
Sample compression, learnability, and
the Vapnik-Chervonenkis dimension.

Sally Floyd�
Manfred Warmuthy

UCSC-CRL-93-13
March 30, 1993

Baskin Center for
Computer Engineering & Information Sciences

University of California, Santa Cruz
Santa Cruz, CA 95064 USA

ABSTRACT

Within the framework of pac-learning, we explore the learnability of concepts from samples
using the paradigm of sample compression schemes. A sample compression scheme of size d
for a concept class C � 2X consists of a compression function and a reconstruction function.
The compression function, given a finite sample set consistent with some concept inC, chooses
a subset of k examples as the compression set. The reconstruction function, given a compression
set of k examples, reconstructs a hypothesis on X . Given a compression set produced by the
compression function from a sample of a concept in C, the reconstruction function must be able
to reproduce a hypothesis consistent with that sample. We demonstrate that the existence of a
fixed-size sample compression scheme for a class C is sufficient to ensure that the class C is
learnable.

We define maximum and maximal classes of VC dimension d. For every maximum class
of VC dimension d, there is a sample compression scheme of size d, and for sufficiently-large
maximum classes there is no sample compression scheme of size less than d. We discuss
briefly classes of VC dimension d that are maximal but not maximum, and we give a sample
compression scheme of size d that applies to some maximal and nonmaximum classes. It
is unknown whether there is a sample compression scheme of size d for every class of VC
dimension d.�Address: Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, floyd@ee.lbl.gov. This author was
supported in part by the Director, Office of Energy Research, Scientific Computing Staff, of the U.S. Department of Energy
under Contract No. DE-AC03-76SF00098.yAddress: Department of Computer Science, University of California, Santa Cruz, CA 95064, Thus author was supported
by ONR grants N00014-K-86-K-0454 and NO0014-91-J-1162 and NSF grant IRI-9123692

1 Introduction

In this paper we discuss the use of sample compression schemes within computational learning
theory. We define a sample compression scheme of size k for a concept class, consisting of a
compression function and a reconstruction function; this formulation of a sample compression scheme
was first introduced in [LW86]. Given a finite set of labeled examples, the compression function
selects a compression set of at most k examples. The reconstruction function uses this compression
set to construct a hypothesis for the concept to be learned. For a sample compression scheme, the
reconstructed hypothesis must be guaranteed to predict the correct label for all of the examples in the
original sample set.

This research on sample compression schemes has several distinct motivations. One motivation is
to demonstrate that the existence of an appropriate sample compression scheme is sufficient to ensure
learnability. This approach provides an alternative to that of [BEHW89], which uses the Vapnik-
Chervonenkis dimension to classify learnable geometric concepts.

A second motivation of this work is to explore the combinatorial properties of concept classes of VC
dimensiond. We give a sample compression scheme of size log jCj for any finite concept class C � 2X .
For infinite concept classes, we use the Vapnik-Chervonenkis dimension, and we define maximum and
maximal concept classes of VC dimension d. Maximal concept classes are classes where no concept
can be added without increasing the VC dimension of the class. Maximum classes are in some sense
the largest concept classes [W87]. We give a sample compression scheme of size d for any maximum
concept class of VC dimension d. Further, we show that for any sufficiently large maximum class of
VC dimension d, there can be no sample compression scheme of size less than d. We give a sample
compression scheme that applies for some concept classes that are maximal but not maximum. Recently
a compression scheme of size O(d logm) for classes of VC dimension d was presented in [LSW93];
this result uses a more general definition of a sample compression scheme, and relies on the boosting
schemes of weak learning algorithms [F90][S90]. It remains an open question [LW86] whether there is
a sample compression scheme of size O(d) for every class of VC dimension d.

A third motivation of this work is to explore the use of sample compression schemes of size at
most d in batch learning algorithms, and in on-line learning algorithms that save at most d examples at
each step. Batch learning algorithms are explored briefly in this paper; on-line learning algorithms are
explored in more detail in [F89].

The paper is organized as follows. Section 2 reviews pac-learning and the VC dimension. In Section
3 we define the sample compression schemes of size at most k used in this paper. Section 4 gives a
One-Pass Halving Compression Scheme and a Multiple-Pass Halving Compression Scheme for any
finite class C � 2X . Both of these compression schemes are of size log jCj. In Section 5 we define
maximal and maximum classes of VC dimension d. For any maximum class C � 2X of VC dimensiond, we give a sample compression scheme of size equal to d called the VC Compression Scheme; we
discuss compression and reconstruction algorithms to implement this scheme. In Section 5.3 we prove
that for any sufficiently large maximum class of VC dimension d, there can be no sample compression
scheme of size less than d. In Section 6 we show that a sample compression scheme for a class C can
be used as a basis for a learning algorithm for that class;1 this result improves on the previously-known
sample complexity of batch learning algorithms for such classes. Finally, Section 7 discusses sample
compression schemes for maximal classes of VC dimension d.

Notation: A-B is used to denote the difference of sets, so A-B is defined as fa 2 A: a 62 Bg. We let
lnx denote logex and we let logx denote log2x.

1The original sample complexity bounds of [LW86] are slightly weaker; similar proofs for extended schemes appear in
[LSW93].

1

A domain is any set X. The elements of X � f0; 1g are called examples. Positive examples are
examples labeled “1” and negative examples are labeled “0”. The elements of X are sometimes called
unlabeled examples. If Y is a set of unlabeled examples, then Y 0 always denotes a corresponding set of
(labeled) examples.

A concept c on the domain X is any subset from X. Concept c labels the element of c with “1” and
the elements of X � c with “0”. A concept class on X is any subset of 2X . For Y � X , we defineCjY as the restriction of the class C to the set Y : CjY = fc \ Y : c 2 Cg. We say that the class C is
finite if jCj is finite; otherwise we say that the class C is infinite. A sample set is a set of examples fromX � f0; 1g; a sample sequence is a sequence of examples, possibly including duplicates. A sample set
(sequence) is consistent with a concept c if the labels of its examples agree with c. 2
2 Pac-learning and the VC dimension

In this section we review the model of probably approximately correct (pac) learning, and we
review the connection between pac-learning and the Vapnik-Chervonenkis dimension. In [V84], Valiant
introduced a model of learning concepts from examples taken from an unknown distribution. In this
model of learning, each example is drawn independently from a fixed but unknown distribution P on
the domain X, and the examples are labeled consistently with some unknown target concept c in the
class C.

Definitions (pac-learning): The goal of the learning algorithm is to learn a good approximation
of the target concept, with high probability. This is called “probably approximately correct” learning
or pac-learning. A learning algorithm has two inputs, the accuracy parameter � and the confidence
parameter �, along with an oracle that provides labeled examples of the target concept c. The sample
size of the algorithm is the number of labeled examples in the sample sequence drawn from the oracle.
The learning algorithm returns the hypothesis h. The error of the hypothesis is the total probability,
with respect to the distribution P, of the symmetric difference of c and h.

A concept class C is called learnable if there exists a learning algorithm such that, for any �
and �, there exists a fixed sample size such that, for any concept c 2 C and for any probability
distribution on X, the learning algorithm produces a probably-approximately-correct hypothesis; a
probably-approximately-correct hypothesis is one that has error at most � with probability at least 1-�.
The sample complexity of the learning algorithm for C is the smallest required sample size, as a function
of � and �. 2

For a finite concept class C � 2X , Theorem 2.1 gives an upper bound on the sample complexity
required for learning the class C. This upper bound is linear in lnjCj.
Theorem 2.1: ([V82], [BEHW87], [BEHW89]): Let C � 2X be any finite concept class. Then for
sample size greater than 1� ln jCj� , any algorithm that chooses a hypothesis from C consistent with the
examples is a learning algorithm for C.

Definitions (the Vapnik-Chervonenkis dimension): For infinite classes such as geometric concept
classes onEn, Theorem 2.1 cannot be used to obtain bounds on the sample complexity. For these classes,
a parameter of the class called the Vapnik-Chervonenkis dimension is used to give upper and lower
bounds on the sample complexity ([VC71], [BEHW89], [EHKV87]). For a concept class C on X, and
for S � X, let CjS denote the restriction of concept class C to the set S. If CjS = 2S , then the set S
is shattered by C. The Vapnik-Chervonenkis dimension (VC dimension) of the class C is the largest
integer d such that some S � X of size d is shattered by C. If arbitrarily large finite subsets of X are

2

shattered by the class C, then the VC dimension of C is infinite. Note that a class C with one concept
is of VC dimension 0. 2

If the class C � 2X has VC dimension d, then for all Y � X , the restrictionCjY has VC dimension
at most d.

Theorem 2.2 from Blumer, Ehrenfeucht, Haussler, and Warmuth in [BEHW89] gives an upper bound
on the sample complexity of learning algorithms in terms of the VC dimension of the class. This result
in [BEHW89] is adapted from Vapnik and Chervonenkis in [VC71].

Theorem 2.2 (BEHW89): : Let C be a well-behaved2 concept class. If the VC dimension of C isd <1, then for 0 < �; � < 1 and for sample size at leastmax�4� log
2� ; 8d� log

13� � ;
C is learnable by any algorithm that finds a concept c from C consistent with the sample sequence. 2
In Theorem 2.2, the VC dimension essentially replaces lnjCj as a measure of the size of the class C.
[SAB89] improves the sample size in Theorem 2.2 to

1�(1 � �) ln
2� + d�(1 � �) �ln

1� + 2(ln 2 + ln
1�)�

for 0 < � < 1. This is equivalent to

1(1� �) �1� ln
2� + 2d ln 2� + d� ln

1��2

�
(to facilitate comparison with bounds derived later in the paper). In this paper we ignore computational
concerns. Our focuses here are sample size bounds and the combinatorics of concept classes of
VC dimension d. Computational issues regarding compression schemes are discussed in [F89] and
[LSW93].

3 Sample compression schemes

In this section we define a sample compression scheme of size at most k for a concept class C, and
we give several examples of such a sample compression scheme.

Definitions (sample compression schemes) [LW86]3: A sample compression scheme of size at
most k for a concept class C onX consists of two functions, a compression function and a reconstruction
function. The compression function f maps every finite sample set to a subset of at most k labeled
examples from the sample set called a compression set. The reconstruction function g maps every
possible compression set to a hypothesis h � X . This hypothesis is not required to be in the class C.
The requirement for a sample compression scheme is that, for any sample set Y 0 consistent with some
concept in C, the hypothesis g(f(Y 0)) is consistent with the original sample set Y 0. In this paper the
size of a compression set is defined as simply the number of examples in the compression set, not the
number of bits used to encode those examples. 2

2This is a measure-theoretic condition given in [BEHW89]. It is not likely to exclude any concept class considered in the
context of machine learning applications.

3This paper essentially uses the simplest version of the compression schemes introduced in [LW86]; various more
sophisticated schemes are discussed in [LSW93].

3

Example (rectangles): Consider the class of axis-parallel rectangles in E2. Each concept cor-
responds to an axis-parallel rectangle; the points within the axis-parallel rectangle are labeled ‘1’
(positive), and the points outside the rectangle are labeled ‘0’ (negative). The compression function for
the class of axis-parallel rectangles in E2 takes the leftmost, rightmost, top, and bottom positive points
from a set of examples; this compression function saves at most four points from any sample set. The
reconstruction function has as a hypothesis the smallest axis-parallel rectangle consistent with these
points. This hypothesis is guaranteed to be consistent with the original set of examples. This class is of
VC dimension four. 2

Rectangles are one example of an “intersection closed” concept class. The results of [HSW89] lead
to compression schemes of size at most d for any intersection closed class of VC dimension d.

Example (intervals on the line): One compression function for the class of at most n intervals
on the line scans the points from left to right, saving the first positive example, and then the first
subsequent negative example, and so on. At most 2n examples are saved. The reconstruction function
has as a hypothesis the union of at most n intervals, where the leftmost two examples saved are on the
boundaries of the first positive interval, and each succeeding pair of examples saved are the boundaries
of the next positive interval. For the sample set in Figure 3.1, this compression function saves the
examples f< x3; 1 >;< x5; 0 >;< x7; 1 >;< x11; 0 >;< x14; 1 >;< x16; 0 >g which represents the
hypothesis [x3; x5) [[x7; x11) [[x14; x16). Note that the class of at most n intervals on the line is of
VC dimension 2n. 2

0000000 1111 1111 0

xx x x x x x x x x x x x x x x
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 3.1: Union of three intervals on the line.

Although we have defined labeled compression schemes, where the compression function saves
a labeled subset of the sample set, for the classes of rectangles and of intervals examined above, it
would also be possible to define unlabeled compression schemes, where the compression function saves
an unlabeled subset of the sample set. For example, for the class of intervals, if the compression set
always consists of alternating positive and negative examples, starting with a positive example (when
the points are ordered left to right), then it is not necessary to explicitly save the labels of the points in
the compression set.

Note that the sample compression scheme defined in this section differs from the traditional definition
of data compression. Consider the compression function for axis-parallel rectangles that saves at most
four positive examples from a sample set. From a compression set of at most four examples, it is
not possible to reconstruct the original set of examples. However, given any unlabeled point from the
original set of examples, it is possible to reconstruct the label for that point.

4 Sample compression schemes for finite classes

In this section we give two sample compression schemes of size log jCj for any finite concept class
C. Compression schemes of size log jCj for finite classes have been proposed independently by Angluin.

4

The One-Pass Halving Compression Scheme gives a sample compression scheme of size blog jCjc
for a finite class C � 2X . Because C is finite, C can be considered as a class on a finite domain X. (If
two elements in X have the same label for all concepts in the class C, then these two elements can be
considered as a single element.) Let X = fx1,.., xrg. We assume some arbitrary fixed order on the r
elements of X.

The input to the sample compression algorithm is some labeled sample set Y 0, for Y =fxs1 ,.., xsmg
and for Y � X . The examples in Y are assumed to be labeled consistently with some concept in the
class C.

The One-Pass Halving Compression Scheme (for finite classes).� The compression function: The input to the compression function is the labeled sample setY 0 � X � f0; 1g. Let the current compression set A0 initially be the empty set, and let C1 be
the set of concepts consistent with A0. Initially, C1 is set to C. The elements of Y 0 are examined
one at a time, in order. Let the ith example from Y 0 be < xsi ; 0 >, for example. If at least half
of the concepts in C1 contain < xsi ; 1 >, then add < xsi ; 0 > to the current compression set,
and remove all concepts that contain < xsi ; 1 > from C1. If less than half of the concepts in C1

contain < xsi ; 1 >, then C1 and A0 remain unchanged.

The compression function can be viewed as an algorithm that examines the elements of Y 0 one
at a time, considering the class C1 of concepts consistent with the examples saved so far. For
the next element xsi , the compression algorithm takes the label for xsi given by the majority of
concepts in the class C1, and predicts that label for xsi . If the compression algorithm predicts the
correct label for xsi , then xsi is discarded. If the compression algorithm predicts the incorrect
label for xsi , then the compression algorithm saves xsi , and updates C1. Thus the compression
algorithm saves an example when it makes a mistake predicting the label for that example.� The reconstruction function: The reconstruction function is given as input the compression set
A0 = f< xa1 ; la1 >; ::; < xak ; lak >g containing k elements, for li 2 f0; 1g. For xi not in the
compression set, let A0i contain those elements from A0 that precede xi in the fixed order on
the elements of X. Let Ci contain the concepts from C that are consistent with A0i. Then the
reconstruction function predicts the label for xi that agrees with more than half of the concepts inCi. If exactly half of the concepts in Ci contain one label for xi, and half contain the other label,
then the reconstruction function predicts ‘0’ for xi by default. For xi in the compression set the
reconstruction function predicts the label for xi in the compression set. This will also be the label
for xi in less than half of the concepts in Ci.

Theorem 4.1: Let C � 2X be any finite concept class. Then the One-Pass Halving Compression
Scheme is a sample compression scheme of size blog jCjc for the class C.

Proof: To show that the current compression set contains at most blog jCjc examples, it suffices to
observe that during the compression function, each time an example is added to the current compression
set, the size of C1 is reduced by at least half. Thus if the current compression set reaches size blog jCjc,
there can be at most one concept in C consistent with the examples in the current compression set.

The current compression set predicts the correct label for all of the elements in the original sample setY 0. If, using the reconstruction function, some example in the target concept is not labeled consistently
with more that half of the concepts in C2, then either that example was not in the original sample setY 0, or that example was saved in the current compression set. 2

The One-Pass Halving Compression Scheme has a somewhat-involved reconstruction function that
requires constructing several subclasses of the class C. By making more than one pass through the

5

sample set, we can give a multiple-pass halving compression scheme with a slightly more complicated
compression function but a simplier reconstruction function. In this case, the compression set defines
a class C1 of all concepts consistent with the elements in the compression set. For each x 2 X , the
reconstruction function predicts the label for x given by the majority of concepts in C1. Note that in
the One-Pass Halving Compression Scheme it is not necessary to save the labels for the elements in the
compression set. This property does not hold for the Multiple-Pass Halving Compression Scheme.

The Multiple-Pass Halving Compression Scheme (for finite classes).� The compression function: The input to the compression function is a finite sample set Y 0 �X � f0; 1g. To start, let C1 = C, and let the current compression set A0 be the empty set.
Examine the elements of Y 0 one at a time, in any order. Let the ith example examined be< xi; 0 >, for example. If at least half of the concepts in C1 contain < xi; 1 >, then add< xi; 0 > to the current compression set, and remove all concepts that contain < xi; 1 > fromC1. If less than half of the concepts in C1 contain < xi; 1 >, then C1 and A0 remain unchanged.

After one pass through the sample set Y 0, there still might be elements in Y 0 whose labels are
not the same as the label predicted for that element by the majority of concepts in C1. Additional
passes through the sample set Y 0 might be required. In each pass, each element of Y 0 whose
label is incorrectly-predicted by the current compression set is added to that compression set, andC1 is modified accordingly. Once the compression set remains unchanged for one complete pass
through the sample set, then no further passes are required.� The reconstruction function: The reconstruction function is given as input the labeled compression
set A0. Let C2 contain all concepts consistent with the examples in the compression set A0. If x
is in the current compression set, then the reconstruction function predicts the label for x in the
compression set. If x 2 X is not in the current compression set, then the label predicted for x
is the label for x in more than half of the concepts in C2. If exactly half of the concepts in C2

contain one label for x, and half contain the other label, then the compression set predicts ‘0’ forx by default.

For both the One-Pass and the Multiple-Pass Halving Compression Scheme, the hypothesis predicted
by the compression set is not necessarily a concept from the class C.
Theorem 4.2: Let C � 2X be any finite concept class. Then the Multiple-Pass Halving Compression
Scheme is a sample compression scheme of size blog jCjc for the class C.
Proof: The proof is similar to the proof of Theorem 4.1. Because the compression set is of size at mostblog jCjc, the compression function requires at most blog jCjc passes through the sample set. 2

Neither the one-pass halving compression scheme nor the multiple-pass halving compression
algorithm is necessarily claimed to be an efficient algorithm. At this point, the discussion of these
algorithms is of combinatorial interest, apart from questions of efficiency. Neither the one-pass nor
the multiple-pass halving compression algorithm is applicable for an infinite class C. [LSW93] gives
a compression scheme of size O(d logm) for any (possibly infinite) class of VC dimension d. As
discussed later in this paper, it is an open question whether there are always compression schemes of
size O(d) for arbitrary classes of VC dimension d.

5 Sample compression schemes for maximum classes

In this section we explore a sample compression algorithm based on the combinatorial structure of
a class. Theorem 2.1 gives an upper bound on the sample complexity of a learning algorithm of a finite

6

class C that is linear in lnjCj. The VC dimension was used to generalize this result to infinite classes;
the more general result in Theorem 2.2 gives an upper bound on the sample complexity that is linear in
the VC dimension of the class.

In the case of sample compression schemes, a finite class C has a sample compression scheme
of size blog jCjc. To discuss sample compression schemes for infinite as well as finite classes, we
consider the combinatorial structure of the class based on the VC dimension. In this section we define
a maximum class of VC dimension d. Section 5.1, gives a sample compression scheme of size d for
any maximum class of VC dimension d; Section 5.2 gives an algorithm that implements the sample
compression scheme for maximum classes. Section 5.3 shows that for a maximum class C � 2X of
VC dimension d for X sufficiently large, there is no sample compression scheme of size less than d.

Definitions (maximum and maximal classes): We use the definitions from [W87] of maximum
and maximal concept classes. A concept class is called maximal if adding any concept to the class

increases the VC dimension of the class. Let Φd(m) be defined as
Pdi=0

�mi � for m � d, and as 2m form < d. From [VC71], [S72], the cardinality of C is at most Φd(m) for any class C of VC dimension d
on a domain X of cardinality m. A concept class C of VC dimension d on X is called maximum if, for
every finite subset Y of X, CjY contains Φd(jY j) concepts on Y . Thus a maximum class C restricted
to a finite set Y is of maximum size, given the VC dimension of the class. Note that a concept class that
is maximum on a finite domain X is also maximal on that set [WW87, pg. 53]. 2

Class D Class E

0 0 0 0
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 1 0
1 0 1 1
1 1 0 0

0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0

w x y zw x y z

Figure 5.1: Class D is maximum. Class E is maximal but not maximum.

Figure 5.1, along with Figure 7.2 later in the paper, gives examples of classes that are maximal but
not maximum. More examples can be found in [WW87] and [F89]. Recall that a concept c in a classC can be thought of either as a subset S of positive examples from the set X, or as the characteristic
function of S on X. Each row in Figure 5.1 represents one concept on fw; x; y; zg.

5.1 The sample compression function for maximum classes

Definitions (the classes C � x;Cfxg): For x 2 X, define C � x as Cj(X � fxg), the restriction
of the class C to the domain X-fxg. Define Cfxg as the class fc 2 Cjx 62 c and c [fxg 2 Cg;
the class Cfxg has the domain X-fxg. Thus each concept c in Cfxg corresponds to the two conceptsc [f< x; 0 >g and c [f< x; 1 >g in the class C. 2

As an illustration, consider the maximum class D in Figure 5.1. The class Cfzg onX�fzg contains
four concepts. These concepts, represented as characteristic vectors on fw; x; yg, are 001, 010, 011,
and 101.

We first give a theorem of Welzl on maximum concept classes.

7

Theorem 5.1 (W87, p. 9): : A concept class C of VC dimension d on a finite domain X is maximum if
and only if jCj = Φd(jX j).
Proof: By definition, if C is maximum, then jCj = Φd(jX j). We show that if jCj = Φd(jX j), then for
every Y � X , j(CjY)j = Φd(jY j).

Assume that jCj = Φd(m), for jX j = m. Let x 2 X . By definition, for every concept c in Cfxg
the class C contains two concepts that are consistent with c on X-fxg; for every concept c in C � x but
not in Cfxg, the class C contains one concept that is consistent with c on X-fxg. Thus jCj = jC � xj +jCfxgj. The class C � x is of VC dimension at most d on X-fxg, so jC � xj � Φd(m� 1).

The class Cfxg is of VC dimension at most d� 1 on X-fxg. If some set Z � X of cardinality d
was shattered by the class Cfxg, then the set Z [fxg would be shattered by the class C, contradicting
the fact that C is of VC dimension d. Thus jCfxgj � Φd�1(m� 1).

Because Φd(m) = Φd(m � 1) + Φd�1(m � 1), it follows that jC � xj = Φd(m � 1), and thatjCfxgj = Φd�1(m� 1). By induction, for any Y � X, j(CjY)j = Φd(jY j). 2
The following corollary from Welzl applies to maximum classes on a finite domain X. Corollary 5.3

extends one part of Corollary 5.2 to a maximum class on an infinite domain X. Corollary 5.2 is extended
to any maximum and maximal class on an infinite domain X in [F89, p.25].

Corollary 5.2 (W87, p. 10): : Let C � 2X be a maximum concept class of VC dimension d � 1 on
the finite domain X. Then for x 2X, Cfxg is a maximum class of VC dimension d � 1 on X-fxg. IfjX � fxgj � d, then C � x is a maximum class of VC dimension d on X-fxg.

Proof: Let X be of cardinality m. From the proof of Theorem 5.1, jC � xj = Φd(m � 1). From
the same theorem, if jX � fxgj � d, then C � x is a maximum class on X-fxg of VC dimensiond. Similarly, because jCfxgj = Φd�1(m � 1), and Cfxg is of VC dimension at most d � 1, Cfxg is a
maximum class of VC dimension d� 1 on X-fxg. 2
Corollary 5.3: Let C � 2X be a maximum concept class of VC dimension d on the infinite domain X.
Then C � x is a maximum class of VC dimension d on X-fxg.

Proof: Because C is maximum of VC dimension d, for every finite subset Y of X, CjY contains
Φd(jY j) concepts on Y . For any finite subset Z of cardinality at least d of X-fxg, CjZ is maximum
of VC dimension d. From Corollary 5.2, if Z � fxg is of cardinality at least d, then (CjZ)� fxg is
maximum of VC dimension d on Z-fxg. Because (CjZ)�fxg = (C �fxg)jZ, C � fxg is maximum
of VC dimension d on every finite subset of X-fxg of cardinality at least d. Therefore, C � fxg is
maximum of VC dimension d on X-fxg. 2

Definitions (the class CA) [W87]: Let C � 2X be a maximum concept class of VC dimension d.
For A = fx1,..., xkg, A � X, CA is defined as the class (((Cfx1g)fx2g):::)fxkg. 2

It is easy to see that for any distinct x,y in X, (Cfxg)fyg = (Cfyg)fxg [W87, p. 8]. Therefore for
any A � X , the class CA is well-defined.

Corollary 5.4 (W87): : Let C � 2X be a maximum concept class of VC dimension d on the finite
domain X. Let A be any subset of X of cardinality d. Then the class CA is of VC dimension 0, and thus
consists of a single concept.

Proof: This follows from repeated application of Corollary 5.2. The class CA contains the single
concept c on X-A such that c remains a concept in C for any labeling of the elements of A. 2

Definitions (the concept cA) [W87]: For any maximum concept class C � 2X of VC dimensiond on the finite domain X, and for any set A � X of cardinality d, let cA denote the unique concept in the
class CA on the domain X-A. 2

8

Example (at most two positive examples): As an example, consider the maximum class C of VC
dimension two on X that consists of all concepts with at most two positive examples. Then, for fx1; x2g� X, cfx1;x2g denotes the concept on X � fx1; x2g where every example is a negative example. This is
the only concept on X � fx1; x2g that remains a concept in C if both x1 and x2 are positive examples.2

Example (intervals on the line): Let Cn be the class containing all unions of at most n positive
intervals on the line. This class is maximum of VC dimension 2n. This follows because for any finite

set of m points on the line, for m � 2n, there are
P2ni=0

 mi !
ways to label those m points consistent

with at most n positive intervals on the line. For C3, let A be the set of 6 points fx1; x2; x3; x4; x5; x6g
shown below. Figure 5.2 shows the unique labeling of the rest of the line for the concept cA. For any
labeling of the points in A, the resulting labeling of the entire line corresponds to some concept in C3.2

.

01000 11

x x x x x x1 2 3 4 5 6

Figure 5.2: Union of three intervals on the line.

Definitions (the concepts cA0 , cA0 ;CjY): For any maximum concept class C of VC dimension d on
the finite domain X, and for any A � X of cardinality d, there is a corresponding concept cA on the set
X-A. For the sample set A0, let cA0 denote the concept with X-A labeled as in the concept cA, and with
A labeled as in A0. Thus for every labeled set A0 of cardinality d, for A � X, there is a corresponding
concept cA0 on X. We say that the set A0 is a compression set for the concept cA0 , and that the set
A0 represents the concept cA0 . Thus every set of d labeled examples from the domain X represents a
concept from the maximum class C. Speaking loosely, we say that a compression set A0 predicts labels
for the elements in X, according to the concept cA0 .

Let cA0 ;CjY , for A � Y � X , denote the concept cA0 in the maximum class CjY . If not otherwise
specified, cA0 is assumed to be the concept cA0;C . 2

Lemma 5.5 shows that cA0;CjY is the same as cA0;C restricted to the set Y.

Lemma 5.5: Let C � 2X be a maximum class of VC dimension d, for X finite. Let A � Y � X , forjAj = d. Then for any labeling A0 of A, and for x 2 Y , cA0 and cA0;CjY assign the same label to the
element x.

Proof: If x 2 A, then for both cA0 and cA0;CjY , x is labeled as in A0. If x 62 A, then assume for purposes
of contradiction that Lemma 5.5 is false. Without loss of generality, assume that cA0 contains < x; 0 >,
and that cA0;CjY contains < x; 1 >. Because cA0 contains < x; 0 >, for every labeling of A, the classC contains a concept with that labeling, and with < x; 0 >. Because cA0;CjY contains < x; 1 >, for
every labeling of A, the class CjY contains a concept with that labeling, and with < x; 1 >. Then the
set A [fxg is shattered in the class C, contradicting the fact that C is of VC dimension d. 2

Theorem 5.6 shows that for a maximum class C of VC dimension d on a finite domain X, every
concept in C is represented by some labeled set A0 of cardinality d. Theorem 5.6 is also stated, although
not with this proof, by Welzl in [W87, p. 27]. Theorem 5.7 shows that, using this approach, there is
a sample compression scheme of size d for any maximum class C of VC dimension d on a (possibly
infinite) domain X.

9

Theorem 5.6: Let C � 2X be a maximum concept class of VC dimension d on a finite domain X, forjX j = m � d. Then for each concept c 2 C, there is a compression set A0 of exactly d elements, forA0 � X � f0; 1g, such that c = cA0 .
Proof: The proof is by double induction on d and m. The first base case is for m = d for any d � 0.
In this case, we save the complete set X0 of d elements.

The second base case is for d = 0, for any m. In this case there is a single concept in the concept
class, and this concept is represented by the empty set.

Induction step: We prove that the theorem holds for d andm, for d > 0 andm > d. By the induction
hypothesis, the theorem holds for all d0 and m0 such that d0 � d, m0 � m, and d0 +m0 < d+m. LetX = fx1; x2; :::; xmg, and let Y � X for Y = fx1; x2; :::; xm�1g. There are two cases to consider.

Case 1: Let c be a concept in CjY such that c [f< xm; 0 >g and c[f< xm; 1 >g are not both inC. Without loss of generality, assume that only c[f< xm; 0 >g is in C.

From Corollary 5.2, CjY is maximum of VC dimension d. Thus by the induction hypothesis, each
concept c in CjY can be represented by a compression set A0 of d labeled elements, for A � Y , withc = cA0;CjY . From Corollary 5.4, A0 represents some concept cA (or cA0;C) on Y . From Lemma 5.5,c = cA0 ;CjY agrees with cA0;C on Y . If cA0 contains< xm; 1 >, then c[f< xm; 1 >g is in C, violating
the assumption for Case 1. Thus cA0 contains < xm; 0 >, and case 1 is done.

Case 2: Let c be a concept in CjY such that c [f< xm; 0 >g and c [f< xm; 1 >g are both in C.
Thus c 2 Cfxmg. From Corollary 5.2, Cfxmg is a maximum class of VC dimension d� 1 on Y . By the
induction hypothesis, there is a compression set B0 of d� 1 elements of Y , such that c = cB0;Cfxg .

Let c1 = c [f< xm; 0 >g. Let A0 = B0 [f< xm; 0 >g. From Corollary 5.4, the labeled set A0 of
cardinality d represents a unique concept cA0 in C.

Let C1 = Cfxmg.

We show that cA0;C and c = cB0;C1 assign the same labels to all elements of Y . Assume not, for
purposes of contradiction. Then there is some element xi of Y � B such that xi is assigned one labelli in cA0;C , and another label li in cB0;C1 Because cA0;C contains < xi; li >, then for each of the 2d
labelings of A, and for < xi; li >, there is a concept consistent with that labeling in C. Because cB0;C1

contains < xi; li >, then for each of the 2d�1 labelings of B, and for < xi; li >, there is a concept
consistent with that labeling in C1 = Cfxmg. For each concept in Cfxmg, there is a concept in C
with < xm; 0 >, and another concept in C with < xm; 1 >. Thus the d + 1 elements in A [fxig are
shattered by the concept class C. This contradicts the fact that the class C is of VC dimension d. Thus
the set A0 is a compression set for the concept c [f< xm; 0 >g , and case 2 is done. 2

Note that for a concept c 2 C, there might be more than one compression set A0 such that c = cA0 .
Any maximum classC on a finite domain X is also a maximal class. However for an infinite domain

X for any d � 1 there are concept classes of VC dimension d that are maximum but not maximal
[WW87, p. 53]. This occurs because a maximum class C is defined only as being maximum, and
therefore maximal, on finite subsets of X. A maximum class C on X is not required to be maximal on
the infinite domain X. For a maximum class on an infinite domain X, we expand our definition of cA
where A�X, jAj = d. For a maximum concept class C of VC dimension d on an infinite domain X, it
is not necessarily true that Cfxg is maximum of VC dimension d� 1.4

Example (a maximum class that is not maximal): Consider the maximum classC of VC dimension
1 on an infinite domain X, where C contains all concepts with exactly one positive example. This class
is not maximal, because the concept with no positive examples could be added to C without increasing

4[F89] shows that every maximum classC of VC dimensiond on an infinite domain X has a unique extension to a maximum
and maximal class of VC dimension d on X. [F89] also shows that if C is both maximum and maximal of VC dimension d on
the infinite domain X, then Cfxg is maximum and maximal of VC dimension d� 1 on X-fxg.

10

the VC dimension of the class. However, the class C is maximum, because it is of maximum size on
every finite subset of X. For this class, for x 2X, Cfxg is the empty set, and so cfxg does not represent
a concept in C. For such a class, for A�X, jAj=d, we define cA by its value on finite subsets of X.

Definitions (the concept cA for infinite X): For the infinite set X, for A�B�X, for jAj=d, and for
B finite, we define cA on the elements in B-A as cA;CjB . From Lemma 5.5, cA assigns a unique label to
each element x 2X-A. 2

Thus, in the maximum class C above, cfxg is defined as the concept with all negative examples on
X-fxg, even though cfxg[< x; 0 > is not a concept in C.

Theorem 5.7 extends Theorem 5.6 to give a compression scheme for any maximum class of VC
dimension d. Let C � 2X be any maximum class of VC dimension d. The input to the sample
compression scheme is any labeled sample set Y 0 of size at least d, for Y = fx1; ::; xmg � X . The
examples in Y 0 are assumed to be labeled consistently with some concept in C.

The VC Compression Scheme (for maximum classes).� The compression function: The compression function is given as input any sample set Y 0 of
cardinality at least d of examples labeled consistently with some concept in the class C. Consider
the finite class CjY , which is maximum of VC dimension d. Let c be the concept on Y given by
the sample set Y 0. From Theorem 5.6, there is a compression set A0 of exactly d elements, forA0 � Y 0, such that the concept c in the class CjY is represented by the compression set A0. This
set A0 is the compression set chosen by the sample compression function.� The reconstruction function: The reconstruction function is given as input the compression set
A0. For an element x 2 X , the reconstruction function predicts the label for x in the set A0. IfA0 is of cardinality less than d, then the compression set arbitrarily predicts the label ‘0’ for allx 62 A. Assume that A0 is of cardinality d. For x 62 A, let C1 be the class C restricted to A[fxg.C1 is a maximum class of VC dimension d on A [fxg. If cA in C1 contains < x; 0 >, then
the reconstruction function predicts the label ‘0’ for x; if cA in C1 contains < x; 1 >, then the
reconstruction function predicts ‘1’ for x.

Note that in the VC Compression Scheme sample sets of size at least d are compressed to subsets of
size equal to d.

Theorem 5.7: Let C � 2X be a maximum class of VC dimension d on the (possibly infinite) domain X.
Then the VC Compression Scheme is a sample compression scheme of size exactly d for C.

Proof: Let the input to the sample compression scheme be a finite labeled sample set Y 0 of size at
least d. For c a concept on the finite set Y � X , the compression function saves the labeled set A0 of
cardinality d, for A0 � Y 0, such that c = cA0;CjY . The reconstruction function gives as a hypothesis the
concept cA0 on X from the class C.

From Theorem 5.1, CjY is a maximum class of VC dimension d. Thus, by Theorem 5.6, for the
concept c on Y there exists a subset A0 of Y 0, for jA0j = d, such that c = cA0;CjY . From Lemma 5.5, the
concept cA0 on X is consistent with the original sample set cA0;CjY . Thus we have a sample compression
scheme of size d for maximum classes of VC dimension d. 2
5.2 An algorithm for the compression function

This section gives a greedy compression algorithm that implements the VC Compression Scheme
for a maximum class C of VC dimension d on the (possibly infinite) domain X. Theorems 5.6 and 5.7
proved that there is a compression set for every finite labeled sample set. The proof of Theorem 5.6
suggests an algorithm to find the compression set. The input for the compression algorithm is a finite
sample set Y 0 of size at least d, for Y 0 � X �f0; 1g, labeled consistently with some concept c in C. Let

11

Y 0 = f< x1; l1 >; ::; < xm; lm >g. The output of the compression algorithm is a labeled compression
set A0 � Y 0 of cardinality d that represents some concept in C consistent with the labeled set Y0.

Definitions (the consistency oracle): The consistency problem for a particular concept class C is
defined in [BEHW89] as the problem of determining whether there is a concept in C consistent with a
particular set of labeled examples on X. We define a consistency oracle as a procedure for deciding the
consistency problem. 2

From [BEHW89], if the consistency problem for C is NP-hard and RP 6= NP then C is not
polynomially learnable by an algorithm that produces hypotheses from C.

The Greedy Compression Algorithm (for the VC Compression Scheme).� The compression algorithm: The compression algorithm is given as input the finite sample set Y 0,
labeled consistently with some concept inC. The compression algorithm examines each element
of the set Y0 in arbitrary order, deciding whether to add each element in turn to the compression
set A0. Initially, A0 is the empty set. At step i, the algorithm decides whether to add the labeled
element < xi; li > to the partial compression set A0, for 0 � jA0j � d� 1 and < xi; li >2 Y 0.
The algorithm determines whether, for each possible labeling of the elements in A [fxig, there
exists a concept in CjY consistent with that labeling along with the labeling of other elements of
Y as in Y0. If so, then < xi; li > is added to A0. Each such decision requires at most 2jAj calls to
the consistency oracle. The compression algorithm terminates when A0 is of cardinality d.� The reconstruction algorithm: The reconstruction algorithm is given as input the compression set
A0 of cardinality d, and is asked to predict the label for some element xi � X . If xi 2 A, then
the reconstruction algorithm predicts the label for xi in the compression set. If xi 62 A, let C1 beCj(A[fxig). If, for each of the 2d possible labelings A0 of A, there is a concept in C1 consistent
with A0[< xi; 0 >, then cA0;C1 predicts label ‘0’ for the element xi. Otherwise, cA0 ;C1 predicts
the label ‘1’ for xi. The label for xi can be determined with at most 2d calls to the consistency
oracle.

Example (intervals on the line): Consider the greedy compression algorithm applied to a finite
sample set from the class C3 of at most 3 intervals on the line, as in Figure 3.1. The examples in
Figure 3.1 are labeled consistently with some concept c in C3. Consider the examples one at a time,
starting with the leftmost example. Let the initial compression set A0 be the empty set. First consider
the example “x1”. There is no concept in C3 with < x1; 1 >, and with the other examples labeled as in
Figure 3.1. Therefore the example “x1” is not added to the current compression set. There is a concept
in C3 with < x2; 1 >, and with the other examples labeled as in Figure 3.1. Therefore, < x2; 0 > is
added to the current compression set A0. For every labeling of the point “x2”, there is a concept in C3

consistent with that labeling, and with the labeling of the other points in the sample set. Now consider
the element “x3”. For every labeling of the elements fx2; x3g, is there a concept in C3 consistent with
that labeling, and with the labeling of the other points in the sample set? No, because there is no concept
in C3 with < x2; 1 >, < x3; 0 >, and with the given labeling of the other points. Therefore ‘x3’ is
not added to the current compression set. Proceeding in this fashion, the greedy compression algorithm
constructs the compression set A = f< x2; 0 >, < x4; 1 >, < x6; 0 >, < x10; 1 >, < x13; 0 >,< x15; 1 >g. The reconstruction function for this class is illustrated by Figure 5.2. 2

Theorem 5.8 shows that the greedy compression algorithm terminates with a correct compression
set.

Theorem 5.8: Let C � 2X be a maximum class of VC dimension d, and let Y0 be a finite sample set
labeled consistently with some concept c 2 C, for jY 0j � d. Then the Greedy Compression Algorithm

12

after each step maintains the invariant that, for the partial compression set A0, the labeled set Y0-A0 is
consistent with some concept in CA. Further, the Greedy Compression Algorithm on Y0 terminates with
a compression set of cardinality d for the concept c.
Proof: From the algorithm it follows immediately that at each step the invariant is maintained: the
labeled set Y0-A0 is consistent with some concept in CA.

Assume for purposes of contradiction that the greedy compression algorithm ends with the com-
pression set A0, where jA0j = s < d. Then the labeled sample set Y0 is consistent with some concept
in CA. From Corollary 5.2, CA is a maximum class of VC dimension d � s on Y-A. From Theorem
5.6, there is a compression set of cardinality d � s from Y0-A0 for cj(Y � A). Let xj be a member of
some such compression set of cardinality d� s. Then (CA)fxjg is a maximum class of VC dimensiond � s � 1 on (Y-A)-fxjg that contains a concept consistent with c. Let A1 � A denote the partial
compression set held by the compression algorithm before the compression algorithm decides whether
or not to add the element xj . Then (CA1)fxjg contains a concept consistent with c. Therefore xj would
have been included in the partial compression set. This contradicts the fact that xj 62 A. Therefore the
compression algorithm can not terminate with a compression set of cardinality s < d. 2

This compression algorithm requires at most (m� d)2d�1 + 2d � 1 calls to the consistency oracle
for C. This upper bound holds because the d elements added to the compression set require at most
20 + 21 + :::+ 2d�1 = 2d � 1 calls to the consistency oracle, and each other element requires at most
2d�1 calls to the consistency oracle. More efficient algorithms for the VC Compression Scheme are
explored in [F89].

5.3 A lower bound on the size of a sample compression scheme

In this section we show that for a maximum class C � 2X of VC dimension d, if the cardinality of
the domain X is exponential in d, then there can be no sample compression scheme of size less than d.
This refers to a sample compression scheme as defined in Section 3 , where a sample compression set
consists of an (unordered) subset from the original sample set. We also show that for any concept class
of VC dimension d there is no compression scheme that compresses sample sets of size at least d to
subsets of size at most d=5.

Theorem 5.9: For any maximum concept class C � 2X of VC dimension d > 0, there is no sample
compression scheme of size less than d for sample sets of size at least d22d�1.
Proof: Let Y be any subset of X of cardinality m � d22d�1. The class CjY contains Φd(m) concepts.
We show that there are less than Φd(m) labeled compression sets of size at most d� 1 from Y. For each
set of i elements in a compression set, for 0 � i � d� 1, those elements could be labeled in 2i different
ways. Therefore there are at most d�1Xi=0

2i �mi �
distinct labeled compression sets of size at most d� 1 from Y .

We show that d�1Xi=0

2i �mi � < dXi=0

�mi � = Φd(m), d�1Xi=0

(2i � 1)�mi � < �md � :
13

It suffices to show thatd(2d�1 � 1)� md� 1

� < �md � = � md� 1

�m� d+ 1d :
This is equivalent to showing that d22d�1 � d2 + d� 1 < m:
This inequality holds because m � d22d�1. 2

Note that this argument does not necessarily apply for classes of VC dimension d that are not
maximum. For example, the VC dimension of the class of arbitrary halfspaces in the plane is three,
but there exists a sample compression scheme of size two for this class [BL89]. The class of arbitrary
halfspaces in the plane is neither maximum nor maximal; for some sets of four points in the plane there
are less than Φ3(4) = 15 ways to label those four points consistently with some arbitrary halfspace
[F89].

Theorem 5.10: For an arbitrary concept class C of VC dimension d, there is no sample compression
scheme of size at most d=5 for sample sets of size at least d.

Proof: Let Y be any set of d unlabeled examples. There are at mostd=5Xi=0

�di � 2i � Φd=5(d)2d=5

compression sets of size at most d=5 from Y . Since

Φk(m) � �emk �k
for all m � k � 1

[BEHW89], the number of compression sets is bounded above by(10e)d=5 < 32d=5 = 2d:
Thus if Y is shattered by the class C, then there are not enough compression sets for the 2d labelings ofY . 2
6 Batch learning algorithms using sample compression schemes

Given a sample compression scheme for a class C � 2X then there is a learning algorithm thatuses this scheme as follows: It requests a sample sequence Y 0 of m examples from the oracle labeled
consistently with some concept in the class C. It then converts the sample sequence to a sample set,
removing duplicates, and uses the compression function to find a compression set for this sample set.
The reconstruction function maps the compression set to a hypothesis on X which is the hypothesis of
the learning algorithm. Note that this hypothesis is guaranteed to be consistent with all of the examples
in the original sample set.

Littlestone and Warmuth [LW86] gave an upper bound on the sample size needed for a batch learning
algorithm for the class C that uses a sample compression scheme of size at most d.

14

Theorem 6.1 (LW86): Let P be any probability distribution on a domain X , c be any concept on X ,
and g be any function mapping sets of at most d examples from X to hypotheses that are subsets of X .
Then the probability that m � d examples drawn independently at random according to P contain a
subset of at most d examples that map via g to a hypothesis that is both consistent with all m examples

and has error larger than � is at most
Pdi=0

�mi � (1 � �)m�i.
Proof: The proof is in the appendix.

Lemma 6.2: For 0 � �; � � 1, ifm � 1(1 � �) �1� ln
1� + d+ d� ln 1���

for any 0 < � < 1, then
Pdi=0

�mi � (1 � �)m�i � �.

Proof: Let
1(1� �) �1� ln

1� + d+ d� ln 1��� � m
for 0 < � < 1, which is equivalent to

1� ln
1� + d+ d� (1 + ln

d�� � 1 + ��d m� lnd) � m: (6:1)
We use the fact from [SAB89] that� ln�� 1 + �m � lnm for all � > 0:
For � = ��d we get ln d�� � 1 + ��d m � lnm:

By substituting lnm into the left hand side of equation (6.1) we get

1� ln
1� + d+ d� (1 + lnm� lnd) � m, ln
1� + d(1 + lnm� lnd) � �(m� d), �emd �d � e�(m�d)�:

Since from [BEHW89]

Φd(m) � �emd �d ; for all m � d � 1;
we have dXi=0

�mi � (1 � �)m�i � Φd(m)(1� �)m�d � �emd �d e��(m�d) � �:2
15

Theorem 6.3: Let C � 2X be any concept class with a sample compression scheme of size at most d.
Then for 0 < �; � < 1 , the learning algorithm using this scheme learns C with sample sizem � 1(1 � �) �1� ln

1� + d+ d� ln 1���
for any 0 < � < 1.
Proof: This follows from Theorem 6.1 and Lemma 6.2. 2

For maximum classes of VC dimension d, Theorem 6.3 slightly improves the sample complexity
of batch learning from the previously known results from [BEHW89] and [SAB89] given in Theorem
2.2. Choosing � = 1=2 gives simple bounds. The bounds can be marginally improved by optimizing
the choice of � as done in5 [CBFH+93].

Note that the upper bounds have the form O(1� (d log 1� + log 1�)) where d is either the size of a
compression scheme or the VC dimension for the concept class. These bounds cannot be improved
in that there exist concept classes of VC dimension d for which there are learning algorithms that
produce consistent hypotheses from the same class that require sample size Ω(1� (d log 1� + log 1�)).
(This essentially follows from lower bounds on the size of �-nets for concept classes of VC dimensiond [PW90, HLW88].) Similarly one can show [HLW88] that there are concept classes of VC dimensiond with a learning algorithm using a compression scheme of size d that requires the same sample size.
There are also general lower bounds [EHKV87] of Ω(1� (d+ log 1�)) for learning any concept class of
VC dimension d. It is an open problem whether there are particular compression schemes of size d for
all (maximal) concept classes of VC dimension d with sample size O(1� (d+ log 1�)).
7 Maximal classes

Every class C of VC dimension d can be embedded in a maximal class of VC dimension d: simply
keep adding concepts to the class C until no more concepts can be added without increasing the VC
dimension. Every maximal class of VC dimension 1 is also a maximum class [WW87], but for classes
of VC dimension greater than 1, there are maximal classes that are not maximum. (Figures 5.1 and 7.2
show two different classes of VC dimension 2 that are maximal but not maximum.) In this section we
discuss randomly-generated maximal classes, and we give a sample compression scheme that applies
for some classes that are maximal but not maximum. It is an open question whether there is a sample
compression scheme of size d for every maximal class of VC dimension d.

7.1 Randomly-generated maximal classes

This section defines a randomly-generated maximal class of VC dimension d on a finite domain X.
We show that for VC dimensions 2 and 3, a large number of randomly-generated maximal classes are
not maximum. There are many natural examples of maximum classes [F89]. In spite of the abundance
of classes that are maximal but not maximum, we are not aware of a natural example from the literature
of a class that is maximal but not maximum.

We define a randomly-generated maximal class by the following procedure for randomly generating
such classes.

Procedure for generating a random maximal class of VC dimension d.

5In [CBFH+93] a bound was optimized which had 2 ln 1
1+� in the denominator. Similar techniques can be used to optimize

a bound with 1 � � in the denominator

16

1. For a maximal class of VC dimension d on a set of m elements, there are 2m possible concepts on
these m elements. Each possible concept is classified as a member of the class C, not a member
of C, or undecided. Initially, the status of each possible concept is undecided. At each step, the
program independently and uniformly selects one of the undecided concepts c. Step 2 is repeated
for each selected undecided concept.

2. If the undecided concept c can be added to the class C without increasing the VC dimension tod + 1, then the concept c becomes a member of the class C. Otherwise, the concept c is not a
member of the class C.

After the status of all 2m possible concepts has been decided, the resulting class C is a maximal class of
VC dimensiond. No additional concepts can be added to the class without increasing the VC dimension
of the class to d + 1. Because the procedure for randomly generating a maximal class examines all
2m possible concepts, the procedure can only be run for small values of m. Our program uses a
pseudo-random number generator to select undecided concepts.

•

•

•

•

m = |X|

m
ax

im
u

m
 c

la
ss

es
(%

)

4 5 6 7 8 9 10

0
20

40
60

80
10

0

Figure 7.1: Randomly-generated maximal classes of VC dimension 2.

A program can determine whether or not a given class C � 2Y is a maximum class simply by
counting the number of concepts in the class. (This is from Theorem 5.1.) Figure 7.1 shows the
percent of randomly-generated maximal classes of VC dimension 2 that are also maximum, from our
experiments. The x-axis shows the size m of the class Y ; the y-axis shows the percent of the randomly-
generated maximal classes that are maximum. For each value ofm 2 f4; 6; 8; 10g, our program created
100 randomly-generated maximal classes of VC dimension 2 on m elements. From Figure 7.1, as m
increases, the percent of randomly-generated maximal classes that are also maximum decreases sharply.
For maximal classes of VC dimension 3, none of the 100 randomly-generated classes of VC dimension
3 on 6 or 8 elements were maximum. These results suggest that, for m and d sufficiently large, few of
the randomly-generated maximal classes of VC dimension d on m elements will be maximum.

7.2 Compression schemes for maximal classes

The VC Compression Scheme described in Section 5 applies to maximum classes of VC dimensiond; it can not necessarily be applied to maximal and nonmaximum classes of VC dimension d. For
example, Figure 7.2 shows a maximal class of VC dimension 2 for which the VC Compression Scheme
does not apply. This section presents a modified version of the VC Compression Scheme, called the
Subset Compression Scheme, that applies for some maximal classes of VC dimension d. It is an open
question whether the Subset Compression Scheme gives a sample compression scheme of size d for all
maximal classes of VC dimension d.

17

1 0 1 1

0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 1
1 0 1 0

1 1 0 0

Class C

x x x x1 2 3 4

Figure 7.2: A maximal and nonmaximum class C of VC dimension 2.

Figure 7.2 gives a maximal and nonmaximum class C � 2X of VC dimension 2 for which the VC
Compression Scheme does not apply. For example, for concept c = 1100 in C there is no compression
set of size two using the VC Compression Scheme. That is, there is no A� X , for jAj=2, such thatc 2 CA on X � A. However, the subset compression scheme defined below does give a sample
compression scheme of size 2 for the class C.

The Subset Compression Scheme (for some maximal classes).� The compression function: Let C � 2X be a maximal class of VC dimensiond. The compression
function is given as input the sample set Y 0, labeled consistently with some concept c in C, forY � X . The compression function finds a subset A0 � Y 0, for jA0j = d, such that A0 represents
the concept c on Y , using the reconstruction scheme below.� The reconstruction function: The reconstruction function is given as input the compression set
A0, of cardinality d. The label that the compression set A0 predicts for an element xi 2 X � A
is determined by considering the class Ci = Cj(A [fxig), which is of VC dimension at mostd. The class (Ci)A is of VC dimension at most 0, and is either empty or contains exactly one
concept. If (Ci)A is nonempty, then (Ci)A contains a single concept < xi, li >, for li 2f0, 1g.
In this case, the compression set A0 predicts the label li for xi. (This reconstruction function is
identical to that in the VC Compression Scheme, given the class Ci.)
For the purpose of completeness, we define the label predicted for xi when (Ci)A is empty. In this
case, let the label predicted by A0 for xi depend on the labels of the elements in the compression
set A0. If there is only one possible label for xi in concepts in the class C, given the labels of the
elements in A0, then that is the label predicted by the compression set A0. Otherwise, arbitrarily
let the compression set A0 predict the label ‘0’ for xi. With this definition, each compression set
A0 predicts a unique label for each element xi of X, and therefore a unique hypothesis on X. This
hypothesis is not necessarily in the class C.

For a maximum class of VC dimension d, the Subset Compression Scheme and the VC Compression
Scheme are identical. For a maximal class let cA0 denote the concept on X represented by the compression
set A0 using the Subset Compression Scheme. The Subset Compression Scheme is motivated by a
combinatorial characterization of maximal classes of VC dimension d by “forbidden labels” on subsets
of d+ 1 elements that is given in [F89]. It is an open question whether the subset compression scheme
gives a sample compression scheme of size d for every maximal class of VC dimension d; the subset

18

compression scheme has worked correctly for all of the maximal classes that we have examined. The
following observation shows that the Subset Compression Scheme applies to some maximal classes that
are not maximum.

Observation 7.1: The subset compression scheme gives a compression scheme of size 2 for the maximal
class C of VC dimension d in Figure 7.2.

Proof: It is sufficient to show that for every possible set of 3 or 4 labeled examples consistent with
some concept in C, the subset compression scheme gives a sample compression set of size 2. For
example, the concept c=1100 is represented by the compression set A0 =f< x1, 1>, < x2, 1>g. This
follows because in Cj(A[fx3g), the compression set A0 predicts < x3; 0 >, and in Cj(A[fx4g), the
compression set A0 predicts < x4; 0 >. The concept c=1100 is also represented by the compression
set f< x3; 0 >, < x4; 0 >g. It is easily verified that the subset compression scheme gives a sample
compression scheme of size 2 for the class C. 2

To our knowledge, it is an open question whether there exists a compression scheme of size O(d)
for every maximal class of VC dimension d. The structure of maximal classes of VC dimension d is
discussed further in [F89]. Because every class of VC dimension d can be embedded in a maximal
class of VC dimension d, it follows that if there was a sample compression scheme of size d for every
maximal class of VC dimension d, then there would be a sample compression scheme of size d for every
class of VC dimension d.

8 Conclusions and related work

In this paper we described sample compression schemes within the context of pac-learning; we
showed that for any finite concept class C there is a sample compression scheme of size log jCj. For
every maximum class of VC dimensiond there is a sample compression scheme of size d; for a maximum
class of VC dimension d on a sufficiently large set X there is no sample compression scheme of size less
than d. We have given a greedy compression algorithm that implements the VC Compression Scheme
for maximum classes of VC dimension d.

We have shown that for any class C with a sample compression scheme of size d, where each
compression set contains exactly d examples, the sample compression scheme can be used as a pac-
learning algorithm for that class, requiring at most

1(1� �) �1� ln
1� + d+ d� ln 1���

examples for 0 < � < 1. Because we have given a suitable sample compression scheme of size d for
maximum classes of VC dimension d, this result applies to all maximum classes of VC dimension d.
This approach improves on the previously-known sample complexity for pac-learning for maximum
classes of VC dimension d [BEHW89] [SAB89].

It is an open question whether there is a sample compression scheme of size d, or of size O(d), for
every maximal class of VC dimension d. We gave a sample compression scheme of size d that applies
for at least some classes that are maximal but not maximum of VC dimension d. We defined randomly-
generated classes of VC dimension d, and showed that for the parameters that we have investigated a
large proportion of randomly-generated classes of VC dimension d are maximal but not maximum.

This paper discussed briefly the use of sample compression schemes in constructing batch learning
algorithms for pac-learning. Another application of sample compression schemes is for space-bounded
iterative compression algorithms that save only a small number of examples at one time. Let C � 2X

19

be a class with a sample compression scheme of size d. An iterative compression algorithm draws d+1
examples, and saves only d of these examples, using the sample compression scheme. The iterative
compression algorithm continues to draw a new example, to choose a compression set of size d from thed+ 1 saved examples, and to discard the example that is not in the compression set. The compression
set of size d represents the current hypothesis of the learning algorithm.

For a fairly simple example, one iterative compression algorithm for axis-parallel rectangles inE2 (of VC dimension 4) saves the rightmost, leftmost, top, and bottom positive points seen so far;
these points define the current hypothesis of the algorithm. When a new point is drawn whose label is
predicted incorrectly by the current hypothesis, then the new point is saved and one of the old points
might be discarded; the iterative compression algorithm always saves at most four points. Each time
that the compression set is changed, the size of the hypothesized axis-parallel rectangle is increased.

As a more interesting application of the iterative compression algorithm, [F89] discusses classes
defined by n-dimensional vector spaces of real functions on some domain X. Such classes include balls
in En�1, positive halfspaces in En, and positive sets in the plane defined by polynomials of degree
at most n � 1. With appropriate restrictions to the domain X [F89, p.102], each of these classes is a
maximum class of VC dimension n, and the iterative compression set for each class saves at most n
examples at a time. This compression set of n examples saved by the iterative compression algorithm
defines the boundary between the positive and the negative examples in the hypothesis. For these
classes the iterative compression algorithm is acyclic; there is a partial order on the set of all possible
compression sets, and each change of the compression set is to a compression set that is higher in
the partial order. [F89] contains many open questions concerning the use of iterative compression
algorithms for pac-learning for maximum and maximal classes.

Finally, there are other definitions of compression schemes that one might consider. In the definition
used in this paper the compression function maps every finite set of labeled examples to a subset of
at most k labeled examples. (In the original paper [LW86] the compression function mapped every
finite sequence of labeled examples to a subsequence of at most k labeled examples. The alternate
definition is essentially the same.) From the combinatorial point of view the following definition of
compression function might be the most interesting. The compression function maps every finite set
of labeled examples to a subset of k examples with their labels removed.6 It is again an open problem
whether there is such a compression scheme of size d for any concept class of VC dimension d. Note
that the latter definition leaves no “slack” because for any maximum concept classC of VC dimensiond
and any finite set S of the domain, the number of concepts in C=S equals exactly the number of subsets
of at most d unlabeled examples from S.

9 Acknowledgements

This work benefited from discussions with David Haussler, Dick Karp, Nick Littlestone, and Rob
Schapire. This work developed from results in the unpublished manuscripts [LW86] and [W87]; we
would like to acknowledge again these contributions from Nick Littlestone and Emo Welzl.

References

[CBFH+93] N. Cesa-Bianchi, Y. Freund, D.P. Helmbold, D. Haussler, R.E. Schapire, and M.K.
Warmuth. How to use expert advice. Proceedings of the 25th ACM Symposium on
the Theory of Computation, 1993. To appear.

6The compression schemes given in sections 3 and 4 can be modified so that the compression set consists of unlabeled
examples. However, we don’t know how modify the compression scheme for maximum classes.

20

[BEHW87] Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M., “Occam’s Razor”, Inf. Proc.
Let., 24, 1987, pp. 377-380.

[BEHW89] Blumer, A., A. Ehrenfeucht, D. Haussler, and M. Warmuth, “Learnability and the Vapnik-
Chervonenkis Dimension,” JACM, 36(4), pp.929-965, October 1989.

[BL89] Blumer, A., and Littlestone, N., “Learning Faster than Promised by the Vapnik-
Chervonenkis Dimension”, Discrete Applied Mathematics 24, 1989, p.47-53.

[EHKV87] Ehrenfeucht, A., Haussler, D., Kearns, M., and Valiant, L., “A General Lower Bound on
the Number of Examples Needed for Learning”, Proceedings of the 1988 Workshop on
Computational Learning Theory, Morgan Kaufmann, 1988, p. 139-154.

[HLW88] Haussler, D., Littlestone, N., and Warmuth, M. K., “Lower Bounds on PAC learning and
the Size of Epsilon-Nets”, unpublished notes.

[F89] Floyd, S., “On Space-bounded Learning and the Vapnik-Chervonenkis Dimension,” In-
ternational Computer Science Institute Technical Report TR-89-061, 1989.

[F90] Freund, Y., “Boosting a weak learning algorithm by majority”, Proceedings of the 1990
Workshop on Computational Learning Theory, p. 202-231., August 1990.

[HSW89] Haussler, D., Sloan, R., and Warmuth, M., “Learning Nested Differences of Intersection
Closed Concept Classes”, Proceedings of the 1989 Workshop on Computational Learning
Theory, Morgan Kaufmann, 1989, p.41-56.

[LSW93] Littlestone, N, Schapire, and Warmuth, M., “Hypothesis Schemas”, in progress.

[LW86] Littlestone, N, and Warmuth, M., “Relating Data Compression and Learnability”, unpub-
lished manuscript, 1986.

[PW90] Pach, J., and Woeginger, G., “Soem New Bounds for Epsilon-Nets,” Proceedings of the
Sixth Annual Symposium on Computational Geometry, Berkeley, California, June 6-8, pp.
10-15, 1990.

[S72] Sauer, N., “On the Density of Families of Sets”, Journal of Comb. Th. (A) 13, p. 145-147.

[S90] Schapire, R., “The strength of weak learnability”, Machine Learning, 5(2):197-227, 1990.

[SAB89] Shawe-Taylor, J., Anthony, M., and Biggs, N., “Bounding Sample Size with the Vapnik-
Chervonenkis Dimension”, November 1989.

[V84] Valiant, L.G., “A theory of the learnable”, Comm. ACM, 27(11), 1984, pp. 1134-42.

[V82] Vapnik, V.N., Estimation of Dependencies based on Empirical Data, Springer Verlag, New
York, 1982.

[VC71] Vapnik, V.N. and Chervonenkis, A.Ya., “On the Uniform Convergence of Relative Fre-
quencies of Events to their Probabilities”, Th. Prob. and its Appl., 16(2), 1971, pp. 264-280.

[W87] Welzl, E., Complete Range Spaces, unpublished notes,

[WW87] Welzl, E., and Woeginger, G., On Vapnik-Chervonenkis Dimension One, unpublished
manuscript, 1987.

A Appendix

Proof of Theorem 6.1: Let Y 0 be a sequence of m examples drawn independently at random according
to the distribution P labeled by the concept c. Call any subset A0 of at most d examples from Y 0 a
compression set if g(A0) is consistent with Y 0.

21

First we consider compression sets of size exactly d. Let T be the collection of d-element subsets

of f1; ::; mg. There are exactly
�md � such subsets. For any example xi in the sample sequence, letc(xi) be the label for that example. For any T = ft1; ::; tdg 2 T , let BT contain all samples sequenceshx1; � � � ; xmi, such that the hypothesis g(fhxt1; c(xt1)i; � � � ; hxtd; c(xtd)g) is consistent with the sample

sequence Y 0 = hhx1; c(x1)i; � � � ; hxm; c(xm)ii. Let UT contain all sample sequences hx1; � � � ; xmi,
where the hypothesis g(fhxt1; c(xt1)i; � � � ; hxtd; c(xtd)g) has error greater than �, with respect to the
concept c. (Recall that the error of a hypothesis h is the probability, with respect to the distribution P,
of the symmetric difference of c and h.) The probability that a sample sequence Y 0 of m examples is
drawn, and the hypothesis represented by a sample compression set of d examples from Y 0 has error
more that �, is at most XT2T Pm(BT \ UT):

For a particular T , what is an upper bound on the probability Pm(BT \ UT) of drawing m
examples, such that A0 = fhxt1; c(xt1)i; � � � ; hxtd; c(xtd)g is a compression set of size exactly d for
those m examples, and the hypothesis represented by A0 has error greater than �? Because the elements
of Y 0 are drawn independently from the distribution P , for a fixed T we can assume that the d examples
of the compression set A0 are drawn first. Next the remaining m�d elements of Y 0 are drawn. If g(A0)
has error greater than � and is consistent with the remaining m� d elements of Y 0 then the probability
that a single example drawn from X is consistent with g(A0) is less than 1 � �. The probability thatm� d examples drawn from X are consistent with the hypothesis g(A0) is less than (1 � �)m�d. ThusPm(BT \ UT) < (1� �)m�d:

Because jT j = �md �, XT2T Pm(BT \ UT) < �md � (1� �)m�d:
Now we consider compression sets of size at most d. What is the probability of drawingm examples,

such that there is a compression set of size at most d for thosem examples, and the hypothesis represented
by the compression set has error greater than �? This probability is less thandXi=0

�mi � (1 � �)m�i:2
22

