
Massively Parallel Biosequence AnalysisRichard HugheyComputer Engineering Board of StudiesUniversity of California, Santa Cruzrph@ce.ucsc.edu(408) 459-2939Technical Report UCSC-CRL-93-14April 2, 1993AbstractMassive parallelism is required for the analysis of the rapidly growing biosequencedatabases. First, this paper compares and benchmarks methods for dynamic program-ming sequence analysis on several parallel platforms. Next, a new hidden Markov modelmethod and its implementation on several parallel machines is discussed. Finally, theresults of a series of experiments using this massively parallel implementation are de-scribed.Keywords: Computational biology, dynamic programming, parallel algorithms, systolicco-processors, hidden Markov models.1 IntroductionThe goal of the Human Genome Project is to decode and understand human genetic infor-mation [4, 10, 29]. Biosequence databases currently contain on the order of 108 charactersin 105 full and fragmentary biosequences; massive parallelism is required to fully analyzethis vast, rapidly growing store of information.Biologically, the DNA (deoxyribonucleic acid) located in a cell encodes the structure ofan organism in thousands or millions of nucleotides | three billion in the case of Homosapiens. RNA (ribonucleic acid) molecules are generally shorter, containing up to a fewthousand nucleotides. A nucleic acid sequence may encode one or more amino acid se-quences, each sequence being a protein. Each set of three consecutive nucleotides speci�esan amino acid to be added to the protein. The proteins are generated from the DNA witha complex chemical decryption algorithm involving the RNA. Proteins tend to be about1000 amino acids long.There are many tasks that the computational biologist would like to perform on biose-quences. A few that are relevant to this discussion include:Sequence comparison Determine how similar, by some biologically-signi�cant compar-ison function, two sequences are. This can suggest sequences for further study or1

analysis. A basic dynamic programming sequence comparison method, described be-low, requires O(N2) time, where N is the length of the sequences.Sequence classi�cation Given a sequence determined in the lab, decide its type, forexample whether or not it is a globin such as hemoglobin.Sequence alignment Find the best alignment between two sequences. That is, whichparts of one sequence correspond to which parts of the other. If several importantregions of the �rst have been experimentally determined, sequence alignment willideally locate those regions in other sequences. Sequence alignment information canbe extracted from most sequence comparison algorithms. Regions of the sequencesthat vary little between sequences or organisms are referred to as \conserved" regions.Multiple sequence alignment Find the best alignment among a group of sequences [5].This di�ers considerably from pairwise sequence alignment, and can require O(NM)time forM sequences, if straight-forward dynamic programming is used. Thus, heuris-tics using pairwise alignments are more commonly used. Multiple alignments can beinstrumental for creating informed guesses about sequence function.Subsequence variations The above problems can also be applied to �nding and aligningthe most similar length-` subsequences of two or more sequences, or �nding an optimalvalue for ` under some criterion.An ultimate goal of biosequence analysis (with shades of El Dorado) is to determine amolecules' 3-dimensional structure from its 1-dimensional sequence of nucleotides or aminoacids. A somewhat more practical task is to determine the secondary, or 2-dimensional,structure of a biosequence. While secondary structure is a simpler energy minimizationproblem than tertiary, the complexity of the energy functions and length of the moleculeshave steered research toward neural network pattern recognition of sequence segments thatform particular structures. Current results, however, have only achieved around 60% ac-curacy in prediction [7]. Multiple sequence alignments can form a starting point for 2-Dand 3-D structure prediction when crystallographic data is available for one or more of thealigned sequences.1.1 Biosequence analysis methodsPerhaps the most commonly desired analysis is the determination of the similarity betweentwo biosequences. Computational biologists have several metrics for comparison whichinvolve di�erent costs between nucleotides as well as the possible use of a�ne costs or gappenalties to indicate an added penalty for commencing a series of deletions or insertions inthe matching [3, 5, 20, 26, 28]. Exact sequence comparison (with or without gaps) is anO(n2) dynamic programming algorithm: on a sequential machine, time proportional to thesquare of the sequence length is required to solve the problem.11Masek and Paterson have developed an O(n2log n) algorithm for strings of equal length from a �nitealphabet with a minor restriction on the cost function. It will be faster for values of n greater than 263 000,and is not amenable to parallelization [23]. 2

Distance calculation is governed by a simple recurrence. The cost of transforming astring a into another string b, assuming for convenience that both are of length n, is thesolution dn;n of the recurrence:d0;0 = 0di;0 = di�1;0 + dist(ai; �)d0;j = d0;j�1 + dist(�; bj)di;j = min8><>: di�1;j�1 + dist(ai; bj)di�1;j + dist(ai; �)di;j�1 + dist(�; bj);where � is the null character, and dist(ai; �) is the cost of not matching ai to any characterin b. Edit distance, the number of insertions or deletions required to change one sequenceto another, can be calculated by setting dist(ai; �) = dist(�; bj) = 1, and dist(ai; bj) = 0when the two characters match, and 2 otherwise.The recurrence can be e�ciently mapped to a parallel processor in several ways, perhapsthe most obvious being to assign the i-th column of the dynamic programming matrix, aswell as ai, to processor PEi. Comparison with gap penalties involves three recurrences of asimilar form.An e�cient and widely used statistical heuristic for sequence analysis has been developedby Altschul and colleagues in implemented in the BLAST program [1]. The governing(simple) recurrence is: d0;i = dj;0 = 0di;j = di�1;j�1 + dist(ai; bj):The dist values are a table that reects the evolutionary cost in mutating one amino acidto another (for example, variations on Dayho�'s matrix [9]). This method reduces thecell calculation from 3 minimizations and additions (9 with gaps) to a single addition.Statistical methods are then used to calculate, based on the di;n diagonal point-mutationscores, a good alignment between sequences. The methods can include a window parameter,roughly corresponding to �xing a maximum gap length.1.2 Hardware for biosequence analysisSeveral single-purpose and specialized hardware systems have been built to address biose-quence analysis problems. Four recent directions are illustrated by BioScan, BISP, B-SYS,and PAM and Splash.BioScan is a massively parallel VLSI implementation of the BLAST algorithm [27].BioScan chips are fabricated in 1.2�m CMOS, contain 812 PEs (537000 transistors), andrun at 32MHz. This chips can accept a character every 17 clocks, or 1.88 million charactersper second (1.88 MCPS), though the actual system is slower. A working system of 16 chips(12 992 PEs) has been built, and an Internet server interface is currently under development.The system is preloaded with a weight table scaled according to sequence length before3

performing the comparison. Internally, BioScan has 16-bit words and uses an in�nity valueto prevent overow and minimum value (0) to prevent underow.BISP takes a di�erent approach, implementing in hardware full dynamic programmingwith gaps [6]. Each 400 000-transistor, 1�m CMOS chip contains 16 sequence comparisonPEs. Each PE has about 35 16-bit registers, comparators, and multiplexors, in addition tolocal random access memory (RAM) for the storage of cost tables. About 20% of each chip isdevoted to controlling the PEs. As with BioScan, sentinels prevent overow and underow.Although it operates with an 80ns clock (one clock for each dynamic programming cellupdate), its limiting factor will be the 3Mbyte/s data transfer rate to the host.B-SYS is a general-purpose systolic array that, although optimized for a variety of se-quence comparison algorithms, can perform several other functions such as text compressionand decompression [17]. With its less aggressive implementation, each 85 000-transistor2�m CMOS chip features 47 PEs in a linear array. Each 8-bit ALU shares 16 registerswith each of its two neighbors, enabling shared data and zero-overhead communication.The chips can execute instructions at about 4MHz, and the basic sequence comparisonoperation requires 6{25 instructions (660{160 kCPS), depending on algorithm. Althoughsentinels can be programmed, typically modulo sequence comparison, in which dynamicprogramming values are compared modulo 256, is used [21, 16]. As with BISP, B-SYS canimplement dynamic programming with gap penalties. A reimplimentation on the order ofBISP or BioScan could place 256 PEs on each chip, and be clocked 3{6 times faster.Splash and PAM are �eld-programmable gate array systems speci�cally designed forcon�guration as special-purpose co-processors [12, 2, 15]. Thus, they provide for the im-plementation of sequence comparison algorithms in hardware without the need to fabricatenew chips for each algorithm. Programming speci�c algorithms is, unfortunately, time con-suming. An edit-distance calculation with �xed costs and no gaps required nearly 3000 linesof code, and placed 30 PEs on each chip (the implemented algorithm required 2N � 1 PEsto compare strings of length N over a 4-character alphabet). Implementation for a largeralphabet (the proteins), biologically-signi�cant cost functions (at least a 6 bits), and gappenalties would severely decrease processor density and, as a result, performance. However,the e�ort in programming these systems is signi�cantly lower than designing a VLSI chip,and they are general-purpose, able to perform a large number of functions.Table 1 summarizes the performance of several of these machines. The number of PEs,maximum native sequence length, and the approximate number of chips are listed for eachmachine. Performance metrics include 100� 100 sequence comparison, a metric �rst usedwith the nMOS P-NAC system [22]; the maximum attained or attainable number of dynamicprogramming cell updates per second (CUPS), generally not for the 100�100 problem; andthe CUPS per chip, a rough measurement of e�ciency or performance per dollar. B-SYS*�gures are estimates of a 64-chip version (using the 47-PE chip) with a more sophisticatedinterface between host and co-processor (the prototype was built on an ISA card, andeach instruction required 3 writes over the 8MHz bus). The BISP times are derived frompublished system performance estimates. In the 100� 100 column, BISP and B-SYS* areassumed to be able to perform several comparisons at once, breaking each comparison at achip boundary, as the BioScan system enables (this handicaps BioScan, as 712 PEs are notused). All others are based on personal experimentation or extrapolation from published4

Machine Year Chips PEs Max N 100�100 (s) CUPS CUPS/chipCray 2 [12] 85 | 1 | 6.5 153kSun 4/50 90 | 1 | 0.75 1333kCM-2 87 3074 16384 | 0.17 10M 2kMP-1 90 512 8192 | 0.031 55M 107kP-NAC [22] 87 9 270 134 0.91 1471k 163kSplash [12] 90 64 248 123 0.020 50M 781kB-SYS [17] 90 10 470 470 0.351 13M 1300kB-SYS* (est) [17] 90 64 3008 3008 0.002 1600M 25MBISP (est) [6] 91 64 1024 1024 0.0003 3072M 192MBioScan [27] 91 16 12992 12992 0.0004 25G 1583MTable 1: Edit distance calculation (arranged by CUPS/chip).
T(d Ii

)
2

i0

m0

d1

i1

m1

d2

i2

m2

d3

i3

m3

i4

m4 m5

1

T(d Id)2 1

T (d
 Im

)
2

1

T(m
 Id)
3

2

T(m Ii)3 2

T(m Im)3 2

T(i Id)4 4

T(i Im)4 4

d4

T(i Ii)4 4Figure 1: Hidden Markov model for protein comparison and alignment [13].experimentation. Note that the table is for the simplest dynamic programming edit-distancecalculation. BioScan implements a di�erent algorithm on a larger alphabet, and BISP cando gap comparison in the same amount of time (P-NAC cannot, Splash would require a newcon�guration, and B-SYS would slow down by a factor of 4). Jones reports 75MCUPS on a64K CM-2 (corresponding to two times faster than the results in the table) by microcodingthe inner loop of the dynamic programming algorithm [19]; Jones has also presented methodsfor database pattern searching with limited gap length on the CM-2 [18]. By making fulluse of modulo sequence comparison to reduce data communication, this author estimatesthat a factor of 2{4 performance increase is attainable over the CM-2 and MP-1 results ofTable 1 for long sequences [16]. Core has compared dynamic programming and the BLASTalgorithm on the CM-1 and Intel iPSC hypercube computer [8].2 Hidden Markov model sequence analysisAn evolving and exciting means of biosequence analysis developed at UCSC uses a hiddenMarkov model (HMM) to generate position-dependent cost tables for each amino acid.5

Given a set of biologically-similar sequences (such as the globins), the statistical model canbe iteratively trained to become a close-as-possible match to all the sequences. Thus, theHMM is a probabilistic consensus sequence that contains a probability distribution over allamino acids at each node.The protein HMM is displayed in Figure 1 (the reader is referred to the tutorial byRabiner for an introduction to HMMs [25]). The squares are match states, correspondingto the matching of the model state to a character from the input sequence. The diamondsare insertion states, corresponding to characters in the sequence that are not matched. Thecircles are delete states, corresponding to skipping over a model node when aligning thesequence to the model. The connecting arrows are transition probabilities between nodes.The zeroth state is a special begin state, and the last is a special end state (real modelsare much longer than the one shown in the �gure). In calculating the distance between thesequence and the model, one calculates the probability that the HMM could generate thegiven sequence. In aligning a sequence to a model, the most probable generation of thatsequence is assumed.For information on training and updating the HMM, the reader is referred to the UCSCtechnical report and the related, condensed conference paper [13, 14]. Su�ce to say, thevast majority of training time is spent calculating the probability of entering each state witheach character of a training sequence. This is solved two-step forward-backward dynamicprogramming algorithm implemented on a massively parallel array processor.3 Massively Parallel ImplementationAt their simplest level, the Maspar MP-1 and MP-2 computers are array processors withan 8-nearest-neighbor mesh connection and wraparound at the edges [24]. Each PE has40 32-bit registers, 64 kbytes of locally addressable memory, and a bit-parallel ALU (theMP-1 has 32 4-bit PEs per chip, while the MP-2 has 32 32-bit PEs per chip). Each groupof 16 PEs shares a connection to the global router which, as can be expected, is muchslower than mesh communication. There is a single array control unit (ACU), a full-edgedprocessor responsible for broadcasting instructions to the array. Local memory access witha broadcast address is approximately 10 times slower than register access, while memoryaccess with a locally generated address is 25 times slower.The HMM evaluation algorithm is a 2-phase recursion on three variables, similar toa�ne sequence comparison. Throughout the algorithm, � log probabilities are used toreduce multiplication to addition, and a per-PE table of 7600 integers speeds the additionof probabilities.In training a model, the model is �rst compared to every sequence in the training set.This is done by loading the model into the MP-1, one model position per PE, as many timesas possible, using recursive doubling.2 Next, a sequence is downloaded to the �rst processingelement of each model via the DMA channel between the host and the PE array, and thenthe algorithm is initialized. For the forward step, the sequences are stepped through the2Typical experiments have model lengths of 100{500, and a maximum sequence length of up to a couplethousand. 6

for (si = 1, esi = 2-mod_len, lsi=1 ; lsi <= seq_len ; si++, esi++) {if (proc_num < si) { /* shift characters through models; */xnetShiftE(pchar); /* si is global loop index */if (esi > 0) { /* saving in local memory */*ppseq++ = pchar;}if (proc_num == 0) { /* First model node takes next char */pchar = pseq[si]; /* and computes initialization value */d3_i += pwentry.i_table[pchar] + (si == 1 ? pwi_d : pwi_i);} else { /* compute prob of entering D, M, and I states */d3_x1 =p_sum3logX (d1_d + pwd_d,d1_m + pwd_m,d1_i + pwd_i,t1,t2,t3);d3_x2 = pwentry.m_table[pchar] +p_sum3logX (d2_d + pwm_d,d2_m + pwm_m, d2_i + pwm_i,t1,t2,t3);d3_i = pwentry.i_table[pchar] +p_sum3logX (d3_d + pwi_d,d3_m + pwi_m,d3_i + pwi_i,t1,t2,t3);} /* Store dynamic programming values */*pcx++ = d3_d = d3_x1; /* in local memory */*pcx++ = d3_m = d3_x2;*pcx++ = d3_i;all { /* Shift costs to adjacent PEs */d2_i = d1_i; d2_d = d1_d; d2_m = d1_m;d1_i = d3_i; d1_m = d3_m; d1_d = d3_d;xnetShiftE (d1_i); xnetShiftE (d1_m); xnetShiftE (d1_d);}lsi++; /* lsi is parallel (sequence- and model-specific) */} /* that controls loop execution in the PE array */} Figure 2: MPL code for forward computation.model (using nearest-neighbor connections) to evaluate and store the forward values, andthe sequence is collected again at the end PE. Next, the sequence is sent back throughthe array, and the probability of being in each model state given the entire sequence iscalculated.To update the model, the average probability distribution over all training sequencesfor each model node is required. These are generated in the array in parallel.Throughout this operation, the transition probabilities and as much other data as possi-ble are kept in the 40 local PE registers. The main loop of the forward calculation is shownin Figure 2.A typical run of the training algorithm requires 20|60 reestimation cycles, up to a fewbillion cell update operations, and the process of �nding a good model can require ten, onehundred, or more experiments. The training algorithm has a large number of real-valuedparameters (heuristic parameters that encourage the model to use match states over inser-tions or deletions and govern the truncation and growing of the model, default amino aciddistributions, default transition probabilities, con�dence in the default distributions, and soon), and work is still underway to determine the best settings. Additionally, the annealingschedule is currently quite primitive, and results are sensitive to the random seed. It was7

System Rel. Porting Performance PerformanceDi�culty (kCUPS) (Sun 4/50s)Sun 3/110 0 3.2 0.1Sun 4/50 0 37.1 1.0Decstation 5000/240 0 39.2 1.1SGI 440VGX, 1 CPU 0 59.0 1.6Dec Alpha 3000/500 0 107 2.9C-Linda, 7 Decstation 5000s (240 and 125) 4 147 4.0Cray Y-MP, 1 CPU, vectorized 8 167 4.58K MP-1, unoptimized 30 821 22Cray Y-MP, 8 CPU, estimated 20 1300 358K MP-1, optimized 60 1530 414K MP-2, optimized 60 1580 4316K MP-2, optimized 60 5100 140Table 2: HMM training on various machines.obviously impossible to experiment extensively with the parameters on workstations requir-ing one day of CPU time to perform a single run; the massively parallel implementationhas enabled considerable new research.4 EvaluationIn addition to serial machines, the HMM software has also been ported to a Cray Y/MPand C-Linda. Table 2 tabulates, for a variety of machines, two metrics of performance:HMM CUPS (note that a cell update involves more computation for HMM training thanfor edit-distance calculation) and speedup relative to a Sun 4/50 (Sparc-2), as well as arough, dimensionless measure of the di�culty of adapting the code to each platform. Sev-eral interesting observations can be drawn from the table. First, there is a great di�erencein both performance and e�ort between a working array processor program (MP-1, unopti-mized) and an e�cient array processor program (MP-1, optimized).3 Second, conversion todi�erent architectures takes time. For the Maspar version, the entire dynamic programmingroutine was rewritten. The Cray case was simpler: the loop indices were modi�ed to allowvectorization. The Linda version was the simplest, taking advantage of the course-grainparallelism available in training the model with several hundred sequences. The CM-2 re-sults are estimated from a partial implementation of the dynamic programming operation;performance was severely handicapped by the lack of local addressing.3The MP-2 features an ALU approximately eight times faster than the MP-1's. The bandwidth to eachPEs local memory, which doubled between the two models, is the limiting factor.8

Lengths Number Cum. Distrib.12{79 2 0.02206{297 6 0.07393{499 55 0.67614{761 21 0.91830{858 6 0.981044{49 2 1.00Table 3: Elongation factor training set statistics.5 Biological ResultsTo evaluate the e�ectiveness of the massively parallel implementation (as well as gain famil-iarity with parts of the system outside the dynamic programming inner loop), the authorhas been studying elongation factors, a biologically interesting protein structure [11]. Oneparticularly important aid has been the availability of a structural alignment of 3 membersof the class from X-ray crystallographic data. This alignment provides a \sanity check" onthe trained HMMs.Another interesting feature of the elongation factors is the large variations in the lengthof the protein sequences, seen in Table 3. (The two shortest, 12 and 79 amino acids, werefragments and eliminated from the training set.) The conserved region of the sequences isseveral hundred amino acids long, and models of 400 to 500 positions worked best. Unlikeearlier experiments at UCSC, these sequences were not clipped to the region of importance.Instead, free insertion modules (FIMs), allowing low-penalty insertions, were prependedand appended to the HMM before training to convert to a subsequence modeling program.The HMM rapidly converged to an alignment of the conserved region.A large number of experiments, each with several random seeds, was performed. Themost important parameter for generating a good HMM was the model length (the bestalignment had a model length of 401), though other parameters were also varied. In all,about one hundred experiments were performed, each requiring around 5 minutes of 16KMP-1 CPU time (equivalent to about 5 hours on Sparc-2 workstation). Interesting modelswere �rst identi�ed by distance statistics between the training set and the trained HMM (av-erage, maximum, and sample deviation). The three structurally aligned sequences (SELB,Ef-Tu, and FIEC2 [11]) were then aligned to the model, and the results compared to thetrue alignment (automation of this processes is currently under development). This weededout many models, eventually leaving a model that produces quite good multiple alignmentsbetween elongation factor regions and can also be used to identify elongation factors in theprotein sequence databases. The multiple alignment of the three test sequences and oneadditional sequence is shown in Figure 3. Note that the third test sequence has 394 aminoacids in an insertion state before its elongation factor region begins. The �rst four align-ment rows correspond to and are virtually identical to the structural alignment reported byForchhammer, Leinfelder, and B�ock [11]. 9

SELB_ECOLI m.........IIATAGHVDHGKTTLLQAIT---GVNA--........---------.....-DRLPEEKKRGMTIDLGYAYwPQEFTU_ECOLI skekfert12NVGTIGHVDHGKTTLTAAITTVLAKTY--........GGAARAFDQ.....IDNAPEEKARGITINTSHVE.YDFIEC2 mtdvtik394VVTIMGHVDHGKTSLLDYIR--STKVA--........SKEAG----.....----------GITQHIGAYH.VEEF10_XENLA mgkekthi..NIVVIGHVDSGKSTTTGHLIYKCGGIDKRtiekfekeAAEMGKGSFkyawvLDKLKAERERGITIDISLWK.FESELB_ECOLI PDGRVPGFIDVPGHEKFLSNMLAGVGGIDHALLVVACDDGVMA.......QTREHLAILQLTGNPMLTVALTKADRVD.EARVDEFTU_ECOLI TPTRHYAHVDCPGHADYVKNMITGAAQMDGAILVVAATDGPMP.......QTREHILLGRQVGVPYIIVFLNKCDMVD.DEELLFIEC2 TENGMITFLDTPGHAAFTSMRARGAQATDIVLVVVAADDGVMP.......QTIQAIQHAKAAQVPV-VVAVNKIDKPEaDPD--EF10_XENLA TSKYYVTIIDAPGHRDFIKNMITGTSQADCAVLIVAAGVGEFEagiskngQTREHALLAYTLGVKQLIVGINKMDSTE.PPYSQSELB_ECOLIE-VERQVKEVLREYGFAEAKLFITA---------------.......ATEGR..........GMDALREHLLQ..LPEREEFTU_ECOLIELVEMEVRELLSQYDFPGDDTPIVRGSALKALEGDA----.......EWEAK..........ILELAGFLDSY..IPEPEFIEC2----RVKNELSQYGILPE----------------EWGGESqfvhvsaKAGTG..........IDELLDAILLQaeVLELKEF10_XENLA kryeEIVKEVSTYIKKIGYNPDTVAFVPISGWNGDNMLEPSPNM.......PWFKGwkitrkegsgSGTTLLEALDC..ILPPSSELB_ECOLI HASQHSFRLAIDRAFTVKGAGLVVTGTALSGEVKVGDSL....WLTGVNKP..MRVRALHAQNQPTETANAGQRIALNIAGdAEEFTU_ECOLI RAIDKPFLLPIEDVFSISGRGTVVTGRVERGIIKVGEEV....EIVGIKETqkSTCTGVEMFRKLLDEGRAGENVGVLLRG.IKFIEC2 AVRKGMASGAVIESFLDKGRGPVATVLVREGTLHKGDIVlcgfEYGRVRAM..RNELGQE---------------------.--EF10_XENLA RPTDKPLRLPLQDVYKIGGIGTVPVGRVETGVIKPGMVV....TFAPVNVT..TEVKSVEMHHEALTEAVPGDNVGFNVKN.VSSELB_ECOLI KEQINRGDW...LLADVPPEPFTRVIVELQTHTPLTqwqplhihhAASHVTGRVSLLEDNLAELVFDTPLWLadNDRL---VLREFTU_ECOLI REEIERGQV...LAKPGTIKPHTKFESEVYILSKDE.........GGRHT---PFFKGYRPQFYFRTTDVTG..TIEL------FIEC2 --------V...LEAGPSIP-------VEILGLSGV.........PAAGD------------------EVTT..VVRD--EKKAEF10_XENLA VKDVRRGNVagdSKNDPPMEAGSFTAQVIILNHPGQ.........IGAGYAP-VLDCHTAHIACKFAELKEK..IDRRSGKKLESELB_ECOLI DISARNTLAGARVVMLNPPRRGKRKPEYLQWLAs..LARAQSDADALSVHLERGAVNLA-dfawarq233.EFTU_ECOLI ---------PEGVEMVMPGDNIKMVVTLIHPIAmddGLRFAIREGGRTVGAGVVAKVLS-...........FIEC2 REVALYRQGKFREVKLARQQKSKLE--------...NMFANMTEG------EVHEVNIV-lkadvqg199.EF10_XENLA DNPKFLKSGDAAIVDMIPGKPMCVESFSDYPPL...GRFAVRDMRQTVAVGVIKAVEKK-aagsgkvt18.Figure 3: Alignment of four proteins with elongation factors.6 AcknowledgmentsThis work has been supported in part by funds granted by the Division of Natural Sciences ofthe University of California, Santa Cruz. Jon Becher and Maspar Corporation generouslyprovided time on several Maspar computers. Anders Krogh's help in understanding theprotein code was invaluable. Charlie McDowell ported the code to C-Linda. Anne Urbanimplemented the inner loop on the CM-2; CM-2 time was generously provided by ThinkingMachines Corporation and the Brown University Department of Computer Science. SairaMian identi�ed the elongation factors for study and provided biological insight into theiranalysis.References[1] S. F. Altschul et al., \Basic local alignment search tool," J. Mol. Biol., vol. 215, pp. 403{410, 1990.[2] P. Bertin, D. Roncin, and J. Vuillemin, \Introduction to programmable active memo-ries," Tech. Rep. 3, Digital Paris Research Laboratory, Rueil Malmaison, France, June1989. 10

[3] M. J. Bishop and C. J. Rawlings, eds., Nucleic Acid and Protein Sequence Analysis.Oxford, England: IRL Press, 1987.[4] C. R. Cantor, \Orchestrating the Humane Genome Project," Science, vol. 248, pp. 49{51, 6 Apr. 1990.[5] S. C. Chan, A. K. C. Wong, and D. K. Y. Chiu, \A survey of multiple sequencecomparison methods," Bul. of Math. Biology, vol. 54, no. 4, pp. 563{598, 1992.[6] E. Chow, T. Hunkapiller, J. Peterson, and M. S. Waterman, \Biological informationsignal processor," in Proc. Int. Conf. Application Speci�c Array Processors (M. Valeroet al., eds.), pp. 144{160, IEEE Computer Society, Sept. 1991.[7] B. I. Cohen and F. E. Cohen, \Predictions of protein secondary and teriary struc-ture," in Biocomputing: Genome Sequence Analysis (D. Smith, ed.), San Diego, CA:Academic Press, 1992.[8] N. G. Core, E. W. Edmiston, J. H. Saltz, and R. M. Smith, \Supercomputers and bio-logical sequence comparison algorithms," Computers and Biomedical Research, vol. 22,pp. 497{515, 1989.[9] M. O. Dayho�, R. M. Schwartz, and B. C. Orcutt, \A model of evolutionary change inproteins," in Atlas of Protein Sequence and Structure, ch. 22, pp. 345{358, Washington,D. C.: National Biomedical Research Foundation, 1978.[10] C. DeLisi, \Computers in molecular biology: Current applications and emergingtrends," Science, vol. 246, pp. 47{51, 6 Apr. 1988.[11] K. Forchhammer, W. Leinfelder, and A. B�ock, \Identi�cation of a novel translationfactor necessary for the incorporation of selenocysteine into protein," Nature, vol. 342,pp. 453{456, 23 Nov. 1989.[12] M. Gokhale et al., \Building and using a highly parallel programmable logic array,"Computer, vol. 24, pp. 81{89, Jan. 1991.[13] D. Haussler, A. Krogh, S. Mian, and K. Sj�olander, \Protein modelling using hiddenMarkov models: Analysis of globins," Tech. Rep. UCSC-CRL-92-23, University ofCalifornia, Santa Cruz, CA, Sept. 1992.[14] D. Haussler, A. Krogh, S. Mian, and K. Sj�olander, \Protein modelling using hiddenMarkov models: Analysis of globins," in Proc. Hawaii Int. Conf. System Sciences, Jan.1993.[15] D. T. Hoang, \A systolic array for the sequence alignment problem," Tech. Rep. CS-92-22, Dept. Computer Science, Brown University, Providence, RI, Apr. 1992.[16] R. Hughey, Programmable Systolic Arrays. PhD thesis, Dept. Computer Science, BrownUniversity, Providence, RI, 1991. Tech. Rep. CS-91-34.11

[17] R. Hughey and D. P. Lopresti, \A software approach to fault detection on pro-grammable systolic arrays," in Proc. Symp. Parallel and Distributed Processing (B. Shi-razi and H. Sudborough, eds.), pp. 523{526, IEEE Computer Society, Dec. 1990.[18] R. Jones, \Sequence pattern matching on a massively parallel computer," CABIOS,vol. 8, no. 4, pp. 377{383, 1992.[19] R. Jones et al., \Protein sequence comparison on the Connection Machine CM-2," inComputers and DNA, SFI Studies in the Sciences of Complexity, vol. VII (G. Bell andT. Marr, eds.), pp. 1{9, Reading, MA: Addison-Wesley, 1989.[20] A. M. Lesk, ed., Computational Molecular Biology. Oxford, England: Oxford UniversityPress, 1988.[21] R. J. Lipton and D. P. Lopresti, \Delta transformations to simplify VLSI proces-sor arrays for serial dynamic programming," in Proc. Int. Conf. Parallel Processing(K. Hwang et al., eds.), pp. 917{920, CRC Press, Aug. 1986.[22] D. P. Lopresti, \P-NAC: A systolic array for comparing nucleic acid sequences," Com-puter, vol. 20, pp. 98{99, July 1987.[23] W. J. Masek and M. S. Paterson, \How to compute string-edit distances quickly," inTime Warps, String Edits, and Macromolecules: The Theory and Practice of SequenceComparison, pp. 337{349, Reading, MA: Addison-Wesley, 1983.[24] J. R. Nickolls, \The design of the Maspar MP-1: A cost e�ective massively parallelcomputer," in Proc. COMPCON Spring 1990, pp. 25{28, IEEE Computer Society, Feb.1990.[25] L. R. Rabiner, \A tutorial on hidden Markovmodels and selected applications in speechrecognition," Proc. IEEE, vol. 77, pp. 257{286, Feb. 1989.[26] D. Sanko� and J. B. Kruskal, Time Warps, String Edits, and Macromolecules: TheTheory and Practice of Sequence Comparison. Reading, MA: Addison-Wesley, 1983.[27] R. Singh et al., \A scalable systolic multiprocessor system for analysis of biologicalsequences," in Proc. Symp. on Integrated Systems, University of Washington, Apr.1993.[28] G. von Heijne, Sequence Analaysis in Molecular Biology. San Diego, CA: AcademicPress, 1987.[29] J. D. Watson, \The Human Genome Project: Past, present, and future," Science,vol. 248, pp. 44{48, 6 Apr. 1990. 12

