The Swift /RAID Distributed
Transaction Driver

Bruce R. Montague

UCSC-CRL-93-03
1 January 1993

Baskin Center for
Computer Engineering & Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064 USA

ABSTRACT

This document describes a distributed transaction driver developed to support the
reimplementation of Swift with added RAID (Redundant Arrays of Inexpensive Disks)
functionality. Both a high-level overview and a low-level program description are provided.
The Swift system was developed to investigate the use of disk striping to achieve high 1/0
performance. The transaction driver described here has been used to implement RAID-
0, RAID-4, and RAID-5 Swift systems. Swift uses a network of workstations in a manner
similar to a redundant disk array, i.e., an application on a client node requests I/0 via library
routines which evenly distribute 1/O across multiple server nodes. Data blocks in RAID
files are distributed over the servers. RAID-0 contains no redundancy/parity information,
RAID-4 uses a dedicated parity node, and RAID-5 uses distributed parity. The original
Swift system used a straight—forward RAID-0 scheme that did not readily scale to RAID-4
and RAID-5 implementations. The transaction driver described here was developed to cope
with the distributed concurrent programming problems posed by these implementations. In
principle, this transaction driver can be used for a wide variety of distributed concurrent
programming problems.

Keywords: Swift, RAID, concurrent programming, transactions, distributed systems

CONTENTS

Contents

1. Conceptual Design of the Swift/RAID System

1.1 Imtroduction
1.2 The Problem
1.3 Transaction Driver Models L
1.3.1 The Virtual CPU Model
1.3.2 The Object Oriented Model
2. Introduction to the Swift /RAID Implementation
2.1 A Sketch of How Things Work
2.2 Using the Swift/RAID Library
3. Swift /RAID Implementation Internals
3.1 Imtroduction
3.2 swift_dirdnit ... L
3.3 swifteopen L
3.4 swiftsseek . .. L
3.5 swiftwrite . . . L L L
3.5.1 span_write
3.50.2 padowrite ... oL
3.5.3 update_write L
3.5.4 xor_update_write L
3.5.5 bldparityread_program L
3.6 swiftiread . .. L.
3.7 swift_close
3.8 trans_driver
3.8.1 execpgmdnstructs oL Lo o
3.8.2 predispatcho
3.8.3 xmitdnstruct Lo
3.84 post_dispatch
3.85 send_restart L
3.8.6 restarto
3.8.7 interrupt_restart
3.8.8 timeout_handler
3.9 compile.c ...
3.10 swift_server.c L

4. Conclusions

References

Index

(2 SNJURJCE SOR NV V)

- =

12
12
12
12
14
14
16
17
17
18
20
20
22
23
24
24
25
26
27
27
27
27
27
28

30

31

32

2 1. Conceptual Design of the Swift/RAID System

1. Conceptual Design of the Swift / RAID System

1.1 Introduction

Striping files across disks has been used for some time to increase disk throughput and balance
disk load. In such systems a write request ‘scatters’ write data across a number of devices while a read
‘gathers’ data from these devices. The number of devices that can participate in such an operation
defines the strip size. Recently, much work has been done using Redundant Arrays of Inexpensive
Disks (RAID) to provide reliable high performance disk storage [Katz, et al., 89]. High performance
is achieved by disk striping, while high availability is provided by the various RAID techniques, such
as RAID-1 (simple disk mirroring), RATD-4, and RATD-5. These latter two techniques keep at least
one parity block for every data strip. This parity data can be used to reconstruct an unavailable data
block in the strip. They differ in that RAID-4 uses a dedicated parity device, which can become a
bottleneck, while RAID-5 scatters parity data across the devices in the strip, thus achieving a more
uniform load.

A system called Swift was implemented in the Concurrent Systems Laboratory at UCSC during
1990-1991 [Emigh 92]. Swift was designed to investigate the use of disk striping to achieve the high
I/0 rates required by multimedia applications. The performance of this system was investigated and
reported in [Cabrera and Long 91]. The Swift system used striping only to enhance performance.
No parity schemes were supported, i.e., Swift i1s a RAID-0 scheme.

The original Swift system was modified in July through August of 1992 to use a very different
internal implementation. This new implementation was designed to support the addition of RAID-4
and RAID-5 functionality to Swift. This new implementation is based on a transaction driver. The
transaction driver was used to implement RAID-0, then RAID-4, and finally RAID-5 versions of
Swift. The RAID-0 and RAID-4 implementations were primarily used as scaffolding to develop the
RAID-5 implementation.

1.2 The Problem

Obtaining the fault tolerant advantages of RAID-4 and RAID-5 in the Swift network environment
is of obvious benefit. Indeed, workers in distributed systems have long been motivated by the effort
to design systems which tolerate node failure. However, it is not easy to maintain acceptable
performance when implementing RAID-4 and RAID-5 in the Swift environment. [Hartman and
Ousterhout 92] correctly note that no single location exists to accumulate parity, that update
operations, especially in the case of small random writes, require multiple network accesses to
correctly perform parity update, and that ensuring atomic update of data and parity blocks is

difficult.

Some of these drawbacks can be turned to advantage. For instance, in the case of small writes
the old and new contents of the data block need to be accessed, XOR’ed, XORed with the old parity
block, and the resulting new parity block written. In our current implementation, small write data
XOR’s are calculated on the nodes containing the data, thus taking advantage of parallelism in the
distributed environment.

The original Swift prototype used a straight-forward send-receive protocol essentially imple-
mented with matching in-line code. Transmission and timeout errors could be handled by a simple
retransmit. A RAID implementation is more complex. For instance, if a node failure occurs in the
midst of a write operation, the write operation must be altered to read all the nodes involved in all
strips in the I/O (including the parity data), and then write the new parity data. Likewise, node
failure during a read operation requires all the nodes in the strip, including the parity node, to be
read. This change in the I/O sequence must take place dynamically when the error occurs.

1.3. Transaction Driver Models 3
1.3 Transaction Driver Models

There are two ways to look at the transaction driver — as a distributed virtual CPU or as a set
of distributed objects. The distributed virtual CPU was the primary implementation model. In
this approach distributed programming becomes an exercise in the design and implementation of a
virtual instruction set. The distributed virtual CPU model is described here in some detail as it is
of great help when reading the source code.

1.3.1 The Virtual CPU Model

Some early computers, such as the ENTAC, were fully asynchronous machines. Programming
these machines proved so complex that the clocked synchronous model, commonly called the von
Neumann model, was developed. The Swift programming problem resembles that found on early
asynchronous machines. Indeed, computation and communication between the components of a
modern network may outperform that of early asynchronous machines. Thus, an approach worthy
of examination is to provide the programmer facilities similar to those developed by the hardware
engineers who evolved the synchronous instruction model.

In the synchronous instruction model a program consists of a series of instructions. FEach
instruction executes atomically, i.e., from start to finish without possibility of external interruption.
While the instruction executes, the instruction coordinates all asynchronous hardware activity
internal to the CPU that is required to complete the instruction. During this period the instruction
has total control of the machine. A small set of I/O instructions remain that are irreconcilable
related to asynchronous real-world hardware. Interrupts were developed to assist these instructions.
I/0 instructions activate asynchronous activity and then the I/O instruction immediately completes,
i.e., the instruction completes without waiting for the I/O to finish. Later, a hardware interrupt
will activate the machine at a known instruction location. This activation takes place at a very
specific time when both the hardware I/O has completed and an atomic instruction execution has
completed.

This model has been quite successful, although performance considerations are currently pushing
this model back towards including additional asynchronism, with the advent of multiple instruction
per cycle designs, deep pipelines and delayed branches; etc.

The transaction driver is a simple distributed virtual machine that performs in the preceding
manner. Each node executes a transaction driver. A transaction driver processes a sequence of
data structures, each containing opcode and operand fields. Such a sequence defines a transaction
program, with each structure specifying one logical instruction capable of executing atomically with
respect to network I/0. Logical instructions never block internally on network I/0. If an instruction
activates network I1/0; it immediately completes. Each transaction driver may concurrently process
an arbitrary number of transaction programs, i.e., the virtual machine defined by the transaction
driver is multiprocessed. In Swift/RAID, the transaction driver for a given node has one transaction
program active for every other node involved in the transaction. The transaction driver maintains
the equivalent of CPU context for all its transaction programs within the data structure i1t uses to
describe other nodes.

A transaction plan consists of a set of transaction programs cooperating to effect a distributed
system service. A request for system service, for instance a Swift read or write request, is treated
as a request to ‘compile’ a suitable transaction plan satisfying the service request. The transaction
plan is compiled on the single node issuing the request. Compilation is achieved by calling simple
routines containing assembler-like functionality. Two transaction programs are compiled for every
node involved in the requested operation. One program will remain on the local node while the
other will be transmitted to the remote node. This pair of transaction programs coordinate activity
on the remote and local nodes in such a way as to complete that part of the transaction involving
the remote node. Note that the message sent to the remote node 1s simply the program required to
satisfy the request.

4 1. Conceptual Design of the Swift/RAID System

Most transaction instructions are part of a distributed pair of instructions, with one instruc-
tion on the remote node corresponding to one instruction on the local node. Such a pair defines
a distributed instruction. This instruction can be thought of as a single instruction consisting of
multiple control fields routed to different execution units or it can be considered a conventional in-
struction coordinating with a co-processor instruction. If an error occurs anywhere in the distributed
instruction, the entire distributed instruction is restarted.

Each transaction driver interprets transaction programs by walking a virtual PC through the
transaction program, executing code corresponding to the current opcode. A set of basic opcodes
are predefined by the transaction driver. In the case of Swift these are essentially Read, Write, and
Synchronize. The implementor designs a system by defining transaction programs using the basic
opcodes and, when necessary or convenient, by defining additional custom opcodes. Note that when
an instruction executes it has complete access to any system data without need of synchronization
since each instruction constitutes a critical section.

All communication between nodes 1s supervised by the cooperating transaction drivers. The
transaction driver, using an interface to the underlying communication system, is responsible for
managing the transmission and reception of both transaction programs and the communication
required to effect the transaction programs. The transaction drivers handle nacks, retransmits, and
timeouts. Higher level code (i.e., transaction programs and both predefined instruction and custom
instruction code) never has to deal with acks, nacks, etc., similar to the manner in which assembler
programmers do not deal with internal machine timing and most hardware error recovery. All code
requiring communications programming has been collected into the transaction driver.

The operation of advancing the virtual PC includes assuring that required communication has
occurred. All T/0 is activated asynchronously. The transaction driver never blocks awaiting I/0 if it
has any other virtual PC’s that it can advance. As soon as any communications activity completes,
the transaction driver attempts to advance the effected transaction program’s PC.

Communication failures result in timeouts or garbaged reception. Both result in PC resets
occurring within both the local and remote transaction programs. This is effectively a nack, resulting
in a resync of the distributed program. Note that a transaction program is never discarded until
the program has successfully completed execution. This implies that burst mode protocols where
immediate acknowledgments are not required are possible.

The error protocol is now described in more detail. The following two situations exist:

e Timeout: Since instructions are executed in ‘the pipe’ till we block awaiting communication
completion, all timeouts correspond to a given local instruction that is blocked (stalled). This
instruction is part of a distributed instruction pair, and at transaction program compilation
time the PC’s of both the local and remote instructions that make up the pair are known.
Each instruction is tagged with the PC of its distributed partner instruction. This format
i1s somewhat remenisent of drum machines where each instruction contained the PC of the
next instruction. Upon timeout, a RESTART request 1s sent to the other transaction driver
containing the PC of the remote instruction at which the cooperating transaction program
should resume execution. Effectively, a RESTART forces a jump to a predefined location in
the remote transaction program, syncing both the local and remote halves of the distributed
transaction program.

e Out of Order packet. The header of each received packet contains a copy of the remote
instruction that resulted in the packet’s transmission and a target transaction program ID.
The remote instruction copy contains the PC of the local instruction corresponding to the
remote instruction (the match PC). If the local node does not have the given transaction
program, the packet is assumed to be really lost and is discarded. If the incoming match PC
is less than the current PC, the packet is assumed to be a duplicate and is also discarded.
If the match PC is greater than the current PC, some packets have been lost, perhaps due
to overrun. The packet is discarded and a RESTART sent to the remote side containing the
remote PC corresponding to the current local PC.

Upon reception of a RESTART the local PC of the corresponding transaction program is simply

forced to the indicated PC. Note that nothing keeps track of whether a RESTART has been

1.3. Transaction Driver Models 5}

transmitted other than a timeout. If the restart is lost, a timeout to the same blocked instruction
will reoccur and another RESTART will be generated. After transmitting a RESTART, either
communication from the expected remote instruction is received, in which case we proceed, or
another out of sync instruction is received, in which case a new RESTART 1s issued. If a RESTART
is received while awaiting the response from a RESTART, the received RESTART is respected, and
the local PC reset. Note that restarts can never ‘unwind’ activity back past the beginning of the
current transaction program.

1.3.2 The Object Oriented Model

Object oriented systems are becoming widely used to implement direct manipulation windowing
applications. In such an environment multiple ‘real-time’ events (such as mouse movements, button
clicks, and key strokes) may impact a large collection of program objects (windows, icons, menus,
etc.). The object oriented system sorts out the mapping of real-time events to program objects. In
theory, the programmer just defines simple self-contained reactive objects and the object oriented
system provides the real-time program skeleton that dispatches events to the appropriate object at
the appropriate time. Many ugly real-time issues can thus be avoided by programming to the object
oriented system. This aspect of object oriented programming harks back to the initial use of object
orientation to support simulation environments.

An example of a current object oriented environment is X-windows. The layers of a typical
X-windows protocol stack are:

e X lib — distributed I/O primitives.

e X Intrinsics — ‘real-time’ object oriented dispatcher, and basic object set (widgets).

o Motif — Full widget set defining a specific look and feel.

In theory, it is easy to implement alternative look and feel environments by simply writing
alternate widget sets at the Motif level. The real-time aspects of the windowing system have been
hidden in the X Intrinsics layer and its basic widget set.

Consider the following Swift/RAID functionality stack, analogous to the previous X-window
stack. The indicated files contain the corresponding Swift/RAID-5 functionality.

e dgram.c — Network I/O primitives.

e trans_driver.c — The transaction driver, which implements the real-time event dispatcher, distributed objects,
and a basic object set.

e swift_rs.c — Provides the object set and functionality specific to RAID-5 (as opposed to RAID-4, for instance).

The above 3 files are the core of the Swift/RAID-5 implementation. There is one additional
support file, compile.c, which provides primitives to assemble transaction programs. Each server
node in a Swift/RAID system runs a generic server, file swifi_server.c. The server’s primary function
is to simply run the transaction driver. The above files are linked into a library, ¢trans.a. Both the
generic server and client application programs link to this library. Aside from .4 and debug files,
these are the only files in the Swift/RAID implementation.

A motivation for this layering is to support experimentation with different RAID schemes simply
by replacing the swift_rs.c file (for instance, with swift_r4.c), in the same manner that X-windows
supports multiple look and feel implementations.

Unlike an object oriented system intended for a user interface, which is usually functionally rich
and often suffers from poor real-time performance, the object orientation provided by trans_driver.c
is very lightweight and specific to the Swift/RAID requirements.

All Swift entry points, (swift_open, swift_read, swift_write, etc.), are located in swift_r5.c. When
an application issues a request to one of these procedures, swift_rs generates both a set of objects
and a set of logical events. When the events drive the objects to completion, the request is satisfied.
The object definitions contain the object’s methods. Objects are instantiated using the functions
in compile.c. Events are controlled by the order in which objects are assembled into sequences as a
result of swift_rd flow of control. A specific event will occur when the object to which it corresponds
is the current object in the sequence. Note that at this level events are high level logical events, e.g.,
‘write a remote file block’.

6 1. Conceptual Design of the Swift/RAID System

The trans_driver() routine in trans_driver.c hides real-time object invocation, object sequencing,
object distribution, and communication between distributed objects. Most Swift/RAID objects can
be considered as one element in a pair of objects, one local and one remote. This distributed pair
constitutes a distributed object. When a method of one of the objects is invoked, it results in
activity at both objects. The trans_driver() handles all physical events that tie the pair together,
such as message invocation, timeouts, and retransmit requests. These low level events are not seen
by the programmer dealing in logical events at the swifi_r5 level. The swift_r5 programmer does see
node failure as an event since this requires restarting a Swift request using a different approach, i.e.,
performing parity calculations to restore data.

The trans_driver.cfile also includes the basic primitive objects used to implement any Swift/RAID
system. These are basically Read, Write, Await Sync, Send Sync, and Delta Wait. A method code in
each object indicates what the object is and what code 1s required to execute the indicated function.
In addition to the above exported functionality, internal methods are provided for restart, migrating
objects, and termination. These objects provide minimal encapsulation. They all contain 3 data
fields that are usually data values or pointers to external resources such as buffers.

As with Motif widgets inheriting functionality from an X Intrinsics class widget, it 1s often the
case when experimenting with a RAID protocol at the swifi_rd level that a slight modification to
primitive object behavior i1s required. An example is the operation ‘read the old block and xor with
the new data before writing the new data’. To support this operation, consider the trans_driver.c
functionality as a base class and the swift_rj level code as a derived class. At each level functionality
exists and methods can be executed. Objects defined by tran_driver.csupport a swift_rjlevel method
code. As in any object oriented system, trans_driver() invokes the methods as required, effectively
walking down the class stack and invoking all applicable methods.

The event dispatcher in a real-time object oriented system is often the system bottleneck. Given
an event, it must identify which object is effected and what method of that object should be invoked.
This problem is avoided in Swift/RAID by preordering all objects in sequences such that the objects
are in exactly the order in which they will be required. This is possible because swift_rd totally
prespecifies the ordering in which logical events are to occur and the trans_driver() always deals
with low level events with respect to the current object.

2. Introduction to the Swift /RAID Implementation

2.1 A Sketch of How Things Work

Every server node supporting a Swift file must have a running swift_server. There is a single
Swift server program, swifi_server.c. It is linked with the correct Swift/RAID library to produce a
different version of the swifi_server for each RAID implementation. For Swift/RAID-5 the resulting
server 18 swift_rd_server. The application program is also simply linked to the Swift library that
contains the appropriate Swift/RAID code.

Every Swift file the application opens has a core_dir_t structure maintained by the library. The
Swift/RAID-5 core_dir_{ structure is shown in Figure 2.1.

There i1s a different core_dir_t structure for each RAID implementation. The core_dir_t structure
roots all data structures involved in the file’s operation. File location, file status, node failure
information, and the node and filenames of the Unix files that make up the Swift file are all described
by the core_dir_t structure. The core_dir_t structure also includes a trans_t structure that roots all
transaction driver activity. The format of the {rans_t structure i1s shown in Figure 2.2. The trans_t
structure contains asynchronous I/O masks, timeout values, and pointers to all transaction programs
and transaction program contexts. The transaction driver is not aware of the format of the core_dir_t
structure.

The core_dir_t structure contains arrays of instruct_t structures. The format of an instruct_t
structure is shown if Figure 2.3. Transaction programs are constructed using elements from these
arrays. There are two transaction programs assembled for every node involved in an I/O. The two
constitute the halves of a cooperating distributed program. One transaction program will run on the
local node and one on the remote node. The instruct_t buffers contained in the core_dir_t structure
are divided up so that instructions are assembled contiguously. Instructions are not on linked lists.

typedef struct core_dir_t {

int cd_status;

char cd_swift_name[30];

long cd_block_size;

long cd_cur_file_loc; /* Location in bytes within file. */

int cd_send_ahead;

int cd_num_nodes;

long cd_file_len; /* Existing len of dist file in bytes. */
int cd_failed_node;

int cd_rebuild_flag; /* 1=writes have occurred w/node down */
char *cd_missing_buf;

char *cd_parity_bufs;

char *cd_pad_blk;

char *cd_wrk_blk;

char cd_node_names[MAX_NODES][18];

char cd_file_names[MAX_NODES][FILE_NAME_LEN];

int cd_node_status[MAX_NODES];

trans_t cd_trans;

instruct_t cd_pgm_buf[NUM_INSTRUCTS];

instruct_t cd_remote_pgm_buf[NUM_INSTRUCTS];
server_info_t cd_server_buf[MAX_NODES];

strip_t cd_strip_info[MAX_XFER_STRIPS];
short cd_sanity;

} core_dir_t;

Figure 2.1: The Swift/RAID-5 core_dir_t structure.

8 2. Introduction to the Swift/RAID Implementation

typedef struct transaction_t {
int tr_status;
int tr_num_servers; /* Total number of servers. */
int tr_server_id; /* Our server ID */
long tr_trans_id; /* Current trans ID. */
fd_set tr_async_fds_in;
fd_set tr_async_fds;
int tr_max_£fd;
server_info_t #*tr_server_info; /* Base of server array. */
instruct_t *tr_local_pgm; /* Base of 2d instruct array. */
instruct_t *tr_remote_pgm; /* ditto for remote pgms. */
int tr_max_pgm_len; /* longest # of instructions */
int tr_num_cur_pgms; /* # of execing transact pgms.*/
int tr_file; /* File handle of backing str.*/
char *tr_callback_data; /* (cdir, ...) */
struct timeval tr_timeout; /* sec/usec */

} trans_t;

Figure 2.2: The trans_t structure.

typedef struct instruct {
int ins_opcode; /* CC_XMIT */
int ins_extern_op; /* upper level protocol operation. */
int ins_pc; /* # of this instruction */
int ins_remote_pc; /#* Instruction paired with. */
char *ins_buf; /* operand 1 */
long ins_byte_loc; /* operand 2 */
long ins_len; /* operand 3 */
short ins_sanity; /* ID for sanity check. */

} instruct_t;

Figure 2.3: The wnstruct_t structure.

The core_dir_t structure contains an array of server_info_t structures. The format of these structures
is shown in Figure 2.4. One of these structures is used to describe every node involved in support
of the Swift file. The server_info_t structure contains the socket used to communicate with the
node and the PC and status codes that provide virtual machine context for executing the local
transaction program corresponding to that node. Each of the server_info_t structures corresponds to
an array of local instruci_t instructions and an array of remote instructions. The first instruction in
the local transaction program usually causes the remote instructions to be transmitted to the node
described by the server_info_t structure. Note that when a Swift I/O request has been converted
into a transaction, the total number of transaction programs under execution will be two times the
number of nodes supporting the file, 1.e., a local and remote transaction program for every node. All
these transaction programs will be executing concurrently, and the distributed transaction program
for one node may be executing at a very different rate from the transaction programs supporting
another node (perhaps due to performance differences).

The Swift/RAID-5 core_dir_t structure contains an array of type strip_t that provides status
information and parity calculation support for every strip involved in a single I/O. Note that a
single Swift T/O can span many Swift file strips.

When the application issues a Swift request, the Swift library ‘assembles’ the transaction pro-
grams required to complete the transaction. The transaction driver then executes these programs.
As the transaction driver advances through the instruct_t structures, it dispatches code as indicated
by the instruction opcode. If an instruction initiates I/O it stalls. In this case, the transaction driver
begins execution of another transaction program. Because the complete ‘program’ of the transac-

2.2. Using the Swift/RAID Library 9

typedef struct server_info_t {
int svi_status;
int svi_server_num; /* O..n array index of self. */
long svi_file_len;
int svi_dest_pgm; /* # of corresponding (dest) program */
int svi_num_local_inst;
int svi_num_rmt_inst;
int svi_socket_num; /* Socket to communicate with given server. */
int svi_server_id; /* Server’s ID. */
address_t svi_address; /* dest Network port address */
int svi_pc; /* Current instruct in pgm. */
int svi_remote_pc; /* PC on other side (remote) cooping with. */
char svi_cc_stall_inst; /* Condition code - stall. */
char svi_cc_halt; /* Condition code = Halt. */
char svi_sync_buf[4];/* Rcv RESETs into here... */
short svi_sanity;

} server_info_t;

Figure 2.4: The server_info_t structure.

tion has been computed in advance, unexpected data I/O never occurs, that is, when a message
is received, the operands of the current (usually stalled) instruction in the transaction program on
whose behalf the message is received have been assembled so that the data will be delivered directly
to its final destination.

All Swift entry points thus consist of two phases: a compilation phase in which compile. c routines
loc_compile() and rmi_compile() are used to assemble transaction programs, and an execution phase
driven by a call to trans_driver().

2.2 Using the Swift /RAID Library

A Swift/RAID application is shown in Figure 2.5. This application simply writes the first strip
in the Swift file 1000 times. The ca_test3 Swift data file uses 3 nodes and has an 8K byte blocksize.
Each strip thus consists of two 8K data blocks and a parity block. This test program performs a
‘full strip” write.

The syntax of the Swift functions is shown in Figure 2.6. With the exception of swift_dir_init()
these calls are all analogous to the corresponding Unix file calls. The only difference between Swift
and Unix file I/O of which the programmer must be aware is that the swift_read() and swift_write()
calls must occur in multiples of the blocksize specified in the ‘plan’ (directory) file.

The bulk of the Swift/RAID functionality in all 3 implementations is located in the swift_read()
and swift_write() routines.

A Swift ‘plan’ file is shown in Figure 2.7. In this plan file, tesi_01.dat is a Swift/RAID-0 file,
test_03.dat is a Swift/RAID-4 file, and ca_test4 is a four node Swift/RAID-5 file. Note that all
nodes in the Swift/RAID-0 file have a DATA keyword at the end of the line. In the Swift/RAID-4
file, the user specifically indicates which node is to be the parity node via the PARITY keyword.
For Swift/RAID-5 files, all nodes are denoted as Rb nodes. File definitions for Swift/RAID-0,
Swift/RAID-4, and Swift/RAID-5 can all be included in the same plan file. This greatly facilitates
testing and comparison.

10 2. Introduction to the Swift/RAID Implementation

/* ca_test_0l.c */

#include <stdio.h>
#include <fcntl.h>

#include "swift.h"

#include '"swift_test.h"

char *pgm_name = "ca_test_01";

char buffer[16*8192];

long start_mikes, end_mikes, delta_mikes, mikes_per_cycle;

int num_iterations;
double tot_bytes;

R */
main(int argc, char #*argv) {

int fin;

int stat;

int i;

PRINTF "\n ca_test_01. 3 node write timing loop. \n");

stat = swift_dir_init("plans");
if(stat < 0) crash("Can’t access directory!");

fin = swift_open("ca_test3", O_RDWR, O);
if(!fin) crash("swift_open");

start_mikes = get_mikes();
tot_bytes = 0.0;

for(i=0;i<1000;i++) {

stat = swift_seek(fin, OL);
if(stat < 0) crash("swift_seek");

stat = swift_write(fin, buffer, 248192);
if(stat < 0) crash("swift_read");

tot_bytes += 2 * 8192;
} /* end for */

end_mikes = get_mikes();

swift_close(fin);

delta_mikes = end_mikes - start_mikes;

PRINTF "\n Microseconds: %1d. ", delta_mikes);

PRINTF "\n Seconds: %E ",
((float)delta_mikes) / 1000000.0);

Figure 2.5: An Example Swift/RAID Application.

2.2. Using the Swift/RAID Library

swift_dir_init(swift_directory_file_name);

swift_open(swift_file_name, file_flags, file_mode);

swift_seek(swift_handle, swift_file_location);

swift_write(swift_handle, buffer, bytes);

swift_read(swift_handle, buffer, bytes);

swift_close(swift_handle);

Figure 2.6: Swift/RAID Function Syntax.

// Swift plan file

serverl filel : ... : servern filen;

/wrk/brucem/swift_test.dat DATA
/wrk/brucem/swift_test.dat DATA

/wrk/brucem/swift_test.dat DATA
/wrk/brucem/swift_parity PARITY
/wrk/brucem/swift_test.dat DATA

/urk/swift_test/ca_test_r5_04.dat
/urk/swift_test/ca_test_r5_04.dat

1/

// This described a set of distributed Swift files

1/

// Format:

// plan-name block-size send-ahead

test_01.dat 8192 1 maple
oak

test_03.dat 8192 1 maple
oak
fern

ca_test4 8192 1 maple
cedar
fern

/urk/swift_test/ca_test_r5_04.dat

dogwood /wrk/swift_test/ca_test_r5_04.dat

Figure 2.7: The Swift/RAID Plan file.

R5
R5
R5
R5

11

12 3. Swift/RAID Implementation Internals

3. Swift /RAID Implementation Internals

3.1 Introduction

This section is intended to be read in conjunction with a study of the Swift/RAID code. The
code narratives in this section are intended to convey the ‘middle-level’ detail that is all to often
lost between high-level conceptual exposition and detailed source code commentary.

3.2 swift_dir_init

The swift_dir_init() routine parses an ASCII file and builds a RAM resident description of known
Swift files. The file, called a ‘plan’ file, maps Swift file names to node names/Unix pathnames.
The format of swift_dir_init() is:

swift_dir_init(swift_plan_file_name);

When called, swift_dir_init(} works as follows:

e The specified plan/directory file is opened. Each Swift file will be described in RAM by a
core_dir_t structure. These structures are organized in an array, the cdirs array. The cdirs array
is cleared. Note that contiguous lines in the directory file are used to specify the components
(nodes and files) that make up the Swift file. Each component is described on one file line.

e The open file is read via a loop that uses fgets() to read lines of the file. Maximum record
length is 120 bytes. Empty lines and lines that begin with a /” are skipped.

e The routines is_empty(), is_white_space(), get_text(), and skip_white() are used to parse the
record. Routines get_text() and skip_white() scan a pointer through the record. Routine
get_text() places contiguous text at which the pointer is currently pointing into an argument
buffer, advancing the pointer over the text.

e The buffers filled by get_text are either copied into fields of the current core_dir_t structure,
or converted to numeric fields. The core_dir_t structure contains two arrays that specify the
nodes and the file pathnames of the components making up the Swift file. These are the
ca_node_names and ca_file_names arrays.

e Status fields are initialized, the count of directory entries is updated, and the next record
parsed. Upon completion of file processing, the plan file is closed.

3.3 swift_open

The syntax of swift_open() is:

swift_open(swift_file_name, file_flags, file_mode);

When called, swift_open()} works as follows:

e The cdirs array is scanned and file names compared. If a core_dir_t structure is not found with
the identical name, an error (-1) is returned.

e The core_dir_t structure is initialized for file operations (the current location set to 0 and failed
node count set to -1).

e The transaction driver routine trans_init() is called. This routine takes elements of core_dir_t
as arguments and does the following:

— Computes the maximum buffer size available for ‘compiled’ transactions. There are two
buffers within a core_dir_t in which transactions are compiled, one for local transaction
programs and one for remote transaction programs. Each of these buffers is divided by
the number of servers participating in the Swift file to form sub-buffers into which each
server’s specific transaction programs will be assembled.

3.3. swift_open 13

— Every open file has a trans_t structure that roots all transaction driver activity. This
structure 1s embedded within the core_dir_t structure. It 1s now zeroed as are the program

buffers.

— An array of type server_info_t is also embedded in structure core_dir_t. These elements
are used to describe that status of every other node involved in the Swift file. Included
in this status is the status and context of the local transaction program communicating
with that node. Note that when a transaction plan is generated, there will be a local
transaction program for every node involved in supporting the Swift file. The server_info_t
array 1s zeroed.

— The ins_sanity field in all the instruction structures (instruci_t) in the instruction buffers
is set to INS_TAG. This value is used as a sanity check whenever an instruction is passed
as an argument or transmitted. Note that transaction programs are assembled into these
mstruct_t arrays.

— The fields in the trans_t structure are now all initialized to reflect its ‘open stream’ status.
Since the transaction driver operates without knowledge of the core_dir_t structure, the
tr_callback_data field in the trans_t structure is set to point to the core_dir_t structure
in which the trans_t structure is contained. This field is used by high-level (Swift-level)
opcodes (as opposed to low-level transaction driver opcodes).

e The transaction driver routine connect_to_node() is now called. This is a very simple routine.
It loops over the node and pathname arrays in the core_dir_t structure. For every node
participating in the Swift file, routine connect_to_node() is called. This routine contains low-
level dgram.c code, which performs straight-forward UDP socket connection. Connection is
established to every server node in the following manner:

— A timeout handler, con_timeoui_handler(), is established that will handle SIGALRM.

— Routine get_node_address() in dgram.c is called. Tt forms a network port address in the
address_t field of the server_info_t structure. The global define PUBLIC_PORT specifies
the port on the server node and the gethostbyname() system routine obtains the server
address.

— A local private datagram socket is allocated using system routine bind_socket().

— All Swift/Raid messages use only two communication routines - send_message() and
get_message(). These routines are located in dgram.c. Routine send_message() takes
as arguments the local private socket address, the remote socket address, a standard
transaction header, and a variable sized transaction body. Routine gei_message() is
the inverse, with the address of the remote socket from which a message was received
being returned. Both these routines communicate using two buffers - the first contains
or receives a fixed sized header, and the second contains or receives a variable length
message.

— A “forever’ loop is entered that will only loop if a timeout occurs. This loop sends a connect
message to the remote public socket. The body of the message is of type connect_t, which
specifies the remote file name and open flags. A longjump buffer is then established
to handle timeouts, an interval timer activated, and a get_message() call issued. The
get_message() will block until a message is received. If the timeout occurs, SIGALRM
will cause con_timeout_handler() to run which simply notes the timeout failure and, if
no more than 4 timeouts have occurred, longjumps back to resend the connect message.
When a response message from the remote server is received, the system connect() call
is used to connect the local private socket to the remote local socket address returned
by get_message(). The timer countdown is aborted and the SIGALRM handler revoked.
Note that the remote server will have forked a copy of itself that communicates via a
remote private socket rather than the PUBLIC_PORT socket.

— If the received connect message status is successful, the remote Unix file has been opened
by the server. If not, Swift error exits. The body of the message received by get_message()
is of type file_info_t. This structure contains the length of the subcomponent file located

14 3. Swift/RAID Implementation Internals

on the server. The sum of all these file lengths constitutes the total Swift file length. This
information is needed for file operations such as swift_seek().

— The local socket number is stored in the server_into_t structure and the status of the
structure set to ‘connected’.

e Upon completion of connect_nodes, the total Swift file size is accumulated by adding up the
local file sizes stored in the server_info_t structures.

o Swift RAID-b requires two work buffers for each open file. These buffers, cd_pad_blk and
cd_wrk_blk are malloced and attached to the core_dir_t structure.

e The Swift file handle returned from the swift_open() call is simply the index in the cdir array
of the file’s core_dir_t structure.

3.4 swift_seek
The Swift seek call has the following form:

swift_seek(swift_handle, swift_file_location);

The implementation of this call is trivial. The handle is used to locate the corresponding core_dir_t
and the ed_cur_file_loc field 1s simply set to the specified file location. No network or transaction
activity occurs. Note this implies that no Unix ‘common file pointer’ semantics are associated with

the Swift file.

3.5 swift_write

The swift_write() routine writes blocks that are multiples of the Swift file blocksize. The definition
of a Swift file specifies this size in bytes. A read or write can occur in any multiple of this size.
Attempting to read or write a blocksize that is not a multiple of the file blocksize is an error. The
syntax of swift_write() is:

swift_write(swift_handle, buffer, bytes);

When called, this routine works as follows:

e The file handle is used to locate the corresponding core_dir_t structure, and the structure is
sanity checked. If the file is in CD_FAILED mode, more then one node has failed and an error
is returned.

e The trans_t structure contained within the core_dir_t structure manages all transaction driver
activity with respect to the Swift file. If the transaction status is TR_.DEGRADED, one node
has been lost and the cd_rebuild_flag is set. Currently nothing is done with this flag. In the
future, every so many seconds or perhaps every so many Swift 1/O calls, reconnection to the
failed node should be attempted. Upon successful reconnection, a RAID rebuild phase should
be activated.

e The dist_program_init() routine loops over every of the core_dir_t’s active server_info_t struc-
tures. Routine init_svi_pgm()in compile.cis called for each server_info_tstructure. This routine
simply clears the ‘code exists’ flag for the node, and sets the transaction program PC and the
local and remote instruction counts to 0. Code can now be ‘assembled’ into the server buffers
using compile.c routines.

e The particulars of the requested I/O are calculated, i.e., items such as start_strip, end_strip,
start_block, and end_block are calculated. The request has now been converted into a request in
physical RAID parameters. Note that large I/O requests often will span multiple contiguous
strips.

3.5.

swift_write 15

Depending upon the implementation, the base of the parity buffer array is either set to a work
buffer or simply malloced. There needs to be one parity buffer for every strip involved in the
I/0. The parity buffer is the same size as the Swift file granularity. The performance of malloc
does not seem to be a big hit here, but the code is set up to support either approach. Field
cd_parity_bufs roots the parity buffer array.

If the current I/O starts beyond the logical end-of-file byte for the Swift file, a flag is set to
indicate the Swift file needs to be extended to the appropriate size.

An array of type strip_t located in the core_dir_t structure is initialized. This structure reflects
the status of the I/O operation with respect to each strip.

A loop that scans all strips involved in the T/O is the heart of the swift_write() logic which
assembles the transaction programs to effect the write. This loop is now executed. For all
strips involved in the 1/O, the start block within the strip and the end block within the strip
are identified. This results in 3 different situations which are handled as follows:

— If the entire strip in involved in the I/O (all the blocks in the strip need to be written),
span_write() is called. Note that in this case we will not need to read any parity
information since we can calculate parity for the entire strip from data in the user’s
buffer. Note that the written strip may become the new end-of-file strip.

— If I/O into the strip will extend the file (the strip will become the new end-of-file strip),
pad_write() is called. This will occur whenever the end of the I/O transfer occurs within
the strip one past the current last strip in the file. Note that pad_write() will write all
blocks in the strip, even if the I/O does not specify that the I/O fill the strip. This strip
will become the new end-of-file strip. Note that in this case we do not need to read any
parity information since we can calculate parity for the entire strip.

— If both the start and end of the I/O occur within the strip, update_write(}is called. Note
that in this case we may need to read the parity node. In this case flag parity_update_flag
is set.

All 3 of the previous routines compile transaction programs appropriate to their circumstances.
They will be described later.

Upon completion of the loop assembling instructions for all strips, a loop is executed that
calls {_init_pgm for all servers involved in the I/O. This routine simply performs program
fixup, which consists of calculating the size of both the local and remote programs, ORing
the CC_LEND_OF_PROGRAM bit into the last opcode of both programs, and setting both the

local and remote PCs to 0.

Routine trans_driver() is then called to process the trans_t structure and its associated trans-
action programs. This routine will have the effect of concurrently executing all the transaction
programs that have been assembled. Discussion of this routine is presented in the section on
trans_driver().

Upon completion of the trans_driver() call, all blocks in all strips have been written. Note
however, that the parity information may not yet have been written (i.e., in the case of up-
date_write(}). There is an opportunity here for additional concurrency in the implementation.

If the parity_update_flag 1s set, only part of the strip was written and a parity update cycle
is therefore performed. This is done by calling dist_program_init() to reinitialize transaction
programs, bld_parity_read_program() to assemble the required parity update programs, and
then trans_driver() to execute the parity update. Routine bld_parity_read_program() will be
described later.

Upon completion of the preceding, the parity buffer array is freed if one was allocated. If
the I/O completed successfully, the current file location is incremented by the size of the I/0.
The file length is updated if the file has been extended. A successful completion returns from
swift_write() at this point, returning the length of the I/O to the caller.

If the trans_t structure is marked as failed, we mark the core_dir_t structure as failed, and
swift_write() returns with a failure. This usually indicates more than one node has failed.

16 3. Swift/RAID Implementation Internals

e The only other alternative to the preceding two steps is that a single node has failed. The sys-
tem then puts the Swift file in DEGRADED mode. It does this by scanning all the server_info_t
structures belonging to the core_dir_t and locating the one with status SVI.NODE_DEAD. If a
call to trans_driver() returned with a DEGRADED status, we are guaranteed to find one such
node. The cd_failed_node field of the core_dir_t structure is set to indicate this node. Control
then transfers back to the top of swift_write() and the entire I/O request is reprocessed. Since
the file 18 now in DEGRADED status, the transaction programs assembled will be different
and will reflect the required use of the parity node. In this manner the swift_write() will cope
with a node loss occurring while the write is in progress.

Support routines for swift_write() are now described.

3.5.1 span_write

This routine is called when the I/O spans the entire strip. In this case parity can be calculated
directly from the user’s buffer. This routine works as follows:
e The parity buffer corresponding to the current strip is located in the parity array.

e For all the data nodes in the strip, the block within the users buffer that is to be written to
that node is located, and do_parity_cale() called to accumulate parity into the strip’s parity
buffer. The first time do_parity_calc() is called it simply copies the input data block to the
output parity block. Thereafter it performs an exclusive OR, of the input data block and the
parity block.

e The location of the parity node within the strip is now calculated. This is done via a simple
modulo calculation. Given the absolute strip number and the number of servers, the parity
node is located at ‘strip % num_servers’.

e If the parity node has failed, the code to write the parity node is skipped. Otherwise, the
following code is assembled into the transaction program of the node that is handling this
strip’s parity. This code will write the parity buffer to the parity block location in the Unix
file on the parity node. The opcodes of the assembled parity code are shown in the following:

local remote

WRITE_CMD|CC_PARITY_FILE WRITE_DISK|CC_PARITY_FILE
AWAIT_SYNC SEND_SYNC

e The CC_PARITY_FILE opcode bit is simply a debugging aid. The local WRITE_CMD
instruction takes the parity buffer address as an operand, and the remote WRITE_DISK
instruction takes the location of the parity block within the remote file as an operand. Both
take the blocksize as an operand.

e A loop now generates code to write every node in the strip. A pointer is set to the start of the
user’s buffer (the first block). The target node for the block is computed. If the data block
number is less than the number of the parity block (the same as the parity node calculated by
the preceding modulo calculation), the data block number directly specifies the node number
(i.e., is an index to the appropriate server_info_t structure). If the data block is greater or
equal to the parity node, it is incremented by one to skip over the parity node. The parity
node is thus ‘invisible’. The following code is generated for each data block:

local remote
WRITE_CHMD WRITE_DISK
AWAIT_SYNC SEND_SYNC

e The local WRITE_CMD instruction takes the address of the block within the user’s buffer as
an operand, and the remote WRITE_DISK instruction takes the location within the remote
file to write the block as an operand. Both take the blocksize as an operand.

3.5. swift_write 17

3.5.2 pad_write

This routine works in the manner of the previous span_write() except that it must pad the I/0
to the length of the strip (and must write empty blocks into that section of the strip). Its overall
operation is very similar to span_write():

The core_dir_t’s pad block is zeroed (there is one allocated to every core_dir_t).

The parity buffer for the strip is located and parity on all the user data blocks involved in T/O
into the strip is calculated using do_parity_cale().

The parity node is calculated using a simple modulo calculation as described previously.
Transaction code is generated to write the parity buffer to the parity node (in the proper
file location).

Code is assembled to write the user’s data buffers to the appropriate location within the Unix
files located at each corresponding node.

A loop generates code to write as many null blocks as are needed to the remainder of the strip.
The form of the assembled code is similar to that of the data blocks, with the exception that
the pad buffer is used as input.

3.5.3 update_write

The update_write() routine handles the assembly of code to perform I/O which writes a subsection
of a strip. This is the most difficult update case. It works as follows:

The current location of the parity buffer for the strip is located in the parity buffer array. The
parity node is located by a simple modulo calculation (absolute strip number % the number
of servers in the strip). Note that the parity buffer array will contain as many parity buffers
as there are strips involved in this I/O transfer.

First, which of two strategies to use for the update is determined. The idea here is that if
most of the strip is being written, it is sensible to read the blocks in the strip that aren’t being
written, and recalculate a new parity block for the strip. The alternative is to read the old
parity block, read the old data blocks, XOR the old data with the new data, XOR, this result
with the old parity, and then rewrite the parity block.

To do the strategy calculation, a loop iterates over all block numbers involved in the strip,
generating the node numbers at which the corresponding blocks are located. If the block
number is greater than or equal to the parity node, the node number is incremented by one to
skip the parity node. We count the number of blocks that we are going to write. If we note
that one of the blocks that we are going to write is the current failed_node, we jump to the
‘read rest of strip strategy’ as we will be unable to read the failed node to XOR the old data.
If we note that one of the blocks that we are NOT going to write has failed, we jump to the
‘XOR strategy’ as we would be unable to read a block in the ‘read rest of strip strategy’.

Upon completion of the previous loop we have either forced one of the two strategies due to
node failure location or we have counted the nodes we will read and those we will write. The
strategy is now selected. Currently this is done by using the ‘XOR, strategy’ if the number of
write_blks is less than or equal to the number of non_write_blks.

The appropriate strategy is now executed. The ‘XOR strategy’ is executed by calling
zor_update_write() and then returning from update_write(). The ‘read rest of strip’ strategy is
executed by falling into the remainder of update_write().

The code for ‘read rest of strip’ first loops over all the block numbers in the strip. The strip’s
parity buffer is filled by calculating parity on all the blocks to be written using the user’s data
buffers and do_parity_cale().

If the node in the strip containing the parity block has not failed, the strip’s parity needs to
be calculated. A loop over all the block numbers in the strip assembles the following code for
blocks that we are NOT writting:

18 3. Swift/RAID Implementation Internals

local remote

READ_RESULT ; SMALL_WRITE_RD READ_DISK

e Note that the SMALL_WRITE_RD is a high-level opcode that is processed by swift_rj.c, not
by the transaction driver. The remote READ_DISK operands specify the data block location
and the block size to be read. The local READ_RESULT instruction specifies the ed_wrk_blk
buffer associated with the Swift file’s core_dir_t structure as the destination buffer. The high-
level opcode SMALL_WRITE_RD and the strip number are operands that are ‘piggy-backed’
on the instruction. After the data block from the remote READ_DISK instruction has been
received, the local transaction driver will call post_hi_handler() in swift_r5.c before executing
the low-level READ_RESULT code. The post_hi_handler() routine dispatches on the high-level
opcode. In the case of SMALL_-WRITE_RD this routine will execute do_parity_cale(), XOring
the data that has been received in cd_wrk_blk into the appropriate strip’s parity buffer in the
parity array. Note that potentially both data and parity reads for strips involved in the 1/O
could be received out of order, that is, potentially a parity read for strip 1 could complete
before a parity read for strip 0.

e A loop over all the block numbers in the strip now assembles code to write the user’s data.
Node numbers correspond 1:1 with block numbers up to the parity node, after which the node
must be incremented by one so as to skip the parity node. For all data nodes to be written
that have not failed, the following code is assembled:

local remote
WRITE_CHMD WRITE_DISK
AWAIT_SYNC SEND_SYNC

e If the parity node within the strip has not failed, the strip_t structure describing the status of
this strip for the duration of this I/0 is initialized to indicate the number of reads the write
operation has outstanding, the current number received, and a file location within the strip’s
parity node. This last location is where the new parity block is written when all the parity
data from the strip has finally been computed.

3.5.4 xor_update_write

This routine is called within update_write() and handles the ‘small write’ case, that is, the case
where a small subsection of the strip is written. In this case we want to XOR the new and old data
blocks, then XOR, the result with the old parity block, and finally rewrite the result as the new
parity block. This routine works as follows:

e A loop over all the block numbers in the strip assembles code to write the user’s data after
XORing it with the old data. Node numbers correspond 1:1 with block numbers up to the
parity node, after which the node must be incremented by one so as to skip the parity node.
For all data nodes to be written the following code is assembled:

local remote
WRITE_CHMD WRITE_DISK;SRV_READ_PARITY
WRITE_DISK;XOR_PARITY WRITE_CMD; SRV_SEND_PARITY

e The local WRITE_CMD takes as operands the proper buffer pointer and buffer size. The
remote WRITE_DISK specifies the location in the Unix file at which the block is to be written.
e The remote WRITE_DISK instruction blocks until a message is received containing the data
to write (from the local WRITE_CMD). Upon receiving data, post_dispatch() in trans_driver.c
will execute. This is the routine that will actually write the data. Before dispatching on any
opcodes, however, this routine calls posi_hi_handler(). This routine is in swift_rj.c. Tt provides

3.5.

swift_write 19

high-level opcode dispatching. Note that the server, not the client, is issuing this call. The
server does not have a core_dir_t structure containing the relevant {rans_t structure, rather it
has a ‘naked’ trans_t. If a buffer is not currently allocated, a buffer of the file’s granularity is
malloced and attached to the tr_callback_data field of the trans_t. The old data block is then
read into this buffer. The received data block (i.e., the block to be written into the file) is then
XORed into the old data block.

e The remote transaction driver then executes the WRITE_DISK instruction and writes the new

data block to the file.

e The local WRITE_DISK instruction takes the core_dir_t’s pad block and the strip number as
operands. The assembly of the strip number into this instruction is a subtle trick - it is used
later to reestablish context. Other than the standard blocksize, the remote WRITE_CMD
takes no operands.

e The transaction driver (trans_driver()) on the remote (server) side now issues the WRITE_CMD.
The pre_dispatch() routine in trans_driver.c will execute this command (which transmits a data
block). Since a high-level opcode exists, before executing the transmit code the pre_hi_handler()
routine in swift_rs.c is called. This routine is a one line routine that simply assigns the buffer
hanging off the tr_callback_data field to the ins_buffield of the instruction (i.e., it ‘self modifies’
the instruction). Thus the buffer that will be transmitted is the XOR of the old and new data.
Note that this XOR has been performed on the server, not the client.

e On the local side, the WRITE_DISK instruction does not execute until the XORed data block
sent by the WRITE_CMD is available. As with the server side, before the data is actually writ-
ten by the low-level transaction dispatcher in post_dispatch(), the high-level post_high_handler()
routine in swifi_rs.c is called. This routine dispatches on the XOR_PARITY opcode.

e The XOR_PARITY code retrieves the strip number from the instruction that is being executed
(recall the strip number was specified as one of the operands). The strip number is used to
establish which parity buffer in the core_dir_t’s parity array and which strip_t structure are
effected by the XORed data that has arrived. The do_parity_calc() routine is then executed
to XOR, the previously XORed data block into the strip’s parity buffer. The last thing this
code does is ‘zap’ the opcode of the instruction being executed to NULL. This will cause the
low-level transaction driver code to consider the instruction a no op. Thus the WRITE_DISK
will not actually write anything to disk (in effect it wrote into the parity buffer).

e Note that high-level opcodes are always executed before low-level opcodes. This gives the high
level opcode a chance to alter the low-level opcode. If the low-level opcode is set to NULL, no
low-level processing of the instruction is performed.

e After the previous code has been assembled, the code to read the old parity block into the
strip’s parity buffer in the core_dir_t’s parity array is assembled. Note that all code for all nodes
is executed concurrently. The actual execution of the parity read instructions may take place
concurrently with the execution of the previously described XOR, code. It does not matter
when in the course of accumulating the parity for the strip the old parity block is received.
The assembled code to read in the old parity and XOR it with the accumulated XOR in the
parity buffer is:

local remote

READ_RESULT|CC_PARITY_FILE;XOR_PARITY READ_DISK|CC_PARITY_FILE

e The local READ_RESULT takes the pad block buffer and the strip number as operands. The
strip number will be used to reestablish strip context (recall that a number of strips could be
concurrently processed by the sequence described here). The remote READ_DISK takes the
location of the parity block within the server’s Unix file as an operand.

e The CC_PARITY_FILE bits in the opcodes are only used for debugging.

20 3. Swift/RAID Implementation Internals

e The remote READ_DISK causes the parity block to be read and transmitted. The READ_RESULT
receives this block. Since this instruction has a high-level opcode, post_hi_handler()in swift_r5.c
is called. The XOR_PARITY code operates exactly as if this parity block were an XORed data

block, that is, 1t simply XOR’s the old parity block into the strip’s parity buffer as previously
described.

e Upon completion of the assembly of this code, zor_update_write() initializes the strip_t structure
describing the strip with the number of blocks that need to be XORed into the parity buffer,
the number of blocks that have been received (0), and status.

e zor_update_write() has now assembled all code and built all supporting data structures re-
quired of the transaction programs. It now returns to wupdate_write(}, which will return to
swift_write(), which will invoke trans_driver() to execute the assembled transaction programs.

3.5.5 bld_parity_read_program

Recall that a single Swift write I/O can write a number of strips. FEach strip must have
parity correctly calculated and updated. After the previously assembled transaction plan has been
executed, any strip for which ‘within strip” I/O was performed will have valid parity data in its
parity buffer, i.e., the parity data in the core_dir_’s parity array will be valid. Code is now assembled
to write these parity blocks to their correct location on the respective parity nodes for the strips
involved. Note that not all the strips in an I/O may require this parity update from the parity array -
only the first and last strips involved in the I/O can be so effected. Routine bld_parity_read_program()
is called at the end of swift_write() if such update is required. This routine works as follows:

o All the strip_t structures in the core_dir_t’s strip description array are scanned. If the strip has

accumulated parity (str_parity == 1) then the parity node for that strip is calculated, and, if
it 1s not the failed node, the following code is assembled:

local remote
WRITE_CMD|CC_PARITY_FILE WRITE_DISK|CC_PARITY_FILE
AWAIT_SYNC SEND_SYNC

e The CC_PARITY_FILE bits in the opcodes are for debugging purposes only.

e The WRITE_CMD instruction takes the address of the parity buffer as operand, while the
WRITE_DISK takes the location in the Unix file on the server node that is to be written.

e After the above code has been assembled for any strip with parity data, init_all_programs() is
called. This is a general utility routine that simply scans all the server node’s server_info_t
structures, and calls t_init_pgm() for any servers that have assembled code. The t_init_pgm()
routine performs transaction program fixup.

e Control returns to swift_write() which can now immediately execute trans_driver() to write the
parity blocks.

e There is an opportunity here for additional parallelism. A given strip’s parity block could be
written as soon as the parity block is valid.

3.6 swift_read

The swift_read() routine is simpler than swift_write(). Tt also, however, must handle node failure
in the middle of a transaction and must use parity to recreate data from a missing node. It works
as follows:

e The Swift file handle is used to establish the core_dir_t and the trans_t which correspond to

the Swift file.

e Routine dist_program_init() is called to initialize assembly for all servers supporting the file.

3.6.

swift_read 21

The particulars of the requested I/O are calculated, i.e., items such as stari_strip, end_strip,
start_blk, and end_blk. The request has now been converted to physical RAID parameters.
Note that large 1/O requests will often span multiple contiguous strips.

Depending upon the implementation, the base of the parity buffer array is either set to a work
buffer or simply malloced. There needs to be one parity buffer for every strip involved in the
I/0. The parity buffer is the same size as the Swift file granularity. The performance of malloc
does not seem to be a big hit here, but the code is set up to support either approach.

A loop now loops over the strip numbers of every strip involved in the I/O. This loop over all
strips drives the assembly of code to implement the read transaction.

For each strip, chk_parity_fizup() is called to determine if there is a failed node that contains
a data block required for this strip’s contribution to the I/0.

Routine chk_parity_fizup() works as follows: if the file is not in DEGRADED status, all is well
and no parity fixup needs to be performed. Otherwise, the nodes corresponding to each block
in the strip are calculated. If one of these nodes 1s the failed node, we will have to do parity
fixup. The strip_t structure describing this strip is located (there is one such structure inside
the core_dirt’s cd_strip_info array for every strip involved in the I/O). The location within
the user’s read buffer that corresponds to the data on the failed node is stored in the strip_t
structure. This is the data block that will have to be reconstructed using parity information.
A loop over all blocks within the current strip now assembles the required code. For all nodes
directly involved in the read transfer the following code is assembled to read data directly into
the user’s buffer:

local remote

READ_RESULT ;high_code READ_DISK

In the preceding code, high_code is the high-level opcode within the local instruction. This is
set to HI_ZXOR_BUF if parity fixup is required and is null otherwise.

The local READ_RESULT instruction takes as operands the buffer address at which to place
the data, the block size, and the strip number. The remote READ_DISK instruction takes
as operands the file location within the server’s Unix file and the blocksize. Note that to fill
the user’s buffer numerous READ_RESULT instructions may be executed, one for every block
within every strip that contains data that is deposited into the user’s read buffer.

For all data nodes indirectly involved in the transfer due to a parity fixup, i.e., those data
nodes not read by the user which still need to be read to calculate parity (recall all blocks in
a strip will need to be read to calculate parity), the following code is generated:

local remote

READ_RESULT ; XOR_BUFFER READ_DISK

The local READ_RESULT instruction takes as operands the first address in the parity buffer
array, the strip number, and the block size. The parity buffer address is used as a temporary
work buffer for parity calculations. The remote READ_DISK takes as operands the file location
within the Unix file on the server, and the blocksize. The XOR_BUFFER, high-level opcode
will cause code in post_high_handler() to be executed before the low-level READ_RESULT code
is executed. Routine post_high_handler() in swift_rd.c locates the appropriate strip_t structure
using the strip number operand embedded in the instruction. Recall that the strip_ structure
contains a pointer to the space in the user’s read buffer where data has to be reconstructed via
parity. This pointer is used as the destination block in a call to do_parity_cale(). The source
block for the do_parity_cale() call is the received data in the parity block. Thus the parity
information in the ‘missing’ section of the users buffer will automatically build up until all
blocks in the strip have been read. At this point the data in the user’s buffer will be correct.
Note that all data blocks will also participate in this process if needed because high_code will
also be set to HI_ XOR_BUF.

22 3. Swift/RAID Implementation Internals

e In addition to the above reads of all the data blocks, the parity block within the strip must
also participate in the previous process. The following code is assembled to accomplish this:

local remote

READ_RESULT|CC_PARITY_FILE;XOR_BUFFER READ_DISK|CC_PARITY_FILE

e The above code 1s identical to the previous with the exception that 1t is assembled into the
transaction program of the previously calculated parity node and has the CC_PARITY_FILE
bit set in the opcode. This bit is only used for debugging purposes.

e At this point all the code to execute the transaction has been assembled. The loop over all
strips is thus complete.

e A loop over all server_info_t structures associated with the current file’s core_dir_t structure is
performed. For any that have assembled code, t_init_pgm() is called to perform program fixup.
The transaction programs are now ready to execute. The transaction driver, trans_driver(), is
called to execute the entire transaction.

e Upon completion of trans_driver(), the transaction has either completed successfully or a node
failure has occurred. The parity buffer array is freed regardless. Upon successful completion
the current location within the file is advanced by the size of the read transfer, and control
returns to the user.

e If more than one node contributing to the current file has failed, the core_dir_t structure is
marked as FAILED and the call returns to the user with a failure status.

e If only one node has failed, the file must enter DEGRADED mode. This is accomplished by
scanning the server_info_t structures (which are used as program context by the transaction
driver) and identifying the node that has failed. The core_dir_t’s cd_failed_node field is set to
the number of the node that has failed. In this case, the entire swift_read() request is now
restarted. Since the file now has a failed node, the code that will be assembled to execute the
transaction will be different then the code assembled on the first attempt.

3.7 swift_close

The swift_close() routine has the following syntax:

swift_close(swift_handle);

When called, this routine does the following:
e The handle is used to locate the corresponding core_dir_t, server_info_t, and trans_t structures.
The dist_program_init(} routine in swift_r5.cis called to initiate transaction program assembly.

e For each server node indicated by the core_dir_t structure, the following program is assembled:

Local Remote
SEND_SYNC|CC_CLOSE AWAIT_SYNC
AWAIT_SYNC SEND_SYNC

e Routines loc_compile() and rmi_compile() perform the assembly, and routine t_init_pgm() per-
forms program fixup.

e The transaction driver is invoked to execute the assembled transaction programs via a call to
trans_driver(). The argument to this routine is the trans_t data structure.

e Upon completion of the trans_driver() call, all Unix files have been closed. Each server
node is disconnected from the transaction by calling the transaction driver routine discon-
nect_from_node() with the corresponding server_info_t structure. Routine disconnect_from_node()
simply closes the open socket to the server node, updates the server_info_t structure, and main-
tains the disconnect count.

3.8. trans_driver 23

e The two support blocks that were malloced for open file operations, the pad block and the
work block, are freed.

3.8 trans_driver

The trans_driver() routine is the heart of the Swift/RAID system. Routine trans_driver(} is
driven by a trans_t data structure. Structure ¢rans_t contains a pointer, tr_server_info, which points
to the base of an array of type server_info_t. Each of the server_info_t structures provides the context
of a transaction program. Transactions are created by assembling transaction programs, one per
node, for all the nodes involved in the transaction. The trans_driver() routine then concurrently
executes these programs as driven by events. Before transaction programs can be executed on behalf
of a trans_t structure, the structure must be initialized by trans_init(). The trans_inist() routine is
discussed in the section on swift_open(). Routine trans_driver(} can be considered a distributed
interpreter. This is how 1t works:

e Support routine setup_async_io() is called to setup an asynchronous receive mask to ‘listen’
to all the nodes involved in supporting the Swift file. Each node to which the current trans_t
is connected (established via swift_open()) has a socket number stored in its server_info_t
structure. The system macro FD_SET is used to set bits in the asynchronous I/O mask such
that a set bit corresponds to every socket on which we wish to ‘listen’ for I/O. This mask is
stored in the tr_async_fds_in field. Timeout values are also initialized.

e A loop scans the server_info_t array, and for every node for which code has been assembled,
activate_insruction_stream() is called. This routine clears the node’s condition codes in the
server_info_t structure and sets up the initial local PC. It then attempts to execute as many
instructions as possible. All opcodes have a PRE_EXEC bit set if they contain code that
either does no I/O or transmits an I/O. Thus these instructions activate the I/O events which
drive the system. These instruction are executed by calling instruction interpretation routine
pre_dispatch(). After calling this routine, the condition codes are checked. If the instruction
is stalled awaiting I/O completion, activate_instruction_stream() returns to the trans_driver()
loop to locate and start execution of the next transaction program.

e After all instruction streams have been activated, an event driven infinite loop begins. This
loop exits when there are no more executing transaction programs. Otherwise it waits for
any I/O to occur via a select() system call using a clean copy of the tr_async_fds_in bitmap.
This call also takes as an argument the timeout value previously inserted into the trans_t
structure. Note that no special timeout code has to be established as select() will complete
with a return value of 0 if the timeout period passes without any message reception. In this
case, timeout_handler() is called to send out restart messages.

e If the return value from select() is non-zero, one or more bits will be set in the tr_async_fds
mask corresponding to the sockets on which activity has occurred. A loop over the server_info_t
array uses system macro FD_ISSET to compare the socket numbers used by each server with
the set bits in the mask. If the corresponding bit is set, instruction interpretation within that
server’s transaction program is restarted at its current instruction via ezec_pgm_instructs().
This routine drives all instruction interpretation activity subsequent to the initial acte-
vate_instruction_stream() code.

e Upon return from exzec_pgm_instructs(), code that handled the results of an /O and any code
that initiated a new I/O will have been executed. The instruction stream for the node will
be in a stalled state. If the return status from instruction interpretation is less than 0, a
node has died. If the trans_t structure was already in degraded mode it enters failure mode,
otherwise it enters degraded mode. Whenever a node failure occurs, setup_async_io()is recalled
to recompute the bitmap of sockets on which we wish to ‘listen’. This eliminates the nodes
that have died from participating in transaction execution.

e This concludes the trans_driver() routine. Clearly, most of the low-level operation occurs
within ezec_pgm_instructs().

24 3. Swift/RAID Implementation Internals

3.8.1 exec_pgm_instructs

This is the routine that drives instruction interpretation. It works as follows:

e Context is established, including a global pointer to the current instruction, cur_ins. This is an
event driven interpreter, so there is data to be retrieved from a socket. This data is obtained
by calling get_message()in dgram.c. All transaction instructions (structures of type instruct_t)
have a valid buffer address and length field (fields ins_buf and ins_len). If get_message() cannot
be completed, the corresponding node is assumed to have died. Routine get_message() always
returns the message ‘header’ in addition to the variable length data buffer. The message header
contains a copy of the remote instruction which resulted in the message.

e The error protocol is now executed. If a message has been received that does not belong to the
current trans_t structure, it is discarded. If the remote instruction is not part of a distributed
instruction pair that matches the current program, it is discarded. If the remote instruction is a
RESTART, we call routine restart() to reset our execution location in the local program. If the
remote instruction ‘matches’ a PC less than the current local PC, we discard it as a duplicate.
Recall that all instructions are tagged with a ‘match’ PC. This is the PC within the partner
program with which they expect to execute in lockstep. If the remote instruction’s ‘match’ PC
is greater than the current local PC an overrun has occurred and messages have been lost. In
this case send_restart(}is called and the currently received message is discarded. Note that the
local PC in this discussion is the PC located in the server_info_t structure which corresponds
to the transaction program on which activity is occurring. The remote instruction’s ‘match’
PC 1s determined by examining the copy of the remote instruction located in the message

header.

o If we have discarded the received message, we do not proceed. Otherwise, a valid message
has been received and post_dispatch() is called to process that part of a stalled instruction
which occurs after an I/O is received. After calling post_dispatch() to complete interpreta-
tion of the stalled instruction, condition codes in the appropriate server_info_t structure are
checked. If the HALT condition code is set, the transaction program has completed execution.
In this case the count of executing transaction programs is decremented and control returns
to trans_driver(). Otherwise, all possible instruction code is executed until an instruction stall
condition occurs. Instruction interpretation is driven by a loop similar to that found in acti-
vate_instruction_stream(). This loop calls pre_dispatch() to execute code on the instruction’s
behalf that either does no I/O or activates an 1/O. As before, if the transaction program
completes, the count of active programs is decremented and control returns to the infinite
trans_driver() loop. When an instruction stalls, control exits from the ezec_pgm_instructs()
execution loop.

e Besides waiting on I/O, an instruction stream can be stalled because it previously exe-
cuted a DELTA_WAIT instruction. One of the uses of DELTA_WAIT is to introduce ex-
plicit timeouts to debug timeout handling code. DELTA_WAIT puts a transaction program
to ‘sleep’. To awaken the instruction stream, the appropriate server_info_t status is set to
SVI_RESTART and the global interrupt_restart_flag set. If this flag is set exec_pgm_instructs()
calls restart_instruction_streams(). This routine simply scans the server_info_t array. Any
servers that have SVI_RESTART status set have their condition codes cleared and their PC ad-
vanced (thus skipping over the DELTA_WAIT instruction). The activate_instruction_stream()
routine is then called to execute the instruction stream until an instruction stalls.

3.8.2 pre_dispatch

This routine contains instruction functionality, i.e., this routine dispatches on the current in-
struction opcode to execute code. The opcodes implemented here either do no I/O or initiate an
I/O transmission. The pre_dispatch() routine contains low-level opcode ‘primitives’ that are specific
to the Swift/RAID implementation. Tt works as follows:

3.8.

trans_driver 25

If there is a high-level opcode in the current instruction, pre_hi_handler() is called. This
is not a transaction driver routine. It must be supplied in the Swift high-level code. The
pre_hi_handler() code executes prior to the low-level pre_dispatch(} code, so it can do whatever
it wants with the current instruction.

If the opcode is READ_DISK, the file handle in the current ¢rans_t structure is used for an
Iseek to the location specified by the ins_byte_loc opcode field of the instruction. The ins_buf
opcode of the instruction is set to a global work_buf and a read of ins_len bytes performed.
Control then transfers to the common completion code which transmits the instruction and its
data buffer to the other side of the connection. This opcode is usually executed on the server
side of a transaction.

If the opcode is a WRITE_CMD, control transfers directly to the common completion code
which transmits the instruction and its data buffer. The instruction has been assembled and
the data buffer established by code at the Swift level. This instruction is usually encountered
on the client side.

If the opcode is a SEND_SYNC, the instruction buffer is set to point to a special sync buffer
that is inside the server_info_t structure. This buffer has a ‘magic value’ (17) as its first byte.
Control is transferred to the common completion routine which transmits the sync instruction
and the sync buffer.

If the opcode is MIGRATE_PARTNER, control transfers directly to the common comple-
tion code which transmits the instruction and its associated buffer. The assembly routine
loc_compile() always assures that MIGRATE_PARTNER is the first instruction in a client’s
local transaction programs. The buffer and length operands of this instruction are set by
t_init_pgm() to contain the remote program that has been assembled (the remote half of the
local program). Thus executing this instruction sends the remote half of a server’s transaction
program to that server.

If the opcode is AWAIT_SYNC, the buffer and length opcodes of the instruction are set to
point into the sync buffer within the server_info_t structure and the stall condition code is set.
Control then returns to the caller of pre_dispatch(). This server’s transaction program will not
execute until the stall condition code is cleared. Note that the common completion code is not
executed because no transmission is associated with this instruction.

If the opcode is DELTA_WAIT, the instruction stream is simply marked stalled and control
returned to the pre_dispatch() caller.

The common completion code handles instructions which result in a transmission. The instruc-
tion’s operands, that is, the buffer address and length fields, are valid at this point. Routine
zmit_instruction() is called to build a message containing the instruction and its data buffer
and transmit the message to the destination node.

Upon completion of zmit_instruct(), the instruction opcode is checked to see if CC_LEND_OF_PGM
is set. If it 1s this instruction is the last instruction in this server’s transaction program, and the
halt status code inside the appropriate server_tnfo_t structure is set. This will stop instruction
execution of this server’s transaction program and give another transaction program a chance
to execute.

The last thing done by the pre_dispatch() common completion code is to advance the PC. This
1s required since the dispatcher has completed execution of the instruction.

3.8.3 xmit_instruct

Given an instruction with valid ins_bufand ins_len operands, this instruction bundles the instruc-

tion and the buffer into a message and transmits the message over the connection in the server_info_t
structure on whose behalf the instruction is executing. The message header has a standard format
which contains a transaction ID and a destination program ID. These are used by the receiving side’s
error protocol. The entire instruction (an instruct_t structure) is copied into the header. An instruc-
tion is currently 30 bytes long. The routine send_message() in dgram.c is then called to transmit

26 3. Swift/RAID Implementation Internals

the header followed by the buffer as a single message. The send_message() routine uses the socket
number in the server_info_t structure for transmission.

3.8.4 post_dispatch

This routine contains instruction functionality, i.e., it dispatches on the current instruction
opcode to execute code. The post_dispatch() routine executes instructions that execute after an 1/0
has been received. When a message is retreived in exec_pgm_instructs(} by get_message(), the stalled
instruction execution is resumed and post_dispatch() dispatches on the opcode to finish instruction
execution. It is important to recall that all data messages are expected messages, i.e., a message is
always ‘sent’ to an instruction that has been assembled to expect that message. This is true even
when the data message is transmitted before the instruction is executed. Recall that the select()
system call simply indicates which socket contains data, and subsequent get_message() calls access
this data when the instruction is executed by exec_pgm_instructs(). Routine post_dispatch() works
as follows:

e The stall condition code is cleared. The global cur_ins points to the stalled instruction. The
received instruction in the message header is located (pointer rcv_ins). This is a copy of the
remote instruction that resulted in the received message.

e Routine post_hi_handler() is called if the current instruction has a high-level opcode. The
post_hi_handler() is defined in swift_r5.c. The high-level code can do whatever it desires to
the instruction. If it sets the low-level opcode to NULL, low-level opcode dispatching will be
skipped.

e If the remote instruction opcode is a RESTART, the restart() routine is called and control
returns to exec_pgm_instructs(). The restart() routine resets the PC within the current trans-
action program. The current instruction (PC) will thus probably no longer be valid.

o If the remote instruction opcode has the opcode bit CC_.PATCH_PARTNER_BYTE_LOC set
the operand field ins_byte_loc 1s copied from the received instruction to the current instruction.
This is tricky - one of the members of the distributed instruction pair is ‘self-modifying’ the
other. The support routine hot_patch()in compile.c provides a clean way for Swift level routines
to assemble code that will do this. NOTE THAT THIS IS NOT USED IN Swift/RAID-5. This
technique was used for small write parity updates in Swift/RAID-4.

o If the current instruction opcode is WRITE_DISK, the nstrucit fields ins_byte_loc, ins_buf,
and ins_len are used to perform the write I/O. A seek on the file handle within the trans_t
structure (#r_file) is performed to the specified ins_byte_loc location, followed by a write of the

buffer.

e Ifthe current instruction opcode is READ_RESULT, there is no additional work to do on behalf
of the instruction. The buffer was assembled so that received data was deposited directly into
the proper location in the user’s buffer.

o If the current instruction opcode is AWAIT_SYNC, a SYNC has hopefully been received. The
sync buffer within the server_info_t structure 1s examined and the first byte checked to assure
that it is the ‘magic’ sync value 17. If the CC_CLOSE bit of the RECEIVED instruction
opcode is set, the local trans_t status is set to DONE, i.e., the connection is closed to further
Swift file functions.

o With the exception of RESTART, all of the preceding routines terminate in a common handler
that simply checks for the end of the instruction stream and advances the transaction program’s
PC. The PC is located within the server_info_t structure corresponding to the program. The
CC_END_OF_PGM bit in the opcode indicates the last instruction in the program. The halt
condition code is set if this opcode bit 1s 1.

3.9. compile.c 27

3.8.5 send_restart

When a timeout occurs, or a receiver detects an overrun (lost packets), routine send_restart() is
called to perform a ‘shoulder tap’ on the partner transaction program. This routine simply handcrafts
an instruction (a structure of type instruct_t). The opcode (ins_opcode) is set to RESTART and the
buffer set to the sync buffer contained in the current program’s server_info_t structure. The current
local transaction program instruction has a ‘match’ PC that is the instruction on the remote side that
should execute in ‘lockstep’ with the current instruction. This value, tns_remote_pc, is placed in the
wms_pc operand of the handcrafted instruction. The handcrafted instruction is then transmitted to
the cooperating transaction program via the standard zmit_instruct() routine used for trans_driver()
message transmissions.

3.8.6 restart

When a RESTART instruction transmitted by send_restart() is received, the restart() routine is
called by ezec_pgm_instructs. This routine simply sets the PC of the specified transaction program
to the value contained in the ins_pc field of the received instruction (the ‘match’ PC). Note that PC’s
index into the transaction program, i.e., they are not RAM addresses. The server_info_t structure
corresponding to the transaction program contains the PC and status codes. The status codes are
initialized to 0. This will cause instruction execution to resume on the specified transaction program
at the new location.

3.8.7 interrupt_restart

The interrupt_restart() routine is not used by swift_r5.c. This routine was used in conjunction
with the DELTA_WAIT instruction to simulate timeouts and debug timeout handling code. This
routine, when called by high-level swift_r{.c code, effectively restarts a sleeping transaction pro-
gram. The transaction program was put in the ‘sleep’ state by the execution of the DELTA_WAIT
instruction.

3.8.8 timeout_handler

The timeout_handler() routine is called when the asynchronous ‘listen’ performed by the system
select() call in the trans_driver() workloop receives no messages within the timeout period. The
timeout period is specified by the tr_timeout field in the Swift file’s trans_t structure. Routine
timeout_handler() loops over all the server_info_t structures belonging to the trans_t structure on
which the timeout has occurred. The system macro FD_ISSET is used to determine if we were
listening to the socket embedded in each server_info_t. The send_restart() routine is called given
the following conditions: 1) we were listening; 2) the corresponding transaction program is not
halted; and 3) the program’s current instruction is not DELTA_WAIT. Routine send_restart()
sends a RESTART instruction to the remote side to attempt to reactive the corresponding partner
transaction program. Thus, all transaction programs in the transaction plan will be restarted.

3.9 compile.c

This file contains three routines of primary interest: loc_compile(), rmi_compile(), and t_init_pgm().

Routine loc_compile() simply initializes the instruct_t structure at the current local PC location
and advances the PC. All fields initialized are supplied as arguments to loc_compile(). Tf the current
PC is zero, a MIGRATE_PARTNER instruction is generated before the instruction is initialized. The
MIGRATE_PARTNER instruction will cause the ‘partner’ transaction program to be transmitted
to the remote node.

Routine rmi_compile() simply initializes the instruct_t structure at the current remote PC location
with values supplied as arguments, and advances the PC.

28 3. Swift/RAID Implementation Internals

The loc_compile() and rmt_compile() routines should always be called as a pair. Each assembles
into its instruction the PC that is current with respect to the other, that is, the two called as a pair
will assemble instructions considered a ‘match’ pair.

Routine {_init_pgm performs final fixup on a transaction program. It calculates the size of both
the local and remote programs, ORes the CC_END_OF_PROGRAM flag into the last opcode of
both programs, and sets both the local and remote PCs to 0.

3.10 swift_server.c

The program swift_server.c must run on all the server nodes. The function of this program is
essentially to receive transaction programs and fork off a child that will use trans_driver() to execute
the program. The main() routine works as follows:

o A socket is allocated using the global define PUBLIC_PORT. This is the socket that is used

for connect messages.

e The body of main() is an infinite loop. Tt first calls build_connection_dbs(). This routine builds
a trans_t structure. The trans_t structure is allocated from heap. Since no core_dir_t structure
exists, the instruction buffers and server_info_t buffers must be explicitly allocated as well.
The trans_init() routine is used to initialize the structure for transaction driver operations.

e The server workloop waits on call get_message() until a message is received. A received message
should be a connection request that specifies the name of a Unix file that will be used to support
Swift I/O. This information is described in a connect_t structure that constitutes the body of
the received message.

o When a message is received, the server immediately forks a child. When the child completes,
routine free_connection() is called to free up the trans_t structure. The workloop is then
repeated. Note that the child also frees the trans_t structure when it exits, but that this does
not effect the parent’s heap (the child has a copy of the parents heap so its operations do
not effect the parent). The trans_t structure is allocated and initialized in the parent so as to
provide a minor performance enhancement, i.e., so allocation does not occur after a connect
request has been received. The connect process is already slow, in that it involves a fork() and
an open() call.

e The child allocates a private local socket and connects this socket to the address of the client’s
socket using the system call connect().

e The Unix file is now opened, and the file size determined. Routine send_message() in dgram.c
is used to reply to the client and return the local socket and file information.

e Once connected, any number of transactions may occur over the connection. Transaction
processing will consist of a transaction program being received by the server, followed by the
execution of the transaction program.

e The first message of every transaction will not be processed by the trans_driver() routine. The
first message of a transaction is the transaction program itself. This message is processed by
bootstrap_load(). Thus the heart of the child server is a loop that executes bootstrap_load()
followed by trans_driver() until the trans_t structure is marked DONE. Before this loop can
be started, an asynchronous ‘listen’ mask needs to be established for bootstrap_load(). This
is done via setup_async_io(), which is discussed at the start of the section documenting the
trans_driver().

e Routine bootstrap_load() performs a select() system call and uses the asynchronous mask and
FD_ISSET to determine which node has sent the message. See the trans_driver() documenta-
tion for additional detail. The get_message() routine in dgram.c is then used to retrieve the
message into the appropriate instruct_t buffer (i.e., the program buffer for the ‘remote’ side
transaction program). The server_info_t structure matching the node from which the program
was received is initialized to start executing the program at PC 0. The program is sanity
checked for consistency.

3.10. swift_server.c 29

e The one operand field of the received transaction program that compile.c could not assemble
is the receive buffer address for data blocks that are sent to a remote instruction from its
matching local instruction. These operands are all set to the address of a receive work buffer,

buf_1.

e The transaction driver has been previously described. See the tran_driver() documentation.
After this routine has been completed, the transaction is complete. Additional transactions,
each corresponding to a Swift function request, are repeated using the bootstrap_load() -
trans_driver() loop until the connection is closed.

30

4. Conclusions

4. Conclusions

The Swift/RAID system is an implementation of the core functions required for any RAID
system. The present system can be used as a basis for additional enhancements, research, and
perhaps for applications. Things that remain to be done include:

After a node has failed, it needs to be periodically rechecked to see if it has returned to
operation. If so, a rebuild operation needs to be started and integrated with current operations.

The rebuild program can be written either as a separate utility or run as a concurrent
transaction program. Rebuild can be implemented by reading all the nodes in each strip
other than the rebuild node and using parity to calculate the value to write to the rebuild
node.

It would be fairly straight-forward to provide a more realistic directory service than the use of
the ‘plan’ file.

It would be straight-forward to add a client library cache which would permit byte-level user
requests. Such a cache should be designed so that transfers that are Swift file block aligned
will bypassed the cache, i.e., such an I/O will performed in the same manner as a current
request.

Most timing conditions and timeouts can be forced using the DELTA_WAIT instruction and
interrupt_restart(). To bring the current Swift/RAID code up to ‘beta release’ quality, this
should be done and all such error handling code validated. The current Swift/RAID-5 system
has had almost no such testing due to scheduling constraints. Such a cycle was performed with
the Swift/RAID-0 implementation and proved extremely effective.

Additional asynchronism and burst mode protocols can easily be investigated by eliminating
the assembly of AWAIT_SYNC and SEND_SYNC instructions on a per read/write basis.

The general conclusions that can be drawn from this implementation effort are:

RAID systems can be built in the distributed server environment typified by Swift;

The distributed virtual machine approach described here solves the distributed concurrent
programming problem to the degree necessary to program the RAID implementation;

The distributed virtual machine approach presents a non-trivial programming task that is
reminiscent of low-level assembler programming or microcode programming. While this may
prove intimidating to some, it provides a solution guaranteed to work in the same sense that
microcode can be guaranteed to cope with hardware asynchronism.

The last two items are not particularly new or surprising. Variants of the virtual machine tech-
nique have long been used to implement multi-threaded servers in uniprocessor environments. The
preceding conclusions confirm observations that have been made numerous times in the uniprocessor
case, e.g., in [Allworth 81] and [Beizer 83].

References 31

References

[Allworth 81] S.Allworth, Introduction {o Real-Time Software Design, Springer-Verlag, 1981.
[Beizer 83] B.Beizer, Software Testing Techniques, Von Nostrand Reinhold, 1983.

[Cabrera and Long 91] L.Cabrera, D.Long, Swift: Using Distributed Disk Striping to Provide High
1/0 Data Rates, Computing Systems, Vol. 4, No. 4, Fall 1991, pp. 405-436.

[Emigh 92] Aaron T. Emigh, The Swift Architecture: Anatomy of a Prototype, UCSC, 1992.

[Hartman and Ousterhout 92] J.Hartman and J.Qusterhout, Zebra: A Striped Network File System,
in Proceedings of the USENIX Workshop on File Systems, May 1992.

[Katz, et al., 89] R.Katz, G.Gibson, D.Patterson, Disk System Architectures for High Performance
Computing, Proceedings of the IEEE, Vol. 77, No. 12, Dec 1989, pp. 1842-1858.

32

Index

Bld_parity read_program(): 20

Ca_test.c: 9
Cdirs: 12
Core_dir_t: 7

Dgram.c: 5
Distributed instruction: 3

ENTAC: 3
Error protocol: 4
Exec_pgm_instructs(): 24

Get_text(): 12

Instruct_t: 8
Interrupt_restart(): 27
Is_empty(): 12
Is_white_space(): 12

Loc_compile(): 27
Motif: b

Pad_write(): 17
Post_dispatch(): 26
Pre_dispatch(): 24

RAID-4: 2
RAID-5: 2
Restart(): 27
Rmt_compile(): 27

Send_restart(): 27
Server_info_t: 8
Skip_white(): 12
Small writes: 2
Span_write(): 16
Swift: 2
Swift_close(): 22
Swift_dir_init(): 12
Swift_open(): 12
Swift_rb.c: b
Swift_read(): 20
Swift_seek(): 14
Swift_server.c: 28
Swift_write(): 14

Index

Timeouts: 4
Timeout_handler(): 27
Transaction driver: 3
Transaction plan: 3
Transaction program: 3
Trans_driver(): 23
Trans_driver.c: b
Trans_t: 7
T_init_pgm(): 28

Update_write(): 17
X-windows: 5

Xmitinstruct(): 25
Xor_update_write(): 18

