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optimal decisions which affects the final result.

Another approach to solve the multi layer problem

is to divide it into pairs of x,y layers.  This

restriction of one layer one direction results in

higher number of layers and is restricted to

rectilinear routing.  Slice [KEY-YONG92] uses an

original method in which considers all the nets in a

sliding window and peals a maximal planar subset

of the interconnect for each layer.  This approach

has short run-time and interconnect length.  Its

disadvantage is that it grid based, does not balance

between the amount of wiring on the layers which,

can result in high crosstalk and low yield.

Abstract

The flexibility of the rubber-band wire model is

very promising for routing and optimizing today's

complex VLSI and MCM.   In this paper we

described a practical layer assignment algorithm

used with a rubber band router.  The algorithm uses

a steepest descent approach with an heuristic

function which estimate the wiring length of the

generated assignment.  We formulate the cost

function and present an efficient way to compute it.

The use of the cost function enable to control the

final layout and to achieve balance between wire

length and number of vias.  The algorithm can be

use as well for cost-driven one an a half layer

designs in which one wiring layer has only short

"jumpers" and is embedded in the ground layer.

A common representation used by today's routers is

a geometric representation that captures the exact

location of the wires.  This representation requires

the router to determine the exact location of the

wires in early stages and makes moving wires, and

terminals around time consuming task.   A more

flexible representation is the rubber-band sketch.

The rubber-band sketch represents wires as elastic

paths that contract to the shortest possible length

that maintains the same topology.  Because rubber-

bands specify topology and not the exact location of

wires, they support efficient sketch modifications

such as moving terminals, and rerouting wires.

1. Introduction

The complexity and the of today's VLSI and multi-

chip modules (MCM) and the desire for cost and

performance driven routing, make the work of

automatic routers more and more computation

consuming. In this paper  we describe the rubber band router a

MCM design system called Surf, with emphasis on

the layer assignment phase. The Surf system is

based heavily on the properties of rubber band

sketch and generates an optimized multi-layer,

rubber band-sketch for multi terminal nets.  To the

Three dimensional maze routing [Hanafusa90],

[Miracky91] for example, which is a widely used

technique, suffer from sensitivity to net ordering.

When routing net at a time, the router consider only

narrow view of the problem and can make sub
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best of our knowledge, this is the reported router of

its kind.

dimensional bins, on which the actual topological

routing is performed (b).

2. Surf Router Overview
This paper is organized in the following manner.  In

section 2 an overview of Surf system, in which the

proposed layer assignment algorithm has been

implemented, is described.  Section 3 includes a

formulation of the layer assignment problem as an

combinatorial optimization problem and the

proposed heuristic. In section 4, an overview of the

layer assignment algorithm is presented.  In section

5 the cost function is defined.  Section 6 describes

the assignment states during the operation of the

layer assignment algorithm.  Section 7 describe the

branch ordering done at the end of the assignment.

Section 8 describes how the best assignment of a

specific net is computed. In section 8 the detour

estimation algorithm is described.  Sections 10

describes the incremental implementation of the

algorithm and section 11 describes how the

algorithm can be used in a one and an half layer,

cost driven design.  Section 12 concludes the paper.

Surf is an MCM design system which supports

automatic and interactive layout of MCM from the

net list and design rules specification to the final

layout.   An important concept of Surf is the Least

Commitment Principle (LCP).  The LCP states that a

decision should be deferred as much as possible.

The rationale behind this principle is that over-

commitment in early stages of the design, when less

information is available, may adversely affect  the

results by over-constraining the later stages.  As a

consequence of this principle,  Surf works in a series

of successive refinements, starting from an abstract

representation and ending with the detailed

geometric  artwork.   The rubber-band model fits

well into this philosophy because it captures the

conductivity and topology of the wiring without

committing to exact geometric locations.  The exact

geometric location are determined later, after the

entire rubber band sketch is known and verified.

The main steps in Surf routing are

Global Routing (Figure 1)  - In this step the three

dimensional MCM routing problem is split into

smaller three dimensional routing problems called

bins. These sub-problems are later solved separately

and then merged back into a single solution.  This

subdivision of the problem reduces the complexity

of the overall solution.  When processing a

partition, this step analyzes all the nets

Figure 1 - To reduce the routing complexity and the

sensitivity to net routing ordering, the global router

splits the MCM three dimensional space, into three

dimensional bins (a).  The layer assignment, reduces

the problem furthermore into single-layer, two-
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"simultaneously" and as a result, the global routing

does not suffer from the net ordering problem.

Layer Assignment (figure 1) - In this step, each bin

is divided into a set of two-dimensional problems,

each on a different layer.  This is done by adding

necessary vias and assigning nets, or portions of

nets, to layers.  The layer assignment phase is the

main subject of this paper.

Rubber-band routing (Figure 2b)- This phase does

the topological routing of the single layer sub-

problems (bins).  The rubber band router,

represents the rubber bands as paths over a

constrained Delanay  triangulation [LU91]

[Chew89] and routes the nets one at a time using

shortest path algorithm.  The resulting rubber band

sketch is then optimized by relocating vias and

Steiner points, and by improving the topology of

the wiring. This phase is discussed in details in

[Dayan91].

Figure 2 -  Routing stages in Surf.  The global

routing and division to bins (a).  The rubber band

sketch of a bin (b).  The extended rubber-band sketch

which satisfies the spacing constrains (c) and the

final rectilinear (or octilinear) artwork (d).

3. Layer Assignment Problem

The layer assignment algorithm converts a multi

layer routing problem to a set of single layer sub-

problems, one for every layer.  The layer

assignment algorithm accepts the net list,  number

of layers to be used, and the boundaries of the

routing area.

Conversion to geometric layout - This final phase

converts the rubber band sketch into a detailed

geometric layout in the rectilinear octilinear  or any-

angle routing modes.  This is done by converting

the rubber band sketch to an extended rubber band

sketch (figure 2c)  [DKS91] that satisfies the spacing

constrains. Once, all spacing constrains are met, the

ERBS is transformed to a final geometric layout

(figure 2d) [STAPA92].

The algorithm breaks the multi terminal nets to two

terminal nets,  introduces vias, and assigned

subnets to layers.

The output of the algorithm is a set of single layer,

two terminals nets, routing problems, one for each

layer.  Each such sub-problem includes the

terminals and vias reside on this layer and an

ordered list of point to point connections (called

branches).  This output is used by the rubber band
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router which routes the branches by the order

specified by the layer assignment..

assignment will increase the cost the least is

assigned to its best assignment.  The difficulty in

implementing this approach is how to find which

net to assign and to what assignment.  In following

sections we describe an efficient algorithm that find

the best assignment of the best two terminal net.
4. Layer Assignment Overview

Optimization step - the completed assignment is

improved by iterativly reassigning a two terminal

net with the most cost improvement.   It is similar

to the completion step except that now all the nets

are candidates for reassignment rather than only the

free nets.

The layer assignment phase of Surf accepts a three

dimensional, multi-layer, routing problem and

reduces it into a set of single-layer, two-terminal net

problems, one for each layer.  As a by product, it

also determines the order in which the branches are

routed.

Ordering the branches.  In this step, the point to

point connections (branches) in the solution are

ordered by their preferred routing order.  This

order, which is constrained to guaranty planarity, is

used by the rubber band router when routing the

branches one at a time.

The operation of the layer assignment is done in

three steps

Breaking the multi-terminal nets into two

terminal nets.  This is done by converting the multi-

terminal nets to Steiner trees using a geometrical

and topological search algorithm [DAYAN91].
The completion and improvement steps can also be

performs with non greedy algorithm such as group

migration  or simulated annealing, which are less

expected to be trapped in local minimums .

Initial partial assignment - The multi-terminal

terminal nets whose all their points which are on

the bin boundary are assigned.  These kind of nets

are quite common as they global assignment creates

cross points on the bin boundary.  The initial

assignment is done by applying the CPSP algorithm

and 'pealing' a maximal set of non conflicting nets

for each layer.

Ψ  ←  set of non assigned two terminal nets.

while  Ψ  ≠  ∅  do

n ←  a net in Ψ  with minimal cost increase.

a ←  best assignment of n.

assigned net n to a.

Completion step (see algorithm 1) - the initial

assignment is completed by assigning all the non

assigned two terminal net.  It uses the steepest

descent approach and a cost function which prefers

assignment with shorter wiring and less vias.  On

each iteration,  a two terminal net whose best

Ψ  ←  Ψ  - {n}.

end while

Algorithm 1 - Completing the assignment by

assigning all the free two-terminal nets.  On each

step, the two terminal nets which increases the cost

the least is assigned to its best assignment.
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5. The Cost Function

Actual wire length - This is the wire  length after

routing with a specific router used in the system.

This approach has the advantage that it considers

the strengths and weakness of the actual router in

use.  This however requires to perform a detailed

routing every time the cost function is evaluated

during the layer assignment algorithm.

The layer assignment algorithm uses a cost function

defined over the set of feasible layer assignment

solutions.  This function is used to guide the

algorithm to better solutions which achieve shorter

wiring and low number of vias.
Estimated wire length -  When used with a proper

estimation function, this approach combines the

benefits of the minimal and actual wire length

approaches as it can be calculated efficiently.  The

rest of the paper is focused on this approach and

includes an estimation function and an efficient

method to compute it.

The cost function of a solution S is a sum of two

terms, the cost of the layer crossing vias and the

cost of the total wire length.  The user controlled via

cost parameter Kv is used to balance the number of

vias and the total wiring length.

Cost S Kv Via Cost S Wiring Cost S( ) _ ( ) _ ( )= • +

For a layer assignment solution S, the length of the

wiring can be expressed as a sum of two terms,  the

total direct length of the branches in S and a value

which represent the extra wiring due to detours.

While the total length of the branches can be

calculated efficiently and accurately, the detour

component represents the estimated part of the

wiring length.  To estimation function used in is

based on relationships between components.

The via cost of a solution S is the sum of the via cost

of all the points.   The wiring component of the cost

is the estimated total wire length.  As a solution for

the layer assignment problem does not include the

detailed routing , the wiring length can not be

directly calculated from it, and a more indirect

approach is required.  Several possibilities for the

definition of the wire length function are:

Minimal wire length - This is the wire length of the

routing with minimum wire  length among all the

routing solutions.  This approach is probably the

most desirable from theoretic view point since it is

independent of the router in use and can possibly

lead to a optimal routing.  This function however is

exponential in nature cannot be calculated

efficiently.

(DEF) A component is a maximal connected set of

branches which are assigned to the same layer.

Components are important for the detour

estimation as  each component acts as an obstacle

for wires of other components, and thus the detours

length depends on the components sizes, location,

and interrelation.
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intersection check, enables the proposed layer

assignment algorithm to consider not only if wire

do intersect and conflict which each other, but also

the amount of the conflict.

The pair wise detour function is used to estimate

the total detour of a  layer assignment solution S by

summing the pair wise detour of all the components

pairs.

This estimation, which is the core of the heuristics

in the proposed algorithm is neither an upper

bound nor a lower bound of the actual detour.

Figure 3 - Pair wise detour of component pairs. The

estimated detour between the pair in (a) is low as it

can be routed with short detour (b).  The estimated

detour of the pair in (c) is higher as any routing of

the pair will have long detour (d).
6. Assignment States

After converting the multi-terminal nets into Steiner

trees, each tree edge is divided into sections (Figure

5).  These section which represent the smallest unit

of assignment, are fixed during the entire layer

assignment.  The layer assignment is modeled as a

process in which each section is assigned to a layer.

During the layer assignment, a section may be free

which means that it has not yet been assigned to

any specific layer.

(DEF) A pair wise detour of two components is the

difference in total wire length between the shortest

routing of the two components independently of

other components,  and the sum of their length.

The pair wise detour function is non negative and is

greater than zero only if the two components are on

the same layer and intersect which each other.

Figure 3  illustrates the pair wise detour in two

simple cases of two terminal (i.e. single branch)

components.  The components in (a)  do intersect

but have a relatively low detour as the pair can be

routed with a short detour (b).   The component

pair in (c) has an higher detour as every routing of

the pair will have a long detour (d).

The use of sections as the basic assignment units

implies that vias can be introduced only on a

section boundary, and thus the accuracy of the layer

assignment result depends on the granularity of the

sections.  Our experience shows that having 5-10

evenly spaced section for each two terminal net is

sufficient,  and that increasing the number of

sections above that value does not improve the

result significaly.  The main reason for that is that

the layer assignment is done for each bin separately,

The pair wise detour function indicates the amount

of conflict between components. This new concept

of continuous conflict scale, as opposed to binary
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and the bin already represent small parts of the

routed plan.  In addition, the inaccuracy in the via

position can be fixed by a force-driven via

relocation optimization on the rubber-band itself as

described in [DAYAN91].

The cost of a state is defined by the overall cost

function described earlier. If a state represents a

partial assignment, the cost is calculated only on its

assigned sections.  Branches are represented in a

state by a maximal set of adjacent sections which

belong to the same tree edge and are assigned to the

same layer.  Two or more adjacent sections assigned

to different layers define a layer crossing at the

junction.  If the sections are on the same tree edge

then this is a new via point, introduced by the layer

assignment.

7. Branch Ordering

When the assignment is done, the branches defined

by the assignment are ordered to achieve low wire

length and to guaranty planarity during the rubber

band routing.  This order is use by the rubber band

router which routes the branches one at a time.

Figure 5a shows an example of how a wrong order

of the branches can result in much longer wiring.

Figure 5b shows how an improper ordering may

result in non planarity of the wiring which does not

allow the single layer rubber band router to

complete the routing.

Figure 4 - Steps in assigning a multi-terminal net.

The terminals in (a) are converted to a Steiner tree (b)

with introduction of a Steiner point S.  The tree edges

are then divided into sections (c) and the sections are

assigned individually (d).  Two adjacent sections,

assigned to different layers,  define a via (V).

During the layer assignment process, the state of the

assignment is represented  by the function

color L: { }Π ⇒ ∪ ⊥

which maps the fixed set of sections Π  to layers or

to the free (unassigned) layer ⊥ .

The specific assignment algorithm described in this

paper assigns on each step all the  sections of a two

terminal net.  As a result, states in which a two

terminal net has both assigned and unassigned

sections are not reached.
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length of routing b after a compared to routing a

and b independently.

This function which has  non negative values,

indicates the cost of routing the pair in a specific

order.

(DEF) Let Ζ be a set of components and c∈ Ζ a

member of that set.  The function

ordered_set_detour(c, Ζ) as

ordered set our c ordered pair our c p
p

_ _det ( , ) _ _det ( , )Ζ
Ζ

=
∈
∑

 This function has lower values for component

which are more desirable to be routed before all the

other components of the set Z.

Figure 5 - The importance of branch ordering.  In

case a, when branch v is routed first (a1) the detour

is shorter then when u is routed first (b2).  In case b,

when p is routed first (b1) the sketch is planar but

when the order is reversed (b2), branch p cannot be

routed as branch q splits the bin into two non

connected areas.
The basic oriented ordering is one by iterativly

choosing the component which is the most desirable

to be routed first among all the remaining

components.  The branches of each component are

then ordered arbitrarily as there relative order does

not effect the wiring length.  Since that there is no

interaction between components assigned to

different layers, the ordering can be done

independently for each layer.

The branch ordering is done in two steps.  First the

a basic order is generated to achieve low wiring

length and then it is constrained to guaranty

planarity.

The basic order is done in component units as there

is no conflict between branches of the same

component.  After ordering the components, the

branches of each component are selected in

arbitrary order.  The order is based on an order

function which indicates how desirable it is to route

a pair of component in a specific order.  This

function is directly derived from the overall cost

function used by the layer assignment.

After ordering the branch for short wiring length,

the order is constrained to guaranty planarity.  This

is done by identifying the branch which can split the

bin into non connected areas and moving these

branches to the end of the list.

(DEF)  Let c be a component and let b1..bn be the

branches of c as ordered by the wire length oriented

ordering.  A branch bi is called hot branch if the

number of non connected areas of the bin after

(DEF) Let a, b be a pair of component.  The function

ordered_pairwise_detour(a,b) is defined as the extra
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routing (independently of other components) b1..bi

is larger then the number of non connected are after

routing b1..bi-1.  A branch which is not hot is called

cold branch.

between two points on the bin boundary.   Since b0

can not be routed, its two end points are in two

areas which are non connected because of another

path P1, formed by previous branches.  Those

crossing paths p0, and p1 can not be of the same

component as components which are planar trees.

Let C0, C1 denote the components of P0, P1

respectively.  The pair wise detour of C0, C1 is

infinite as they are not planar and cannot  be routed

on the same layer.  Such components would not be

generated by the layer assignment algorithm.

Q.E.D.

This definition is for a specific order of the

branches, so branch can be hot in one ordering of

the branches and cold in another.

Let b1..bm be the branches of the layer assignment

as ordered by the wire length oriented ordering.

This list is a merge of two sub lists of the cold

branches and of the hot branches.  The ordered is

constrained to guaranty planarity by creating a new

order which includes the cold branches sub list and

then the hot branches sub list.
8. Finding Best Assignment for a Net

The assignment completion and the assignment

optimization steps assign on each iteration a two

terminal net to its best assignment.  This problem of

finding a net best assignment is formulated as

follows:

(LEMMA) The new constrained order insures

planarity, or in other word, the local router will be

able to complete the routing of the branches one at a

time in that order.

(PROOF) By contradiction. let b0 be the first branch

which its two ends can not be connected.  This

implies that the  two ends are in two non

connection areas of the bin and the two areas are

not connected due to previous routed branches.

Branch b0 can be either cold or hot:

(PROBLEM) Given S an assignment state, and n a

two terminal net, find an assignment a of n which

minimizes cost(Sa), where Sa is state S with net n

assigned to a.

Let e denote the existing assignment of n in S, and

S* denote state S with net n unassigned (i.e. free).

The cost of Sa can be expressed as the change in the

overall cost when n is first unassigned and then

assigned to a :

Case 1: Branch b
0
 is cold.  By the construction of

the constrained order, this implies that all the

branches routed before it are cold as well.  By the

definition of cold branch, these previous branches

do not split the bin and thus b0 can be connected,

contradiction.
cos ( ) cos ( ) ( , ) ( , )* *t S t S S S S Sa a= + +∆ ∆

where:
Case 2: Branch b

0
 is hot.  By definition of hot

branch, this implies that b0 closes a path  P0
∆( , ) cos ( ) cos ( )S S t S t S1 2 2 1= −
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The terms cost(S), and ∆ (S,S*) are independent of

assignment a, so cost(Sa) is minimized iff ∆ (S*,Sa)

is minimized. By definition of asgContrib(), ∆ (S*,Sa)

is exactly asgContrib(a,n) and thus the best

assignment is the one with minimum wire cost

contribution.

some of the wire contribution of its branches

independently:

wireContrib a n Contrib b n
b

i

i

( , ) ( , )= ∑

And the total contribution of assignment a to the

overall cost can be expressed as:

(LEMMA) Let B1, B2 be two branches in assignment

a of n. Let C1, C2 be their component respectively.

The components C1, C2 are assigned to different

layers or they do not intersect, including end points

of their edges.

asgContribn a viaContrib n a Contrib b n
b

i

i

( , ) ( , ) ( , )= +∑

In Figure 6 the assignment includes two branches

and define a single layer crossing.  The contribution

of this assignment to the overall cost is a via cost of

1, and the sum of wire contributions of the two

branches.

(PROOF) By contradiction, we assume that C1, C2

are on the same layer and they do intersect.  As

each multi terminal net is a planar tree, C1, C2

cannot cross each other except for common end

point.  If C1, C2  do intersect, this end point is on the

two-terminal net n, otherwise the multi terminal net

m of n would has a cycle.    Since a component can

has only a single branch in any two terminal net,

the intersection of C1, C2 is by the branches b1, b2.

This is possible only if b1, b2 are adjacent but since

they are on the same layer (as their components),

they form together a single branch (by the definition

of branch). Q.E.D.

Figure 6 -   An assignment of a two terminal net with

three layers and 3 sections.  Sections [0,1] and [1,2]

are assigned to layer 1 and form a single branch.

Section  [2,3] is assigned to layer 2 and form a branch

by itself.  The adjacent edges of sections [1,2] and

[2,3] form a via at point 2 which crosses a single

layer.

The cost contribution of an assignment can be

expressed as a sum of the contributions to the via

cost of and to the wiring cost of the overall cost:

asgContriba n wireContrib a n viaContrib a n( , ) ( , ) ( , )= +

This observation enables us to use a shortest path

algorithm to find the best assignment of a two

terminal net.   The search is performed on a graph

whose nodes are the grid points as in the example

As the components are planar,  branch cannot

intersect with branches of the same component.

This implies that the wire contribution of a net is the
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in Figure 6 with addition of a start node S and end

node E.  We will first describe a simplified graph

which illustrates the concept, and then the complete

graph which addresses the problems in the

simplified graph.  Figure 7 shows the simplified

search graph for the example in figure  6.

cost contribution of that assignment.  As every

possible assignment can be represented by a path,

the path with lowest cost represents the best

assignment of that net.

The present.ed simplified graph however, ignores

the possible layer crossing at the end points of the

two terminal nets.  If for example, an already

assigned net is already assigned to be connected to

point 0 on layer 2, assigning the current two

terminal net to be connected to that point on layer 1

adds a layer crossing which is not represented by

the edges cost. cost.  This is fixed by removing

edges from S (E) to layers on which the start (end)

point of current net is not connected yet by

previously assigned nets.  When the point is not

connected at all on any layer, no edge is removed as

connecting it to any layer will not add a via to any

existing connections.

Let (i,j) denote node j on layer i.  Each node (i,j) has

vertical edges to the same point one layer below it

(i+1, j) and one layer above its (i-1, j), and has

forward horizontal edges to the nodes (i,k), k>j. The

vertical edges represent layer crossing and have

cost of a single layer crossing.  The horizontal edges

represent branches and their cost is the wire cost

contribution of the branch.  The start and end nodes

S and E have zero cost edges to the nodes on the

two ends of the net.

Another inaccuracy of the simplified graph is that it

enables paths from S to E which does not represent

valid assignment.  By definition of branch, adjacent

branches of the same two terminal net can not be

assigned to the same layer or they will be

considered as a single branch. This constrain is not

enforced by the graph. For example, the path S,

(1,0), (1,1), (2,1), (1,1), (1,3), E has two adjacent

branches on layer 1 (from 0 to 1 and from 1 to 3)

and the sum cost of these two branches can be

lower then the cost of the combined branch from 0

to 3.

Figure 7 - A simplified search graph for the best

assignment of the net in figure 6.  Each node has

vertical edges which represent layer crossing and

forward horizontal edges which represent the

possible branches.  Nodes S and E are artificial nodes

which represent the path begin and end.  This graph

is oversimplified as it can has two adjacent branches

of the same layer.  The complete graph is described

in the text

The shortest path algorithm is applied on the graph

to find the minimum cost, directed path, between S

and E. The cost of a path from S to E is exactly the

12



Source Destination Cost

Node Qualifier Node Qualifier

(l,0,U) Start(l) 0

S (l,0,D) Start(l) 0

(l,0,F) Start(l) 0

l∈ [2..m], p∈ [0..n] (l-1,p,U) via cost

(l,p,U) l∈ [2..m], p∈ [0..n] (l-1,p,F) via cost

l∈ [1..m], p=n, End(i) E 0

l∈ [1..m-1], p∈ [0..n] (l+1,p,D)) via cost

(l,p,D) l∈ [1..m-1], p∈ [0..n] (l+1,p,F) via cost

l∈ [1..m], p=n, End(i) E 0

l∈ [1..m], p∈ [0..n-1] (l,k,U) k∈ [p+1..n] wireContrib(l,[p..k])

(l,p,F) l∈ [1..m], p∈ [0..n-1] (l,k,D) k∈ [p+1..n] wireContrib(l,[p..k])

l∈ [1..m], p=n, End(i) E 0

Table 1 - The edges of the complete search graph for finding a two terminal net best

assignment (l,p,d) denotes node on layer l, point p, and direction d.  wireContrib(l,[j..k]) is

the wire cost contribution of the branch between points j and k on layer l.  Start(l) is true

iff  point 0, the start point of the net, is already connected on layer l by previous nets or

if it is not connected at all on any layer.

To avoid these illegal paths, the graph is modified

by splitting each node (l,j) into three nodes (l,j,d)

where d is one of the three directions up, down, and

forward.  The direction of each of the three sub

nodes represents a valid direction in which a sub

path which ends at this node can be continued.  The

complete graph and the cost of its edges are

summarized in table 1.

9. Component Pair-Wise Detour

The wire cost term of the cost function is defined as

a sum of estimated detour of pair of component.

This detour of two components a,b is define as the

minimum of the estimated detour when a is routed

before b and when b is routed before a,

independently of any other component.  This

Figure 8 - A typical node (shadowed) in the

complete search graph.    The up and down subnodes

have outgoing vertical edges which represent vias.

The forward sub node has horizontal edges which

represent branches.   Splitting each node to three

subnodes eliminate the invalid paths in which two

adjacent branches are on the same layer.  Table 7 has

the formal description of the graph.
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introduces the ordered pair wise detour problem

which is formulated as follows:

(PROBLEM) Let a, b denote two components.  Find

the extra length (detour) of b when it is routed after

a compared to its length when it is routed

separately.

The length of b when routed separately is merely

the sum of the lengths of its edges, as it is planar

trees.  The length of b when routed after a is the

sum of the length of its edges bi when they routed

severalty after a:

Figure 9 - The basic detour problem.  The branch u,v

is routed after the tree and thus may have a detour.

The actual length of the branch can be find by

formulated the problem as a shortest path problem

in a graph of regions (marked as squares).  Regions

of angle smaller than π  (hollow squares) can not be

on the path so they  can be ignored.  The broken line

shows  a non visible region pair (marked with X)

and a visible pair.

lengthb a lengthb a
bi

i( () ) = ∑

This observation reduces the detour problem to the

basic detour problem,  formulated as follows: (DEF)  Let, a,b be two points on the plane.  We say

that a,b are visible to each other if the straight line

between them does not intersect with the tree T.
(PROBLEM) For a given finite planar tree T on a

plan and two points u, v, find the length of the

shortest rubber band path between u and v which

does not crosses T.

(DEF)  Let a (b) denote  a region of node k (l) of a

tree T,.  We say that a and b are visible if for every

arbitrary small ε >0,  a (b) has point x, (y) such that

|x-k|< ε , (|y-l|< ε ),  and x, and y are visible to

each other.

(DEF)  Let  v be a node of a planar, finite tree T.

The tree edges adjacent to v splits the infinitely

small neighborhood of v into non connected area

called regions. The rubber band path between the branch ends u,v

is computed by finding the shortest path in the

regions graph G=(V,E).  The vertices of the graph

are E=R∪ {region(u),region(v)} where R is the set of

all regions of T.  Two vertices share a common edge

iff they are visible to each other.   It can be shown

that a shortest path from u,v defines a valid rubber

band between u,v and   that every rubber band path

between u,v  has an equivalent path in G.  This

The number of region of a node v  is max(deg( ), )v 1

where deg(v) is the number of edges adjacent to v.

Figure 9 shows an instance of the basic detour

problem.  The regions of the tree are marked with

squares.
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implies that a shortest path of on the graph is also a

shortest rubber band path.
The run time of the algorithm can be improved by

using incremental calculation.  The implementation

of the layer assignment algorithm in Surf system

keeps computation results from the previous

assignment iteration and whenever a new net is

assigned, it updates only the required values.   This

cached information includes, among other values,

the intersection dependency between components,

and the best assignment of each net.

The size of the graph can reduced by removing

vertices and still maintaining the exact set of

solutions.   A region whose angle is smaller than π

can not be on the shortest path as the path can be

shorten by relaxing the rubber band at this point.

Any region whose its angle is exactly π can be

removed (figure 10-b) as its two adjacent collinear

regions are already visible.  These vertex

elimination leaves up to a single vertex for each tree

node. 11.Cost Driven Routing

The density of the graph can be reduced as well by

eliminating visibility edges. In Figure 10-a the edge

between the region of nodes v,u can be removed as

u is in the shaded area of v and thus an edge

between them can not be part of any valid rubber

band path.

The presented layer assignment algorithm uses a

cost function which directs it to more desire

solutions.  This approach enables to control the

layer assignment and the final routing by merely

modifying the cost function.  An example of such

modified cost is the cost driven one and an half

layer routing which has been incorporated into the

Surf system.

The use of MCM in the mass production of

consumer products can reduces the overall cost by

eliminating time consuming production steps and

reducing the number of discrete components.  This

however requires to keep the production cost of the

MCM as low as possible.  One of the major factors

of an MCM cost is the number of layers, and thus it

should be as low as possible.  A practical approach

of reducing the number of layers is to use a single

interconnect layer and having short jumpers inside

small islands in the ground layer.  By having this

islands small enough, the effectively of the ground

layer is maintained and a second signal wiring layer

is eliminated.

Figure 10 -  Two examples of region graph

reduction.  As node u is in the shaded area (a) of the

region of v, they can not be adjacent on a rubber

band path even though they are visible.   The

collinear region in (b) can be removed as its two

adjacent regions are already visible.

10.Using Incremental Calculation
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This routing style has been incorporated into Surf

by extending the cost function.  The modified cost

function has an new term which increase the cost as

function of the size and number of components on

the restricted layer:
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