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1 Introduction

Wide-area information systems are becoming an important resource in many fields. Given the vast scale of
the Internet, such systems provide unique challenges that cannot be met by traditional distributed data base
designs. Some of these systems must scale to millions of users located in every part of the world, while
providing good availability and interactive response. At the same time, the system must respond gracefully
to host and network failure, to the long latencies required to communicate between distant systems, and to
the presence of mobile computer systems.

We have developed an architecture for constructing wide-area services that uses group communication
to implement a replicated service [Golding92c]. A number of replicas or servers form a group, and
coordinate their actions using a group communication mechanism. The mechanism can be tailored to the
specific needs of the service by combining the appropriate low-level communication, group management,
and message management modules, which can provide guarantees ranging from traditional single-copy
serializability using a strongly-consistent protocol such as quorum consensus [Gifford79, Thomas79], to a
weak-consistency mechanism using the timestamped anti-entropy (TSAE) protocol that we have developed.

Weak-consistency protocols, sometimes called epidemic replication protocols, provide eventual message
delivery. A database update is sent as a message to one replica. The message is propagated from one replica
to another in the background, eventually reaching every replica in the group.

This approach provides a good solution for building a replicated service on a wide-area network.
Background propagation avoids synchronous interactions between more than two replicas at a time, and
clients need only interact with one nearby replica to access the service. A service can place replicas
near client sites, spreading processing load over many servers, decreasing the latency clients require to
communicate with the service, and minimizing the long-distance network traffic between client and service.
Consistent replication protocols require a synchronous interaction between a client and multiple replicas,
requiring a client to wait for communication with distant replicas. The latency of contacting hundreds of
replicas synchronously over the Internet, and the message traffic required, is unacceptable.

Delayed propagation makes such protocols extremely robust, because propagation can wait for faults
to be repaired without compromising delivery guarantees. The replicas are allowed to diverge, then are
reconciled when the fault is repaired. This is an advantage for large-scale services on the Internet, which
is never without partitions and failed hosts. A consistent replica, which must always preserve single-copy
serializability, cannot provide service when disconnected from other replicas and is therefore less available.
Replicas can batch messages between them, using bulk transfer protocols at off-peak times.

These same features make weak consistency attractive for mobile computers. If a replica resides on a
mobile computer, the service will be accessible even when the computer is disconnected from the network.
The replica will diverge from the others until it is reconnected to the network and can exchange updates
with other replicas.

Our timestamped anti-entropy (TSAE) protocol is a significant improvement over previous weak-
consistency protocols. It provides reliable message delivery while ensuring that network traffic is kept
to a minimum. It also maintains enough information to support correct truncation of message logs, as well
as causal or total message delivery orders.
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We have used the TSAE protocol to prototype a large-scale, wide-area distributed bibliographic database
management system, called Refdbms [Golding92b]. Several Refdbms databases are replicated at sites in
North America and Europe. Other existing information systems, such as Usenet [Quarterman86] and
the Xerox Clearinghouse system [Oppen81, Demers88], use other weak-consistency techniques. Our
work formalizes and improves on these ad hoc approaches, providing a single framework for analyzing,
comparing, and implementing them [Golding92c].

Clients using a weakly-consistent service can observe out-of-date or inconsistent information, unlike
clients of a service that provides single-copy serializability. We have investigated two measures of the degree
to which clients will observe out-of-date results – one concerning the propagation of a single message, the
other concerning the divergence between replicas. The time required to propagate a message from one
replica to others shows how quickly information will be made available to clients; this is discussed in
Section 3. The likelihood that a replica is out-of-date with respect to other replicas, and the difference
between them, aggregates the effects of several messages. We discuss this measure in Section 4. We have
evaluated the fault tolerance of message delivery and of the group management mechanism, and the network
traffic imposed by the protocol, as we have reported elsewhere [Golding93, Golding92b].

In the remainder of this section we will justify why weak-consistency protocols are necessary for the
large-scale wide area systems that are currently being built. In Section 2 we summarize the TSAE protocol.

1.1 The wide-area networking environment

Consistent replication protocols are unsuited for wide-area applications because of the latency, unreliability,
and scale of those networks. Latency affects the response time of the application, and can vary from a
few milliseconds, for two hosts connected by an Ethernet, to several hundred milliseconds for hosts on
different continents communicating through the Internet. Packet loss rates often reach 40%, and can go
higher [Golding92a]. Further, the Internet has many points that, on failure, partition the network, and at any
given time it is usually partitioned into several non-communicating networks. Further, in January 1993 the
Internet included more than 1.3 million hosts with an estimated 12 million users [Lottor93]. This has led to
query loads on some services exceeding the capacity of a single server and the network links that support it
[Emtage92]. Any replication protocol that requires interactive communication with many replicas will not
work in this environment.

The introduction of mobile computers exacerbates this problem further. These systems spend most
of their time disconnected from other systems, or perhaps connected by an expensive or low-bandwidth
link. Services that are to support such systems must allow clients that are disconnected to continue to
operate, without communicating with outside servers. This can be accomplished by placing a replica on
the mobile system and allowing the copy to diverge from the “correct” value. Weak consistency protocols
ensure that this divergence can be reconciled when the mobile system is reconnected to the network. The
TSAE protocol allows mobile systems with limited bandwidth to measure how far they have diverged by
exchanging a small summary of the state of the replica with another replica.

Despite these restrictions, users expect a service to behave as if it were provided on a local system. The
response time of a wide-area application should not be much longer than that of a local one. Further, users
expect to use the service as long as their local systems are functioning.
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2 Protocol description

Replicated data can be implemented as a group of replica processes that communicate through a group
communication protocol. The group communication protocol provides a multicast service that sends a
message from one replica to all other replicas in the group. The protocol controls the consistency, or
divergence, of each replica by controlling the latency, reliability, and order of the messages sent among
them.

Strong consistency requirements are impossible to meet in the most general cases, and expensive in
others. For example, if there are no bounds on message delivery time it is not possible to guarantee
consistency [Turek92]. If replicas can fail in arbitrary ways, providing reliable delivery is equivalent to
Byzantine Agreement.

For most applications the Internet can be treated as an unreliable network with bounded communication
latency. The hosts on the network approximate synchronous processors that fail by crashing; that is, no
processor is infinitely fast or slow; every failure is recovered in a finite time; and when a failure occurs
the processor neither sends invalid messages to other processors nor corrupt stable storage. Consensus is
theoretically possible under these conditions.

We also assume that replicas have access to pseudo-stable storage such as magnetic disk that will not be
affected by a system crash. Replicas, or the hosts on which they run, have loosely synchronized clocks. The
network is sufficiently reliable that any two replicas can eventually exchange messages, but it need never be
free of partitions. Semi-partitions are also possible, where only a low-bandwidth connection is available.

2.1 Kinds of consistency

We view consistency in terms of the messages that are exchanged between replicas. In general, two replicas
are consistent at a particular moment if they have received the same set of messages. Unlike some other
work on distributed consistency, we reason about consistency using real time that could be measured by an
outside observer rather than a virtual time measure.

We have developed a framework for constructing and classifying group communication mechanisms
[Golding92c]. In this approach, we classify a mechanism by the latency and reliability of message delivery,
and by the order in which messages are delivered to the service.

The communication protocol can deliver messages synchronously, within a bounded time, or eventually
in a finite but unbounded time. Weak-consistency protocols provide eventual delivery, because there is no
bound on the interval at which a replica will be able to contact another to propagate a message.

Messages can either be delivered atomically, so that either every replica receives the message or none
do; reliably, in which case the message is delivered to every functioning replica, but failed replicas need not
receive it; or with best effort, meaning the system will make an attempt to deliver the message but delivery
is not guaranteed. Weak consistency protocols provide reliable delivery.

The reliable delivery guarantee differs from atomic delivery in one important case: when the sending
replica permanently fails and loses data. No weak consistency communication scheme can provide atomic
delivery, since a window of vulnerability exists while the data is being sent to other replicas. In practice the
duration of the window is insignificant.
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The Internet provides no guarantees on the order messages are received by a replica. The replica can
re-order the messages it receives before they are applied to the database. The ordering can be total, so
that every message is delivered in the same order at every replica; causal, so that the ordering may be
different at different replicas as long as every ordering respects potential causal relations between messages
[Lamport78]; or unordered, where the ordering is not coordinated between replicas. Some weak-consistency
protocols, such as TSAE, allow replicas to order messages causally or totally.

Several protocols that provide weakly consistent replication have been proposed. The Xerox Clearing-
house [Demers88, Oppen81] name service used three epidemic replication protocols, including best-effort
multicast, rumor mongery, and anti-entropy. Of these three, only anti-entropy provided reliable delivery,
and it could not support message reordering or provably reliable log purges. The Lazy Replication system
[Ladin90] supported causal and total message orderings, including orderings that respected casual relations
caused outside the replica group. However, the protocol itself was notably inefficient. The composition of
TSAE with a causal message ordering module is equivalent to the Lazy Replication system.

2.2 Timestamped anti-entropy

The TSAE protocol is a new group communication protocol that provides reliable, eventual delivery
[Golding92b]. Like other weak-consistency protocols, update messages originate at a single replica and are
propagated in the background to others. Unlike most others, TSAE can support total or causal message
delivery orders, mobile computer systems, and provably correct purging of message logs. We have developed
a compatible group membership mechanism for adding and removing replicas from the group.

When a replica wishes to send a message, it stamps the message with the current time and the identity
of the replica, then writes the message to a log. This log is maintained on stable storage, so that it survives
temporary crashes. It is organized as a set of sub-logs, each holding messages sent by one replica in the
group. The top part of Figure 1 shows an example of the logs at two replicas, A and B; that are part of a
group of three replicas.

From time to time, a replica will select another replica, and the two will exchange the contents of their
message logs in an anti-entropy session. At the end of the session, both replicas have received the same set
of messages. Moreover, they have received a continuous sequence of messages from each replica, with no
gaps. To see that this is so, assume that the condition holds before a session, as shown in the top of Figure 1.
Replica A has a complete set of the four messages it has sent, while B has only the first two. During the
session A sends the entire set of messages that B does not have. At the end, both replicas have identical
sets of messages in their logs.

Each replica maintains summary information that the TSAE protocol uses to make message exchange
efficient. Each replica maintains a summary timestamp vector, indexed by replica identifier, containing the
greatest timestamp it has received from other replicas. In the example in Figure 1, replica A has received
messages sent byC with timestamps as great as 4. ReplicaB; on the other hand, has only received messages
fromC up to time 2. Since anti-entropy ensures that replicas receive continuous message sequences, having
one message in the log implies that all previous ones have been received. When a replica’s summary vector
holds a timestamp for another replica, every message with a lesser or equal timestamp has been received.

An anti-entropy session using the TSAE protocol begins with two replicas exchanging their summary
vectors. Each replica can determine what messages its partner has not yet received by comparing its
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FIGURE 1: An example anti-entropy session. Principals A and B begin with the logs in the top of the figure. They
exchange summary vectors, discovering that the shaded messages must be exchanged. After the exchange, they
update their summary vectors to the bottom vector.

summary vector to that of its partner. These messages are sent using a reliable stream communication
protocol. Once both replicas have received their messages, they can update their summary vector to the
elementwise maximum of their original vector and their partner’s vector. In Figure 1, replicaA can determine
that it has received messages 3 and 4 from replica C; but that B has not. This ensures that every message is
sent exactly once to each replica.

While the summary vector records the messages that one replica has received, replicas also need
information on the messages other replicas have received in order to truncate the message log safely. Rather
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than use explicit acknowledgments for every message, the TSAE compresses them into another summary
vector. At the end of an anti-entropy session, a replica finds the minimum timestamp in its summary vector.
The replica has received every message from any sender that has a lesser or equal timestamp. This method
makes progress as long as replicas have loosely-synchronized clocks.1

Each replica maintains a vector of these acknowledgment timestamps, one for each replica in the group,
and exchanges this vector with its partner during anti-entropy sessions. Any message in the log whose
timestamp is less than every timestamp in the acknowledgment vector has been received and acknowledged
by every replica in the group, and so can be safely removed from the log.

A replica using the TSAE protocol only needs to initiate anti-entropy sessions when there are messages
in its log that have not been received and acknowledged by other replicas. This allows a quiet group to
create message traffic only when an update has arrived, unlike other weak-consistency protocols.

2.3 Best-effort multicast

While the TSAE protocol is efficient, some applications may perform better if information is propagated
more rapidly. One technique is to combine a best-effort multicast with anti-entropy. When a replica sends
an update message to the replica group, it can first multicast the message to other replicas, many of which
will receive the message. Anti-entropy sessions can later ensure that any replica that missed the multicast
– either because the network was unreliable, or because the replica was temporarily unavailable when the
multicast occurred – receives the message.

2.4 Partner selection

When a replica selects another replica for an anti-entropy session, it can use one of several partner selection
policies. The choice of policy affects message delivery latency and hence the degree of consistency between
replicas, and the amount of network traffic caused by the protocol. Table 1 lists eight policies we have
examined.

The policies can be divided into three classes: random, deterministic, and topological. Random policies
assign a probability to each replica, then randomly select a partner for each session. The deterministic
policies use a fixed rule to determine the replica to select as partner, possibly using some extra state such
as a sequence counter. Topological policies organize the replicas into some fixed graph structure such as a
ring or a mesh, and propagate messages along edges in the graph.

The uniform policy assigns every replica an equal probability of being selected as partner. Uniform
selection can lead to overloaded network links in an internetwork where the physical topology is less
connected than the logical.

Demers et al. compared uniform to distance-biased selection [Demers88]. Their study found that
biasing partner selection by distance could reduce traffic on critical intercontinental links by more than an
order of magnitude. Selection can also be biased by the cost of communication, perhaps measured in terms
of latency, or monetary cost of using a communication link.

1We have also developed a similar protocol that requires O(n2) state per replica rather than O(n); but allows unsynchronized
clocks. This alternate protocol was discovered independently by Agrawal and Malpani [Agrawal91].
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TABLE 1: Partner selection policies.

Random policies:
Uniform Every other replica has an equal probability of being randomly selected.

Distance-biased Nearby replicas have a greater probability than more distant replicas of
being randomly selected.

Oldest-biased The probability of selecting a replica is proportional to the age of its
entry in the summary vector.

Deterministic policies:
Oldest-first Always selects the replica n with the oldest value summary[n]:

Latin squares Builds a deterministic schedule guaranteed to propagate messages in
Θ(logn) rounds.

Topological policies:
Ring Organizes the replicas into a ring.

Binary tree Replicas are organized into a binary tree, and messages are propagated
randomly along the arcs in the tree.

Mesh Organizes the replicas into a two-dimensional rectangular mesh.

Alon et al. [Alon87] proposed the latin square policy, which guarantees that a message is received by
all replicas in O(logn) time (assuming no replica failure). A latin square is an N �N matrix of N entries,
where every row and column includes every entry once. The policy builds a communication schedule by
constructing a random latin square, where the columns in the matrix are the schedules for each replica. A
replica cycles through its schedule, contacting replicas in the order given, and skipping over itself. It is not
evident how to take advantage of topological information in this approach. It is also not clear how to extend
it for dynamically changing groups without performing a consistent computation to build new schedules,
since each replica must build and follow the same schedule for selecting partners.

The oldest-biased and oldest-first policies attempt to produce the same effect as latin squares without
computing a global schedule. Oldest-biased randomly selects a partner with probability proportional to
the age of its entry in the summary vector. Oldest-first always selects the oldest entry, breaking ties by
selecting the “closer” entry if it can be determined.

The topological policies, including ring, binary tree, and mesh, organize replicas into a regular graph.
Messages are propagated along edges in the graph. A topological policy can work well when its structure
can be mapped onto the structure of the network.

3 Message latency

The TSAE protocol only guarantees eventual delivery, but in practice messages propagate to every replica
rapidly. If information is propagated quickly, clients using different replicas will not often observe different
information, and loss of an update from site failure will be unlikely. The size of the message log is related
to this measure, since messages are removed from the log when acknowledgments have been received from
every replica.
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FIGURE 2: Cumulative probability distribution for propagating a message to all replicas. Measured for uniform
partner selection.

We constructed a discrete event simulation model of the TSAE protocol to measure propagation latency.
The latency simulator measured the time required for an update message, entered at time zero, and its
acknowledgments to propagate to all available replicas. The time required to send a message from one
replica to another was assumed to be negligible compared to the time between anti-entropy sessions. The
simulator could be parameterized to use different partner selection policies and numbers of sites. The
simulator was run until either the 95% confidence intervals on the mean message and acknowledgment
latency were less than 5%, or 10 000 updates had been processed. In practice 95% confidence intervals
were generally between 1 and 2%.

The simulation modeled only the TSAE protocol, and did not consider the effect of combining TSAE
with a best-effort multicast. Therefore the results in this section represent worst-cast behavior that would
be improved if a multicast were added.

Figure 2 shows the cumulative probability over time that a message has been received by all replicas for
varying numbers of replicas. Time is measured as multiples of the mean interval at which replicas initiate
anti-entropy events. The simulations in this graph use uniform partner selection. The time required to
propagate a message appears to scale well with the number of sites.

The time required to propagate message acknowledgments everywhere is an important measure, because
it determines how quickly messages can be purged from the message log. Figure 3 shows the latency required
from the time a message is sent to the time acknowledgments are received by every replica from every
replica. Acknowledgment latency required appears to scale as well as propagation latency.
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FIGURE 3: Cumulative probability distribution for receiving an acknowledgment from all replicas. Measured for
uniform partner selection.

The partner selection policy affects the speed of message propagation. Figure 4 shows the mean time
required to propagate a message to every replica for several policies as the number of sites increases. The
uniform, latin squares, and distance-biased policies give essentially identical performance. Age-biased
appears to provide slightly better performance, which would appear to contradict the claim by Alon that
the latin squares policy is fastest [Alon87]. We believe the difference arises from a slight difference in
implementation: Alon’s implementation requires that every replica propagate messages in well-defined
rounds, while this simulation allows propagation to occur at random intervals. This may mitigate some of
the benefit derived from Alon’s latin squares policy. The policies that simulate a fixed topology – ring,
mesh, or binary tree – have the worst performance and scaling. The results for acknowledgment time are
similar.

These results indicate that simple random policies, such as uniform selection or age biasing, perform
quite well. We used uniform partner selection in the Refdbms system.

4 Replica consistency

Consistency measures the difference between replicas. A small difference means that the replicas are
nearly consistent, and clients performing queries at different replicas will observe nearly the same value.
Consistency can either be measured over the database as a whole, or for an individual entry. It can also be
measured simply as the probability that a replica is out-of-date, or as the number of updates the replica has
yet to receive.
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We have chosen to measure consistency as the number of updates a replica has missed over the entire
database, calling this the age of the replica’s copy. We expect that most widely-shared databases will be
very large, containing thousands to millions of entries. A typical Refdbms database holds several thousand
bibliographic references. We also expect that these databases will often be used to search for information,
giving rise to queries that potentially consider a significant fraction of the database in computing a result.
For example, in Refdbms we often find users asking for all references on a particular subject. Consistency
aggregated over the entire database is more useful than consistency of individual items for measuring the
accuracy that this sort of query will observe.

The age of a replica’s state depends on the ratio of the anti-entropy rate to the update rate for the
state. Many wide-area services have extremely low update rates; some services write new entries and never
change them. A low update rate means that anti-entropy has a better chance of propagating an update
before another update enters the system. In the Domain Name Service [Mockapetris87], a particular host
name or address rarely changes more than once every few months. In systems like Refdbms, new entries
are added, corrected quickly, then remain stable. We expect the update rate for most wide-area services to
be much lower than the anti-entropy rate. Most of the graphs in this section were generated using a mean
time-to-update of 1 000 time units; the mean time-to-anti-entropy varied from 5 to 1 000 time units.

Once again we used a discrete event simulation to model the TSAE protocol. The simulator used five
events: to start and stop the simulation; to send a message; to perform anti-entropy; and to sample the state
of a replica. The simulation was first allowed to run for 1 000 time units so it would reach steady state, then
measurements began. The simulation ended at 50 000 time units. Read, update, and anti-entropy events
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FIGURE 5: Expected replica age as anti-entropy rate varies, for 500 replicas. Mean time-to-update 1 000; uniform
partner selection. Anti-entropy was combined with a best-effort multicast, for which the message failure rate varied.

were modeled as Poisson processes with parameterizable rates. These rates were measured per replica. The
simulator included different partner selection protocols and an optional unreliable multicast on updates.

The simulator maintained two data structures for each replica: the anti-entropy summary vector and a
message number. It also maintained a global message counter. When a message was sent, the global counter
was incremented and the sender’s message number was assigned that value. If an unreliable multicast was
being used, the message number was copied to other replicas if the datagram was received. Anti-entropy
events propagated message numbers between replicas, as well as updating the replicas’ summary vectors.

Sampling events collected the expected age of a replica’s data and the probability of finding old data. A
replica was selected at random, and the message number for that replica was compared to the global counter.
The difference showed how many messages the replica had yet to receive.

Figure 5 shows the expected age of the value held by a replica. Clearly, adding an unreliable multicast on
update significantly improves this measure. The message success probability is the most important influence
on replica age in large groups of replicas. For small numbers of replicas, increasing the anti-entropy rate
dramatically improves both the probability of getting up-to-date information and the expected age.

Consistency also depends on the number of replicas, as shown in Figure 6. For these simulations the
anti-entropy rate was fixed at 100 times that of update. This value might be typical for a Refdbms entry
soon after it is entered, when corrections are most likely. Later updates will be less frequent and the
ratio will increase, improving the consistency. Once again an unreliable multicast provides considerable
improvement.
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We also investigated the effect of partner selection policy on replica age, as shown in Figure 7. The
results show that expected age is related to propagation time, since the policies are ranked in exactly the
same order as in Figure 4, which shows the mean propagation time for the different policies. The topological
policies (Ring, binary tree, and mesh) propagate more slowly, and give a greater expected age, than other
policies. The other policies are nearly equal, though oldest-first has a slight advantage.

5 Conclusions

Wide-area distributed database systems must scale to millions of users, and must operate correctly on an
unreliable network. A replicated database with hundreds or thousands of replicas can meet availability and
query performance goals if it uses weak-consistency replication protocols. Many widely-shared databases,
including name services and bibliographic databases, are not concerned with strict consistency.

The timestamped anti-entropy (TSAE) weak-consistency protocol avoids synchronous communication
between replicas and clients, instead propagating updates in the background. When a replica is partitioned
from the rest of the network, it can continue to provide service and will receive updated information once it
reconnects. Likewise, no special protocols are required for recovery from temporary failure. TSAE scales
well, requiring O(n) state per replica for a simple implementation.

This can be contrasted with consistent replication protocols, such as voting, that require synchronous
communication with a majority of replicas. While consistent protocols can provide good availability and
performance with small numbers of replicas, they are not practical for global-scale networks. Consistent
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replicas cannot continue to function when disconnected from other replicas, so they are not useful for mobile
computing systems.

The negative aspect of weak consistency protocols is that they allow replicas to diverge temporarily
while updates are being propagated. We have found that the update propagation latency of the TSAE
protocol is acceptable for many systems, and that is scales with the log of the number of replicas. Our
analysis also shows that at reasonable propagation rates replicas are rarely more than a few updates behind,
and that an unreliable multicast can reduce this difference further.

We are encouraged by the performance of the distance-biased partner selection policy. Similar policies
can be used in the Internet to encourage traffic between nearby sites and to avoid saturating long-distance
links. The random policy appears to be within a constant factor of optimal [Alon87].
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