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ABSTRACT

The design of high speed digital VLSI circuits prefers that the clock net is routed
on the metal layer with the smallest RC delay. This strategy not only avoids the
difficulties of having different electrical parameters on different layers, but also
eliminates the delay and attenuation of the clock signal through vias. The clock
phase-delay is also decreased. In this paper, we present a novel algorithm, based
on hierarchical max-min optimization, to construct a planar clock tree which can
be embedded on a single metal layer. The clock tree achieves equal path length—
the length of the path from the clock source to each clock terminal is exactly the
same. In addition, the path length from the source to clock terminals is minimized.
Some examples including industrial benchmarks have been tested and the results
are promising. We further optimize the geometry of the clock tree to minimize both
the skew and path delay of the clock signal while maintaining the planarity of the
clock network. Some premilinary results are promising which achieve near zero skew
by using SPICE simulation.

Keywords: clock routing, planar routing, equal path length, max-min optimiza-
tion, Steiner tree
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1 Introduction

There is a general trend in digital VLSI circuits towards more registers and higher clock
frequencies. There are two major concerns in high-performance clock routing: minimizing
clock skew and routability. For optimal system performance, the clock signal must reach
each register at exactly (or almost exactly) the same time. The routability of the clock net
also becomes an urgent concern in dense VLSI chips with thousands of clocked elements
which may be unevenly distributed across a major area of the chip. The design of high
speed digital VLSI circuits prefers that the clock net is routed on the metal layer with the
smallest RC delay. This strategy not only avoids the difficulties of having different electrical
parameters on different layers, but also eliminates the delay and attenuation of the clock
signal through vias. The path delay of the clock signal from the source to the clocked
elements is also decreased. For double metal layers in 1um technology, typical resistance
and capacitance values are 25 m€/0 and 0.015 fF/pm on metal two, and 57 m©Q/0 and
0.029 fF/pum on metal one. A typical resistance for a via is 410 m€ /0. Recently, Digital
Equipment Corporation has succeeded in implementing a new microprocessor operating up
to 200 MHz [8]. Its clock network is laid almost entirely on one metal layer, and is driven
by a huge buffer near the clock source.

The “H” clock tree is widely used in the IC industry [2]. However, it is only applicable
for symmetric arrays of logic elements. There have been two generalized H-tree algorithms
proposed that try to distribute the clock to elements with arbitrary positions [13, 14]. In
[13], a generalized H-tree is constructed in a top-down fashion by the method of means
and medians (MMM). Although the difference in path lengths from clock source to clock
terminals is bounded by O(Ln) on the average case, it may be as large as half the diameter
of the chip [14]. Another algorithm constructs a clock tree based on recursive geometric
matching (RGM) in a bottom-up sequence [14]. This algorithm always yields clock trees
with perfectly balanced path lengths for trees of two, three, or four terminals. But no
bound is given for the general case. An improved algorithm [22] considers Elmore delay
balance instead of geometric length balance but adopts a bottom-up process similar to that
of [14]. This algorithm achieves delay balance by enlongating wires that have smaller delays.
Another algorithm in [6] improves the Elmore delay matching method by considering the
minimization of the total wire length. But this algorithm yields minimal wirelength only
for a given connection topology and linear delay model. The major problem with these
algorithms is that they create many overlaps in the clock networks. Multiple routing layers
must be used to implement such a non-planar network. The performance and routability
of the clock network are seriously sacrificed. So, the application of these algorithms to the
real design of clock distribution for VLSI systems is limited.

In this paper, we present a novel algorithm to construct a planar clock tree which can be
embedded on a single metal layer. The clock tree achieves equal path length—the length of
the path from the clock source to each clock terminal is exactly the same. This is important
since the wire length still dominates the timing delay of a wire [5, 1]. Such a planar clock
tree with equal path length provides a good initial clock topology for designers to adjust for
minimum skew. We can further optimize the geometry of the clock tree to minimize both
the skew and path delay of the clock signal while maintaining the planarity of the clock
network. Achieving exact zero skew of a clock network is still an engineering effort which
finally relies on capacitance calculations and detailed interconnect simulation [15].

The key features of our algorithm are described as follows.
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e The algorithm always constructs a planar clock tree.

e The lengths of the paths from the the clock source to each of the clock terminals are

exactly the same.

e The path length from the source to clock terminals is the minimum.

e The clock source can be at arbitrary location in the layout.

The first three features of the algorithm are proved in Section 4. The last feature allows
the flexible position of the clock source. In VLSI systems, the clock source may be a pad
at the side of the chip/module frame, or may be a clock generator inside the chip/module.
Our algorithm roots the clock tree directly at the source unlike the previous methods [13,
14, 22, 2] which must route from the clock source to the root of the tree after the tree is
completed.

The organization of this paper is as follows. Section 2 defines the clock tree as a planar
equal path length Steiner tree. In Section 3, we present our algorithm based on max-min
optimization. We also describe the recursive divide-and-conquer paradigm of the algorithm.
The time complexity of this algorithm is given in section 4. We prove in Section 5 that the
algorithm always yields a planar clock tree with perfectly balanced path lengths, regardless
the source position and the distribution of terminals. In addition, the length of the path
from the clock source to the terminals is minimized. In section 6, we show an asymptotic
bound of the total wire length of the clock tree as the number of clock terminals increases.
We describe in section 7 an algorithm of sizing the planar equal path length clock tree to
achieve zero skew based on Elmore delay. Experimental results are given in Section 8 we
compare our results with previous algorithms, also including some preliminary results on
zero skew sizing of the planar clock tree. Some concluding remarks are given in section
9, where we show that the algorithm can be used to construct a planar equal path length
Steiner tree not only in Manhanttan space but also in Euclidean space.

A short version of this paper has been presented at ICCAD-92 [24].

2 Planar Equal Path length Steiner Tree

A clock source and a set of clock terminals (sinks) form a clock net in a VLSI chip or
a multi-chip module. A clock tree, T', of the clock net is a Steiner tree which connects all
sinks with the source. The length of a branch connecting two vertices in the tree is taken to
be the Manhattan distance. The length of the path from source o to any sink ¢;, is merely
the sum of the lengths of all branches on the unique path from o to t;. The cost of the clock
tree is the sum of the lengths of its branches. The clock tree considered here is a special
Steiner tree called planar equal path length Steiner tree. We give the definition as follows.

Planar Equal Path Length Steiner Tree Problem: Given a source point and a set
of sink points, find a planar Steiner tree, T', with minimum total cost such that the lengths
of the paths from the source point to all sink points are exactly the same. Note that, in
general, this problem is NP-complete.

3 New Algorithm

3.1 Overview and Basic Concepts

We propose a new algorithm to construct a planar equal path length Steiner tree. The
algorithm is a single-tree growth method since sinks are added to the tree one at a time.
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The algorithm produces a series of partial trees {1,715, T5,...,T,}, where T; is the partial
tree in which the first 7 sinks are connected. T,, is the final Steiner tree in which all n sinks
are connected. The basic ideas of this algorithm are as follows.

First, we choose the sink that has the maximal Manhattan distance to the source, and
connect it to the source. This forms the first partial tree, Ty, as shown in Figure 3.1(a)).
As the partial tree grows, all sinks are classified into two types. A sink is called a free sink
if it has not yet been connected to the partial tree; a sink is called connected sink if it has
been added to the tree. At any partial tree T; (1<i<n), we select a free sink and connect it
to a branch of the tree maintaining equal path length from the source to the sink. This sink
then becomes a connected sink. This may split the branch in two since a Steiner point is
inserted on it. An example is shown in Figure 3.1(b), where sink ¢, is chosen and connected
to branch by in the tree Ty. The new Steiner point s is said to be a balance point since it
has equal Manhattan distance to sink ¢; and sink #;. A balance point s;; for a free sink ¢;
exists on a branch by, if the Manhattan distance from s;; to t; is equal to the path length
from s;;, to a connected sink in 7;. The balance point s;; is called a feasible balance point
of t;, if a straight line connecting ¢; and s;; crosses no other branches. Connecting ¢; to a
feasible balance point on T; forms a new tree T;41 in which both planarity and path length
balance are maintained.

Figure 3.1: Partial Steiner Trees

Usually a free sink ¢; has several feasible balance points on branches in 7;. The feasible
balance point with the minimum Manhattan distance to ¢; is called minimal balance point
of t; in T;. The Manhattan distance between ¢; and its minimal balance point is called
minimal balance distance of t; in T;. In Figure 3.2(a), sink ¢3 has two feasible balance
points: s; on branch by and sy on branch bs;. The point sy is the minimal balance point
since its distance to t3 is shorter than s;’s. The distance between ¢3 and s3 is the minimal
balance distance of 5.

Another interesting phenomenon is the routing order of free sinks. For example in Figure
3.1(c), if the sink ¢4 is connected to by before sink t3, the sink #; cannot find any balance
point on the new branch b4. Sink ¢5 has a balance point s on branch by but no feasible
balance point. If ¢5 is connected to s, on by, a crossing over by happens which results in a
non-planar tree. In addition, the sink ¢4 has a longer balance distance to by than to by (see
Figure 3.1(b)). Therefore, the tree cost also increases. So, sink ¢, must be connected before
14.

Two rules play key roles in our algorithm.
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e Min-rule: always connect a free sink to its minimal balance point.

o Max-rule: at each stage, always select the free sink whose minimal balance distance
is maximized among all remaining free sinks.

The Max-rule guides the routing order for free sinks. This rule ensures the planarity
of the equal path length Steiner tree without iteration. The Min-rule reduces the tree cost
efficiently.

Our algorithm grows the partial tree by iteratively applying the Max-Min rules. At a
partial tree T;, a free sink with the maximal minimal-balance-distance among all free sinks
is connected to its minimal balance point. This free sink then becomes a connected sink and
T; is expanded to T;41. For example in Figure 3.1(b) and Figure 3.1(c), t2, t3, and #4 all have
the minimal balance points on branch by but ¢; has the maximal minimal-balance-distance,
therefore t5 is connected before ¢35 or ¢4.

cluster 3

b cluster 1

cluster 4

Figure 3.2: (a) Free sink ¢3 has two feasible balance points on two bounding
branches by and by. (b) Partial tree Ty separates free sinks into four independent
clusters; t; and 4 are reachable ; however, {1 and ¢5 are not reachable.

3.2 Hierarchical Max-Min Optimization

In order to explain our algorithm, it is useful to define a binary relation, called reachable,
on the set of free sinks 5. The relation is based on the concept of visibility. Two free sinks
a,b € S are visible (a < b) if a straight line between them crosses no tree branches. Two
free sinks a,b € 5 are defined to be reachable if either:

e a& b, or

e there exists a sequence of free sinks (p1,p2,...,pr) € S such that a < p1,pr < b, and
p¢<:>pi+1f0r1§i<k.
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For example in Figure 3.2(b), #1 is not visible to ¢4 since the branch b3 lies between them.
But t; can be reachable to t4, by way of the path transferring the visibility to other free
sinks: t; & t3 & t3 < t4. However in Figure 3.2(b), #; and ¢5 are unreachable. Reachable
is an equivalence relation and partitions 5 into a set of equivalence classes which we will
refer to as clusters.

The partial tree T; partitions the free sinks into clusters. As described above, free sinks
in one cluster are reachable to each other, and sinks in different clusters are not. Each
cluster is bounded by a set of tree branches. Only on these branches, can a free sink in
the cluster possibly find feasible balance points. These branches are called the bounding
branches of the free sinks in this cluster. In Figure 3.2(b), the free sinks are partitioned
into four clusters by the tree T4. For the sinks in the cluster 1, the bounding branches are
{b1,b2,b3,b4,bs}. The bounding branches are {bg, b7} for cluster 2, {by, b, b5} for cluster 3,
and {by, bs, b7} for cluster 4. It is impossible for a free sink to find a feasible balance point
on any branch not in its set of bounding branches because it would require a crossing a
bounding branch.

The algorithm is suited for parallel routing by applying the max-min rules locally on each
cluster of free sinks at T;. Free sinks in different clusters cannot conflict with one another
in the routing order, because they are separated by the tree. Therefore, each cluster selects
one free sink to be connected at each iteration. This sink only needs to be compared with
other free sinks in the same cluster (Max Rule). When looking for the minimal balance
point, a free sink needs only to check feasible balance points on the bounding branches for
its cluster (Min-Rule).

When a free sink is connected to the partial tree, the new branch may partition the
free sinks of the original cluster into new clusters. Shown in Figure 3.2(b), when branch bg
connects sink tg to the tree, it separates the free sinks of the original cluster into cluster 1

and cluster 2. However, connecting ¢; to form branch b3 does not further partition cluster
1.

Initially, all sinks are in one cluster. As the partial tree expands, it separates the
remaining free sinks into more and more clusters. As a result, the tree grows faster and
faster by locally applying max-min rules on each cluster. This divide-and-conquer paradigm
accelerates the algorithm significantly. This is verified in the experiments.

Growing the partial tree by using the Max-Min rules on each cluster is a hierarchical
maz-min optimization process. We formulate this process of applying Max-Min rules in a
cluster C' as

max{min{d(¢;,b;),b; is a bounding branch of ¢;},¢; € C'}
7 7

The term d(¢;,b;) is the Manhattan distance of free sink ¢; to a feasible balance point
on bounding branch b;. In Section 4, we prove that our algorithm, based on hierarchical
max-min optimization, not only maintains a planar equal path length Steiner tree, but also
yields the minimum path length from the source to the sinks.

An example is shown in Figure 3.3(a), where o is the source and the other points are the
sinks. Proceeding from Figure 3.3(b) to Figure 3.3(f), the algorithm grows the tree by using
the max-min optimization on free sink clusters. The final result shown in Figure 3.3(g) is a
planar equal path length Steiner tree. The hierarchical cluster partitioning process of this
example is revealed in Figure 3.4, which recursively separates the free sinks into smaller
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clusters. Each node in Figure 3.4 represents a cluster of free sinks. At each step, the max-
min optimization is applied to each cluster. The notation [p, q] appearing inside each node,
means the cluster initially consisted of p free sinks and was partitioned into subclusters

after ¢ sinks were connected.

The source in Figures 3.3(a-g) was placed at the side of the problem. The clock tree

shown in Figure 3.3(h) results from choosing the source inside the set of sinks.
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(8) (h)

Figure 3.3: Example of using the algorithm to grow a planar equal path length
Steiner tree. (a) 18 sinks and point o is the source on the left-bottom side. (b) —
(f) At a level, a free sink in each cluster is connected to the partial tree. (g) The
final tree where the source is on the side shown in (a). (h) The tree where the
source o is set inside the sinks.
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Figure 3.4: Top down free sink cluster partition

%

Our algorithm is summarized in the following pseudo-code.

Planar clock routing algorithm based on hierarchical max-min optimization
Input: a source s, and a set of sinks D;
Output: a planar equal path length Steiner tree 7.
Procedure PlanarClockRouter(s, D,T') {
Co=D;
T'=({s},0);
CreateBranch(Cy, T);

Procedure CreateBranch(C,T') {
Find t*, 6" such that
d(t*,b*) = max;{min;{d(;,b;),b; is a bounding branch of t;},t; € C'};
Create a branch from ¢* to its minimal balance point on b* resulting in new 7;
if (C— {7} # 0)]
Partition C' — {t*} into subclusters C',C5,...,C} using the reachable relation;
for each 7 € [1, k]
CreateBranch(C;, T);

4 Time Complexity

We define the tree growing by one level as follows: for each cluster C;, select a free sink
tr € C; to be connected next according to the max-min rule, create a branch connecting
t7 to the tree, and update the minimal balance points for the remaining free sinks in ;.
Recall that each cluster can be processed independently. Let n; be the number of free sinks
in C;. For each cluster (', the branch creation can be done in O(1) time, and the selection
of ¢¥ and the updating of minimal balance points for remaining free sinks can be done in
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O(n;) time. So, the total time required at each level is >~ O(n;) = O(n), where n is the
total number of sinks. So overall the time complexity is O({- n), where [ is the number of
levels of the tree growing.

In the worst case, at each level, branches are connected to the tree in such a way that no
further partition of the clusters occurs. This implies [ = n. So, the worst-case running time
of the algorithm is O(n?). However, [ is usually much smaller than n for large examples.
For example, | = 21 and n = 269 for Primaryl benchmark example, and [ = 28 and n = 603
for Primary?2.

5 Correctness

We mention in the introduction section that the algorithm based on max-min optimiza-
tion guarantees to construct a planar equal path length Steiner tree, regardless of the source
position and the number of sinks. The following three lemmas establish the proof of the
theorem about the correctness of the algorithm. To make the proofs more straight forward,
at each step, we assume that the algorithm is used in a flat form where every time a free
sink with the maximal minimal-balance-distance (among all free sinks) is connected to its
minimal balance point. However, we can easily extend the following lemmas to hold for the
hierarchical (cluster) form of the algorithm.

We define a leaf bounding branch as a bounding branch which connects to a sink.
Lemma 1: A free sink can find the minimal balance point only on a leaf bounding branches.
Proof: Assume a free sink ¢ has a minimal balance point, s, on a non-leaf bounding branch
sps’. That is, s lies in between sy and s’ (see Figure 5.1). Assume, without the loss of
generality, point sg is nearer to the source o than s’ in the partial tree. Since sps’ is a
non-leaf bounding branch, there are at least two branches other than sgs’ connecting to s'.
Without the loss of generality, let ¢ be one of the sinks connected to s’ through a sequence
of Steiner points sy, S, ..., s;}. Because s is a balance point:

1, D11 = M1Cs, DI+ NG s sl - - G T

where ||(#,y)|| represents the Manhattan distance between two points z and y. It follows
that [|(s,¢)|| > [|(s',?')||. According to the max rule ¢ should be connected before ¢, which
leads to contradiction. O

Lemma 2: For a free sink t; and a leaf bounding branch by, by = (sk,tx) where b, connects
a sink iy, t; has a feasible balance point on by, if and only if

[[Csgs 2N < NlCss ) (5.1)

where ||(x,y)|| represents the Manhattan distance between two points x and y.

Proof: If a feasible balance point say s; of free sink ¢; exists on a leaf branch by, then
I(s;, )] = |I(s5,tk)|| (see Figure 5.2). If s; is sg, by definition ||(sg,?;)|| = ||(sk, tx)|| and
(5.1) is true. Otherwise, Asys;t; forms a triangle. For a triangle Asgs;t; in Manhattan
distance, the following constraint holds on side lengths.

[[Csgs 2 < MCsms s+ 11 Css 25)] (5.2)

Since [|(s;, )] = ||(s5,tk)|], (5.2) can be rewritten as

[1Csrs 2N < M Csts )1+ 1[G ta)ll = (s ) (5.3)
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Figure 5.1: Sink ¢ has the minimal balance point s on a non-leaf bounding branch

sps’.

Figure 5.2: Free sink ¢; has a feasible balance point s; on a bounding leaf branch

by.

On the other side, if |[(sg,¢;)]] < ||(sk, k)|, we prove that a feasible balance point of ¢;
exists on the leaf bounding branch b;. Assume a point s; moves from sj to t; along by, (see
Figure 5.2), and we define 6(s;) = ||(s;,¢;)]| — ||(s;,¢x)]|. When s; starts at s, we have:
6(sg) = ||(sk, ;)| — ||(sk, tg)||. Because (5.1) is satisfied, é6(s;) < 0. When s; arrives at tg,
we have: 6(ty) = |[(tk,t;)]] — |[(tk,tx)||. Because ||(tx,t)|| is zero, 6(tx) > 0. Since 6(s;)
changes continuously from negative to positive when s; moves from s, to ¢; along a straight
line b, there should be a point s¥ on by such that é(s¥) = 0 or [[(s7,2;)]| = [|(s],)||- Point
s; is a feasible balance point of #; on by. |
Lemma 3: Every free sink can find at least one feasible balance point at any partial tree T;
(1<i<n).

Proof: We use the mathematical induction according to the series of partial trees {1, T5,..., T},
where T; means 7 sinks have been connected to the partial tree.

The basis, 77 is shown in Figure 5.3(a). T} consists of a single branch by which connects
the source o and the farthest sink ¢1. For any free sink ¢;, ||(0,t;)|| < ||(0,%1)||. Obviously,
by is a leaf bounding branch for any ¢;. By lemma 2, each ¢; has a feasible balance point s;
on by.
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(a) (b)

Figure 5.3: (a) Free sink ¢; has a feasible balance point s; on branch by in partial
tree 17 which connects the source o with the farthest sink ¢;. (b) #x has no feasible
balance point in partial tree T;41.

The inductive step, we intend to prove that every free sink has at least one feasible
balance point on T;+1 (1 <i < n—1),if it is true on T, ..., T;—1,T;. The proofis achieved
by the contradiction. Assume that a free sink #; can not find any feasible balance point
on Tiy1. For ty, there are a set of leaf bounding branches { g, Sk, s ThySkys -« «s Ly Sk, s @S
shown in Figure 5.3(b). A leaf branch by, = #1,5¢,(1 < j < m), where # is a sink. Since

t; has no feasible balance point on by, , bk, ..., b, , based on lemma 2, we have:

1y skl > [1(hy 5 55, (5.4)

Let tg,, be the latest sink added to the tree, among ty,,%x,, ..., t,. There exists a
partial tree Ty (1 < d < i) to which ¢, is going to be connected next. Note that tj,,
thys + -+ th,_, have been connected to 7. According to the inductive hypothesis, 5 has a
feasible balance point s; on some leaf branch in 7;. By (5.4), the only possible candidate
for such a leaf branch is the branch which #;  is also going to connect to. Recall ¢ has
no feasible balance point on leaf branch by, (g, Sk, ) at T;, such that ||tx, skl > ||tk Sk |-
According to Max rule, ¢; should be connected to the branch before ¢ . This leads to
contradiction.

Based on the above three Lemmas we have:
Theorem 1: The Steiner tree produced by the algorithm is planar and has equal path length.

Theorem 2: The equal path length Steiner tree produced by the algorithm has minimal path
length.

Proof: The proof is trivial. The lower bound on path length is obviously the distance from
the source to the furthest terminal. The first step of the algorithm is to connect the source
to this furthest terminal. Since the remaining terminals are connected in such a way as to
match the length of the first path, the minimal path length is achieved. O
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6 Asymptotic Bound of Total Wire Length

The total wire length of the clock tree heavily depends on the distribution of sinks. The
total wire length may be as worse as O(n), where n is the number of sinks. As shown
in Figure 6.1, the worst case happens when the clock sinks are distributed around the
boundaries of a diamond region and the source is set at the center. Every sink is connected
to the source, with the equal balance Manhattan distance r which is the half length of the
diagonal of the diamond, such that the total wire length is n * r.

Figure 6.1: Worst case total wire length

However, in practice clock sinks are randomly distributed over a rectangle routing area.
It is more interesting to know the asymptotic bound of the total wire length of the clock
tree with a large number of sinks which are independent and uniformly, in probability,
distributed on a rectangle region.

Let L be the total wire length of the clock tree with n sinks. Given a clock source
at the center of layout, L is a function L(t1,%2,...,%,) of the locations of the n sinks,
{t1,t3,...,1,} C R?* where R? represents a geometric plane. A function L is called a
nontrivial function, if L(¢) = 0 for the empty set ¢.

Lemma 4: L is a nontrivial function.

Proof: This lemma is true since the total wire length is zero if there is no clock terminal to
be connected.

A function L is called a Fuclidean function, if it satisfies two properties: (a) L(aty,atz,...,at,) =

al(ty,ta, ... t,), for all real @ > 0; (b) L(t1 +to,t2+to, ..., tn +10) = L(t1,t2,...,1,), for

all ty € R~

Lemma 5: L(ty,1o,...,1,) is a Euclidean function, for any finite set {ty,ta,...,t,} C R%.

Proof: L(ty,t2,...,1,) equals to the sum of all branch lengths of the clock tree. For each

branch 557, the length is the Manhattan distance ||s;, s;||. It is trivial to check that ||s;, s;]|

satisfies the above two properties. If all coordinates are scaled by a positive real a, L will

also be scaled by a. Also, if all coordinates are shifted by the same distance specified by g

(to € R?), L remains the same. So, L is a Euclidean function. O
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In the following, we define a special kind of functions called subadditive function. Let
{Q; : 1 < ¢ < m?} be a partition of a unit region [0,1]? into smaller subregions with
boundaries parallel to the coordinate axle, such that the boundary of a smaller region has
the length of 1/m. A function L is called subadditive function if it satisfies the following
subadditivity property. Given a positive integer m, there is a C' > 0, such that

m2

L({t1,ta, .., tn} N[0,1]%) <> L({t1, tas .., 1} N Qi) + Cm (6.1)
=1
In (6.1), the item {ty,ts,...,t,} N[0, 1]* represents the subset of sinks of {ty,t,...,,}
which are located inside region [0,1]%, and the item {ty,%2,...,%,} N Q; denotes the subset
of sinks of {t,s,...,1,} which are located in a subregion Q; (1 <1 < m?).
Lemma 6: L(t1,t2,...,1,) is a subadditive function, if {t1,%3,...,t,} are independent and
uniformly distributed in [0,1]?.

Figure 6.2: Clock tree Traversing procedure. Clock sinks are distributed in the
region [0, 1]?, and o is the clock source located at the center of the region.

Proof: Suppose that sinks are independent and uniformly distributed in region [0,1]?.
Assume the clock source is located at the center of [0, 1]? (See Figure 6.2(a)). We describe
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a hierarchical clock tree traversing procedure to sum up the total wire length of the clock
tree. Note that the clock tree is actually obtained by the clock routing algorithm based
on the max-min rules, assuming that numerous clock sinks are distributed independently
and uniformly in region [0,1]%. In the first level, [0,1]? is partitioned into four subregions
with boundary length 1/2, and the clock source is extended to centers ¢y 1,¢1,2,¢1,3 and
¢1 4 of the four subregions (see Figure 6.2(b)). The total wire length of these four branches
from clock source to ¢y 1, ¢1,2,¢1,3 and ¢q 4 is 4%. Shown in Figure 6.2(c), the tree traversing
continues by extending the center of the current region to centers of its subregions, and
every subregion can be further partitioned into four smaller regions. Note that the tree is
extended from c;; to ¢z 3 and ¢34 with two branches, for example, because of the planar
requirement. In the second level of tree traverse as shown in Figure 6.2(c), the total length
of new branches, except for branches shown in Figure 6.2(b),is 4-5 - 2% In the third level
of tree traverse as shown in Figure 6.2(d), the total length of new branches, except for
branches shown in Figure 6.2(c), is less than 4?6 5. Note that six branches are extended
from ¢y 3 and ¢y 4 to centers of four smaller subregions as shown in Figure 6.2(d). Suppose
that [0, 1]% is partitioned into m? regions. Each region @; (1 < i < m?) has the boundary
length of 1/m. Let s be the total levels of region partition in the above procedure. We have
s = logm. The total wire length of tree branches which are extended from the clock source
to centers of m?2 small subregions is thus less than 4% +4-5. 21—2 +4%.6. 2% +4%.6- 2% 4. <

ZZ;}% = 30783 % 2%, Let L; be the wire length of the clock tree inside region Q;. Let
w1 L; be the total wire length of tree branches inside those small subregions. We obtain
the upper bound of L:

m2 s—1 m2
LY Li+ > 3428 =>"Li+3(m—1) (6.2)
=1 k=0 =1

Based on (6.2), we have

m2
L<Y Li+3m (6.3)
=1
which satisfies the subadditivity property as stated in (6.1). O
The next Lemma 7 is presented in [17] which improved the theory in [19]. Lemma 7 is

based on a weakening of subadditivity property [17]. For m = 2 or m = 3, there exists a
constant (', such that

m2

L({t1,tas -ty N[0, 1]%) <> L({t1,tas .. st} N Qi) + C1 (6.4)

=1

Lemma 7: Assume L is a nontrivial, subadditive, Fuclidean functional on space R® (d is
the dimension). Set ay = C1/(2971 —1). Set a; = a + d2%'ay, where a = L(t) for any
variable t. Then for each non-empty finite subset ' of [0,1]% with n elements, we have

L(F) < agnt®=1/d (6.5)

In our case of (6.3), for m = 2, we have Cy = 6. a = L(t) is the length of clock tree
which has only one terminal ¢ in [0,1]%. @ < 1 since we connect this clock terminal directly
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with the source. The clock routing is performed on a plane R?, that is d = 2. So, (6.5) can
be rewritten as

L(F) < a1v/n (6.6)

where a1 = a +4a; =a+4C1 = a+24 (0 < a < 1),is a positive constant.
Based on the above lemmas 4 — 7 and (6.6), we have

Theorem 3: The asymptotic bound is O(y/n) for the total wire length of the clock tree with
n sinks which are independent and uniformly distributed, in probability, in [0, 1]2.

7 Sizing Widths of Clock Tree

The final objective of routing the clock net is to achieve zero skew and minimal phase
delay of the clock waveforms at clock terminals. The planar clock tree with the equal
and minimal path length is a good initial clock topology. This topology can be further
improved with respect to clock skew by optimizing the branch widths. To achieve delay
balance, instead of making the faster path slower by enlonging branches as in [22], we make
slower paths faster by sizing. During the sizing, the clock topology is well maintained.

In this paper, we assume that the clock tree behaves as a RC tree with a source at the
root. The planar equal path length clock tree is implemented on the same metal layer, such
that all the RC parameters are the same and vias are eliminated. The source is driven by
a set of transistors. Each clock branch is a RC line. For branch b;, we have: r; = r4l;/w;,
¢; = cslyw;, where [; is the length and w; is the width of the branch b;. r; is the sheet
resistance with the unit /0, and ¢ is the capacitance of the unit area with the unit
pf/um?. We use the 7 circuit to model a RC line (see Figure 7.1(b)). Each clock pin
functions as a load capacitance cx(see 7.1(c)). Note that clock pins are allowed to have
different load capacitances.

Figure 7.1: (a)a RC line. (b) m-equivalent circuit of a RC line. (c) load capacitance
of a terminal.

We size the branches of the clock tree in a bottom up order of starting from clock
terminals. The similar algorithm is proposed in [22]. However, instead of the branch
lengths [22], we take the branch widths as variables. First, we state the sizing algorithm
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for a binary clock tree. At the end of this section, we will show that the algorithm can be
applied on a general clock tree with arbitrary node degree.

One recursive step is performed on two sibling branches with the same parent node in
the clock tree. As shown in Figure 7.2(a), ng is the parent node with two children n; and ns.
Node nq is the root of subtree ST(ny), and ng is the root of subtree ST (n3). mony and Tgng
are two sibling branches. The equivalent RC circuit of these two sibling branches is shown
in Figure 7.2(b). 71 and ¢; are the resistance and capacitance of the branch mgny, and 7y
and ¢y the resistance and capacitance of branch mgny. €4 is the sum of total capacitance
of all branches and terminals in ST(nq). D; is the time delay from ny to leaf nodes in
ST(nq). If ny is a leaf node (terminal), Dy is zero and C equals to the load capacitance of
the terminal. Cy and Dy are defined similarly for S7T'(n3).

Figure 7.2: (a) mgny and Tigng are two sibling branches of the clock tree. Node ng
is the parent node of ny and ng. S7T(ny) denotes the subtree rooted at node nq,
and ST(ny) denotes the subtree rooted at node ny. (b) The 7-RC circuit of two

sibling branches mgny and ngns.

Assume that ST'(ny) and ST(ny) have achieved equal path delays by sizing the widths.
Based on Elmore delay, to achieve the equal path delay from ng to leaf nodes in both
subtrees in Figure 7.2(b), we have:

7‘1(%+Cl)—|—D1 =T2(62—2+02)+D2 (7.1)

We specify that 7y = rgly/wy, ¢4 = eslywy, and 1y = r5ly/we, ¢g = cslows, where Iy, wy are
the length and width of branch mgny, and [y, wy are the length and width of branch mgms.
Note that wy and wy are variables. Substituting the above r, ¢ values into (7.1), we get:

Ts5Cs Ts5Cs

2 2
Let 2y = w%, Ty = w%, and 0 = &2 (14% — %) + (Dy — D3). (7.2) is rewritten as:

I + Dy (7.2)

1 1
rsliCh1— + L2+ Dy = rylyCo— +
w1y w3

2

0
1202$2 = 1101$1 + 7‘_ (73)

S
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We thus obtain:

1 0
Ty = m(1101$1 + 7‘_5) (74)
or
1 0
= — 0y — — 7.5
L1 1101( 2282 7‘5) (7.5)

We first specify wy as the normal width. then obtain wy based on (7.4), where xq, 2, are
inverses of wy,wy. If wy is less than the normal width, we have to assign ws as the normal
width, and get wq based on (7.5). Let Cy denote the sum of total capacitances in the subtree
rooted at mg, and Dy denotes the path delay from ng to leaf nodes in the subtree. Note
that the subtree rooted at ng has zero skew after we adjust the widths of myn; and 7gns.

We have:
Co=C1+ Cy+ cs(lhwy + laws) (7.6)

1l cgliw
Do = Dy + _1(#

SO (7.7)

We apply the above sizing step on every pair of sibling branches, by starting from leaf
nodes (terminals) and then recursively going through the clock tree. The algorithm of
recursive clock tree sizing is described in the following pseudo-code.

Recursive clock tree sizing algorithm based on Elmore delay
Input: a clock tree T with a source s and a set of terminals (sinks);

Output: a clock tree with variable branch widths.

Procedure ClockTreeSizing(T', technology file){
ng = the child of source s, by = the branch connecting ng and s;

Do = the delay from ng to leaf nodes, Cy = total capacitances of the subtree rooted
at ng;

CalculateNodeDelay(ng, Co, Do);
Assign by a large width specified by users.

Procedure CalculateNodeDelay(ng, Co, Do) {

if (ng is a terminal #j)
Do =0, Co = cx;

else {
n1, Mo = two children of ng;
CalculateNodeDelay(ny, Cq, Dy
CalculateNodeDelay(nz, Cq, D
0= TSQCS(hQ — %) + (D1 — Da);

wy = normal width, z1 = w%;

);
).

9
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_ 1 4 _ .
Ty = m(hcﬁl + E)v wy = =

z3?
if (wy < normal width) {
wy = normal width, z9 = w%;
1 4 1.
w1 = 5 (LChry — 7)), w1 = £

}
Dy=D; + %lll(c—léﬂ + Cq), Co = C1 4+ Co + cs(lywr + lawz);

}

Source s in the algorithm is assumed to have only one child ng. bg is the branch which is
connected to s. The width of by has no effect on the skew based on Elmore delay. But we
still prefer to assign by a large width to minimize the path delay. The width of by is usually
larger than other branches and is specified by users in the real design. If s has two children,
we can take ng = s and by = null.

This sizing method can also be applied on the general clock tree with nodes which may
have more than two children. As in Figure 7.2(a), we assume ng has a set of children nodes
{n1,n2,...,nm}(m > 2). r; and ¢; are the resistance and capacitance of the branch mgn;
(1 <i<m). Let ST(n;) be the subtree rooted at n;. C; is the sum of total capacitance of
all branches and terminals in S7T'(n;). D; is the time delay from n; to leaf nodes in ST'(n;).
Assume that ST(nqy), ST(n2), ..., ST(n,,) have achieved equal path delays by sizing the
widths. Similar to equation (7.1), to achieve the equal path delay from ng to leaf nodes in
all subtrees, we have:

7‘1(%+C1)+D1 27‘2(62—2+02)+D2 (7.8)

7‘1(%+C1)+D1 = 7‘3(62—3+C3)+D3

rl(% + )+ Dy = rm(%m +C) + Dy

where 7, = rgl;/w;, and ¢; = c¢slyw;. 1, w; are the length and width of branch 7gm;
(1 <i<m). Let 2y = w%, Ty = 5os s and z,, = ﬁ We define that 8, = 7’52%(112 -

122) + (D1 — DQ), 0s = TSQCS (112 — 132) + (D1 — Dg), ey and 0, = TSQCS (112 — lm2) + (D1 — Dm)

Similar to (7.3), we can rewrite (7.8) as

0

1202$2 = 1101$1 + 7‘_2 (79)
05

[3C323 = [1Chaq + -

O,
lmcmwm = 1101$1 + 7‘_

If we specify the width of one of branches {mgny, gng, . . ., oM., §, based on (7.9), we can
obtain the widths of other branches, achieving the zero skew from ng to leaf nodes in its
subtree.
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8 Experimental Results

The planar clock routing algorithm has been implemented in ANSI C with a MOTIF /X-
window user interface. Several examples, including industrial benchmarks, have been tested
and the results are promising.

Table 1 highlights the comparison on two MCNC benchmarks among MMM [13], RGM
[14] and our algorithm. The criterions compared are: planarity, path length skew, longest
path length, total wire length, and running time. The MMM algorithm has not achieved
an equal path length clock tree because of the non-zero skew of path lengths. Compared
with the RGM algorithm, our algorithm decreases the path length by 24.5% on Primaryl
and 19.6% on Primary2. The path length is a first order indication of phase-delay and
attenuation from the clock source to terminals. Using our algorithm, the total length of
the clock tree increases by 19.0% on Primaryl and 19.8% on Primary2. This extra length
is a result of maintaining the planarity of the tree. The running time of our algorithm on
Primary2, which has more than 600 terminals, is only 1/3 the time required by the RGM
algorithm. This speed-up is due to the divide-and-conquer nature of our algorithm. Figure
8.1 shows two planar clock trees generated from Primaryl. Figures 8.1(a) and 8.1(b) show,
respectively, the clock trees resulting from choosing a source on the edge of the instance and
at the center of the instance. Qur algorithm also constructs a planar clock tree with equal
path length for Primary2 (see Figure 8.2), while the RGM algorithm produces a non-planar
tree with many overlaps (see Figure 8.3). The other previous algorithms obtain similar
non-planar trees [13, 22, 6]. The nonplanar clock tree must employ two or more routing
layers to finish physical embedding, such that worsening the clock skew and source-sink
path delay because of electrical parameter variations of different layers and vias.

Primaryl Primary?2
MMM | RGM | Our Algorithm || MMM | RGM | Our Algorithm
Planarity No No Yes No No Yes
Path Length Skew 0.29 0.00 0.00 0.74 0.00 0.00
Longest Path Length | 7.24 7.51 6.03 13.05 | 11.58 | 9.96
Total length 161.7 153.9 | 190.1 406.3 | 376.7 | 469.9
Time (sec) 2.6 54.9 38.5 20.2 397.1 | 144.2

Table 8.1: Statistics of different clock routing algorithms on two benchmarks.
Primaryl has 269 clock terminals and Primary2 has 603 clock terminals. CPU
time is measured on SUN (Sparc 1+) Workstation.

As shown in Figure 8.4(a), we apply the sizing algorithm in Section 7 on a clock tree
of five terminals with equal path lengths from the source s. Initially, the clock tree has a
uniform width 2 pm. By using the above sizing algorithm, branch widths of the clock tree
are shown in 8.4(b). We assume the clock tree is implemented on metal two with 1 um
feature size and take r, = 27 mQ/0 and ¢, = 0.017 x 1072 pf. Every branch b; is assigned
a 2-tuple {l;,w;}, where [; is the length of b; and w; the width. Both are in the unit of
pm. Starting from five leaf nodes (terminals) which have the same load capacitance 0.8 pf.
we obtain the branch widths by applying the recursive sizing algorithm (see Figure 8.4(b)).
Note that we assign a large width 20 um on the trunk which is directly connected from
the source s to reduce the path delay. We used SPICE to simulate the equivalent 7 — RC
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(b)

Figure 8.1: Planar clock tree with equal path length on Primaryl benchmark. (a)
clock source is inside the chip/module. (b) clock source is on the frame of the
chip/module.

Figure 8.2: Planar clock tree with equal path length on Primary2 benchmark.
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Figure 8.3: Clock tree of RGM algorithm on Primary2 benchmark. (figure copy
of [2])

circuit of the planar equal path length clock tree shown in Figure 8.4. Simulation results
are shown in Figure 8.5, where the horizontal axis indicates the time with the unit of 107%
s and the vertical axis shows the voltages at clock terminals. Shown in Figure 8.5(a), the
waveforms have a skew of 0.21 ns, where we assign identical width 2um on the clock tree.
After sizing the clock tree with varible widths shown in Figure 12(b), we reduce the clock
skew to 0.09 ns. The final clock waveforms are shown in Figure 8.5(b). As the result, the
maximum path delay from the source to terminals is also decreased from 0.34 ns to 0.14 ns.

Figure 8.4: (a) Planar clock tree with equal path length with five terminals. Each
terminal has the same load capacitance 0.8 pf. (b) The sizing result of the clock
tree. Each edge b; has a 2-tuple {l;, w;}, where [; is the length of b; and w; is the
width assigned to b;.
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(b)

Figure 8.5: Waveforms at five terminals in a planar clock tree with equal path-
length as shown in Figure 15. (a) We assign the identical width 2 pm on the clock
tree. (b) We size the clock tree with variable widths as shown in Figure 15(b).

9 Concluding Remarks

This paper presents a new algorithm to construct a planar clock tree based on hier-
archical max-min optimization. We have proved that the algorithm guarantees a planar
equal path length clock tree rooted directly at the source, such that the path length from
the source to terminals is minimized. A planar clock tree may be implemented on a single
metal layer. Since it is easier to achieve uniform electrical parameters on a single layer than
when switching layers, it is easier to adjust a planar clock tree for zero skew and minimal
path delay. Planar clock routing becomes feasible when more layers are available.

The planar equal path length Steiner tree problem is a valuable problem in the field of
computational geometry. In addition to routing clock nets, some other nets with special
synchronization requirements, may benefit from such a tree.

The algorithm can also be applied to construct an equal path length Steiner tree on
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FPuclidean space. We only need to use Euclidean distance instead of Manhattan distance in
the algorithm to measure the balance distance of a sink. Theorem 1 and Theorem 2 still
hold in the case of using the algorithm on FEuclidean space. Lemma 1 is true according to
Max rule no matter of Euclidean distance or Manhattan distance. Lemma 2 follows that
constraint (2) is well known for three side lengths of a triangle on Euclidean space. Lemma 3
is proved only based on Max-Min rules and Lemma 1, Lemma 2, no matter what Euclidean
distance or Manhattan distance is used to measure the balance distance. So, Theorem 1 and
Theorem 2 are naturally achieved because three preceding lemmas are correct on Euclidean
space.

Equal path-length is the first order indication of balanced path delay from the source to
every clock terminal. We further obtain zero skew on Elmore delay by sizing the planar equal
path length clock tree while maintaining the planarity of the clock tree. Some preliminary
results are promising which achieve near zero skew by using SPICE simulation.
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