
Stochastic Context-Free Grammarsfor Modeling RNAYasubumi Sakakibaray, Michael Browny,Rebecca C. Underwoody, I. Saira Mianx,David HaussleryUCSC-CRL-93-16June 8, 1993y Computer and Information Sciencesx Sinsheimer LaboratoriesUniversity of California, Santa Cruz, CA 95064, USA.email: haussler@cse.ucsc.eduabstractStochastic context-free grammars (SCFGs) are applied to the problems of folding, align-ing and modeling families of homologous RNA sequences. These models capture the com-mon primary and secondary structure of the sequences with a context-free grammar, muchlike those used to de�ne the syntax of programming languages. SCFGs generalize the hiddenMarkovmodels used in related work on protein and DNA sequences. The novel aspect of thiswork is that the SCFGs developed here are learned automatically from initially unalignedand unfolded training sequences. To do this, a new generalization of the forward-backwardalgorithm, commonly used to train hidden Markov models, is introduced. This algorithmis based on tree grammars, and is more e�cient than the inside-outside algorithm, whichwas previously proposed to train SCFGs. This method is tested on the family of transferRNA (tRNA) sequences. The results show that the model is able to reliably discriminatetRNA sequences from other RNA sequences of similar length, that it can reliably determinethe secondary structure of new tRNA sequences, and that it can produce accurate multiplealignments of large collections of tRNA sequences. The model is also extended to handleintrons present in tRNA genes.Keywords: Stochastic Context-Free Grammar, RNA, Transfer RNA, Multiple SequenceAlignments, Database Searching.

1. Introduction 11 IntroductionAttempts to understand the folding, structure, function and evolution of molecules has resultedin the conuence of many diverse disciplines ranging from structural biology and chemistry, throughcomputer science and computational linguistics. Rapid generation of sequence data in recentyears thus provides abundant opportunities for developing of new approaches to problems incomputational biology such as Hidden Markov Models (HMMs) [Rab89, HKMS93, KBM+92,BCHM93, CS92]. In this paper, we apply stochastic context-free grammars (SCFGs) to the problemsof statistical modeling, database searching, multiple alignment, and prediction of the secondarystructure of RNA families. This approach is highly related to our previous work on modelingprotein families with HMMs [HKMS93, KBM+92].RNA is mostly involved in the biological machinery that expresses the genetic information fromDNA to protein. Information is encoded in RNA by the linear arrangement of the four di�erentconstituent nucleotides (the primary structure). The individual nucleotides, adenine (A), cytosine(C), guanine (G) and uracil (U), interact in speci�c ways to form characteristic secondary structuremotifs such as helices, loops and bulges. Further folding and hydrogen-bonding interactions betweenremote regions orient these secondary structure elements with respect to each other to form thefunctional system. Higher order interactions with other proteins and/or nucleic acids may alsooccur. In general, however, the folding of an RNA chain into a functional molecule is largelygoverned by the formation of intramolecular A-U and G-C Watson-Crick pairs as well as G-U basepairs.Comparative analyses of two or more protein or nucleic acid sequences have been used widelyin the detection and evaluation of biological similarities and evolutionary relationships. Severalmethods of producing these multiple sequence alignments have been developed, most based ondynamic programming techniques (see for example [Wat89]). However, when RNA sequences areto be aligned, both the primary and secondary structure need to be taken into consideration sincethe generation of a multiple sequence alignment and an analysis of folding are not mutually exclusiveexercises. Thus, the elucidation of common folding patterns among two or more sequences mayindicate the pertinent regions to be aligned and vice versa [San85].Currently, there are two principal methods for predicting the secondary structure of RNA.Phylogenetic analysis for homologous RNA molecules relies upon alignment and subsequent foldingof several sequences into similar structures (reviewed in [JOP89, WGGN83]). In contrast, energyminimization is dependent upon thermodynamic parameters and computer algorithms to evaluatethe optimal and suboptimal free energy folding of an RNA species (reviewed in [JTZ90, ZS84]).Our method of multiple alignment and folding di�ers quite markedly from the conventionaltechniques. Essentially, our method builds a statistical model during the process of multiplealignment and folding analysis, rather than leaving this as a separate task to be done after thealignment and folding are completed. In our previous studies [HKMS93, KBM+92], this approachhas been successfully applied to modeling protein families with HMMs.Although in principle HMMs could be used for RNA, we strongly suspect that the moregeneral statistical models described below will be required to obtain useful results. Since basepairing interactions, most notably A-U, G-C and G-U, play such a dominant role in determining RNAstructure and function, any statistical method that does not consider this will eventually encounterinsurmountable problems. The problem is that if two positions are base paired in the typical RNA,

2 1. Introductionthen the bases occurring at these two positions will be highly correlated, whereas they are treatedas having independent distributions in the standard HMM approach. Such base pairs constituteso-called biological palindromes in the genome. We have found a way to generalize HMMs to modelmost of these interactions seen in RNA.The essence of the idea can be expressed most clearly in terms of formal language theory. As inthe work of Searls [Sea92], we can view the strings of characters representing pieces of DNA, RNAand protein as sentences derived from a formal grammar. The simplest kind of grammar is a regulargrammar, in which strings are derived from productions (rewriting rules) of the form S ! aS orS ! a, where S is a nonterminal symbol that does not appear in the �nal string, and a is a terminalsymbol, which will appear as a letter in the �nal string. Searls has shown base pairing in RNA canbe described by a context-free grammar (CFG), a more powerful class of formal grammars thanthe regular grammar (see Section 2.1 for an example). A CFG is similar to a regular grammarbut permits a greater range of productions, such as those of the form S ! SS and S ! aSa.As is beautifully described by Searls, it is precisely these additional types of production that areneeded to describe the base pairing structure in RNA1 [Sea92]. In particular, the productions ofthe forms S ! A S U, S ! U S A, S ! G S C, and S ! C S G describe the structure in RNA dueto Watson-Crick base pairing. Using productions of this type, a CFG can specify the language ofbiological palindromes.If we specify a probability for each production in a grammar, we obtain a stochastic grammar.A stochastic grammar assigns a probability to each string it derives. Stochastic regular grammarsare exactly equivalent to HMMs. This provides an alternate way of examining HMMs and suggestsan interesting generalization from HMMs to stochastic context-free grammars (SCFGs) [Bak79].In this paper, we pursue a stochastic model of the family of transfer RNAs (tRNAs) by using aSCFG that is similar to our previous protein HMMs [KBM+92] but which additionally incorporatesbase pairing information. A SCFG that forms a statistical model of tRNA sequences can be builtin much the same way as our construction of an HMM representing a statistical model of the globinprotein family. We use such a model to search a database for tRNA-like sequences and to obtaina multiple alignment in the same manner as for globins. We also use the model to fold unfoldedtRNA sequences, i.e., to determine the base pairing that de�nes their secondary structure.First, in order to see how well the SCFG can model families of RNA sequences, especially theircommon primary and secondary structure, we derive a SCFG directly from an existing alignmentof tRNA sequences. We then repeat this experiment, but this time we attempt to \learn" theparameters entirely automatically from a set of unaligned primary sequences. To do this, weintroduce a new generalization of the forward-backward algorithm, commonly used to train HMMs.Our algorithm is based on tree grammars, and is more e�cient than the inside-outside algorithm[LY90], a computationally expensive generalization of the forward-backward algorithm developedby J. K. Baker to train SCFGs [Bak79]. Thus we derive two grammars: the alignment grammar,directly derived from an existing multiple alignment of tRNAs, and the trained grammar, deducedby our training algorithm from a training set of tRNA sequences. For our training set, we chose500 sequences at random from 1477 tRNA sequences in EMBL Data Library's database. These1Not all RNA structure can be described by CFGs but we believe they can account for enough to make usefulmodels. In particular, CFGs cannot account for pseudoknots, structures generated when a single-stranded loop regionforms standard Watson-Crick base pairs with a complementary sequence outside the loop.

2. Methods 3training sequences are unfolded and unaligned. We withhold the remaining 977 sequences in orderto test the trained grammar on data not used in the training process.We compare the two grammars by evaluating their abilities to perform three tasks: to discrimi-nate tRNA sequences from non-tRNA sequences, to produce multiple alignments, and to ascertainthe secondary structure of new sequences. The results show that both grammars can perfectlydiscriminate tRNA sequences from other RNA sequences of similar length, can produce accuratemultiple alignments of large collections of tRNA sequences, and can reliably determine the sec-ondary structure of new tRNA sequences.Surprisingly, the trained grammar can discriminate more reliably than the alignment grammarbecause the trained grammar exhibits a greater gap between Z-scores of tRNAs and non-tRNAs.This is unexpected because the trained grammar is obtained using only 500 tRNA training se-quences, while the alignment grammar is obtained using all 1477 aligned tRNA sequences (includingfolding information).Genes for tRNA often possess introns, regions that are excised out during formation of themature tRNA molecule, i.e., the DNA sequence coding for a particular tRNA contains additionalnucleotides that are not present in the RNA that folds to form the �nal structure. This meansthat when we search databank �les that represent genomic sequences (such as those in GenBank),the grammar needs to be extended to handle this situation in order to correctly identify tRNAs.A useful advantage of SCFGs is that an intron grammar can be deduced separately from the plaintRNA grammar and these two separate grammars can then be combined into a single grammar.In a preliminary experiment, we use 55 sequences of introns for training a (sub)grammar to modelintrons, and combine two trained grammars for introns and intron-free tRNAs into a single grammarmodeling tRNAs with introns. We test the grammar on the same 55 tRNA sequences with introns,and the grammar correctly identi�es the positions of introns and the introns themselves in 80% ofthese sequences. Further work, using separate training and testing sets of larger size, is underway.2 Methods2.1 Context-free grammars as models of RNAThe context-free grammar (CFG) is a more powerful class of formal grammars than the regulargrammar and is often used to de�ne the syntax of programming languages. An example CFG thatgenerates a particular set of RNA sequences is shown in Figure 2.1. We will use it to describeCFGs. See Searls [Sea92] for a more comprehensive explanation.A formal grammar is a set of productions (rewriting rules) that are used to generate a setof strings, that is, a language. The productions are applied iteratively to generate a string, aprocess called derivation. For example, the grammar in Figure 2.1 generates the RNA sequenceCAUCAGGGAAGAUCUCUUG by the following derivation: Beginning with the start symbol S0, anyproduction with S0 left of the arrow can be chosen to replace S0. If the production S0 ! S1is selected (in this case, this is the only production available), the e�ect is to replace S0 withthe symbol S1. This one derivation step is written S0) S1, where the double arrow signi�esapplication of a production. Next, if the production S1 ! C S2 G is selected, the derivation stepis S1) C S2 G. Continuing with similar derivation operations, each time choosing a nonterminal

4 2. MethodsProductions P = f S0 ! S1; S7 ! G S8;S1 ! C S2 G; S8 ! G;S1 ! A S2 U; S8 ! U;S2 ! A S3 U; S9 ! A S10 U;S3 ! S4 S9; S10 ! C S10 G;S4 ! U S5 A; S10 ! G S11 C;S5 ! C S6 G; S11 ! A S12 U;S6 ! A S7; S12 ! U S13;S7 ! U S7; S13 ! C gFigure 2.1: This set of productions generates RNA sequences with a certain restrictedstructure. An example of this structure is shown in Figure 2.2. The symbols S0; S1; : : : ; S13are nonterminals and A, U, G, C are terminals representing the four nucleotides.symbol and replacing it with the right hand side of an appropriate production, we obtain thefollowing derivation terminating with the desired sequence:S0) S1) CS2G) CAS3UG) CAS4S9UG) CAUS5AS9UG) CAUCS6GAS9UG) CAUCAS7GAS9UG) CAUCAGS8GAS9UG) CAUCAGGGAS9UG) CAUCAGGGAAS10UUG) CAUCAGGGAAGS11CUUG) CAUCAGGGAAGAS12UCUUG) CAUCAGGGAAGAUS13UCUUG) CAUCAGGGAAGAUCUCUUG:Formally, a context-free grammar consists of a set of nonterminal symbolsN , a terminal alphabet�, a set P of productions (rewriting rules), and the start symbol S0. For a nonempty set X ofsymbols, let X� denote the set of all �nite strings of symbols in X . Every CFG production hasthe form S ! � where S 2 N and � 2 (N [�)�. That is, the left-hand side consists of onenonterminal and there is no restriction on the number or placement of nonterminals and terminalson the right-hand side. The production S ! � means that the nonterminal S can be replaced bythe string �. If S ! � is a production of P , then for any strings and � in (N [�)�, we de�neS�) �� and we say that S� directly derives �� in G. We say � can be derived from �,denoted � �) �, if there exists a sequence of direct derivations �0) �1, �1) �2, : : : , �n�1) �nwhere �0 = �, �n = �, �i 2 (N [�)�, and n � 0. Such a sequence is called a derivation. Thusa derivation corresponds to an order of applying productions to generate a string. The languagegenerated by the grammar is the set of all terminal strings w that can be derived from the grammar,that is, the language fw 2 �� j S0 �) wg.Our work in modeling RNA uses only productions of the following forms: S ! SS, S ! aSa,S ! aS, S ! S, or S ! a, where S is a nonterminal and a is a terminal. Productions may have oneof the following forms: S ! aSa, used to describe the base-pairing in RNA; S ! aS and S ! a,used to describe a loop of unpaired bases; S ! SS, used to describe the branched secondarystructure; and S ! S, (called skip productions), used in the context of multiple alignments, asdescribed below.A derivation can be arranged in a tree structure, called a parse tree. A parse tree representsthe syntactic structure of an RNA sequence given by the grammar, and hence reects the actual

2. Methods 5physical secondary structure. Figure 2.2 shows the derivation arranged in a parse tree reectingthe physical secondary structure.
C A U C A GAAGGG UA C U C U U G

1S

S

S

4S 9S

5S

6

7S

8S

S

10S

11
S

12S

13S

S 0

2

3

U
U

C

U

C

A

G

C

G

G

A

G

U

C G

A U

S

S

S1

S

S5

4

6S

S
S8

S

S9

7

S11

S
13S12

10

3

A

A

0S

2Figure 2.2: For the RNA sequence CAUCAGGGAAGAUCUCUUG, the grammar depicted inFigure 2.1 gives a parse tree (left) that reects corresponding secondary structure (right).As in the HMM of [KBM+92], we distinguish two di�erent types of nonterminals: match nonter-minals and insert nonterminals. The match nonterminals in a grammar correspond to importantstructural positions in an RNA or columns in a multiple alignment with few - (gap) characters.These constitute the main line of the grammar. Insert nonterminals generate nucleotides in exactlythe same way as the match nonterminals, but use di�erent distributions. These are used to insertextra nucleotides between important positions that correspond to columns in a multiple alignment.Skip productions are used to skip a match nonterminal, so that no nucleotide appears at thatposition in a multiple alignment.2.2 Stochastic context-free grammarsIn a stochastic context-free grammar (SCFG), every production for a nonterminal S has anassociated probability value, such that a probability distribution exists over the set of productionsfor S. We denote the associated probability for a production S ! � by P(S ! �). (Any productionwith the nonterminal S on the left-hand side is called \a production for S.")An SCFG, G, generates sequences and assigns a probability to each generated sequence, andhence de�nes a probability distribution on the set of sequences. The probability of a parse tree canbe calculated as the product of the probabilities of the productions used to generate the sequence.The probability of a sequence s is the sum of probabilities over all possible parse trees or derivationsthat could generate s, written as follows:Prob(s j G) = Xall derivations (or parse trees) dProb(S0 d) s j G)= X�1; ::: ;�n Prob(S0) �1 j G) � Prob(�1) �2 j G) � � � � � Prob(�n) s j G)

6 2. MethodsE�ciently computing this quantity, Prob(s j G), presents a problem because the number of possibleparse trees for s is exponential in the length of the sequence. However, a dynamic programmingtechnique analogous to the Cocke-Kasami-Young or Early methods [AU72] for non-stochasticCFGs can accomplish this task e�ciently (in time proportional to the cube of the length of s).We de�ne the negative logarithm of the probability of a sequence given by the grammar, i.e.,� log(Prob(s j G)), as the negative log likelihood (NLL)-score of the sequence. This quanti�es howwell the sequence s �ts the grammar.Since CFGs generally have an ambiguity in that the grammar gives more than one parse treefor a sequence, and alternative parse trees reect alternative secondary structures (foldings), agrammar often gives several possible secondary structures for one RNA sequence. An advantageof a SCFG is that it can provide the most likely parse tree from this set of possibilities. If thegrammar and the probabilities are carefully designed, the correct secondary structure will appearas the most likely parse tree among the alternatives. As discussed in Section 3.3, the most likelyparse tree given by the trained grammar we produce for tRNAs gives exactly the correct secondarystructures for the tRNA sequences we test.We can compute the most likely parse tree e�ciently using a variant of the above procedure forcalculating Prob(s j G). To obtain the most likely parse tree for the sequence s, we calculatemaxparse trees dProb(S0 d) s j G):The dynamic programming procedure to do this resembles the Viterbi algorithm for HMMs [Rab89].We can also use this procedure to obtain our multiple alignments: the grammar aligns each sequenceby �nding the most likely parse tree, after which the mutual alignment of the sequences amongthemselves is determined.2.3 Estimating SCFGs from sequencesSearls [Sea92] argues the bene�ts of using context-free grammars as models for RNA folding,but does not discuss methods for estimating the grammar from training sequences. One purposeof this paper is to provide an e�ective method for estimating a SCFG to model a family of RNAsequences.SCFGs from multiple alignmentsAll parameters in the SCFG (i.e., the production probabilities) could in principle be chosenfrom an existing alignment of RNA sequences. The method that we use to derive a SCFG froma multiple alignment estimates a distribution of four nucleotides for each column in the alignmentcorresponding to a nucleotide that is not base paired, and a distribution of 16 pairs of nucleotides foreach pair of columns corresponding to nucleotides that are base paired in the secondary structure.Essentially, this is done by counting the occurrences of each letter in a column. However, ourmethod uses Dirichlet mixture density priors for interpreting this count data to avoid statisticalproblems that arise when not enough count data are available. Details of this general method aredescribed in [BHK+93].

2. Methods 7EM training algorithmIn order to estimate the parameters of a SCFG from unaligned training RNA sequences, weintroduce a new method for training SCFGs that is a generalization of the forward-backwardalgorithm, commonly used to train HMMs. This algorithm is more e�cient than the inside-outsidealgorithm, which was previously proposed to train SCFGs.The inside-outside algorithm [LY90, Bak79] is an Expectation Maximization (EM) algorithmto reestimate the parameters (i.e., the probabilities of productions) in a SCFG. However, it hassome drawbacks when applied to practical problems: it requires the grammar to be in Chomskynormal form (a restricted form), which is possible but inconvenient for modeling RNA (and alsorequires more nonterminals). Furthermore, it takes time at least proportional to n3, whereas theforward-backward procedure for HMMs takes O(n2) time, where n is the length of the model (andthe typical training sequence). There are also a considerable number of local minima, and thispresents a problem when the initial grammar is not highly constrained.In order to avoid such problems, we have developed a di�erent method to obtain a SCFG foran RNA family like tRNA that takes only time n2, and hence may be practical on larger RNAsequences. Our new algorithm demands folded RNA as training examples, rather than unfoldedones. Thus the base pairs in each training sequence have to be identi�ed before the algorithmcan begin iteratively reestimating the grammar parameters. If such base pair information is notavailable, we can use a fancier version of the algorithm, as described in Section 2.5.This new algorithm we have developed is based on the theory of stochastic tree-grammars. Asthe name suggests, tree-grammars are used to derive labeled trees instead of strings. Labeled treescan be used to represent the secondary structure of RNA quite easily [SZ90] (see Figure 2.2). Whenworking with a tree-grammar for RNA, one is explicitly working with the secondary structure ofthe molecule. Since this structure is given explicitly in each training molecule, we no longer haveto (implicitly) sum over all possible interpretations of the secondary structure of the trainingexamples when we reestimate the grammar parameters, as must be done with the inside-outsidemethod. The new algorithm also tends to converge faster because each training example is muchmore informative.
A A G U C U

$

$

$

$

1

4

G U C

4

t = t 3 =t 3 =
3

A A U

3$

$

$

$1

3

2 2$Figure 2.3: The folded RNA sequence (AA(GUC)U) can be represented as a tree t (left),which can be broken into two parts such as t=3 (middle) and tn3 (right).To avoid unnecessary complexity, we describe this new algorithm in terms of CFGs instead oftree-grammars [TW68, Sak92]. A tree is a rooted, directed, connected acyclic �nite graph in whichthe direct successors of any node are linearly ordered from left to right. The predecessor of a node

8 2. Methodsis called the parent , the successor, a child , and a child of the parent, a sibling . A folded RNAsequence can be represented by a labeled tree t as follows. Each leaf node is labeled by one of fournucleotides fA; U; G; Cg and all internal nodes are labeled by one special symbol, say $. The sequenceof nucleotides labeled at leaf nodes traced from left to right exactly constitutes the RNA sequence,and the structure of the tree represents its folding structure. See Figure 2.3 for an example of atree representation of the folded RNA sequence (AA(GUC)U). We assume all internal nodes in t arenumbered from 1 to T (the number of internal nodes) in some order, and for an internal node n(1 � n � T), let t=n denote the subtree of t with root n (as shown in the center of Figure 2.3)and let tnn denote the tree obtained by removing a subtree t=n from t (as shown in the right ofFigure 2.3).The probability of any folded sequence t given by a SCFG G = (N;�; P; S0) is e�cientlycalculated using a dynamic programming technique, as is done with the forward algorithm inHMMs. A labeled tree t representing a folded RNA sequence has the shape of a parse tree, so toparse the folded RNA, the grammar G needs only to assign nonterminals to each internal nodeaccording to the productions. Let the quantity inn(S) de�ne the probability of the subtree t=ngiven that the nonterminal S is assigned to node n and given G, for all nonterminals S and allnodes n such that 1 � n � T . We can calculate inn(S) inductively as follows:1. Initialization: inn(X) = 1; for all leaf nodes n and all terminals X (each nucleotide).This extension of inn(S) is for the convenience of the inductive calculation of inn(S).2. Induction: inm(S) = XY1;:::;Yk2(N[�) inn1(Y1) � � � innk (Yk) � P(S ! Y1 � � � Yk);for all nonterminals S, all internal nodes m, and all m's children nodes n1; : : : ; nk.3. Termination: for the root node n and the start symbol S0,Prob(t j G) = inn(S0): (2:1)This e�ective calculation enables us to estimate the new parameters of a SCFG in time proportionalto the square of the number of nonterminals in the grammar multiplied by the total size of all thefolded training sequences. We need one more quantity, outn(S), which de�nes the probability oftnn given that the nonterminal S is assigned to node n and given G:1. Initialization: for the root node n,outn(S) = 8<: 1 for S = S0 (the start symbol),0 otherwise:2. Induction:outm(S) = XY1;:::;Yk2(N[�);S02N inn1(Y1) � � � innk(Yk) � P(S 0 ! Y1 � � � S � � � Yk) � outl(S 0);for all nonterminals S, all internal nodes l and m such that l is the parent of m, and all nodesn1; : : : ; nk such that n1; : : : ; nk are the siblings of m.

2. Methods 9Given a set of folded training sequences t(1); : : : ; t(n), we can see how well a grammar �ts themby calculating the probability that it generates them. This probability is simply a product of termsof the form given by (2.1), i.e.,Prob(sequences j G) = nYj=1Prob(t(j) j G); (2:2)where each term Prob(t(j) j G) is calculated as in Equation (2.1). The goal is to obtain a highvalue for this quantity, called the likelihood of the grammar. The maximum likelihood (ML) methodof model estimation �nds the model that maximizes the likelihood (2.2). There is no known wayto directly and e�ciently calculate the best model, i.e., the one that maximizes the likelihood.However, the general EM method, given an arbitrary starting point, �nds a local maximum byiteratively re-estimating the model such that the likelihood increases in each iteration. This methodis often used in statistics. Here we give a version of the EM method to estimate the parameters ofa SCFG from folded training RNA sequences. It proceeds as follows:1. An initial grammar is created by assigning values to the production probabilityP(S ! Y1 � � � Yk) for all S and all Y1; : : : ; Yk, where S is a nonterminal and Yi (1 � i � k)is a nonterminal or terminal. If some constraints or features present in the folded sequencesare known, these are encoded in the initial grammar. The current grammar is set to thisinitial grammar.2. Using the current grammar, the values inn(S) and outn(S) for each nonterminal S andeach node n for each folded training sequence are calculated in order to get a new estimateof the production probability, P̂(S ! Y1 � � � Yk)=Psequences t Pnodes n outm(S) � P(S ! Y1 � � � Yk) � inn1(Y1) � � � innk(Yk) = Prob(t j G)!norm ;where G is the old grammar and \norm" is the appropriate normalizing constant so thatPY1;:::;Yk P̂(S ! Y1 � � � Yk) = 1.3. A new current grammar is created by simply replacing P(S ! Y1 � � �Yk) with the re-estimatedprobability P̂(S ! Y1 � � �Yk).4. Steps 2 and 3 are repeated until the parameters of the current grammar change only insignif-icantly.2.4 Over�tting and regularizationA grammar with too many free parameters cannot be estimated well from a relatively smallset of training sequences. Attempts to estimate such a grammar will encounter the problem ofover�tting, in which the grammar �ts the training sequences very well, but gives a poor �t torelated (test) sequences that were not included in the training set. One solution is to control thee�ective number of free parameters by regularization. We calculated a regularizer from the multiplealignment of tRNA sequences and added it to the counts used for reestimating the probabilitiesof productions of the grammar in each iteration of training. Similar methods are described in[KBM+92].

10 3. Results2.5 Iterative usage of the training algorithmSince our EM training algorithm uses folded RNA as training examples, rather than unfoldedones, the base pairs in each training sequence need to be identi�ed before the EM iteration begins.If only unfolded training sequences are available, then we iteratively estimate the folding of thetraining sequences as well using the following method:1. First, we design a rough initial grammar which might represent only a portion of the basepairing interactions. This is used to parse the initial unfolded RNA training sequences toobtain a set of partially folded RNA sequences.2. Next, we estimate a SCFG using the partially folded sequences and our training algorithm toobtain a new estimated grammar. Further productions might be added to the grammar atthis stage, although we have not experimented with this possibility yet.3. Then we use the trained grammar to obtain more accurately folded training sequences andestimate a SCFG using these.4. We repeat this process until the trained grammar gives no changes to the folding.2.6 Dealing with intronsIntrons are sometimes present in tRNA genes. This means that when we search databank �les ofgenomic sequences, the sequence of the tRNA may be interrupted by non-tRNA coding nucleotides.The grammar needs to be extended to handle this situation. Introns are normally present in theanticodon stem loop (reviewed in [PG93]). We make the assumption that an intron (of whatevertype) will be present in the anticodon loop and more speci�cally within or on either side of theanticodon itself, i.e., we consider a total of �ve possible positions for introns.An extremely useful advantage of SCFGs is their modularity. We see this clearly in this case:an intron grammar can be deduced separately from the grammar for plain tRNA, then these twoseparate grammars can be combined into a single grammar simply by uniting the two sets ofindependent productions and maintaining their di�erent probability distributions.3 ResultsAs described in the previous section, we derived two grammars for tRNA sequences: thealignment grammar, directly derived from an existing multiple alignment of tRNAs, and the trainedgrammar, deduced by our algorithm from a training set of unfolded and unaligned tRNA sequences.We compared the two grammars by evaluating their abilities to perform three tasks: to discriminatetRNA sequences from non-tRNA sequences, to produce multiple alignments, and to ascertain thesecondary structure of new tRNAs.To derive the trained grammar, we designed the initial grammar by using some prior knowledgeabout the tRNA family: tRNA has four principle arms and one extra arm, and only the lengths ofthe D arm and the Extra arm vary. The initial grammar was set up with a total of 75 nonterminalsand 660 productions to derive arms of the appropriate lengths. Productions of the Type I shownFigure 3.1 are used to derive those �ve arms, productions of the Type II are used describe thebase-pairing in four principle arms, and productions of Type III and IV are used to describe aloop of unpaired bases. A uniform probability distribution was placed over each set of productions

3. Results 11Type I Type II Type III Type IVS ! SS 1.0 S ! A S A 0.05 S ! C S A 0.05 S ! A S 0.2* S ! A 0.25S ! A S G 0.05 S ! C S G 0.1 S ! G S 0.2* S ! G 0.25S ! A S C 0.05 S ! C S C 0.05 S ! C S 0.2* S ! C 0.25S ! A S U 0.1 S ! C S U 0.05 S ! U S 0.2* S ! U 0.25S ! G S A 0.05 S ! U S A 0.1 S ! S 0.2*S ! G S G 0.05 S ! U S G 0.05S ! G S C 0.1 S ! U S C 0.05S ! G S U 0.05 S ! U S U 0.05Figure 3.1: To obtain production probabilities for this initial grammar, we placed auniform distribution over each subset of same-type productions, but weighted Watson-Crick base pairs twice as heavily. Some values (*) may di�er if no skip productions areneeded. In this case, the S ! S production probability is zero, but the distributionremains uniform on the remaining productions. For simplicity, nonterminal subscriptswere omitted in this �gure.of the same type, except Watson-Crick base pairs, which were assigned higher probabilities (seeFigure 3.1). This initial grammar alone found the correct folding for 93% of our whole databaseof 1477 tRNA sequences.2 The EM method described in the previous section was then usedto re�ne this grammar using 500 training tRNA sequences. The run-time was around 10 CPUminutes on a Sun Sparcstation. During this process, only the probabilities of the productions werereestimated and no nonterminals or productions were added or deleted (unlike \model surgery" in[KBM+92]). Our future work will focus on developing some method that can automatically selecta good structure and a good length of the grammar while training.3.1 DataThe experiments used data from three sources:1. From EMBL Data Library's database produced by Mathias Sprinzl and co-workers, Bayreuth,FRG, we obtained 1477 aligned and folded complete tRNA sequences. A complete tRNA se-quence means a tRNA sequence which has the four major arms and a length between 71and 95 bases.3 Thus we included tRNAs of virus, bacteriophage, archaebacteria, eubacteria,cyanelle, chloroplast, cytoplasm, and some mitochondria, and did not include other mitochon-drial tRNAs. We changed several speci�c symbols used for representing modi�ed bases to theusual A, C, G, U symbols. Of these 1477 tRNA sequence descriptions, we selected randomly500 as training examples for deriving a grammar to model intron-free tRNA and used therest as test data.2. The Ribosomal Database Project's (RDP) [OOL+92] aligned, folded large subunit ribosomalRNA data �le LSU.aln provided primary source of non-tRNA sequences. We generated2The initial grammar was not able to �nd the correct folding for the rest (7%) of the tRNA sequences, and failedto discriminate tRNAs from non-tRNAs.3Some tRNAs are lacking some arms (e.g., mitochondrial tRNA may sometimes have only three loops). SCFGscan model such irregular tRNAs, too. However in this paper, we do not deal with this problem.

12 3. Resultsapproximately 2,400 non-tRNA sequences by cutting ribosomal RNA sequences into piecesof approximately the same lengths as tRNA sequences.3. From the National Center for Biotechnology Information's (NCBI) NewGenBank and Gen-Bank databases, we used 55 unaligned and unfolded tRNA sequences with introns of rathershort lengths (from 4 to 25). The GenBank databases also include descriptions of otherRNA besides tRNA. From these descriptions, we generated an additional 2,500 non-tRNAsequences.3.2 Discriminations of tRNAs from non-tRNAs: Database searchAs described in Section 2.2, we calculate a NLL-score for each test sequence and use it tomeasure how well the sequence �ts the grammar. This raw NLL-score depends too much on thelength of test sequence to be used directly to decide whether a sequence belongs to the familymodeled by the grammar. However, this problem can be overcome by normalizing the NLL-scoreappropriately. Details are described in [KBM+92]. Essentially, we calculate the di�erence betweenthe NLL-score of a sequence and the average NLL-score of a typical non-tRNA sequence of the samelength, measured in standard deviations. This number is called the Z-score for the sequence. Wethen choose a Z-score cuto�, and sequences with Z-scores above the cuto� are classi�ed as positiveexamples.Figure 3.2: The number of se-quences with a certain Z-scorescored by the alignment gram-mar. The test set of 977 tRNAsequences cluster around a Z-score near 7.5, while 4885 non-tRNA sequences cluster arounda Z-score near 0.
-5 0 5 10

0

50

100

150

200

250

Z-score

tRNAs

non-tRNAs

For the alignment grammar and the trained grammar, NLL-scores and Z-scores were computedfor 977 test tRNA sequences and 4885 non-tRNA sequences of length 71 to 90. For each tRNAsequence, there are �ve non-tRNA sequences of the same length. Figure 3.2 shows the Z-scorehistogram for the alignment grammar. The grammar distinguishes perfectly between tRNAs andnon-tRNAs: the lowest Z-score of tRNAs is 4.984 and the highest Z-score of non-tRNAs is 4.589.

3. Results 13Thus, choosing a Z-score cuto� between them, we can discriminate tRNA sequences from non-tRNAsequences perfectly.Surprisingly, the trained grammar was able to discriminate more reliably than the alignmentgrammar in that the trained grammar created a greater gap between Z-scores of tRNAs and non-tRNAs. NLL-scores and Z-scores made by the trained grammar are shown in Figures 3.3 and 3.4.Since the range of lengths of tRNA sequences is short, NLL-scores would be su�cient to distinguishtRNAs from non-tRNAs (while NLL-scores made by the alignment grammar did not distinguishwell). However, the Z-scores are of independent interest for statistical reasons. The lowest Z-scoreof tRNAs is 5.464 and the highest Z-score of non-tRNAs is 4.517. Thus the trained grammardistinguishes perfectly between tRNAs and non-tRNAs and more reliably than the alignmentgrammar. This is unexpected because the trained grammar is obtained using only 500 trainingsequences, so 977 test tRNA sequences are completely new for the trained grammar, while thealignment grammar is obtained using all 1477 aligned tRNA sequences.Figure 3.3: NLL-score versus se-quence length for tRNAs andnon-tRNAs. All complete tRNAsequences of length 71-90 fromthe EMBL Data Library areshown.
70 80 90

0

100

200

Length of sequences

tRNAs non-tRNAs

3.3 Multiple sequence alignmentsFrom a grammar it is possible to obtain a multiple alignment of all the sequences. The grammarcan produce the most likely parse tree for the sequences to be aligned. This gives an alignment ofall the nucleotides that align to the match nonterminals on the main line in the grammar. Betweenthe match nonterminals there might be insertions of varying lengths, but by inserting enough spacesin all the sequences to accommodate the longest insertion, an alignment is obtained. Figure 3.5shows the original alignment of 15 tRNA sequences in EMBL Data Library. Figure 3.6 shows thealignment produced by the trained grammar for the same sequences. The boundaries of the helicesand loops are the same as those in Figure 3.5. The major di�erence between the two alignments isthe extra arm, which is itself highly variable in terms of its length and sequence. Both alignment

14 3. ResultsFigure 3.4: The number of se-quences with a certain Z-scorescored by the trained grammar.Shown is the test set of 977tRNA sequences and 4885 non-tRNA sequences.
-5 0 5 10

0

50

100

150

200

250

Z-score

tRNAs

non-tRNAs

Organism | < D arm > < Anticodon arm >< Extra arm >< T arm >| Base pairings Anticodon Base pairings((((((((((()))) (((((===))))) ((((())))))))))))ACHOLEPLASMA LAID. GCCCGGGUGGUGAAAUC-GGUA-GACACGCAGGACUUAAAAUCCUGU-GGCA---UAAA----AGCCA-UGUCGGUUCAAGUCCGACCCCGGGCAARABIDOPSIS THAL. GGAUGGAUGUCUGAGC--GGUUGAAAGAGUCGGUCUUGAAAACCGAA-GUAUUU-CUAG--GAAUAC--CGGGGGUUCGAAUCCCUCUCCAUCCGBACILLUS SUBTILIS GCGGAUGUGGCGGAAUU-GGCA-GACGCGCUAGAAUCAGGCUCUAGU-GUCU---UUAC----AGACG-UGGGGGUUCAAGUCCCUUCAUCCGCABOMBYX MORI GCCCGGCUAGCUCAGUC-GGU--AGAGCAUGAGACUCUUAAUCUCAGG-------------------GUCGUGGGUUCGAGCCCCACGUUGGGCGBRASSICA NAPUS GGGUGUAUAGCUCAGUU-GGU--AGAGCAUUGGGCUUUUAACCUAAUG-------------------GUCGCAGGUUCAAGUCCUGCUAUACCCADICTYOSTELIUM DIS. GACAUCGUAGCAAAGU--GGUCUAAUGCGUCUGACUAGAAAUCAGAU-CCCU---UC------GGGGG-CGCAGGUUCGAACCCUGCCGAUGUCGE.COLI GCCGAGGUGGUGGAAUU-GGUA-GACACGCUACCUUGAGGUGGUAGU-GCCC---AAUA----GGGCU-UACGGGUUCAAGUCCCGUCCUCGGUAE.COLI GCGAAGGUGGCGGAAUU-GGUA-GACGCGCUAGCUUCAGGUGUUAGU-GUCC---UUAC----GGACG-UGGGGGUUCAAGUCCCCCCCCUCGCAE.COLI GGAGAGAUGCCGGAGC--GGCUGAACGGACCGGUCUCGAAAACCGGA-GUAGGG-GCAA--CUCUAC--CGGGGGUUCAAAUCCCCCUCUCUCCGHAEMOPHILUS INFLU. GGGUCGUUAGCUCAGAC-GGU--AGAGCAGCGGACUUUUAAUCCGUUG-------------------GUCGAAGGUUCGAAUCCUUCACGACCCAHALOBACTERIUM VOL. GCGGGGGUGGCUGAGCCAGGCCAAAAGCGGCGGACUUAAGAUCCGCU-CCC----GUAG-----GGGUUCGCGAGUUCGAAUCUCGUCCCCCGCAHALOBACTERIUM VOL. GCGCGGGUAGCCAAGU--GGCCAAAGGCGCAGCGCUUAGGACGCUGU-GGU----GUAG-----ACCUUCGCAGGUUCGAACCCUGUCCCGCGCAMETHANOCOC.VANI. GGGCCCGUAGCUUAGUCUGGU--AGAGCGCCUGGCUUUUAAUCAGGCG-------------------GUCGAGGGUUCGAAUCCCUUCGGGCCCGMYCOPLASMA MYCOID. GGAAGAUUACCCAAGUCCGGCUGAAGGGAUCGGUCUUGAAAACCGAGAGUCGG--GGAAA--CCGAG--CGGGGGUUCGAAUCCCUCAUCUUCCGRHODOSPIRIL. RUB. GCCUUUGUAGCGGAAU--GGU--AACGCGGCAGACUCAAAAUCUGCU-UUGG---UAAC----CCAGG-UGGUAGUUCGACUCUCCCCAAAGGCAFigure 3.5: The original alignment of 15 tRNA sequences from EMBL Data Library. Theparentheses above the alignments indicate which columns (positions) form base pairs and\===" indicates the anticodon domain.give the same base-pairing. Once a grammar has been constructed, a similar multiple alignmentcan be produced for the entire set of 1477 tRNA sequences (or any subset).3.4 Predictions of secondary structuresAs discussed in the last section, the trained grammar produces the same alignment as the originalalignment for the base pairing parts. This implies that the most likely parse trees produced by the

3. Results 15Base pairings Anticodon Base pairings((((((((((()))) (((((===))))) ((((())))))))))))GCCCGGGUGGUGAAAU.C.GG.Ua.GACACGCAGGACUUAAAAUCCUGU...........Ggcauaaaagcc..A-.............-UGUCGGUUCAAGUCCGACCCCGGGCAGGAUGGAUGUCUGAGC.-.GGuUg.AAAGAGUCGGUCUUGAAAACCGAA...........GuauuucuaggaauA-.............CCGGGGGUUCGAAUCCCUCUCCAUCCGGCGGAUGUGGCGGAAU.U.GG.Ca.GACGCGCUAGAAUCAGGCUCUAGU...........Gucuuuacagac..G-.............-UGGGGGUUCAAGUCCCUUCAUCCGCAGCCCGGCUAGCUCAGU.C.GG.U..AGAGCAUGAGACUCUUAAUCUCAG...........G.............G-.............UCGUGGGUUCGAGCCCCACGUUGGGCGGGGUGUAUAGCUCAGU.U.GG.U..AGAGCAUUGGGCUUUUAACCUAAU...........G.............G-.............UCGCAGGUUCAAGUCCUGCUAUACCCAGACAUCGUAGCAAAGU.-.GG.UcuAAUGCGUCUGACUAGAAAUCAGAUcccuucggg..G.............G-.............-CGCAGGUUCGAACCCUGCCGAUGUCGGCCGAGGUGGUGGAAU.U.GG.Ua.GACACGCUACCUUGAGGUGGUAGUgcccaauag..G.............GC.............UUACGGGUUCAAGUCCCGUCCUCGGUAGCGAAGGUGGCGGAAU.U.GG.Ua.GACGCGCUAGCUUCAGGUGUUAGU...........Guccuuacggac..G-.............-UGGGGGUUCAAGUCCCCCCCCUCGCAGGAGAGAUGCCGGAGC.-.GGcUg.AACGGACCGGUCUCGAAAACCGGA...........GuaggggcaacucuA-.............CCGGGGGUUCAAAUCCCCCUCUCUCCGGGGUCGUUAGCUCAGA.C.GG.U..AGAGCAGCGGACUUUUAAUCCGUU...........G.............G-.............UCGAAGGUUCGAAUCCUUCACGACCCAGCGGGGGUGGCUGAGCcA.GG.CcaAAAGCGGCGGACUUAAGAUCCGCUcccguaggg..G.............U-.............UCGCGAGUUCGAAUCUCGUCCCCCGCAGCGCGGGUAGCCAAGU.-.GG.CcaAAGGCGCAGCGCUUAGGACGCUGU...........G.............GUguagaccu.....UCGCAGGUUCGAACCCUGUCCCGCGCAGGGCCCGUAGCUUAGUcU.GG.U..AGAGCGCCUGGCUUUUAAUCAGGC...........G.............G-.............UCGAGGGUUCGAAUCCCUUCGGGCCCGGGAAGAUUACCCAAGU.CcGGcUg.AAGGGAUCGGUCUUGAAAACCGAG...........A.............GUcggggaaaccgag-CGGGGGUUCGAAUCCCUCAUCUUCCGGCCUUUGUAGCGGAAU.-.GG.U..AACGCGGCAGACUCAAAAUCUGCUuugguaacccaG.............G-.............-UGGUAGUUCGACUCUCCCCAAAGGCAFigure 3.6: Alignment produced by the trained grammar for the tRNA sequences depictedin Figure 3.5. Capital letters correspond to nucleotides aligned to the main line of thegrammar, \-" to deletions by skip productions in the grammar, and lower-case letters tonucleotides treated as insertions by the grammar. The \." is used as a �ll character toaccommodate insertions.trained grammar give the correct secondary structure for all 1477 tRNA sequences, 500 trainingplus 977 unseen test sequences.3.5 IntronsOur experiments with introns are currently only very preliminary. We have not yet obtained alarge enough data set to do truly meaningful experiments. In one experiment, we used 55 sequencesof introns and a simple regular grammar with �ve nonterminals for training a (sub)grammar tomodel introns. The training process reestimated the distributions of the four nucleotides at the�rst and last two consective positions of the introns. This grammar trained for introns and thegrammar previously trained for intron-free tRNAs were then combined into a single grammarmodeling tRNAs with introns.We tested the grammar on the same 55 tRNA sequences with introns. Of these, the grammarcorrectly identi�ed the positions of introns and introns themselves for 44 sequences. Introns withthe same lengths as the correct ones but incorrect positions for two or three bases (shifted) werefound for 7 sequences. The grammar completely failed to identify introns for 4 sequences. Thus,this approach shows some promise in identifying introns and �nding the correct secondary structurefor tRNA sequences with introns.3.6 Displaying folded RNA sequences: XRNAXRNA is a suite of programs providing, among other functions, graphic manipulation andlabeling of previously determined RNA secondary structures [WGN93]. Using simple �lters, wewere able to transform the secondary structure predicted by our grammar into XRNA format.Figure 3.7 shows XRNA's depiction of a secondary structure predicted by the trained grammar.

16 4. DiscussionFigure 3.7: After training on500 examples picked at randomfrom the EMBL database (nointrons), the trained grammarpredicted this folding for a pre-viously unseen tRNA sequence,the �rst sequence listed in Fig-ure 3.6. XRNA generated this�gure. G
C
C
C
G
G
GUG

GUGA
AAU

C
G
G

U A G
A C A C

G
C
A
G
G
A

C
U

U A A
A
A

U
C
C
U
G U

G
G
C

A U A A
A

A
G

C
C

A
U

G U C G G
U U

C
A

A
GU

CCGAC
C
C
C
G
G
G
C
A

4 DiscussionThe method we have proposed represents a signi�cant new direction in computational biose-quence analysis. We believe SCFGs may provide a exible and highly e�ective statistical methodin a number of problems for RNA sequences including database searching, multiple alignment, pre-diction of secondary structures, and dealing with introns, and that the grammar itself may be avaluable tool for representing an RNA family or domain. The present work demonstrates the use-fulness of SCFGs with tRNA sequences. Since our experiments with introns are only preliminary,further work will be required to demonstrate the usefulness of SCFGs in searching databases fortRNA sequences with introns. Extending the grammar to handle the more unusual mitochondrialtRNAs would also be of interest. However, the most challenging future problem is to model afamily of larger RNA sequences, e.g. ribosomal RNA, with SCFGs.Another important area for future research will be to determine how much prior knowledgeabout the structure of the class of RNA sequences being modeled is necessary for this approachto work. In our experiments with tRNA, we started the training with an initial grammar thatcontained quite a bit of knowledge about the structure of tRNA. A more challenging trainingapproach would be to use a homogeneous initial grammar embodying no speci�c knowledge aboutthe tRNA family. As described in Section 2.5, we could then try to gradually extend the grammarto account for the structure of the training sequences. We might do this by starting with a regulargrammar that represents an HMM like those used to model protein families in our previous work[KBM+92]. Then, by studying multiple alignments produced by this grammar, we might be ableto use methods for �nding correlations between columns in this multiple alignment, such as thosein [GPH+92, Lap92, KB93], to discover some of the base paring structure in tRNA. Having donethis, it would be straightforward to modify the grammar to account for this base pairing, and theniterate this process until no new structure is found. This process would essentially automate someof the hand methods used in the original investigation of tRNA structure by phylogenetic analysis.Finally, there is the question of what further generalizations of hidden Markov models, beyondSCFGs, might be useful in computational biosequence analysis. The key advantage of the methodwe propose here over the HMM method is that it allows us to explicitly deal with the secondarystructure of the RNA sequence. We make the leap from stochastic models of strings to stochasticmodels of trees, and this lets us model the base pairing interactions of the molecule, which determine

References 17its secondary structure. This progression is similar to the path taken by the late King Sun Fu andhis colleagues in their development of the �eld of syntactic pattern recognition [Fu82]. To go beyondthis to the tertiary structure would require still more general methods. One possibility would be toconsider stochastic graph grammars (see e.g. [ER91]) in hopes of obtaining a more general modelof the interactions present in the molecule beyond the primary structure. If a stochastic graphgrammar framework could be developed that included both an e�cient method of �nding the mostprobable \folding" of the molecule given the grammar and an e�cient EM method for estimatingthe parameters of the grammar from folded examples, then extensions of the approach taken in thispaper to more challenging problems, including RNA tertiary structure and protein folding, wouldbe possible. This is perhaps the most interesting direction for further research suggested by theresults of this paper.AcknowledgmentsWe thank Anders Krogh, Richard Hughey, Harry Noller, Kimmen Sj�olander for helpful discus-sion and Bryn Weiser for help with the XRNA system.References[AU72] Alfred V.Aho and Je�reyD.Ullman. TheTheory of Parsing, TranslationandCompiling,Vol. I: Parsing. Prentice Hall, Englewood Cli�s, N.J., 1972.[Bak79] J. K. Baker. Trainable grammars for speech recognition. Speech Communication Papersfor the 97th Meeting of the Acoustical Society of America, pages 547{550, 1979.[BCHM93] P. Baldi, Y. Chauvin, T. Hunkapiller, and M. A. McClure. Hidden Markov models inmolecular biology: new algorithms and applications. In Hanson, Cowan, and Giles,editors, Advances in Neural Information Processing Systems 5, pages 747{754, SanMateo, CA, 1993. Morgan Kau�mann Publishers.[BHK+93] M. P. Brown, R. Hughey, A. Krogh, I. S. Mian, K. Sj�olander, and D. Haussler. UsingDirichlet mixture priors to derive hidden Markov models for protein families. Proc. ofworkshop on AI in Molecular Biology, Wash. D.C., July 1993. to appear.[CS92] L. R. Cardon and G. D. Stormo. Expectation maximization algorithm for identifyingprotein-binding sites with variable lengths from unaligned DNA fragments. Journ MolBiol, 223:159{170, 1992.[ER91] J. Engelfriet and G. Rozenberg. Graph grammars based on node rewriting: andintroduction to NLC graph grammars. In E. Ehrig, H.J. Kreowski, and G. Rozenberg,editors, Lecture Notes in Computer Science, volume 532, pages 12{23. Springer-Verlag,1991.[Fu82] K.S. Fu. Syntactic pattern recognition and applications. Prentice-Hall, 1982.[GPH+92] R. R. Gutell, A. Power, G. Z. Hertz, E. J. Putz, and G. D. Stormo. Identifyingconstraints on the higher-order structure ofRNA: continueddevelopment andapplicationof comparative sequence analysis methods. Nucleic Acids Research, 20:5785{5795, 1992.

18 References[HKMS93] D. Haussler, A. Krogh, I. S. Mian, and K. Sj�olander. Protein modeling using hiddenMarkov models: Analysis of globins. In Proceedings of the Hawaii International Con-ference on System Sciences, Los Alamitos, CA, 1993. IEEE Computer Society Press.[JOP89] B. D. James, G. J. Olsen, and N. R. Pace. Phylogenetic comparative analysis of RNAsecondary structure. Methods in Enzymology, 180:227{239, 1989.[JTZ90] J. A. Jaeger, D. H. Turner, and M. Zuker. Predicting optimal and suboptimal secondarystructure for RNA. Methods in Enzymology, 183:281{306, 1990.[KB93] Tod Klinger and Douglas Brutlag. Unpublished manuscript, 1993.[KBM+92] A. Krogh, M. Brown, I. S. Mian, K. Sjolander, and D. Haussler. Hidden Markovmodelsin computational biology: Applications to protein modeling. Submitted to J. Mol. Bio.,December 1992.[Lap92] Allan Lapedes. Private communication, 1992.[LY90] K. Lari and S. J. Young. The estimation of stochastic context-free grammars using theinside-outside algorithm. Computer Speech and Language, 4:35{56, 1990.[OOL+92] G. J. Olsen, R. Overbeek, N. Larsen, T. L. Marshand M. J. McCaughey, M. A. Maciuke-nas, W. M. Kuan, T. J. Macke, Y. Xing, and C. R. Woese. The ribosomal databaseproject. Nucleic Acids Research, 20:2199{200, 1992.[PG93] E. M. Phizicky and C. L. Greer. Pre-tRNA splicing: variation on a theme or exceptionto the rule? Trends in Biochemical Sciences, 18:31{34, 1993.[Rab89] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speechrecognition. Proc IEEE, 77(2):257{286, 1989.[Sak92] Yasubumi Sakakibara. E�cient learning of context-free grammars from positive struc-tural examples. Information and Computation, 97:23{60, 1992.[San85] David Sanko�. Simultaneous solution of the RNA folding, alignment and protosequenceproblems. SIAM J. Appl. Math., 45:810{825, 1985.[Sea92] David B. Searls. The linguistics of DNA. American Scientist, 80:579{591, November{December 1992.[SZ90] Bruce A. Shapiro and Kaizhong Zhang. Comparing multiple RNA secondary structuresusing tree comparisons. CABIOS, 6(4):309{318, 1990.[TW68] J.W.Thatcher and J. B.Wright. Generalized �nite automata theorywith an applicationto adecisionproblemof second-order logic. Mathematical SystemsTheory, 2:57{81,1968.[Wat89] M. S.Waterman. Sequence alignments. InMSWaterman, editor,MathematicalMethodsfor DNA Sequences. CRC Press, 1989.[WGGN83] C. R. Woese, R. R. Gutell, R. Gupta, and H. F. Noller. Detailed analysis of thehigher-order structure of 16s-like ribosomal ribonucleic acids. Microbiology Reviews,47(4):621{669, 1983.[WGN93] Bryn Weiser, Robin Gutell, and Harry Noller. XRNA: an X-windows environment RNAediting/display package. Unpublished manuscript, January 1993.[ZS84] Michael Zuker and David Sanko�. RNA secondary structures and their prediction. Bull.Math. Biol., 46:591{621, 1984.

A. Appendix 19A AppendixThe trained grammar was deduced from 500 tRNA sequences without introns. Tabulated hereare its total 660 productions. The start symbol S0 is written as S and the other nonterminalsare represented in abbreviated form|namely, as the numbers that in full form would appear as S-symbol subscripts. Nonterminals numbered from 1 to 22, from 26 to 46 and from 63 to 79 are matchnonterminals and nonterminals numbered from 81 to 87 and from 90 to 96 are insert nonterminals.S ! 1 75 1.000000 8 ! 9 76 1.000000 76 ! 11 77 1.000000 77 ! 26 78 1.00000078 ! 27 79 1.000000 79 ! 39 63 1.000000 1 ! C 2 C 0.004207 1 ! C 2 G 0.0665121 ! C 2 U 0.004282 1 ! C 2 A 0.016078 1 ! G 2 C 0.650489 1 ! G 2 G 0.0003081 ! G 2 U 0.059865 1 ! G 2 A 0.000282 1 ! U 2 C 0.000360 1 ! U 2 G 0.0009471 ! U 2 U 0.004554 1 ! U 2 A 0.075745 1 ! A 2 C 0.004450 1 ! A 2 G 0.0002871 ! A 2 U 0.111253 1 ! A 2 A 0.000380 2 ! C 3 C 0.000303 2 ! C 3 G 0.3808102 ! C 3 U 0.000378 2 ! C 3 A 0.002413 2 ! G 3 C 0.412326 2 ! G 3 G 0.0003082 ! G 3 U 0.028631 2 ! G 3 A 0.000282 2 ! U 3 C 0.000360 2 ! U 3 G 0.0126602 ! U 3 U 0.000650 2 ! U 3 A 0.087458 2 ! A 3 C 0.000545 2 ! A 3 G 0.0002872 ! A 3 U 0.072210 2 ! A 3 A 0.000380 3 ! C 4 C 0.000303 3 ! C 4 G 0.3320063 ! C 4 U 0.000378 3 ! C 4 A 0.004365 3 ! G 4 C 0.332287 3 ! G 4 G 0.0003083 ! G 4 U 0.061818 3 ! G 4 A 0.000282 3 ! U 4 C 0.000360 3 ! U 4 G 0.0107083 ! U 4 U 0.002602 3 ! U 4 A 0.130405 3 ! A 4 C 0.000545 3 ! A 4 G 0.0002873 ! A 4 U 0.121014 3 ! A 4 A 0.002333 4 ! C 5 C 0.002255 4 ! C 5 G 0.2422074 ! C 5 U 0.002330 4 ! C 5 A 0.004365 4 ! G 5 C 0.330335 4 ! G 5 G 0.0003084 ! G 5 U 0.048152 4 ! G 5 A 0.000282 4 ! U 5 C 0.000360 4 ! U 5 G 0.0614644 ! U 5 U 0.000650 4 ! U 5 A 0.169448 4 ! A 5 C 0.002497 4 ! A 5 G 0.0002874 ! A 5 U 0.134679 4 ! A 5 A 0.000380 5 ! C 6 C 0.006159 5 ! C 6 G 0.2949165 ! C 6 U 0.002330 5 ! C 6 A 0.000461 5 ! G 6 C 0.254200 5 ! G 6 G 0.0003085 ! G 6 U 0.052057 5 ! G 6 A 0.004187 5 ! U 6 C 0.000360 5 ! U 6 G 0.0243735 ! U 6 U 0.002602 5 ! U 6 A 0.128453 5 ! A 6 C 0.002497 5 ! A 6 G 0.0002875 ! A 6 U 0.226430 5 ! A 6 A 0.000380 6 ! C 7 C 0.000303 6 ! C 7 G 0.2539206 ! C 7 U 0.000378 6 ! C 7 A 0.000461 6 ! G 7 C 0.238582 6 ! G 7 G 0.0003086 ! G 7 U 0.032535 6 ! G 7 A 0.000282 6 ! U 7 C 0.000360 6 ! U 7 G 0.0536556 ! U 7 U 0.014315 6 ! U 7 A 0.224109 6 ! A 7 C 0.000545 6 ! A 7 G 0.0002876 ! A 7 U 0.179579 6 ! A 7 A 0.000380 7 ! C 8 C 0.000303 7 ! C 8 G 0.0294217 ! C 8 U 0.000378 7 ! C 8 A 0.000461 7 ! G 8 C 0.373282 7 ! G 8 G 0.0003087 ! G 8 U 0.032535 7 ! G 8 A 0.002235 7 ! U 8 C 0.000360 7 ! U 8 G 0.0009477 ! U 8 U 0.000650 7 ! U 8 A 0.206540 7 ! A 8 C 0.000545 7 ! A 8 G 0.0002877 ! A 8 U 0.351369 7 ! A 8 A 0.000380 9 ! C 10 0.000671 9 ! G 10 0.0106869 ! U 10 0.963879 9 ! A 10 0.024763 10 ! C 0.038552 10 ! G 0.33565610 ! U 0.016880 10 ! A 0.608913 11 ! C 12 C 0.000303 11 ! C 12 G 0.02551711 ! C 12 U 0.000378 11 ! C 12 A 0.002413 11 ! G 12 C 0.763715 11 ! G 12 G 0.00030811 ! G 12 U 0.122335 11 ! G 12 A 0.000282 11 ! U 12 C 0.000360 11 ! U 12 G 0.00485111 ! U 12 U 0.002602 11 ! U 12 A 0.023036 11 ! A 12 C 0.000545 11 ! A 12 G 0.00028711 ! A 12 U 0.052688 11 ! A 12 A 0.000380 12 ! C 13 C 0.000303 12 ! C 13 G 0.65021012 ! C 13 U 0.000378 12 ! C 13 A 0.000461 12 ! G 13 C 0.035558 12 ! G 13 G 0.00030812 ! G 13 U 0.001300 12 ! G 13 A 0.000282 12 ! U 13 C 0.000360 12 ! U 13 G 0.01851612 ! U 13 U 0.000650 12 ! U 13 A 0.245583 12 ! A 13 C 0.000545 12 ! A 13 G 0.000287

20 A. Appendix12 ! A 13 U 0.044879 12 ! A 13 A 0.000380 13 ! C 14 C 0.000303 13 ! C 14 G 0.21878113 ! C 14 U 0.000378 13 ! C 14 A 0.006317 13 ! G 14 C 0.215157 13 ! G 14 G 0.00030813 ! G 14 U 0.003253 13 ! G 14 A 0.002235 13 ! U 14 C 0.000360 13 ! U 14 G 0.00875513 ! U 14 U 0.000650 13 ! U 14 A 0.473986 13 ! A 14 C 0.002497 13 ! A 14 G 0.00028713 ! A 14 U 0.062449 13 ! A 14 A 0.004285 14 ! C 15 C 0.004207 14 ! C 15 G 0.45694514 ! C 15 U 0.002330 14 ! C 15 A 0.004365 14 ! G 15 C 0.008227 14 ! G 15 G 0.00226014 ! G 15 U 0.014966 14 ! G 15 A 0.117412 14 ! U 15 C 0.000360 14 ! U 15 G 0.09465114 ! U 15 U 0.068975 14 ! U 15 A 0.097219 14 ! A 15 C 0.004450 14 ! A 15 G 0.00614314 ! A 15 U 0.015597 14 ! A 15 A 0.101893 15 ! C 81 0.004600 15 ! G 81 0.00072715 ! U 81 0.004766 15 ! A 81 0.007717 15 ! 16 0.013649 15 ! C 16 0.00070915 ! G 16 0.002578 15 ! U 16 0.003044 15 ! A 16 0.962209 16 ! C 82 0.00068416 ! G 82 0.058356 16 ! U 82 0.001130 16 ! A 82 0.001870 16 ! 17 0.00351616 ! C 17 0.003357 16 ! G 17 0.670300 16 ! U 17 0.001734 16 ! A 17 0.25905217 ! C 83 0.035436 17 ! G 83 0.000778 17 ! U 83 0.039975 17 ! A 83 0.00214517 ! 18 0.005830 17 ! C 18 0.169033 17 ! G 18 0.036450 17 ! U 18 0.65679217 ! A 18 0.053561 18 ! C 84 0.011019 18 ! G 84 0.000716 18 ! U 84 0.02340718 ! A 84 0.002634 18 ! 19 0.550425 18 ! C 19 0.052808 18 ! G 19 0.00130018 ! U 19 0.322187 18 ! A 19 0.035503 19 ! C 85 0.001171 19 ! G 85 0.00084219 ! U 85 0.003227 19 ! A 85 0.002010 19 ! 20 0.001485 19 ! C 20 0.00071819 ! G 20 0.964033 19 ! U 20 0.001679 19 ! A 20 0.024836 20 ! C 86 0.00390620 ! G 86 0.226948 20 ! U 86 0.000935 20 ! A 86 0.001296 20 ! 21 0.00146420 ! C 21 0.003233 20 ! G 21 0.756208 20 ! U 21 0.001440 20 ! A 21 0.00457021 ! C 87 0.058272 21 ! G 87 0.001425 21 ! U 87 0.268719 21 ! A 87 0.00461021 ! 22 0.001129 21 ! C 22 0.031293 21 ! G 22 0.063284 21 ! U 22 0.53534121 ! A 22 0.035927 22 ! C 0.008646 22 ! G 0.060528 22 ! U 0.02086722 ! A 0.909958 26 ! C 0.032570 26 ! G 0.453283 26 ! U 0.09064626 ! A 0.423500 27 ! C 28 C 0.004207 27 ! C 28 G 0.378858 27 ! C 28 U 0.00818627 ! C 28 A 0.006317 27 ! G 28 C 0.074601 27 ! G 28 G 0.000308 27 ! G 28 U 0.06377027 ! G 28 A 0.002235 27 ! U 28 C 0.000360 27 ! U 28 G 0.045847 27 ! U 28 U 0.01236227 ! U 28 A 0.284626 27 ! A 28 C 0.000545 27 ! A 28 G 0.002239 27 ! A 28 U 0.10734827 ! A 28 A 0.008189 28 ! C 29 C 0.000303 28 ! C 29 G 0.367146 28 ! C 29 U 0.00428228 ! C 29 A 0.000461 28 ! G 29 C 0.090218 28 ! G 29 G 0.000308 28 ! G 29 U 0.01496628 ! G 29 A 0.000282 28 ! U 29 C 0.000360 28 ! U 29 G 0.018516 28 ! U 29 U 0.00650628 ! U 29 A 0.317813 28 ! A 29 C 0.000545 28 ! A 29 G 0.000287 28 ! A 29 U 0.17762728 ! A 29 A 0.000380 29 ! C 30 C 0.000303 29 ! C 30 G 0.173881 29 ! C 30 U 0.00037829 ! C 30 A 0.000461 29 ! G 30 C 0.396708 29 ! G 30 G 0.002260 29 ! G 30 U 0.00715729 ! G 30 A 0.000282 29 ! U 30 C 0.000360 29 ! U 30 G 0.002899 29 ! U 30 U 0.00065029 ! U 30 A 0.208492 29 ! A 30 C 0.002497 29 ! A 30 G 0.000287 29 ! A 30 U 0.20105229 ! A 30 A 0.002333 30 ! C 31 C 0.000303 30 ! C 31 G 0.209020 30 ! C 31 U 0.00233030 ! C 31 A 0.002413 30 ! G 31 C 0.662203 30 ! G 31 G 0.000308 30 ! G 31 U 0.03643930 ! G 31 A 0.000282 30 ! U 31 C 0.000360 30 ! U 31 G 0.012660 30 ! U 31 U 0.00260230 ! U 31 A 0.021084 30 ! A 31 C 0.000545 30 ! A 31 G 0.000287 30 ! A 31 U 0.04878330 ! A 31 A 0.000380 31 ! C 32 C 0.000303 31 ! C 32 G 0.267585 31 ! C 32 U 0.00428231 ! C 32 A 0.000461 31 ! G 32 C 0.187827 31 ! G 32 G 0.000308 31 ! G 32 U 0.00715731 ! G 32 A 0.000282 31 ! U 32 C 0.002313 31 ! U 32 G 0.032181 31 ! U 32 U 0.00845831 ! U 32 A 0.097218 31 ! A 32 C 0.000545 31 ! A 32 G 0.000287 31 ! A 32 U 0.39041231 ! A 32 A 0.000380 32 ! C 33 0.666561 32 ! G 33 0.002711 32 ! U 33 0.30995132 ! A 33 0.020776 33 ! C 34 0.012634 33 ! G 34 0.000718 33 ! U 34 0.98580933 ! A 34 0.000839 34 ! C 35 0.233932 34 ! G 35 0.331669 34 ! U 35 0.35979334 ! A 35 0.074605 35 ! C 36 0.172128 35 ! G 36 0.220023 35 ! U 36 0.29400135 ! A 36 0.313848 36 ! C 37 0.231939 36 ! G 37 0.226004 36 ! U 37 0.27007736 ! A 37 0.271980 37 ! C 38 0.000671 37 ! G 38 0.237966 37 ! U 38 0.00292437 ! A 38 0.758438 38 ! C 0.166147 38 ! G 0.012680 38 ! U 0.12254538 ! A 0.698628 39 ! C 90 0.003007 39 ! G 90 0.000752 39 ! U 90 0.047358

A. Appendix 2139 ! A 90 0.000881 39 ! 40 0.007089 39 ! C 40 0.139147 39 ! G 40 0.18220339 ! U 40 0.180513 39 ! A 40 0.439051 40 ! C 91 0.000712 40 ! G 91 0.00097840 ! U 91 0.001084 40 ! A 91 0.001035 40 ! 41 0.976065 40 ! C 41 0.00303440 ! G 41 0.001302 40 ! U 41 0.001442 40 ! A 41 0.014348 41 ! C 92 0.00071341 ! G 92 0.000977 41 ! U 92 0.001088 41 ! A 92 0.001030 41 ! 42 0.97756341 ! C 42 0.003038 41 ! G 42 0.001294 41 ! U 42 0.001435 41 ! A 42 0.01286242 ! C 93 0.001003 42 ! G 93 0.053461 42 ! U 93 0.003357 42 ! A 93 0.01175942 ! 43 0.004953 42 ! C 43 0.026339 42 ! G 43 0.556403 42 ! U 43 0.17912042 ! A 43 0.163605 43 ! C 94 0.003156 43 ! G 94 0.002509 43 ! U 94 0.01036143 ! A 94 0.008110 43 ! 44 0.002968 43 ! C 44 0.008442 43 ! G 44 0.66301043 ! U 44 0.060786 43 ! A 44 0.240658 44 ! C 95 0.004842 44 ! G 95 0.00089844 ! U 95 0.010156 44 ! A 95 0.000944 44 ! 45 0.975330 44 ! C 45 0.00259444 ! G 45 0.001113 44 ! U 45 0.002839 44 ! A 45 0.001284 45 ! C 96 0.01005545 ! G 96 0.027950 45 ! U 96 0.002756 45 ! A 96 0.001831 45 ! 46 0.31184745 ! C 46 0.063857 45 ! G 46 0.006889 45 ! U 46 0.566127 45 ! A 46 0.00868846 ! C 0.724378 46 ! G 0.008692 46 ! U 0.234192 46 ! A 0.03273863 ! C 64 C 0.000303 63 ! C 64 G 0.224638 63 ! C 64 U 0.000378 63 ! C 64 A 0.00436563 ! G 64 C 0.383043 63 ! G 64 G 0.000308 63 ! G 64 U 0.143809 63 ! G 64 A 0.00028263 ! U 64 C 0.004265 63 ! U 64 G 0.010708 63 ! U 64 U 0.004554 63 ! U 64 A 0.01522863 ! A 64 C 0.000545 63 ! A 64 G 0.002239 63 ! A 64 U 0.203004 63 ! A 64 A 0.00233364 ! C 65 C 0.002255 64 ! C 65 G 0.365193 64 ! C 65 U 0.002330 64 ! C 65 A 0.00046164 ! G 65 C 0.129262 64 ! G 65 G 0.000308 64 ! G 65 U 0.057913 64 ! G 65 A 0.00028264 ! U 65 C 0.004265 64 ! U 65 G 0.038038 64 ! U 65 U 0.012362 64 ! U 65 A 0.24948764 ! A 65 C 0.002497 64 ! A 65 G 0.000287 64 ! A 65 U 0.134679 64 ! A 65 A 0.00038065 ! C 66 C 0.00030365 ! C 66 G 0.166073 65 ! C 66 U 0.002330 65 ! C 66 A 0.000461 65 ! G 66 C 0.41623065 ! G 66 G 0.002260 65 ! G 66 U 0.036439 65 ! G 66 A 0.000282 65 ! U 66 C 0.00036065 ! U 66 G 0.043894 65 ! U 66 U 0.004554 65 ! U 66 A 0.101123 65 ! A 66 C 0.00249765 ! A 66 G 0.000287 65 ! A 66 U 0.222526 65 ! A 66 A 0.000380 66 ! C 67 C 0.00030366 ! C 67 G 0.015756 66 ! C 67 U 0.002330 66 ! C 67 A 0.000461 66 ! G 67 C 0.79495066 ! G 67 G 0.000308 66 ! G 67 U 0.007157 66 ! G 67 A 0.000282 66 ! U 67 C 0.00036066 ! U 67 G 0.002899 66 ! U 67 U 0.000650 66 ! U 67 A 0.024988 66 ! A 67 C 0.00445066 ! A 67 G 0.000287 66 ! A 67 U 0.144440 66 ! A 67 A 0.000380 67 ! C 68 C 0.00030367 ! C 68 G 0.004043 67 ! C 68 U 0.000378 67 ! C 68 A 0.000461 67 ! G 68 C 0.95502767 ! G 68 G 0.000308 67 ! G 68 U 0.005205 67 ! G 68 A 0.000282 67 ! U 68 C 0.00036067 ! U 68 G 0.000947 67 ! U 68 U 0.000650 67 ! U 68 A 0.003515 67 ! A 68 C 0.00445067 ! A 68 G 0.000287 67 ! A 68 U 0.023405 67 ! A 68 A 0.000380 68 ! C 69 0.00266568 ! G 69 0.000718 68 ! U 69 0.963879 68 ! A 69 0.032738 69 ! C 70 0.00665369 ! G 70 0.020654 69 ! U 70 0.971854 69 ! A 70 0.000839 70 ! C 71 0.97956970 ! G 71 0.000718 70 ! U 71 0.008905 70 ! A 71 0.010808 71 ! C 72 0.00266571 ! G 72 0.608791 71 ! U 72 0.000931 71 ! A 72 0.387613 72 ! C 73 0.00266572 ! G 73 0.000718 72 ! U 73 0.000931 72 ! A 73 0.995687 73 ! C 74 0.04453273 ! G 74 0.224010 73 ! U 74 0.242166 73 ! A 74 0.489291 74 ! C 0.138236

22 A. Appendix74 ! G 0.008692 74 ! U 0.816346 74 ! A 0.036725 75 ! C 0.05250775 ! G 0.243947 75 ! U 0.102608 75 ! A 0.600937 81 ! C 81 0.02921381 ! G 81 0.031543 81 ! U 81 0.041903 81 ! A 81 0.119663 81 ! C 16 0.02929181 ! G 16 0.034434 81 ! U 16 0.282733 81 ! A 16 0.431220 82 ! C 82 0.06902782 ! G 82 0.009900 82 ! U 82 0.022805 82 ! A 82 0.044885 82 ! C 17 0.72315082 ! G 17 0.012220 82 ! U 17 0.095479 82 ! A 17 0.022534 83 ! C 83 0.02956783 ! G 83 0.008472 83 ! U 83 0.024856 83 ! A 83 0.011430 83 ! C 18 0.65885883 ! G 18 0.010576 83 ! U 18 0.220064 83 ! A 18 0.036177 84 ! C 84 0.01646084 ! G 84 0.017457 84 ! U 84 0.023082 84 ! A 84 0.020501 84 ! C 19 0.57972284 ! G 19 0.036755 84 ! U 19 0.235993 84 ! A 19 0.070030 85 ! C 85 0.06563885 ! G 85 0.083086 85 ! U 85 0.103787 85 ! A 85 0.094498 85 ! C 20 0.06606585 ! G 20 0.264483 85 ! U 20 0.200870 85 ! A 20 0.121572 86 ! C 86 0.01953286 ! G 86 0.002946 86 ! U 86 0.011943 86 ! A 86 0.022555 86 ! C 21 0.19735286 ! G 21 0.008580 86 ! U 21 0.492268 86 ! A 21 0.244825 87 ! C 87 0.07022687 ! G 87 0.001941 87 ! U 87 0.013935 87 ! A 87 0.010024 87 ! C 22 0.10177887 ! G 22 0.090795 87 ! U 22 0.491867 87 ! A 22 0.219434 90 ! C 90 0.32127190 ! G 90 0.152056 90 ! U 90 0.227611 90 ! A 90 0.165586 90 ! C 40 0.00330890 ! G 40 0.115297 90 ! U 40 0.003828 90 ! A 40 0.011043 91 ! C 91 0.11323591 ! G 91 0.119579 91 ! U 91 0.151131 91 ! A 91 0.141788 91 ! C 41 0.10001891 ! G 41 0.109669 91 ! U 41 0.127369 91 ! A 41 0.137210 92 ! C 92 0.11251492 ! G 92 0.119947 92 ! U 92 0.150505 92 ! A 92 0.142353 92 ! C 42 0.10039292 ! G 42 0.109585 92 ! U 42 0.127151 92 ! A 42 0.137553 93 ! C 93 0.14696693 ! G 93 0.179996 93 ! U 93 0.258171 93 ! A 93 0.301805 93 ! C 43 0.06428493 ! G 43 0.001423 93 ! U 43 0.045531 93 ! A 43 0.001823 94 ! C 94 0.13086294 ! G 94 0.148002 94 ! U 94 0.448381 94 ! A 94 0.155554 94 ! C 44 0.00829994 ! G 44 0.005484 94 ! U 44 0.014983 94 ! A 44 0.088435 95 ! C 95 0.28660295 ! G 95 0.296465 95 ! U 95 0.043000 95 ! A 95 0.253582 95 ! C 45 0.03429495 ! G 45 0.037659 95 ! U 45 0.039676 95 ! A 45 0.008721 96 ! C 96 0.40153796 ! G 96 0.143528 96 ! U 96 0.255206 96 ! A 96 0.069289 96 ! C 46 0.00333996 ! G 46 0.104709 96 ! U 46 0.014544 96 ! A 46 0.007847

