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ABSTRACT

Stochastic context-free grammars (SCFGs) are applied to the problems of folding, align-
ing and modeling families of homologous RNA sequences. These models capture the com-
mon primary and secondary structure of the sequences with a context-free grammar, much
like those used to define the syntax of programming languages. SCFGs generalize the hidden
Markov models used in related work on protein and DNA sequences. The novel aspect of this
work is that the SCFGs developed here are learned automatically from initially unaligned
and unfolded training sequences. To do this, a new generalization of the forward-backward
algorithm, commonly used to train hidden Markov models, is introduced. This algorithm
is based on tree grammars, and is more efficient than the inside-outside algorithm, which
was previously proposed to train SCFGs. This method is tested on the family of transfer
RNA (tRNA) sequences. The results show that the model is able to reliably discriminate
tRNA sequences from other RNA sequences of similar length, that it can reliably determine
the secondary structure of new tRNA sequences, and that it can produce accurate multiple
alignments of large collections of tRNA sequences. The model is also extended to handle
introns present in tRNA genes.

Keywords: Stochastic Context-Free Grammar, RNA, Transfer RNA, Multiple Sequence
Alignments, Database Searching.



1. Introduction 1

1 Introduction

Attempts to understand the folding, structure, function and evolution of molecules has resulted
in the confluence of many diverse disciplines ranging from structural biology and chemistry, through
computer science and computational linguistics. Rapid generation of sequence data in recent
years thus provides abundant opportunities for developing of new approaches to problems in
computational biology such as Hidden Markov Models (HMMs) [Rab89, HKMS93, KBM192,
BCHMO93, CS92]. In this paper, we apply stochastic context-free grammars (SCFGs) to the problems
of statistical modeling, database searching, multiple alignment, and prediction of the secondary

structure of RNA families. This approach is highly related to our previous work on modeling
protein families with HMMs [HKMS93, KBM192].

RNA is mostly involved in the biological machinery that expresses the genetic information from
DNA to protein. Information is encoded in RNA by the linear arrangement of the four different
constituent nucleotides (the primary structure). The individual nucleotides, adenine (4), cytosine
(C), guanine (G) and uracil (U), interact in specific ways to form characteristic secondary structure
motifs such as helices, loops and bulges. Further folding and hydrogen-bonding interactions between
remote regions orient these secondary structure elements with respect to each other to form the
functional system. Higher order interactions with other proteins and/or nucleic acids may also
occur. In general, however, the folding of an RNA chain into a functional molecule is largely
governed by the formation of intramolecular A-U and G-C Watson-Crick pairs as well as G-U base
pairs.

Comparative analyses of two or more protein or nucleic acid sequences have been used widely
in the detection and evaluation of biological similarities and evolutionary relationships. Several
methods of producing these multiple sequence alignments have been developed, most based on
dynamic programming techniques (see for example [Wat89]). However, when RNA sequences are
to be aligned, both the primary and secondary structure need to be taken into consideration since
the generation of a multiple sequence alignment and an analysis of folding are not mutually exclusive
exercises. Thus, the elucidation of common folding patterns among two or more sequences may
indicate the pertinent regions to be aligned and wvice versa [San85].

Currently, there are two principal methods for predicting the secondary structure of RNA.
Phylogenetic analysis for homologous RNA molecules relies upon alignment and subsequent folding
of several sequences into similar structures (reviewed in [JOP89, WGGNS83]). In contrast, energy
minimization is dependent upon thermodynamic parameters and computer algorithms to evaluate
the optimal and suboptimal free energy folding of an RNA species (reviewed in [JTZ90, Z584]).

Our method of multiple alignment and folding differs quite markedly from the conventional
techniques. Essentially, our method builds a statistical model during the process of multiple
alignment and folding analysis, rather than leaving this as a separate task to be done after the
alignment and folding are completed. In our previous studies [HKMS93, KBM192], this approach
has been successfully applied to modeling protein families with HMMs.

Although in principle HMMs could be used for RNA, we strongly suspect that the more
general statistical models described below will be required to obtain useful results. Since base
pairing interactions, most notably A-U, G-C and G-U, play such a dominant role in determining RNA
structure and function, any statistical method that does not consider this will eventually encounter
insurmountable problems. The problem is that if two positions are base paired in the typical RNA,
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then the bases occurring at these two positions will be highly correlated, whereas they are treated
as having independent distributions in the standard HMM approach. Such base pairs constitute
so-called biological palindromes in the genome. We have found a way to generalize HMMs to model
most of these interactions seen in RNA.

The essence of the idea can be expressed most clearly in terms of formal language theory. Asin
the work of Searls [Sea92], we can view the strings of characters representing pieces of DNA, RNA
and protein as sentences derived from a formal grammar. The simplest kind of grammar is a regular
grammar, in which strings are derived from productions (rewriting rules) of the form S — a$ or
S — a, where 5 is a nonterminal symbol that does not appear in the final string, and «a is a terminal
symbol, which will appear as a letter in the final string. Searls has shown base pairing in RNA can
be described by a context-free grammar (CFG), a more powerful class of formal grammars than
the regular grammar (see Section 2.1 for an example). A CFG is similar to a regular grammar
but permits a greater range of productions, such as those of the form 5 — 55 and 5 — aSa.
As is beautifully described by Searls, it is precisely these additional types of production that are
needed to describe the base pairing structure in RNA! [Sea92]. In particular, the productions of
the forms S — A SU, 5 =US5 A, S —GS5C,and § — C 5 G describe the structure in RNA due
to Watson-Crick base pairing. Using productions of this type, a CFG can specify the language of
biological palindromes.

If we specify a probability for each production in a grammar, we obtain a stochastic grammar.
A stochastic grammar assigns a probability to each string it derives. Stochastic regular grammars
are exactly equivalent to HMMs. This provides an alternate way of examining HMMs and suggests
an interesting generalization from HMMs to stochastic context-free grammars (SCFGs) [Bak79].

In this paper, we pursue a stochastic model of the family of transfer RNAs (tRNAs) by using a
SCFG that is similar to our previous protein HMMs [KBM™92] but which additionally incorporates
base pairing information. A SCFG that forms a statistical model of tRNA sequences can be built
in much the same way as our construction of an HMM representing a statistical model of the globin
protein family. We use such a model to search a database for tRNA-like sequences and to obtain
a multiple alignment in the same manner as for globins. We also use the model to fold unfolded
tRINA sequences, i.e., to determine the base pairing that defines their secondary structure.

First, in order to see how well the SCFG can model families of RNA sequences, especially their
common primary and secondary structure, we derive a SCFG directly from an existing alignment
of tRNA sequences. We then repeat this experiment, but this time we attempt to “learn” the
parameters entirely automatically from a set of unaligned primary sequences. To do this, we
introduce a new generalization of the forward-backward algorithm, commonly used to train HMMs.
Our algorithm is based on tree grammars, and is more efficient than the inside-outside algorithm
[LY90], a computationally expensive generalization of the forward-backward algorithm developed
by J. K. Baker to train SCFGs [Bak79]. Thus we derive two grammars: the alignment grammar,
directly derived from an existing multiple alignment of tRNAs, and the trained grammar, deduced
by our training algorithm from a training set of tRNA sequences. For our training set, we chose
500 sequences at random from 1477 tRNA sequences in EMBL Data Library’s database. These

!Not all RNA structure can be described by CFGs but we believe they can account for enough to make useful
models. In particular, CFGs cannot account for pseudoknots, structures generated when a single-stranded loop region
forms standard Watson-Crick base pairs with a complementary sequence outside the loop.
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training sequences are unfolded and unaligned. We withhold the remaining 977 sequences in order
to test the trained grammar on data not used in the training process.

We compare the two grammars by evaluating their abilities to perform three tasks: to discrimi-
nate tRNA sequences from non-tRNA sequences, to produce multiple alignments, and to ascertain
the secondary structure of new sequences. The results show that both grammars can perfectly
discriminate tRNA sequences from other RNA sequences of similar length, can produce accurate
multiple alignments of large collections of tRNA sequences, and can reliably determine the sec-
ondary structure of new tRNA sequences.

Surprisingly, the trained grammar can discriminate more reliably than the alignment grammar
because the trained grammar exhibits a greater gap between Z-scores of tRNAs and non-tRNAs.
This is unexpected because the trained grammar is obtained using only 500 tRNA training se-
quences, while the alignment grammar is obtained using all 1477 aligned tRNA sequences (including
folding information).

Genes for tRNA often possess introns, regions that are excised out during formation of the
mature tRNA molecule, i.e., the DNA sequence coding for a particular tRNA contains additional
nucleotides that are not present in the RNA that folds to form the final structure. This means
that when we search databank files that represent genomic sequences (such as those in GenBank),
the grammar needs to be extended to handle this situation in order to correctly identify tRNAs.
A useful advantage of SCFGs is that an intron grammar can be deduced separately from the plain
tRNA grammar and these two separate grammars can then be combined into a single grammar.
In a preliminary experiment, we use 55 sequences of introns for training a (sub)grammar to model
introns, and combine two trained grammars for introns and intron-free tRNAs into a single grammar
modeling tRNAs with introns. We test the grammar on the same 55 tRNA sequences with introns,
and the grammar correctly identifies the positions of introns and the introns themselves in 80% of
these sequences. Further work, using separate training and testing sets of larger size, is underway.

2 Methods

2.1 Context-free grammars as models of RNA

The context-free grammar (CFQG) is a more powerful class of formal grammars than the regular
grammar and is often used to define the syntax of programming languages. An example CFG that
generates a particular set of RNA sequences is shown in Figure 2.1. We will use it to describe
CFGs. See Searls [Sea92] for a more comprehensive explanation.

A formal grammar is a set of productions (rewriting rules) that are used to generate a set
of strings, that is, a language. The productions are applied iteratively to generate a string, a
process called derivation. For example, the grammar in Figure 2.1 generates the RNA sequence
CAUCAGGGAAGAUCUCUUG by the following derivation: Beginning with the start symbol Sy, any
production with S left of the arrow can be chosen to replace Sy. If the production Sy — 5%
is selected (in this case, this is the only production available), the effect is to replace Sy with
the symbol S7. This one derivation step is written Sy = 57, where the double arrow signifies
application of a production. Next, if the production 57 — C 53 G is selected, the derivation step
is 51 = C 5y G. Continuing with similar derivation operations, each time choosing a nonterminal
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Productions P = { Sy — 51, S7 — G Ss,
S; —C 5% G, Ss — G,
S; — A S, U, Ss — U,
Sy — A S50, S — A4 S U,
S3 — Sy Sy, S0 — € S1o G,
Sy — U S5 4, S0 — G S11 C,
Ss — C S5 G, Si1 — 4 512 U,
Se — A S7, S12 — U i3,
57 — U 57, 513 — C }

Figure 2.1: This set of productions generates RNA sequences with a certain restricted
structure. An example of this structure is shown in Figure 2.2. The symbols Sg, 51, ..., 513
are nonterminals and A, U, G, C are terminals representing the four nucleotides.

symbol and replacing it with the right hand side of an appropriate production, we obtain the
following derivation terminating with the desired sequence:

So = 51 = CS93G = CAS3UG = CAS459UG = CAUSsASGUG = CAUCSsGAS,UG
= CAUCAS-GASoUG = CAUCAGSsGASoUG = CAUCAGGGAS,UG = CAUCAGGGAAS;oUUG
= CAUCAGGGAAGS;;CUUG = CAUCAGGGAAGAS;,UCUUG = CAUCAGGGAAGAUS;;UCUUG
= CAUCAGGGAAGAUCUCUUG.

Formally, a context-free grammar consists of a set of nonterminal symbols IV, a terminal alphabet
Y, a set P of productions (rewriting rules), and the start symbol Sp. For a nonempty set X of
symbols, let X* denote the set of all finite strings of symbols in X. Every CFG production has
the form S — o where § € N and a € (N U X)*. That is, the left-hand side consists of one
nonterminal and there is no restriction on the number or placement of nonterminals and terminals
on the right-hand side. The production S — a means that the nonterminal S can be replaced by
the string a. If S — a is a production of P, then for any strings v and ¢ in (N U X)*, we define
v56 = ~vab and we say that v5¢ directly derives yad in G. We say  can be derived from a,
denoted o = B, if there exists a sequence of direct derivations ag = a1, @1 = ag, ... , 1 = Q,
where ag = o, a,, = 3, a; € (N UX)*, and n > 0. Such a sequence is called a derivation. Thus
a derivation corresponds to an order of applying productions to generate a string. The language
generated by the grammar is the set of all terminal strings w that can be derived from the grammar,
that is, the language {w € ¥* | Sp = w}.

Our work in modeling RNA uses only productions of the following forms: 5 — 55, 5 — aSa,
S —aS,5— 5, or 5 — a,where 5 is anonterminal and a is a terminal. Productions may have one
of the following forms: S — aSa, used to describe the base-pairing in RNA; S — a5 and § — «,
used to describe a loop of unpaired bases; S — 59, used to describe the branched secondary
structure; and S — 5, (called skip productions), used in the context of multiple alignments, as
described below.

A derivation can be arranged in a tree structure, called a parse tree. A parse tree represents
the syntactic structure of an RNA sequence given by the grammar, and hence reflects the actual
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physical secondary structure. Figure 2.2 shows the derivation arranged in a parse tree reflecting
the physical secondary structure.
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Figure 2.2: For the RNA sequence CAUCAGGGAAGAUCUCUUG, the grammar depicted in
Figure 2.1 gives a parse tree (left) that reflects corresponding secondary structure (right).

As in the HMM of [KBM92], we distinguish two different types of nonterminals: match nonter-
minals and insert nonterminals. The match nonterminals in a grammar correspond to important
structural positions in an RNA or columns in a multiple alignment with few - (gap) characters.
These constitute the main line of the grammar. Insert nonterminals generate nucleotides in exactly
the same way as the match nonterminals, but use different distributions. These are used to insert
extra nucleotides between important positions that correspond to columns in a multiple alignment.
Skip productions are used to skip a match nonterminal, so that no nucleotide appears at that
position in a multiple alignment.

2.2 Stochastic context-free grammars

In a stochastic context-free grammar (SCFG), every production for a nonterminal S has an
associated probability value, such that a probability distribution exists over the set of productions
for S. We denote the associated probability for a production S — a by P(S — «). (Any production
with the nonterminal S on the left-hand side is called “a production for 5.”)

An SCFG, G, generates sequences and assigns a probability to each generated sequence, and
hence defines a probability distribution on the set of sequences. The probability of a parse tree can
be calculated as the product of the probabilities of the productions used to generate the sequence.
The probability of a sequence s is the sum of probabilities over all possible parse trees or derivations
that could generate s, written as follows:

Prob(s | G) = Z Prob(Sp 4 g | G)
all derivations (or parse trees) d
= > Prob(So = a1 | G)-Prob(ay = a3 | G)- -+ - Prob(a, = s | G)

A1y ooe 4O
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Efficiently computing this quantity, Prob(s | ¢), presents a problem because the number of possible
parse trees for s is exponential in the length of the sequence. However, a dynamic programming
technique analogous to the Cocke-Kasami-Young or Early methods [AU72] for non-stochastic
CFGs can accomplish this task efficiently (in time proportional to the cube of the length of s).
We define the negative logarithm of the probability of a sequence given by the grammar, i.e.,
—log(Prob(s | G)), as the negative log likelihood (NLL )-score of the sequence. This quantifies how
well the sequence s fits the grammar.

Since CFGs generally have an ambiguity in that the grammar gives more than one parse tree
for a sequence, and alternative parse trees reflect alternative secondary structures (foldings), a
grammar often gives several possible secondary structures for one RNA sequence. An advantage
of a SCFG is that it can provide the most likely parse tree from this set of possibilities. If the
grammar and the probabilities are carefully designed, the correct secondary structure will appear
as the most likely parse tree among the alternatives. As discussed in Section 3.3, the most likely
parse tree given by the trained grammar we produce for tRNAs gives exactly the correct secondary
structures for the tRNA sequences we test.

We can compute the most likely parse tree efficiently using a variant of the above procedure for
calculating Prob(s | ). To obtain the most likely parse tree for the sequence s, we calculate

max  Prob(Sp 4y | G).

parse trees d

The dynamic programming procedure to do this resembles the Viterbi algorithm for HMMs [Rab89)].
We can also use this procedure to obtain our multiple alignments: the grammar aligns each sequence
by finding the most likely parse tree, after which the mutual alignment of the sequences among
themselves is determined.

2.3 Estimating SCFGs from sequences

Searls [Sea92] argues the benefits of using context-free grammars as models for RNA folding,
but does not discuss methods for estimating the grammar from training sequences. One purpose
of this paper is to provide an effective method for estimating a SCFG to model a family of RNA
sequences.

SCFGs from multiple alignments

All parameters in the SCFG (i.e., the production probabilities) could in principle be chosen
from an existing alignment of RNA sequences. The method that we use to derive a SCFG from
a multiple alignment estimates a distribution of four nucleotides for each column in the alignment
corresponding to a nucleotide that is not base paired, and a distribution of 16 pairs of nucleotides for
each pair of columns corresponding to nucleotides that are base paired in the secondary structure.
Essentially, this is done by counting the occurrences of each letter in a column. However, our
method uses Dirichlet mixture density priors for interpreting this count data to avoid statistical
problems that arise when not enough count data are available. Details of this general method are
described in [BHK*93].
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EM training algorithm

In order to estimate the parameters of a SCFG from unaligned training RNA sequences, we
introduce a new method for training SCFGs that is a generalization of the forward-backward
algorithm, commonly used to train HMMs. This algorithm is more efficient than the inside-outside
algorithm, which was previously proposed to train SCFGs.

The inside-outside algorithm [LY90, Bak79] is an Expectation Maximization (EM) algorithm
to reestimate the parameters (i.e., the probabilities of productions) in a SCFG. However, it has
some drawbacks when applied to practical problems: it requires the grammar to be in Chomsky
normal form (a restricted form), which is possible but inconvenient for modeling RNA (and also
requires more nonterminals). Furthermore, it takes time at least proportional to n3, whereas the
forward-backward procedure for HMMs takes O(n?) time, where n is the length of the model (and
the typical training sequence). There are also a considerable number of local minima, and this
presents a problem when the initial grammar is not highly constrained.

In order to avoid such problems, we have developed a different method to obtain a SCFG for
an RNA family like tRNA that takes only time n?, and hence may be practical on larger RNA
sequences. Qur new algorithm demands folded RNA as training examples, rather than unfolded
ones. Thus the base pairs in each training sequence have to be identified before the algorithm
can begin iteratively reestimating the grammar parameters. If such base pair information is not
available, we can use a fancier version of the algorithm, as described in Section 2.5.

This new algorithm we have developed is based on the theory of stochastic tree-grammars. As
the name suggests, tree-grammars are used to derive labeled trees instead of strings. Labeled trees
can be used to represent the secondary structure of RNA quite easily [SZ90] (see Figure 2.2). When
working with a tree-grammar for RNA, one is explicitly working with the secondary structure of
the molecule. Since this structure is given explicitly in each training molecule, we no longer have
to (implicitly) sum over all possible interpretations of the secondary structure of the training
examples when we reestimate the grammar parameters, as must be done with the inside-outside
method. The new algorithm also tends to converge faster because each training example is much
more informative.

Figure 2.3: The folded RNA sequence (AA(GUC)U) can be represented as a tree ¢ (left),
which can be broken into two parts such as ¢/3 (middle) and #\3 (right).

To avoid unnecessary complexity, we describe this new algorithm in terms of CFGs instead of
tree-grammars [TW68, Sak92]. A tree is a rooted, directed, connected acyclic finite graph in which
the direct successors of any node are linearly ordered from left to right. The predecessor of a node
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is called the parent, the successor, a child, and a child of the parent, a sibling. A folded RNA
sequence can be represented by a labeled tree ¢ as follows. Each leaf node is labeled by one of four
nucleotides {4,U, G, C} and all internal nodes are labeled by one special symbol, say $. The sequence
of nucleotides labeled at leaf nodes traced from left to right exactly constitutes the RNA sequence,
and the structure of the tree represents its folding structure. See Figure 2.3 for an example of a
tree representation of the folded RNA sequence (AA(GUC)U). We assume all internal nodes in ¢ are
numbered from 1 to T' (the number of internal nodes) in some order, and for an internal node n
(1 <n <T),let t/n denote the subtree of ¢ with root n (as shown in the center of Figure 2.3)
and let t\n denote the tree obtained by removing a subtree ¢/n from ¢ (as shown in the right of
Figure 2.3).

The probability of any folded sequence ¢ given by a SCFG G = (N,X, P,S) is efficiently
calculated using a dynamic programming technique, as is done with the forward algorithm in
HMMs. A labeled tree t representing a folded RNA sequence has the shape of a parse tree, so to
parse the folded RNA, the grammar GG needs only to assign nonterminals to each internal node
according to the productions. Let the quantity in,(5) define the probability of the subtree t/n
given that the nonterminal 5 is assigned to node n and given G, for all nonterminals .5 and all
nodes n such that 1 < n <7T. We can calculate in,(9) inductively as follows:

1. Initialization:  in,(X) = 1, for all leaf nodes n and all terminals X (each nucleotide).

This extension of in,(5) is for the convenience of the inductive calculation of in, ().

2. Induction:

ing(S) = > i, (Y1) oo ing, (Vi) - P(S — Yy -+ V),
Yl,...,YkE(NUE)

for all nonterminals 5, all internal nodes m, and all m’s children nodes nq, ..., ng.

3. Termination: for the root node n and the start symbol S,
Prob(t | G) = iny(So). (2.1)

This effective calculation enables us to estimate the new parameters of a SCFG in time proportional
to the square of the number of nonterminals in the grammar multiplied by the total size of all the
folded training sequences. We need one more quantity, out,(.5), which defines the probability of
t\n given that the nonterminal $ is assigned to node n and given G:

1. Initialization:  for the root node n,

1 for 5 = Sy (the start symbol),

out,(5) = {

0 otherwise.

2. Induction:

out,,(9) = > i, (Y1) <o ing, (Yie)-P(S" =Yy -+ 5 -+ Vi) - outy(5),
Y7,.... Yy €(NUX),S’eN

for all nonterminals 9, all internal nodes [ and m such that [ is the parent of m, and all nodes
ny,...,ng such that nq,...,n; are the siblings of m.
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Given a set of folded training sequences ¢(1),...,t(n), we can see how well a grammar fits them
by calculating the probability that it generates them. This probability is simply a product of terms
of the form given by (2.1), i.e.,

Prob(sequences | ) = H Prob(t(j) | &), (2.2)
7=1

where each term Prob(#(j) | G) is calculated as in Equation (2.1). The goal is to obtain a high
value for this quantity, called the likelihood of the grammar. The mazimum likelihood (ML) method
of model estimation finds the model that maximizes the likelihood (2.2). There is no known way
to directly and efficiently calculate the best model, i.e., the one that maximizes the likelihood.
However, the general EM method, given an arbitrary starting point, finds a local maximum by
iteratively re-estimating the model such that the likelihood increases in each iteration. This method
is often used in statistics. Here we give a version of the EM method to estimate the parameters of
a SCFG from folded training RNA sequences. It proceeds as follows:

1. An initial grammar is created by assigning values to the production probability
P(S — Yy -+ V) forall S and all Y3, ... .Yy, where S is a nonterminal and Y; (1 <i < k)
is a nonterminal or terminal. If some constraints or features present in the folded sequences
are known, these are encoded in the initial grammar. The current grammar is set to this
initial grammar.

2. Using the current grammar, the values in,(5) and out,(5) for each nonterminal S and
each node n for each folded training sequence are calculated in order to get a new estimate

of the production probability, P(S — Yy --- Yi)=

2 ( 2wty (S) - P(S — Vi <o+ Vi) - inny (Y1) - inn, (Vi) / Prob(t | G))

sequences nodes n

’
norm

where (G is the old grammar and “norm” is the appropriate normalizing constant so that

3. A new current grammar is created by simply replacing P(S — Y7 ---Y}) with the re-estimated

probability P(5 — ¥; -+ Y3).

4. Steps 2 and 3 are repeated until the parameters of the current grammar change only insignif-
icantly.

2.4 Overfitting and regularization

A grammar with too many free parameters cannot be estimated well from a relatively small
set of training sequences. Attempts to estimate such a grammar will encounter the problem of
overfitting, in which the grammar fits the training sequences very well, but gives a poor fit to
related (test) sequences that were not included in the training set. One solution is to control the
effective number of free parameters by regularization. We calculated a regularizer from the multiple
alignment of tRNA sequences and added it to the counts used for reestimating the probabilities

of productions of the grammar in each iteration of training. Similar methods are described in
[KBMT92].
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2.5 Iterative usage of the training algorithm

Since our EM training algorithm uses folded RNA as training examples, rather than unfolded
ones, the base pairs in each training sequence need to be identified before the EM iteration begins.
If only unfolded training sequences are available, then we iteratively estimate the folding of the
training sequences as well using the following method:

1. First, we design a rough initial grammar which might represent only a portion of the base
pairing interactions. This is used to parse the initial unfolded RNA training sequences to
obtain a set of partially folded RNA sequences.

2. Next, we estimate a SCFG using the partially folded sequences and our training algorithm to
obtain a new estimated grammar. Further productions might be added to the grammar at
this stage, although we have not experimented with this possibility yet.

3. Then we use the trained grammar to obtain more accurately folded training sequences and
estimate a SCFG using these.

4. We repeat this process until the trained grammar gives no changes to the folding.

2.6 Dealing with introns

Introns are sometimes present in tRNA genes. This means that when we search databank files of
genomic sequences, the sequence of the tRNA may be interrupted by non-tRNA coding nucleotides.
The grammar needs to be extended to handle this situation. Introns are normally present in the
anticodon stem loop (reviewed in [PG93]). We make the assumption that an intron (of whatever
type) will be present in the anticodon loop and more specifically within or on either side of the
anticodon itself, i.e., we consider a total of five possible positions for introns.

An extremely useful advantage of SCFGs is their modularity. We see this clearly in this case:
an intron grammar can be deduced separately from the grammar for plain tRNA, then these two
separate grammars can be combined into a single grammar simply by uniting the two sets of
independent productions and maintaining their different probability distributions.

3 Results

As described in the previous section, we derived two grammars for tRNA sequences: the
alignment grammar, directly derived from an existing multiple alignment of tRNAs, and the trained
grammar, deduced by our algorithm from a training set of unfolded and unaligned tRNA sequences.
We compared the two grammars by evaluating their abilities to perform three tasks: to discriminate
tRNA sequences from non-tRNA sequences, to produce multiple alignments, and to ascertain the
secondary structure of new tRNAs.

To derive the trained grammar, we designed the initial grammar by using some prior knowledge
about the tRNA family: tRNA has four principle arms and one extra arm, and only the lengths of
the D arm and the Extra arm vary. The initial grammar was set up with a total of 75 nonterminals
and 660 productions to derive arms of the appropriate lengths. Productions of the Type I shown
Figure 3.1 are used to derive those five arms, productions of the Type II are used describe the
base-pairing in four principle arms, and productions of Type III and IV are used to describe a
loop of unpaired bases. A uniform probability distribution was placed over each set of productions
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Type 1 Type 11 Type II1 Type IV

S— S5 1.0 S—ASA 005 S—cS4a 005 S—AS 02*% S —A 0.25
S—ASG 0.05 S—csSa6 0.1 S—a6S 02* S —G 0.25
S—ASCc 005 S—cSc 005 S—cS 02* S—c¢ 0.25
S—ASU 0.1 S—CcSU 0.05 S—usS 02* S—7U 0.25
S—G6S4A 0.05 S—Uusas 0.1 S—=5 0.2%
S—a65G6 0.05 S—UsSa6 0.05
S—GSc 0.1 S—UuSc 0.05
S—G6S5SU 0.05 S—USU 0.05

Figure 3.1: To obtain production probabilities for this initial grammar, we placed a
uniform distribution over each subset of same-type productions, but weighted Watson-
Crick base pairs twice as heavily. Some values (*) may differ if no skip productions are
needed. In this case, the S — 5 production probability is zero, but the distribution
remains uniform on the remaining productions. For simplicity, nonterminal subscripts
were omitted in this figure.

of the same type, except Watson-Crick base pairs, which were assigned higher probabilities (see
Figure 3.1). This initial grammar alone found the correct folding for 93% of our whole database
of 1477 tRNA sequences.? The EM method described in the previous section was then used
to refine this grammar using 500 training tRNA sequences. The run-time was around 10 CPU
minutes on a Sun Sparcstation. During this process, only the probabilities of the productions were
reestimated and no nonterminals or productions were added or deleted (unlike “model surgery” in
[KBM*92]). Our future work will focus on developing some method that can automatically select
a good structure and a good length of the grammar while training.

3.1 Data

The experiments used data from three sources:

1. From EMBL Data Library’s database produced by Mathias Sprinzl and co-workers, Bayreuth,
FRG, we obtained 1477 aligned and folded complete tRNA sequences. A complete tRNA se-
quence means a tRNA sequence which has the four major arms and a length between 71
and 95 bases.®> Thus we included tRNAs of virus, bacteriophage, archaebacteria, eubacteria,
cyanelle, chloroplast, cytoplasm, and some mitochondria, and did not include other mitochon-
drial tRNAs. We changed several specific symbols used for representing modified bases to the
usual A, C, G, U symbols. Of these 1477 tRNA sequence descriptions, we selected randomly
500 as training examples for deriving a grammar to model intron-free tRNA and used the
rest as test data.

2. The Ribosomal Database Project’s (RDP) [OOL*92] aligned, folded large subunit ribosomal
RNA data file LSU.aln provided primary source of non-tRNA sequences. We generated

>The initial grammar was not able to find the correct folding for the rest (7%) of the tRNA sequences, and failed
to discriminate tRNAs from non-tRNAs.

?Some tRNAs are lacking some arms (e.g., mitochondrial tRNA may sometimes have only three loops). SCFGs
can model such irregular tRNAs, too. However in this paper, we do not deal with this problem.
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approximately 2,400 non-tRNA sequences by cutting ribosomal RNA sequences into pieces
of approximately the same lengths as tRNA sequences.

3. From the National Center for Biotechnology Information’s (NCBI) NewGenBank and Gen-
Bank databases, we used 55 unaligned and unfolded tRNA sequences with introns of rather
short lengths (from 4 to 25). The GenBank databases also include descriptions of other
RNA besides tRNA. From these descriptions, we generated an additional 2,500 non-tRNA
sequences.

3.2 Discriminations of tRNNAs from non-tRINAs: Database search

As described in Section 2.2, we calculate a NLL-score for each test sequence and use it to
measure how well the sequence fits the grammar. This raw NLIL-score depends too much on the
length of test sequence to be used directly to decide whether a sequence belongs to the family
modeled by the grammar. However, this problem can be overcome by normalizing the NLL-score
appropriately. Details are described in [KBM™92]. Essentially, we calculate the difference between
the NLL-score of a sequence and the average NLL-score of a typical non-tRNA sequence of the same
length, measured in standard deviations. This number is called the Z-score for the sequence. We
then choose a Z-score cutoff, and sequences with Z-scores above the cutoff are classified as positive
examples.

Figure 3.2: The number of se- A S e w

quences with a certain Z-score 250 7 |RNAs 7
scored by the alignment gram-
mar. The test set of 977 tRNA
sequences cluster around a Z-
score near 7.5, while 4885 non-
tRNA sequences cluster around
a Z-score near 0.

non-tRNAs

200

150~

Number of sequences

Z-score

For the alignment grammar and the trained grammar, NLL-scores and Z-scores were computed
for 977 test tRNA sequences and 4885 non-tRNA sequences of length 71 to 90. For each tRNA
sequence, there are five non-tRNA sequences of the same length. Figure 3.2 shows the Z-score
histogram for the alignment grammar. The grammar distinguishes perfectly between tRNAs and
non-tRNAs: the lowest Z-score of tRNAs is 4.984 and the highest Z-score of non-tRNAs is 4.589.



3. Results 13

Thus, choosing a Z-score cutoff between them, we can discriminate tRNA sequences from non-tRNA
sequences perfectly.

Surprisingly, the trained grammar was able to discriminate more reliably than the alignment
grammar in that the trained grammar created a greater gap between Z-scores of tRNAs and non-
tRNAs. NLL-scores and Z-scores made by the trained grammar are shown in Figures 3.3 and 3.4.
Since the range of lengths of tRNA sequences is short, NLL-scores would be sufficient to distinguish
tRNAs from non-tRNAs (while NLL-scores made by the alignment grammar did not distinguish
well). However, the Z-scores are of independent interest for statistical reasons. The lowest Z-score
of tRNAs is 5.464 and the highest Z-score of non-tRNAs is 4.517. Thus the trained grammar
distinguishes perfectly between tRNAs and non-tRNAs and more reliably than the alignment
grammar. This is unexpected because the trained grammar is obtained using only 500 training
sequences, so 977 test tRNA sequences are completely new for the trained grammar, while the
alignment grammar is obtained using all 1477 aligned tRNA sequences.

Figure 3.3: NLL-score versus se- \ \
quence length for tRNAs and | " RNAs non-tRNAs
non-tRNAs. All complete tRNA |
sequences of length 71-90 from ‘ ‘
the EMBL Data Library are 0 R “‘
shown. 200+ P ‘li‘ B

NLL—score

Length of sequences

3.3 Multiple sequence alignments

From a grammar it is possible to obtain a multiple alignment of all the sequences. The grammar
can produce the most likely parse tree for the sequences to be aligned. This gives an alignment of
all the nucleotides that align to the match nonterminals on the main line in the grammar. Between
the match nonterminals there might be insertions of varying lengths, but by inserting enough spaces
in all the sequences to accommodate the longest insertion, an alignment is obtained. Figure 3.5
shows the original alignment of 15 tRNA sequences in EMBL Data Library. Figure 3.6 shows the
alignment produced by the trained grammar for the same sequences. The boundaries of the helices
and loops are the same as those in Figure 3.5. The major difference between the two alignments is
the extra arm, which is itself highly variable in terms of its length and sequence. Both alignment
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GCCCGGGUGGUGAAAUC-GGUA-GACACGCAGGACUUAAAAUCCUGU-GGCA---UAAA----AGCCA-UGUCGGUUCAAGUCCGACCCCGGGCA
GGAUGGAUGUCUGAGC--GGUUGAAAGAGUCGGUCUUGAAAACCGAA-GUAUUU-CUAG--GAAUAC--CGGGGGUUCGAAUCCCUCUCCAUCCG
GCGGAUGUGGCGGAAUU-GGCA-GACGCGCUAGAAUCAGGCUCUAGU-GUCU---UUAC----AGACG-UGGGGGUUCAAGUCCCUUCAUCCGCA

GCCCGGCUAGCUCAGUC-GGU--AGAGCAUGAGACUCUUAAUCUCAGG-=—==============—= GUCGUGGGUUCGAGCCCCACGUUGGGCG
GGGUGUAUAGCUCAGUU-GGU--AGAGCAUUGGGCUUUUAACCUAAUG----=——=—=======——= GUCGCAGGUUCAAGUCCUGCUAUACCCA
GACAUCGUAGCAAAGU--GGUCUAAUGCGUCUGACUAGAAAUCAGAU-CCCU---UC--—---~- GGGGG-CGCAGGUUCGAACCCUGCCGAUGUCG

GCCGAGGUGGUGGAAUU-GGUA-GACACGCUACCUUGAGGUGGUAGU-GCCC---AAUA----GGGCU-UACGGGUUCAAGUCCCGUCCUCGGUA
GCGAAGGUGGCGGAAUU-GGUA-GACGCGCUAGCUUCAGGUGUUAGU-GUCC---UUAC----GGACG-UGGGGGUUCAAGUCCCCCCCCUCGCA
GGAGAGAUGCCGGAGC--GGCUGAACGGACCGGUCUCGAAAACCGGA-GUAGGG-GCAA--CUCUAC--CGGGGGUUCAAAUCCCCCUCUCUCCG

GGGUCGUUAGCUCAGAC-GGU--AGAGCAGCGGACUUUUAAUCCGUUG-================—= GUCGAAGGUUCGAAUCCUUCACGACCCA
GCGGGGGUGGCUGAGCCAGGCCAAAAGCGGCGGACUUAAGAUCCGCU-CCC----GUAG----~ GGGUUCGCGAGUUCGAAUCUCGUCCCCCGCA
GCGCGGGUAGCCAAGU--GGCCAAAGGCGCAGCGCUUAGGACGCUGU-GGU----GUAG----~— ACCUUCGCAGGUUCGAACCCUGUCCCGCGCA
GGGCCCGUAGCUUAGUCUGGU--AGAGCGCCUGGCUUUUAAUCAGGCG———==============—= GUCGAGGGUUCGAAUCCCUUCGGGCCCG

GGAAGAUUACCCAAGUCCGGCUGAAGGGAUCGGUCUUGAAAACCGAGAGUCGG--GGAAA--CCGAG--CGGGGGUUCGAAUCCCUCAUCUUCCG
GCCUUUGUAGCGGAAU--GGU--AACGCGGCAGACUCAAAAUCUGCU-UUGG---UAAC----CCAGG-UGGUAGUUCGACUCUCCCCAAAGGCA

Figure 3.5: The original alignment of 15 tRNA sequences from EMBL Data Library. The
parentheses above the alignments indicate which columns (positions) form base pairs and

(4.

===" indicates the anticodon domain.

give the same base-pairing. Once a grammar has been constructed, a similar multiple alignment
can be produced for the entire set of 1477 tRNA sequences (or any subset).

3.4 Predictions of secondary structures

As discussed in the last section, the trained grammar produces the same alignment as the original
alignment for the base pairing parts. This implies that the most likely parse trees produced by the
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Base pairings Anticodon Base pairings

(e 1)) ((CC === ))))) 4444¢ NN

GCCCGGGUGGUGAAAU.C.GG.Ua.GACACGCAGGACUUAAAAUCCUGU. . .. ....... Ggcauaaaagcc. .A-............. -UGUCGGUUCAAGUCCGACCCCGGGCA
GGAUGGAUGUCUGAGC. - .GGuUg . AAAGAGUCGGUCUUGAAAACCGAA. ... ....... Guauuucuaggaaud-............. CCGGGGGUUCGAAUCCCUCUCCAUCCG
GCGGAUGUGGCGGAAU.U.GG.Ca.GACGCGCUAGAAUCAGGCUCUAGU. . .. ....... Gucuuuacagac..G-............. -UGGGGGUUCAAGUCCCUUCAUCCGCA
GCCCGGCUAGCUCAGU.C.GG.U. . AGAGCAUGAGACUCUUAAUCUCAG. . .. ....... G.ooviiii G=.oii UCGUGGGUUCGAGCCCCACGUUGGGCG
GGGUGUAUAGCUCAGU.U.GG.U. . AGAGCAUUGGGCUUUUAACCUAAU. . .. ....... G.ooviiii G=.oii UCGCAGGUUCAAGUCCUGCUAUACCCA
GACAUCGUAGCAAAGU.-.GG.UcuAAUGCGUCUGACUAGAAAUCAGAUcccuucggg. .G. .. .......... G=.oii -CGCAGGUUCGAACCCUGCCGAUGUCG
GCCGAGGUGGUGGAAU.U.GG.Ua.GACACGCUACCUUGAGGUGGUAGUgcccaauag. .G. .. .......... GC............. UUACGGGUUCAAGUCCCGUCCUCGGUA
GCGAAGGUGGCGGAAU.U.GG.Ua.GACGCGCUAGCUUCAGGUGUUAGU. . .. ....... Guccuuacggac. .G-............. -UGGGGGUUCAAGUCCCCCCCCUCGCA
GGAGAGAUGCCGGAGC.-.GGcUg. AACGGACCGGUCUCGAAAACCGGA. ... ....... Guaggggcaacucul-............. CCGGGGGUUCAAAUCCCCCUCUCUCCG
GGGUCGUUAGCUCAGA.C.GG.U. . AGAGCAGCGGACUUUUAAUCCGUU. . .. ....... G.ooviiii G=.oii UCGAAGGUUCGAAUCCUUCACGACCCA
GCGGGGGUGGCUGAGCCcA .GG . CcaAAAGCGGCGGACUUAAGAUCCGCUcccguaggg. -G. .. .......... U-.o UCGCGAGUUCGAAUCUCGUCCCCCGCA
GCGCGGGUAGCCAAGU. - .GG.CcaAAGGCGCAGCGCUUAGGACGCUGU. . .. .... ... G.ooviiii GUguagaccu. .. .. UCGCAGGUUCGAACCCUGUCCCGCGCA
GGGCCCGUAGCUUAGUCU.GG.U. . AGAGCGCCUGGCUUUUAAUCAGGC. . .. ....... G.ooviiii G=.oii UCGAGGGUUCGAAUCCCUUCGGGCCCG
GGAAGAUUACCCAAGU.CcGGcUg. ALGGGAUCGGUCUUGAAAACCGAG. ... ....... Aol GUcggggaaaccgag-CGGGGGUUCGAAUCCCUCAUCUUCCG
GCCUUUGUAGCGGAAU.-.GG.U. . ALCGCGGCAGACUCAAAAUCUGCUuugguaacccaG. .. .......... G=.oii -UGGUAGUUCGACUCUCCCCAAAGGCA

Figure 3.6: Alignment produced by the trained grammar for the tRNA sequences depicted
in Figure 3.5. Capital letters correspond to nucleotides aligned to the main line of the
grammar, “=” to deletions by skip productions in the grammar, and lower-case letters to
nucleotides treated as insertions by the grammar. The “.” is used as a fill character to

accommodate insertions.

trained grammar give the correct secondary structure for all 1477 tRNA sequences, 500 training
plus 977 unseen test sequences.

3.5 Introns

Our experiments with introns are currently only very preliminary. We have not yet obtained a
large enough data set to do truly meaningful experiments. In one experiment, we used 55 sequences
of introns and a simple regular grammar with five nonterminals for training a (sub)grammar to
model introns. The training process reestimated the distributions of the four nucleotides at the
first and last two consective positions of the introns. This grammar trained for introns and the
grammar previously trained for intron-free tRNAs were then combined into a single grammar
modeling tRNAs with introns.

We tested the grammar on the same 55 tRNA sequences with introns. Of these, the grammar
correctly identified the positions of introns and introns themselves for 44 sequences. Introns with
the same lengths as the correct ones but incorrect positions for two or three bases (shifted) were
found for 7 sequences. The grammar completely failed to identify introns for 4 sequences. Thus,
this approach shows some promise in identifying introns and finding the correct secondary structure
for tRNA sequences with introns.

3.6 Displaying folded RNA sequences: XRNA

XRNA is a suite of programs providing, among other functions, graphic manipulation and
labeling of previously determined RNA secondary structures [WGN93]. Using simple filters, we
were able to transform the secondary structure predicted by our grammar into XRNA format.
Figure 3.7 shows XRNA’s depiction of a secondary structure predicted by the trained grammar.
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4 Discussion

The method we have proposed represents a significant new direction in computational biose-
quence analysis. We believe SCFGs may provide a flexible and highly effective statistical method
in a number of problems for RNA sequences including database searching, multiple alignment, pre-
diction of secondary structures, and dealing with introns, and that the grammar itself may be a
valuable tool for representing an RNA family or domain. The present work demonstrates the use-
fulness of SCFGs with tRNA sequences. Since our experiments with introns are only preliminary,
further work will be required to demonstrate the usefulness of SCFGs in searching databases for
tRNA sequences with introns. Iixtending the grammar to handle the more unusual mitochondrial
tRNAs would also be of interest. However, the most challenging future problem is to model a
family of larger RNA sequences, e.g. ribosomal RNA, with SCFGs.

Another important area for future research will be to determine how much prior knowledge
about the structure of the class of RNA sequences being modeled is necessary for this approach
to work. In our experiments with tRNA, we started the training with an initial grammar that
contained quite a bit of knowledge about the structure of tRNA. A more challenging training
approach would be to use a homogeneous initial grammar embodying no specific knowledge about
the tRNA family. As described in Section 2.5, we could then try to gradually extend the grammar
to account for the structure of the training sequences. We might do this by starting with a regular
grammar that represents an HMM like those used to model protein families in our previous work
[KBMT92]. Then, by studying multiple alignments produced by this grammar, we might be able
to use methods for finding correlations between columns in this multiple alignment, such as those
in [GPHT92, Lap92, KB93], to discover some of the base paring structure in tRNA. Having done
this, it would be straightforward to modify the grammar to account for this base pairing, and then
iterate this process until no new structure is found. This process would essentially automate some
of the hand methods used in the original investigation of tRNA structure by phylogenetic analysis.

Finally, there is the question of what further generalizations of hidden Markov models, beyond
SCFGs, might be useful in computational biosequence analysis. The key advantage of the method
we propose here over the HMM method is that it allows us to explicitly deal with the secondary
structure of the RNA sequence. We make the leap from stochastic models of strings to stochastic
models of trees, and this lets us model the base pairing interactions of the molecule, which determine
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its secondary structure. This progression is similar to the path taken by the late King Sun Fu and
his colleagues in their development of the field of syntactic pattern recognition [Fu82]. To go beyond
this to the tertiary structure would require still more general methods. One possibility would be to
consider stochastic graph grammars (see e.g. [ER91]) in hopes of obtaining a more general model
of the interactions present in the molecule beyond the primary structure. If a stochastic graph
grammar framework could be developed that included both an efficient method of finding the most
probable “folding” of the molecule given the grammar and an efficient EM method for estimating
the parameters of the grammar from folded examples, then extensions of the approach taken in this
paper to more challenging problems, including RNA tertiary structure and protein folding, would
be possible. This is perhaps the most interesting direction for further research suggested by the
results of this paper.
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A Appendix

The trained grammar was deduced from 500 tRNA sequences without introns. Tabulated here
are its total 660 productions. The start symbol Sy is written as S and the other nonterminals
are represented in abbreviated form—mnamely, as the numbers that in full form would appear as 5-
symbol subscripts. Nonterminals numbered from 1 to 22, from 26 to 46 and from 63 to 79 are match
nonterminals and nonterminals numbered from 81 to 87 and from 90 to 96 are insert nonterminals.

S—175 1.000000 8§ — 976 1.000000 76 — 11 77 1.000000 7T — 26 78 1.000000
78 — 2779 1.000000 79 — 39 63 1.000000 1—-C2¢C 0.004207 1—-C26G 0.066512
1—-C2U 0.004282 1—-C2A 0.016078 1—-G2¢C 0.650489 1—-G26G 0.000308
1—-G2U 0.059865 1—-G2A 0.000282 1—-0U2¢C 0.000360 1—-U26G 0.000947
1—-020U 0.004554 1—-0U2A 0.075745 1—-42C 0.004450 1—-A2G 0.000287
1—-A420U 0.111253 1 —A4A2A 0.000380 2—=C3¢C 0.000303 2—-0C3G 0.380810
2—-C30 0.000378 2—=C3A 0.002413 2—-G3¢C 0.412326 2—-G3G 0.000308
2—-G30U0 0.028631 2—-G3A 0.000282 2—=U3¢C 0.000360 2—=U3aG 0.012660
2—-U30 0.000650 2—=U3A 0.087458 2—A3C 0.000545 2—A3G 0.000287
2—A30 0.072210 2—A3A 0.000380 3—C4¢C 0.000303 3—=C4aG 0.332006
3—-C40 0.000378 3—C4A 0.004365 3—-G4¢C 0.332287 3—-G4aG 0.000308
3—-G470U 0.061818 3—G4A 0.000282 3—=U4¢C 0.000360 3—=U4a 0.010708
3—-U40 0.002602 3—U4A 0.130405 3—A4C 0.000545 3—4A4G 0.000287
3—A40 0.121014 3—A4A 0.002333 4 —-C5C 0.002255 4 —-C5G 0.242207
4 —-C5U 0.002330 4 —-C5A 0.004365 4 —-G5C 0.330335 4 —-G5G 0.000308
4 —-G5U 0.048152 4 —-G5A 0.000282 4 —-U5C 0.000360 4 —-U5G 0.061464
4 —-U5U 0.000650 4 —-Ub5A 0.169448 4 —A5C 0.002497 4 — A5G 0.000287
4 —A50 0.134679 4 —A5A 0.000380 5—=C6¢C 0.006159 5—=0C6G 0.294916
5—=C60U 0.002330 5—=C6A 0.000461 5—=G6¢C 0.254200 5—-G6G 0.000308
5—=G6U 0.052057 5—=G6A 0.004187 5—=U6¢C 0.000360 5—=U6G 0.024373
5—=U60 0.002602 5—=U6A 0.128453 5—=A6¢C 0.002497 5—=A6G 0.000287
5—=A60 0.226430 5—=A6A 0.000380 6 —-CT7¢C 0.000303 6 —=CT7G 0.253920
6 —=C7U 0.000378 6 —CTA 0.000461 6 —-GT7C 0.238582 6 —-GT7G 0.000308
6 —G7U 0.032535 6 —GTA 0.000282 6 —-UTC 0.000360 6 —-UT7G 0.053655
6 —=UT7U 0.014315 6 —UTA 0.224109 6 —ATC 0.000545 6 —ATG 0.000287
6 —ATU 0.179579 6 —ATA 0.000380 7T—C8C¢C 0.000303 7T—C8G 0.029421
7T—C8U 0.000378 7T—C8A 0.000461 7T—G8C 0.373282 T—G8G 0.000308
7T—G8TU 0.032535 T—G8A 0.002235 7T—U8C 0.000360 T—U8G 0.000947
7T—U8TU 0.000650 7T—U8A 0.206540 7T—A8C 0.000545 7T—A8G 0.000287
7T—A8TU 0.351369 7T—AS8A 0.000380 9—C10 0.000671 9 —G10 0.010686
9 —U10 0.963879 9 — A10 0.024763 10 — C 0.038552 10 — G 0.335656
10 - U 0.016880 10 — A 0.608913 11 —C¢12C¢ 0.000303 11 — €126 0.025517
11 — C12U 0.000378 11 - C12 4 0.002413 11— G612 ¢ 0.763715 11 — G126 0.000308
11 - G120  0.122335 11 — G124 0.000282 11 —-U12 C 0.000360 11 - U126 0.004851
11 —-0U12U0 0.002602 11 - U124 0.023036 11 — A12 C  0.000545 11 — A12G  0.000287
11 — 412U 0.052688 11 — A 124 0.000380 12 —C13 C 0.000303 12 —C13 G 0.650210
12— C13U 0.000378 12 — C13 4 0.000461 12 — G 13 C 0.035558 12 — G136 0.000308
12 — G130 0.001300 12 — G134 0.000282 12 —-U13 ¢ 0.000360 12 —U13G 0.018516
12 —-=U 13U 0.000650 12 —U13 A 0.245583 12 — A 13 C 0.000545 12 — A 13 G  0.000287
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12
13
13
13
13
14
14 —
14 —
14
15
15
16
16
17
17 —
17
18
18
19
19
20
20
21
21
21
22
26
27
27 —
27 —
27
28
28
28
28
29
29
29
29
30
30
30
30
31
31
31
31
32
33
34
35
36
37
38

LR

|

b

I

I

A130
14U
G140
U14U
A140
C15U
G150
U15U
A150
U 81
G 16
G 82
c17
C 83
18

A 18
A 34
U 19
U 85
G 20
G 86
Cc21
c 87
22

A 22

C28 A
G 28 A
U28 A
A28 A
C29 A
G29 A
U29 A
A29 A
C30A
G30A
U30 A
A30A
C31A
G31A
U3l A
A31A
C32A
G32A
U324
A32A
A 33
A 34
A 35
A 36
A 37
A 38

0.044879
0.000378
0.003253
0.000650
0.062449
0.002330
0.014966
0.068975
0.015597
0.004766
0.002578
0.058356
0.003357
0.035436
0.005830
0.053561
0.002634
0.322187
0.003227
0.964033
0.226948
0.003233
0.058272
0.001129
0.035927
0.909958
0.423500
0.006317
0.002235
0.284626
0.008189
0.000461
0.000282
0.317813
0.000380
0.000461
0.000282
0.208492
0.002333
0.002413
0.000282
0.021084
0.000380
0.000461
0.000282
0.097218
0.000380
0.020776
0.000839
0.074605
0.313848
0.271980
0.758438
0.698628

12— A 13 A
13 —=C14 A
13 —-G14 A
13 —-U14 A
13— A14 A
14 —C15 A
14 — G154
14 — U154
14 — A15 A
15 — A 81
15 — U 16
16 — U 82
16 — G 17
17 G 83
17 C 18
18 C 84
18 19

18 A19
19 A 85
19 U 20
20 U 86
20 G 21
21 G 87
21 C 22
22 ¢

¢

27 — C 28
27 — G 28
27 — U 28
27 — A 28
28 — C 29
28 — G 29
28 — U 29
28 — A 29
29 — € 30
29 — G 30
29 — U 30
29 — A 30
30 — € 31
30 — G 31
30 — U 31
30 — A 31
31 — C 32
31 — G 32
U 32
A 32

|

Y

oo

34
35
36
37
38

I

Qo

90

0.000380
0.006317
0.002235
0.473986
0.004285
0.004365
0.117412
0.097219
0.101893
0.007717
0.003044
0.001130
0.670300
0.000778
0.169033
0.011019
0.550425
0.035503
0.002010
0.001679
0.000935
0.756208
0.001425
0.031293
0.008646
0.032570
0.004207
0.074601
0.000360
0.000545
0.000303
0.090218
0.000360
0.000545
0.000303
0.396708
0.000360
0.002497
0.000303
0.662203
0.000360
0.000545
0.000303
0.187827
0.002313
0.000545
0.666561
0.012634
0.233932
0.172128
0.231939
0.000671
0.166147
0.003007

13 —-C14 C
13 —G14 C
13 —-U14 ¢C
13 —Al14C
14 —C15¢C
14 —G15¢C
14 —U15¢C
14 — A15¢C
15 — ¢ 81
15 — 16
15 — A 16
16 — A 82
16 —U17
17 — U 83
17 — G 18
18 — G 84
18 — C 19
19 — C 85
19 — 20
19 — A 20
20 — A 86
20 — U 21
21 — U 87
21 — G 22
22 — G

26 — G

27 — C 28
27 — G 28
27 — U 28
27 — A 28
28 — C 29
28 — G 29
28 — U 29
28 — A 29
29 — C 30
29 — G 30
29 — U 30
29 — A 30
30 — C 31
30 — G 31
30 — U 31
30 — A 31
31 — C 32
31 — G 32
31 - U32
31 — A 32
32 — G 33
33 — G 34
34 — @G 35
35 — G 36
36 — G 37
37 — G 38
38 — G

39 — G 90

DR Qoo Qoo

0.000303
0.215157
0.000360
0.002497
0.004207
0.008227
0.000360
0.004450
0.004600
0.013649
0.962209
0.001870
0.001734
0.039975
0.036450
0.000716
0.052808
0.001171
0.001485
0.024836
0.001296
0.001440
0.268719
0.063284
0.060528
0.453283
0.378858
0.000308
0.045847
0.002239
0.367146
0.000308
0.018516
0.000287
0.173881
0.002260
0.002899
0.000287
0.209020
0.000308
0.012660
0.000287
0.267585
0.000308
0.032181
0.000287
0.002711
0.000718
0.331669
0.220023
0.226004
0.237966
0.012680
0.000752

A. Appendix

13 —-C14 G
13 —G14 G
13 —-U14 G
13 —A14G
14 —C15G
14 —G15G
14 —U15G
14 — A15G
15 — G 81
15 — C 16
16 — C 82
16 — 17
16 — A 17
17 — A 83
17 = U 18
18 — U 84
18 — G 19
19 — G 85
19 — C 20
20 — C 86
20 — 21
20 — A 21
21 — A 87
21 — U 22
22 —- U
26 - U
27T — C 28U
27T — G 28U
27T — U 28U
27T — A 280U
28 — C29U
28 — G29U
28 —U29U
28 — A29U
29 — C30U
29 — G30U
29 —U30U
29 — A30U
30 —-C31U
30 —G31U
30 —-U31U
30— A31U
31 —C32U
31 —G32U
31 —U32U0
31 —A32U
32 —-U 33
33 U 34
34 —- U35
35 - U 36
36 — U 37
37 — U 38
38 = U
39 — U 90

0.218781
0.000308
0.008755
0.000287
0.456945
0.002260
0.094651
0.006143
0.000727
0.000709
0.000684
0.003516
0.259052
0.002145
0.656792
0.023407
0.001300
0.000842
0.000718
0.003906
0.001464
0.004570
0.004610
0.535341
0.020867
0.090646
0.008186
0.063770
0.012362
0.107348
0.004282
0.014966
0.006506
0.177627
0.000378
0.007157
0.000650
0.201052
0.002330
0.036439
0.002602
0.048783
0.004282
0.007157
0.008458
0.390412
0.309951
0.985809
0.359793
0.294001
0.270077
0.002924
0.122545
0.047358
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39 — A 90 0.000881 39 — 40 0.007089 39 — € 40 0.139147 39 — G 40 0.182203
39 — U 40 0.180513 39 — A 40 0.439051 40 — ¢ 91 0.000712 40 — G 91 0.000978
40 — U 91 0.001084 40 — A 91 0.001035 40 — 41 0.976065 40 — C 41 0.003034
40 — G 41 0.001302 40 — U 41 0.001442 40 — A 41 0.014348 41 — G 92 0.000713
41 — G 92 0.000977 41 — U 92 0.001088 41 — A 92 0.001030 41 — 42 0.977563
41 — C 42 0.003038 41 — G 42 0.001294 41 — U 42 0.001435 41 — A 42 0.012862
42 — € 93 0.001003 42 — G 93 0.053461 42 — U 93 0.003357 42 — A 93 0.011759
42 — 43 0.004953 42 — C 43 0.026339 42 — G 43 0.556403 42 — U 43 0.179120
42 — A 43 0.163605 43 — C 94 0.003156 43 — G 94 0.002509 43 — U 94 0.010361
43 — A 94 0.008110 43 — 44 0.002968 43 — C 44 0.008442 43 — G 44 0.663010
43 — U 44 0.060786 43 — A 44 0.240658 44 — G 95 0.004842 44 — G 95 0.000898
44 — U 95 0.010156 44 — A 95 0.000944 44 — 45 0.975330 44 — G 45 0.002594
44 — G 45 0.001113 44 — U 45 0.002839 44 — A 45 0.001284 45 — G 96 0.010055
45 — G 96 0.027950 45 — U 96 0.002756 45 — A 96 0.001831 45 — 46 0.311847
45 — C 46 0.063857 45 — G 46 0.006889 45 — U 46 0.566127 45 — A 46 0.008688
46 — C 0.724378 46 — G 0.008692 46 — U 0.234192 46 — A 0.032738
63 — C64C 0.000303 63 — C64G 0.224638 63 — €C 64U 0.000378 63 — C64 A 0.004365
63 — G64C 0.383043 63 — G64G 0.000308 63 — G64U 0.143809 63 — G644 0.000282
63 —U64C 0.004265 63 —U64G 0.010708 63 — U640 0.004554 63 — U644 0.015228
63 — A64C 0.000545 63 — A64G 0.002239 63 — A64U 0.203004 63 — A64 A 0.002333
64 — C65C 0.002255 64 — C65G 0.365193 64 — C65U0 0.002330 64 — C65 A4 0.000461
64 — G65C 0.129262 64 — G 65G 0.000308 64 — G65U 0.057913 64 — G654 0.000282
64 — U65C 0.004265 64 —U65G 0.038038 64 — U650 0.012362 64 — U 65 A  0.249487
64 — A65C  0.002497 64 — A 65G  0.000287 64 — A65TU 0.134679 64 — A65 A 0.000380
65 — €66 C 0.000303

65 — C66 G 0.166073 65 — C66U 0.002330 65 — C66 A 0.000461 65 — G66 C 0.416230
65 — G66G 0.002260 65 — G66U 0.036439 65 — G 66 A 0.000282 65 —U66 C 0.000360
65 —U66G 0.043894 65 — U660 0.004554 65 —U66 A 0.101123 65 — A 66 C  0.002497
65 — A66 G 0.000287 65 — A 66U 0.222526 65 — A 66 A 0.000380 66 — C 67 C  0.000303
66 — C67G 0.015756 66 — C 67U  0.002330 66 — C 67 A 0.000461 66 — G 67 C  0.794950
66 — G 67 G  0.000308 66 — G 67U  0.007157 66 — G 67 A 0.000282 66 — U 67 C  0.000360
66 — U67G  0.002899 66 — U 67U  0.000650 66 — U 67 A  0.024988 66 — A 67 C  0.004450
66 — A 67 G 0.000287 66 — A 67U  0.144440 66 — A 67 A 0.000380 67 — C68C  0.000303
67 — C68 G 0.004043 67 — C 68U  0.000378 67 — C 68 A 0.000461 67 — G 68 C  0.955027
67 — G 68 G 0.000308 67 — G 68U  0.005205 67 — G 68 A 0.000282 67 — U 68 C  0.000360
67 —U68G 0.000947 67 — U 68U  0.000650 67 — U668 A 0.003515 67 — A 68 C  0.004450
67 — A 68 G 0.000287 67 — A 68U  0.023405 67 — A 68 A 0.000380 68 — € 69 0.002665
68 — G 69 0.000718 68 — U 69 0.963879 68 — A 69 0.032738 69 — C 70 0.006653
69 — G 70 0.020654 69 — U 70 0.971854 69 — A 70 0.000839 70 — ¢ 71 0.979569
70— G 71 0.000718 70 - UT1 0.008905 70 — ATl 0.010808 71 — ¢ 72 0.002665
71 — G 72 0.608791 71— U T2 0.000931 71 — A T2 0.387613 72 — C T3 0.002665
72 — G773 0.000718 72 —-UT3 0.000931 72 — A T3 0.995687 73 — C T4 0.044532
73 — G T4 0.224010 73 —-UT4 0.242166 73 — A T4 0.489291 74 — C 0.138236
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74
75
81
81
82
82
83
83
84
84
85
85
86
86
87
87
90
90
91
91
92
92
93
93
94
94
95
95
96
96

L e e e e

G 81
G 16
G 82
G 17
G 83
G 18
G 84
G 19
G 85
G 20
G 86
G 21
G 87
G 22
G 90
G 40
G 91
G 41
G 92
G 42
G 93
G 43
G 94
G 44
G 95
G 45
G 96
G 46

0.008692
0.243947
0.031543
0.034434
0.009900
0.012220
0.008472
0.010576
0.017457
0.036755
0.083086
0.264483
0.002946
0.008580
0.001941
0.090795
0.152056
0.115297
0.119579
0.109669
0.119947
0.109585
0.179996
0.001423
0.148002
0.005484
0.296465
0.037659
0.143528
0.104709

74 —TU

75— U

81 — U 81
81 — U 16
82 — U 82
82 — U 17
83 — U 83
83 — U 18
84 — U 84
84 — U 19
85 — U 85
85 — U 20
86 — U 86
86 — U 21
87 — U &7
87 — U 22
90 — U 90
90 — U 40
91 — U 91
91 — U 41
92 — U 92
92 — U 42
93 — U 93
93 — U 43
94 — U 94
94 — U 44
95 — U 95
95 — U 45
96 — U 96
96 — U 46

0.816346
0.102608
0.041903
0.282733
0.022805
0.095479
0.024856
0.220064
0.023082
0.235993
0.103787
0.200870
0.011943
0.492268
0.013935
0.491867
0.227611
0.003828
0.151131
0.127369
0.150505
0.127151
0.258171
0.045531
0.448381
0.014983
0.043000
0.039676
0.255206
0.014544

74 — A

75 — A

81 — A 81
81 — A 16
82 — A 82
82 — A 17
83 — A 83
83 — A 18
84 — A 84
84 — A 19
85 — A 85
85 — A 20
86 — A 86
86 — A 21
87 — A 87
87 — A 22
90 — A 90
90 — A 40
91 — A 91
91 — A 41
92 — A 92
92 — A 42
93 — A 93
93 — A 43
94 — A 94
94 — A 44
95 — A 95
95 — A 45
96 — A 96
96 — A 46

0.036725
0.600937
0.119663
0.431220
0.044885
0.022534
0.011430
0.036177
0.020501
0.070030
0.094498
0.121572
0.022555
0.244825
0.010024
0.219434
0.165586
0.011043
0.141788
0.137210
0.142353
0.137553
0.301805
0.001823
0.155554
0.088435
0.253582
0.008721
0.069289
0.007847

75
81
81
82
82
83
83
84
84
85
85
86
86
87
87
90
90
91
91
92
92
93
93
94
94
95
95
96
96
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C 81
C 16
C 82
c17
C 83
Cc18
C 84
c19
C 85
C 20
C 86
Cc21
c 87
C 22
¢ 90
C 40
¢ 91
C 41
C 92
C 42
C93
C 43
C 94
C 44
C 95
C 45
C 96
C 46

0.052507
0.029213
0.029291
0.069027
0.723150
0.029567
0.658858
0.016460
0.579722
0.065638
0.066065
0.019532
0.197352
0.070226
0.101778
0.321271
0.003308
0.113235
0.100018
0.112514
0.100392
0.146966
0.064284
0.130862
0.008299
0.286602
0.034294
0.401537
0.003339



