually the same list.

2. Registered Copy-On-Write Objects 8a hierarchy. This increases the potential of sub-objects to share storage and extends thedepth to which shallow copies can be used. If the hierarchical object is thought of as a tree,a modify operation only a�ects the smallest sub-tree that contains the modi�cation. Inother words, only the dirty bits get copied. If the object was not hierarchical, the smallestportion of the object that could be copied would be the entire object. Therefore, preparinga hierarchical object for writing is faster than preparing a non-hierarchical object. Themodi�cation will also create less new memory as long as all sub-parts are not modi�ed.2.1.4 OverheadIf Handles provided just copy-on-write objects, there would be little overhead involved.These handles also provide unique copy-on-write objects. The uniqueness guarantee makescomparing objects fast, but a price must be paid for that feature. The implementation mustensure that objects are unique for fast matching and for maximum storage e�ciency. Todo this, it needs to compare a dirty (potentially modi�ed) object with the other registeredobjects. To avoid pairwise comparisons between a dirty object and every registered object,a hash table is used. The hash function for an object may be faster than actually comparingtwo objects. If the dirty object hashes to an empty slot, no objects need be compared. If theslot is not empty, the dirty object needs to be compared with all the objects that hashed tothat same slot. If a matching object is found, the dirty object is discarded, and its handlewill be directed to point at the existing registered object. If a match is not found, thedirty object is registered, at which point it is considered clean. This pairwise comparison ofobjects is not necessarily prohibitively expensive. Just like for copying, using hierarchicalobjects can make comparisons faster even when the top-level handle pointers cannot becompared, in this case because one object is not yet registered. Even though the top-level pointers cannot be directly compared because the dirty object breaks the uniquenessproperty, we can still reap the bene�t of pointer comparisons if all (or even some) of thesub-objects are handles.In an earlier implementation, the user of a Handle needed to explicitly call a function tounify a dirty object with the set of registered objects. Currently this overhead is performedbehind the scenes. The implementation allows one outstanding dirty object, which isuni�ed when necessary. This is actually a performance bonus because it allows a cleverimplementation to avoid some overhead if the same object is being modi�ed repeatedly.An implementation could also relax the limit on the number of outstanding dirty objects,allowing a small set of dirty objects. However, too large a set of dirty objects could negatethe memory savings which is a design goal of the class.2.2 Hierarchical UCOW ObjectsAs mentioned in the previous section, designing an object as a hierarchy of UCOWobjects can reduce the cost of operations on those objects. The bene�t comes from thefact that sub-objects, except for those at the base of the hierarchy, are UCOW objects, socompares and copies only involve pointer manipulations.There are a few disadvantages to this approach. First, storage for these objects is allo-cated dynamically, which can be more expensive than static or stack storage, both to allo-cate and free. Second, the memory locations of an object are probably not close together orcontiguous, because each sub-object is accessed through a pointer to dynamically-allocated

2. Registered Copy-On-Write Objects 9memory. This can have adverse a�ects on locality and thus cache performance. Finally, theextra level of indirection that pointers require can be a signi�cant cost by itself.Though the approach of using hierarchical UCOW objects to build complex objects hasdisadvantages, the advantages can outweigh the disadvantages. This will be true if theoverhead incurred is o�set by realized savings. The deeper the hierarchy, the more likelythat a writable object can be created using shallow copies. Also, the percentage of timespent on the overhead of cleaning up dirty objects will decrease as the ratio of copy andcompare operations to modify operations increases.2.3 DescriptionsThis section describes the main parameterized types I created in the process of buildingthe static-analysis application. A detailed description of the C++ interfaces to the templatescan be found in Appendix B. Throughout this chapter, a capital letter `T' is used to representa type parameter for a parameterized type.2.3.1 RegisteredSome method must be provided to keep track of all the unique objects of a particulartype, i.e. the objects must be registered. There needs to be exactly one copy of each uniqueobject registered at any given time. A dictionary data structure (the hash table describedabove) is used to keep track of registered objects. A new object is added to the dictionaryonly if a matching object cannot be found in the dictionary. The object is immutable whileit is registered in the dictionary; changes can only be made after it has been removed fromthe dictionary or to a copy.The Registered class is a base class that provides private data needed by registeredobjects and public member functions necessary to operate on those objects. Type T of theHandle<T> template must be derived from Registered. Registered has functions ref andunref that increment and decrement reference counts, respectively. A member functionrefs returns the current reference count. For remembering whether the object is currentlyregistered, there are functions set_registered, unset_registered, and is_registered.The class also declares (but does not de�ne) a function hash, which the derived class mustprovide.22.3.2 Handle<T>This class provides a handle for an object of type T. Given an object O and a handleH created from that object, the handle class enforces the invariant that H will point to aunique copy of O. By unique, we mean that any other handle created with an identicalobject will share the same copy of the object in memory. When the object referenced bya handle is going to be modi�ed, actions need to be performed to enforce the invariant.The handle class provides functions to do this. Thus, this class allows you to maintain acollection of objects of type T such that if there are duplicates, they are e�ciently stored,sharing the same memory locations. Each object is referenced through a handle, which2 If the derived class does not rede�ne the hash function, Registered::hash should show up at link timeas an unresolved symbol. Alternatively, Registered::hash could be de�ned, but print an error that thederived class needs to de�ne a hash function.

2. Registered Copy-On-Write Objects 10contains a pointer to the actual shared object. This class is very useful for manipulatingcomplex data structures, since it facilitates memory sharing and fast comparisons. You canthink of it as providing shared copy-on-write objects. Due to the invariant maintained bythe class, checking equivalence between two object handles can be very fast if they are bothregistered because only the addresses of the objects will be compared.Access to the underlying object is provided by two public member functions, ro_objand rw_obj, which return a read-only or read-write reference to the object, respectively.Before modifying an object through its handle, the modify private member function will becalled on the handle if necessary. If the handle is already \dirty", rw_obj can detect thisand save some time. This ensures that the changes do not a�ect any of the other objectsthat are currently sharing the same storage. After the object has been modi�ed, the shareprivate member function will be called eventually, but not necessarily immediately. At thetime share is called, if the new dirty object matches an existing object, its handle will bechanged to reference the existing object. If, however, the modi�ed object does not matchany of the currently registered shared objects, it is added to the set, allowing it to be sharedin the future.The assignment operator and copy constructor for a handle are very fast, because theyonly deal with pointers. A pointer assignment and changes to some reference counts su�cesfor an assignment. The comparison operator is even simpler. It compares the pointers inthe object handles. If the pointers are the same, the handles point to the same object; ifthe pointers are di�erent, the objects they point to must be di�erent. The private memberfunction cleanup will be called �rst if either of the objects is dirty. Cleaning up a dirtyobject mostly involves a call to another private member function, share. It does all thework of unifying a dirty object with the set of registered object, making sure that identicalobjects are always shared.While the Handle class provides a handle for a unique object, it does not and cannotprovide the programmer with a new class with the same interface as class T. To do so, theprogrammer should build a new class with the same interface as T, but using a Handle<T>to operate on the actual object. Functions that may modify the object should use rw_obj,and const functions should use ro_obj. It is possible to just use rw_obj, but ro_obj ismore e�cient if the object is not modi�ed.The current implementation requires that the class T provide certain functions. Thesefunctions are provided by a class Registered, so all that is needed to use Handle<T> is tomake sure that class T is derived from Registered. Handle uses the generic hash table classof Section 2.3.4 to keep a registry of which objects have been created.2.3.3 LRUList<T>LRUList implements a move-to-front doubly-linked list with items of type T. T shouldbe either a class type or a reference to a class type. Each time an item is accessed it ismoved to the front of the list to simulate an LRU (least-recently-used) list. HashTable usesthis class to store items that hash to the same value. Adding and retrieving items fromthe list is done through the member functions add and findMatch. FindMatch looks for amatching list item and returns a pointer to the list where it was found or a null pointer if itwas not found. The pointer returned by findMatch can be passed to remove to delete theitem from the list.

2. Registered Copy-On-Write Objects 112.3.4 HashTable<T>This is a simple hash table class that stores elements of type T. It supports enoughfunctions to act as a dictionary data structure[Cormen et al., 1990]. It is similar to thelist class in several ways. It has a findMatch function like the list class that requiresoperator == to be de�ned on the type T. This findMatch has a second parameter foundthat return whether the element was found. Because the class implements a hash table,type T also needs to de�ne a hash function of the form:unsigned hash(void) const;which must return the same value for all objects of type T that are equivalent by the ==operator. Type T must de�ne a hash function because elements of type T serve as a keys aswell as a data elements.If the speci�ed type parameter T is a class, the list will store copies of each element. Likethe list class, references are also allowed for the type parameter T. In fact, Handle<T> uses aHashTable<T &> to register objects. Allowing the type parameter T to be a reference typeis useful, but it complicates the interface because pointers to references and references toreferences are not allowed in C++. One way to indicate a negative result for findMatch isto have the return value be a pointer to an element and return a null pointer if the elementis not found. This cannot be done if T is a reference type. Also disallowed is having a T &as an extra parameter to findMatch to return the matched element.Using exceptions would improve the interface considerably, in particular making thesecond parameter found to findMatch unneeded (see appendix). Another solution wouldbe to disallow references, so that a pointer to the element can be returned. If a referenceneeds to be stored, a class containing a single reference can be de�ned.The constructor creates a new hash table of a given size. You can think of the size as ahint to the hash table of how many elements you expect to store, so that the implementationcan make a suitable choice for the number of slots. It is possible to store more elements inthe table than its \size", but performance will be worse than if it had been created witha larger size. The current implementation uses open hashing with chaining, and does notresize. Each chain uses a move-to-front rule to approximate LRU, which is encapsulated inthe LRUList<T> parameterized type.The operations on the hash table are lookup, insert, and delete, with the correspondingmember functions being findMatch, add, and remove respectively. The lookup operationis called findMatch because its argument is not a key, but an object of type T. The hashtable will look for a matching object in the table and return it if found. For two objectsto match, the comparison operator must be de�ned and return TRUE. The member functionadd inserts an object into the table without checking for duplicates, while remove takesan object of type T as its argument and deletes from the table all objects matching thespeci�ed object. See the appendix for more details about the interface for this class.It is interesting that this class does not distinguish between the data type and thekey type. Instead of simply \HashTable<T>", a more general hash table class could bespeci�ed as \HashTable<KEY,T>", where KEY is the key type, and T is the data type. Thehash function and == operator would then need to be de�ned on the KEY type, and boththe key and data element would be stored in the table. The class HashTable<T> insteadassumes that the data contains the key (or the data is the key), so type T must provide thesame interface as a key. Also notice that the class does not have a copy constructor (seeappendix). Such a constructor would be straightforward to write, but was not needed forthe application being considered.

2. Registered Copy-On-Write Objects 12UsageThere are di�erent ways to make a registered class for use with the Handle template.One way is to inherit from Registered in the interface for the class. If the class is beingdesigned from the beginning as an underlying implementation for a UCOW object, thenthe class de�nition would inherit from Registered and include a hash function. This waythe constructors only need to be written once.class RegisteredFoo : public Registered {unsigned hash(void) const;//...};Another way to get a registered class is to take an existing class and to derive a new classfrom that class and from Registered using multiple inheritance. This requires more workbecause things like constructors need to be written since they are not inherited, but it canbe very useful when the source code to the class is not available. A UCOW version of thelibrary class can share code with the original library class using this method.class Bar;class RegisteredBar : public Bar, public Registered {unsigned hash(void) const;//...};Multiple inheritance is useful but not necessary in this case. An alternative method is givenbelow. Instead of inheriting from the library class, the library class becomes a member of thenew class, and corresponding member functions are written to delegate to it. A disadvantageto this approach is the member functions will need to be changed if the library interfacechanges.class Bar;class RegisteredBar : public Registered {public:unsigned hash(void) const;int foo(int x) { return bar.foo(x); }//...private:Bar bar;};There are also di�erent ways to use the handle class to create an object handle thatmimics the behavior of the registered object. You can either inherit from the handle class,or include it as a member of your class and delegate to that member. For classes thatcontain more than one handle the membership approach is required. Examples of both areshown below.// inheritanceclass FooHandle : public Handle<RegisteredFoo> {//...};// membership

2. Registered Copy-On-Write Objects 13class BarHandle {public://...private:Handle<RegisteredBar> left;Handle<RegisteredBar> right;};2.4 ExampleThis section takes the reader step-by-step through an extended example of how to usethe Handle class to build UCOW objects. The data structure used is a binary tree whereeach node contains presumably large piece of data called a BigNum. The tree will beconstructed in such a way that BigNums and subtrees will be shared wherever possible.2.4.1 UniqueBigNumAssume BigNum is a class in a library that implements very large integers. The integersmight be hundreds of digits long. Now suppose you write a program that creates andcompares a large number of these BigNums. Your initial implementation requires too muchmemory, but you realize that because of the nature of your application, there are many fewervalues than numbers, i.e. many of the BigNums have the same value. You decide to changeyour BigNums to \unique" BigNums using the Handle class described above. This will notbe a hierarchical class, but it will illustrate the process of converting a class to be sharedand unique. Besides saving memory, comparing objects of the new class UniqueBigNum willbe faster, but there is some extra overhead attached to creating and modifying the objecthandle. The higher the ratio of comparisons to modi�cations, the greater the performanceimprovement.To make a UniqueBigNum, we need to get a handle to a shared object. The Handletemplate needs some special methods, which we get from Registered:#include <bignum.h>#include "handle.h"// Define a registered BigNum// Use multiple inheritance because BigNum is in a libraryclass RBigNum : public BigNum, public Registered {public:RBigNum(const BigNum &b) : BigNum(b) {}unsigned hash(void) const{ return *this % 63; // int BigNum::operator%(int)}};We supplied a hash function and a copy constructor, the rest is inherited or supplied bythe compiler. Now we have something, RBigNum, that can be given to Handle<T>, giving usHandle<RBigNum>:

2. Registered Copy-On-Write Objects 14typedef Handle<RBigNum> BigNumHandle;Using a typedef is not required, it just keeps us from having to write Handle<RBigNum>everywhere. Now we have a handle, but it does not look like a BigNum. Let's use thehandle to build a class that looks like a BigNum but also has a value that can be shared.We need to implement all the constructors and arithmetic operators that BigNum had:// Now make a unique BigNum using a handleclass UniqueBigNum {public:// Let the handle's constructors do all the workUniqueBigNum(const BigNum &b) : handle(RBigNum(b)) {}// The compiler generates an appropriate copy ctorunsigned hash(void) const{ return handle.ro_obj().hash();}UniqueBigNum operator + (const UniqueBigNum &b){ // Let BigNum class do the workreturn UniqueBigNum(handle.ro_obj() + b.handle.ro_obj());}UniqueBigNum &operator += (const UniqueBigNum &b){ // Let BigNum class do the workhandle.rw_obj() += b.handle.ro_obj();return *this;}// other arithmetic operators follow the same patternint operator == (const UniqueBigNum &b) const{ return handle == b.handle;}// generated assignment operator does the right thing,// so no need to add oneprivate:BigNumHandle handle;};We now have a new class UniqueBigNum that looks like a BigNum, but only one copy ofeach distinct value will be stored in memory. Comparing two of these objects costs only apointer comparison. Next we will see how to build a more complicated data structure thatstores shared UniqueBigNums.

2. Registered Copy-On-Write Objects 152.4.2 BigNumTreeThis section describes the building of trees of big numbers. We anticipate that besidesnumbers in the tree being identical, whole subtrees might also be the same. To takeadvantage of this, each tree will have shared trees as its children. The root of the tree willalso be shared. This is tricky, since the data structure is recursive. The member functionscannot be declared inline because of cyclic dependencies. We de�ne a tree RBigNumTreewith shared children, but an unshared root, and then use that class to construct a new classBigNumTree where all parts are shared. The header �le follows.#include "uniquebignum.h"#include "handle.h"class RBigNumTree;typedef Handle<RBigNumTree> BigNumTreeHandle;class BigNumTree {public:BigNumTree(void);BigNumTree(const BigNum &);BigNumTree(const BigNum &,const BigNumTree &left, const BigNumTree &right);BigNumTree(const BigNumTree &);unsigned hash(void) const;int operator == (const BigNumTree &) const;private:BigNumTreeHandle handle;};// I know from the beginning that I will use this class// with the Handle template, so inherit from Registered here.class RBigNumTree : public Registered {public:RBigNumTree(const BigNum &);RBigNumTree(const BigNum &,const BigNumTree &left, const BigNumTree &right);RBigNumTree(const RBigNumTree &t);unsigned hash(void) const;int operator == (const RBigNumTree &b) const;private:UniqueBigNum bignum;BigNumTree left, right;};The source code for the member function de�nitions follows. All of the functions are small.Most of the work done is calling constructors for data members or delegating calls.#include "bignumtree.h"

2. Registered Copy-On-Write Objects 16// Let the base class contructors do the workBigNumTree::BigNumTree(void) : handle() {}BigNumTree::BigNumTree(const BigNum &n) : handle(RBigNumTree(n)) {}BigNumTree::BigNumTree(const BigNum &n,const BigNumTree &l, const BigNumTree &r) : handle(RBigNumTree(n, l, r)) {}BigNumTree::BigNumTree(const BigNumTree &t) : handle(t.handle) {}unsigned BigNumTree::hash(void) const{ return handle.null() ? 0 : handle.ro_obj().hash();}int BigNumTree::operator == (const BigNumTree &t) const{ return handle == t.handle;}// Let everyone else's contructors do the workRBigNumTree::RBigNumTree(const BigNum &n): bignum(n), left(), right() {}RBigNumTree::RBigNumTree(const BigNum &n,const BigNumTree &l, const BigNumTree &r): bignum(n), left(l), right(r) {}RBigNumTree::RBigNumTree(const RBigNumTree &t): bignum(t.bignum), left(t.left), right(t.right) {}int RBigNumTree::operator == (const RBigNumTree &b) const{ return bignum == b.bignum && left == b.left && right == b.right;}// A fairly simple hash functionunsigned RBigNumTree::hash(void) const{ return (left.hash() << 8) ^ (bignum.hash() << 4) ^ right.hash();}With BigNumTree We de�ne the �nal shared tree using a handle to the registered typeRBigNumTree. The class mostly de�nes appropriate constructors for the class. Additionaloperations to manipulate the tree would normally be added also, but have been omittedfor the sake of simplicity. BigNumTree implements a tree data structure where all identicalsubtrees are shared. As a bonus, the data stored in the tree is also shared. The next

2. Registered Copy-On-Write Objects 17section presents a short program to demonstrate how the sharing works. Though onlysmall numbers are stored in the nodes for simplicity, we will assume the use of BigNumswas justi�ed.2.4.3 Test ProgramIn this section, a program is presented that shows how BigNumTrees and Unique-BigNums can be shared, with little e�ort. The �rst few lines include all the necessaryheader �les, and initialize the static members of the Handle class. Unfortunately this ini-tialization cannot be avoided.3#include <iostream.h>#include "bignumtree.h"// Declare static members, argument is size of hash tableHandleClassData<RBigNum> Handle<RBigNum>::class_data(7);HandleClassData<RBigNumTree> Handle<RBigNumTree>::class_data(31);The rest of the program builds three trees, two of which are identical, compares them, andproduces some sharing statistics. The �rst tree it constructs in two steps, the others in onestep. The next section describes the output.BigNumTree Build_7502502_Tree_1(void){ // 502 treeBigNumTree subtree(BigNum(5),BigNumTree(BigNum(0)), BigNumTree(BigNum(2)));// 7502502 treereturn BigNumTree(BigNum(7), subtree, subtree);}BigNumTree Build_7502502_Tree_2(void){ return BigNumTree(BigNum(7),BigNumTree(BigNum(5),BigNumTree(BigNum(0)), BigNumTree(BigNum(2))),BigNumTree(BigNum(5),BigNumTree(BigNum(0)), BigNumTree(BigNum(2))));}BigNumTree Build_7502503_Tree(void){ return BigNumTree(BigNum(7),BigNumTree(BigNum(5),BigNumTree(BigNum(0)), BigNumTree(BigNum(2))),BigNumTree(BigNum(5),BigNumTree(BigNum(0)), BigNumTree(BigNum(3))));3 One alternative would be to provide macros to simplify the programmer's job.

2. Registered Copy-On-Write Objects 18}int main(int, char **){ // 7502502 treeBigNumTree tree1 = Build_7502502_Tree_1();// another 7502502 tree, from scratchBigNumTree tree2 = Build_7502502_Tree_2();// 7502503 treeBigNumTree tree3 = Build_7502503_Tree();if (tree1 == tree2) {cout << "Good, they are the same!\n";}if (!(tree2 == tree3)) {cout << "Good, tree2 and tree3 are different.\n";}cout << "Handle<RBigNumTree>:\n";Handle<RBigNumTree>::stats(cout);cout << "Handle<RBigNum>:\n";Handle<RBigNum>::stats(cout);}2.4.4 OutputUnderstanding the output from this program is important. It reveals to what extentobjects are being shared. This is the output that the above program produces:Good, tree1 and tree2 are the same!Good, tree2 and tree3 are different.Handle<RBigNumTree>:7 unique objects17 handles (6 null)Handle<RBigNum>:5 unique objects7 handlesAs expected, the program prints that tree1 and tree2 are the same and that tree2 andtree3 are di�erent. The handles for the �rst two trees will both point to the same sharedobject. The handle for the third tree will point to a di�erent shared object, since it doesnot match the other two trees. This is the invariant that the Handle class enforces foridentical objects. The statistics for Handle<RBigNumTree> show that there are seven uniqueRBigNumTree objects. Figure 2.1 shows the sharing that is going on. The seven uniquetrees (counting non-empty subtrees as trees) are (0), (2), (3), (502), (503), (7502502) and(7502503) represented in pre�x notation. There are six (0) trees, �ve (2) trees, one (3) tree,�ve (502) trees, one (503) tree, two (7502502) trees, and one (7502503) tree represented.

2. Registered Copy-On-Write Objects 19
7

tree2tree1 tree3

7

5

320

7

5 5

2020

7

5 5

2020

tree2

7

5 5

020

tree3

3
reference

BigNumTreeHandleUniqueBigNumRBigNum

RBigNumTree

tree1

Figure 2.1: Trees of BigNums. The shared data structures for the BigNumTreeprogram are on the left. The trees represented by the program are on the right.This adds up to twenty-one. But the output also says seventeen handles, six of them null.Let us sort out where these numbers come from.A null handle is a handle that does not refer to a shared object; its pointer is null.This example represents empty subtrees with null handles. The total number of non-nullhandles does not always correspond to the total number of trees represented. This is becausehandles or the objects containing the handles can also be shared. To estimate the amountof memory that would be required without sharing, the total number of trees representedwould be a better metric than the total number of handles.The reason the total number of non-null handles is less than twenty-one has to do withhandles being shared. It might seem that the two (7502502) trees would result in fourhandles for (502) trees. Actually, there are only two. Remember that trees can be shared,and also the contents of the trees, which includes the handles for subtrees. Two handlesfor (502) trees come from the left and right subtree handles of the shared (7502502) treeobject. Sicne both (7502502) trees are using handles, they both share the same tree object(RBigNumTree), so the second tree does not have its own copy of the subtree handles.Analyzing all the trees in this way, we get three (502) handles, one (503) handle, two (0)handles, one (2) handle, one (3) handle, two (7502502) handles, and �nally one (7502503)handle (see Figure 2.1). That comes to a total of eleven. If you add the six null handles forthe left and right children of the (0), (2) and (3) trees, you get seventeen handles total.

2. Registered Copy-On-Write Objects 20That explains the output for trees. Now how about the BigNums? It should be clearthat there are �ve unique BigNums. All the BigNums are referenced once except for 5 and7, which are both used twice. There are no null BigNum handles. The reason there are onlyseven handles is because the trees that store the handles are shared. Instead of having �veBigNum handles with value 2, there is only one, and it is in the shared (2) tree. Rememberthere is only one copy of each tree stored in memory, though there may be many handlespointing to it.

3. Applications 213. ApplicationsThis chapter describes how the classes described earlier have been used in a staticanalysis tool and a puzzle solver.3.1 Static Analysis Tool3.1.1 IntroductionThis section describes how the classes described earlier have been used in an applicationwhich computes states of parallel programs using static analysis. The application is calledSTART, which stands for Static Anomaly Reporting Tool. The input to the program is agraph representing the ow of control between synchronization events in a parallel program.Given this Sync Graph, the application builds a Concurrency History Graph or CHG of theconcurrency states [Helmbold and McDowell, 1990]. In the process of �nding the states andbuilding the CHG, it also detects deadlock states. After computing all the states, they aredisplayed using the X Window System.Each node in the CHG is called a Cstate. A Cstate is a compressed concurrency state.One Cstate can represent many states when expanded. The major components of a Cstateare a TaskMap and a LabelList. The TaskMap is where all the compression takes place. Itrepresents the tasks, the set of places where the tasks are executing, and other task attributesin a graph. The LabelList contains global attributes for things like synchronization variables.Figure 3.1 shows the decomposition of a Cstate. It is not important to know what all thedi�erent classes represent. What should be noted, however, is way they are composed.Appendix D describes all the classes used by a Cstate.3.1.2 AlgorithmThe basic algorithm is not very complicated. The CHG begins with one node: the mainprogram in the Begin state. This node is pushed on a stack of nodes to be examined. Themain loop pops a node o� the stack and generates its successors. Each successor Cstatewill be pushed onto the stack and added to the CHG if it is considered \interesting."1 Togenerate successors, for each task in the Cstate and for each Action in the task's ActionSet,if the Action it has any successors,2 the transition is �red and new Cstates are generatedby invoking the exec virtual function on the successor Action. The algorithm stops whenthere are no more nodes to examine. Conceptually this is the whole top-level algorithm, butactually it is a little more complicated due to optimizations to maintain the \compression"in compressed concurrency states and due to deadlock detection overhead.1 So far, a node is considered interesting if it is di�erent from previously generated nodes. In a futureimplementation a node might be considered uninteresting if its expansion is a subset of the expansion ofanother node.2 based on the Sync Graph

3. Applications 22
LabelList

cbg upper, lower

LabelList

cbg upper, lower

LabelList

cbg upper, lowercbg upper, lower

LabelList

cbg upper, lower

LabelList

cbg upper, lower

LabelList

cbg upper, lower

LabelList

Node

TaskMap

ActionSet

LabelList

TaskVector

int size

TaskVector

NodeNodeNode

NodeNodeNode

int width, height

LabelMap

TaskMap

LabelMap

Cstate

ActionSet ActionSet ActionSet

ActionSet ActionSet

Cstate

int width, height

LabelList

int size

Figure 3.1: Graphical representation of a Cstate3.1.3 PerformanceThis section quanti�es the performance of UCOW objects by comparing the performanceof two implementations of the static analysis tool described earlier. One implementationuses UCOW objects, the other uses normal objects. These normal objects are the sameobjects to which the handles in the UCOW objects point, so the comparison of the twoimplementations is as fair as possible. The changes involved to go between these twoversions are fairly small. Some header �les needed to be changed, but the source code didnot because the objects retained the same interface.The test runs used four di�erent input �les, representing simple Dining Philosophersprograms. DPHIL5 has �ve philosophers, and uses a semaphore for each fork. DPHIL5w,DPHIL6w, and DPHIL7w have �ve, six, and seven philosophers, respectively, but use extrasynchronization to reduce the number of states generated.Table 3.1 shows how many unique objects of di�erent types are stored in memory afterthe CHG is built. Because each TaskMap contains one TaskVector, and TaskVectors onlyexist in TaskMaps, each unique TaskVector results in a unique TaskMap. Therefore, thenumber of unique TaskMaps can be greater, but not less than, the number of unique

3. Applications 23Unique Objects in MemoryTaskMap LabelList Label TaskVector LabelMap ActionSetDPHIL5w 1379 48 16 1379 11 48DPHIL5 9204 68 15 8331 81 42DPHIL6w 5796 83 19 5796 13 57DPHIL7w 24497 150 22 24497 15 66Table 3.1: The table shows the number of objects in memory at program comple-tion for four input �les. Total Objects RepresentedTaskMap LabelList Label TaskVector LabelMap ActionSetDPHIL5w 1379 17821 18163 1379 1379 13367DPHIL5 9204 119546 115494 9204 9204 71685DPHIL6w 5796 86792 90776 5796 5796 65456DPHIL7w 24497 416252 443978 24497 24497 315084Table 3.2: The table shows the number of objects stored of the same object typesand input �les, but with the implementation that does not use UCOW objects.This is the number of objects that would be represented by handles in the UCOWimplementation.Memory in megabytesnormal UCOW ratioDPHIL5w 2.0 0.61 3.3DPHIL5 11 2.8 3.9DPHIL6w 9.3 2.1 4.4DPHIL7w 44 8.7 5.1Table 3.3: Dynamic memory requirements for the two versions of START.TaskVectors. Likewise, each Cstate contains exactly one TaskMap and one LabelList.Because Cstates are the top level objects and the algorithm ensures only one copy of each,entire TaskMaps are rarely shared, and are never shared for these inputs. Two TaskMapscan have the same TaskVector but di�erent LabelMaps. This is the case for DPHIL5.Also notice in this table the small number of LabelMaps for all the inputs. The LabelMapis one of the largest objects used by START, but often several TaskMaps will share thesame LabelMap. This demonstrates the fact that a large number of objects can be builtfrom a small number of sub-objects. In comparison to the relatively small object counts inTable 3.1, Table 3.2 shows how many objects of the di�erent types are actually represented.Without handles, this is the count of the number of objects stored in memory. With handles,this is the number of objects represented by the handles. Due to the object sharing thathandles perform, this number can be much larger number than the corresponding numbersfrom Table 3.1.The running times of the two version of START on the sample programs are given in

3. Applications 24Running timenormal UCOW speedupDPHIL5w 35 21 1.7DPHIL5 213 155 1.4DPHIL6w 215 128 1.7DPHIL7w 1285 856 1.5Table 3.4: Timing measurements in CPU seconds for the two versions of START.Table 3.4 and the dynamic memory usage is given in Table 3.3. At least in this application,the speed increases due to the use of UCOW objects are not as impressive as the memorysavings, but they are still signi�cant. An older version of START did not using hashingto match Cstates in the main loop but instead searched a list. Do to the large numberof comparisons required for each Cstate, the UCOW implementation ran much faster thanthe non-UCOW implementation. The most recent version of START does use hashing tomatch Cstates, so the performance di�erence between the UCOW and non-UCOW versionsis not so dramatic.3.2 Puzzle SolverIn addition to research projects, these classes have uses for other applications. Oneapplication where these classes have been useful is a simple group theory problem solver.The problem is, given a two-dimensional matrix of numbered cards, �nd the shortestsequence of rotations of columns or rows that result in the desired transformation. Forexample, given a 4 by 3 matrix, swap cards (1,1) and (2,1) in the minimal number of moves.A program was written to solve this problem using bi-directional search [Pohl, 1971].Queue and hash table template classes were used as well as the UCOW handle class alreadydescribed. Given the starting con�guration and the goal con�guration, the algorithm usesa breadth-�rst search from both con�gurations and prints the solution if the frontiers ofthe two searches meet. It simulates a parallel bi-directional search by alternating betweenthe two searches each time a new frontier has been generated. It takes about 15 secondsto run. An earlier implementation that performed a uni-directional search from the initialcon�guration took several days to run.

4. Conclusion 254. ConclusionThis thesis presents C++ classes to implement unique copy-on-write objects. Theseclasses will reduce memory usage and running times for appropriate applications. Applica-tions that need to create and subsequently compare large hierarchical objects will bene�tfrom the uniqueness property that allows very fast matching and object sharing. Applica-tions that simply want fast copies and fast copy-and-modify will bene�t from the copy-on-write property. Combining the uniqueness property with the copy-on-write property allowsUCOW objects to signi�cantly increase memory sharing in many applications. The savingscan be dramatic, as we have seen from comparing the two di�erent versions of START onthe Dining Philosophers input �les.In addition to being useful, these classes are also easy to use. Using C++ templatesallows the code to be more easily reused. Possible future work would be to make theclasses more e�cient and even easier to use. The hash table class could be changed toresize dynamically. Also, the UCOW handle class could be built on top of a class that onlyprovides copy-on-write handles. This way the user can do without the overhead of uniqueobjects if they are not needed. It might also be interesting to see what the implementationwould look like if it uses virtual function polymorphism instead of templates. As in the COWobjects described in [White, 1991], implementing UCOW objects without templates wouldrequire some sort of virtual dup function to copy objects. All the template implementationneeds to do is use the copy constructor. At the time of this writing, template supportin most C++ compilers is still being re�ned. Hopefully in the future improved templatesupport will lead to many new useful classes based on templates.

4. Conclusion 26AcknowledgmentsThis work1 would not have been possible without the help of several people. I wantto thank my thesis reading committee of Prof. David Helmbold, Prof. Charlie McDowell,and Prof. Ira Pohl, for their constructive comments, insights, and expertise. Special thanksgo to Charlie for his idea to use C++ and object-oriented design for the project and forintroducing me to templates and to Ira for answering even the most esoteric C++ questionswithout pause. Michelle Abram was an indispensable resource for my LaTEX questions.Daniel Edelson, our resident C++ expert, answered many questions about LaTEX and C++.Prof. John Carroll read an early draft of the thesis and provided useful comments. Finally,Prof. Darrell Long was very helpful in proofreading drafts.

1This technical report is a slightly revised version of the M.S. thesis of the same title.

References 27References[Cooper, 1989] M. C. Cooper. Formal hierarchical object models for fast template matching.The Computer Journal, 32(4):351{361, 1989.[Cormen et al., 1990] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.Intoduction To Algorithms. MIT Press and McGraw-Hill, 1990.[Helmbold and McDowell, 1990] D. P. Helmbold and C. E. McDowell. Computing reachablestates of parallel programs. Technical report, U. of Calif. Santa Cruz, UCSC-CRL-90-58,1990.[Hoare, 1978] C. A. R. Hoare. Communicating sequential processes. CACM., 21(8):666{77,1978.[Nelson and Ousterhout, 1988] Michael Nelson and John Ousterhout. Copy-on-write forSprite. In USENIX Conference Proceedings, pages 187{201. USENIX, 1988.[Pohl, 1971] Ira Pohl. Bi-directional search. In Bernard Meltzer and Donald Michie, editors,Machine Intelligence, chapter 9, pages 127{140. American Elsevier, New York, 1971.[Stroustrup and Ellis, 1991] Bjarne Stroustrup and Margaret A. Ellis. The Annotated C++Reference Manual. Addison-Wesley, 1991.[White, 1991] Ronald G. White. Copy-on-write objects for C++. The C Users Journal,August 1991.[Winston and Horn, 1981] Patrick Henry Winston and Berthold Klaus Paul Horn. LISP.Addison-Wesley, 1981.

Appendix A. Class Interfaces 28Appendix A. Class InterfacesA.1 ListList<T>::List(void);This is the default constructor, which creates an empty list.List<T>::List(const List &);This is the copy constructor. It creates a copy of the list by making copies of each elementusing the appropriate copy method.T List<T>::first(void) const;This function returns the �rst element in the list. Notice that the element is returned as thereturn value of the function, not by a pointer or reference parameter. The reason is becauseC++ does not allow references or pointers to references, and the type T could be a reference.This function should not be called if the list is empty. It should raise an exception in thatcase, but few C++ compilers support exceptions at this time.int List<T>::hasData(T elem);This function returns TRUE if the list contains an element that matches elem and FALSEotherwise. A match is detected using the operator == between each element and elem.T List<T>::findMatch(T elem, int &found);This function is similar to hasData except that it returns the �rst matching element that it�nds. It sets found to TRUE if it �nds a matching element, otherwise FALSE. If no element isfound, the return value is unde�ned, but is actually just elem to save the time constructinga new T. This is another good place to use exceptions.int List<T>::empty(void) const;This functions returns whether the list is empty or not. It should be called before using�rst and dequeue.void List<T>::prepend(T elem);This functions quickly prepends elem to the list.T List<T>::dequeue(void);This functions removes the �rst element from the list and returns it. It should not be calledon an empty list. Exceptions could also be used here.A.2 ListElemListElem<T>::ListElem(List<T> &);This is the constructor. Given a list of type T, it creates an iterator for elements of type T.void ListElem<T>::reset(void);This function resets the iterator, so that the next call to advance will set the iterator tothe �rst element. It is needed to iterate over the list multiple times.int ListElem<T>::advance(void);This function advances the iterator to the next element, or the �rst element if the iteratorhas just been created or reset. It returns TRUE if the iterator is currently referencing anelement and FALSE if it has been advanced past the last element or the list is empty.ListElem<T>::operator T (void);

Appendix A. Class Interfaces 29This functions returns the current element being referenced by the iterator. It should notbe called until advance has returned TRUE.A.3 LRU ListLRUList<T>::LRUList(void);This is the LRUList constructor. It takes no arguments.void LRUList<T>::remove(DListNode<T> *);Given a pointer to a node in the list, this member function removes the node from the list.DListNode<T> *LRUList<T>::findMatch(T);This member function searches the list for the given element. If the element is found, itreturns a pointer to its list node, otherwise it returns a null pointer.void LRUList<T>::add(T);Given a data element, this member function adds it to the front of the list.A.4 Hash TableHashTable<T>::HashTable(int size);This constructor creates a new hash table of the given size. The size is a hint to the hashtable of how many elements it expects to store.T HashTable<T>::findMatch(T elem, int &found)This function has the same semantics as the list function of the same name. It sets foundto whether an element matching elem was found, and returns the element if it was found.void HashTable<T>::add(T elem);This function adds the given element to the hash table. It does not check for duplicates.That job is left to the user.int HashTable<T>::remove(T elem);This function will look for an element matching the given element and remove it from thehash table if it �nds it. It returns TRUE if the element was found, FALSE otherwise.A.5 Registeredvoid Registered::ref(void);Increment the reference count.void Registered::unref(void);Decrement the reference count.int Registered::refs(void) const;Return the reference count;void Registered::set_registered(void);Set the object as being registered.void Registered::unset_registered(void);Set the object as being unregistered.int Registered::is_registered(void) const;Return whether the object is registered.

Appendix A. Class Interfaces 30unsigned hash(void) const;This function should be de�ned by the derived class. It is used by the hash table whenobjects are registered. Two objects that are equal must return the same value for thisfunction.A.6 HandleA.6.1 PublicHandle<T>::Handle(void);This is the default Handle constructor. It is necessary for creating a dynamic array ofHandles. This constructor creates a null handle. A null handle cannot be accessed becauseit does not refer to an object; it can only be assigned a new value. Null handles are usefulwhen creating arrays of handles. Extra work is avoided by not creating an object for eachhandle, since each handle will be assigned a new value anyway.Handle<T>::Handle(const Handle &);This is a fast copy constructor that work much like the assignment operator. Since it iscreating a new handle, there is no existing object to destroy. It sets the new handle to pointat the object being copied and increments its reference count.Handle<T>::operator = (const Handle &) const;This is a fast assignment operator. It removes a reference from the destination object,destroying it if necessary. Then it adds a reference to the source object, and points thedestination handle to it.Handle<T>::operator == (const Handle &) const;This is a fast equivalence operator that compares objects by their addresses, since there isonly one copy of each object in memory.1 This operator can be inherited by a derived class.const T &Handle<T>::ro_obj(void) const;T &Handle<T>::rw_obj(void);These two functions allow access to the object. The �rst, ro_obj, returns a read-onlyreference to the shared object. The second, rw_obj, returns a writable copy of the object.This copy will not be shared by any other handle, so it can be freely modi�ed.int Handle<T>::null(void) const;This functions tests whether the handle is null or not. The default handle constructorcreates a null handle.A.6.2 Privatevoid Handle<T>::unref(void);This is a private member function that decrements the reference count on the object, anddoes all the needed cleanup if the reference count goes to zero. It is called by modify andshare, but is not needed by the user of this class. A fast assignment operator can be writtenusing unref, a pointer assignment, and ref.void Handle<T>::modify(void);1 except dirty objects, which are registered (cleaned up) before the pointers are compared.

Appendix A. Class Interfaces 31This is an important function. It sets up the object handle so that it can be safely modi�ed,which means the reference count needs to be one. It makes a copy of the object if thereference count is greater than one, making the handle point to the new copy.static void Handle<T>::share(T *&obj);This function is the partner of modify. After modify has been called to make an objectwritable, this function will be called at a later time to cleanup the dirty object by registeringit. It will check if the dirty object matches an existing object of that type. If so, the objecthandle will be changed to share the existing object, otherwise the new object will be addedto the list of existing objects.static void Handle<T>::cleanup(void);This function cleans up the dirty object. If there is no current dirty object it does nothing.The private member function share is called to cleanup the dirty object.

Appendix B. Source Code { Interfaces 32Appendix B. Source Code { InterfacesB.1 List#ifndef LIST_H#define LIST_H#ifndef NULL#include <stddef.h>#endiftemplate<class T> struct ListNode {T data;ListNode *nextPtr;ListNode(T, ListNode * = NULL);};// forward declarationtemplate<class T> class ListElem;template<class T> class List {public:List(void);List(const List &);List &operator = (const List &);T first(void) const;int hasData(T) const;T findMatch(T, int &found) const;int empty(void) const;void prepend(T);T dequeue(void);~List(void);protected:ListNode<T> *firstPtr;private:void release(void);void copy(const List &);friend ListElem<T>;};template<class T> class ListElem {public:ListElem(List<T> &);void reset(void);

Appendix B. Source Code { Interfaces 33int advance(void);operator T (void);private:ListNode<T> *first, *current;};// List with removetemplate<class T> class RList : public List<T> {public:int remove(T);};template<class T> class SortedList : public RList<T> {public:SortedList(void);SortedList(const SortedList &);// preserve sorted ordervoid add(T);int remove(T);int operator == (const SortedList &) const;private:int length;};#endif // LIST_HB.2 Hash Table#ifndef HASH_H#define HASH_H#ifndef NULL#include <stddef.h>#endif#include "lru.h"template<class T> class HashTable {private:unsigned size;LRUList<T> *table;public:HashTable(unsigned size);T findMatch(T, int &found);void add(T);int remove(T);~HashTable(void);

Appendix B. Source Code { Interfaces 34};#endif // HASH_HB.3 LRU List#ifndef LRU_H#define LRU_H#ifndef NULL#include <stddef.h>#endiftemplate<class T> struct DListNode {T data;DListNode *prevPtr, *nextPtr;inline DListNode(T, DListNode *prev = NULL, DListNode *next = NULL);};template<class T> class LRUList {private:DListNode<T> *firstPtr, *lastPtr;public:LRUList(void);void remove(DListNode<T> *);DListNode<T> *findMatch(T);void add(T d);};#endif // LRU_HB.4 Handle#ifndef HANDLE_H#define HANDLE_H#include <iostream.h>#include "hash.h"class Referenced {public:Referenced(void);Referenced(const Referenced &);void ref(void);void unref(void);int refs(void) const;

Appendix B. Source Code { Interfaces 35private:int ref_cnt;void operator = (const Referenced &);};class Registered : public Referenced {public:Registered(void);Registered(const Registered &);int is_registered(void) const;void set_registered(void);void unset_registered(void);unsigned hash(void) const;private:int registered;void operator = (const Registered &);};template<class UniqueType> struct HandleClassData {unsigned long num_objs;unsigned long num_null, num_handles;HashTable<UniqueType &> objs;UniqueType **dirty_obj;HandleClassData(unsigned);};template<class UniqueType> class Handle {public:static HandleClassData<UniqueType> class_data;Handle(void);Handle(const UniqueType &o);Handle(const Handle &u);static void stats(ostream &cout);int null(void) const;const UniqueType &ro_obj(void) const;UniqueType &rw_obj(void);Handle &operator = (Handle &u);operator == (const Handle &u) const;~Handle(void);private:UniqueType *obj;void unref(void);// setup obj for modification, make it writablevoid modify(void);// search for identical obj and share it

Appendix B. Source Code { Interfaces 36static void share(UniqueType *&obj);static void cleanup(void);};#endif // HANDLE_H

Appendix C. Source Code { Implementations 37Appendix C. Source Code { ImplementationsC.1 List#include <assert.h>#include "list.h"template<class T> inlineListNode<T>::ListNode(T d, ListNode<T> *n) : data(d){ nextPtr = n;}template<class T> inlineList<T>::List(void){ firstPtr = NULL;}template<class T> inlineList<T>::List(const List<T> &l){ copy(l);}template<class T> inlineList<T> &List<T>::operator = (const List<T> &l){ release();copy(l);return *this;}template<class T> inlineT List<T>::first(void) const{ return firstPtr->data;}template<class T> inlineint List<T>::empty(void) const{ return firstPtr == NULL;}template<class T> inlinevoid List<T>::prepend(T d)

Appendix C. Source Code { Implementations 38{ firstPtr = new ListNode<T>(d, firstPtr);}template<class T> inlineT List<T>::dequeue(void){ assert(firstPtr != NULL); // should throw exceptionT d = firstPtr->data;ListNode<T> *next = firstPtr->nextPtr;delete firstPtr;firstPtr = next;return d;}template<class T> inlineList<T>::~List(void){ release();}template<class T> inlineListElem<T>::ListElem(List<T> &l){ first = l.firstPtr;current = NULL;}template<class T> inlinevoid ListElem<T>::reset(void){ current = NULL;}template<class T> inlineint ListElem<T>::advance(void){ if (current)current = current->nextPtr;elsecurrent = first;return current != NULL;}template<class T> inlineListElem<T>::operator T (void){ return current->data;

Appendix C. Source Code { Implementations 39}// List with removetemplate<class T>void List<T>::release(void){ ListNode<T> *tmp = firstPtr, *next;while (tmp) {next = tmp->nextPtr;delete tmp;tmp = next;}}template<class T>void List<T>::copy(const List<T> &l){ ListNode<T> *src = l.firstPtr, **dst = &firstPtr;while (src) {*dst = new ListNode<T>(src->data);dst = &(*dst)->nextPtr;src = src->nextPtr;}*dst = NULL;}template<class T>int List<T>::hasData(T d) const{ ListNode<T> *tmp = firstPtr;while (tmp && !(d == tmp->data)) {tmp = tmp->nextPtr;}return tmp != NULL;}template<class T>T List<T>::findMatch(T d, int &found) const{ ListNode<T> *tmp = firstPtr;while (tmp && !(d == tmp->data)) {tmp = tmp->nextPtr;}if (tmp) {found = 1;return tmp->data;} else {

Appendix C. Source Code { Implementations 40found = 0;// should throw exceptionreturn d;}}// List with removetemplate<class T>int RList<T>::remove(T d){ int count = 0;ListNode<T> **dst = &firstPtr;while (*dst) {if (d == (*dst)->data) {ListNode<T> *tmp = (*dst)->nextPtr;delete *dst;*dst = tmp;++count;} elsedst = &(*dst)->nextPtr;}return count;}template<class T> inlineSortedList<T>::SortedList(void){ length = 0;}template<class T> inlineSortedList<T>::SortedList(const SortedList<T> &l) : RList<T>(l){ length = l.length;}// preserve sorted ordertemplate<class T>void SortedList<T>::add(T d){ ListNode<T> **dst = &firstPtr;while (*dst && (*dst)->data < d) {dst = &(*dst)->nextPtr;}*dst = new ListNode<T>(d, *dst);++length;}

Appendix C. Source Code { Implementations 41template<class T>int SortedList<T>::remove(T d){ int count = 0;ListNode<T> **dst = &firstPtr;while (*dst && (*dst)->data < d)dst = &(*dst)->nextPtr;while (*dst && d == (*dst)->data) {ListNode<T> *tmp = (*dst)->nextPtr;delete *dst;*dst = tmp;++count;--length;}return count;}template<class T>int SortedList<T>::operator == (const SortedList<T> &s) const{ if (length != s.length) return 0;ListNode<T> *x = firstPtr, *y = s.firstPtr;while (x && x->data == y->data) {x = x->nextPtr;y = y->nextPtr;}return x == NULL;}C.2 Hash Table#include "hash.h"template<class T>HashTable<T>::HashTable(unsigned s){ size = s;table = new LRUList<T>[size];}template<class T>T HashTable<T>::findMatch(T d, int &found){ DListNode<T> *p = table[d.hash() % size].findMatch(d);if (p) {found = 1;

Appendix C. Source Code { Implementations 42return p->data;} else {found = 0;return d;}}template<class T>void HashTable<T>::add(T d){ table[d.hash() % size].add(d);}template<class T>int HashTable<T>::remove(T d){ LRUList<T> &list = table[d.hash() % size];DListNode<T> *p = list.findMatch(d);if (p) {list.remove(p);delete p;return 1;} else {return 0;}}template<class T>HashTable<T>::~HashTable(void){ delete[] table;}C.3 LRU List#include "lru.h"template<class T>DListNode<T>::DListNode(T d, DListNode<T> *p, DListNode<T> *n) : data(d){ prevPtr = p; nextPtr = n;if (p)p->nextPtr = this;if (n)n->prevPtr = this;}

Appendix C. Source Code { Implementations 43template<class T>LRUList<T>::LRUList(void){ firstPtr = lastPtr = NULL;}template<class T>void LRUList<T>::remove(DListNode<T> *l){ if (l->prevPtr)l->prevPtr->nextPtr = l->nextPtr;elsefirstPtr = l->nextPtr;if (l->nextPtr)l->nextPtr->prevPtr = l->prevPtr;elselastPtr = l->prevPtr;l->prevPtr = l->nextPtr = NULL;}template<class T>DListNode<T> *LRUList<T>::findMatch(T d){ DListNode<T> *p;if (p = firstPtr) {do {if (d == p->data) {if (p != firstPtr) {remove(p);p->prevPtr = NULL;p->nextPtr = firstPtr;firstPtr = firstPtr->prevPtr = p;}return p;}} while (p = p->nextPtr);}return NULL;}template<class T>void LRUList<T>::add(T d){ firstPtr = new DListNode<T>(d, NULL, firstPtr);if (firstPtr->nextPtr)firstPtr->nextPtr->prevPtr = firstPtr;if (lastPtr == NULL)lastPtr = firstPtr;

Appendix C. Source Code { Implementations 44}C.4 Handle#include "handle.h"#include <assert.h>Referenced::Referenced(void){ ref_cnt = 1;}Referenced::Referenced(const Referenced &){ ref_cnt = 1;}void Referenced::ref(void){ ++ref_cnt;}void Referenced::unref(void){ --ref_cnt;assert(ref_cnt >= 0);}int Referenced::refs(void) const{ return ref_cnt;}Registered::Registered(void){ registered = 0;}Registered::Registered(const Registered &){ registered = 0;}int Registered::is_registered(void) const{ return registered;}void Registered::set_registered(void){ registered = 1;}void Registered::unset_registered(void){

Appendix C. Source Code { Implementations 45registered = 0;}template<class UniqueType>HandleClassData<UniqueType>::HandleClassData(unsigned size) : objs(size){ num_objs = num_handles = num_null = 0;dirty_obj = NULL;}template<class UniqueType>Handle<UniqueType>::Handle(void){ ++class_data.num_handles;++class_data.num_null;obj = NULL;}template<class UniqueType>Handle<UniqueType>::Handle(const UniqueType &o){ if (class_data.dirty_obj) cleanup();obj = new UniqueType(o);++class_data.num_handles;class_data.dirty_obj = &obj;}template<class UniqueType>Handle<UniqueType>::Handle(const Handle<UniqueType> &u){ if (class_data.dirty_obj) cleanup();if (obj = u.obj) {obj->ref();} else {++class_data.num_null;}++class_data.num_handles;}template<class UniqueType>void Handle<UniqueType>::stats(ostream &cout){ cout << class_data.num_objs << " unique objects\n";cout << class_data.num_handles << " handles";if (class_data.num_null) {cout << " (" << class_data.num_null << " null)\n";} else {cout << '\n';

Appendix C. Source Code { Implementations 46}}template<class UniqueType>int Handle<UniqueType>::null(void) const{ return obj == NULL;}template<class UniqueType>const UniqueType &Handle<UniqueType>::ro_obj(void) const{ assert(obj != NULL);if (class_data.dirty_obj) cleanup(); // should not be necessaryreturn *obj;}template<class UniqueType>UniqueType &Handle<UniqueType>::rw_obj(void){ assert(obj != NULL);if (class_data.dirty_obj && class_data.dirty_obj != &obj)cleanup();if (obj->is_registered())modify();return *obj;}template<class UniqueType>Handle<UniqueType> &Handle<UniqueType>::operator = (Handle<UniqueType> &u){ if (class_data.dirty_obj) cleanup();if (obj != u.obj) {unref();if (obj = u.obj) {obj->ref();} else {++class_data.num_null;}}return *this;}template<class UniqueType>Handle<UniqueType>::operator == (const Handle<UniqueType> &u) const{ if (class_data.dirty_obj) cleanup();return obj == u.obj;

Appendix C. Source Code { Implementations 47}template<class UniqueType>Handle<UniqueType>::~Handle(void){ unref();if (class_data.dirty_obj) cleanup();assert(class_data.num_handles > 0);--class_data.num_handles;}template<class UniqueType>void Handle<UniqueType>::unref(void){ if (obj) {obj->unref();if (class_data.dirty_obj == &obj)class_data.dirty_obj = NULL;if (obj->refs() == 0) {if (obj->is_registered()) {int stat = class_data.objs.remove(*obj);assert(stat);assert(class_data.num_objs > 0);--class_data.num_objs;}delete obj;}obj = NULL;} else {assert(class_data.num_null > 0);--class_data.num_null;}}// setup obj for modification (copy-on-write)template<class UniqueType>void Handle<UniqueType>::modify(void){ assert(class_data.dirty_obj == NULL);assert(obj->refs() > 0);if (obj->refs() == 1) {if (obj->is_registered()) {int stat = class_data.objs.remove(*obj);assert(stat);assert(class_data.num_objs > 0);--class_data.num_objs;obj->unset_registered();}

Appendix C. Source Code { Implementations 48} else {obj->unref();obj = new UniqueType(*obj);}class_data.dirty_obj = &obj;}// search for identical obj and share ittemplate<class UniqueType>void Handle<UniqueType>::share(UniqueType *&obj){ assert(obj->refs() == 1);assert(!obj->is_registered());int found;UniqueType &o = class_data.objs.findMatch(*obj, found);if (found) {assert(obj != &o);delete obj;obj = &o;obj->ref();} else {class_data.objs.add(*obj);obj->set_registered();++class_data.num_objs;}}template<class UniqueType>void Handle<UniqueType>::cleanup(void){ if (class_data.dirty_obj) {assert(!(*class_data.dirty_obj)->is_registered());UniqueType **obj = class_data.dirty_obj;class_data.dirty_obj = NULL;share(*obj);}}

Appendix D. Classes from START 49Appendix D. Classes from STARTD.1 SyncGraphAn SyncGraph is a Sync Graph. It contains nodes which represent synchronization eventsin a parallel program. Each Sync Node (SyncNode) in the SyncGraph has informationparticular to its type. For example, a dispatch node contains a task id and function id, anda post node contains an event id.The SyncGraph constructor is used to build the SyncGraph. It takes a �lename as itsonly argument. A print member function is also used for debugging. It outputs the SyncGraph in a human-readable format, calling the print virtual function for each SyncNode.D.2 SyncNodeAn SyncNode in an SyncGraph corresponds to a synchronization event in the program.There is a di�erent class derived from the base SyncNode class for each type of synchro-nization event.Each SyncNode has a virtual function getOp that uniquely identi�es its type. Dependingon the type of SyncNode, it can also have members functions that return information suchas a task-id, function begin node, or event name.D.3 ActionAn action is a pointer to a node in the Sync Graph (SyncNode). For each type ofSyncNode there is a corresponding derived Action class.The key member function of the Action class is its exec virtual function. This function�res the action on a TaskInCstate, appending to a CstateSet any new Cstates it generates.Some action types can perform automatic optimizations, an example of which is \overwrite".An action such as non-clearing wait can detect that the new state can be merged with theprevious state, since only an ActionSet was changed. In this case, the new Cstate willreplace (overwrite) the current Cstate, resulting in a more general state because addActionwill be performed instead of changeAction.D.4 List<T>This is a simple generic list class that allows you to easily build singly-linked lists ofdi�erent types. It does not provide every possible list operation. Noticeably missing is afunction to remove an element from the list. That function was left out because it was notneeded by the application, but for the sake of completeness the source code contains a newclass RList<T> derived from List<T> that provides a remove member function. There isalso a SortedList<T> class that inherits from RList.The type parameter T can be a class, a pointer to a class, or a reference to a class. IfT is a pointer or a reference, the list will not store copies of each element. Both save spacebecause a copy is not made, but using a reference has the advantage over a pointer thatwhen the time comes to compare elements, the actual elements will be compared, not theiraddresses.

Appendix D. Classes from START 50#include <iostream.h>#include "list.h"void func(void){ List<int> list;list.prepend(5);list.prepend(3);ListElem<int> iter(list);while (iter.advance()) {cout << (int)iter << '\n';}} Figure D.1: Example using the ListElem list iteratorList has a default constructor for creating an empty list, and a copy constructor forcopying a list. It has a member function first that returns the �rst element in the list.This function is not strictly necessary, since the ListElem iterator described next can beused to do the same thing. List also has member functions hasData to check if a certainelement is in the list and findMatch to �nd a matching element in the list. HasData isalso redundant as findMatch returns the same information but also returns the matchedelement. To add an element to the front of the list, there is a member function prepend. Toremove the �rst element, there is dequeue. These have the same semantics as push and popfor a stack, but are not called those names because some other class might want to inheritfrom this class and add append to add an element to the end of the list. If prepend wascalled push, the new class would have push and append instead of prepend and append.Section A.1 describes the interface in some detail.The ListElem<T> class is the iterator for the generic list class. It allows the elementsof the list to be examined sequentially. The full description of the interface is in SectionA.2. To iterate over the elements of a list, �rst create a ListElem<T> with a List<T> as theargument. Then while the advance member function returns TRUE, pull out each elementusing the conversion operator (Figure D.1).Another possible interface would have functions �rst and next returning pointers toelements, with �rst returning NULL if the list is empty and next returning NULL after thelast element has been returned. This would require disallowing references, as describedabove for the list class. The interface using advance has the advantage that you can stepthrough the list, returning only those elements asked for explicitly. For example, you mightwant to examine only every other element.D.5 SortedList<T>SortedList is a parameterized-type (template) class that implements a sorted list ofelements of type T. It is derived from the List<T> class and adds the member functionsadd, remove, and operator ==. Add will insert an element, keeping the list sorted, based

Appendix D. Classes from START 51on the < operator of the element class. Remove will delete an element if it is in the list,using the == operator to �nd it.D.6 LabelListA LabelList is a sorted list of Labels. A Label is a class that contains a string.LabelList inherits from SortedList<Label>, but also adds a function hasLabel as amore symbolic interface to hasData.D.7 TaskMapA TaskMap is a type of graph used to represent the state of the tasks. There is asource node for each task and a sink node for each source node. The number of tasks inthe TaskMap determines its width. The number of levels (rows) in the graph is called theheight. The graph is implemented as two objects, the TaskVector and the LabelMap. TheTaskVector is implemented as a one-dimensional array of ActionSets, and the LabelMap isimplemented as a two-dimensional array of NodeReps. The TaskVector forms the �rst rowof the graph and the LabelMap forms the remaining rows, resulting in a rectangular graphof nodes. The TaskVector is conceptually connected to the top of the LabelMap, so thatthe node in column n of the TaskVector has an edge to the node in column n in the �rst rowof the LabelMap. Each node in the TaskVector contains an ActionSet object, while eachnode in the LabelMap contains a NodeRep object. A node can only have edges to nodes thatare on an adjacent level (row). Also, the connected components of the sub-graph consistingof the nodes of two adjacent levels and the edges between those two levels must be completebipartite graphs.Each NodeRep in the LabelMap contains a LabelList and information describing itsconnections to other nodes (edges).The Unify member function is passed an Action, and modi�es the TaskMap so thatall tasks with that Action in their ActionSets will be clustered together in the sameCBG (complete bipartite graph). This modi�cation involves the equivalent of a SplitNodefollowed by a MakeCluster [Helmbold and McDowell, 1990].GetActionSet returns a pointer to the ActionSet for the given task. GetCBG returnsthe CBG to which the task belongs (only the lower CBG is useful). Num_tasks returnshow many tasks are represented by the TaskMap (also known as the width). The booleanfunction identicalTask returns whether two tasks can be regarded as identical. In thiscase, identical means they are in the same CBG, have the same labels, and have the sameActionSet. Edge is a boolean function that says if there is an edge between two nodes. Thisis currently only used by the draw function. AddTask modi�es the TaskMap by addinga new task with the given Action as its ActionSet. ChangeAction replaces the ActionSetof a task with an ActionSet containing just the given Action. HasAction returns whetherthe ActionSet of the given task contains the given Action. AddAction adds an Actionto the ActionSet of a task. ChangeAction, addAction, and hasAction are forwarded tothe corresponding ActionSet function. AddLabel adds a label to the LabelList for a task.The label will appear at the top level, along with the ActionSet. Likewise, removeLabelremoves a label. Print and draw perform ASCII and X Windows dumps of the TaskMap,respectively.

Appendix D. Classes from START 52Operations that specify a task do so with a TaskMarker, which is a handle for a task.Usually this fact is hidden by the use of a TaskInCstate, which implicitly speci�es a speci�ctask in a Cstate.D.8 NodeRepBesides a LabelList, a NodeRep keeps track of its edges with two CBG identi�ers. OneCBG identi�er is for edges to the next higher level and the other is for edges to the nextlower level. A CBG identi�er is currently implemented as the minimum column number ofany node in the CBG. The LabelList holds a list of Labels containing task-ids.A NodeRep has functions addLabel, removeLabel, and getLabel for manipulating itsLabelList. It also de�nes operator == for comparisons with other nodes. Equivalencerequires equivalent label lists and CBG numbers.D.9 ActionSetAn ActionSet is a set of Actions, and is implemented as a sorted list. It should be basedon SortedList, but is currently its own class. The list is recursive; an ActionSet containsan Action and a pointer to another ActionSet. This implementation implies functions nextfor advancing to the next ActionSet and getAction for returning the Action of the currentActionSet. In addition, hasAction and append mimic the behavior of hasData and add ofthe SortedList class. ChangeAction destroys the entire ActionSet and replaces it with anew ActionSet containing the given Action. Note: Actions above refer to Action pointersin the actual implementation.D.10 CstateA Cstate contains a LabelList and a TaskMap. Currently, the Labels in the LabelListonly contain information about posted events. I call these meta-labels to distinguish themfrom labels in the TaskMap.Cstate hands o� to TaskMap the member functions removeTaskLabel and addTask.The member functions addMetaLabel and removeMetaLabel are delegated to the add andremove functions of the LabelList. The constructor Cstate(const Cstate &, Action *)employs the TaskMap constructor followed by a call to TaskMap::unify with the givenAction.D.11 TaskMarkerA TaskMarker is a type that is guaranteed to identify a task in a Cstate (or TaskMap)even across copies. It is currently implemented as an integer. The TaskInCstate class usesa TaskMarker for specifying a task in a TaskMap.

Appendix D. Classes from START 53D.12 TaskInCstateThis class is used for referring to a particular task in a Cstate. A TaskInCstate isa (Cstate, TaskMarker) pair, so all the member functions operator on the Cstate usingthe TaskMarker to specify the task. In the current implementation, however, all of thecalls go directly through the Cstate to the TaskMap. These functions are getActionSet,changeAction, addAction, hasAction, and addLabel, and are simply forwarded to thecorresponding function in the TaskMap.D.13 HistNodeA HistNode is a node in the CHG whose job is to hold a Cstate. It also containspredecessor and successor list for storing the graph structure.The �rst implementation of HistNode provided a function getCstate for accessing theCstate which it contains, but the current implementation actually has HistNode as a derivedclass of Cstate, which turns out to be quite useful for some of the list and comparisonoperations. The function addSuccessor will add successors to the current node.D.14 CHGA CHG is a graph of HistNodes. All of the work done on a CHG is done in the constructor.The constructor is passed an SyncGraph, and builds a CHG based on that Sync Graph. Toaccess the nodes, a function firstNode is provided for returning the \root" node.

