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2 1. Conceptual Design of the Swift/RAID System1. Conceptual Design of the Swift/RAID System1.1 IntroductionStriping �les across disks has been used for some time to increase disk throughput and balancedisk load. In such systems a write request `scatters' write data across a number of devices while a read`gathers' data from these devices. The number of devices that can participate in such an operationde�nes the strip size. Recently, much work has been done using Redundant Arrays of InexpensiveDisks (RAID) to provide reliable high performance disk storage [Katz, et al., 89]. High performanceis achieved by disk striping, while high availability is provided by the various RAID techniques, suchas RAID-1 (simple disk mirroring), RAID-4, and RAID-5. These latter two techniques keep at leastone parity block for every data strip. This parity data can be used to reconstruct an unavailable datablock in the strip. They di�er in that RAID-4 uses a dedicated parity device, which can become abottleneck, while RAID-5 scatters parity data across the devices in the strip, thus achieving a moreuniform load.A system called Swift was implemented in the Concurrent Systems Laboratory at UCSC during1990-1991 [Emigh 92]. Swift was designed to investigate the use of disk striping to achieve the highI/O rates required by multimedia applications. The performance of this system was investigated andreported in [Cabrera and Long 91]. The Swift system used striping only to enhance performance.No parity schemes were supported, i.e., Swift is a RAID-0 scheme.The original Swift system was modi�ed in July through August of 1992 to use a very di�erentinternal implementation. This new implementation was designed to support the addition of RAID-4and RAID-5 functionality to Swift. This new implementation is based on a transaction driver. Thetransaction driver was used to implement RAID-0, then RAID-4, and �nally RAID-5 versions ofSwift. The RAID-0 and RAID-4 implementations were primarily used as sca�olding to develop theRAID-5 implementation.1.2 The ProblemObtaining the fault tolerant advantages of RAID-4 and RAID-5 in the Swift network environmentis of obvious bene�t. Indeed, workers in distributed systems have long been motivated by the e�ortto design systems which tolerate node failure. However, it is not easy to maintain acceptableperformance when implementing RAID-4 and RAID-5 in the Swift environment. [Hartman andOusterhout 92] correctly note that no single location exists to accumulate parity, that updateoperations, especially in the case of small random writes, require multiple network accesses tocorrectly perform parity update, and that ensuring atomic update of data and parity blocks isdi�cult.Some of these drawbacks can be turned to advantage. For instance, in the case of small writesthe old and new contents of the data block need to be accessed, XOR'ed, XORed with the old parityblock, and the resulting new parity block written. In our current implementation, small write dataXOR's are calculated on the nodes containing the data, thus taking advantage of parallelism in thedistributed environment.The original Swift prototype used a straight-forward send-receive protocol essentially imple-mented with matching in-line code. Transmission and timeout errors could be handled by a simpleretransmit. A RAID implementation is more complex. For instance, if a node failure occurs in themidst of a write operation, the write operation must be altered to read all the nodes involved in allstrips in the I/O (including the parity data), and then write the new parity data. Likewise, nodefailure during a read operation requires all the nodes in the strip, including the parity node, to beread. This change in the I/O sequence must take place dynamically when the error occurs.



1.3. Transaction Driver Models 31.3 Transaction Driver ModelsThere are two ways to look at the transaction driver { as a distributed virtual CPU or as a setof distributed objects. The distributed virtual CPU was the primary implementation model. Inthis approach distributed programming becomes an exercise in the design and implementation of avirtual instruction set. The distributed virtual CPU model is described here in some detail as it isof great help when reading the source code.1.3.1 The Virtual CPU ModelSome early computers, such as the ENIAC, were fully asynchronous machines. Programmingthese machines proved so complex that the clocked synchronous model, commonly called the vonNeumann model, was developed. The Swift programming problem resembles that found on earlyasynchronous machines. Indeed, computation and communication between the components of amodern network may outperform that of early asynchronous machines. Thus, an approach worthyof examination is to provide the programmer facilities similar to those developed by the hardwareengineers who evolved the synchronous instruction model.In the synchronous instruction model a program consists of a series of instructions. Eachinstruction executes atomically, i.e., from start to �nish without possibility of external interruption.While the instruction executes, the instruction coordinates all asynchronous hardware activityinternal to the CPU that is required to complete the instruction. During this period the instructionhas total control of the machine. A small set of I/O instructions remain that are irreconcilablerelated to asynchronous real-world hardware. Interrupts were developed to assist these instructions.I/O instructions activate asynchronous activity and then the I/O instruction immediately completes,i.e., the instruction completes without waiting for the I/O to �nish. Later, a hardware interruptwill activate the machine at a known instruction location. This activation takes place at a veryspeci�c time when both the hardware I/O has completed and an atomic instruction execution hascompleted.This model has been quite successful, although performance considerations are currently pushingthis model back towards including additional asynchronism, with the advent of multiple instructionper cycle designs, deep pipelines and delayed branches, etc.The transaction driver is a simple distributed virtual machine that performs in the precedingmanner. Each node executes a transaction driver. A transaction driver processes a sequence ofdata structures, each containing opcode and operand �elds. Such a sequence de�nes a transactionprogram, with each structure specifying one logical instruction capable of executing atomically withrespect to network I/O. Logical instructions never block internally on network I/O. If an instructionactivates network I/O, it immediately completes. Each transaction driver may concurrently processan arbitrary number of transaction programs, i.e., the virtual machine de�ned by the transactiondriver is multiprocessed. In Swift/RAID, the transaction driver for a given node has one transactionprogram active for every other node involved in the transaction. The transaction driver maintainsthe equivalent of CPU context for all its transaction programs within the data structure it uses todescribe other nodes.A transaction plan consists of a set of transaction programs cooperating to e�ect a distributedsystem service. A request for system service, for instance a Swift read or write request, is treatedas a request to `compile' a suitable transaction plan satisfying the service request. The transactionplan is compiled on the single node issuing the request. Compilation is achieved by calling simpleroutines containing assembler-like functionality. Two transaction programs are compiled for everynode involved in the requested operation. One program will remain on the local node while theother will be transmitted to the remote node. This pair of transaction programs coordinate activityon the remote and local nodes in such a way as to complete that part of the transaction involvingthe remote node. Note that the message sent to the remote node is simply the program required tosatisfy the request.



4 1. Conceptual Design of the Swift/RAID SystemMost transaction instructions are part of a distributed pair of instructions, with one instruc-tion on the remote node corresponding to one instruction on the local node. Such a pair de�nesa distributed instruction. This instruction can be thought of as a single instruction consisting ofmultiple control �elds routed to di�erent execution units or it can be considered a conventional in-struction coordinating with a co-processor instruction. If an error occurs anywhere in the distributedinstruction, the entire distributed instruction is restarted.Each transaction driver interprets transaction programs by walking a virtual PC through thetransaction program, executing code corresponding to the current opcode. A set of basic opcodesare prede�ned by the transaction driver. In the case of Swift these are essentially Read, Write, andSynchronize. The implementor designs a system by de�ning transaction programs using the basicopcodes and, when necessary or convenient, by de�ning additional custom opcodes. Note that whenan instruction executes it has complete access to any system data without need of synchronizationsince each instruction constitutes a critical section.All communication between nodes is supervised by the cooperating transaction drivers. Thetransaction driver, using an interface to the underlying communication system, is responsible formanaging the transmission and reception of both transaction programs and the communicationrequired to e�ect the transaction programs. The transaction drivers handle nacks, retransmits, andtimeouts. Higher level code (i.e., transaction programs and both prede�ned instruction and custominstruction code) never has to deal with acks, nacks, etc., similar to the manner in which assemblerprogrammers do not deal with internal machine timing and most hardware error recovery. All coderequiring communications programming has been collected into the transaction driver.The operation of advancing the virtual PC includes assuring that required communication hasoccurred. All I/O is activated asynchronously. The transaction driver never blocks awaiting I/O if ithas any other virtual PC's that it can advance. As soon as any communications activity completes,the transaction driver attempts to advance the e�ected transaction program's PC.Communication failures result in timeouts or garbaged reception. Both result in PC resetsoccurring within both the local and remote transaction programs. This is e�ectively a nack, resultingin a resync of the distributed program. Note that a transaction program is never discarded untilthe program has successfully completed execution. This implies that burst mode protocols whereimmediate acknowledgments are not required are possible.The error protocol is now described in more detail. The following two situations exist:� Timeout: Since instructions are executed in `the pipe' till we block awaiting communicationcompletion, all timeouts correspond to a given local instruction that is blocked (stalled). Thisinstruction is part of a distributed instruction pair, and at transaction program compilationtime the PC's of both the local and remote instructions that make up the pair are known.Each instruction is tagged with the PC of its distributed partner instruction. This formatis somewhat remenisent of drum machines where each instruction contained the PC of thenext instruction. Upon timeout, a RESTART request is sent to the other transaction drivercontaining the PC of the remote instruction at which the cooperating transaction programshould resume execution. E�ectively, a RESTART forces a jump to a prede�ned location inthe remote transaction program, syncing both the local and remote halves of the distributedtransaction program.� Out of Order packet. The header of each received packet contains a copy of the remoteinstruction that resulted in the packet's transmission and a target transaction program ID.The remote instruction copy contains the PC of the local instruction corresponding to theremote instruction (the match PC). If the local node does not have the given transactionprogram, the packet is assumed to be really lost and is discarded. If the incoming match PCis less than the current PC, the packet is assumed to be a duplicate and is also discarded.If the match PC is greater than the current PC, some packets have been lost, perhaps dueto overrun. The packet is discarded and a RESTART sent to the remote side containing theremote PC corresponding to the current local PC.Upon reception of a RESTART the local PC of the corresponding transaction program is simplyforced to the indicated PC. Note that nothing keeps track of whether a RESTART has been



1.3. Transaction Driver Models 5transmitted other than a timeout. If the restart is lost, a timeout to the same blocked instructionwill reoccur and another RESTART will be generated. After transmitting a RESTART, eithercommunication from the expected remote instruction is received, in which case we proceed, oranother out of sync instruction is received, in which case a new RESTART is issued. If a RESTARTis received while awaiting the response from a RESTART, the received RESTART is respected, andthe local PC reset. Note that restarts can never `unwind' activity back past the beginning of thecurrent transaction program.1.3.2 The Object Oriented ModelObject oriented systems are becoming widely used to implement direct manipulation windowingapplications. In such an environment multiple `real-time' events (such as mouse movements, buttonclicks, and key strokes) may impact a large collection of program objects (windows, icons, menus,etc.). The object oriented system sorts out the mapping of real-time events to program objects. Intheory, the programmer just de�nes simple self-contained reactive objects and the object orientedsystem provides the real-time program skeleton that dispatches events to the appropriate object atthe appropriate time. Many ugly real-time issues can thus be avoided by programming to the objectoriented system. This aspect of object oriented programming harks back to the initial use of objectorientation to support simulation environments.An example of a current object oriented environment is X-windows. The layers of a typicalX-windows protocol stack are:� X lib { distributed I/O primitives.� X Intrinsics { `real-time' object oriented dispatcher, and basic object set (widgets).� Motif { Full widget set de�ning a speci�c look and feel.In theory, it is easy to implement alternative look and feel environments by simply writingalternate widget sets at the Motif level. The real-time aspects of the windowing system have beenhidden in the X Intrinsics layer and its basic widget set.Consider the following Swift/RAID functionality stack, analogous to the previous X-windowstack. The indicated �les contain the corresponding Swift/RAID-5 functionality.� dgram.c { Network I/O primitives.� trans driver.c { The transaction driver, which implements the real-time event dispatcher, distributed objects,and a basic object set.� swift r5.c { Provides the object set and functionality speci�c to RAID-5 (as opposed to RAID-4, for instance).The above 3 �les are the core of the Swift/RAID-5 implementation. There is one additionalsupport �le, compile.c, which provides primitives to assemble transaction programs. Each servernode in a Swift/RAID system runs a generic server, �le swift server.c. The server's primary functionis to simply run the transaction driver. The above �les are linked into a library, trans.a. Both thegeneric server and client application programs link to this library. Aside from .h and debug �les,these are the only �les in the Swift/RAID implementation.A motivation for this layering is to support experimentation with di�erent RAID schemes simplyby replacing the swift r5.c �le (for instance, with swift r4.c), in the same manner that X-windowssupports multiple look and feel implementations.Unlike an object oriented system intended for a user interface, which is usually functionally richand often su�ers from poor real-time performance, the object orientation provided by trans driver.cis very lightweight and speci�c to the Swift/RAID requirements.All Swift entry points, (swift open, swift read, swift write, etc.), are located in swift r5.c. Whenan application issues a request to one of these procedures, swift r5 generates both a set of objectsand a set of logical events. When the events drive the objects to completion, the request is satis�ed.The object de�nitions contain the object's methods. Objects are instantiated using the functionsin compile.c. Events are controlled by the order in which objects are assembled into sequences as aresult of swift r5 ow of control. A speci�c event will occur when the object to which it correspondsis the current object in the sequence. Note that at this level events are high level logical events, e.g.,`write a remote �le block'.



6 1. Conceptual Design of the Swift/RAID SystemThe trans driver() routine in trans driver.c hides real-time object invocation, object sequencing,object distribution, and communication between distributed objects. Most Swift/RAID objects canbe considered as one element in a pair of objects, one local and one remote. This distributed pairconstitutes a distributed object. When a method of one of the objects is invoked, it results inactivity at both objects. The trans driver() handles all physical events that tie the pair together,such as message invocation, timeouts, and retransmit requests. These low level events are not seenby the programmer dealing in logical events at the swift r5 level. The swift r5 programmer does seenode failure as an event since this requires restarting a Swift request using a di�erent approach, i.e.,performing parity calculations to restore data.The trans driver.c �le also includes the basic primitive objects used to implementany Swift/RAIDsystem. These are basically Read, Write, Await Sync, Send Sync, and Delta Wait. A method code ineach object indicates what the object is and what code is required to execute the indicated function.In addition to the above exported functionality, internal methods are provided for restart, migratingobjects, and termination. These objects provide minimal encapsulation. They all contain 3 data�elds that are usually data values or pointers to external resources such as bu�ers.As with Motif widgets inheriting functionality from an X Intrinsics class widget, it is often thecase when experimenting with a RAID protocol at the swift r5 level that a slight modi�cation toprimitive object behavior is required. An example is the operation `read the old block and xor withthe new data before writing the new data'. To support this operation, consider the trans driver.cfunctionality as a base class and the swift r5 level code as a derived class. At each level functionalityexists and methods can be executed. Objects de�ned by tran driver.c support a swift r5 level methodcode. As in any object oriented system, trans driver() invokes the methods as required, e�ectivelywalking down the class stack and invoking all applicable methods.The event dispatcher in a real-time object oriented system is often the system bottleneck. Givenan event, it must identify which object is e�ected and what method of that object should be invoked.This problem is avoided in Swift/RAID by preordering all objects in sequences such that the objectsare in exactly the order in which they will be required. This is possible because swift r5 totallyprespeci�es the ordering in which logical events are to occur and the trans driver() always dealswith low level events with respect to the current object.



72. Introduction to the Swift/RAID Implementation2.1 A Sketch of How Things WorkEvery server node supporting a Swift �le must have a running swift server. There is a singleSwift server program, swift server.c. It is linked with the correct Swift/RAID library to produce adi�erent version of the swift server for each RAID implementation. For Swift/RAID-5 the resultingserver is swift r5 server. The application program is also simply linked to the Swift library thatcontains the appropriate Swift/RAID code.Every Swift �le the application opens has a core dir t structure maintained by the library. TheSwift/RAID-5 core dir t structure is shown in Figure 2.1.There is a di�erent core dir t structure for each RAID implementation. The core dir t structureroots all data structures involved in the �le's operation. File location, �le status, node failureinformation, and the node and �lenames of the Unix �les that make up the Swift �le are all describedby the core dir t structure. The core dir t structure also includes a trans t structure that roots alltransaction driver activity. The format of the trans t structure is shown in Figure 2.2. The trans tstructure contains asynchronous I/O masks, timeout values, and pointers to all transaction programsand transaction program contexts. The transaction driver is not aware of the format of the core dir tstructure.The core dir t structure contains arrays of instruct t structures. The format of an instruct tstructure is shown if Figure 2.3. Transaction programs are constructed using elements from thesearrays. There are two transaction programs assembled for every node involved in an I/O. The twoconstitute the halves of a cooperating distributed program. One transaction program will run on thelocal node and one on the remote node. The instruct t bu�ers contained in the core dir t structureare divided up so that instructions are assembled contiguously. Instructions are not on linked lists.typedef struct core_dir_t {int cd_status;char cd_swift_name[30];long cd_block_size;long cd_cur_file_loc; /* Location in bytes within file. */int cd_send_ahead;int cd_num_nodes;long cd_file_len; /* Existing len of dist file in bytes. */int cd_failed_node;int cd_rebuild_flag; /* 1=writes have occurred w/node down */char *cd_missing_buf;char *cd_parity_bufs;char *cd_pad_blk;char *cd_wrk_blk;char cd_node_names[ MAX_NODES ][18];char cd_file_names[ MAX_NODES ][ FILE_NAME_LEN ];int cd_node_status[ MAX_NODES ];trans_t cd_trans;instruct_t cd_pgm_buf[ NUM_INSTRUCTS ];instruct_t cd_remote_pgm_buf[ NUM_INSTRUCTS ];server_info_t cd_server_buf[ MAX_NODES ];strip_t cd_strip_info[ MAX_XFER_STRIPS ];short cd_sanity;} core_dir_t; Figure 2.1: The Swift/RAID-5 core dir t structure.



8 2. Introduction to the Swift/RAID Implementationtypedef struct transaction_t {int tr_status;int tr_num_servers; /* Total number of servers. */int tr_server_id; /* Our server ID */long tr_trans_id; /* Current trans ID. */fd_set tr_async_fds_in;fd_set tr_async_fds;int tr_max_fd;server_info_t *tr_server_info; /* Base of server array. */instruct_t *tr_local_pgm; /* Base of 2d instruct array. */instruct_t *tr_remote_pgm; /* ditto for remote pgms. */int tr_max_pgm_len; /* longest # of instructions */int tr_num_cur_pgms; /* # of execing transact pgms.*/int tr_file; /* File handle of backing str.*/char *tr_callback_data; /* (cdir, ... ) */struct timeval tr_timeout; /* sec/usec */} trans_t; Figure 2.2: The trans t structure.typedef struct instruct {int ins_opcode; /* CC_XMIT */int ins_extern_op; /* upper level protocol operation. */int ins_pc; /* # of this instruction */int ins_remote_pc; /* Instruction paired with. */char *ins_buf; /* operand 1 */long ins_byte_loc; /* operand 2 */long ins_len; /* operand 3 */short ins_sanity; /* ID for sanity check. */} instruct_t; Figure 2.3: The instruct t structure.The core dir t structure contains an array of server info t structures. The format of these structuresis shown in Figure 2.4. One of these structures is used to describe every node involved in supportof the Swift �le. The server info t structure contains the socket used to communicate with thenode and the PC and status codes that provide virtual machine context for executing the localtransaction program corresponding to that node. Each of the server info t structures corresponds toan array of local instruct t instructions and an array of remote instructions. The �rst instruction inthe local transaction program usually causes the remote instructions to be transmitted to the nodedescribed by the server info t structure. Note that when a Swift I/O request has been convertedinto a transaction, the total number of transaction programs under execution will be two times thenumber of nodes supporting the �le, i.e., a local and remote transaction program for every node. Allthese transaction programs will be executing concurrently, and the distributed transaction programfor one node may be executing at a very di�erent rate from the transaction programs supportinganother node (perhaps due to performance di�erences).The Swift/RAID-5 core dir t structure contains an array of type strip t that provides statusinformation and parity calculation support for every strip involved in a single I/O. Note that asingle Swift I/O can span many Swift �le strips.When the application issues a Swift request, the Swift library `assembles' the transaction pro-grams required to complete the transaction. The transaction driver then executes these programs.As the transaction driver advances through the instruct t structures, it dispatches code as indicatedby the instruction opcode. If an instruction initiates I/O it stalls. In this case, the transaction driverbegins execution of another transaction program. Because the complete `program' of the transac-



2.2. Using the Swift/RAID Library 9typedef struct server_info_t {int svi_status;int svi_server_num; /* 0..n array index of self. */long svi_file_len;int svi_dest_pgm; /* # of corresponding (dest) program */int svi_num_local_inst;int svi_num_rmt_inst;int svi_socket_num; /* Socket to communicate with given server. */int svi_server_id; /* Server's ID. */address_t svi_address; /* dest Network port address */int svi_pc; /* Current instruct in pgm. */int svi_remote_pc; /* PC on other side (remote) cooping with. */char svi_cc_stall_inst; /* Condition code - stall. */char svi_cc_halt; /* Condition code = Halt. */char svi_sync_buf[4];/* Rcv RESETs into here... */short svi_sanity;} server_info_t; Figure 2.4: The server info t structure.tion has been computed in advance, unexpected data I/O never occurs, that is, when a messageis received, the operands of the current (usually stalled) instruction in the transaction program onwhose behalf the message is received have been assembled so that the data will be delivered directlyto its �nal destination.All Swift entry points thus consist of two phases: a compilation phase in which compile.c routinesloc compile() and rmt compile() are used to assemble transaction programs, and an execution phasedriven by a call to trans driver().2.2 Using the Swift/RAID LibraryA Swift/RAID application is shown in Figure 2.5. This application simply writes the �rst stripin the Swift �le 1000 times. The ca test3 Swift data �le uses 3 nodes and has an 8K byte blocksize.Each strip thus consists of two 8K data blocks and a parity block. This test program performs a`full strip' write.The syntax of the Swift functions is shown in Figure 2.6. With the exception of swift dir init()these calls are all analogous to the corresponding Unix �le calls. The only di�erence between Swiftand Unix �le I/O of which the programmer must be aware is that the swift read() and swift write()calls must occur in multiples of the blocksize speci�ed in the `plan' (directory) �le.The bulk of the Swift/RAID functionality in all 3 implementations is located in the swift read()and swift write() routines.A Swift `plan' �le is shown in Figure 2.7. In this plan �le, test 01.dat is a Swift/RAID-0 �le,test 03.dat is a Swift/RAID-4 �le, and ca test4 is a four node Swift/RAID-5 �le. Note that allnodes in the Swift/RAID-0 �le have a DATA keyword at the end of the line. In the Swift/RAID-4�le, the user speci�cally indicates which node is to be the parity node via the PARITY keyword.For Swift/RAID-5 �les, all nodes are denoted as R5 nodes. File de�nitions for Swift/RAID-0,Swift/RAID-4, and Swift/RAID-5 can all be included in the same plan �le. This greatly facilitatestesting and comparison.



10 2. Introduction to the Swift/RAID Implementation/* ca_test_01.c */#include <stdio.h>#include <fcntl.h>#include "swift.h"#include "swift_test.h"char *pgm_name = "ca_test_01";char buffer[ 16*8192 ];long start_mikes, end_mikes, delta_mikes, mikes_per_cycle;int num_iterations;double tot_bytes;/*---------------------------------------------------------*/main( int argc, char **argv ) {int fin;int stat;int i;PRINTF "\n ca_test_01. 3 node write timing loop. \n" );stat = swift_dir_init( "plans" );if( stat < 0 ) crash( "Can't access directory!" );fin = swift_open( "ca_test3", O_RDWR, 0 );if(!fin ) crash( "swift_open" );start_mikes = get_mikes();tot_bytes = 0.0;/*----------------------------------------*/for(i=0;i<1000;i++) {stat = swift_seek( fin, 0L );if( stat < 0) crash( "swift_seek" );stat = swift_write( fin, buffer, 2*8192 );if( stat < 0) crash( "swift_read" );tot_bytes += 2 * 8192;} /* end for */end_mikes = get_mikes();swift_close( fin );delta_mikes = end_mikes - start_mikes;PRINTF "\n Microseconds: %ld. ", delta_mikes );PRINTF "\n Seconds: %f ",((float)delta_mikes) / 1000000.0 );} Figure 2.5: An Example Swift/RAID Application.



2.2. Using the Swift/RAID Library 11swift_dir_init( swift_directory_file_name );swift_open( swift_file_name, file_flags, file_mode );swift_seek( swift_handle, swift_file_location );swift_write( swift_handle, buffer, bytes );swift_read( swift_handle, buffer, bytes );swift_close( swift_handle );Figure 2.6: Swift/RAID Function Syntax.
// Swift plan file//// This described a set of distributed Swift files//// Format:// plan-name block-size send-ahead server1 file1 : ... : servern filen;test_01.dat 8192 1 maple /wrk/brucem/swift_test.dat DATAoak /wrk/brucem/swift_test.dat DATAtest_03.dat 8192 1 maple /wrk/brucem/swift_test.dat DATAoak /wrk/brucem/swift_parity PARITYfern /wrk/brucem/swift_test.dat DATAca_test4 8192 1 maple /wrk/swift_test/ca_test_r5_04.dat R5cedar /wrk/swift_test/ca_test_r5_04.dat R5fern /wrk/swift_test/ca_test_r5_04.dat R5dogwood /wrk/swift_test/ca_test_r5_04.dat R5Figure 2.7: The Swift/RAID Plan �le.



12 3. Swift/RAID Implementation Internals3. Swift/RAID Implementation Internals3.1 IntroductionThis section is intended to be read in conjunction with a study of the Swift/RAID code. Thecode narratives in this section are intended to convey the `middle-level' detail that is all to oftenlost between high-level conceptual exposition and detailed source code commentary.3.2 swift dir initThe swift dir init() routine parses an ASCII �le and builds a RAM resident description of knownSwift �les. The �le, called a `plan' �le, maps Swift �le names to node names/Unix pathnames.The format of swift dir init() is:swift_dir_init( swift_plan_file_name );When called, swift dir init() works as follows:� The speci�ed plan/directory �le is opened. Each Swift �le will be described in RAM by acore dir t structure. These structures are organized in an array, the cdirs array. The cdirs arrayis cleared. Note that contiguous lines in the directory �le are used to specify the components(nodes and �les) that make up the Swift �le. Each component is described on one �le line.� The open �le is read via a loop that uses fgets() to read lines of the �le. Maximum recordlength is 120 bytes. Empty lines and lines that begin with a `/' are skipped.� The routines is empty(), is white space(), get text(), and skip white() are used to parse therecord. Routines get text() and skip white() scan a pointer through the record. Routineget text() places contiguous text at which the pointer is currently pointing into an argumentbu�er, advancing the pointer over the text.� The bu�ers �lled by get text are either copied into �elds of the current core dir t structure,or converted to numeric �elds. The core dir t structure contains two arrays that specify thenodes and the �le pathnames of the components making up the Swift �le. These are theca node names and ca �le names arrays.� Status �elds are initialized, the count of directory entries is updated, and the next recordparsed. Upon completion of �le processing, the plan �le is closed.3.3 swift openThe syntax of swift open() is:swift_open( swift_file_name, file_flags, file_mode );When called, swift open() works as follows:� The cdirs array is scanned and �le names compared. If a core dir t structure is not found withthe identical name, an error (-1) is returned.� The core dir t structure is initialized for �le operations (the current location set to 0 and failednode count set to -1).� The transaction driver routine trans init() is called. This routine takes elements of core dir tas arguments and does the following:{ Computes the maximum bu�er size available for `compiled' transactions. There are twobu�ers within a core dir t in which transactions are compiled, one for local transactionprograms and one for remote transaction programs. Each of these bu�ers is divided bythe number of servers participating in the Swift �le to form sub-bu�ers into which eachserver's speci�c transaction programs will be assembled.



3.3. swift open 13{ Every open �le has a trans t structure that roots all transaction driver activity. Thisstructure is embedded within the core dir t structure. It is now zeroed as are the programbu�ers.{ An array of type server info t is also embedded in structure core dir t. These elementsare used to describe that status of every other node involved in the Swift �le. Includedin this status is the status and context of the local transaction program communicatingwith that node. Note that when a transaction plan is generated, there will be a localtransaction program for every node involved in supporting the Swift �le. The server info tarray is zeroed.{ The ins sanity �eld in all the instruction structures (instruct t) in the instruction bu�ersis set to INS TAG. This value is used as a sanity check whenever an instruction is passedas an argument or transmitted. Note that transaction programs are assembled into theseinstruct t arrays.{ The �elds in the trans t structure are now all initialized to reect its `open stream' status.Since the transaction driver operates without knowledge of the core dir t structure, thetr callback data �eld in the trans t structure is set to point to the core dir t structurein which the trans t structure is contained. This �eld is used by high-level (Swift-level)opcodes (as opposed to low-level transaction driver opcodes).� The transaction driver routine connect to node() is now called. This is a very simple routine.It loops over the node and pathname arrays in the core dir t structure. For every nodeparticipating in the Swift �le, routine connect to node() is called. This routine contains low-level dgram.c code, which performs straight-forward UDP socket connection. Connection isestablished to every server node in the following manner:{ A timeout handler, con timeout handler(), is established that will handle SIGALRM.{ Routine get node address() in dgram.c is called. It forms a network port address in theaddress t �eld of the server info t structure. The global de�ne PUBLIC PORT speci�esthe port on the server node and the gethostbyname() system routine obtains the serveraddress.{ A local private datagram socket is allocated using system routine bind socket().{ All Swift/Raid messages use only two communication routines - send message() andget message(). These routines are located in dgram.c. Routine send message() takesas arguments the local private socket address, the remote socket address, a standardtransaction header, and a variable sized transaction body. Routine get message() isthe inverse, with the address of the remote socket from which a message was receivedbeing returned. Both these routines communicate using two bu�ers - the �rst containsor receives a �xed sized header, and the second contains or receives a variable lengthmessage.{ A `forever' loop is entered that will only loop if a timeout occurs. This loop sends a connectmessage to the remote public socket. The body of the message is of type connect t, whichspeci�es the remote �le name and open ags. A longjump bu�er is then establishedto handle timeouts, an interval timer activated, and a get message() call issued. Theget message() will block until a message is received. If the timeout occurs, SIGALRMwill cause con timeout handler() to run which simply notes the timeout failure and, ifno more than 4 timeouts have occurred, longjumps back to resend the connect message.When a response message from the remote server is received, the system connect() callis used to connect the local private socket to the remote local socket address returnedby get message(). The timer countdown is aborted and the SIGALRM handler revoked.Note that the remote server will have forked a copy of itself that communicates via aremote private socket rather than the PUBLIC PORT socket.{ If the received connect message status is successful, the remote Unix �le has been openedby the server. If not, Swift error exits. The body of the message received by get message()is of type �le info t. This structure contains the length of the subcomponent �le located



14 3. Swift/RAID Implementation Internalson the server. The sum of all these �le lengths constitutes the total Swift �le length. Thisinformation is needed for �le operations such as swift seek().{ The local socket number is stored in the server into t structure and the status of thestructure set to `connected'.� Upon completion of connect nodes, the total Swift �le size is accumulated by adding up thelocal �le sizes stored in the server info t structures.� Swift RAID-5 requires two work bu�ers for each open �le. These bu�ers, cd pad blk andcd wrk blk are malloced and attached to the core dir t structure.� The Swift �le handle returned from the swift open() call is simply the index in the cdir arrayof the �le's core dir t structure.3.4 swift seekThe Swift seek call has the following form:swift_seek( swift_handle, swift_file_location );The implementationof this call is trivial. The handle is used to locate the corresponding core dir tand the cd cur �le loc �eld is simply set to the speci�ed �le location. No network or transactionactivity occurs. Note this implies that no Unix `common �le pointer' semantics are associated withthe Swift �le.3.5 swift writeThe swift write() routine writes blocks that are multiples of the Swift �le blocksize. The de�nitionof a Swift �le speci�es this size in bytes. A read or write can occur in any multiple of this size.Attempting to read or write a blocksize that is not a multiple of the �le blocksize is an error. Thesyntax of swift write() is:swift_write( swift_handle, buffer, bytes );When called, this routine works as follows:� The �le handle is used to locate the corresponding core dir t structure, and the structure issanity checked. If the �le is in CD FAILED mode, more then one node has failed and an erroris returned.� The trans t structure contained within the core dir t structure manages all transaction driveractivity with respect to the Swift �le. If the transaction status is TR DEGRADED, one nodehas been lost and the cd rebuild ag is set. Currently nothing is done with this ag. In thefuture, every so many seconds or perhaps every so many Swift I/O calls, reconnection to thefailed node should be attempted. Upon successful reconnection, a RAID rebuild phase shouldbe activated.� The dist program init() routine loops over every of the core dir t's active server info t struc-tures. Routine init svi pgm() in compile.c is called for each server info t structure. This routinesimply clears the `code exists' ag for the node, and sets the transaction program PC and thelocal and remote instruction counts to 0. Code can now be `assembled' into the server bu�ersusing compile.c routines.� The particulars of the requested I/O are calculated, i.e., items such as start strip, end strip,start block, and end block are calculated. The request has now been converted into a request inphysical RAID parameters. Note that large I/O requests often will span multiple contiguousstrips.



3.5. swift write 15� Depending upon the implementation, the base of the parity bu�er array is either set to a workbu�er or simply malloced. There needs to be one parity bu�er for every strip involved in theI/O. The parity bu�er is the same size as the Swift �le granularity. The performance of mallocdoes not seem to be a big hit here, but the code is set up to support either approach. Fieldcd parity bufs roots the parity bu�er array.� If the current I/O starts beyond the logical end-of-�le byte for the Swift �le, a ag is set toindicate the Swift �le needs to be extended to the appropriate size.� An array of type strip t located in the core dir t structure is initialized. This structure reectsthe status of the I/O operation with respect to each strip.� A loop that scans all strips involved in the I/O is the heart of the swift write() logic whichassembles the transaction programs to e�ect the write. This loop is now executed. For allstrips involved in the I/O, the start block within the strip and the end block within the stripare identi�ed. This results in 3 di�erent situations which are handled as follows:{ If the entire strip in involved in the I/O (all the blocks in the strip need to be written),span write() is called. Note that in this case we will not need to read any parityinformation since we can calculate parity for the entire strip from data in the user'sbu�er. Note that the written strip may become the new end-of-�le strip.{ If I/O into the strip will extend the �le (the strip will become the new end-of-�le strip),pad write() is called. This will occur whenever the end of the I/O transfer occurs withinthe strip one past the current last strip in the �le. Note that pad write() will write allblocks in the strip, even if the I/O does not specify that the I/O �ll the strip. This stripwill become the new end-of-�le strip. Note that in this case we do not need to read anyparity information since we can calculate parity for the entire strip.{ If both the start and end of the I/O occur within the strip, update write() is called. Notethat in this case we may need to read the parity node. In this case ag parity update agis set.� All 3 of the previous routines compile transaction programs appropriate to their circumstances.They will be described later.� Upon completion of the loop assembling instructions for all strips, a loop is executed thatcalls t init pgm for all servers involved in the I/O. This routine simply performs program�xup, which consists of calculating the size of both the local and remote programs, ORingthe CC END OF PROGRAM bit into the last opcode of both programs, and setting both thelocal and remote PCs to 0.� Routine trans driver() is then called to process the trans t structure and its associated trans-action programs. This routine will have the e�ect of concurrently executing all the transactionprograms that have been assembled. Discussion of this routine is presented in the section ontrans driver().� Upon completion of the trans driver() call, all blocks in all strips have been written. Notehowever, that the parity information may not yet have been written (i.e., in the case of up-date write()). There is an opportunity here for additional concurrency in the implementation.� If the parity update ag is set, only part of the strip was written and a parity update cycleis therefore performed. This is done by calling dist program init() to reinitialize transactionprograms, bld parity read program() to assemble the required parity update programs, andthen trans driver() to execute the parity update. Routine bld parity read program() will bedescribed later.� Upon completion of the preceding, the parity bu�er array is freed if one was allocated. Ifthe I/O completed successfully, the current �le location is incremented by the size of the I/O.The �le length is updated if the �le has been extended. A successful completion returns fromswift write() at this point, returning the length of the I/O to the caller.� If the trans t structure is marked as failed, we mark the core dir t structure as failed, andswift write() returns with a failure. This usually indicates more than one node has failed.



16 3. Swift/RAID Implementation Internals� The only other alternative to the preceding two steps is that a single node has failed. The sys-tem then puts the Swift �le in DEGRADEDmode. It does this by scanning all the server info tstructures belonging to the core dir t and locating the one with status SVI NODE DEAD. If acall to trans driver() returned with a DEGRADED status, we are guaranteed to �nd one suchnode. The cd failed node �eld of the core dir t structure is set to indicate this node. Controlthen transfers back to the top of swift write() and the entire I/O request is reprocessed. Sincethe �le is now in DEGRADED status, the transaction programs assembled will be di�erentand will reect the required use of the parity node. In this manner the swift write() will copewith a node loss occurring while the write is in progress.Support routines for swift write() are now described.3.5.1 span writeThis routine is called when the I/O spans the entire strip. In this case parity can be calculateddirectly from the user's bu�er. This routine works as follows:� The parity bu�er corresponding to the current strip is located in the parity array.� For all the data nodes in the strip, the block within the users bu�er that is to be written tothat node is located, and do parity calc() called to accumulate parity into the strip's paritybu�er. The �rst time do parity calc() is called it simply copies the input data block to theoutput parity block. Thereafter it performs an exclusive OR of the input data block and theparity block.� The location of the parity node within the strip is now calculated. This is done via a simplemodulo calculation. Given the absolute strip number and the number of servers, the paritynode is located at `strip % num servers'.� If the parity node has failed, the code to write the parity node is skipped. Otherwise, thefollowing code is assembled into the transaction program of the node that is handling thisstrip's parity. This code will write the parity bu�er to the parity block location in the Unix�le on the parity node. The opcodes of the assembled parity code are shown in the following:local remoteWRITE_CMD|CC_PARITY_FILE WRITE_DISK|CC_PARITY_FILEAWAIT_SYNC SEND_SYNC� The CC PARITY FILE opcode bit is simply a debugging aid. The local WRITE CMDinstruction takes the parity bu�er address as an operand, and the remote WRITE DISKinstruction takes the location of the parity block within the remote �le as an operand. Bothtake the blocksize as an operand.� A loop now generates code to write every node in the strip. A pointer is set to the start of theuser's bu�er (the �rst block). The target node for the block is computed. If the data blocknumber is less than the number of the parity block (the same as the parity node calculated bythe preceding modulo calculation), the data block number directly speci�es the node number(i.e., is an index to the appropriate server info t structure). If the data block is greater orequal to the parity node, it is incremented by one to skip over the parity node. The paritynode is thus `invisible'. The following code is generated for each data block:local remoteWRITE_CMD WRITE_DISKAWAIT_SYNC SEND_SYNC� The local WRITE CMD instruction takes the address of the block within the user's bu�er asan operand, and the remote WRITE DISK instruction takes the location within the remote�le to write the block as an operand. Both take the blocksize as an operand.



3.5. swift write 173.5.2 pad writeThis routine works in the manner of the previous span write() except that it must pad the I/Oto the length of the strip (and must write empty blocks into that section of the strip). Its overalloperation is very similar to span write():� The core dir t's pad block is zeroed (there is one allocated to every core dir t).� The parity bu�er for the strip is located and parity on all the user data blocks involved in I/Ointo the strip is calculated using do parity calc().� The parity node is calculated using a simple modulo calculation as described previously.Transaction code is generated to write the parity bu�er to the parity node (in the proper�le location).� Code is assembled to write the user's data bu�ers to the appropriate location within the Unix�les located at each corresponding node.� A loop generates code to write as many null blocks as are needed to the remainder of the strip.The form of the assembled code is similar to that of the data blocks, with the exception thatthe pad bu�er is used as input.3.5.3 update writeThe update write() routine handles the assembly of code to perform I/O which writes a subsectionof a strip. This is the most di�cult update case. It works as follows:� The current location of the parity bu�er for the strip is located in the parity bu�er array. Theparity node is located by a simple modulo calculation (absolute strip number % the numberof servers in the strip). Note that the parity bu�er array will contain as many parity bu�ersas there are strips involved in this I/O transfer.� First, which of two strategies to use for the update is determined. The idea here is that ifmost of the strip is being written, it is sensible to read the blocks in the strip that aren't beingwritten, and recalculate a new parity block for the strip. The alternative is to read the oldparity block, read the old data blocks, XOR the old data with the new data, XOR this resultwith the old parity, and then rewrite the parity block.� To do the strategy calculation, a loop iterates over all block numbers involved in the strip,generating the node numbers at which the corresponding blocks are located. If the blocknumber is greater than or equal to the parity node, the node number is incremented by one toskip the parity node. We count the number of blocks that we are going to write. If we notethat one of the blocks that we are going to write is the current failed node, we jump to the`read rest of strip strategy' as we will be unable to read the failed node to XOR the old data.If we note that one of the blocks that we are NOT going to write has failed, we jump to the`XOR strategy' as we would be unable to read a block in the `read rest of strip strategy'.� Upon completion of the previous loop we have either forced one of the two strategies due tonode failure location or we have counted the nodes we will read and those we will write. Thestrategy is now selected. Currently this is done by using the `XOR strategy' if the number ofwrite blks is less than or equal to the number of non write blks.� The appropriate strategy is now executed. The `XOR strategy' is executed by callingxor update write() and then returning from update write(). The `read rest of strip' strategy isexecuted by falling into the remainder of update write().� The code for `read rest of strip' �rst loops over all the block numbers in the strip. The strip'sparity bu�er is �lled by calculating parity on all the blocks to be written using the user's databu�ers and do parity calc().� If the node in the strip containing the parity block has not failed, the strip's parity needs tobe calculated. A loop over all the block numbers in the strip assembles the following code forblocks that we are NOT writting:



18 3. Swift/RAID Implementation Internalslocal remoteREAD_RESULT;SMALL_WRITE_RD READ_DISK� Note that the SMALL WRITE RD is a high-level opcode that is processed by swift r5.c, notby the transaction driver. The remote READ DISK operands specify the data block locationand the block size to be read. The local READ RESULT instruction speci�es the cd wrk blkbu�er associated with the Swift �le's core dir t structure as the destination bu�er. The high-level opcode SMALL WRITE RD and the strip number are operands that are `piggy-backed'on the instruction. After the data block from the remote READ DISK instruction has beenreceived, the local transaction driver will call post hi handler() in swift r5.c before executingthe low-level READ RESULT code. The post hi handler() routine dispatches on the high-levelopcode. In the case of SMALL WRITE RD this routine will execute do parity calc(), XOringthe data that has been received in cd wrk blk into the appropriate strip's parity bu�er in theparity array. Note that potentially both data and parity reads for strips involved in the I/Ocould be received out of order, that is, potentially a parity read for strip 1 could completebefore a parity read for strip 0.� A loop over all the block numbers in the strip now assembles code to write the user's data.Node numbers correspond 1:1 with block numbers up to the parity node, after which the nodemust be incremented by one so as to skip the parity node. For all data nodes to be writtenthat have not failed, the following code is assembled:local remoteWRITE_CMD WRITE_DISKAWAIT_SYNC SEND_SYNC� If the parity node within the strip has not failed, the strip t structure describing the status ofthis strip for the duration of this I/O is initialized to indicate the number of reads the writeoperation has outstanding, the current number received, and a �le location within the strip'sparity node. This last location is where the new parity block is written when all the paritydata from the strip has �nally been computed.3.5.4 xor update writeThis routine is called within update write() and handles the `small write' case, that is, the casewhere a small subsection of the strip is written. In this case we want to XOR the new and old datablocks, then XOR the result with the old parity block, and �nally rewrite the result as the newparity block. This routine works as follows:� A loop over all the block numbers in the strip assembles code to write the user's data afterXORing it with the old data. Node numbers correspond 1:1 with block numbers up to theparity node, after which the node must be incremented by one so as to skip the parity node.For all data nodes to be written the following code is assembled:local remoteWRITE_CMD WRITE_DISK;SRV_READ_PARITYWRITE_DISK;XOR_PARITY WRITE_CMD;SRV_SEND_PARITY� The local WRITE CMD takes as operands the proper bu�er pointer and bu�er size. Theremote WRITE DISK speci�es the location in the Unix �le at which the block is to be written.� The remote WRITE DISK instruction blocks until a message is received containing the datato write (from the local WRITE CMD). Upon receiving data, post dispatch() in trans driver.cwill execute. This is the routine that will actually write the data. Before dispatching on anyopcodes, however, this routine calls post hi handler(). This routine is in swift r5.c. It provides



3.5. swift write 19high-level opcode dispatching. Note that the server, not the client, is issuing this call. Theserver does not have a core dir t structure containing the relevant trans t structure, rather ithas a `naked' trans t. If a bu�er is not currently allocated, a bu�er of the �le's granularity ismalloced and attached to the tr callback data �eld of the trans t. The old data block is thenread into this bu�er. The received data block (i.e., the block to be written into the �le) is thenXORed into the old data block.� The remote transaction driver then executes the WRITE DISK instruction and writes the newdata block to the �le.� The local WRITE DISK instruction takes the core dir t's pad block and the strip number asoperands. The assembly of the strip number into this instruction is a subtle trick - it is usedlater to reestablish context. Other than the standard blocksize, the remote WRITE CMDtakes no operands.� The transaction driver (trans driver()) on the remote (server) side now issues the WRITE CMD.The pre dispatch() routine in trans driver.c will execute this command (which transmits a datablock). Since a high-level opcode exists, before executing the transmit code the pre hi handler()routine in swift r5.c is called. This routine is a one line routine that simply assigns the bu�erhanging o� the tr callback data �eld to the ins buf �eld of the instruction (i.e., it `self modi�es'the instruction). Thus the bu�er that will be transmitted is the XOR of the old and new data.Note that this XOR has been performed on the server, not the client.� On the local side, the WRITE DISK instruction does not execute until the XORed data blocksent by the WRITE CMD is available. As with the server side, before the data is actually writ-ten by the low-level transaction dispatcher in post dispatch(), the high-level post high handler()routine in swift r5.c is called. This routine dispatches on the XOR PARITY opcode.� The XOR PARITY code retrieves the strip number from the instruction that is being executed(recall the strip number was speci�ed as one of the operands). The strip number is used toestablish which parity bu�er in the core dir t's parity array and which strip t structure aree�ected by the XORed data that has arrived. The do parity calc() routine is then executedto XOR the previously XORed data block into the strip's parity bu�er. The last thing thiscode does is `zap' the opcode of the instruction being executed to NULL. This will cause thelow-level transaction driver code to consider the instruction a no op. Thus the WRITE DISKwill not actually write anything to disk (in e�ect it wrote into the parity bu�er).� Note that high-level opcodes are always executed before low-level opcodes. This gives the highlevel opcode a chance to alter the low-level opcode. If the low-level opcode is set to NULL, nolow-level processing of the instruction is performed.� After the previous code has been assembled, the code to read the old parity block into thestrip's parity bu�er in the core dir t's parity array is assembled. Note that all code for all nodesis executed concurrently. The actual execution of the parity read instructions may take placeconcurrently with the execution of the previously described XOR code. It does not matterwhen in the course of accumulating the parity for the strip the old parity block is received.The assembled code to read in the old parity and XOR it with the accumulated XOR in theparity bu�er is:local remoteREAD_RESULT|CC_PARITY_FILE;XOR_PARITY READ_DISK|CC_PARITY_FILE� The local READ RESULT takes the pad block bu�er and the strip number as operands. Thestrip number will be used to reestablish strip context (recall that a number of strips could beconcurrently processed by the sequence described here). The remote READ DISK takes thelocation of the parity block within the server's Unix �le as an operand.� The CC PARITY FILE bits in the opcodes are only used for debugging.



20 3. Swift/RAID Implementation Internals� The remote READ DISK causes the parity block to be read and transmitted. The READ RESULTreceives this block. Since this instruction has a high-level opcode, post hi handler() in swift r5.cis called. The XOR PARITY code operates exactly as if this parity block were an XORed datablock, that is, it simply XOR's the old parity block into the strip's parity bu�er as previouslydescribed.� Upon completion of the assembly of this code, xor update write() initializes the strip t structuredescribing the strip with the number of blocks that need to be XORed into the parity bu�er,the number of blocks that have been received (0), and status.� xor update write() has now assembled all code and built all supporting data structures re-quired of the transaction programs. It now returns to update write(), which will return toswift write(), which will invoke trans driver() to execute the assembled transaction programs.3.5.5 bld parity read programRecall that a single Swift write I/O can write a number of strips. Each strip must haveparity correctly calculated and updated. After the previously assembled transaction plan has beenexecuted, any strip for which `within strip' I/O was performed will have valid parity data in itsparity bu�er, i.e., the parity data in the core dir t's parity array will be valid. Code is now assembledto write these parity blocks to their correct location on the respective parity nodes for the stripsinvolved. Note that not all the strips in an I/O may require this parity update from the parity array -only the �rst and last strips involved in the I/O can be so e�ected. Routine bld parity read program()is called at the end of swift write() if such update is required. This routine works as follows:� All the strip t structures in the core dir t's strip description array are scanned. If the strip hasaccumulated parity (str parity == 1) then the parity node for that strip is calculated, and, ifit is not the failed node, the following code is assembled:local remoteWRITE_CMD|CC_PARITY_FILE WRITE_DISK|CC_PARITY_FILEAWAIT_SYNC SEND_SYNC� The CC PARITY FILE bits in the opcodes are for debugging purposes only.� The WRITE CMD instruction takes the address of the parity bu�er as operand, while theWRITE DISK takes the location in the Unix �le on the server node that is to be written.� After the above code has been assembled for any strip with parity data, init all programs() iscalled. This is a general utility routine that simply scans all the server node's server info tstructures, and calls t init pgm() for any servers that have assembled code. The t init pgm()routine performs transaction program �xup.� Control returns to swift write() which can now immediately execute trans driver() to write theparity blocks.� There is an opportunity here for additional parallelism. A given strip's parity block could bewritten as soon as the parity block is valid.3.6 swift readThe swift read() routine is simpler than swift write(). It also, however, must handle node failurein the middle of a transaction and must use parity to recreate data from a missing node. It worksas follows:� The Swift �le handle is used to establish the core dir t and the trans t which correspond tothe Swift �le.� Routine dist program init() is called to initialize assembly for all servers supporting the �le.



3.6. swift read 21� The particulars of the requested I/O are calculated, i.e., items such as start strip, end strip,start blk, and end blk. The request has now been converted to physical RAID parameters.Note that large I/O requests will often span multiple contiguous strips.� Depending upon the implementation, the base of the parity bu�er array is either set to a workbu�er or simply malloced. There needs to be one parity bu�er for every strip involved in theI/O. The parity bu�er is the same size as the Swift �le granularity. The performance of mallocdoes not seem to be a big hit here, but the code is set up to support either approach.� A loop now loops over the strip numbers of every strip involved in the I/O. This loop over allstrips drives the assembly of code to implement the read transaction.� For each strip, chk parity �xup() is called to determine if there is a failed node that containsa data block required for this strip's contribution to the I/O.� Routine chk parity �xup() works as follows: if the �le is not in DEGRADED status, all is welland no parity �xup needs to be performed. Otherwise, the nodes corresponding to each blockin the strip are calculated. If one of these nodes is the failed node, we will have to do parity�xup. The strip t structure describing this strip is located (there is one such structure insidethe core dir t's cd strip info array for every strip involved in the I/O). The location withinthe user's read bu�er that corresponds to the data on the failed node is stored in the strip tstructure. This is the data block that will have to be reconstructed using parity information.� A loop over all blocks within the current strip now assembles the required code. For all nodesdirectly involved in the read transfer the following code is assembled to read data directly intothe user's bu�er:local remoteREAD_RESULT;high_code READ_DISK� In the preceding code, high code is the high-level opcode within the local instruction. This isset to HI XOR BUF if parity �xup is required and is null otherwise.� The local READ RESULT instruction takes as operands the bu�er address at which to placethe data, the block size, and the strip number. The remote READ DISK instruction takesas operands the �le location within the server's Unix �le and the blocksize. Note that to �llthe user's bu�er numerous READ RESULT instructions may be executed, one for every blockwithin every strip that contains data that is deposited into the user's read bu�er.� For all data nodes indirectly involved in the transfer due to a parity �xup, i.e., those datanodes not read by the user which still need to be read to calculate parity (recall all blocks ina strip will need to be read to calculate parity), the following code is generated:local remoteREAD_RESULT;XOR_BUFFER READ_DISK� The local READ RESULT instruction takes as operands the �rst address in the parity bu�erarray, the strip number, and the block size. The parity bu�er address is used as a temporarywork bu�er for parity calculations. The remote READ DISK takes as operands the �le locationwithin the Unix �le on the server, and the blocksize. The XOR BUFFER high-level opcodewill cause code in post high handler() to be executed before the low-level READ RESULT codeis executed. Routine post high handler() in swift r5.c locates the appropriate strip t structureusing the strip number operand embedded in the instruction. Recall that the strip t structurecontains a pointer to the space in the user's read bu�er where data has to be reconstructed viaparity. This pointer is used as the destination block in a call to do parity calc(). The sourceblock for the do parity calc() call is the received data in the parity block. Thus the parityinformation in the `missing' section of the users bu�er will automatically build up until allblocks in the strip have been read. At this point the data in the user's bu�er will be correct.Note that all data blocks will also participate in this process if needed because high code willalso be set to HI XOR BUF.



22 3. Swift/RAID Implementation Internals� In addition to the above reads of all the data blocks, the parity block within the strip mustalso participate in the previous process. The following code is assembled to accomplish this:local remoteREAD_RESULT|CC_PARITY_FILE;XOR_BUFFER READ_DISK|CC_PARITY_FILE� The above code is identical to the previous with the exception that it is assembled into thetransaction program of the previously calculated parity node and has the CC PARITY FILEbit set in the opcode. This bit is only used for debugging purposes.� At this point all the code to execute the transaction has been assembled. The loop over allstrips is thus complete.� A loop over all server info t structures associated with the current �le's core dir t structure isperformed. For any that have assembled code, t init pgm() is called to perform program �xup.The transaction programs are now ready to execute. The transaction driver, trans driver(), iscalled to execute the entire transaction.� Upon completion of trans driver(), the transaction has either completed successfully or a nodefailure has occurred. The parity bu�er array is freed regardless. Upon successful completionthe current location within the �le is advanced by the size of the read transfer, and controlreturns to the user.� If more than one node contributing to the current �le has failed, the core dir t structure ismarked as FAILED and the call returns to the user with a failure status.� If only one node has failed, the �le must enter DEGRADED mode. This is accomplished byscanning the server info t structures (which are used as program context by the transactiondriver) and identifying the node that has failed. The core dir t's cd failed node �eld is set tothe number of the node that has failed. In this case, the entire swift read() request is nowrestarted. Since the �le now has a failed node, the code that will be assembled to execute thetransaction will be di�erent then the code assembled on the �rst attempt.3.7 swift closeThe swift close() routine has the following syntax:swift_close( swift_handle );When called, this routine does the following:� The handle is used to locate the corresponding core dir t, server info t, and trans t structures.The dist program init() routine in swift r5.c is called to initiate transaction program assembly.� For each server node indicated by the core dir t structure, the following program is assembled:Local RemoteSEND_SYNC|CC_CLOSE AWAIT_SYNCAWAIT_SYNC SEND_SYNC� Routines loc compile() and rmt compile() perform the assembly, and routine t init pgm() per-forms program �xup.� The transaction driver is invoked to execute the assembled transaction programs via a call totrans driver(). The argument to this routine is the trans t data structure.� Upon completion of the trans driver() call, all Unix �les have been closed. Each servernode is disconnected from the transaction by calling the transaction driver routine discon-nect from node() with the corresponding server info t structure. Routine disconnect from node()simply closes the open socket to the server node, updates the server info t structure, and main-tains the disconnect count.



3.8. trans driver 23� The two support blocks that were malloced for open �le operations, the pad block and thework block, are freed.3.8 trans driverThe trans driver() routine is the heart of the Swift/RAID system. Routine trans driver() isdriven by a trans t data structure. Structure trans t contains a pointer, tr server info, which pointsto the base of an array of type server info t. Each of the server info t structures provides the contextof a transaction program. Transactions are created by assembling transaction programs, one pernode, for all the nodes involved in the transaction. The trans driver() routine then concurrentlyexecutes these programs as driven by events. Before transaction programs can be executed on behalfof a trans t structure, the structure must be initialized by trans init(). The trans inist() routine isdiscussed in the section on swift open(). Routine trans driver() can be considered a distributedinterpreter. This is how it works:� Support routine setup async io() is called to setup an asynchronous receive mask to `listen'to all the nodes involved in supporting the Swift �le. Each node to which the current trans tis connected (established via swift open()) has a socket number stored in its server info tstructure. The system macro FD SET is used to set bits in the asynchronous I/O mask suchthat a set bit corresponds to every socket on which we wish to `listen' for I/O. This mask isstored in the tr async fds in �eld. Timeout values are also initialized.� A loop scans the server info t array, and for every node for which code has been assembled,activate insruction stream() is called. This routine clears the node's condition codes in theserver info t structure and sets up the initial local PC. It then attempts to execute as manyinstructions as possible. All opcodes have a PRE EXEC bit set if they contain code thateither does no I/O or transmits an I/O. Thus these instructions activate the I/O events whichdrive the system. These instruction are executed by calling instruction interpretation routinepre dispatch(). After calling this routine, the condition codes are checked. If the instructionis stalled awaiting I/O completion, activate instruction stream() returns to the trans driver()loop to locate and start execution of the next transaction program.� After all instruction streams have been activated, an event driven in�nite loop begins. Thisloop exits when there are no more executing transaction programs. Otherwise it waits forany I/O to occur via a select() system call using a clean copy of the tr async fds in bitmap.This call also takes as an argument the timeout value previously inserted into the trans tstructure. Note that no special timeout code has to be established as select() will completewith a return value of 0 if the timeout period passes without any message reception. In thiscase, timeout handler() is called to send out restart messages.� If the return value from select() is non-zero, one or more bits will be set in the tr async fdsmask corresponding to the sockets on which activity has occurred. A loop over the server info tarray uses system macro FD ISSET to compare the socket numbers used by each server withthe set bits in the mask. If the corresponding bit is set, instruction interpretation within thatserver's transaction program is restarted at its current instruction via exec pgm instructs().This routine drives all instruction interpretation activity subsequent to the initial acti-vate instruction stream() code.� Upon return from exec pgm instructs(), code that handled the results of an I/O and any codethat initiated a new I/O will have been executed. The instruction stream for the node willbe in a stalled state. If the return status from instruction interpretation is less than 0, anode has died. If the trans t structure was already in degraded mode it enters failure mode,otherwise it enters degraded mode. Whenever a node failure occurs, setup async io() is recalledto recompute the bitmap of sockets on which we wish to `listen'. This eliminates the nodesthat have died from participating in transaction execution.� This concludes the trans driver() routine. Clearly, most of the low-level operation occurswithin exec pgm instructs().



24 3. Swift/RAID Implementation Internals3.8.1 exec pgm instructsThis is the routine that drives instruction interpretation. It works as follows:� Context is established, including a global pointer to the current instruction, cur ins. This is anevent driven interpreter, so there is data to be retrieved from a socket. This data is obtainedby calling get message() in dgram.c. All transaction instructions (structures of type instruct t)have a valid bu�er address and length �eld (�elds ins buf and ins len). If get message() cannotbe completed, the corresponding node is assumed to have died. Routine get message() alwaysreturns the message `header' in addition to the variable length data bu�er. The message headercontains a copy of the remote instruction which resulted in the message.� The error protocol is now executed. If a message has been received that does not belong to thecurrent trans t structure, it is discarded. If the remote instruction is not part of a distributedinstruction pair that matches the current program, it is discarded. If the remote instruction is aRESTART, we call routine restart() to reset our execution location in the local program. If theremote instruction `matches' a PC less than the current local PC, we discard it as a duplicate.Recall that all instructions are tagged with a `match' PC. This is the PC within the partnerprogram with which they expect to execute in lockstep. If the remote instruction's `match' PCis greater than the current local PC an overrun has occurred and messages have been lost. Inthis case send restart() is called and the currently received message is discarded. Note that thelocal PC in this discussion is the PC located in the server info t structure which correspondsto the transaction program on which activity is occurring. The remote instruction's `match'PC is determined by examining the copy of the remote instruction located in the messageheader.� If we have discarded the received message, we do not proceed. Otherwise, a valid messagehas been received and post dispatch() is called to process that part of a stalled instructionwhich occurs after an I/O is received. After calling post dispatch() to complete interpreta-tion of the stalled instruction, condition codes in the appropriate server info t structure arechecked. If the HALT condition code is set, the transaction program has completed execution.In this case the count of executing transaction programs is decremented and control returnsto trans driver(). Otherwise, all possible instruction code is executed until an instruction stallcondition occurs. Instruction interpretation is driven by a loop similar to that found in acti-vate instruction stream(). This loop calls pre dispatch() to execute code on the instruction'sbehalf that either does no I/O or activates an I/O. As before, if the transaction programcompletes, the count of active programs is decremented and control returns to the in�nitetrans driver() loop. When an instruction stalls, control exits from the exec pgm instructs()execution loop.� Besides waiting on I/O, an instruction stream can be stalled because it previously exe-cuted a DELTA WAIT instruction. One of the uses of DELTA WAIT is to introduce ex-plicit timeouts to debug timeout handling code. DELTA WAIT puts a transaction programto `sleep'. To awaken the instruction stream, the appropriate server info t status is set toSVI RESTART and the global interrupt restart ag set. If this ag is set exec pgm instructs()calls restart instruction streams(). This routine simply scans the server info t array. Anyservers that have SVI RESTART status set have their condition codes cleared and their PC ad-vanced (thus skipping over the DELTA WAIT instruction). The activate instruction stream()routine is then called to execute the instruction stream until an instruction stalls.3.8.2 pre dispatchThis routine contains instruction functionality, i.e., this routine dispatches on the current in-struction opcode to execute code. The opcodes implemented here either do no I/O or initiate anI/O transmission. The pre dispatch() routine contains low-level opcode `primitives' that are speci�cto the Swift/RAID implementation. It works as follows:



3.8. trans driver 25� If there is a high-level opcode in the current instruction, pre hi handler() is called. Thisis not a transaction driver routine. It must be supplied in the Swift high-level code. Thepre hi handler() code executes prior to the low-level pre dispatch() code, so it can do whateverit wants with the current instruction.� If the opcode is READ DISK, the �le handle in the current trans t structure is used for anlseek to the location speci�ed by the ins byte loc opcode �eld of the instruction. The ins bufopcode of the instruction is set to a global work buf and a read of ins len bytes performed.Control then transfers to the common completion code which transmits the instruction and itsdata bu�er to the other side of the connection. This opcode is usually executed on the serverside of a transaction.� If the opcode is a WRITE CMD, control transfers directly to the common completion codewhich transmits the instruction and its data bu�er. The instruction has been assembled andthe data bu�er established by code at the Swift level. This instruction is usually encounteredon the client side.� If the opcode is a SEND SYNC, the instruction bu�er is set to point to a special sync bu�erthat is inside the server info t structure. This bu�er has a `magic value' (17) as its �rst byte.Control is transferred to the common completion routine which transmits the sync instructionand the sync bu�er.� If the opcode is MIGRATE PARTNER, control transfers directly to the common comple-tion code which transmits the instruction and its associated bu�er. The assembly routineloc compile() always assures that MIGRATE PARTNER is the �rst instruction in a client'slocal transaction programs. The bu�er and length operands of this instruction are set byt init pgm() to contain the remote program that has been assembled (the remote half of thelocal program). Thus executing this instruction sends the remote half of a server's transactionprogram to that server.� If the opcode is AWAIT SYNC, the bu�er and length opcodes of the instruction are set topoint into the sync bu�er within the server info t structure and the stall condition code is set.Control then returns to the caller of pre dispatch(). This server's transaction program will notexecute until the stall condition code is cleared. Note that the common completion code is notexecuted because no transmission is associated with this instruction.� If the opcode is DELTA WAIT, the instruction stream is simply marked stalled and controlreturned to the pre dispatch() caller.� The common completion code handles instructions which result in a transmission. The instruc-tion's operands, that is, the bu�er address and length �elds, are valid at this point. Routinexmit instruction() is called to build a message containing the instruction and its data bu�erand transmit the message to the destination node.� Upon completion of xmit instruct(), the instruction opcode is checked to see if CC END OF PGMis set. If it is this instruction is the last instruction in this server's transaction program, and thehalt status code inside the appropriate server info t structure is set. This will stop instructionexecution of this server's transaction program and give another transaction program a chanceto execute.� The last thing done by the pre dispatch() common completion code is to advance the PC. Thisis required since the dispatcher has completed execution of the instruction.3.8.3 xmit instructGiven an instruction with valid ins buf and ins len operands, this instruction bundles the instruc-tion and the bu�er into a message and transmits the message over the connection in the server info tstructure on whose behalf the instruction is executing. The message header has a standard formatwhich contains a transaction ID and a destination program ID. These are used by the receiving side'serror protocol. The entire instruction (an instruct t structure) is copied into the header. An instruc-tion is currently 30 bytes long. The routine send message() in dgram.c is then called to transmit



26 3. Swift/RAID Implementation Internalsthe header followed by the bu�er as a single message. The send message() routine uses the socketnumber in the server info t structure for transmission.3.8.4 post dispatchThis routine contains instruction functionality, i.e., it dispatches on the current instructionopcode to execute code. The post dispatch() routine executes instructions that execute after an I/Ohas been received. When a message is retreived in exec pgm instructs() by get message(), the stalledinstruction execution is resumed and post dispatch() dispatches on the opcode to �nish instructionexecution. It is important to recall that all data messages are expected messages, i.e., a message isalways `sent' to an instruction that has been assembled to expect that message. This is true evenwhen the data message is transmitted before the instruction is executed. Recall that the select()system call simply indicates which socket contains data, and subsequent get message() calls accessthis data when the instruction is executed by exec pgm instructs(). Routine post dispatch() worksas follows:� The stall condition code is cleared. The global cur ins points to the stalled instruction. Thereceived instruction in the message header is located (pointer rcv ins). This is a copy of theremote instruction that resulted in the received message.� Routine post hi handler() is called if the current instruction has a high-level opcode. Thepost hi handler() is de�ned in swift r5.c. The high-level code can do whatever it desires tothe instruction. If it sets the low-level opcode to NULL, low-level opcode dispatching will beskipped.� If the remote instruction opcode is a RESTART, the restart() routine is called and controlreturns to exec pgm instructs(). The restart() routine resets the PC within the current trans-action program. The current instruction (PC) will thus probably no longer be valid.� If the remote instruction opcode has the opcode bit CC PATCH PARTNER BYTE LOC setthe operand �eld ins byte loc is copied from the received instruction to the current instruction.This is tricky - one of the members of the distributed instruction pair is `self-modifying' theother. The support routine hot patch() in compile.c provides a clean way for Swift level routinesto assemble code that will do this. NOTE THAT THIS IS NOT USED IN Swift/RAID-5. Thistechnique was used for small write parity updates in Swift/RAID-4.� If the current instruction opcode is WRITE DISK, the instruct t �elds ins byte loc, ins buf,and ins len are used to perform the write I/O. A seek on the �le handle within the trans tstructure (tr �le) is performed to the speci�ed ins byte loc location, followed by a write of thebu�er.� If the current instruction opcode is READ RESULT, there is no additional work to do on behalfof the instruction. The bu�er was assembled so that received data was deposited directly intothe proper location in the user's bu�er.� If the current instruction opcode is AWAIT SYNC, a SYNC has hopefully been received. Thesync bu�er within the server info t structure is examined and the �rst byte checked to assurethat it is the `magic' sync value 17. If the CC CLOSE bit of the RECEIVED instructionopcode is set, the local trans t status is set to DONE, i.e., the connection is closed to furtherSwift �le functions.� With the exception of RESTART, all of the preceding routines terminate in a common handlerthat simply checks for the end of the instruction stream and advances the transaction program'sPC. The PC is located within the server info t structure corresponding to the program. TheCC END OF PGM bit in the opcode indicates the last instruction in the program. The haltcondition code is set if this opcode bit is 1.



3.9. compile.c 273.8.5 send restartWhen a timeout occurs, or a receiver detects an overrun (lost packets), routine send restart() iscalled to perform a `shoulder tap' on the partner transaction program. This routine simply handcraftsan instruction (a structure of type instruct t). The opcode (ins opcode) is set to RESTART and thebu�er set to the sync bu�er contained in the current program's server info t structure. The currentlocal transaction program instruction has a `match' PC that is the instruction on the remote side thatshould execute in `lockstep' with the current instruction. This value, ins remote pc, is placed in theins pc operand of the handcrafted instruction. The handcrafted instruction is then transmitted tothe cooperating transaction program via the standard xmit instruct() routine used for trans driver()message transmissions.3.8.6 restartWhen a RESTART instruction transmitted by send restart() is received, the restart() routine iscalled by exec pgm instructs. This routine simply sets the PC of the speci�ed transaction programto the value contained in the ins pc �eld of the received instruction (the `match' PC). Note that PC'sindex into the transaction program, i.e., they are not RAM addresses. The server info t structurecorresponding to the transaction program contains the PC and status codes. The status codes areinitialized to 0. This will cause instruction execution to resume on the speci�ed transaction programat the new location.3.8.7 interrupt restartThe interrupt restart() routine is not used by swift r5.c. This routine was used in conjunctionwith the DELTA WAIT instruction to simulate timeouts and debug timeout handling code. Thisroutine, when called by high-level swift r4.c code, e�ectively restarts a sleeping transaction pro-gram. The transaction program was put in the `sleep' state by the execution of the DELTA WAITinstruction.3.8.8 timeout handlerThe timeout handler() routine is called when the asynchronous `listen' performed by the systemselect() call in the trans driver() workloop receives no messages within the timeout period. Thetimeout period is speci�ed by the tr timeout �eld in the Swift �le's trans t structure. Routinetimeout handler() loops over all the server info t structures belonging to the trans t structure onwhich the timeout has occurred. The system macro FD ISSET is used to determine if we werelistening to the socket embedded in each server info t. The send restart() routine is called giventhe following conditions: 1) we were listening; 2) the corresponding transaction program is nothalted; and 3) the program's current instruction is not DELTA WAIT. Routine send restart()sends a RESTART instruction to the remote side to attempt to reactive the corresponding partnertransaction program. Thus, all transaction programs in the transaction plan will be restarted.3.9 compile.cThis �le contains three routines of primary interest: loc compile(), rmt compile(), and t init pgm().Routine loc compile() simply initializes the instruct t structure at the current local PC locationand advances the PC. All �elds initialized are supplied as arguments to loc compile(). If the currentPC is zero, a MIGRATE PARTNER instruction is generated before the instruction is initialized. TheMIGRATE PARTNER instruction will cause the `partner' transaction program to be transmittedto the remote node.Routine rmt compile() simply initializes the instruct t structure at the current remote PC locationwith values supplied as arguments, and advances the PC.



28 3. Swift/RAID Implementation InternalsThe loc compile() and rmt compile() routines should always be called as a pair. Each assemblesinto its instruction the PC that is current with respect to the other, that is, the two called as a pairwill assemble instructions considered a `match' pair.Routine t init pgm performs �nal �xup on a transaction program. It calculates the size of boththe local and remote programs, ORes the CC END OF PROGRAM ag into the last opcode ofboth programs, and sets both the local and remote PCs to 0.3.10 swift server.cThe program swift server.c must run on all the server nodes. The function of this program isessentially to receive transaction programs and fork o� a child that will use trans driver() to executethe program. The main() routine works as follows:� A socket is allocated using the global de�ne PUBLIC PORT. This is the socket that is usedfor connect messages.� The body of main() is an in�nite loop. It �rst calls build connection dbs(). This routine buildsa trans t structure. The trans t structure is allocated from heap. Since no core dir t structureexists, the instruction bu�ers and server info t bu�ers must be explicitly allocated as well.The trans init() routine is used to initialize the structure for transaction driver operations.� The server workloop waits on call get message() until a message is received. A received messageshould be a connection request that speci�es the name of a Unix �le that will be used to supportSwift I/O. This information is described in a connect t structure that constitutes the body ofthe received message.� When a message is received, the server immediately forks a child. When the child completes,routine free connection() is called to free up the trans t structure. The workloop is thenrepeated. Note that the child also frees the trans t structure when it exits, but that this doesnot e�ect the parent's heap (the child has a copy of the parents heap so its operations donot e�ect the parent). The trans t structure is allocated and initialized in the parent so as toprovide a minor performance enhancement, i.e., so allocation does not occur after a connectrequest has been received. The connect process is already slow, in that it involves a fork() andan open() call.� The child allocates a private local socket and connects this socket to the address of the client'ssocket using the system call connect().� The Unix �le is now opened, and the �le size determined. Routine send message() in dgram.cis used to reply to the client and return the local socket and �le information.� Once connected, any number of transactions may occur over the connection. Transactionprocessing will consist of a transaction program being received by the server, followed by theexecution of the transaction program.� The �rst message of every transaction will not be processed by the trans driver() routine. The�rst message of a transaction is the transaction program itself. This message is processed bybootstrap load(). Thus the heart of the child server is a loop that executes bootstrap load()followed by trans driver() until the trans t structure is marked DONE. Before this loop canbe started, an asynchronous `listen' mask needs to be established for bootstrap load(). Thisis done via setup async io(), which is discussed at the start of the section documenting thetrans driver().� Routine bootstrap load() performs a select() system call and uses the asynchronous mask andFD ISSET to determine which node has sent the message. See the trans driver() documenta-tion for additional detail. The get message() routine in dgram.c is then used to retrieve themessage into the appropriate instruct t bu�er (i.e., the program bu�er for the `remote' sidetransaction program). The server info t structure matching the node from which the programwas received is initialized to start executing the program at PC 0. The program is sanitychecked for consistency.



3.10. swift server.c 29� The one operand �eld of the received transaction program that compile.c could not assembleis the receive bu�er address for data blocks that are sent to a remote instruction from itsmatching local instruction. These operands are all set to the address of a receive work bu�er,buf 1.� The transaction driver has been previously described. See the tran driver() documentation.After this routine has been completed, the transaction is complete. Additional transactions,each corresponding to a Swift function request, are repeated using the bootstrap load() {trans driver() loop until the connection is closed.



30 4. Conclusions4. ConclusionsThe Swift/RAID system is an implementation of the core functions required for any RAIDsystem. The present system can be used as a basis for additional enhancements, research, andperhaps for applications. Things that remain to be done include:� After a node has failed, it needs to be periodically rechecked to see if it has returned tooperation. If so, a rebuild operation needs to be started and integrated with current operations.� The rebuild program can be written either as a separate utility or run as a concurrenttransaction program. Rebuild can be implemented by reading all the nodes in each stripother than the rebuild node and using parity to calculate the value to write to the rebuildnode.� It would be fairly straight-forward to provide a more realistic directory service than the use ofthe `plan' �le.� It would be straight-forward to add a client library cache which would permit byte-level userrequests. Such a cache should be designed so that transfers that are Swift �le block alignedwill bypassed the cache, i.e., such an I/O will performed in the same manner as a currentrequest.� Most timing conditions and timeouts can be forced using the DELTA WAIT instruction andinterrupt restart(). To bring the current Swift/RAID code up to `beta release' quality, thisshould be done and all such error handling code validated. The current Swift/RAID-5 systemhas had almost no such testing due to scheduling constraints. Such a cycle was performed withthe Swift/RAID-0 implementation and proved extremely e�ective.� Additional asynchronism and burst mode protocols can easily be investigated by eliminatingthe assembly of AWAIT SYNC and SEND SYNC instructions on a per read/write basis.The general conclusions that can be drawn from this implementation e�ort are:� RAID systems can be built in the distributed server environment typi�ed by Swift;� The distributed virtual machine approach described here solves the distributed concurrentprogramming problem to the degree necessary to program the RAID implementation;� The distributed virtual machine approach presents a non-trivial programming task that isreminiscent of low-level assembler programming or microcode programming. While this mayprove intimidating to some, it provides a solution guaranteed to work in the same sense thatmicrocode can be guaranteed to cope with hardware asynchronism.The last two items are not particularly new or surprising. Variants of the virtual machine tech-nique have long been used to implement multi-threaded servers in uniprocessor environments. Thepreceding conclusions con�rm observations that have been made numerous times in the uniprocessorcase, e.g., in [Allworth 81] and [Beizer 83].
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32 IndexIndexBld parity read program(): 20Ca test.c: 9Cdirs: 12Core dir t: 7Dgram.c: 5Distributed instruction: 3ENIAC: 3Error protocol: 4Exec pgm instructs(): 24Get text(): 12Instruct t: 8Interrupt restart(): 27Is empty(): 12Is white space(): 12Loc compile(): 27Motif: 5Pad write(): 17Post dispatch(): 26Pre dispatch(): 24RAID-4: 2RAID-5: 2Restart(): 27Rmt compile(): 27Send restart(): 27Server info t: 8Skip white(): 12Small writes: 2Span write(): 16Swift: 2Swift close(): 22Swift dir init(): 12Swift open(): 12Swift r5.c: 5Swift read(): 20Swift seek(): 14Swift server.c: 28Swift write(): 14

Timeouts: 4Timeout handler(): 27Transaction driver: 3Transaction plan: 3Transaction program: 3Trans driver(): 23Trans driver.c: 5Trans t: 7T init pgm(): 28Update write(): 17X-windows: 5Xmit instruct(): 25Xor update write(): 18


