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1. Introduction 31 IntroductionThere is a general trend in digital VLSI circuits towards more registers and higher clockfrequencies. There are two major concerns in high-performance clock routing: minimizingclock skew and routability. For optimal system performance, the clock signal must reacheach register at exactly (or almost exactly) the same time. The routability of the clock netalso becomes an urgent concern in dense VLSI chips with thousands of clocked elementswhich may be unevenly distributed across a major area of the chip. The design of highspeed digital VLSI circuits prefers that the clock net is routed on the metal layer with thesmallest RC delay. This strategy not only avoids the di�culties of having di�erent electricalparameters on di�erent layers, but also eliminates the delay and attenuation of the clocksignal through vias. The path delay of the clock signal from the source to the clockedelements is also decreased. For double metal layers in 1�m technology, typical resistanceand capacitance values are 25 m
/2 and 0.015 fF/�m on metal two, and 57 m
/2 and0.029 fF/�m on metal one. A typical resistance for a via is 410 m
/2. Recently, DigitalEquipment Corporation has succeeded in implementing a new microprocessor operating upto 200 MHz [8]. Its clock network is laid almost entirely on one metal layer, and is drivenby a huge bu�er near the clock source.The \H" clock tree is widely used in the IC industry [2]. However, it is only applicablefor symmetric arrays of logic elements. There have been two generalized H-tree algorithmsproposed that try to distribute the clock to elements with arbitrary positions [13, 14]. In[13], a generalized H-tree is constructed in a top-down fashion by the method of meansand medians (MMM). Although the di�erence in path lengths from clock source to clockterminals is bounded by O( 1pn) on the average case, it may be as large as half the diameterof the chip [14]. Another algorithm constructs a clock tree based on recursive geometricmatching (RGM) in a bottom-up sequence [14]. This algorithm always yields clock treeswith perfectly balanced path lengths for trees of two, three, or four terminals. But nobound is given for the general case. An improved algorithm [22] considers Elmore delaybalance instead of geometric length balance but adopts a bottom-up process similar to thatof [14]. This algorithm achieves delay balance by enlongating wires that have smaller delays.Another algorithm in [6] improves the Elmore delay matching method by considering theminimization of the total wire length. But this algorithm yields minimal wirelength onlyfor a given connection topology and linear delay model. The major problem with thesealgorithms is that they create many overlaps in the clock networks. Multiple routing layersmust be used to implement such a non-planar network. The performance and routabilityof the clock network are seriously sacri�ced. So, the application of these algorithms to thereal design of clock distribution for VLSI systems is limited.In this paper, we present a novel algorithm to construct a planar clock tree which can beembedded on a single metal layer. The clock tree achieves equal path length|the length ofthe path from the clock source to each clock terminal is exactly the same. This is importantsince the wire length still dominates the timing delay of a wire [5, 1]. Such a planar clocktree with equal path length provides a good initial clock topology for designers to adjust forminimum skew. We can further optimize the geometry of the clock tree to minimize boththe skew and path delay of the clock signal while maintaining the planarity of the clocknetwork. Achieving exact zero skew of a clock network is still an engineering e�ort which�nally relies on capacitance calculations and detailed interconnect simulation [15].The key features of our algorithm are described as follows.



4 2. Planar Equal Path length Steiner Tree� The algorithm always constructs a planar clock tree.� The lengths of the paths from the the clock source to each of the clock terminals areexactly the same.� The path length from the source to clock terminals is the minimum.� The clock source can be at arbitrary location in the layout.The �rst three features of the algorithm are proved in Section 4. The last feature allowsthe 
exible position of the clock source. In VLSI systems, the clock source may be a padat the side of the chip/module frame, or may be a clock generator inside the chip/module.Our algorithm roots the clock tree directly at the source unlike the previous methods [13,14, 22, 2] which must route from the clock source to the root of the tree after the tree iscompleted.The organization of this paper is as follows. Section 2 de�nes the clock tree as a planarequal path length Steiner tree. In Section 3, we present our algorithm based on max-minoptimization. We also describe the recursive divide-and-conquer paradigm of the algorithm.The time complexity of this algorithm is given in section 4. We prove in Section 5 that thealgorithm always yields a planar clock tree with perfectly balanced path lengths, regardlessthe source position and the distribution of terminals. In addition, the length of the pathfrom the clock source to the terminals is minimized. In section 6, we show an asymptoticbound of the total wire length of the clock tree as the number of clock terminals increases.We describe in section 7 an algorithm of sizing the planar equal path length clock tree toachieve zero skew based on Elmore delay. Experimental results are given in Section 8 wecompare our results with previous algorithms, also including some preliminary results onzero skew sizing of the planar clock tree. Some concluding remarks are given in section9, where we show that the algorithm can be used to construct a planar equal path lengthSteiner tree not only in Manhanttan space but also in Euclidean space.A short version of this paper has been presented at ICCAD-92 [24].2 Planar Equal Path length Steiner TreeA clock source and a set of clock terminals (sinks) form a clock net in a VLSI chip ora multi-chip module. A clock tree, T , of the clock net is a Steiner tree which connects allsinks with the source. The length of a branch connecting two vertices in the tree is taken tobe the Manhattan distance. The length of the path from source o to any sink tj , is merelythe sum of the lengths of all branches on the unique path from o to tj . The cost of the clocktree is the sum of the lengths of its branches. The clock tree considered here is a specialSteiner tree called planar equal path length Steiner tree. We give the de�nition as follows.Planar Equal Path Length Steiner Tree Problem: Given a source point and a setof sink points, �nd a planar Steiner tree, T , with minimum total cost such that the lengthsof the paths from the source point to all sink points are exactly the same. Note that, ingeneral, this problem is NP-complete.3 New Algorithm3.1 Overview and Basic ConceptsWe propose a new algorithm to construct a planar equal path length Steiner tree. Thealgorithm is a single-tree growth method since sinks are added to the tree one at a time.



3. New Algorithm 5The algorithm produces a series of partial trees fT1; T2; T3; : : : ; Tng, where Ti is the partialtree in which the �rst i sinks are connected. Tn is the �nal Steiner tree in which all n sinksare connected. The basic ideas of this algorithm are as follows.First, we choose the sink that has the maximal Manhattan distance to the source, andconnect it to the source. This forms the �rst partial tree, T1, as shown in Figure 3.1(a)).As the partial tree grows, all sinks are classi�ed into two types. A sink is called a free sinkif it has not yet been connected to the partial tree; a sink is called connected sink if it hasbeen added to the tree. At any partial tree Ti (1�i<n), we select a free sink and connect itto a branch of the tree maintaining equal path length from the source to the sink. This sinkthen becomes a connected sink. This may split the branch in two since a Steiner point isinserted on it. An example is shown in Figure 3.1(b), where sink t2 is chosen and connectedto branch b1 in the tree T1. The new Steiner point s is said to be a balance point since ithas equal Manhattan distance to sink t1 and sink t2. A balance point sjk for a free sink tjexists on a branch bk, if the Manhattan distance from sjk to tj is equal to the path lengthfrom sjk to a connected sink in Ti. The balance point sjk is called a feasible balance pointof tj , if a straight line connecting tj and sjk crosses no other branches. Connecting tj to afeasible balance point on Ti forms a new tree Ti+1 in which both planarity and path lengthbalance are maintained.
Figure 3.1: Partial Steiner TreesUsually a free sink tj has several feasible balance points on branches in Ti. The feasiblebalance point with the minimum Manhattan distance to tj is called minimal balance pointof tj in Ti. The Manhattan distance between tj and its minimal balance point is calledminimal balance distance of tj in Ti. In Figure 3.2(a), sink t3 has two feasible balancepoints: s1 on branch b1 and s2 on branch b2. The point s2 is the minimal balance pointsince its distance to t3 is shorter than s1's. The distance between t3 and s2 is the minimalbalance distance of t3.Another interesting phenomenon is the routing order of free sinks. For example in Figure3.1(c), if the sink t4 is connected to b1 before sink t2, the sink t2 cannot �nd any balancepoint on the new branch b4. Sink t2 has a balance point s2 on branch b1 but no feasiblebalance point. If t2 is connected to s2 on b1, a crossing over b4 happens which results in anon-planar tree. In addition, the sink t4 has a longer balance distance to b1 than to b2 (seeFigure 3.1(b)). Therefore, the tree cost also increases. So, sink t2 must be connected beforet4. Two rules play key roles in our algorithm.



6 3. New Algorithm� Min-rule: always connect a free sink to its minimal balance point.� Max-rule: at each stage, always select the free sink whose minimal balance distanceis maximized among all remaining free sinks.The Max-rule guides the routing order for free sinks. This rule ensures the planarityof the equal path length Steiner tree without iteration. The Min-rule reduces the tree coste�ciently.Our algorithm grows the partial tree by iteratively applying the Max-Min rules. At apartial tree Ti, a free sink with the maximal minimal-balance-distance among all free sinksis connected to its minimal balance point. This free sink then becomes a connected sink andTi is expanded to Ti+1. For example in Figure 3.1(b) and Figure 3.1(c), t2, t3, and t4 all havethe minimal balance points on branch b1 but t2 has the maximal minimal-balance-distance,therefore t2 is connected before t3 or t4.
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Figure 3.2: (a) Free sink t3 has two feasible balance points on two boundingbranches b1 and b2. (b) Partial tree T4 separates free sinks into four independentclusters; t1 and t4 are reachable ; however, t1 and t5 are not reachable.3.2 Hierarchical Max-Min OptimizationIn order to explain our algorithm, it is useful to de�ne a binary relation, called reachable,on the set of free sinks S. The relation is based on the concept of visibility. Two free sinksa; b 2 S are visible (a , b) if a straight line between them crosses no tree branches. Twofree sinks a; b 2 S are de�ned to be reachable if either:� a, b, or� there exists a sequence of free sinks (p1; p2; : : : ; pk) 2 S such that a, p1; pk , b, andpi , pi+1 for 1 � i < k.



3. New Algorithm 7For example in Figure 3.2(b), t1 is not visible to t4 since the branch b3 lies between them.But t1 can be reachable to t4, by way of the path transferring the visibility to other freesinks: t1 , t2 , t3 , t4. However in Figure 3.2(b), t1 and t5 are unreachable. Reachableis an equivalence relation and partitions S into a set of equivalence classes which we willrefer to as clusters.The partial tree Ti partitions the free sinks into clusters. As described above, free sinksin one cluster are reachable to each other, and sinks in di�erent clusters are not. Eachcluster is bounded by a set of tree branches. Only on these branches, can a free sink inthe cluster possibly �nd feasible balance points. These branches are called the boundingbranches of the free sinks in this cluster. In Figure 3.2(b), the free sinks are partitionedinto four clusters by the tree T4. For the sinks in the cluster 1, the bounding branches arefb1; b2; b3; b4; b6g. The bounding branches are fb6; b7g for cluster 2, fb1; b2; b5g for cluster 3,and fb4; b5; b7g for cluster 4. It is impossible for a free sink to �nd a feasible balance pointon any branch not in its set of bounding branches because it would require a crossing abounding branch.The algorithm is suited for parallel routing by applying the max-min rules locally on eachcluster of free sinks at Ti. Free sinks in di�erent clusters cannot con
ict with one anotherin the routing order, because they are separated by the tree. Therefore, each cluster selectsone free sink to be connected at each iteration. This sink only needs to be compared withother free sinks in the same cluster (Max Rule). When looking for the minimal balancepoint, a free sink needs only to check feasible balance points on the bounding branches forits cluster (Min-Rule).When a free sink is connected to the partial tree, the new branch may partition thefree sinks of the original cluster into new clusters. Shown in Figure 3.2(b), when branch b6connects sink t6 to the tree, it separates the free sinks of the original cluster into cluster 1and cluster 2. However, connecting t7 to form branch b3 does not further partition cluster1. Initially, all sinks are in one cluster. As the partial tree expands, it separates theremaining free sinks into more and more clusters. As a result, the tree grows faster andfaster by locally applying max-min rules on each cluster. This divide-and-conquer paradigmaccelerates the algorithm signi�cantly. This is veri�ed in the experiments.Growing the partial tree by using the Max-Min rules on each cluster is a hierarchicalmax-min optimization process. We formulate this process of applying Max-Min rules in acluster C as maxj fmini fd(tj ; bi); bi is a bounding branch of tjg; tj 2 CgThe term d(tj ; bi) is the Manhattan distance of free sink tj to a feasible balance pointon bounding branch bi. In Section 4, we prove that our algorithm, based on hierarchicalmax-min optimization, not only maintains a planar equal path length Steiner tree, but alsoyields the minimum path length from the source to the sinks.An example is shown in Figure 3.3(a), where o is the source and the other points are thesinks. Proceeding from Figure 3.3(b) to Figure 3.3(f), the algorithm grows the tree by usingthe max-min optimization on free sink clusters. The �nal result shown in Figure 3.3(g) is aplanar equal path length Steiner tree. The hierarchical cluster partitioning process of thisexample is revealed in Figure 3.4, which recursively separates the free sinks into smaller



8 3. New Algorithmclusters. Each node in Figure 3.4 represents a cluster of free sinks. At each step, the max-min optimization is applied to each cluster. The notation [p, q] appearing inside each node,means the cluster initially consisted of p free sinks and was partitioned into subclustersafter q sinks were connected.

The source in Figures 3.3(a-g) was placed at the side of the problem. The clock treeshown in Figure 3.3(h) results from choosing the source inside the set of sinks.



3. New Algorithm 9
(a) (b)
(c) (d)
(e) (f)
(g) (h)Figure 3.3: Example of using the algorithm to grow a planar equal path lengthSteiner tree. (a) 18 sinks and point o is the source on the left-bottom side. (b) {(f) At a level, a free sink in each cluster is connected to the partial tree. (g) The�nal tree where the source is on the side shown in (a). (h) The tree where thesource o is set inside the sinks.



10 4. Time Complexity[5 , 1] [3 , 3][5 , 5][2 , 2] [8 , 1] [12 , 1][1 , 1][3 , 3] [18 , 1]
Figure 3.4: Top down free sink cluster partitionOur algorithm is summarized in the following pseudo-code.Planar clock routing algorithm based on hierarchical max-min optimizationInput: a source s, and a set of sinks D;Output: a planar equal path length Steiner tree T .Procedure PlanarClockRouter(s;D; T ) fC0 = D;T = (fsg; ;);CreateBranch(C0; T );gProcedure CreateBranch(C; T ) fFind t�; b� such thatd(t�; b�) = maxjfminifd(tj; bi); bi is a bounding branch of tjg; tj 2 Cg;Create a branch from t� to its minimal balance point on b� resulting in new T ;if (C � ft�g 6= ;)fPartition C � ft�g into subclusters C1; C2; : : : ; Ck using the reachable relation;for each i 2 [1; k]CreateBranch(Ci; T );gg4 Time ComplexityWe de�ne the tree growing by one level as follows: for each cluster Ci, select a free sinkt�i 2 Ci to be connected next according to the max-min rule, create a branch connectingt�i to the tree, and update the minimal balance points for the remaining free sinks in Ci.Recall that each cluster can be processed independently. Let ni be the number of free sinksin Ci. For each cluster Ci, the branch creation can be done in O(1) time, and the selectionof t�i and the updating of minimal balance points for remaining free sinks can be done in



5. Correctness 11O(ni) time. So, the total time required at each level is PiO(ni) = O(n), where n is thetotal number of sinks. So overall the time complexity is O(l � n), where l is the number oflevels of the tree growing.In the worst case, at each level, branches are connected to the tree in such a way that nofurther partition of the clusters occurs. This implies l = n. So, the worst-case running timeof the algorithm is O(n2). However, l is usually much smaller than n for large examples.For example, l = 21 and n = 269 for Primary1 benchmark example, and l = 28 and n = 603for Primary2.5 CorrectnessWe mention in the introduction section that the algorithm based on max-min optimiza-tion guarantees to construct a planar equal path length Steiner tree, regardless of the sourceposition and the number of sinks. The following three lemmas establish the proof of thetheorem about the correctness of the algorithm. To make the proofs more straight forward,at each step, we assume that the algorithm is used in a 
at form where every time a freesink with the maximal minimal-balance-distance (among all free sinks) is connected to itsminimal balance point. However, we can easily extend the following lemmas to hold for thehierarchical (cluster) form of the algorithm.We de�ne a leaf bounding branch as a bounding branch which connects to a sink.Lemma 1: A free sink can �nd the minimal balance point only on a leaf bounding branches.Proof: Assume a free sink t has a minimal balance point, s, on a non-leaf bounding branchs0s0. That is, s lies in between s0 and s0 (see Figure 5.1). Assume, without the loss ofgenerality, point s0 is nearer to the source o than s0 in the partial tree. Since s0s0 is anon-leaf bounding branch, there are at least two branches other than s0s0 connecting to s0.Without the loss of generality, let t0 be one of the sinks connected to s0 through a sequenceof Steiner points s1, s2, : : : , skg. Because s is a balance point:k(s; t0)k = k(s; s0)k+ k(s0; s1)k : : :+ k(sk; t0)kwhere k(x; y)k represents the Manhattan distance between two points x and y. It followsthat k(s; t)k > k(s0; t0)k. According to the max rule t should be connected before t0, whichleads to contradiction. 2Lemma 2: For a free sink tj and a leaf bounding branch bk, bk = (sk ; tk) where bk connectsa sink tk, tj has a feasible balance point on bk if and only ifk(sk; tj)k � k(sk; tk)k (5:1)where k(x; y)k represents the Manhattan distance between two points x and y.Proof: If a feasible balance point say sj of free sink tj exists on a leaf branch bk, thenk(sj ; tj)k = k(sj ; tk)k (see Figure 5.2). If sj is sk , by de�nition k(sk; tj)k = k(sk; tk)k and(5.1) is true. Otherwise, �sksj tj forms a triangle. For a triangle �sksjtj in Manhattandistance, the following constraint holds on side lengths.k(sk; tj)k � k(sk; sj)k+ k(sj ; tj)k (5:2)Since k(sj ; tj)k = k(sj ; tk)k, (5.2) can be rewritten ask(sk; tj)k � k(sk; sj)k+ k(sj ; tk)k = k(sk; tk)k (5:3)



12 5. Correctnesss10 k t's'O sss tFigure 5.1: Sink t has the minimal balance point s on a non-leaf bounding branchs0s0. tjsk b k tkjsFigure 5.2: Free sink tj has a feasible balance point sj on a bounding leaf branchbk.On the other side, if k(sk; tj)k � k(sk; tk)k, we prove that a feasible balance point of tjexists on the leaf bounding branch bk. Assume a point sj moves from sk to tk along bk (seeFigure 5.2), and we de�ne �(sj) = k(sj ; tj)k � k(sj ; tk)k. When sj starts at sk, we have:�(sk) = k(sk; tj)k � k(sk; tk)k. Because (5.1) is satis�ed, �(sk) � 0. When sj arrives at tk,we have: �(tk) = k(tk; tj)k � k(tk; tk)k. Because k(tk; tk)k is zero, �(tk) > 0. Since �(sj)changes continuously from negative to positive when sj moves from sk to tk along a straightline bk, there should be a point s�j on bk such that �(s�j ) = 0 or k(s�j ; tj)k = k(s�j ; tk)k. Points�j is a feasible balance point of tj on bk. 2Lemma 3: Every free sink can �nd at least one feasible balance point at any partial tree Ti(1 � i < n).Proof: We use the mathematical induction according to the series of partial trees fT1; T2; : : : ; Tng,where Ti means i sinks have been connected to the partial tree.The basis, T1 is shown in Figure 5.3(a). T1 consists of a single branch b1 which connectsthe source o and the farthest sink t1. For any free sink tj , k(o; tj)k � k(o; t1)k. Obviously,b1 is a leaf bounding branch for any tj . By lemma 2, each tj has a feasible balance point sjon b1.



5. Correctness 13
(a) (b)Figure 5.3: (a) Free sink tj has a feasible balance point sj on branch b1 in partialtree T1 which connects the source o with the farthest sink t1. (b) tk has no feasiblebalance point in partial tree Ti+1.The inductive step, we intend to prove that every free sink has at least one feasiblebalance point on Ti+1 (1 � i < n�1), if it is true on T1; : : : ; Ti�1; Ti. The proof is achievedby the contradiction. Assume that a free sink tk can not �nd any feasible balance pointon Ti+1. For tk , there are a set of leaf bounding branches f tk1sk1 ; tk2sk2 ; : : : ; tkmskm g, asshown in Figure 5.3(b). A leaf branch bkj = tkjskj (1 � j � m), where tkj is a sink. Sincetk has no feasible balance point on bk1 ; bk2 ; : : : ; bkm, based on lemma 2, we have:k(tk; skj)k > k(tkj ; skj)k (5:4)Let tkm be the latest sink added to the tree, among tk1 ; tk2 , : : : , tkm . There exists apartial tree Td (1 � d � i) to which tkm is going to be connected next. Note that tk1 ,tk2 , : : : , tkm�1 have been connected to Td. According to the inductive hypothesis, tk has afeasible balance point sk on some leaf branch in Tl. By (5.4), the only possible candidatefor such a leaf branch is the branch which tkm is also going to connect to. Recall tk hasno feasible balance point on leaf branch bkm(tkmskm) at Ti, such that ktk ; skk > ktkm ; skmk.According to Max rule, tk should be connected to the branch before tkm . This leads tocontradiction.Based on the above three Lemmas we have:Theorem 1: The Steiner tree produced by the algorithm is planar and has equal path length.Theorem 2: The equal path length Steiner tree produced by the algorithm has minimal pathlength.Proof: The proof is trivial. The lower bound on path length is obviously the distance fromthe source to the furthest terminal. The �rst step of the algorithm is to connect the sourceto this furthest terminal. Since the remaining terminals are connected in such a way as tomatch the length of the �rst path, the minimal path length is achieved. 2



14 6. Asymptotic Bound of Total Wire Length6 Asymptotic Bound of Total Wire LengthThe total wire length of the clock tree heavily depends on the distribution of sinks. Thetotal wire length may be as worse as O(n), where n is the number of sinks. As shownin Figure 6.1, the worst case happens when the clock sinks are distributed around theboundaries of a diamond region and the source is set at the center. Every sink is connectedto the source, with the equal balance Manhattan distance r which is the half length of thediagonal of the diamond, such that the total wire length is n � r.
Figure 6.1: Worst case total wire lengthHowever, in practice clock sinks are randomly distributed over a rectangle routing area.It is more interesting to know the asymptotic bound of the total wire length of the clocktree with a large number of sinks which are independent and uniformly, in probability,distributed on a rectangle region.Let L be the total wire length of the clock tree with n sinks. Given a clock sourceat the center of layout, L is a function L(t1; t2; : : : ; tn) of the locations of the n sinks,ft1; t2; : : : ; tng � R2, where R2 represents a geometric plane. A function L is called anontrivial function, if L(�) = 0 for the empty set �.Lemma 4: L is a nontrivial function.Proof: This lemma is true since the total wire length is zero if there is no clock terminal tobe connected.A function L is called a Euclidean function, if it satis�es two properties: (a) L(�t1; �t2; : : : ; �tn) =�L(t1; t2; : : : ; tn), for all real � > 0; (b) L(t1+ t0; t2+ t0; : : : ; tn+ t0) = L(t1; t2; : : : ; tn), forall t0 2 R2.Lemma 5: L(t1; t2; : : : ; tn) is a Euclidean function, for any �nite set ft1; t2; : : : ; tng � R2.Proof: L(t1; t2; : : : ; tn) equals to the sum of all branch lengths of the clock tree. For eachbranch sisj , the length is the Manhattan distance ksi; sjk. It is trivial to check that ksi; sjksatis�es the above two properties. If all coordinates are scaled by a positive real �, L willalso be scaled by �. Also, if all coordinates are shifted by the same distance speci�ed by t0(t0 2 R2), L remains the same. So, L is a Euclidean function. 2



6. Asymptotic Bound of Total Wire Length 15In the following, we de�ne a special kind of functions called subadditive function. LetfQi : 1 � i � m2g be a partition of a unit region [0; 1]2 into smaller subregions withboundaries parallel to the coordinate axle, such that the boundary of a smaller region hasthe length of 1=m. A function L is called subadditivefunction if it satis�es the followingsubadditivity property. Given a positive integer m, there is a C > 0, such thatL(ft1; t2; : : : ; tng \ [0; 1]2) � m2Xi=1L(ft1; t2; : : : ; tng \Qi) + Cm (6:1)In (6.1), the item ft1; t2; : : : ; tng \ [0; 1]2 represents the subset of sinks of ft1; t2; : : : ; tngwhich are located inside region [0; 1]2, and the item ft1; t2; : : : ; tng \Qi denotes the subsetof sinks of ft1; t2; : : : ; tng which are located in a subregion Qi (1 � i � m2).Lemma 6: L(t1; t2; : : : ; tn) is a subadditive function, if ft1; t2; : : : ; tng are independent anduniformly distributed in [0; 1]2.

Figure 6.2: Clock tree Traversing procedure. Clock sinks are distributed in theregion [0; 1]2, and o is the clock source located at the center of the region.Proof: Suppose that sinks are independent and uniformly distributed in region [0; 1]2.Assume the clock source is located at the center of [0; 1]2 (See Figure 6.2(a)). We describe



16 6. Asymptotic Bound of Total Wire Lengtha hierarchical clock tree traversing procedure to sum up the total wire length of the clocktree. Note that the clock tree is actually obtained by the clock routing algorithm basedon the max-min rules, assuming that numerous clock sinks are distributed independentlyand uniformly in region [0; 1]2. In the �rst level, [0; 1]2 is partitioned into four subregionswith boundary length 1=2, and the clock source is extended to centers c1;1; c1;2; c1;3 andc1;4 of the four subregions (see Figure 6.2(b)). The total wire length of these four branchesfrom clock source to c1;1; c1;2; c1;3 and c1;4 is 412 . Shown in Figure 6.2(c), the tree traversingcontinues by extending the center of the current region to centers of its subregions, andevery subregion can be further partitioned into four smaller regions. Note that the tree isextended from c1;1 to c2;3 and c2;4 with two branches, for example, because of the planarrequirement. In the second level of tree traverse as shown in Figure 6.2(c), the total lengthof new branches, except for branches shown in Figure 6.2(b), is 4 � 5 � 122 . In the third levelof tree traverse as shown in Figure 6.2(d), the total length of new branches, except forbranches shown in Figure 6.2(c), is less than 42 � 6 � 123 . Note that six branches are extendedfrom c2;3 and c2;4 to centers of four smaller subregions as shown in Figure 6.2(d). Supposethat [0; 1]2 is partitioned into m2 regions. Each region Qi (1 � i � m2) has the boundarylength of 1=m. Let s be the total levels of region partition in the above procedure. We haves = logm. The total wire length of tree branches which are extended from the clock sourceto centers of m2 small subregions is thus less than 412+4 �5� 122 +42 �6 � 123 +43 �6 � 124 + � � � <Ps�1k=0 64k2k+1 = Ps�1k=03 � 2k. Let Li be the wire length of the clock tree inside region Qi. LetPm2i=1Li be the total wire length of tree branches inside those small subregions. We obtainthe upper bound of L: L � m2Xi=1Li + s�1Xk=03 � 2k = m2Xi=1Li + 3(m� 1) (6:2)Based on (6.2), we have L � m2Xi=1Li + 3m (6:3)which satis�es the subadditivity property as stated in (6.1). 2The next Lemma 7 is presented in [17] which improved the theory in [19]. Lemma 7 isbased on a weakening of subadditivity property [17]. For m = 2 or m = 3, there exists aconstant C1, such thatL(ft1; t2; : : : ; tng \ [0; 1]2) � m2Xi=1L(ft1; t2; : : : ; tng \ Qi) + C1 (6:4)Lemma 7: Assume L is a nontrivial, subadditive, Euclidean functional on space Rd (d isthe dimension). Set a2 = C1=(2d�1 � 1). Set a1 = a + d2d�1a2, where a = L(t) for anyvariable t. Then for each non-empty �nite subset F of [0; 1]d with n elements, we haveL(F ) � a1n(d�1)=d (6:5)In our case of (6.3), for m = 2, we have C1 = 6. a = L(t) is the length of clock treewhich has only one terminal t in [0; 1]2. a � 1 since we connect this clock terminal directly



7. Sizing Widths of Clock Tree 17with the source. The clock routing is performed on a plane R2, that is d = 2. So, (6.5) canbe rewritten as L(F ) � a1pn (6:6)where a1 = a+ 4a2 = a+ 4C1 = a+ 24 (0 � a � 1), is a positive constant.Based on the above lemmas 4� 7 and (6.6), we haveTheorem 3: The asymptotic bound is O(pn) for the total wire length of the clock tree withn sinks which are independent and uniformly distributed, in probability, in [0; 1]2.7 Sizing Widths of Clock TreeThe �nal objective of routing the clock net is to achieve zero skew and minimal phasedelay of the clock waveforms at clock terminals. The planar clock tree with the equaland minimal path length is a good initial clock topology. This topology can be furtherimproved with respect to clock skew by optimizing the branch widths. To achieve delaybalance, instead of making the faster path slower by enlonging branches as in [22], we makeslower paths faster by sizing. During the sizing, the clock topology is well maintained.In this paper, we assume that the clock tree behaves as a RC tree with a source at theroot. The planar equal path length clock tree is implemented on the same metal layer, suchthat all the RC parameters are the same and vias are eliminated. The source is driven bya set of transistors. Each clock branch is a RC line. For branch bi, we have: ri = rsli=wi,ci = csliwi, where li is the length and wi is the width of the branch bi. rs is the sheetresistance with the unit 
=2, and cs is the capacitance of the unit area with the unitpf=�m2. We use the � circuit to model a RC line (see Figure 7.1(b)). Each clock pin tkfunctions as a load capacitance ck(see 7.1(c)). Note that clock pins are allowed to havedi�erent load capacitances.
Figure 7.1: (a) a RC line. (b) �-equivalent circuit of a RC line. (c) load capacitanceof a terminal.We size the branches of the clock tree in a bottom up order of starting from clockterminals. The similar algorithm is proposed in [22]. However, instead of the branchlengths [22], we take the branch widths as variables. First, we state the sizing algorithm



18 7. Sizing Widths of Clock Treefor a binary clock tree. At the end of this section, we will show that the algorithm can beapplied on a general clock tree with arbitrary node degree.One recursive step is performed on two sibling branches with the same parent node inthe clock tree. As shown in Figure 7.2(a), n0 is the parent node with two children n1 and n2.Node n1 is the root of subtree ST (n1), and n2 is the root of subtree ST (n2). n0n1 and n0n2are two sibling branches. The equivalent RC circuit of these two sibling branches is shownin Figure 7.2(b). r1 and c1 are the resistance and capacitance of the branch n0n1, and r2and c2 the resistance and capacitance of branch n0n2. C1 is the sum of total capacitanceof all branches and terminals in ST (n1). D1 is the time delay from n1 to leaf nodes inST (n1). If n1 is a leaf node (terminal), D1 is zero and C1 equals to the load capacitance ofthe terminal. C2 and D2 are de�ned similarly for ST (n2).
Figure 7.2: (a) n0n1 and n0n2 are two sibling branches of the clock tree. Node n0is the parent node of n1 and n2. ST (n1) denotes the subtree rooted at node n1,and ST (n2) denotes the subtree rooted at node n2. (b) The �-RC circuit of twosibling branches n0n1 and n0n2.Assume that ST (n1) and ST (n2) have achieved equal path delays by sizing the widths.Based on Elmore delay, to achieve the equal path delay from n0 to leaf nodes in bothsubtrees in Figure 7.2(b), we have:r1(c12 + C1) +D1 = r2(c22 + C2) +D2 (7:1)We specify that r1 = rsl1=w1, c1 = csl1w1, and r2 = rsl2=w2, c2 = csl2w2, where l1; w1 arethe length and width of branch n0n1, and l2; w2 are the length and width of branch n0n2.Note that w1 and w2 are variables. Substituting the above r; c values into (7.1), we get:rsl1C1 1w1 + rscs2 l12 +D1 = rsl2C2 1w2 + rscs2 l22 +D2 (7:2)Let x1 = 1w1 , x2 = 1w2 , and � = rscs2 (l12 � l22) + (D1 �D2). (7.2) is rewritten as:l2C2x2 = l1C1x1 + �rs (7:3)



7. Sizing Widths of Clock Tree 19We thus obtain: x2 = 1l2C2 (l1C1x1 + �rs ) (7:4)or x1 = 1l1C1 (l2C2x2 � �rs ) (7:5)We �rst specify w1 as the normal width. then obtain w2 based on (7.4), where x1; x2 areinverses of w1; w2. If w2 is less than the normal width, we have to assign w2 as the normalwidth, and get w1 based on (7.5). Let C0 denote the sum of total capacitances in the subtreerooted at n0, and D0 denotes the path delay from n0 to leaf nodes in the subtree. Notethat the subtree rooted at n0 has zero skew after we adjust the widths of n0n1 and n0n2.We have: C0 = C1 + C2 + cs(l1w1 + l2w2) (7:6)D0 = D1 + rsl1w1 (csl1w12 + C1) (7:7)We apply the above sizing step on every pair of sibling branches, by starting from leafnodes (terminals) and then recursively going through the clock tree. The algorithm ofrecursive clock tree sizing is described in the following pseudo-code.Recursive clock tree sizing algorithm based on Elmore delayInput: a clock tree T with a source s and a set of terminals (sinks);Output: a clock tree with variable branch widths.Procedure ClockTreeSizing(T , technology �le)fn0 = the child of source s, b0 = the branch connecting n0 and s;D0 = the delay from n0 to leaf nodes, C0 = total capacitances of the subtree rootedat n0; CalculateNodeDelay(n0; C0; D0);Assign b0 a large width speci�ed by users.gProcedure CalculateNodeDelay(n0 ; C0; D0) fif (n0 is a terminal tk)D0 = 0, C0 = ck;else fn1; n2 = two children of n0;CalculateNodeDelay(n1; C1; D1);CalculateNodeDelay(n2; C2; D2);� = rscs2 (l12 � l22) + (D1 �D2);w1 = normal width, x1 = 1w1 ;



20 7. Sizing Widths of Clock Treex2 = 1l2C2 (l1C1x1 + �rs ), w2 = 1x2 ;if (w2 < normal width) fw2 = normal width, x2 = 1w2 ;x1 = 1l1C1 (l2C2x2 � �rs ), w1 = 1x1 ;gD0 = D1 + rsl1w1 ( csl1w12 + C1), C0 = C1 + C2 + cs(l1w1 + l2w2);ggSource s in the algorithm is assumed to have only one child n0. b0 is the branch which isconnected to s. The width of b0 has no e�ect on the skew based on Elmore delay. But westill prefer to assign b0 a large width to minimize the path delay. The width of b0 is usuallylarger than other branches and is speci�ed by users in the real design. If s has two children,we can take n0 = s and b0 = null.This sizing method can also be applied on the general clock tree with nodes which mayhave more than two children. As in Figure 7.2(a), we assume n0 has a set of children nodesfn1; n2; : : : ; nmg(m � 2). ri and ci are the resistance and capacitance of the branch n0ni(1 � i � m). Let ST (ni) be the subtree rooted at ni. Ci is the sum of total capacitance ofall branches and terminals in ST (ni). Di is the time delay from ni to leaf nodes in ST (ni).Assume that ST (n1), ST (n2), : : : , ST (nm) have achieved equal path delays by sizing thewidths. Similar to equation (7.1), to achieve the equal path delay from n0 to leaf nodes inall subtrees, we have: r1(c12 + C1) +D1 = r2(c22 + C2) +D2 (7:8)r1(c12 + C1) +D1 = r3(c32 + C3) +D3...r1(c12 + C1) +D1 = rm(cm2 + Cm) +Dmwhere ri = rsli=wi, and ci = csliwi. li, wi are the length and width of branch n0ni(1 � i � m). Let x1 = 1w1 , x2 = 1w2 , : : : , and xm = 1wm . We de�ne that �2 = rscs2 (l12 �l22)+(D1�D2); �3 = rscs2 (l12� l32)+(D1�D3); : : : , and �m = rscs2 (l12� lm2)+(D1�Dm).Similar to (7.3), we can rewrite (7.8) asl2C2x2 = l1C1x1 + �2rs (7:9)l3C3x3 = l1C1x1 + �3rs...lmCmxm = l1C1x1 + �mrsIf we specify the width of one of branches fn0n1; n0n2; : : : ; n0nmg, based on (7.9), we canobtain the widths of other branches, achieving the zero skew from n0 to leaf nodes in itssubtree.



8. Experimental Results 218 Experimental ResultsThe planar clock routing algorithm has been implemented in ANSI C with a MOTIF/X-window user interface. Several examples, including industrial benchmarks, have been testedand the results are promising.Table 1 highlights the comparison on two MCNC benchmarks among MMM [13], RGM[14] and our algorithm. The criterions compared are: planarity, path length skew, longestpath length, total wire length, and running time. The MMM algorithm has not achievedan equal path length clock tree because of the non-zero skew of path lengths. Comparedwith the RGM algorithm, our algorithm decreases the path length by 24.5% on Primary1and 19.6% on Primary2. The path length is a �rst order indication of phase-delay andattenuation from the clock source to terminals. Using our algorithm, the total length ofthe clock tree increases by 19.0% on Primary1 and 19.8% on Primary2. This extra lengthis a result of maintaining the planarity of the tree. The running time of our algorithm onPrimary2, which has more than 600 terminals, is only 1/3 the time required by the RGMalgorithm. This speed-up is due to the divide-and-conquer nature of our algorithm. Figure8.1 shows two planar clock trees generated from Primary1. Figures 8.1(a) and 8.1(b) show,respectively, the clock trees resulting from choosing a source on the edge of the instance andat the center of the instance. Our algorithm also constructs a planar clock tree with equalpath length for Primary2 (see Figure 8.2), while the RGM algorithm produces a non-planartree with many overlaps (see Figure 8.3). The other previous algorithms obtain similarnon-planar trees [13, 22, 6]. The nonplanar clock tree must employ two or more routinglayers to �nish physical embedding, such that worsening the clock skew and source-sinkpath delay because of electrical parameter variations of di�erent layers and vias.Primary1 Primary2MMM RGM Our Algorithm MMM RGM Our AlgorithmPlanarity No No Yes No No YesPath Length Skew 0.29 0.00 0.00 0.74 0.00 0.00Longest Path Length 7.24 7.51 6.03 13.05 11.58 9.96Total length 161.7 153.9 190.1 406.3 376.7 469.9Time (sec) 2.6 54.9 38.5 20.2 397.1 144.2Table 8.1: Statistics of di�erent clock routing algorithms on two benchmarks.Primary1 has 269 clock terminals and Primary2 has 603 clock terminals. CPUtime is measured on SUN (Sparc 1+) Workstation.As shown in Figure 8.4(a), we apply the sizing algorithm in Section 7 on a clock treeof �ve terminals with equal path lengths from the source s. Initially, the clock tree has auniform width 2 �m. By using the above sizing algorithm, branch widths of the clock treeare shown in 8.4(b). We assume the clock tree is implemented on metal two with 1 �mfeature size and take rs = 27 m
=2 and cs = 0:017� 10�3 pf . Every branch bi is assigneda 2-tuple fli; wig, where li is the length of bi and wi the width. Both are in the unit of�m. Starting from �ve leaf nodes (terminals) which have the same load capacitance 0:8 pf .we obtain the branch widths by applying the recursive sizing algorithm (see Figure 8.4(b)).Note that we assign a large width 20 �m on the trunk which is directly connected fromthe source s to reduce the path delay. We used SPICE to simulate the equivalent � � RC



22 8. Experimental Results
(a)
(b)Figure 8.1: Planar clock tree with equal path length on Primary1 benchmark. (a)clock source is inside the chip/module. (b) clock source is on the frame of thechip/module.

Figure 8.2: Planar clock tree with equal path length on Primary2 benchmark.



8. Experimental Results 23
Figure 8.3: Clock tree of RGM algorithm on Primary2 benchmark. (�gure copyof [2])circuit of the planar equal path length clock tree shown in Figure 8.4. Simulation resultsare shown in Figure 8.5, where the horizontal axis indicates the time with the unit of 10�8s and the vertical axis shows the voltages at clock terminals. Shown in Figure 8.5(a), thewaveforms have a skew of 0:21 ns, where we assign identical width 2�m on the clock tree.After sizing the clock tree with varible widths shown in Figure 12(b), we reduce the clockskew to 0:09 ns. The �nal clock waveforms are shown in Figure 8.5(b). As the result, themaximum path delay from the source to terminals is also decreased from 0:34 ns to 0:14 ns.
Figure 8.4: (a) Planar clock tree with equal path length with �ve terminals. Eachterminal has the same load capacitance 0:8 pf. (b) The sizing result of the clocktree. Each edge bi has a 2-tuple fli; wig, where li is the length of bi and wi is thewidth assigned to bi.



24 9. Concluding Remarks
(a)
(b)Figure 8.5: Waveforms at �ve terminals in a planar clock tree with equal path-length as shown in Figure 15. (a) We assign the identical width 2 �m on the clocktree. (b) We size the clock tree with variable widths as shown in Figure 15(b).9 Concluding RemarksThis paper presents a new algorithm to construct a planar clock tree based on hier-archical max-min optimization. We have proved that the algorithm guarantees a planarequal path length clock tree rooted directly at the source, such that the path length fromthe source to terminals is minimized. A planar clock tree may be implemented on a singlemetal layer. Since it is easier to achieve uniform electrical parameters on a single layer thanwhen switching layers, it is easier to adjust a planar clock tree for zero skew and minimalpath delay. Planar clock routing becomes feasible when more layers are available.The planar equal path length Steiner tree problem is a valuable problem in the �eld ofcomputational geometry. In addition to routing clock nets, some other nets with specialsynchronization requirements, may bene�t from such a tree.The algorithm can also be applied to construct an equal path length Steiner tree on
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