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1 Introduction and Summary of ResultsIt is well known that optimization problems had a major inuence on the developmentof the theory of NP-completeness. As a matter of fact, many natural NP-completeproblems are decision problems that are derived from an optimization problem byimposing a bound on the objective function ([GJ79]). In spite of this close connection,NP-completeness advanced along a strikingly di�erent path than that of optimizationtheory. Non-deterministic Turing machines with polynomial-time bounds provide a fairlyrobust computational model for decision problems. This, in turn, made it possibleto develop a rich structural complexity theory based on polynomial time reductionsand to obtain various classi�cations of NP problems. There have been also severalattempts to classify optimization problems and to study their structural properties.Some notable contributions include [OM90, Kre88, Wag86, PM81, ADP80, Joh74](cf. also [BJY89] for a comprehensive survey of results in this area). Nevertheless,the absence of robust computational models for optimization problems has hinderedthe development of a structural optimization theory that is on a par with structuralcomplexity theory. In particular, the approximation properties of optimization problemsremain as one of the most persistent puzzles of optimization theory. Although all knownnatural NP-complete problems are polynomially isomorphic [BH77], their optimizationcounterparts may have dramatically di�erent approximation properties, from possessingpolynomial-time approximation schemes to being non-approximable within a constantfactor (assuming P6=NP).Papadimitriou and Yannakakis [PY91] brought a fresh perspective to approximationtheory by focusing on the logical de�nability of optimization problems. Their mainmotivation came from Fagin's [Fag74] characterization of NP in terms of de�nabilityin second-order logic on �nite structures. An existential second-order formula is anexpression of the form (9S)�(S), where S is a sequence of predicates and �(S) is a �rst-order formula. Fagin's theorem [Fag74] asserts that if C is a class of �nite structures thatis closed under isomorphisms, then C is NP-computable if and only if it is de�nable byan existential second-order formula. Moreover, it is well known that every such formulais equivalent to a formula in Skolem normal form (cf. [End72]), i.e., to one of the form(9S)(8x)(9y) (x;y;S), where  is a quanti�er-free formula and x;y are �nite sequencesof variables. Thus, a class C of �nite structures is NP-computable if and only if thereis a formula (9S)(8x)(9y) (x;y;S), with  quanti�er-free, such that for every �nitestructure A we have thatA 2 C () A j= (9S)(8x)(9y) (x;y;S):Papadimitriou and Yannakakis [PY91] introduced the class MAX NP of maximizationproblems whose optimum can be de�ned asmaxS jfx : (A;S) j= (9y) (x;y;S)gj;where  is quanti�er-free. Intuitively, in an NP decision problem one seeks predicates Switnessing some existential second-order sentence (9S)(8x)(9y) (x;y;S), while in the1



corresponding maximization problem in MAX NP one seeks predicates S that maximizethe number of tuples x satisfying the existential �rst-order sentence (9y) (x;y;S). Thecanonical example of a problem in MAX NP is provided by MAX SAT, which asks forthe maximum number of clauses that can be satis�ed in a given Boolean formula.Papadimitriou and Yannakakis [PY91] showed that for every optimization problemin MAX NP is constant-approximable, i.e., there is a polynomial time algorithm thatapproximates the optimum value of the problem within a constant factor. They alsoconsidered the subclass MAX SNP of MAX NP consisting of those maximizationproblems that are de�ned by quanti�er-free formulae, i.e., the optimum of such problemscan be de�ned as maxS jfx : (A;S) j=  (x;S)gj;where  is quanti�er-free. They demonstrated that MAX SNP contains several naturalmaximization problems, such as MAX 3SAT, that are complete for MAX SNP via acertain reduction that preserves approximability. These results on the one hand revealedthat the logical de�nability of an optimization problem may impact on its approximationproperties and on the other provided supporting evidence for the conjecture that certainconstant-approximable problems, such as MAX SAT and MAX 3SAT, do not have apolynomial time approximation scheme.1 Recently, Arora et. al. [ALM+92] con�rmedthis conjecture by establishing that, unless P = NP, no MAX SNP-complete problem hasa polynomial time approximation scheme.The expressive power of the class MAX NP was investigated by Panconesi and Ranjan[PR90], where it was established that MAX CLIQUE does not belong to this class (theproof of this result is actually due to D. Kozen). Moreover, Panconesi and Ranjan [PR90]proved that certain polynomial-time optimization problems are not in MAX NP. In anattempt to �nd a syntactic class of optimization problems containing MAX CLIQUE,they introduced the class MAX �1 of maximization problems whose optimum can bede�ned as maxS jfw : (A;S) j= (8x) (w;x;S)gj;where  is a quanti�er-free formula and w;x are sequences of �rst-order variables. Withregard to approximation properties, Panconesi and Ranjan [PR90] showed that MAX�1 contains optimization problems that are not constant-approximable, unless P=NP.In addition, Panconesi and Ranjan [PR90] introduced and studied the class RMAX, asyntactic subclass of MAX �1 for which MAX CLIQUE is complete via an approximationpreserving reduction. More recently, Arora and Safra [AS92] showed that, unless P=NP,MAX CLIQUE is not a constant-approximable problem.What other classes of optimization problems can be obtained using the logicalde�nability perspective and what is the exact expressive power of this framework? We1An optimization problem is said to have a polynomial time approximation scheme, if for everyconstant � � 0 there is a polynomial time algorithm that approximates the optimum within a factor of(1� �) for a maximization problem and (1 + �) for a minimization problem.2



address these questions here by examining the class of all maximization problems whoseoptimum is de�nable using �rst-order formulae, i.e., it is given asmaxS jfw : (A;S) j= �(w;S)gj;where �(w;S) is an arbitrary �rst-order formula with free variables from the sequence wand S is a sequence of predicate variables. We show �rst that this class coincides withthe collection of polynomially bounded NP-maximization problems on �nite structures,namely, the NP-maximization problems on �nite structures whose optimum value is lessthan or equal to a polynomial of the input size. We classify next these problems accordingto the quanti�er complexity of the �rst-order formulae used and we show that they forma proper hierarchy with exactly four levels:MAX �0 �MAX �1 � MAX �1 �MAX �2;where MAX �0 = MAX SNP is obtained using quanti�er-free formulae, MAX �1 =MAXNP is obtained using existential formulae, MAX �1 is obtained using universal formulae,and �nally MAX �2 is obtained using universal-existential formulae. In particular,MAX �2 can capture every polynomially bounded NP-maximization problem on �nitestructures. The above containments are strict and there are natural maximizationproblems witnessing the separation of the four classes. More speci�cally, we prove thatMAX CONNECTED COMPONENT is in MAX �2, but not in MAX �1, while MAXSAT separates MAX �1 from MAX �0. As mentioned above, MAX CLIQUE is in MAX�1, but not in MAX �1 (cf. [PR90]).We focus next on the logical de�nability of NP-minimization problems. Panconesi andRanjan [PR90] concentrated on maximization problems only, while Papadimitriou andYannakakis [PY91] examined approximation properties of certain minimization problemsby reducing them to maximization problems. At �rst sight, one may expect that hierarchyand proper containment results about classes of maximization problems should translatedirectly to analogous results about classes of minimization problems de�nable by similarformulae. It turns out, however, that this is not the case. Moreover, maximizationand minimization problems de�ned by similar �rst-order formulae may have strikinglydi�erent approximation properties.We show that the collection of polynomially bounded NP-minimization problems on�nite structures coincides with the class of minimization problems whose optimum isde�ned using an existential-universal (�2) �rst-order formula. After this, we establishthat the polynomially bounded NP-minimization problems form a proper hierarchy withexactly two levels: MIN �0 = MIN �1 �MIN �1 = MIN �2:We also show that MIN CHROMATIC NUMBER witnesses the separation between thetwo levels, namely, this problem is in MIN �1, but not in MIN �1,Recall that Papadimitriou and Yannakakis [PY91] showed that every maximizationproblem in MAX �1 = MAX NP (and, hence, every problem in MAX �0 = MAX SNP)3



is constant-approximable. In contrast, we prove here that MIN �0 contains naturalminimization problems, such as MIN 3NON-TAUTOLOGY, that are not constant-approximable, unless P=NP. Since the quanti�er pattern of minimization problems doesnot have an impact on the approximation properties of the problems, we seek othersyntactic properties that may have such an impact. To this e�ect, we introduce a naturalsubclass of MIN �1 that is a syntactic dual of the class RMAX in [PR90]. This subclass ofMIN �1 contains MIN VERTEX COVER and has the property that every minimizationproblem in it is constant-approximable.2 PreliminariesThis section contains the basic de�nitions and a minimum amount of the necessarybackground material.De�nition 2.1: An NP optimization problem is a tuple Q = (IQ;FQ; fQ; optQ) suchthat� IQ is the set of input instances. It is assumed that IQ can be recognized inpolynomial time.� FQ(I) is the set of feasible solutions for the input I.� fQ is a polynomial time computable function, called the objective function. It takespositive integer values and is de�ned on pairs (I; T ), where I is an input instanceand T is a feasible solution of I.� optQ is one of the two functions de�ned below with domain the set IQ of inputinstances and positive integers as values:optQ(I) = maxT fQ(I; T ) or optQ(I) = minT fQ(I; T ):In the former case, we say Q is a maximization problem and in the latter case wesay Q is a minimization problem.� The following decision problem is in NP : Given I 2 IQ and an integer k, does thereexist a feasible solution T 2 FQ(I) such that fQ(I; T ) � k, for a maximizationproblem Q (or, fQ(I; T ) � k, for a minimization problem Q)?The above de�nition is due to [PR90] and is broad enough to encompass everyknown optimization problem arising in NP-completeness. We now restrict attentionto polynomially bounded NP optimization problems [BJY89, LM81]. These are NPoptimization problems in which the optimum value of the objective function on aninstance is bounded by a polynomial in the length of that instance.4



De�nition 2.2: An NP optimization problem Q is said to be polynomially bounded ifthere is a polynomial p such thatoptQ(I) � p(jIj) for all I 2 IQ;where jIj is the length of the input I. Let MAX PB (MIN PB) denote the class of allpolynomially bounded NP maximization (minimization) problems.Examples of polynomially bounded NP optimization problems are MAX CLIQUE,TRAVELING SALESMAN problem with weights 1 or 2, MIN CHROMATIC NUMBER,and MIN VERTEX COVER. On the other hand, INTEGER PROGRAMMING andthe unrestricted version of the TRAVELING SALESMAN problem are examples of NPoptimization problems that are not polynomially bounded. Indeed, it is possible to havean instance of the TRAVELING SALESMAN problem of size n in which the shortesttour has length 2n, because in this problem inter-city distances are encoded in binarynotation.Since in the sequel we will study optimization problems from the perspective of logicalde�nability, we review briey some basic concepts from mathematical logic and introducethe notation that we will use here. We refer the reader to Enderton [End72] or to anyother standard textbook of mathematical logic for a more detailed exposition.De�nition 2.3: A vocabulary (also known as a similarity type) � = f ~R1; � � � ; ~Rkg is a�nite set of predicate symbols. Each predicate symbol ~Ri has a positive integer ri as itsdesignated arity. A structure A = (A;R1; � � �Rk) over the vocabulary � consists of a setA, called the universe of A, and relations R1; � � � ; Rk of arities r1; � � � rk on A, i.e., subsetsof the Cartesian products Ar1; : : : ; Ark respectively. A �nite structure is a structurewhose universe is a �nite set. The size jAj of a �nite structure A is the cardinality of itsuniverse.For example, a graph is a structure G = (V;E) over a vocabulary with a single binarypredicate ~E. The universe of this structure is the set V of the vertices of the graph, whileE is the set of the graph edges. In most cases an NP decision problem can either bedescribed directly as a problem on �nite structures or it can be easily encoded by sucha problem. For example, CLIQUE and VERTEX COVER are problems about �nitegraphs, while an instance I of SATISFIABILITY can be identi�ed with a �nite structureA(I) = (X;C;P;N) over a vocabulary with one unary and two binary predicate symbolssuch that the universe X is the set of variables and clauses of I, the unary relationC(x) expresses that x is a clause, and the binary relations P (c; v) and N(c; v) expressrespectively that a variable v occurs positively or negatively in a clause c.We assume that the reader is familiar with the de�nition of the syntax and semanticsof �rst-order logic over a vocabulary �. Intuitively, the formulae of �rst-order logic over� are built from the predicate symbols of �, a special binary symbol =, and variables5



v1; v2; : : : using the logical connectives ^;_;:;! and the quanti�ers (9vi) and (8vi),i � 1. Every formula � of �rst-order logic can be given semantics on structures overthe vocabulary �. The predicate symbols of � are interpreted by the correspondingrelations of the structure, the special binary symbol = is always interpreted as equalityon the universe of A, while the variables vi in the quanti�ers (9vi) and (8vi), i � 1,are interpreted as ranging over elements of the universe of the structure. The formula �becomes true or false on a structure A whenever a tuple of elements from the universeof the structure is assigned as interpretation to the sequence of the free variables of theformula, i.e., to those variables vi that do not always occur within the scope of a quanti�er(9vi) or (8vi) in the formula (cf. [End72] for the precise de�nitions).Let w be a �nite sequences of variables. We shall write �(w) to indicate that w isthe sequence of the free variables of the formula �. Finally, if A is a structure over thevocabulary �, then fw : A j= �(w)gis the set of all tuples from the universe A of A for which the formula � becomes true(equivalently, the set of all tuples from A that satisfy �). For example, if G = (V;E) isa graph, then fw : G j= (9y)(9z)( ~E(w; y) ^ ~E(w; z) ^ :(y = z))gis the set of all vertices of degree at least 2, i.e., the set of all vertices with at least twodistinct neighbors.Notice that in order to simplify matters in the above expressions we mixed syntaxwith semantics by using the same notation for both a sequence of variables and a tupleof elements from the universe of the structure interpreting these variables. By the sametoken, from now on we shall take the liberty to use the same notation for both predicatesymbols and relations on a structure interpreting these symbols. We trust that the readeris able to tell the di�erence from the context.Let S = (S1; : : : ; Sm) be a sequence of predicate symbols of arities s1; : : : ; smnot in the vocabulary �. We write �(w;S) to denote a formula of �rst-orderlogic over the vocabulary � [ fS1; : : : ; Smg having w as its free variables. If A =(A;R1; : : : ; Rk) is a structure over the vocabulary � and S1; : : : ; Sm are relations on Aof arities s1; : : : ; sm respectively, then we write (A;S) to denote the expanded structure(A;R1; : : : ; Rk; S1; : : : ; Sm). Thus,fw : (A;S) j= �(w;S)gdenotes the set of all tuples from A for which the formula �(w;S) becomes true on theexpanded structure (A;S). For example, if G = (V;E) is a graph and S is a subset ofV , then fx : (G;S) j= (8y)(E(x; y)! S(y))gdenotes the set of all vertices with the property that all their neighbors are in S.6



It is well known that every formula of �rst-order logic is equivalent to a formula inprenex normal form, i.e., to a formula in which all quanti�ers are to the left of all othersymbols (cf. [End72, pages 150-151]). We write �n; n � 1, for the class of �rst-orderformulae in prenex normal form that have n � 1 alternations of quanti�ers and startwith a block of existential quanti�ers. For example, �1 is the collection of existentialformulae, while �2 is the class of existential-universal formulae. Similarly, we write �n,n � 1, for the class of �rst-order formulae in prenex normal form with n� 1 alternationsof quanti�ers, starting with a block of universal quanti�ers. Thus, a �1 formula hasuniversal quanti�ers only, while �2 is the collection of universal-existential formulae.The class of quanti�er-free formulae is denoted by �0 or by �0.From now on we assume that the instances of an optimization problem are given as�nite structures over some vocabulary �. We introduce next a framework for classifyingoptimization problems on �nite structures in terms of their de�nability in �rst-orderlogic.De�nition 2.4: Let � be a vocabulary and let Q be a maximization problem with �nitestructures A over � as instances. We say that Q is in the class MAX �n, n � 0, if thereis a �n formula �(w;S) with predicate symbols among those in � and S such that forevery instance A of Q we have thatoptQ(A) = maxS jfw : (A;S) j= �(w;S)gj:Similarly, we say that Q is in the class MAX �n, n � 0, if its optimum is de�nable asabove using a �n formula �(w;S).The classes MIN �n and MIN �n, n � 0, of minimization problems are de�ned in ananalogous way, with min in place of max. In particular, a minimization problem Q is inthe class MIN �n, n � 0, if there is a �n formula �(w;S) with predicate symbols amongthose in � and S such that for every instance A of Q we have thatoptQ(A) = minS jfw : (A;S) j= �(w;S)gj:The classes MAX �0 and MAX �1 were introduced and studied by Papadimitriou andYannakakis [PY91] under the names MAX SNP and MAX NP respectively, while theclass MAX �1 was introduced by Panconesi and Ranjan [PR90]. We have chosen to usedi�erent names for MAX SNP and MAX NP here, because we are interested in having auniform notation and terminology for all the classes of optimization problems obtainedusing �rst-order formulae. Moreover, the notation �n and �n is consistent with thenotation �pn and �pn used for the polynomial hierarchy [Sto76]. We now give examples ofnatural problems in some of these classes.� MAX 3SAT is a problem in the class MAX �0 (cf. [PY91]). This problem asksfor the maximum number of clauses that can be satis�ed in a given Boolean formula inconjunctive normal form (CNF) with three literals per clause. We view every instance7



I of MAX 3SAT as a �nite structure A(I) over a vocabulary consisting of four ternarypredicate symbols C0; C1; C2; C3. Under this encoding, the universe of the structure A(I)is the set of variables of the formula, while each relation Ci(w1; w2; w3) is true if and onlyif fw1; w2; w3g is a clause with w1; � � � ; wi appearing as negative literals and wi+1; � � � ; w3appearing as positive literals, 0 � i � 3: The optimum of 3SAT is given byoptMAX 3SAT(A(I)) = maxS jf(w1; w2; w3) : (A(I); S) j= �(w1; w2; w3; S)gj;where �(w1; w2; w3; S) is the formulaC0(w1; w2; w3) ^ (S(w1) _ S(w2) _ S(w3)) _C1(w1; w2; w3) ^ (:S(w1) _ S(w2) _ S(w3))_C2(w1; w2; w3)^(:S(w1)_:S(w2)_S(w3))_C3(w1; w2; w3)^(:S(w1)_:S(w2)_:S(w3)):� MAX SAT is a problem in the class MAX �1 (cf. [PY91]). Under the encoding ofSATISFIABILITY given in Section 2, if A(I) is the �nite structure associated with aninstance I of MAX SAT, then we haveoptMAX SAT(A(I)) = maxS jfw : (A(I); S) j= (9y)[C(w)^((P (w; y) ^ S(y)) _ (N(w; y) ^ :S(y)))]gj:Intuitively, in the above formulae for MAX SAT and MAX 3SAT the predicate symbolS encodes a truth assignment, i.e., it consists of the Boolean variables that are set toTRUE.� MAX CLIQUE is in the class MAX �1 (cf. [PR90]). Indeed, for MAX CLIQUEwe have that optMAX CLIQUE(G) = maxS jfw : (G;S) j= S(w)^(8y1)(8y2)[(S(y1) ^ S(y2) ^ (y1 6= y2))! E(y1; y2)] gj:3 Polynomially Bounded NP Maximization ProblemsIn this section we investigate the relative expressive power of the classes MAX �nand MAX �n, n � 0, and establish their basic relationship to the class MAX PB ofpolynomially bounded NP maximization problems.Theorem 1: Let � be a vocabulary and let Q be a maximization problem with �nitestructures A over � as instances. Then Q is a polynomially bounded NP maximizationproblem if and only if there is a �rst-order formula �(w;S) with predicate symbols amongthose in � and the sequence S such that for every instance A of QoptQ(A) = maxS jfw : (A;S) j= �(w;S)gj:Moreover, �(w;S) can always be taken to be a �2 formula and, consequently,MAX PB = MAX �2 = MAX �n; n > 2:8
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Proof: It is clear that if a maximization problem Q is in the class MAX �n for somen � 0, then Q is a polynomially bounded NP maximization problem, since for any�nite structure A there are polynomially many distinct tuples from A satisfying a given�rst-order formula.For the other direction, assume that Q is a polynomially bounded NP maximizationproblem with �nite structures A over the vocabulary � as instances. Let m be a positiveinteger such that for any instance A we have that optQ(A) � jAjm, where jAj is the sizeof the structure A.Consider now the following decision problem Q: Given a �nite structure A over �and a m-ary relation W on the universe A of A, is there a feasible solution T for A suchthat fQ(A; T ) � jW j? Here, fQ is the objective function of Q and jW j is the cardinalityof the m-ary relation W . Since Q is an NP optimization problem, we have that Q is aproblem in NP. Moreover, Q can be viewed as an NP decision problem whose instancesare �nite structures over the vocabulary � [ fWg. By Fagin's [Fag74] characterizationof NP in terms of de�nability in second-order logic, there is an existential second-orderformula (9S�) (S�;W ) such that the expanded structure (A;W ) is a YES instance of Qif and only if (A;W ) j= (9S�) (S�;W). Since the maximization problem Q is boundedby jAjm; we have thatoptQ(A) = maxS�;WfjW j : (A;S�;W ) j=  (S�;W )gor, equivalently,optQ(A) = maxS�;W jfw : (A;S�;W ) j=  (S�;W ) ^W (w)gj:Let S denote the sequence (S�;W ) and let �(w;S) be the formula  (S�;W )^W (w). Itfollows that optQ(A) = maxS jfw : (A;S) j= �(w;S)gj:Moreover, �(w;S) can be chosen to be a �2 formula, because Fagin's characterization ofNP [Fag74] holds with a �2 formula  (w;S�). 2Theorem 1 shows that MAX �2 is the entire class MAX PB of polynomially boundedNP maximization problems. In particular, it shows that MAX �2 � MAX �2. Byrestricting the quanti�er pre�x 9�8� of �2 formulae, we obtain the class MAX �1of [PR90], and the classes MAX �1 = MAX NP and MAX �0 = MAX SNP of [PY91].It is clear that we have the following containments between these classes:MAX �1MAX �0 MAX �2 � MAX �2 = MAX PB:MAX �1 9



We saw before examples of natural problems in the classes MAX �0, MAX �1, and MAX�1. We give next an example of a problem in the class MAX �2 that will be of particularinterest to us in the sequel.� MAX CONNECTED COMPONENT (MCC): Given an undirected graph G; �ndthe size of the largest connected component in G.Notice that actually MCC is an optimization problem on graphs that can be solvedin polynomial time. Although Theorem 1 implies that MCC is in the class MAX �2, itis not obvious how to establish this directly. In what follows we produce a �2 formula �that de�nes MCC in our framework.In addition to a binary relation symbol E for the edges of the graph, the formula �will involve the relation symbols C;E; P;�; Z. The intuition behind these is as follows:C is a unary relation symbol that represents the vertices of a connected component; �is a binary relation that will vary over total orders on the vertices of the graph; P is aternary relation symbol such that P (x; y; k) indicates that the shortest path from x toy is of length k, where the integer k is encoded by the kth element of the total order �;�nally, Z is a unary predicate representing the smallest element (zero) of the total order�. Let �1(�) be a formula asserting that � is a total order and let �2(Z) be a formulaasserting that Z is a singleton set containing the smallest element of �. Let also pred(x; y)be a formula asserting that y is the predecessor of x under the above order. We leave itto the reader to verify that �1(�) and pred(x; y) can be expressed as �1 formulae, while�2(Z) can be written as a conjunction of �1 and �1 formulae. We are now ready todemonstrate that MCC is in the class MAX �2. Indeed, its optimum value on a graphG is given asoptMCC(G) = max(C;P;�;Z) jfw : (G;C; P;�; Z) j= C(w) ^ �1(�) ^ �2(Z)^(8x)(8y)((C(x)^ C(y))! (9z)P (x; y; z)) ^(8x)(8y)(8v)(8v0)[(P (x; y; v)^ :Z(v) ^ pred(v; v0))!((9z)P (x; z; v0) ^ E(z; y))] ^(8x)(8y)(8v)((P (x; y; v)^ Z(v))! (x = y)) gj:It is well known that the classes of �1 and �1 formulae have incomparable expressivepower on �nite structures, while the class of �2 formulae has strictly higher expressivepower than the class of �1 formulae (cf. [CH82]). One might expect that similarresults hold for the corresponding classes of maximization problems, but it turns out thatthis is not the case. The next result delineates the relationship between the classes ofmaximization problems and establishes that the polynomially bounded NP maximizationproblems form a hierarchy with exactly four distinct levels.Theorem 2: The class MAX �2 is contained in the class MAX �1. As a result,MAX �0 � MAX �1 �MAX �2 = MAX �1 � MAX �2:10



Moreover, this sequence of containments is strict. In particular,� MAX CONNECTED COMPONENT is in MAX �2, but not in MAX �1.� MAX CLIQUE is in MAX �1, but not in MAX �1 (cf. [PR90]).� MAX SAT is in MAX �1, but not in MAX �0.Proof: We give this proof in four parts.Part A: In this part we prove that MAX �2 is contained in the class MAX �1. Let Qbe a MAX �2 problem and let A be a �nite structure that is an instance of Q. Thus,optQ(A) = maxS jfw : (A;S) j= (9x)(8y) (w;x;y;S)gj;where  is quanti�er-free. Consider now the setU(S) = fw : (A;S) j= (9x)(8y) (w;x;y;S)gand notice that optQ(A) = maxS jU(S)j:If x� and w are tuples from the universe of A such that (A;S) j= (8y) (w;x�;y;S),then we say that x� is a witness of w relative to S. We now introduce an auxiliarypredicate symbol R and de�neV (S; R) = f(w;x�) : (A;S; R) j= (8y) (w;x�;y;S) ^ R(w;x�)^(8x1)(8x2)((R(w;x1) ^R(w;x2))! x1 = x2)gIntuitively, a pair (w;x�) is in the set V (S; R) if x� is a witness of w relative to S andx� is the only tuple x such that the pair (w;x) is in R. It is now easy to verify that forevery �xed sequence S of relations we have thatjU(S)j = maxR jV (S; R)jand, as a result, optQ(A) = maxS jU(S)j = maxS;R jV (S; R)j:Since V (S; R) is de�ned using a �1 formula, it follows that Q 2 MAX �1 and,consequently, the class MAX �2 is contained in the class MAX �1.Part B: We showed earlier that MCC is in the class MAX �2. In this part of the proofwe show that MCC is not in the class MAX �1. Towards a contradiction, assume thatthe optimum of MCC is given byoptMCC(G) = maxS jfw : (G;S) j= (8y) (w;y;S)gj;where  is quanti�er-free and w ranges over tuples of arity m.11



Let G be a graph that is a path with vertices fa1; � � � ; ang, for some n > 8m+1; andedges fai; ai+1g; 1 � i � n� 1: Consider the subgraphs Hi; 1 � i � bn=2c; obtained fromG by deleting ai and all edges incident to it. Assume that the maximum value in theabove expression occurs at S = S� and let S�i be the restriction of S� to the vertex setfa1; � � � ; ai�1; ai+1; � � � ; ang of Hi. Since optMCC(Hi) = n� i, we have thatjfw : (Hi;S�i ) j= (8y) (w;y;S�i)gj � n� i:We now claim that each ai, 1 � i � n, occurs in at least i tuples in the setfw : (G;S�) j= (8y) (w;y;S�)g. Indeed, otherwise we would have thatjfw 2 Him : (G;S�) j= (8y) (w;y;S�)gj > n � i:Since universal formulae are preserved under substructures, if b is an m-tuple fromHi such that (G;S�) j= (8y) (b;y;S�), then (Hi;S�i ) j= (8y) (b;y;S�i). Thus,jfw : (Hi;S�i ) j= (8y) (w;y;S�i)gj > n � i; which is a contradiction. Therefore, eachai occurs in at least i tuples in the set fw : (G;S�) j= (8y) (w;y;S�)g. As a result,the total number of occurrences of all ai's in this set is at least (Pi=bn=2ci=1 i) > nm;since n > 8m + 1: On the other hand, since w ranges over tuples of arity m andjfw : (G;S�) j= (8y) (w;y;S�)gj = n, the total number of occurrences of all ai's inthis set is at most nm. Thus, we have arrived at a contradiction.Part C: As mentioned in the Introduction, D. Kozen showed that MAX CLIQUE is inthe class MAX �1, but not in the class MAX �1 (cf. [PR90]).Part D:We have seen before that MAX SAT is in the class MAX �1. In this part of theproof we show that MAX SAT is not in the class MAX �0. Let I be an instance of SATand let A(I) = (X;C;P;N) be its encoding as a �nite structure. Recall that X consistsof the variables and the clauses of I, while the unary relation C consists of the clauses ofI. Also recall that (c; v) 2 P (respectively, (c; v) 2 N) if and only if the variable v occurspositively (respectively, negatively) in the clause c. Towards a contradiction, assume thatMAX SAT is in the class MAX �0. Therefore, there is a quanti�er-free formula  (w;S)such that for every �nite structure A(I) encoding an instance I of MAX SAT we havethat optMAX SAT(A(I)) = maxS jfw : (A(I);S) j=  (w;S)gj;where w ranges over m-tuples (w1; w2; � � � ; wm) and S = (S1; � � � ; St). We distinguish twocases and show that in either case we arrive at a contradiction.Case 1: Assume that for every structure A(I) encoding an instance I the maximumnumber of clauses satis�able is given byoptMAX SAT(A(I)) = maxS jf(w; � � � ; w| {z }m ) : (A(I);S) j=  (w; � � � ; w| {z }m ;S)gj:12



Let  0(w;S) be the formula obtained from  by replacing each occurrence of every variableby w. It is clear thatoptMAX SAT(A(I)) = maxS jfw : (A(I);S) j=  0(w;S)gj:Since  is a quanti�er-free formula,  0 is also a quanti�er-free formula whose only variableis w. As a result, in  0(w;S) the only occurrences of the predicate symbols C;P;N andS1; � � � ; St in S are amongst the following:C(w);:C(w); P (w;w);:P (w;w); N(w;w);:N(w;w);Sl(w; � � � ; w| {z }�[l] );:Sl(w; � � � ; w| {z }�[l] ); 1 � l � t;where �[l] is the arity of Sl. For every instance I encoded by a �nite structureA(I) = (X;C;P;N), it is the case that A(I) 6j= P (x; x) and A(I) 6j= N(x; x); for allx 2 X, because the �rst arguments of P;N refer to a clause, the second to a variableand the variables are di�erent from the clauses. Let  00(w;S) be the formula obtainedfrom  0(w;S) by replacing each occurrence of P (w;w), N(w;w) by the logical constantFALSE, and each occurrence of :P (w;w), :N(w;w) by the logical constant TRUE.Then we have that for every instance IoptMAX SAT(A(I)) = maxS jfw : (A(I);S) j=  00(w;S)g:Let I1; I2 be two instances of MAX SAT, each having the same number of variablesand the same number of clauses, but di�ering in the maximum number of satis�ableclauses. Without loss of generality, we can �nd structures A(I1) = (X1; C1; P1; N1) andA(I2) = (X2; C2; P2; N2) encoding I1; I2 respectively, such that X1 = X2 and C1 = C2.Since  00(w;S) does not have any occurrences of the symbols P and N , we havefw : (A(I1);S) j=  00(w;S)g = fw : (A(I2);S) j=  00(w;S)g:for all values of S. Therefore,optMAX SAT(A(I1)) = optMAX SAT(A(I2));which is a contradiction.Case 2: Assume that there is some instance I1 such that its encoding by the structureA(I1) = (X1; C1; P1; N1) satis�esoptMAX SAT(A(I1)) 6= maxS jf(w; � � � ; w| {z }m ) : (A(I1);S) j=  (w; � � � ; w| {z }m ;S)gj:For simplicity, we write A1 for the structure A(I1).Let S� be a sequence (S�1 ; S�2; � � � ; S�t ) of predicates that realizes optMAX SAT(A1), i.e.,optMAX SAT(A1) = jf(w1; � � � ; wm) : (A1;S�) j=  (w1; � � � ; wm;S�)gj:13



Let x11; x12; � � � ; x1n be the variables and the clauses of I1, i.e., X1 = fx11; x12; : : : ; x1ng.We now construct n � 1 additional structures, A2; � � � ;An, where Ai = (Xi; Ci; Pi; Ni)with Xi = fxi1; xi2; � � � ; xing; 2 � i � n, such that they are all isomorphic to A1 via themapping xiu to x1u, for 1 � i; u � n.We de�ne next a structure A = (X;C;P;N) as follows:X = n[i Xi; C = n[i Ci;P = f(xiu; xjv) : P1(x1u; x1v); 1 � u; v; i; j � ng;N = f(xiu; xjv) : N1(x1u; x1v); 1 � u; v; i; j � ng:It can be seen that A encodes an instance of MAX SAT. Also, observe that jCj =njC1j � n(n � 1), as the universe of the structure A1 has at least one variable.Therefore, optMAX SAT(A) � n(n � 1). We will arrive at a contradiction by showingthat optMAX SAT(A) � n2.For 1 � l � t, letS�l = f(xi1u1; xi2u2 ; � � � ; xi�[l]u�[l]) : S�l (x1u1; x1u2 ; � � � ; x1u�[l]); where1 � i1; � � � ; i�[l] � n and 1 � u1; � � � ; u�[l] � ng;and let S� denote the sequence (S�1 ;S�2 ; � � � ;S�t ). We will show that jV j � n2, whereV = f(w1; � � � ; wm) : (A;S�) j=  (w1; � � � ; wm;S�)g:Let V1 = f(w1; � � � ; wm) : (A1;S�) j=  (w1; � � � ; wm;S�)gFrom the hypothesis of Case 2, it follows thatV1 6= f(w; � � � ; w) : (A1;S�) j=  (w; � � � ; w;S�)g:Indeed, otherwise we would haveoptMAX SAT(A1) = maxS jf(w1; � � � ; wm) : (A1;S) j=  (w1; � � � ; wm;S)gj� maxS jf(w; � � � ; w) : (A1;S) j=  (w; � � � ; w;S)gj� jf(w; � � � ; w) : (A1;S�) j=  (w; � � � ; w;S�)gj= jV1j = optMAX SAT(A1):Thus, optMAX SAT(A1) = maxS jf(w; � � � ; w) : (A1;S) j=  (w; � � � ; w;S)gj, whichcontradicts the hypothesis of Case 2.We now know that there is a tuple e in V1 with at least two distinct componentsx1p and x1q. For every i; j with 1 � i; j � n; let ei;j be obtained from e by replacing14



every occurrence of x1p by xip and every occurrence of x1q by xjq. Also, let Ai;j denote thesubstructure of A with universefx11; � � � ; x1p�1; xip; x1p+1; � � � ; x1q�1; xjq; x1q+1; � � � ; x1ng:It is clear that Ai;j is isomorphic to A1. Moreover, the restriction of S� to the above set isa sequence of predicates isomorphic to S�, where the isomorphismmaps xip to x1p, maps xiqto x1q, and is the identity on the rest of the elements. Let S�i;j denote the restriction of S�to the universe of Ai;j and observe that (Ai;j;S�i;j) j=  (ei;j;S�i;j) for 1 � i; j � n: Since�0 sentences are preserved under extensions, it is also true that (A;S�) j=  (ei;j;S�) for1 � i; j � n: As there are n2 distinct such elements ei;j, we have that jV j � n2. It followsthat optMAX SAT(A) � n2, which is a contradiction. The proof that MAX SAT is not inthe class MAX �0 is now complete. 24 Polynomially Bounded NP Minimization ProblemsThe logical de�nability of NP minimization problems has not been explored in theliterature so far. We undertake this investigation here by studying the classes MIN�n and MIN �n, n � 0, of minimization problems that are de�nable using �rst-orderformulae. Our �ndings for the expressive power and the relations between these classesunveil a strikingly di�erent picture from the one for the corresponding maximizationclasses.We begin by presenting examples of natural minimization problems in the classesMIN �0, MIN �1, and MIN �2.� MIN 3NON-TAUTOLOGY (3NT): Given a Boolean formula in disjunctive normalform with three literals per disjunct (3DNF), �nd the minimum number of satis�abledisjuncts.MIN 3NON-TAUTOLOGY is an optimization problem in the class MIN �0 that arisesfrom the NP-complete problem NON-TAUTOLOGY of 3DNF formulae [GJ79]: Given aBoolean formula in 3DNF, is there a truth assignment that makes this formula false?We view every instance I of MIN 3NT as a �nite structure A(I) with four ternarypredicates D0;D1;D2;D3, where Di(w1; w2; w3) is true if and only if the set fw1; w2; w3gis a disjunct with w1; � � � ; wi appearing as negative literals and wi+1; � � � ; w3 appearing aspositive literals, 0 � i � 3: The optimum of 3NT is given byopt3NT(I) = minS jf(w1; w2; w3) : (A(I); S) j= �(w1; w2; w3; S)gj;where �(w1; w2; w3; S) is the following quanti�er-free formula asserting that (w1; w2; w3)is a disjunct of the 3DNF formula encoded by A(I) and that S is a truth assignmentthat satis�es this disjunct.(D0(w1; w2; w3)^S(w1)^S(w2) ^S(w3)) _ (D1(w1; w2; w3)^:S(w1)^S(w2)^S(w3))_15



(D2(w1; w2; w3)^:S(w1)^:S(w2)^S(w3))_(D3(w1; w2; w3)^:S(w1)^:S(w2)^:S(w3)):� MIN VERTEX COVER: Given a graph G = (V;E), �nd the smallest cardinalityof a vertex cover, i.e., a subset S of the vertices such that every edge of G is adjacent toat least one vertex in S.It is easy to see that MIN VERTEX COVER is in the class MIN �1. Indeed, on anygraph G the optimum is given byoptMIN VC(G) = minS fjSj : (G;S) j= (8y1)(8y2) [E(y1; y2)! (S(y1) _ S(y2)) ] g= minS jfw : (G;S) j= [ (8y1)(8y2)[E(y1; y2)! (S(y1) _ S(y2))] ] ! S(w)gj= minS jfw : (G;S) j= (9y1)(9y2)[(E(y1; y2) ^ :S(y1) ^ :S(y2)) _ S(w)]gj :� MIN CHROMATIC NUMBER: Given a graph G = (V;E), �nd the minimumnumber of colors that can be assigned to the vertices of G so that no two adjacentvertices are of the same color.MIN CHROMATIC NUMBER is an optimization problem that plays am importantrole in both graph theory and complexity theory (cf. [GJ79]). We now show that it isin the class MIN �2. Consider �rst the following �2 sentence  (S) asserting that thebinary predicate S is a coloring of a graph G: (S) � (8x)(9c)S(x; c) ^ (8x)(8c1)(8c2)[S(x; c1) ^ S(x; c2)! (c1 = c2)]^ (8x)(8y)(8c1)(8c2)[E(x; y) ^ S(x; c1) ^ S(y; c2)! (c1 6= c2)]:It now follows that for every graph G = (V;E)optCHROMATIC NUMBER(G) = minS jfc : (G;S) j=  (S)! (9x)S(x; c)gj:It is clear that the expression  (S) ! (9x)S(x; c) is equivalent to a �2 formula and,consequently, MIN CHROMATIC NUMBER is in the class MIN �2.Our next result shows that the class MIN �2 contains all polynomially bounded NPminimization problems. It should be compared with Theorem 1 in Section 3.Theorem 3: Let � be a vocabulary and letQ be an NPminimization problem with �nitestructures A over � as instances. Then Q is a polynomially bounded NP minimizationproblem if and only if there is a �rst-order formula �(w;S) with predicate symbols amongthose in � and S such that for every instance A of QoptQ(A) = minS jfw : (A;S) j= �(w;S)gj:Moreover, �(w;S) can always be taken to be a �2 formula and, consequently,MIN PB = MIN �2 = MIN �n; n > 2:16
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Proof: Following the same arguments as in Theorem 1, we can show that if Q is apolynomially bounded NP minimization problem, then there is a �2 formula  (S�;W )such that optQ(A) = minS�;WfjW j : (A;S�;W ) j=  (S�;W )gIt follows thatoptQ(A) = minS�;W jfw : (A;S�;W ) j=  (S�;W )! W (w)gj= minS�;W jfw : (A;S�;W ) j= : (S�;W ) _W (w)gj :Let S denote the sequence (S�;W ) and let �(w;S) be a �2 formula that is logicallyequivalent to : (S�;W ) _W (w):We can now conclude thatoptQ(A) = minS jfw : (A;S) j= �(w;S)gj:2Remark 1: Notice that, unlike the case of maximization problems, ifoptQ(A) = minS�;WfjW j : (A;S�;W ) j=  (S�;W )g;then it is not true thatoptQ(A) = minS�;W jfw : (A;S�;W ) (S�;W ) ^W (w)gj;because the minimum cardinality of the above set is zero, which occurs whenW is empty.Instead, as we saw aboveoptQ(A) = minS�;W jfw : (A;S�;W ) j= : (S�;W ) _W (w)gjThis explains the \dual" behavior in logical de�nability between maximization andminimization problems, viz. MAX PB = MAX �2, while MIN PB = MIN �2.The above theorem 3 implies also that the class MIN �2 is contained in the class MIN�2. Thus, at this point we have the following picture for the relationship between theclasses MIN �i and MIN �i, 0 � i � 2.MIN �1MIN �0 MIN �2 � MIN �2 = MIN PBMIN �1 17



In what follows we establish that the above picture can be simpli�ed considerably.More speci�cally, we will show that the class MIN PB coincides with the class MIN �1,while the class MIN �1 collapses to the class MIN �0. In particular, MIN VERTEXCOVER will turn out to be a member of the class MIN �0. These results are rathersurprising, especially when compared with Theorem 2 for the maximization classes, whichasserts that MAX �1 is a proper subclass of MAX PB and that MAX �0 is a propersubclass of MAX �1.Example 1: Before stating and proving the next theorem, we illustrate an instance ofit by showing that MIN VERTEX COVER is in the class MIN �0. As we saw earlier,for every graph G = (V;E) we have thatoptMIN VC(G) = minS jU(S)j;where U(S) = fw : (G;S) j= (9y1)(9y2)[(E(y1; y2) ^ :S(y1) ^ :S(y2)) _ S(w)]g:Let V (S) = f(w; x) : (G;S) j= (w = x ^ S(w)) _ (E(w; x) ^ :S(w) ^ :S(x))g:We now claim that for every graph G = (V;E) we have thatminS jU(S)j = minS jV (S)j:Notice that if S� is a minimum vertex cover for G, then V (S�) = f(w;w) : S�(w)g and,as a result, minS jU(S)j = jS�j = jV (S�) � minS jV (S)j:For the other direction, let S 0 be a set of vertices such that jV (S 0)j = minS jV (S)j. Wewill show that we can add vertices to S 0 until it becomes a vertex cover of G withoutchanging the cardinality of the set V (S 0). Indeed, if (w1; x1) is a pair of vertices of Gsuch that (G;S 0) j= E(w1; x1) ^ :S 0(w1) ^ :S 0(x1);we put S 01 = S0 [ fw1g. Then jV (S 01)j � jV (S 0)j, because V (S 01) contains (w1; w1), butit does not contain (w1; x1) and, perhaps, other pairs of the form (w1; x). On the otherhand, the minimality property of S 0 yields that jV (S 0)j � jV (S 01)j and, consequently,jV (S 0)j = jV (S 01)j. By repeating this process, we can �nd a vertex cover S 00 of G suchthat jV (S 0)j = jV (S 00)j. It follows thatminS jU(S)j � jV (S 00)j = jV (S 0)j = minS jV (S)jand, thus, minS jU(S)j = minS jV (S)j: Since V (S) is de�ned using a quanti�er-freeformula, we conclude that MIN VERTEX COVER is in the class MIN �0.18



Notice that the quanti�er-free formula that de�nes MIN VERTEX COVER has twofree variables w and x, while the �1 formula that de�nes it has a single free variable w. Itturns out that this increase in arity is inevitable, i.e., there is no quanti�er-free formula (w;S) with w as its only free variable such that on every graph G = (V;E)optMIN VC(G) = minS jfw : (G;S) j=  (w;S)g:Indeed, if such a formula existed, then on every graph G = (V;E) we would have thatoptMAX CLIQUE(G) = maxS jfw : (G;S) j= : (w;S)g;which would imply that MAX CLIQUE is in the class MAX �0 and, a fortiori, in theclass MAX �1, contradicting Theorem 2.We are now ready to state and prove the main result of this section.Theorem 4: The class MIN �1 is contained in the class MIN �0 and the class MIN �2is contained in the class MIN �1. As a result,MIN �0 = MIN �1 � MIN �1 = MIN �2 = MIN PB:Moreover, MIN �1 is a proper subclass of MIN �1. In particular, MIN CHROMATICNUMBER is in MIN �1, but not in MIN �1.Proof: We give this proof in two parts.Part A: In this part we show that MIN �1 is a subclass of MIN �0 and that MIN �2 isa subclass of MIN �1.Let Q be a problem in MIN �1 with �nite structures over a vocabulary � as instances.Then there is a quanti�er-free formula �(w;x;S) with predicate symbols from �[S suchthat for every �nite structure A over the vocabulary �optQ(A) = minS jfw : (A;S) j= (9x)�(w;x;S)gj:We can assume, without loss of generality, that the number of variables in the sequencew is the same as the number of variables in the sequence x. Indeed, letw be the sequence(w1; � � � ; wm) and x be the sequence (x1; � � � ; xl). If m > l, we can increase the lengthof the sequence x by adding dummy variables xl+1; � � � ; xm. If m < l, we introduce newvariables, wm+1; � � � ; wl and express the optimum of Q as follows:optQ(A) = minS jf(w1; � � � ; wm; wm+1; � � � ; wl) :(A;S) j= (9x)�(w1; � � � ; wm;x;S) ^ wm = wm+1 = � � � = wlgj:19



In what follows, we will assume that the number of variables in the sequence w is thesame as the number of variables in the sequence x. Our goal is to �nd a quanti�er-freeformula  that de�nes optQ(A) on every structure A over �. The idea is similar to theone used to construct the quanti�er-free formula that de�ned MIN VERTEX COVERin the preceding Example 1, but the construction of  in the general case requires anauxiliary predicate symbol R that is di�erent from all predicate symbols in S.Put U(S) = fw : (A;S) j= (9x)�(w;x;S)gand notice thatjU(S)j = minR fjRj : (A;S; R) j= (8w)((9x)�(w;x;S)! R(w))g= minR fjRj : (A;S; R) j= (8w)(8x)(:�(w;x;S)_ R(w))g:Let V (S; R) = f(w;x) : (A;S; R) j= [(w = x) ^R(w)] _ [�(w;x;S) ^ :R(w)]:We now claim that for every graph G = (V;E) and every sequence S of relations on Vwe have that jU(S)j = minR jV (S; R)j:Notice �rst that if R� is a relation such that jU(S) = jR�j, thenV (S; R�) = f(w;w) : R�(w)gand, as a result, jU(S)j = jR�j = jV (S; R)j � minR jV (S; R)j:For the other direction, let R0 be a relation such that jV (S; R0)j = minR jV (S; R0)j. If(w1;x1) is a pair of tuples from G such that (G;S; R0) j= �(w1;x1;S)^:R(w1), we putR01 = R [ fw1g. Then jV (S; R01)j � jV (S; R0)j, because V (S; R01) contains (w1;w1), butdoes not contain (w1;x1) and, perhaps, other pairs of the form (w1;x). On the otherhand, the minimality property ofR0 yields that jV (S; R0)j � jV (S; R01)j and, consequently,jV (S; R0)j = jV (S; R01)j. By repeating this process, we can �nd a relation R00 on G suchthat jV (S; R0)j = jV (S; R00)j and(A;S; R00) j= (8w)(8x)(:�(w;x;S)_R(w))g:It follows that for every sequence S of relations we havejU(S)j � jV (S; R00)j = jV (S; R0)j = minR jV (S; R)jand, hence, jU(S)j = minR jV (S; R)j: Thus,optQ(A) = minS;R jV (S; R)j= minS;R jf(w;x) : (A;S; R) j= [(w = x) ^R(w)] _ [�(w;x;S) ^ :R(w)];20



which establishes that Q is in the class MIN �0.A similar argument establishes that MIN �2 is a subclass of MIN �1.Part B: In this part of the proof we show that MIN CHROMATIC NUMBER is in theclass MIN �1, but not in the class MIN �0.We have already seen that MIN CHROMATIC NUMBER is in the class MIN �2 andhence, by what we proved above, it is in the class MIN �1. We now show that MINCHROMATIC NUMBER is not in the class MIN �0. Towards a contradiction, assumethat there is a quanti�er-free formula  (w;S) such that for every graph GoptCHROMATIC NUMBER(G) = minS jfw : (G;S) j=  (w;S)gj:Let k be a positive integer, let H1 be a graph with optCHROMATIC NUMBER(H1) = k,and let H2 be an isomorphic copy of H1. If G is the disjoint union (direct sum) of H1 andH2, then it is clear that optCHROMATIC NUMBER(G) = k. Let S� be a sequence of relationson G such that jfw : (G;S�) j=  (w;S�)gj = kand let S�1 and S�2 be the restrictions of S� to the vertex sets of H1 and H2 respectively.If b is a tuple from Hi, i = 1; 2; such that (Hi;S�1) j=  (b), then it is also the case that(G;S�) j=  (b); because quanti�er-free formulae are preserved under extensions. Notice,however, that for i = 1; 2 jfw : (Hi;S�i ) j=  (w;S�i )gj � k;and, moreover, the sets fw : (H1;S�1) j=  (w;S�1)g and fw : (H2;S�2) j=  (w;S�2)g aredisjoint. Therefore, jfw : (G;S�) j=  (w;S�)gj � 2k;which is a contradiction. Thus, MIN CHROMATIC NUMBER is not in the class MIN�0. 25 Approximation Properties of NP Minimization ProblemsIn this section, we focus on the approximation properties of the minimization classes andcontrast them with those of the maximization classes.De�nition 5.1: [PS82] Let Q = (IQ;FQ;fQ; opt) be an NP optimization problem andlet A be an algorithm which, given an instance I 2 IQ, returns a feasible solution T 2 FQ.We say that A is an �-approximation algorithm for Q for some � � 0 ifjfQ(I; T )� opt(I)joptQ(I) � �21



for all instances I. The feasible solution T is said to be an �-approximate solution forthe instance I. An NP optimization problem Q is constant-approximable if for some� > 0 there is a polynomial time �-approximation algorithm for Q. For maximizationproblems we also require that � < 1, otherwise all maximization problems would betrivially constant-approximable.MAX 3SAT, MAX SAT, MIN VERTEX COVER, and TRAVELING SALESMANwith �-inequality are important examples of constant-approximable optimizationproblems. Papadimitriou and Yannakakis [PY91] proved that every problem in MAX�1 (and, a fortiori, every problem in MAX �0) is constant-approximable. In contrastto this, we show below that MIN �0 contains natural problems that are not constant-approximable, unless P6=NP. In fact, it turns out that an already familiar problem fromthe previous section has this property.Theorem 5: MIN 3NON-TAUTOLOGY is not constant-approximable, unless P=NP.Proof: Assume that for some � > 0 there is an �-approximation algorithm A forMIN 3NT. We show below that A can be used to solve in polynomial time the NON-TAUTOLOGY problem of 3DNF formulae, a problem that is known to be NP-complete.Given an instance � of NON TAUTOLOGY of 3DNF formulae, we create inpolynomial time an instance � of MIN 3NT as follows: Let x be a variable not occurringin � and let x be its negated literal. The formula � is a disjunction of x _ x and of ncopies of every disjunct of �, where n > (1 + �).If � is a non-tautology, then opt3NT(�) = 1, because every truth assignment satis�esexactly one of the disjuncts x and x, and there is a truth assignment under which nodisjuncts in any copy of � are satis�ed. If � is a tautology, then there is no truthassignment that falsi�es every disjunct in �. Hence, in � at least one disjunct from eachcopy of � is satis�ed under every truth assignment. Therefore, opt3NT(�) � n+ 1.It follows that the formula � is a non-tautology if and only if the algorithm A oninput � returns a value less than or equal to (1 + �). Thus, we have exhibited a poly-nomial time algorithm for solving an NP-complete problem, which implies that P=NP. 2We now consider an approximation preserving reduction and in Theorem 6 we provethat MIN 3NT is a complete problem for the class MIN �0 under this reduction.Papadimitriou and Yannakakis [PY91] introduced a notion of L-reduction betweenoptimization problems. Panconesi and Ranjan [PR90] generalized this to the notion ofP -reduction. We use here a variant of these reductions introduced by Crescenzi andPanconesi [CP91].De�nition 5.2: [CP91] Let Q and R be two NP optimization problems. Anapproximability preserving reduction (or, A-reduction) from Q to R is a triple � =(t1; t2; c) for which the following hold: 22



� t1 and t2 are polynomially computable functions with t1 : IQ ! IR and t2 :IR �FR ! FQ:� c is a function from non-negative rationals to non-negative rationals such that ifT is an �-approximate solution for an instance t1(I) of R, then t2(I; T ) is a c(�)-approximate solution for Q.If there is an A-reduction form Q to R, then we say that Q is A-reducible to R and wewrite Q �A R,The A-reduction de�ned above is a more relaxed reducibility than the L-reductionde�ned by Papadimitriou and Yannakakis [PY91]. In the latter the optimum solutionsof the two problems Q and R are required to be within a constant factor of each other.Although this is the case with many optimization problems, a reduction may preserveapproximability (within a constant factor of the optimal) without having this property.The following propositions follow easily from the de�nitions.Proposition 1: If R is constant-approximable and Q �A R, then Q is constant-approximable.Proposition 2: A-reductions compose.De�nition 5.3: An NP optimization problem Q is approximation complete for a classC of optimization problems if Q 2 C and every problem R 2 C can be A-reduced to Q.With the necessary de�nitions behind us, we can now state and prove the followingresult.Theorem 6: MIN 3NON-TAUTOLOGY is approximation complete for MIN �0.Proof: We have shown before that MIN 3NT is in MIN �0. We now prove that everyproblem in MIN �0 is A-reducible to it. Let Q be a problem in MIN �0, let I be aninstance of it, and let A(I) be a structure encoding I. Then there is a quanti�er-freeformula  (w;S) such thatoptQ(A(I)) = minS jfw : A(I) j=  (w;S)gj:Assume that the arity of w is k and that the size jA(I)j of A(I) is equal to n. Letfw1;w2; � � � ;wnkg be the possible values of w on A. For every wi we consider theBoolean circuit Bi, composed of gates AND, OR and NOT, that represents the formula (wi;S). The inputs to the circuit are of the form Si(w0i), where Si is a predicate symbolfrom the sequence S of symbols and w0i is a projection of wi of arity the same as thearity of Si. 23



Given an instance I of Q, we construct an instance t1(I) of MIN 3NT. Correspondingto the output of every gate g in the circuit Bi, we have a variable g in t1(I). Theother variables of t1(I) are the input variables of the circuit. The disjuncts of t1(I) areas follows. If g is the output of a NOT gate with input x, then we have (g ^ x) and(g ^ x) as disjuncts. If g is the output of an AND gate with inputs x1, x2, then we have(x1^x2^ g); (x1^x2^ g); (x1^x2^ g); and (x1^x2^ g): If g is the output of an OR gatewith inputs x1; x2, then we have (x1^x2^ g), (x1^x2^ g), (x1^x2^ g), and (x1^x2^ g)as disjuncts. Finally, if g is the output of the circuit Bi, then we have a disjunct (g).Given any input to the circuit Bi, we can set the Boolean values of the intermediategates such that every disjunct is falsi�ed. The disjuncts are designed such that if gis the output of the AND gate with inputs x1 and x2, then setting g to x1 ^ x2 willresult in falsifying all the disjuncts corresponding to this gate. Similarly, for disjunctscorresponding to OR and NOT gates, if we set the output to the disjunction of the inputsor the negation of the input respectively, then all the disjuncts that correspond to thegate are falsi�ed. Thus, if a truth assignment falsi�es  (wi;S), then we can falsify allthe disjuncts corresponding to the circuit Bi. Moreover, if it satis�es  (wi;S), then theminimum number of disjuncts (corresponding to Bi) satis�ed is 1. Hence, optQ(I) isequal to the minimum number of satis�able disjuncts in the instance t1(I) of 3NT.In addition, it is straightforward to de�ne the mapping t2 such that, given an �-approximate truth assignment to the instance t1(I), we obtain an �-approximate solutionto Q. Thus, Q �A MIN 3NT. 2The preceding Theorem 5 reveals that the pattern of the quanti�er pre�x does notimpact on the approximability of minimization problems, unlike the case of maximizationproblems. As a result, we have to seek other syntactic features that may imply goodapproximation properties. We introduce below classes of minimization problems de�nedby imposing restrictions on the quanti�er-free part of formulae and we show that thereare natural complete problems for these classes.De�nition 5.4: Let MIN F+�1(k); k � 2; (F stands for feasible) be the class of allminimization problems Q whose optimum can be expressed as:optQ(A) = minS fjSj : (A; S) j= (8y) (y; S)g;or, equivalently,optQ(A) = minS jfw : (A; S) j= ((8y) (y; S))! S(w)gj;where S is a single predicate,  (w; S) is a quanti�er-free CNF formula in which alloccurrences of S are positive, and S occurs at most k times in each clause. We also letMIN F+�1 = [k MIN F+�1(k)denote the union of these classes. 24



Notice that the second equation in the above de�nition shows that the class MINF+�1 is a subclass of MIN �1: The canonical example of a problem in the class MINF+�1(2) is MIN VERTEX COVER, since its optimum is given byoptMIN VC(G) = minS fjSj : (G;S) j= (8y1)(8y2)(:E(y1; y2) _ S(y1) _ S(y2))g:The expressive power of the class F+�1(2) has been investigated in [KT91].By generalizing the vertex cover problem to k-hypergraphs, k � 2, we can obtain theproblem MIN k-HYPERVERTEX COVER. This is a typical example of a problem inthe class MIN F+�1(k).De�nition 5.5: A k-hypergraph is a structure H = (V;E) with E � V k. A hypervertexcover is a set S � V such that for every k-tuple (v1; : : : ; vk) in E we have that S containssome vi.Notice that a 2-hypergraph can be viewed as an ordinary graph. Moreover, a hypervertexcover for a 2-hypergraph is a vertex cover in the usual sense of the term.� The MIN k-HYPERVERTEX COVER problem is to �nd the cardinality of thesmallest hypervertex cover in a k-hypergraph. Its optimum is expressed as:optMIN k�HVC(G) = minS fjSj : (G;S) j= (8y1) � � � (8yk)(E(y1; � � � ; yk)! S(y1) _ � � � _ S(yk))g:The MIN VERTEX COVER problem has a rather straightforward polynomial time1-approximation algorithm [GJ79] that is based on the idea of maximal matching. Bygeneralizing the notion of maximal matching to hypergraphs, we can obtain a polynomialtime k-approximation algorithm for the MIN k-HYPERVERTEX COVER problem.Theorem 7: MIN k-HYPERVERTEX COVER is approximation complete for MINF+�1(k); k � 2, under A-reductions. As a result, every problem in MIN F+�1 isconstant-approximable.Proof: Let Q be a problem in MIN F�1(k), let I be an instance of it, and let A(I) bea structure encoding I. Then there is a quanti�er-free formula  (y; S) in CNF satisfyingthe conditions in de�nition 5.4 such thatoptQ(A(I)) = minS fjSj : (A(I); S) j= (8y) (y; S)g:Assume that the arity of S is m, the arity of y is k, and the size jA(I)j of A is equalto n. Let fy1;y2; � � � ;ynkg be the possible values of y on A. If we let  i be the formula (yi; S), then optQ(A(I)) = minS fjSj : (A(I); S) j= î  ig:25



Notice that Vi  i is a CNF formula whose variables are of the form S(y), where y isa sequence of length m. From the de�nition of MIN F+�1(k) we know that S occurs atmost k times in a clause of  . Without loss of generality, we can assume that S occursexactly k times in each clause. Indeed, if S appears less than k times in a clause, then wecan repeat one of its occurrences in that clause. Clauses with no occurrences of S dependonly on the structure A(I) and are true independent of S, hence they can be neglected(if such disjuncts are falsi�ed by A(I), then we do not have a feasible solution).Given a structure A(I) encoding an instance I of a problem in MIN F�1(k), weconstruct an instance G = (V;E) of the MIN k-HYPERVERTEX COVER problem asfollows. The set V of vertices of G is the set of all m-tuples from the universe of A(I).Moreover, if S(yi1); S(yi2); � � � ; S(yik) appear in the same clause in the CNF formula,then fyi1 ;yi2; � � � ;yikg is an edge in G.Now observe that S = fyj1 ;yj2 ; � � � ;yjtg is a hypervertex cover for G if and only ifwe have (A(I); S) j= (8y) (y; S).It follows that Q is A-reducible to MIN k-HYPERVERTEX COVER and so MINk-HYPERVERTEX COVER is complete for MIN F�1(k). 2The good approximation properties of the class MIN F�1 should be contrasted withthose of the class RMAX introduced in [PR90]. This is a syntactic subclass of MAX �1that is in some sense the \dual" of MIN F�1. More formally, RMAX is the class of NPmaximization problems with optimum de�nable asoptQ(A) = maxS fjSj : A j= (8y) (y; S)gwhere S is a single predicate and  is a quanti�er-free CNF formula in which alloccurrences of S are negative. MAX CLIQUE is the canonical example of a problemin RMAX. As mentioned in the Introduction, Arora and Safra [AS92] showed that MAXCLIQUE is not constant-approximable, unless P=NP.Remark 2: We now consider briey the e�ect of taking theA-closure of the classes MAX�n and MAX �n, i.e., all optimization problems that have an A-reduction to a problem inone of these classes. We have seen before that �ne distinctions between NP-maximizationproblems can be made by focusing on their logical de�nability. It turns out, however,that some of the distinctions manifested in Theorem 2 disappear by passing to A-closures.Indeed, it can be shown that MAX �1 contains problems that are complete for the classMAX �2 via A-reductions, such as the MAX Number of Satis�able Formulae (MAXNSF) problem of [PR90]. As a result, the A-closure of MAX �1 contains all polynomiallybounded maximization problems. It should be pointed out that a similar situation holdswith NP decision problems. For example, 3-COLORABILITY is expressible using a strict�11 formula, i.e., an existential second-order formula whose �rst-order part has universalquanti�ers only. It is known that NP problems de�nable by such formulae have certainspecial properties that are not shared by all NP problems, in particular their asymptotic26



probabilities obey a 0-1 law ([KV87]). On the other hand, the closure of strict �11 formulaeunder polynomial reductions is the entire class of NP problems.6 Concluding Remarks and Open ProblemsIn this paper we investigated NP optimization problems from the standpoint of logicalde�nability and analyzed the relative expressive power of the various classes of NPoptimization problems that arise in this framework. One of our �ndings is thatlogical de�nability has di�erent implications for NP maximization problems than ithas for NP minimization problems. The original motivation in [PY91] for pursuingthe logical de�nability approach was to �nd syntactic classes of NP maximizationproblems with good approximation properties, such as MAX �1, and to pinpoint naturalcomplete problems for these classes. Since the class MIN �1 contains problems that arenot constant-approximable (modulo P6=NP), it would be interesting to �nd syntacticsubclasses of MIN �1 that contain constant-approximable problems only. Theorem 7shows that the class MIN F+�1 is a �rst step in this direction.The TRAVELING SALESMAN problem with possible distances 1 or 2 is an importantexample of a minimization problem that is constant-approximable. Papadimitriou andYannakakis [PY90] have shown that every problem in the class MAX �0 is L-reducibleto the TRAVELING SALESMAN problem with possible distances 1 or 2. It is an openproblem to identify a natural class of minimization problems for which the TRAVELINGSALESMAN problem with distances 1; 2 is complete.Papadimitriou and Yannakakis [PY91] proved that MAX 3SAT and a host of otherproblems are complete for MAX �0. Panconesi and Ranjan [PR90] introduced the prob-lem MAX Number of Satis�able Formulae (MAX NSF) and proved it complete for MAX�1. As mentioned earlier, it can be shown that this problem is also complete for theclass MAX �2 = MAX PB. It is not known, however, if MAX �1 possesses completeproblems. On the side of minimization, we proved here that MIN 3NT is complete forthe class MIN �0, which, by Theorem 4, is the same as the class MIN �1. It would beinteresting to investigate the existence of complete problems for the class MIN �1.Acknowledgements: We are grateful to Christos H. Papadimitriou for several usefultelephone conversations, to Alessandro Panconesi for several interesting e-mail exchanges,and to Moshe Y. Vardi for giving us feedback in person on some of the work reported here.Thanks are also due to Phil Long and Shankar Ramamoorthy for valuable comments onthe details of the proofs. Finally, we wish to thank Ron Fagin for reading carefully anearlier draft of this paper and providing us with numerous comments that enhanced thereadability of the paper. 27
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