
SCHEDULING REAL-TIME DISK TRANSFERS FOR CONTINUOUSMEDIA APPLICATIONSDarrell D. E. Long Madhukar N. ThakurComputer and Information SciencesUniversity of CaliforniaSanta Cruz, CA 95064ABSTRACTWe study how continuous media data can be storedand accessed in the Swift distributed I/O architec-ture. We provide a scheme for scheduling real-timedata transfers that satis�es the strict requirementsof continuous media applications. Our scheme allowslarge data objects to be stored and retrieved concur-rently from multiple disks so as to satisfy the highdata rate requirements which are typical of real-timevideo and audio data. To do this, data transfer re-quests are split into smaller requests which are thenhandled by the various components of Swift.We study on-line algorithms that respond to a datarequest by promising to either satisfy or reject it.Each response must be made before the next requestis seen by the algorithm. We discuss two di�erent per-formance measures to evaluate such algorithms andshow that no on-line algorithm can optimize these cri-teria to less than a constant fraction of the optimal.Finally, we propose an algorithm for handling suchrequests on-line and the related data structures.INTRODUCTIONAdvances in high speed networking and storage tech-nology will soon make it possible to use data in theform of continuous media (CM), such as real-time dig-ital audio and video, in computing applications. Thecharacteristics of CM data are vastly di�erent fromthose of the I/O streams that current generation ofdistributed systems are capable of supporting.As the term continuous media indicates, the stor-age and retrieval of such data must be continuousin real-time. This requires the �le system, alongwith the storage media, to be fast enough to guar-antee the data transfer rates that the application de-mands. Typically, continuous media applications re-quire large data transfer rates, which may vary from1.2 megabytes/second for DVI compressed video to 90megabytes/second for uncompressed full-frame color

video. Architectures like Swift [1, 2] and RAID [3]stripe �les over several disks, and drive the disks inparallel to achieve high data rates. Continuous mediadata also have large �le sizes. A �le system dealingwith such �les must provide mechanisms for manip-ulating large data objects. For example, ten minutesof video at 30 frames/second and 1 megabyte/framerequires a �le size of 18 gigabytes.We study how an array of disks and associatedI/O agents can guarantee to read or write data atthe transfer rates required by an application. In thepast, researchers have investigated other aspects ofthe design of an operating system to handle CM ap-plications. Govindan and Anderson [4] investigatedCPU scheduling and IPC mechanisms for operatingsystems for CM applications. Little and Ghafoor [5]studied formal speci�cation and modeling of multime-dia objects using a logic based on temporal intervalsand Petri Nets.Our aim, is to study how the Swift [1, 2] archi-tecture can be used e�ciently to read and write CMdata objects. Swift is designed to support high datarates in a general purpose distributed system. It isbuilt on the notion of striping data over multiple stor-age agents and driving them in parallel. It assumesthat data objects are produced and consumed byclients and that the objects are managed by the sev-eral components of Swift. In particular, the distribu-tion agents, storage mediators, and storage agents areinvolved in planning and actual data transfer opera-tions between the client and an array of disks, whichare the principal storage media. We refer the readerto [1, 2] for details of the functionality of these com-ponents of Swift.A client application, when reading or recording CMobjects, decides on its data demands in advance andmakes a request to preallocate I/O resources. Thisrequest is called a client-job. The client-job is succes-sively broken down into smaller tasks called braids,ropes, and strands.



An implementation of Swift operates as follows:when a client issues a client-job, the storage medi-ator responds to the request by promising to eithersatisfy or reject it. In the case of acceptance, thestorage mediator creates a transfer plan, which is ex-ecuted by the distribution agent at the appropriatetime.A transfer plan is a sequence of braids with somepertinent timing information. There is one braid perstorage agent. A braid in turn consists of smaller datatransfer speci�cations, called ropes, one rope per disk.A rope is further split into strands, a strand is thesmallest unit of speci�cation in our model. It containsthe details for the actual transfer of one block of data.A rope is simply a collection of strands requiring datatransfer from the same disk.A strand is satis�ed if the request can be honoredby the I/O system subject to all its constraints. Wesay that a rope is satis�ed if all the strands in it aresatis�ed. Similarly, a braid is satis�ed if all ropes init are satis�ed. The I/O system commits to satisfy allthe braids, or refuses, in which case the applicationmust pursue a di�erent course of action. It is essentialthat the I/O system keeps its commitments.A good algorithm will also try to satisfy as manyclient-jobs as possible. Since the client-jobs, andhence the braids and ropes, arrive in an on-line fash-ion, the algorithm is required to make a commitmenton a rope, before the next rope arrives. Later wediscuss the measures of performance of on-line algo-rithms in general, and reason why every on-line al-gorithm for this problem can be far away from theoptimal in the worst case.DATA TRANSFER IN SWIFTA client-job is a request by a client to initiate a datatransfer. Each client-job contains the name of the�le, a starting position, the number of bytes to betransferred, and whether the request is to read orwrite. It also contains three other parameters, Tclient,the time at which to start the data transfer, Rclient,the average transfer rate, and b, the block size. Theclient will read data one block at a time; the blocksize could reect the natural granularity in CM data.Time is assumed to be discrete and measured insteps of appropriately small units such as microsec-onds. The I/O subsystem can consume or producedata at rates vastly di�erent from the desired ratewhen measured over small intervals of time. This isdue to the jitter in the data transfer rate. But at theend of a period equal to the time required to transfera block, the client expects one block of data.

Depending on the block size and the amount ofmemory available to the distribution agent, the stor-age mediator decides the number of bu�ers, eachholding one block. More bu�ers allow for betterscheduling the strands by the disk controller. Thesebu�ers, denoted B0; � � � ; Bk�1, are managed by thedistribution agent, and are coresident with the client.The goal of the transfer plan is to keep Bi full withthe appropriate block of data when the client expectsto read it, or to store Bi when the client is �nishedwriting to it. Data is transferred between the bu�ersand the storage agents over a fast network.A transfer plan is simply a sequence of braids, anda braid is broken down into �ner speci�cations calledropes and strands. A strand is a speci�cation totransfer a speci�c block of data to given bu�er. Eachstrand contains the block size, the disk address of theblock, a bu�er identi�er, and whether the request isto read or write. It also contains two time speci�-cations: Tstart, the earliest time that the strand canbe serviced, and Tend, the time by which the servicemust be complete.Given a client-job, we describe how a storage medi-ator computes the braids necessary to satisfy it. Let nbe the number of blocks of data to be read or writtenby the client. The storage mediator �rst constructs asequence of n strands, one for each block. Using thelayout of the data object, the storage agents and thedisks they manage, the storage mediator computesthe start address of each block. The ropes and thebraids are then composed from these strands.The bu�ers are used in a circular manner. Thesebu�ers allow the client to read or write at its ownpace without being a�ected by the variations in thetransfer rate provided by the disk. They also allowthe disk the exibility to schedule data transfer in awider time window.We assume that the time taken to transfer one byteof data over the network is bounded by a constant�. The underlying network protocols are assumed toprovide for a uniform transfer time without signi�cantvariance [6].We describe next how to compute Tstart and Tendfor each strand. We consider the read and writecases separately for this computation. In the fol-lowing discussion, strand i relates to bu�er Bj , withj = i mod k and the block i of data. Let � be thetime taken by the client to process one bu�er of data.In the case where the client is reading data, it isessential that the bu�ers are available to the I/O sub-system for a period before the client reads the �rstblock of data, that is, before Tclient. This period isused to �ll the bu�ers before the client reads them.To allow for a general framework, we introduce an ini-Page 2



tial delay, Tinit, which is at least as long as the timerequired to �ll the �rst bu�er. This is decided by thestorage mediator when it starts computing the spec-i�cations of a transfer plan. Hence the time to startexecution of the plan is Tplan = Tclient � Tinit � b�,where b� is the time taken to transfer a block overthe network.The client expects a bu�er Bj to be read after pro-cessing all the other k�1 bu�ers once. Since, it takes� time units to process one bu�er of data, the clientwill access the bu�er Bj after every k� time units.When the client is reading data from the bu�er forthe �rst time (that is for block i, 0 � i � k � 1), thesystem should load the bu�er after the time Tplan andbefore the client reads it. For subsequent reads of thebu�er Bj , the system should load data after the clienthas read it once and before it reads it again after k�time units. These constraints allow us to computethe times Tstart and Tend for the strand i.In the case when the client is writing data, Tplan =Tclient. The system can store the data from a par-ticular bu�er, say Bj , to the disk after the client haswritten to it and before it starts writing into Bj againafter k� time units. In case, the client is writing toBj for the last time, the system should store Bj tothe disk before it is no longer available to the client.To allow for time to copy the bu�ers, we introduceTclean; a clean up time which is at least as long as thetime required to copy a bu�er Bi to the disk. Again,using these constraints, we can compute the timesTstart, Tend during which the system has to start and�nish writing to the disk the block i of the data.We have speci�ed above, how a client-job is bro-ken down into smaller and more speci�c tasks by thestorage mediator and how to compute the attributesof a strand, which is the smallest unit of data trans-fer. The storage mediator rejects the client-job if it isunable to ful�ll all the requirements speci�ed by theclient. In case of acceptance, the storage mediatorpresents a transfer plan to the distribution agent. Inorder to accept the client-job, the storage agents mustpromise to satisfy the requirements of the braids pre-sented to them. The storage agents can make sucha promise if they can obtain a promise from all theirdisks to satisfy the ropes presented to them. The de-cision of the disk controller is the key to acceptanceor rejection of the client-job. It has to be consistentwith the promises made in the past: any promise toaccept a rope must not invalidate previous promises.The disk controller needs an on-line algorithm toreply to a rope. The algorithm is on-line becausethe reply must be made without knowing the futureropes that it may receive. A reply once made cannotbe countermanded.

GUARANTEEING GOOD SERVICEFROM THE DISKTo check if an arriving strand is satis�able, an algo-rithm must know the time required for the disk totransfer one block of data. For this, it needs informa-tion about the disk layout and other disk parameters.Depending on the disk model used, we can derive es-timates of time required to read m bytes from a disk.We denote by T (m) the time taken to transfer mbytes of data to or from a disk. It may be di�cultto accurately model disks analytically, and so simu-lation studies may provide the best method to obtainan estimate of T (m) [7].Circular bu�ering at the disk controllerIf the disk controller commits to satisfy a strandand actually starts data transfer at some time, say T0,the controller must guarantee to transfer a block of bbytes starting at T0, (Tstart � T0) and ending beforeT0 + T (b). This data transfer has to be achieved inspite of disk jitter. The actual time taken to transferb blocks of data could vary from the computed valuebecause the actual disk parameters could be slightlydi�erent from the ones used to compute T (m) above.One way to practically deal with this problem is bybu�ering the data at the disk controller and have syn-chronization during the data transfer process. Thiswill ensure that the appropriate bu�er of the distri-bution agent experiences the data ow at the propertime and without large variations in the data rate. Inour opinion, this is the best strategy to deal with thevariance in the disk transfer rate because we are in-terested in providing guaranteed service to the client.Once a transfer plan is presented to the distributionagent, all its strands must meet the demands speci-�ed for them. Bu�ering data at the disk controllerand presenting it to the storage agent will providethe required guarantees unless the variation in thedisk transfer rate is high.We use bu�ers D0; D1; � � � each of the size c, wherec is the size of a cylinder in bytes. The numberof bu�ers is chosen depending on the size of mem-ory available and the amount of variation in the disktransfer rate. The storage agent transfers data acrossthe network, from the bu�ers Di in a circular fashionto the bu�ers Bj managed by the distribution agent.As a concrete example, we consider how two bu�ersD0 and D1 are used and the generalization to morebu�ers is straightforward. For the case, when thestrand is a request to read data from the disk, thedisk controller �lls up �rst bu�er D0, in c=T (b) timeduration, starting at T0 � c=T (b). It then transfersPage 3



the data to the distribution agent across the network.The storage agent waits for c=T (b) time units andthen it starts reading the data from D0. If the diskis transferring data faster than expected, it could �llup bu�er D0 in less than T (b) time units and thenit could go ahead and �ll bu�er D1. But it shouldnot �ll up the bu�er D0 until the storage agent has�nished reading the data from there, which it will, attime T0+ c=T (b). Similarly, the data is read into D1,and then into D0 again in a circular way.The disk controller manages synchronization withthe storage agent at the appropriate points in time.Initially if the disk takes less than T (b) time units toread data into the bu�er D0, it could take more timeto read the next c bytes of data, as long as the totaltime taken to read 2c bytes is 2T (b). This allows forthe small variation in the disk transfer rate.Writing is similar to the process of reading. Inthis case, data is copied from the distribution agent'sbu�ers Bi to the bu�ers Dj maintained by the diskcontroller and eventually onto the disk. The bu�ersDj , in this case too, serve to avoid data loss in caseof jitter in the disk transfer rate.ON-LINE SCHEDULINGALGORITHMSOn-line or real-time algorithms have been studiedtheoretically, with an aim of proving performancebounds. We briey discuss on-line algorithms in gen-eral, di�erent measures of performance of such algo-rithms, and then propose one such algorithm to sat-isfy a rope.Abbott and Garcia-Molina [8] have studied real-time scheduling of transactions with deadlines on asingle processor memory resident database system.Shih, Liu and Liu [9] worked on the problem of real-time scheduling periodic jobs which have deferreddeadlines. Dertouzos and Mok [10] have studied theproblem of on-line scheduling of real-time tasks ina multiprocessor environment. They also show thatoptimal scheduling without a priori knowledge of theinput is impossible.On-line algorithms have also been studied analyt-ically in other contexts [11, 12]. Many data struc-ture problems are on-line, including scheduling prob-lems, caching problems, and others. Karlin, Manasse,Rudolph, and Sleator [13] studied on-line algorithmsfor caching problems. They also coined the term c-competitive algorithm, to refer to an on-line algorithmwhich always performs within a constant multiplica-tive factor, c, of the optimum on any sequence ofrequests.

Informally, an algorithm A is c-competitive withrespect to some performance measure, if for any in-put sequence, A always achieves performance that iswithin a constant (multiplicative) factor c, of thatachieved by a best o� line algorithm. Stated anotherway, if B is an o�-line algorithm, the ratio of theperformance of A to the performance of B is alwaysbounded by a constant. This de�nition does not spec-ify the actual performance measure, but gives us away of comparing the performance of two algorithmsin general. The performance measure that is cho-sen depends on the criteria deemed important to theproblem under consideration.It is our interest to study on-line algorithms for therope satis�ability problem, which is to respond to arope. The algorithmmust check whether the individ-ual strands, in the rope presented to it, are satis�ablegiven the current set of commitments made by the al-gorithm. It should commit to satisfy the rope if everystrand can be satis�ed. While, seemingly, there hasbeen some related work [14, 9] on real-time schedulingof tasks, we cannot use their techniques because wehave to schedule ropes which not only have a deadline,but also an earliest time before which they cannot bescheduled. In short, the abstract scheduling problemthat arises from the rope satis�ability problem, is toschedule tasks within a time window.We discuss next two performance measures for therope satis�ability problem and show, using adversaryarguments, that no algorithm can be c-competitive,for any constant c, with respect to either of theseperformance measures. For the worst case examplesrequired in our adversary arguments, we need onlyropes with a single strand.An interesting performance measure is the numberof ropes that can be satis�ed by a given on-line al-gorithm X . Let B be the best o�ine algorithm. Weargue that X is not a c-competitive algorithm, forany constant c. To show this, assume that there isan adversary generating the sequence of ropes. The�rst rope that the adversary presents is such that itmust start at time 1, requires time c + 2 to satisfy,and, therefore, must be completed by time c + 3. Ifalgorithm X commits to satisfy this rope, then theadversary will present a sequence of c+2 ropes, all ofwhich require unit time to service, and which followone another sequentially starting at time 1. Since Xis busy in the interval [1; c + 3] it must refuse theseropes. Then the ratio of the performances of A andB is less than 1=c.On the other hand, if X refuses to satisfy this �rstrope, then the adversary ends the sequence immedi-ately with this rope. While B satis�es the sequence,X does not, and so the ratio of the performances ofPage 4



A and B is 0. This argument shows that any on-linealgorithm X cannot be a c-competitive algorithm forany constant c.As a result, there is no good on-line algorithm forthis problem, as long as the performance is measuredas the number of ropes satis�ed. To investigate ifthis pessimistic scenario is just due to the objectivefunction, or is partly due to some deeper nature of theon-line setting of this problem, we have studied on-line algorithms with respect to another performancemeasure.We let the performance measure be the total timefor which the disk is busy when the algorithm X sat-is�es the sequence of ropes. As before, let X be analgorithm that accepts a sequence of ropes on-line andcommits or refuses to satisfy each rope. Using simi-lar arguments as above, we can prove that X is not ac-competitive algorithm, for any constant c. Resultssuch as these give strong evidence that this problemof satisfying ropes is inherently intractable in the on-line setting, as ignorance about the future leads toon-line algorithms that are not c-competitive for anyconstant c.An on-line algorithm for the rope satis-�ability problemBelow is a simple on-line algorithm to respond toa rope which is a sequence of strands h�1; �2; � � � ; �ki:The algorithm checks if the individual strands aresatis�able given the current set of commitmentsmadeby the algorithm. It commits to satisfy a rope if everystrand in it is satis�able. So, we need only describethe algorithm to satisfy a single strand.We say a disk is busy during a time interval fora strand if it has to be involved with data transferat any point during that interval to satisfy anotherstrand that the storage agent has committed.As no algorithm can be c-competitive, we take asimple minded approach and use the algorithmA de-scribed below. This is a �rst-�t algorithm that com-mits or refuses to satisfy a strand � with block size band start and end times denoted by Tstart and Tendrespectively.Algorithm A.Input: A strand �.1. Compute T (b) for the strand �.2. Find the earliest sub-interval of [Tstart; Tend]which is not busy and of duration T (b).3. If such an interval is found, commit to satisfy�, else refuse.If we let the performance measure be the the num-ber of strands accepted by an algorithm, then we can

show, using simple arguments, that the worst case(over all sequences of strands) competitive factor ofour algorithm is a function of the smallest data trans-fer time required by any strand in the sequence andthe total time the disk is kept busy by the algorithm.This is not bounded by any constant independent ofthe sequence of strands.The algorithm A needs e�cient data structures tostore and access information about the time inter-vals, when the disk will be busy. We store the set oftime intervals when the disk is busy in a height bal-anced 2-3 tree and call it the busy tree. The leaves ofthis tree store the time intervals and are joined in adoubly linked list. The time intervals are ordered ac-cording to their start times, that is, [a1; b1] � [a2; b2]if and only if a1 � a2. On receiving a strand � re-quiring block size b and start and end times given byTstart and Tend respectively, the First Fit algorithmA computes T (b) using an appropriate disk model orobtains its value from simulation studies. To �nd the�rst interval of duration T (b) fully contained in theinterval [Tstart; Tend], algorithm A accesses the busy-tree using the following procedure B.Procedure B.1. In the busy-tree �nd the �rst interval [a; a0],such that a � Tstart.2. if a � Tstart + T (b) thenCommit to satisfy strand � starting attime Tstart.Insert [Tstart; Tstart + T (b)] in the busy-tree.return.�3. Try to �nd the next available time interval atwhich strand � can be committed. Startingat [a; a0], scan the doubly linked list of leavesof the busy-tree till one of the following occurs�rst:� There are two neighboring (in the linked list)intervals [c1; d1]; [c2; d2], such thatc2 � d1 � T (b) and d1 � Tend � T (b).In this case, commit to satisfy strand � start-ing at time d1.Insert [d1; d1 + T (b)] in the busy-tree.� The end of the list is reached or we �nd [c; d],such that c > Tend � T (b).In this case, refuse to satisfy the strand �.Periodically, we also clean up the busy-tree. Theclean up operation deletes all intervals [a; a0], suchthat a0 is before the current time. This prunes thetree of unnecessary information from the past.Page 5



CONCLUDING REMARKS ANDFUTURE WORKWe have studied scheduling time requests to accessdata from disk. However, in any system there willalso be data requests generated by applications thatare not dealing with continuous media data. Suchrequests may not have a time duration during whichthey have to be scheduled. It is easy to incorporatesuch requests in our scheme. Such a request to trans-fer b bytes of data from a disk is handled by the FirstFit algorithmA as a special case of satisfying a strandwith Tstart being the current time and Tend being un-bounded.We have studied the problem of on-line schedulingof CM application ropes on a disk. We modeled theproblem and found that if we try to maximize thenumber of ropes scheduled, or the disk utilization,then there is no c-competitive algorithm possible.Hence, we decided to work with a simple minded ap-proach and proposed a First Fit algorithm. Thoughwe have studied this in the context of the Swift ar-chitecture, the work is general and could be used inany distributed system.In conclusion, we suggest that practical considera-tions may be more important than theoretical worstcase bounds for this problem. An average case anal-ysis of the algorithms and data structures involved,with proper probabilistic assumptions should be at-tempted. It is our opinion that this will be quitedi�cult and if simplifying assumptions are made, itmay be too far from reality to be useful. Simulationstudies, with good data, may be a better approach.We would need traces of the client job activity andthe disk accesses made for the simulationmodel to berealistic. With such information, we feel it is possibleto provide probabilistic guarantees that a client jobonce accepted will be honored.In our current work, we haven't allowed for thepossibility that a strand once scheduled, could berescheduled within the appropriate time bounds.Such rescheduling could satisfy another strand thatarrived later in time that would otherwise go unsat-is�ed and could improve the performance of the FirstFit algorithm. We leave it to future work to studyhow rescheduling will a�ect the performance of thealgorithm.Other open problems are to study ways to handlechanges in the speci�cations of a client-job, once ithas been scheduled. The client could change the rateRclient after the transfer plan has been made by thestorage mediator, or the client could change the re-quired data rate during processing of data. This couldhappen when in an interactive session, the viewer of

a real-time video segment decides to view parts of thevideo in slow-motion or uses the fast-forward mode.Such actions will cause drastic change in the datarate requirements. It is left to future work to at leastprovide degraded performance to such an application.ACKNOWLEDGMENTSWe wish to thank Luis-Felipe Cabrera, Je�rey Keller,David Levy, Vikram Sahai, and K. B. Sriram for use-ful discussions and comments on the earlier drafts ofthe paper.This research was supported in part by the Na-tional Science Foundation under Grant NSF CCR-9111220 and by the Institute for Scienti�c Comput-ing Research at Lawrence Livermore National Labo-ratory. REFERENCES[1] L. F. Cabrera and D. D. E. Long. Using diskstriping to provide multiple high I/O data rates.Computing Systems, 4(4):407 { 438, December1991.[2] L. F. Cabrera and D. D. E. Long. Swift: Astorage architecture for large objects. In Pro-ceedings of the 11th Symposium on Mass Stor-age Systems, pages 123{128, Monterey, Califor-nia, October 1991. IEEE.[3] D. Patterson, G. Gibson, and R. Katz. A case forredundant arrays of inexpensive disks (RAID).In Proceedings of the ACM SIGMOD Confer-ence, pages 109{116, Chicago, June 1988. ACM.[4] R. Govindan and D. P. Anderson. Schedulingand IPC mechanisms for continuous media. InProceedings of the 13th ACM Symposium on Op-erating Systems Principles, pages 68{80. Associ-ation for Computing Machinery SIGOPS, Octo-ber 1991.[5] T. D. C. Little and A. Ghafoor. Synchroniza-tion and storage models for multimedia objects.IEEE Journal on Selected Areas in Communica-tions, 8(3):413 { 427, April 1990.[6] C. Osterbrock, D. D. E. Long, and L. F. Cabrera.Providing performance guarantees in an FDDInetwork. Submitted for publication, 1992.[7] C. Ruemmler and J. Wilkes. Disk shu�ing.Technical Report HPL-CSP-91-30, ConcurrentSystems Project, Hewlett Packard Laboratories,October 1991.REFERENCES Page 6



[8] R. Abbott and H. Garcia-Molina. Schedulingreal-time transactions: A performance evalua-tion. In Proceedings of 14th VLDB Conference,1988.[9] W. K. Shih, J. W. S. Liu, and C. L. Liu. Modi-�ed rate monotone algorithm for scheduling peri-odic jobs with deferred deadlines. Real-time Sys-tems Newsletter, 7(1-2):17 { 23, Winter { Spring1991.[10] M. L. Dertouzos and A. K. Mok. Multiproces-sor on-line scheduling of hard-real-time tasks.IEEE Transactions on Software Engineering,15(12):1497 { 1506, December 1989.[11] M. S. Manasse, L. A. McGeoch, and D. D.Sleator. Competitive algorithms for server prob-lems. Journal of Algorithms, 11:208 { 230, 1990.[12] D. D. Sleator and R. E. Tarjan. Amortized e�-ciency of list update and paging rules. Commu-nications of the ACM, 28(2):202 { 208, 1985.[13] A. R. Karlin, M. S. Manasse, L. Rudolph, andD. D. Sleator. Competitive snoopy caching. Al-gorithmica, 3:79{119, 1988.[14] S. K. Dhall and C. L. Liu. On a real-time scheduling problem. Operations Research,26(1):127 { 140, 1978.

REFERENCES Page 7


