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ABSTRACT

Within the framework of pac-learning, we explorethelearnability of concepts from samples
using the paradigm of sample compression schemes. A sample compression scheme of size d
for a concept class C' C 2% consists of a compression function and a reconstruction function.
The compression function, given afinite sample set consi stent with some concept in ', chooses
asubset of &k examplesasthe compression set. Thereconstruction function, given acompression
set of & examples, reconstructs a hypothesison X. Given acompression set produced by the
compression function from asample of aconcept in €', the reconstruction function must be able
to reproduce a hypothesis consistent with that sample. We demonstrate that the existence of a
fixed-size sample compression scheme for a class €' is sufficient to ensure that the class C' is
learnable.

We define maximum and maximal classes of VC dimension d. For every maximum class
of VC dimension d, there is a sample compression scheme of size d, and for sufficiently-large
maximum classes there is no sample compression scheme of size less than d. We discuss
briefly classes of VC dimension d that are maximal but not maximum, and we give a sample
compression scheme of size d that applies to some maximal and nonmaximum classes. It
is unknown whether there is a sample compression scheme of size d for every class of VC
dimension d.
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1 Introduction

In this paper we discuss the use of sample compression schemes within computationa learning
theory. We define a sample compression scheme of size & for a concept class, consisting of a
compression function and a reconstruction function; this formulation of a sample compression scheme
was first introduced in [LW86]. Given a finite set of labeled examples, the compression function
selects a compression set of at most £ examples. The reconstruction function uses this compression
set to construct a hypothesis for the concept to be learned. For a sample compression scheme, the
reconstructed hypothesis must be guaranteed to predict the correct label for all of the examplesin the
origina sample set.

This research on sample compression schemes has several distinct motivations. One motivation is
to demonstrate that the existence of an appropriate sample compression scheme is sufficient to ensure
learnability. This approach provides an aternative to that of [BEHW89], which uses the Vapnik-
Chervonenkis dimension to classify |earnable geometric concepts.

A second moativation of thiswork isto explore the combinatorial properties of concept classesof VC
dimensiond. We give asample compression schemeof sizelog |C'| for any finite concept classC' C 2%
For infinite concept classes, we use the Vapnik-Chervonenkis dimension, and we define maximum and
maximal concept classes of VC dimension d. Maximal concept classes are classes where no concept
can be added without increasing the VC dimension of the class. Maximum classes are in some sense
the largest concept classes [W87]. We give a sample compression scheme of size d for any maximum
concept class of VC dimension d. Further, we show that for any sufficiently large maximum class of
VC dimension d, there can be no sample compression scheme of size less than d. We give a sample
compression schemethat appliesfor some concept classesthat are maximal but not maximum. Recently
a compression scheme of size O(d logm) for classes of VC dimension d was presented in [LSW93];
this result uses a more general definition of a sample compression scheme, and relies on the boosting
schemes of weak learning algorithms [F90][S90]. It remains an open question [LW86] whether thereis
asample compression scheme of size O(d) for every class of VC dimension d.

A third motivation of this work is to explore the use of sample compression schemes of size at
most d in batch learning algorithms, and in on-line learning algorithms that save at most d examples at
each step. Batch learning algorithms are explored briefly in this paper; on-line learning algorithms are
explored in more detail in [F89].

The paper isorganized asfollows. Section 2 reviews pac-learning and theVC dimension. In Section
3 we define the sample compression schemes of size at most & used in this paper. Section 4 gives a
One-Pass Halving Compression Scheme and a Multiple-Pass Halving Compression Scheme for any
finite class C' C 2X. Both of these compression schemes are of size log|C|. In Section 5 we define
maximal and maximum classes of VC dimension d. For any maximum class C' C 2% of VC dimension
d, we give a sample compression scheme of size equal to d called the VC Compression Scheme; we
discuss compression and reconstruction algorithms to impl ement this scheme. In Section 5.3 we prove
that for any sufficiently large maximum class of VC dimension d, there can be no sample compression
scheme of sizelessthan d. In Section 6 we show that a sample compression scheme for aclass C can
be used as a basisfor alearning algorithm for that class;* thisresult improves on the previously-known
sample complexity of batch learning algorithms for such classes. Finally, Section 7 discusses sample
compression schemes for maximal classes of VC dimension d.

Notation: A-B isused to denote the difference of sets, so A-B isdefined as {a€ A: a¢ B}. Welet
Inz denotelog.x and we let logz denote logoz.

1The original sample complexity bounds of [LW86] are slightly weaker; similar proofs for extended schemes appear in
[LSw9g].



A domain is any set X. The elements of X x {0, 1} are called examples. Positive examples are
examples labeled “1” and negative examples are labeled “0”. The elements of X are sometimes called
unlabeled examples. If Y isaset of unlabeled examples, then Y’ always denotes a corresponding set of
(labeled) examples.

A concept ¢ on the domain X isany subset from X. Concept ¢ labels the element of ¢ with “1” and
the elements of X — ¢ with “0”. A concept class on X isany subset of 2X. For Y C X, we define
C|Y astherestriction of theclassCtotheset Y: C|Y = {¢nY : ¢ € C}. Wesay that theclassC is
finiteif |C'| isfinite; otherwise we say that the class C isinfinite. A sample set isa set of examplesfrom
X x {0, 1}; asample sequence is a sequence of examples, possibly including duplicates. A sample set
(sequence) is consistent with aconcept ¢ if the labels of its examples agree with ¢. O

2 Pac-learningand the VC dimension

In this section we review the model of probably approximately correct (pac) learning, and we
review the connection between pac-learning and the Vapnik-Chervonenkisdimension. In [V 84], Valiant
introduced a model of learning concepts from examples taken from an unknown distribution. In this
model of learning, each example is drawn independently from a fixed but unknown distribution P on
the domain X, and the examples are labeled consistently with some unknown target concept ¢ in the
classC.

Definitions (pac-learning): The goa of the learning algorithm is to learn a good approximation
of the target concept, with high probability. Thisis called “probably approximately correct” learning
or pac-learning. A learning algorithm has two inputs, the accuracy parameter ¢ and the confidence
parameter 6, along with an oracle that provides labeled examples of the target concept ¢. The sample
size of the agorithm is the number of 1abeled examplesin the sample sequence drawn from the oracle.
The learning algorithm returns the hypothesis /. The error of the hypothesisis the total probability,
with respect to the distribution P, of the symmetric difference of ¢ and h.

A concept class (' is called learnable if there exists a learning agorithm such that, for any e
and 4, there exists a fixed sample size such that, for any concept ¢ € ' and for any probability
distribution on X, the learning agorithm produces a probably-approximately-correct hypothesis; a
probably-approximately-correct hypothesisis one that has error at most ¢ with probability at least 1-6.
The sample complexity of thelearning algorithmfor €' isthe smallest required samplesize, asafunction
of eand 6. O

For a finite concept class ' C 2%, Theorem 2.1 gives an upper bound on the sample complexity
required for learning the class C'. This upper bound islinear in In|C'|.

Theorem 2.1: ([V82], [BEHWS87], [BEHWB89]): Let C' C 2¥ be any finite concept class. Then for
sample size greater than %In@, any algorithm that chooses a hypothesis from €' consistent with the
examplesisalearning algorithmfor C'.

Definitions (the Vapnik-Chervonenkis dimension): For infinite classes such as geometric concept
classeson £, Theorem 2.1 cannot be used to obtai n bounds onthe sample compl exity. For these classes,
a parameter of the class called the Vapnik-Chervonenkis dimension is used to give upper and lower
bounds on the sample complexity ([VC71], [BEHW89], [EHKV87]). For aconcept class €' on X, and
for SC X, let C|.5 denote the restriction of concept class €' tothe set S. If ¢'|S = 2°, thenthe set S
is shattered by C'. The Vapnik-Chervonenkis dimension (VC dimension) of the class €' is the largest
integer d such that some .S C X of size d is shattered by C'. If arbitrarily large finite subsets of X are
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shattered by the class C, then the VC dimension of C' isinfinite. Note that a class C' with one concept
isof VC dimension 0. O

If theclass C' C 2% hasVCdimensiond, thenforal Y C X, therestriction CY hasVCdimension
at most d.

Theorem 2.2 from Blumer, Ehrenfeucht, Haussl er, and Warmuth in [BEHW89] gives an upper bound
on the sample complexity of learning algorithmsin terms of the VC dimension of the class. Thisresult
in [BEHW89] is adapted from Vapnik and Chervonenkisin [VC71].

Theorem 2.2 (BEHW89): : Let C' be a well-behaved? concept class. If the VC dimension of C' is
d < oo, thenfor 0 < ¢, 6 < 1 andfor samplesizeat least
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C islearnable by any algorithmthat finds a concept ¢ from C' consistent with the sample sequence. O

In Theorem 2.2, the VC dimension essentially replaces In|C'| as a measure of the size of the class C'.
[SAB89] improves the sample sizein Theorem 2.2 to
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(to facilitate comparison with bounds derived later in the paper). In this paper weignore computational
concerns. Our focuses here are sample size bounds and the combinatorics of concept classes of
VC dimension d. Computational issues regarding compression schemes are discussed in [F89] and
[LSW93].

3 Sample compression schemes

In this section we define a sample compression scheme of size at most 4 for a concept class C, and
we give several examples of such a sample compression scheme.

Definitions (sample compression schemes) [LW86]3: A sample compression scheme of size at
most & for aconcept class €' on X consistsof two functions, acompression function and areconstruction
function. The compression function f maps every finite sample set to a subset of at most & labeled
examples from the sample set called a compression set. The reconstruction function ¢ maps every
possible compression set to a hypothesis~. C X. This hypothesisis not required to bein the class C'.
The requirement for a sample compression scheme is that, for any sample set Y/ consistent with some
concept in C', the hypothesis ¢( f(Y')) is consistent with the original sample set Y. In this paper the
size of a compression set is defined as simply the number of examples in the compression set, not the
number of bits used to encode those examples. O

2This is a measure-theoretic condition given in [BEHW89]. It is not likely to exclude any concept class considered in the
context of machine learning applications.

3This paper essentially uses the simplest version of the compression schemes introduced in [LW86]; various more
sophisticated schemes are discussed in [LSW93].



Example (rectangles): Consider the class of axis-parallel rectangles in £2. Each concept cor-
responds to an axis-parallel rectangle; the points within the axis-parale rectangle are labeled ‘1’
(positive), and the points outside the rectangle are labeled ‘O’ (negative). The compression function for
the class of axis-parallel rectanglesin 2 takes the leftmost, rightmost, top, and bottom positive points
from a set of examples; this compression function saves at most four points from any sample set. The
reconstruction function has as a hypothesis the smallest axis-parallel rectangle consistent with these
points. This hypothesisis guaranteed to be consistent with the original set of examples. Thisclassis of
VC dimension four. O

Rectangles are one example of an “intersection closed” concept class. Theresults of [HSW89] lead
to compression schemes of size at most d for any intersection closed class of VC dimension d.

Example (intervals on the line): One compression function for the class of a most » intervals
on the line scans the points from left to right, saving the first positive example, and then the first
subsequent negative example, and so on. At most 2n examples are saved. The reconstruction function
has as a hypothesisthe union of at most » intervals, where the leftmost two examples saved are on the
boundaries of thefirst positiveinterval, and each succeeding pair of examples saved are the boundaries
of the next positive interval. For the sample set in Figure 3.1, this compression function saves the
examples {< 23,1 >,< 25,0 >, < 27,1 >, < 211,0 >, < 214, 1 >, < 216,0 >} which represents the
hypothesis [z3, z5) U [27, 211) U [214, 216). Note that the class of at most » intervals on the lineis of
VCdimension2n. O

Xp Xy X Xy X5 Xg Xp XgXg o Xi0%11%0 *13%14 15 %16

0 11 00 1 11 10 0 0 1 1 0

Figure 3.1: Union of threeintervals on theline.

Although we have defined labeled compression schemes, where the compression function saves
a labeled subset of the sample set, for the classes of rectangles and of intervals examined above, it
would also be possibl eto define unlabel ed compression schemes, where the compression function saves
an unlabeled subset of the sample set. For example, for the class of intervals, if the compression set
always consists of alternating positive and negative examples, starting with a positive example (when
the points are ordered left to right), then it is not necessary to explicitly save the labels of the pointsin
the compression set.

Notethat the sample compression scheme defined in thissection differsfrom thetraditional definition
of data compression. Consider the compression function for axis-parallel rectangles that saves at most
four positive examples from a sample set. From a compression set of at most four examples, it is
not possibleto reconstruct the original set of examples. However, given any unlabeled point from the
original set of examples, it is possibleto reconstruct the label for that point.

4 Sample compression schemes for finite classes

In this section we give two sample compression schemes of sizelog |C'| for any finite concept class
C. Compression schemes of sizelog |C'| for finite classes have been proposed independently by Angluin.
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The One-Pass Halving Compression Scheme gives a sample compression scheme of size |log |C'| ]
for afinite class C' C 2¥X. Because (' isfinite, C' can be considered as a class on afinite domain X. (If
two elementsin X have the same label for al conceptsin the class ', then these two elements can be
considered as asingle element.) Let X = {21,.., z,}. We assume some arbitrary fixed order on the r
eements of X.

The input to the sample compression algorithmissomelabeled sampleset Y/, for Y ={xy, ,.., x5, }
andfor Y C X. Theexamplesin Y are assumed to be labeled consistently with some concept in the
classC'.

The One-Pass Halving Compression Scheme (for finite classes).

e The compression function: The input to the compression function is the labeled sample set
Y’ C X x {0,1}. Let the current compression set A’ initialy be the empty set, and let C'; be
the set of concepts consistent with A’. Initially, C'1 isset to C'. The elementsof Y/ are examined
one at atime, in order. Let the ith example from Y’ be < x,,,0 >, for example. If at least half
of the concepts in C'; contain < z,,,1 >, then add < z,,,0 > to the current compression set,
and remove all concepts that contain < z,,,1 > from C';. If less than half of the conceptsin C'1
contain < x,,,1 >, then C'; and A’ remain unchanged.

The compression function can be viewed as an algorithm that examines the elements of Y’ one
at atime, considering the class ('1 of concepts consistent with the examples saved so far. For
the next element z ;, the compression algorithm takes the [abel for z, given by the mgjority of
conceptsin theclass C'1, and predictsthat label for z ;. If the compression algorithm predictsthe
correct label for z,,, then z,, is discarded. If the compression algorithm predicts the incorrect
label for z,, then the compression agorithm saves z,;,, and updates C';. Thus the compression
algorithm saves an example when it makes a mistake predicting the label for that example.

¢ The reconstruction function: The reconstruction function is given as input the compression set
A ={< zg,ly >, .., < 24,1, >} containing k elements, for /; € {0,1}. For z; not in the
compression set, let A’ contain those elements from A’ that precede x; in the fixed order on
the elements of X. Let C; contain the concepts from C that are consistent with A’. Then the
reconstruction function predicts the label for z; that agrees with morethan half of the conceptsin
C;. If exactly half of the conceptsin C'; contain onelabdl for z;, and half contain the other label,
then the reconstruction function predicts ‘0" for z; by default. For z; in the compression set the
reconstruction function predictsthelabel for z; in the compression set. Thiswill aso bethelabel
for z; inlessthan half of the conceptsin ;.

Theorem 4.1: Let C C 2¥ be any finite concept class. Then the One-Pass Halving Compression
Scheme is a sample compression scheme of size |log ||| for theclassC'.
Proof: To show that the current compression set contains at most |log|C'|| examples, it suffices to
observethat during the compression function, each timean exampleisadded to the current compression
set, thesize of C'y isreduced by at least half. Thusif the current compression set reaches size |log|C |,
there can be at most one concept in €' consistent with the examples in the current compression set.
Thecurrent compression set predictsthe correct |abel for all of the elementsin theoriginal sampleset
Y. If, using the reconstruction function, some examplein the target concept is not labeled consistently
with more that half of the concepts in ', then either that example was not in the original sample set
Y, or that example was saved in the current compression set. O

The One-Pass Halving Compression Scheme has a somewhat-involved reconstruction function that
requires constructing severa subclasses of the class C. By making more than one pass through the
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sample set, we can give amultiple-pass halving compression scheme with a slightly more complicated
compression function but a simplier reconstruction function. In this case, the compression set defines
aclass ('; of al concepts consistent with the elements in the compression set. For each = € X, the
reconstruction function predicts the label for = given by the majority of conceptsin ;. Note that in
the One-Pass Halving Compression Schemeit is not necessary to save the labelsfor the elementsin the
compression set. This property does not hold for the Multipl e-Pass Halving Compression Scheme.

The Multiple-Pass Halving Compression Scheme (for finite classes).
e The compression function: The input to the compression function is a finite sasmple set Y’ C
X x {0,1}. To start, let C'; = C, and let the current compression set A’ be the empty set.
Examine the elements of Y’ one a atime, in any order. Let the ith example examined be
< x;,0 >, for example. If at least half of the conceptsin ¢ contain < z;,1 >, then add
< x;,0 > to the current compression set, and remove all concepts that contain < z;,1 > from
(1. If lessthan half of the conceptsin C'; contain < x;, 1 >, then C'; and A’ remain unchanged.

After one pass through the sample set Y, there still might be elementsin Y’ whose labels are
not the same asthe label predicted for that element by the majority of conceptsin C'1. Additional
passes through the sample set Y’ might be required. In each pass, each element of Y’ whose
label isincorrectly-predicted by the current compression set isadded to that compression set, and
C'1 ismodified accordingly. Once the compression set remains unchanged for one compl ete pass
through the sample set, then no further passes are required.

¢ Thereconstruction function: Thereconstruction function isgiven asinput thelabel ed compression
set A'. Let (', contain al concepts consistent with the examples in the compression set A’. If
isin the current compression set, then the reconstruction function predicts the label for = in the
compression set. If z € X isnotin the current compression set, then the label predicted for z
isthe label for 2 in more than half of the conceptsin C2. If exactly half of the conceptsin €
contain one label for z, and half contain the other 1abel, then the compression set predicts ‘0’ for
x by default.

For both the One-Pass and the M ulti pl e-Pass Hal ving Compressi on Scheme, the hypothesispredicted
by the compression set is not necessarily aconcept from theclass C'.
Theorem 4.2: Let C C 2X be any finite concept class. Then the Multiple-Pass Halving Compression
Scheme is a sample compression scheme of size |log|C'|| for theclassC'.
Proof: The proof issimilar to the proof of Theorem 4.1. Because the compression set is of size at most
|log |||, the compression function requires at most |log |C'|] passes through the sample set. O

Neither the one-pass halving compression scheme nor the multiple-pass halving compression
algorithm is necessarily claimed to be an efficient algorithm. At this point, the discussion of these
algorithms is of combinatoria interest, apart from questions of efficiency. Neither the one-pass nor
the multiple-pass halving compression algorithm is applicable for an infinite class C. [LSW93] gives
a compression scheme of size O(dlogm) for any (possibly infinite) class of VC dimension d. As
discussed later in this paper, it is an open question whether there are always compression schemes of
size O(d) for arbitrary classes of VC dimension d.

5 Sample compression schemes for maximum classes

In this section we explore a sample compression a gorithm based on the combinatorial structure of
aclass. Theorem 2.1 gives an upper bound on the sample complexity of alearning algorithm of afinite
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class C' that islinear in In|C|. The VC dimension was used to generalize this result to infinite classes,
the more genera result in Theorem 2.2 gives an upper bound on the sample complexity that islinear in
the VC dimension of the class.

In the case of sample compression schemes, a finite class ¢’ has a sample compression scheme
of size [log|C'||. To discuss sample compression schemes for infinite as well as finite classes, we
consider the combinatorial structure of the class based on the VC dimension. In this section we define
amaximum class of VC dimension d. Section 5.1, gives a sample compression scheme of size d for
any maximum class of VC dimension d; Section 5.2 gives an algorithm that implements the sample
compression scheme for maximum classes. Section 5.3 shows that for a maximum class €' C 2¥ of
VC dimension d for X sufficiently large, there is no sample compression scheme of size lessthan d.

Definitions (maximum and maximal classes): We use the definitions from [W87] of maximum
and maximal concept classes. A concept class is called maximal if adding any concept to the class

increases the VC dimension of the class. Let ®4(m) bedefinedas Y4, (nz) form > d,andas2™ for

m < d. From [VC71], [S72], the cardinality of C' isat most ®,(m ) for any class C' of VC dimensiond
onadomain X of cardinality m. A concept class C' of VC dimension d on X is called maximumiif, for
every finite subset Y of X, C'|Y contains ®4(|Y'|) conceptson Y. Thus amaximum class C' restricted
toafiniteset Y isof maximum size, given the VC dimension of the class. Notethat aconcept classthat
ismaximum on afinite domain X isaso maximal on that set [WW87, pg. 53]. O

Class D Class E
WXYyz wWXYyz
0000 0001
0010 0010
0011 0011
0100 0100
0101 0101
0110 0110
0111 0111
1000 1001
1010 1010
1011 1100
1100

Figure5.1: Class D is maximum. Class F is maximal but not maximum.

Figure 5.1, along with Figure 7.2 later in the paper, gives examples of classesthat are maximal but
not maximum. More examples can be found in [WW87] and [F89]. Recall that a concept ¢ in a class
C' can be thought of either as a subset S of positive examples from the set X, or as the characteristic
function of Son X. Each row in Figure 5.1 represents one concept on {w, z, y, z }.

5.1 The sample compression function for maximum classes

Definitions (the classes C — x, C):  For 2 € X, define ¢’ — = as C|(X — {z}), the restriction
of the class C' to the domain X-{z}. Define C{*} asthedass{c € Clz ¢ ¢ and cU {z} € C};
the class C'{*} has the domain X-{x}. Thus each concept ¢ in C'{*} corresponds to the two concepts
cU{<z,0>}andcU {< z,1>}intheclassC. O

Asanillustration, consider themaximumclass D in Figure5.1. TheclassC{*} on X — {2} contains
four concepts. These concepts, represented as characteristic vectors on {w, =, y}, are 001, 010, 011,
and 101.

We first give atheorem of Welzl on maximum concept classes.
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Theorem 5.1 (W87, p. 9): : Aconcept class C' of VC dimension d on a finite domain X is maximum if
and only if |C'| = ®4(| X ).

Proof: By definition, if €' ismaximum, then |C'| = ®4(| X |). We show that if |C| = ®4(] X ), then for
every ¥ C X, [(C[Y)] = ®y(|V]).

Assume that |C'| = ®4(m), for | X| = m. Let = € X. By definition, for every concept ¢ in €=}
the class C' contains two concepts that are consistent with ¢ on X-{z }; for every concept ¢ in C' — = but
not in C'{=}, the class C' contains one concept that is consistent with ¢ on X-{z}. Thus |C'| = |C — z| +
|C{=}. Theclass C' — z isof VC dimensionat most d on X-{z}, 50 |C — z| < ®g(m — 1).

The class C'1#} is of VC dimension at most d — 1 on X-{z}. If someset Z C X of cardinality d
was shattered by the class C'{#}, then the set Z U {z} would be shattered by the class (', contradicting
the fact that ' isof VC dimension d. Thus|C{*}| < dy_1(m — 1).

Because ®;(m) = ®y(m — 1) + ®Py_1(m — 1), it follows that |C' — 2| = Py(m — 1), and that
|C4=} = dy_1(m — 1). By induction, forany Y C X, |[(C[Y)| = @4(|Y]). O

Thefollowing corollary from Welzl appliesto maximum classes on afinite domain X. Corollary 5.3
extends one part of Corollary 5.2 to amaximum class on an infinitedomain X. Corollary 5.2 isextended
to any maximum and maximal class on an infinite domain X in [F89, p.25].

Corollary 5.2 (W87, p. 10): : Let C' C 2% be a maximum concept class of VC dimensiond > 1 on
the finite domain X. Then for z X, C{*} is a maximum class of VC dimension d — 1 on X-{z}. If
| X —{z}| > d, then C' — z isamaximum class of VC dimension d on X-{z}.

Proof: Let X be of cardinality m. From the proof of Theorem 5.1, |C' — z| = ®y4(m — 1). From
the same theorem, if | X — {z}| > d, then C' — 2z is a maximum class on X-{z} of VC dimension
d. Similarly, because |C'1#}| = ®,_1(m — 1), and C'1*} isof VC dimension at most d — 1, C{*} isa
maximum class of VC dimensiond — 1 on X-{z}. O

Corollary 5.3: Let ' C 2X be a maximum concept class of VC dimension d on the infinite domain X.
Then C' — 2 isa maximumclass of VC dimension d on X-{z }.

Proof: Because C' is maximum of VC dimension d, for every finite subset Y of X, C'|Y" contains
®,(]Y|) concepts on Y. For any finite subset Z of cardinality at least d of X-{z}, C|Z is maximum
of VC dimension d. From Corollary 5.2, if Z — {z} is of cardinality at least d, then (C|Z) — {z} is
maximum of VC dimensiond on Z-{z}. Because (C'|7) —{z} = (C — {z})|Z, C — {=} ismaximum
of VC dimension d on every finite subset of X-{z} of cardinality at least d. Therefore, C' — {z} is
maximum of VC dimensiond on X-{z}. O

Definitions (the class CA) [W87]: Let C' C 2¥ be amaximum concept class of VC dimension d.
For A = {z1,..., 23}, A C X, C# isdefined asthe class (((C{eih){eahy izt O

It is easy to see that for any distinct =,y in X, (Cl#hlv} = (Clvh)i=} (W87, p. 8]. Therefore for
any A C X, theclass C4 iswell-defined.

Corollary 5.4 (W87): : Let ' C 2¥ be a maximum concept class of VC dimension d on the finite
domain X. Let A be any subset of X of cardinality d. Then the class C'4 is of VC dimension 0, and thus
consists of a single concept.

Proof:  This follows from repeated application of Corollary 5.2. The class C'4 contains the single
concept ¢ on X-A such that ¢ remains a.concept in C' for any labeling of the elementsof A. O

Definitions (the concept ca) [W87]: For any maximum concept class C' C 2¥ of VC dimension
d onthefinite domain X, and for any set A C X of cardindlity d, let ¢4 denote the unique concept in the
class C4 on thedomain X-A. O



Example (at most two positive examples): Asan example, consider the maximum class C' of VC
dimensiontwo on X that consistsof all conceptswith at most two positive examples. Then, for {1, z2}
C X, €{,,2,y denotestheconcept on X — {z1, x>} where every exampleisanegative example. Thisis
the only concept on X — {x1, 22} that remains a concept in C' if both 21 and 2, are positive examples.
O

Example (intervalson theline): Let €, bethe class containing al unions of at most » positive
intervals on the line. This classis maximum of VC dimension 2n. Thisfollows because for any finite
set of m pointsontheline, for m > 2n, thereare 2%, nz waysto label those m points consistent

with at most » positiveintervals on theline. For Cs, let A be the set of 6 points {x1, 2, 23, 24, 5, 26}
shown below. Figure 5.2 shows the unique labeling of the rest of the line for the concept ¢4. For any
labeling of the pointsin A, the resulting labeling of the entire line corresponds to some concept in C's.

.......................................................

Figure 5.2: Union of threeintervals on theline.

Definitions (the concepts ca/, Car c)y):  For any maximum concept class C' of VC dimension d on
the finitedomain X, and for any A C X of cardindity d, there isa corresponding concept ¢ 4 on the set
X-A. For the sample set A’, let ¢ 4, denote the concept with X-A labeled as in the concept ¢ 4, and with
A labeled asin A’. Thusfor every labeled set A’ of cardindlity d, for A C X, there is a corresponding
concept ¢4 on X. We say that the set A’ is a compression set for the concept ¢4, and that the set
A’ represents the concept ¢ 4. Thus every set of d labeled examples from the domain X represents a
concept from the maximum class C'. Speaking loosely, we say that acompression set A’ predictslabels
for the elementsin X, according to the concept ¢ 4.

Létcyr oy, for A CY C X, denote the concept c 4+ in the maximum class C'Y'. If not otherwise
specified, ¢4/ is assumed to be the concept c 4/ . O

Lemmas.5 showsthat c 4/ ¢y isthesame as ca ¢ restricted to the set Y.

Lemmab.5: Let ¢ C 2¥ be a maximum class of VC dimension d, for X finite. Let A C Y C X, for
|A| = d. Then for any labeling A’ of A, and for = € Y, ¢4 and ¢4/ )y assign the same label to the
eement z.

Proof: Ifz € A,thenforboth ¢4 and CAIOYs T islabeledasinA’. If 2 ¢ A, thenassumefor purposes
of contradiction that Lemmab.5 isfalse. Without loss of generality, assumethat ¢ 4. contains < x,0 >,
and that ¢ 4, ¢y contains < z,1 >. Because cys contains < z,0 >, for every labeling of A, the class
¢’ contains a concept with that labeling, and with < 2,0 >. Because c 4/ ¢y contains < z,1 >, for
every labeling of A, the class 'Y contains a concept with that labeling, and with < 2,1 >. Then the
set A U {z} isshattered in the class C', contradicting the fact that €' isof VC dimensiond. O

Theorem 5.6 shows that for a maximum class C' of VC dimension d on a finite domain X, every
concept in Cisrepresented by somelabeled set A’ of cardinality d. Theorem 5.6 is a so stated, although
not with this proof, by Welzl in [W87, p. 27]. Theorem 5.7 shows that, using this approach, there is
a sample compression scheme of size d for any maximum class €' of VC dimension d on a (possibly
infinite) domain X.



Theorem 5.6; Let C' C 2¥ bea maximum concept class of VC dimension ¢ on a finite domain X, for
|X| = m > d. Then for each concept ¢ € C, thereis a compression set A’ of exactly d elements, for
A" C X x {0,1},suchthat ¢ = c 4.

Proof: The proof is by double induction on d and m. The first base caseisfor m = d for any d > 0.
In this case, we save the complete set X’ of d elements.

The second base caseisfor d = 0, for any m. In this case there is a single concept in the concept
class, and this concept is represented by the empty set.

Induction step: We provethat thetheorem holdsfor d and m, for d > 0andm > d. By theinduction
hypothesis, the theorem holdsfor al ¢’ and m’ suchthat ' < d, m’ < m,andd’" + m’ < d + m. Let
X ={z1,20, ...,z },andletY C X forY = {z1,22,...,2,,—1}. Thereare two cases to consider.

Cese 1: Let c beaconceptin C'|Y suchthat ¢ U {< z,,,0 >} and cU {< 2,,,,1 >} arenot bothin
C'. Without loss of generality, assumethat only ¢ U {< ,,,0 >} isinC.

From Corollary 5.2, C'|Y" is maximum of VC dimension d. Thus by the induction hypothesis, each
concept ¢ in C'|Y can be represented by a compression set A’ of d labeled elements, for A C Y, with
¢ = car,cpy- From Corollary 5.4, A’ represents some concept ¢4 (or ¢4/ ¢) on'Y. From Lemmab.5,
c = cy |y agreeswithe g onY. If ¢y contains< z,,,1 >, thencU{< z,,,1 >} isinC, violating
the assumption for Case 1. Thus ¢ 4, contains < x,,,0 >, and case 1 is done.

Cese 2: Let ¢ beaconceptin C|Y suchthat ¢ U {< z,,,0 >} and c U {< z,,,,1 >} arebothin C.
Thusc € C't#m}. From Corollary 5.2, C1*m} isamaximumclass of VC dimensiond — 1 onY. By the
induction hypothesis, there is acompression set 5’ of d — 1 elementsof Y, suchthat ¢ = cg 103

Letes = cU{<2,,,0>}. Lt A’=B' U{< 2,,,0>}. From Corollary 5.4, the labeled set A" of
cardinality d represents a unique concept ¢ 4/ in C'.

LetCy = Clomd,

We show that ¢4 ¢ and ¢ = cpr ¢, assign the same labelsto al elements of Y. Assume not, for
purposes of contradiction. Then there is some element «; of Y — B such that x; is assigned one label
l; in ¢4/ ¢, and another label l; in cp,c, Because cyr o contains < z;,[; >, then for each of the 2¢
labelings of A, and for < z;,[; >, thereis aconcept consistent with that labeling in C. Because cp/ ¢,
contains < z;,1; >, then for each of the 2¢~1 labelings of B, and for < z;,1; >, there is a concept
consistent with that labeling in C; = C1#m}. For each concept in C{7m}, there is a concept in C
with < z,,,0 >, and another concept in C' with < z,,,,1 >. Thusthed 4+ 1 elementsin A U{z;} are
shattered by the concept class C'. This contradicts the fact that the class €' isof VC dimension d. Thus
the set A’ isacompression set for the concept ¢ U{< #,,,0 >}, and case 2 isdone. O

Note that for aconcept ¢ € €', there might be more than one compression set A’ such that ¢ = ¢ 4.

Any maximum class C' on afinite domain X isaso amaximal class. However for aninfinitedomain
X for any d > 1 there are concept classes of VC dimension d that are maximum but not maximal
[WW87, p. 53]. This occurs because a maximum class €' is defined only as being maximum, and
therefore maximal, on finite subsets of X. A maximum class C' on X is not required to be maximal on
the infinite domain X. For a maximum class on an infinite domain X, we expand our definition of ¢4
where ACX, |A| = d. For amaximum concept class ' of VC dimension d on an infinite domain X, it
is not necessarily truethat C'{*} is maximum of VC dimensiond — 1.4

Example(amaximum classthat isnot maximal): Consider themaximum classC of VCdimension
1 onan infinite domain X, where C' containsall concepts with exactly one positive example. Thisclass
isnot maximal, because the concept with no positive examples could be added to €' without increasing

4[F89] showsthat every maximum class C of VC dimensiond on aninfinite domain X hasa unique extensionto amaximum
and maximal classof VC dimension d on X. [F89] also showsthat if C' is both maximum and maximal of VC dimension d on
the infinite domain X, then C't*} is maximum and maximal of VC dimensiond — 1 on X-{z}.
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the VC dimension of the class. However, the class C' is maximum, because it is of maximum size on
every finite subset of X. For thisclass, for 2 €X, C1} isthe empty set, and so ¢ () does not represent
aconcept in C'. For such aclass, for ACX, |A|=d, we define ¢ 4 by itsvalue on finite subsets of X.

Definitions (the concept ca for infinite X'): For theinfiniteset X, for ACBCX, for |A|=d, and for
B finite, we define c 4 on the elementsin B-A asc 4 ¢ 5. From Lemmas.5, c4 assignsaunique label to
each element 2 eX-A. O

Thus, in the maximum class C' above, ¢y, is defined as the concept with al negative examples on
X-{z}, eventhough c;,,U < z,0 > isnot aconcept in C'.

Theorem 5.7 extends Theorem 5.6 to give a compression scheme for any maximum class of VC
dimension d. Let ¢ C 2% be any maximum class of VC dimension d. The input to the sample
compression scheme is any labeled sample set Y’ of size at least d, for Y = {z1,..,2,} C X. The
examplesin Y’ are assumed to be |abeled consistently with some concept in C'.

The VC Compression Scheme (for maximum classes).

e The compression function: The compression function is given as input any sample set Y’ of
cardinality at least d of examples|abeled consistently with some concept in theclass C'. Consider
thefinite class C'|Y", which is maximum of VC dimension d. Let ¢ be the concept on Y given by
the sample set Y. From Theorem 5.6, there is a compression set A’ of exactly d elements, for
A" C Y, such that the concept ¢ intheclass C'|Y isrepresented by the compression set A’. This
set A’ isthe compression set chosen by the sample compression function.

¢ The reconstruction function: The reconstruction function is given as input the compression set
A’. For an dlement = € X, the reconstruction function predicts the label for « inthe set A’. If
A’ isof cardinality less than d, then the compression set arbitrarily predicts the label ‘0’ for all
x ¢ A. Assumethat A’ isof cardinality d. For = ¢ A, let C'1 betheclassCrestrictedto AU {z}.
(1 isamaximum class of VC dimensiond on A U {z}. If ¢4 in (7 contains < z,0 >, then
the reconstruction function predicts the label ‘0" for z; if ¢4 in C1 contains < x,1 >, then the
reconstruction function predicts ‘1’ for «.

Note that in the VC Compression Scheme sample sets of size at least d are compressed to subsets of

sizeequal to d.

Theorem 5.7: Let C' C 2% beamaximumclass of VC dimension d on the (possibly infinite) domain X.
Then the VC Compression Scheme is a sample compression scheme of size exactly d for C'.

Proof: Let the input to the sample compression scheme be a finite labeled sample set Y’ of size at
least d. For ¢ aconcept on thefinite set Y C X, the compression function saves the labeled set A’ of
cardindity d, for A’ C V', suchthat ¢ = ¢4/ ¢y . Thereconstruction function gives as ahypothesisthe
concept ¢ 4. on X from the class C.

From Theorem 5.1, C'|Y is amaximum class of VC dimension d. Thus, by Theorem 5.6, for the
concept c onY thereexistsasubset A’ of Y/, for | A’| = d, suchthat ¢ = car oy - FromLemmab.5, the
concept ¢4 on X isconsistent with the original sample set ¢ 4/ ¢y Thuswe have asample compression
scheme of size d for maximum classes of VC dimension d. O

5.2 Analgorithm for the compression function

This section gives a greedy compression agorithm that implements the VC Compression Scheme
for amaximum class C' of VC dimension d on the (possibly infinite) domain X. Theorems 5.6 and 5.7
proved that there is a compression set for every finite labeled sample set. The proof of Theorem 5.6
suggests an algorithm to find the compression set. The input for the compression algorithm is a finite
sampleset Y’ of sizeat least d, for Y/ C X x {0, 1}, |abeled consistently with some concept ¢ in C. Let
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V' ={< 21,l1 >,..,< 2, >} Theoutput of the compression algorithm is alabeled compression
set A’ C Y’ of cardinality d that represents some concept in C' consistent with the labeled set Y.

Definitions (the consistency oracle): The consistency problem for a particular concept class C' is
defined in [BEHW89] as the problem of determining whether thereis a concept in C' consistent with a
particular set of labeled examples on X. We define a consistency oracle as a procedure for deciding the
consistency problem. O

From [BEHW89], if the consistency problem for €' is NP-hard and RP # NP then C' is not
polynomially learnable by an algorithm that produces hypotheses from .

The Greedy Compression Algorithm (for the VC Compression Scheme).

e The compression agorithm: The compression algorithmisgiven asinput thefinite sampleset Y,
labeled consistently with some concept in C'. The compression al gorithm examines each element
of the set Y’ in arbitrary order, deciding whether to add each element in turn to the compression
set A’. Initially, A’ isthe empty set. At step ¢, the algorithm decides whether to add the |abeled
element < x;,[; > tothe partial compressionset A’, for0 < |A'| < d—1and < z;,l; >€ Y.
The a gorithm determines whether, for each possible labeling of the elementsin A U {z;}, there
existsaconcept in C'|Y consistent with that labeling along with the labeling of other elements of
Y asinY’. If so, then < 2;,1; > isadded to A’. Each such decision requires at most 214! callsto
the consistency oracle. The compression algorithm terminates when A’ is of cardindity d.

¢ Thereconstruction algorithm: The reconstruction algorithm isgiven asinput the compression set
A’ of cardinality d, and is asked to predict the label for some element z; C X. If z; € A, then
the reconstruction algorithm predicts the label for z; inthe compressionset. If z; ¢ A, let C'1 be
C|(AU {z;}). If, for each of the 2¢ possiblelabelings A’ of A, thereisa concept in €1 consistent
with A’'U < 2;,0 >, then ¢ 4/ ¢, predictslabel ‘0" for the element ;. Otherwise, ¢4/ ¢, predicts
the label ‘1’ for ;. Thelabel for z; can be determined with at most 2¢ calls to the consistency
oracle.

Example (intervals on the ling): Consider the greedy compression algorithm applied to a finite
sample set from the class C'; of a most 3 intervals on the line, as in Figure 3.1. The examplesin
Figure 3.1 are labeled consistently with some concept ¢ in C'3. Consider the examples one at atime,
starting with the leftmost example. Let the initial compression set A’ be the empty set. First consider
theexample“z1”. Thereisno concept in C'3 with < 21, 1 >, and with the other exampleslabeled asin
Figure 3.1. Therefore the example® 1" isnot added to the current compression set. There is aconcept
in C3 with < 22,1 >, and with the other examples labeled as in Figure 3.1. Therefore, < z,,0 > is
added to the current compression set A’. For every labeling of the point “z5”, thereisaconcept in C'3
consistent with that |abeling, and with the labeling of the other pointsin the sample set. Now consider
the element “x3”. For every labeling of the elements {5, 23}, isthere a concept in C'3 consistent with
that labeling, and with the labeling of the other pointsin the sample set? No, because there isno concept
in C3 with < 22,1 >, < 23,0 >, and with the given labeling of the other points. Therefore ‘z3’ is
not added to the current compression set. Proceeding in this fashion, the greedy compression agorithm
constructs the compression set A = {< 22,0 >, < 24,1 >, < 26,0 >, < 219,1 >, < 213,0 >,
< x15,1 >}. Thereconstruction function for this classisillustrated by Figure 5.2. O

Theorem 5.8 shows that the greedy compression algorithm terminates with a correct compression
Set.

Theorem 5.8: Let ¢' C 2X be a maximum class of VC dimension d, and let Y’ be a finite sample set
labeled consistently with some concept ¢ € C, for |Y'| > d. Then the Greedy Compression Algorithm
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after each step maintains the invariant that, for the partial compression set A, the labeled set Y-A' is
consistent with some concept in C'4. Further, the Greedy Compression Algorithmon Y’ terminateswith
a compression set of cardinality d for the concept .

Proof: From the algorithm it follows immediately that at each step the invariant is maintained: the
labeled set Y'-A' is consistent with some concept in C4.

Assume for purposes of contradiction that the greedy compression agorithm ends with the com-
pression set A’, where |A’| = s < d. Then the labeled sample set Y’ is consistent with some concept
in C4. From Corallary 5.2, C4 isamaximum class of VC dimension d — s on Y-A. From Theorem
5.6, there is a compression set of cardinaity d — s from Y’-A’ for ¢|[(Y — A). Let 2; be a member of
some such compression set of cardinality d — s. Then (C4){i} isamaximum class of VC dimension
d — s —1on(Y-A)-{z;} that contains a concept consistent with ¢. Let A; C A denote the partia
compression set held by the compression a gorithm before the compression algorithm decides whether
or not to add the element z;. Then (C41)1%:} contains a concept consistent with ¢. Therefore z; would
have been included in the partial compression set. This contradicts the fact that = ; ¢ A. Therefore the
compression algorithm can not terminate with a compression set of cardinality s < d. O

This compression algorithm requires at most (m — )21 + 2¢ — 1 calls to the consistency oracle
for C'. This upper bound holds because the d elements added to the compression set require at most
204214 . 4 2¢-1 = 27 _ 1 calsto the consistency oracle, and each other element requires at most
29-1 calls to the consistency oracle. More efficient agorithms for the VC Compression Scheme are
explored in [F89].

5.3 A lower bound on the size of a sample compression scheme

In this section we show that for amaximum class C' C 2¥ of VC dimension d, if the cardinality of
the domain X is exponential in d, then there can be no sample compression scheme of size less than d.
This refers to a sample compression scheme as defined in Section 3, where a sample compression set
consists of an (unordered) subset from the original sample set. We also show that for any concept class
of VC dimension d there is no compression scheme that compresses sample sets of size at least d to
subsets of sizeat most d/5.

Theorem 5.9: For any maximum concept class ' C 2% of VC dimension d > 0, there is no sample
compression scheme of size less than d for sample sets of size at least 42291,
Proof: Let Y beany subset of X of cardindity m > d?2?~. Theclass C|Y contains ®,(m ) concepts.
We show that there arelessthan ®,(m ) labeled compression sets of sizeat most d — 1 from'Y. For each
set of + elementsinacompression set, for 0 < ¢ < d — 1, those elements could be labeled in 2 different
ways. Therefore there are at most

d-1

22 (1)

=0 t

distinct labeled compression sets of sizeat mostd — 1 from Y.
We show that

Sz (1) <3 (7)o

=0
=1 m m
& ;(22—1)<i)<<d).
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It suffices to show that

A2 -1 (d?l) < (73) = (dTl) m_TdJrl‘

Thisisequivaent to showing that
P24 d—-1<m.

Thisinequality holds because . > d?2¢-1. O

Note that this argument does not necessarily apply for classes of VC dimension d that are not
maximum. For example, the VC dimension of the class of arbitrary halfspaces in the plane is three,
but there exists a sample compression scheme of size two for this class [BL89]. The class of arbitrary
halfspaces in the planeis neither maximum nor maximal; for some sets of four pointsin the plane there
are less than d3(4) = 15 ways to label those four points consistently with some arbitrary halfspace
[F89].

Theorem 5.10: For an arbitrary concept class C' of VC dimension d, there is no sample compression
scheme of size at most d/5 for sample sets of size at least d.

Proof: Let Y beany set of d unlabeled examples. There are at most

d/5

> (f) 2" < ®yy5(d)2'7°

=0

compression sets of sizeat most d/5from Y. Since

k
Dy (m) < (%) foral m>k>1

[BEHW89], the number of compression setsis bounded above by
(10e)%/5 < 324/5 = 24,

Thusif Y isshattered by the class ', then there are not enough compression setsfor the 2¢ labelings of
Y. O

6 Batch learningalgorithmsusing sample compression schemes

Given a sample compression scheme for aclass ¢ C 2¥ then there is a learning algorithm that
uses thisscheme as follows: It requests a sample sequence Y’ of m examples from the oracle labeled
consistently with some concept in the class C'. It then converts the sample sequence to a sample set,
removing duplicates, and uses the compression function to find a compression set for this sample set.
The reconstruction function maps the compression set to a hypothesis on X which isthe hypothesis of
the learning algorithm. Note that this hypothesisis guaranteed to be consistent with all of the examples
in the original sample set.

Littlestoneand Warmuth [LW86] gave an upper bound on the samplesize needed for abatch learning
algorithm for the class (' that uses a sample compression scheme of size at most d.
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Theorem 6.1 (LW86): Let P be any probability distribution on a domain X, ¢ be any concept on X,
and ¢ be any function mapping sets of at most d examples from X to hypotheses that are subsetsof X'.
Then the probability that m > d examples drawn independently at random according to P contain a
subset of at most d examples that map via ¢ to a hypothesisthat is both consistent with all m examples

m) (1= eyn—i,

and has error larger than e isat most >°¢_ ( ;

Proof: The proof isin the appendix.

Lemma6.2: For0< ¢, <1,if

SRR SRS TSP
"o\ ¢ Be

forany0 < § < 1, then "4 (m

1

(1— )™=t < 6.

1 <}|n}—|—d—|—glni)<m
(1-p)\e & € e

for 0 < g < 1, whichisequivalent to

N

Proof: Let

1 1 d d fe
~In= - — - —m — < m. :
€In6+d+€(1+lnﬁ€ 1+ T Ind) <m (6.1)

We use the fact from [SAB89] that

—Ina -1+ am >Inm fordl a > 0.

For a = £ we get

De

d
In— -1+ —m>Inm.

De d
By substituting Inm into the left hand side of equation (6.1) we get

}In%+d+é(1—|—lnm—lnd)§m
€ €

1
& Ing—l—d(l—l—lnm— Ind) < e(m —d)

d
- <7m) < ecltm=d)g.

Since from [BEHW89]

d
®y(m) < (%) ,fordl m>d> 1,

we have

> (") 2o < oumya- ot < () e <
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Theorem 6.3: Let C C 2X be any concept class with a sample compression scheme of size at most d.
Thenfor 0 < ¢,6 < 1, thelearning algorithmusing this scheme learns C' with sample size
m > 1 <}|n}—|—d—|—glni)
T (1-p5)\e & € e
forany0 < g < 1.
Proof: Thisfollowsfrom Theorem 6.1 and Lemma6.2. O

For maximum classes of VC dimension d, Theorem 6.3 dlightly improves the sample compl exity
of batch learning from the previously known results from [BEHW89] and [SAB89] given in Theorem
2.2. Choosing 5 = 1/2 gives smple bounds. The bounds can be marginally improved by optimizing
the choice of 3 as donein® [CBFH+93].

Note that the upper bounds have the form O(2(dlog2 + log1)) where d is either the size of a
compression scheme or the VC dimension for the concept class. These bounds cannot be improved
in that there exist concept classes of VC dimension d for which there are learning agorithms that
produce consistent hypotheses from the same class that require sample size Q(2(dlog? + log%)).
(This essentialy follows from lower bounds on the size of ¢-nets for concept classes of VC dimension
d [PW90, HLW88].) Similarly one can show [HLW88] that there are concept classes of VC dimension
d with a learning algorithm using a compression scheme of size d that requires the same sample size.
There are aso genera lower bounds [EHKV87] of Q(%(d + log %)) for learning any concept class of
VC dimension d. It is an open problem whether there are particular compression schemes of size d for
all (maximal) concept classes of VC dimension d with samplesize O(1(d + log 1)).

7 Maximal classes

Every class C' of VC dimension d can be embedded in a maximal class of VC dimension d: simply
keep adding concepts to the class €' until no more concepts can be added without increasing the VC
dimension. Every maximal class of VC dimension 1 is also a maximum class [WW87], but for classes
of VC dimension greater than 1, there are maximal classes that are not maximum. (Figures5.1 and 7.2
show two different classes of VC dimension 2 that are maximal but not maximum.) In this section we
discuss randomly-generated maximal classes, and we give a sample compression scheme that applies
for some classes that are maximal but not maximum. It is an open question whether there is a sample
compression scheme of size d for every maximal class of VC dimension d.

7.1 Randomly-generated maximal classes

This section defines arandomly-generated maximal class of VC dimension d on afinite domain X.
We show that for VC dimensions 2 and 3, alarge number of randomly-generated maximal classes are
not maximum. There are many natural examples of maximum classes [F89]. In spite of the abundance
of classes that are maximal but not maximum, we are not aware of a natural examplefrom theliterature
of aclassthat is maximal but not maximum.

We define arandomly-generated maximal class by thefollowing procedure for randomly generating
such classes.

Procedure for generating arandom maximal classof VC dimension d.

5In [CBFH+93] abound was optimized which had 2In ﬁ in the denominator. Similar techniquescan be used to optimize
abound with 1 — 3 in the denominator
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1. For amaximal classof VC dimension d on aset of m elements, there are 2 possible conceptson
these m elements. Each possible concept is classified as a member of the class ', not a member
of ¢, or undecided. Initially, the status of each possible concept is undecided. At each step, the
program independently and uniformly selects one of the undecided concepts ¢. Step 2 isrepeated
for each selected undecided concept.

2. If the undecided concept ¢ can be added to the class €' without increasing the VC dimension to
d + 1, then the concept ¢ becomes a member of the class C'. Otherwise, the concept ¢ is hot a
member of the class C'.

After the status of all 2™ possible concepts has been decided, theresulting class ' isamaximal class of
VC dimensiond. No additional concepts can be added to the class without increasing the V C dimension
of the classto d + 1. Because the procedure for randomly generating a maximal class examines al
2™ possible concepts, the procedure can only be run for small values of m. Our program uses a
pseudo-random number generator to select undecided concepts.

40 60 80

maximum classes(%)

20

m = [X|

Figure 7.1: Randomly-generated maximal classes of VC dimension 2.

A program can determine whether or not a given class C' C 2¥ is a maximum class simply by
counting the number of concepts in the class. (This is from Theorem 5.1) Figure 7.1 shows the
percent of randomly-generated maximal classes of VC dimension 2 that are also maximum, from our
experiments. The x-axis showsthe size m of theclass Y'; the y-axis showsthe percent of the randomly-
generated maximal classesthat are maximum. For each valueof m € {4, 6, 8, 10}, our program created
100 randomly-generated maximal classes of VC dimension 2 on m elements. From Figure 7.1, as m
increases, the percent of randomly-generated maximal classesthat are al so maximum decreases sharply.
For maximal classes of VC dimension 3, none of the 100 randomly-generated classes of VC dimension
3 on 6 or 8 elements were maximum. These results suggest that, for m and d sufficiently large, few of
the randomly-generated maximal classes of VC dimension d on m e ementswill be maximum.

7.2 Compression schemes for maximal classes

The VC Compression Scheme described in Section 5 applies to maximum classes of VC dimension
d; it can not necessarily be applied to maximal and nonmaximum classes of VC dimension d. For
example, Figure 7.2 showsamaximal class of VC dimension 2 for which the VC Compression Scheme
does not apply. This section presents a modified version of the VC Compression Scheme, called the
Subset Compression Scheme, that applies for some maximal classes of VC dimension d. It is an open
question whether the Subset Compression Scheme gives a sample compression scheme of size d for all
maximal classes of VC dimension d.
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Class C
X1 Xp X3 %4
0001
0010
0011
0101
0110
0111
1001
1010
1011
1100

Figure 7.2: A maximal and nonmaximum class €' of VC dimension 2.

Figure 7.2 gives amaximal and nonmaximum class C' C 2¥ of VC dimension 2 for which the VC

Compression Scheme does not apply. For example, for concept ¢ = 1100in C' thereisno compression
set of size two using the VC Compression Scheme. That is, thereisno AC X, for |A|=2, such that
¢ € C4on X — A. However, the subset compression scheme defined below does give a sample
compression scheme of size 2 for theclass C'.

The Subset Compression Scheme (for some maximal classes).

¢ Thecompressionfunction: Let C' C 2% beamaximal classof VC dimensiond. The compression
function is given as input the sample set Y, labeled consistently with some concept ¢ in C', for
Y C X. The compression function findsasubset A’ C Y, for |A’| = d, such that A’ represents
the concept ¢ on Y, using the reconstruction scheme bel ow.

The reconstruction function: The reconstruction function is given as input the compression set
A’, of cardindity d. The label that the compression set A’ predicts for an lement z; € X — A
is determined by considering the class C; = C|(A U {x;}), which is of VC dimension at most
d. Theclass (C;)* isof VC dimension a most 0, and is either empty or contains exactly one
concept. If (C;)* isnonempty, then (C;)# contains a single concept < z;, I; >, for [; €{0, 1}.
In this case, the compression set A’ predicts the label I; for x;. (This reconstruction function is
identical to that in the VC Compression Scheme, given theclass C;.)

For the purpose of completeness, we definethe label predicted for z; when (C;)# isempty. Inthis
case, let the label predicted by A’ for x; depend on the labels of the elements in the compression
set A'. If thereisonly one possiblelabel for a; in conceptsin the class C', given the labels of the
elementsin A’, then that is the label predicted by the compression set A’. Otherwise, arbitrarily
let the compression set A’ predict thelabel ‘O’ for x;. With this definition, each compression set
A’ predictsaunique label for each element x; of X, and therefore a unique hypothesison X. This
hypothesisis not necessarily intheclass C'.

For amaximum classof VC dimension d, the Subset Compression Scheme and the VC Compression

Schemeareidentical. Foramaximal classlet ¢ 4» denotetheconcept on X represented by thecompression
set A’ using the Subset Compression Scheme. The Subset Compression Scheme is motivated by a
combinatorial characterization of maximal classes of VC dimension d by “forbidden labels” on subsets
of d + 1 elementsthat is given in [F89]. It isan open question whether the subset compression scheme
gives a sample compression scheme of size d for every maxima class of VC dimension d; the subset
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compression scheme has worked correctly for all of the maximal classes that we have examined. The
following observation shows that the Subset Compression Scheme applies to some maximal classes that
are not maximum.

Observation 7.1: The subset compressi on scheme givesa compression scheme of size 2 for the maximal
classC' of VC dimension d in Figure 7.2.

Proof: It is sufficient to show that for every possible set of 3 or 4 labeled examples consistent with
some concept in ', the subset compression scheme gives a sample compression set of size 2. For
example, the concept ¢=1100 is represented by the compression set A’ ={< z1, 1>, < 22, 1>}. This
followsbecausein C'|( A U {3} ), the compression set A’ predicts < 23,0 >, and in C'|( AU {z4}), the
compression set A’ predicts < 24,0 >. The concept ¢=1100 is also represented by the compression
set {< 23,0 >, < 24,0 >}. Itiseasily verified that the subset compression scheme gives a sample
compression scheme of size 2 for the class C'. O

To our knowledge, it is an open question whether there exists a compression scheme of size O(d)
for every maximal class of VC dimension d. The structure of maximal classes of VC dimension d is
discussed further in [F89]. Because every class of VC dimension d can be embedded in a maximal
class of VC dimension d, it follows that if there was a sample compression scheme of size d for every
maximal classof VC dimension d, then there would be a sample compression scheme of size d for every
classof VC dimension d.

8 Conclusonsand related work

In this paper we described sample compression schemes within the context of pac-learning; we
showed that for any finite concept class C' there is a sample compression scheme of size log|C|. For
every maximum classof VC dimension d thereisasample compression scheme of sized; for amaximum
classof VC dimension d on asufficiently large set X thereisno sample compression schemeof sizeless
than d. We have given a greedy compression algorithm that implements the VC Compression Scheme
for maximum classes of VC dimension d.

We have shown that for any class C' with a sample compression scheme of size d, where each
compression set contains exactly d examples, the sample compression scheme can be used as a pac-
learning algorithm for that class, requiring at most

1 1 | 1 J d / 1
a9 (Fing+d+ Cing)
examplesfor 0 < 3 < 1. Because we have given a suitable sample compression scheme of size d for
maximum classes of VC dimension d, this result applies to all maximum classes of VC dimension d.
This approach improves on the previously-known sample complexity for pac-learning for maximum
classes of VC dimension d [BEHW89] [SAB89].

It isan open question whether there is a sample compression scheme of size d, or of size O(d), for
every maximal class of VC dimension d. We gave a sample compression scheme of size d that applies
for at least some classesthat are maximal but not maximum of VC dimension d. We defined randomly-
generated classes of VC dimension d, and showed that for the parameters that we have investigated a
large proportion of randomly-generated classes of VC dimension d are maximal but not maximum.

This paper discussed briefly the use of sample compression schemes in constructing batch learning
algorithmsfor pac-learning. Another application of sampl e compression schemesisfor space-bounded
iterative compression algorithms that save only a small number of examples at onetime. Let ¢' C 2%
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be a classwith asample compression scheme of sized. Aniterative compression algorithmdraws d + 1
examples, and saves only d of these examples, using the sample compression scheme. The iterative
compression algorithm continuesto draw anew example, to choose a compression set of size d from the
d + 1 saved examples, and to discard the example that is not in the compression set. The compression
set of size d represents the current hypothesis of the learning algorithm.

For a fairly simple example, one iterative compression agorithm for axis-paralel rectangles in
E? (of VC dimension 4) saves the rightmost, leftmost, top, and bottom positive points seen so far;
these points define the current hypothesis of the algorithm. When a new point is drawn whose label is
predicted incorrectly by the current hypothesis, then the new point is saved and one of the old points
might be discarded; the iterative compression algorithm always saves at most four points. Each time
that the compression set is changed, the size of the hypothesized axis-parallel rectangle isincreased.

As a more interesting application of the iterative compression algorithm, [F89] discusses classes
defined by n-dimensional vector spaces of real functionson somedomain X. Such classesinclude balls
in E7~1, positive halfspaces in £™, and positive sets in the plane defined by polynomials of degree
a most n — 1. With appropriate restrictions to the domain X [F89, p.102], each of these classesis a
maximum class of VC dimension n, and the iterative compression set for each class saves at most n
examples at atime. This compression set of n examples saved by the iterative compression algorithm
defines the boundary between the positive and the negative examples in the hypothesis. For these
classes the iterative compression algorithm is acyclic; there is a partial order on the set of al possible
compression sets, and each change of the compression set is to a compression set that is higher in
the partial order. [F89] contains many open questions concerning the use of iterative compression
algorithms for pac-learning for maximum and maximal classes.

Finally, there are other definitions of compression schemes that one might consider. In the definition
used in this paper the compression function maps every finite set of labeled examples to a subset of
a most & labeled examples. (In the original paper [LW86] the compression function mapped every
finite sequence of labeled examples to a subsequence of a most k labeled examples. The dternate
definition is essentially the same.) From the combinatorial point of view the following definition of
compression function might be the most interesting. The compression function maps every finite set
of labeled examples to a subset of & examples with their labels removed.® It is again an open problem
whether there is such a compression scheme of size d for any concept class of VC dimension d. Note
that thelatter definition leaves no “slack” because for any maximum concept class C' of VC dimensiond
and any finite set S of the domain, the number of conceptsin €'/ .5 equals exactly the number of subsets
of at most d unlabeled examples from 5.
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A Appendix

Proof of Theorem 6.1: Let Y’ be asequence of m examplesdrawn independently at random according
to the distribution P labeled by the concept ¢. Call any subset A’ of a most d examples from Y’ a
compression set if g(A’) is consistent with Y.
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First we consider compression sets of size exactly d. Let 7 be the collection of d-element subsets
of {1,..,m}. There are exactly (73) such subsets. For any example z; in the sample sequence, let

c(x;) bethelabel for that example. Forany T' = {t1, .., %4} € 7, let By contain all samples sequences
(21, -, 2m), suchthat the hypothesis g({{zy,, ¢(z+,)), - - -, (@1, c(x4,)}) IS consistent with the sample
sequence Y’ = ((x1,¢(x1)), -, (@, c(x))). Let Ur contain all sample sequences (1, - -, z,,),
where the hypothesis g({{z,, c(z+,)), - - -, (z¢,, c(2+,)}) has error greater than ¢, with respect to the
concept ¢. (Recall that the error of a hypothesis / is the probability, with respect to the distribution P,
of the symmetric difference of ¢ and 4.) The probability that a sample sequence Y’ of m examplesis
drawn, and the hypothesis represented by a sample compression set of d examples from Y’/ has error
morethat ¢, is at most

> P™(BrnUr).

TeT

For a particular 7", what is an upper bound on the probability P™ (B n Ur) of drawing m

examples, such that A" = {(zy,, c(2y,)), - -, (x4, c(z¢,)} IS acompression set of size exactly d for
those m examples, and the hypothesis represented by A’ has error greater than «? Because the elements
of Y’ are drawn independently from the distribution P, for afixed 7" we can assume that the d examples
of the compression set A’ are drawn first. Next theremaining m — d elementsof Y’ are drawn. If g( A’)
has error greater than ¢ and is consistent with the remaining m — d elements of Y’ then the probability
that a single example drawn from X is consistent with g(A’) islessthan 1 — e. The probability that
m — d examples drawn from X are consistent with the hypothesis g( A’) islessthan (1 — ¢)™~%. Thus

Pm(BT N UT) < (1— G)m_d.

Because | 7| = (73)

S PM(BrnUr) < (Z‘) (1—e)me.

TeT

Now we consider compression setsof sizeat most d. What isthe probability of drawing m examples,
suchthat thereisacompression set of sizeat most d for those m examples, and the hypothesi s represented
by the compression set has error greater than ¢? This probability islessthan

d

55 (1)

=0
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