
Rapid Exploration of Curvilinear Grids Using Direct Volume RenderingAllen Van Gelder and Jane WilhelmsComputer and Information SciencesUniversity of California, Santa Cruz 95064UCSC-CRL-93-02October 14, 1993AbstractFast techniques for direct volume rendering over curvilinear grids of hexahedral cells are developed.This type of 3D grid is common in computational uid dynamics and �nite element analysis. Fournew projection methods are presented and compared with each other and with previous methods fortetrahedral grids and rectilinear grids. All four methods use polygon-rendering hardware for speed. Asimpli�ed algorithm for visibility ordering, which is based on a combination of breadth-�rst and depth-�rstsearches, is described. A new multi-pass blending method is described that reduces visual artifacts thatare introduced by linear interpolation in hardware where exponential interpolation is needed. Multi-pass blending is of equal interest to hardware-oriented projection methods used on rectilinear grids.Visualization tools that permit rapid data banding and cycling through transfer functions, as well asregion restriction, are described.

1



1 IntroductionThe visualization technique known as direct volume rendering is attractive because of its extremeexibility, being able to map data values to color and opacity in any fashion. Direct volume renderingcan be very useful for getting a general idea of volume contents, for scanning regions of interest, and forproviding a context when combined with other methods (e.g., feature extraction). But it is hampered bycomputational cost. While some relatively fast methods have been introduced, they are subject to visualartifacts. Problems of speed and artifacts are exacerbated when volume-rendering non-rectilinear grids.However, when using direct volume rendering for a general perusal of volume information, improvements inspeed may be worth even relatively signi�cant artifacts.Direct volume rendering is a visualization method for scalar sample data volumes where values withinthe volume are mapped to color and opacity and directly rendered by accumulating these color and opacityvalues to the screen pixels [DCH88, Lev88, UK88, Kru90, Wes90, MHC90, ST90, WVG91, Wil92b]. Any partof the volume may be visible in the �nal semi-transparent image. Direct volume rendering can be done bycasting rays through pixels into the volume and traversing the rays [Lev88, UK88, Kru90], or by projectingsample regions or cells within the volume to the screen [UK88, Wes90, LH91, MHC90, ST90, WVG91].Projection must be in front-to-back or back-to-front order for correct compositing if opacity values betweenzero and one occur.If interpolation between sample points and integration in depth are not done accurately visual artifactsmay occur [WVG91]. Further, because no geometric primitives such as polygonal isosurfaces are extracted,most or all of the work of direct volume rendering must be repeated if the viewpoint changes. For thesereasons, direct volume rendering is an expensive technique to do well.Signi�cant speed-ups can be achieved by the use of coherence within the volume, by simplifyinginterpolation and integration, and by making use of graphics hardware (as in splatting and coherentprojection)[UK88, MHC90, ST90, LH91, WVG91]. Speed-ups achieved on rectilinear grids, if not to realtime,are at least to the point where changing viewing parameters is comfortable to the user. We believe that thesigni�cant speed-up these methods provide are well worth the cost in image quality in many applications.The problem of achieving acceptably fast direct volume rendering is exacerbated if sample volumes are noton a regular rectilinear grid. Our goal in this investigation was to achieve some of these gains on curvilineargrids of hexahedral cells. Williams has studied related issues on tetrahedral grids [Wil92b, Wil92a].In our application, computational uid dynamics, curvilinear grids are common. A curvilinear grid canbe thought of as a 3-dimensional rectilinear grid in computational space that is \warped" in physical spacearound regions of interest (e.g., aircraft wings). The grids present problems for direct volume renderingbecause cells vary greatly in size (e.g., neighbor distances in a commonly used grid vary by a factor of10,000 [HB85]), cells may have irregular shapes, and they may be degenerate (e.g., multiple sample pointsin computational space may map to the same physical space location).All methods described herein are designed for curvilinear grids that may not be convex as a volume, butwhose cells are 6-sided convex polyhedra (hexahedra), possibly with some degeneracies in that some edges2



of the cell have zero length, and some faces have zero area.Initial explorations convinced us that using ray-casting to directly render these volumes was unacceptablyslow [RW92]. The main thrust of this paper is to explore more rapid, projection-based, methods. It is hardto compare these very di�erent approaches exactly, because the ray-caster ran on a di�erent machine andray-casting is very sensitive to image size and volume orientation. However, we have found approximately,for similar images, that: (1) for rendering from a new viewpoint, our fastest method is a few hundred timesfaster than the ray-caster, and our slowest method is about 5 to 10 times faster; (2) for rendering from thesame viewpoint, our fastest method is as above as viewpoint has no e�ect, and our slowest method is abouta hundred times faster. However, as window size increases, or the volume is zoomed, the cost of ray-castingmay rise greatly while the cost of hardware-assisted projection will not be a�ected.The faster methods may show signi�cant artifacts in certain cases, however. Our new projection methodsare described in section 2.To take into account opacity, a front-to-back ordering must be established, because cells (de�ned byeight corner sample points) in front may partially or totally obscure those behind. Because curvilinear gridscan wrap around (see Figure 3), calculating this visibility ordering is nontrivial [MHC90, Wil92b]. Further,accumulating color and opacity values correctly in depth involves an exponential function [Kru90, MHC90,WVG91]. To approximate this quickly by a quadratic, we have developed a multi-pass blending method.These issues are discussed in section 3.Direct volume rendering is an intriguing and desirable method because of the amount of information thatcan be included in one image. But the fact that information may be layered and project to the same pixelmakes rendering speed particularly important, because seeing the volume from di�erent viewpoints clari�esit immensely. Generally, the mapping from data values to color and opacity is done using a simple transferfunction. (For certain types of volumes, e.g., medical images, more complex methods such as materialpercentages may be desirable [DCH88].) We typically use an interactive transfer function editor to designthe mapping from data to color and opacity, but as rendering became faster, we discovered that a signi�cantamount of time was spent in trying to �nd desirable transfer functions [Ram90]. In section 4 we discusssome new methods of rapidly designing and changing transfer functions for volume exploration.The �nal area of research discussed in this paper is zeroing in on regions of interest and inverting themapping from image to volume. We have designed a method whereby the user speci�es a 3D region ofinterest, and the software renders only that region, indicating (if asked) the sample points and data valueslocated in that region. In this way, the user can determine where interesting regions lie in the original grid.This topic is discussed in Section 5.2 Rapid Direct Volume Rendering ApproachesWe have implemented four projection methods for curvilinear grids. Previous work on projection methodsfor direct volume rendering is largely limited to a plethora of work on regular grids. Some work has been doneon ray-casting irregular grids [Gar90, Use91, RW92]. A few researchers have explored projection methods onsuch grids. Max et al. describe a careful and general method that we felt was too slow for our needs [MHC90].3



Williams takes the approach of breaking curvilinear grid cells into �ve tetrahedra each and projecting thetetrahedra [Wil92b, Wil92a]. While this is a quite rapid and reasonable approach, we hoped to achieve morespeed and to avoid the explosion of primitives this involves, as well as some of the artifacts. At some pointit would be worthwhile to do an in-depth comparison of this method with ours. Challinger implemented akind of hybrid ray-caster/projection method where she sorted cells faces by scanline and pixel rather like ascan conversion algorithm for polygons, but then ray-cast faces present in a single pixel [WCA+90, Cha90].This approach was also slower than we desired.All four of our methods have some things in common:� They convert cell projections to Gouraud-shaded polygons and use hardware for rendering.� They use hardware compositing.� They store cell information such as vertex locations, depth, and transfer function pointers in celldata structures. At a cost in space this provides better speed. Sorted lists of indices into these datastructures are used by methods described in the following sections.2.1 Depthless Cell Face ProjectionOur �rst method is a very simple but admirably fast one: each data value is mapped to a color and opacityand the faces of each curvilinear grid cell is drawn as Gouraud-shaded polygons whose vertices have thesemapped values. Data structures for this method record information for three adjoining faces of the cell,so each face is only drawn once. Usually this method is used with zero-opacity for maximum speed. Themethod takes about one second for 40,000 cells on a uniprocessor R3000-based Silicon Graphics VGX.Two advantages to this method are that it is extremely fast and that it is trivial to implement. A featurethat could be considered either advantageous or disadvantageous is that small cells contribute the sameintensity as large cell, depth not being considered. On our grids, cell size is generally inversely proportionalto interest, because volumes are �nely gridded in areas of most interest. Some scientists may prefer thisautomatic weighting. Further, there is a problem with using hardware-compositing on these grids (or anygrids with many tiny cells), because the typical intensity/opacity resolution is only eight bits per channel.Small cells may contribute well under 1/256 of the maximum possible intensity and, thus, never appear inthe image at all. Using the depthless method, data is not ignored in this way, just improperly weighted.A more serious problem is that noticeable visual artifacts appear from some angles because the distancebetween cell faces is not taken into account. These artifacts tend to delineate cell boundaries and probablywould not be misinterpreted as data information.2.2 Cell Face Projection with DepthOur next method addresses the main problem with the former: that cell depth isn't taken into account.Here sample locations are �rst mapped to screen space. For each cell, vertices that lie on the convex hullare identi�ed. If convex hull vertices are not coalesced, the depth through the cell at that point is zero andthe vertex doesn't contribute color or opacity. If two vertices map to the same screen space location onthe convex hull (e.g., in looking straight on at a regular cell), a depth is recorded for that vertex and the4



data value of the vertex is taken to be the average of the two vertices. This average is mapped to colorand opacity. For interior vertices, the point at the same projected location on the opposite cell exterior islocated and data values for that point found by interpolation. Depth and average color and opacity areagain calculated and stored in the vertex. This information is calculated whenever the viewpoint is changedand is stored with the data structure for that cell. For rendering, each face is drawn once for each cell, and,thus, twice overall (except on the boundary). Scaling intensity can take care of intensity problems this maycause.This method gives a more \realistic" (assuming some physical, colored medium being imaged) rendering,although there are some angles close to 90 degrees (for regular cells) for which it produces noticeable artifacts.It is much slower for new orientations than the depthless method, but takes opacity into consideration moreaccurately.2.3 Silhouette SplattingThis method wasn't very successful and we mention it mainly to save others the work of trying it out. In thisapproach, we �nd the cell vertices that lie on the convex hull and connect them to form a polygon. Then we�nd the centroid of the cell and its depth and estimated value. By triangulation, the centroid is connectedto the convex hull vertices, and these triangles sent to the screen. This is rather like the \splatting" methodthat is quite fast and successful for regular grids [Wes90, LH91]. Although, splatting is normally done as aregion around a sample data point, not as a cell between sample data points.Unfortunately, the images produced on our irregular grids were very blotchy from oblique angles. Further,this method was not much faster than the one described in the previous section and produced worse images,so we abandoned it. It is worth mentioning that, in splatting, the problem of blotchiness is partly removedby making the splats overlap. This could be done on our grids at some additional expense by moving theconvex hull away from the centroid for drawing. We didn't believe this would improve the image enough towarrant implementation, and it would involve more calculations.2.4 Incoherent ProjectionThe method we have dubbed \incoherent projection" is the most careful of the projection methods presented,and also the most expensive. It builds upon the \coherent projection" technique for rectilinear grids[WVG91], and extends it to general convex hexahedra. The main idea is to render the 2-dimensionalprojection of each cell as an arrangement of polygons. For an orthogonal projection of a rectilinear cellthere are 3 nondegenerate and 11 degenerate projection topologies. However, all cells in the volume fall intothe same case from any given viewpoint. For irregular hexahedra the number of nondegenerate projectiontopologies is signi�cantly higher (see examples in Figure 1), and the number of degenerate ones higher still.Moreover, di�erent cells do not all fall into the same case, so a case analysis technique was not attractiveto implement. Therefore, each cell is analyzed individually in screen space. A pleasant side-e�ect of thisapproach is that non-orthogonal perspective projections are no more di�cult than orthogonal.As shown in Figure 1, some vertices in the projection of a hexahedron do not correspond to vertices of thehexahedron, but are produced by intersection of edge projections. We call these intersection vertices. The5



Figure 1: Typical projection of rectilinear cell and a few irregular hexahedron projections.
Figure 2: Current boundary updating and polygon creation steps. Left: a current boundary with one trianglepreviously removed; middle: one new edge pair to and from the new \event" node; right: the second edgepair formed a counterclockwise quadrilateral, which was spliced out.�rst technical issue is the location of these intersection vertices. We used a sweep line algorithm which wenow outline, assuming no degeneracies for the moment. The algorithm simultaneously �nds the intersectionvertices and the polygons that comprise the arrangement of the projection. (It also �nds the convex hull asa by-product.) The hexahedron to be analyzed is given in screen space (x; y; z), so the objective is to �ndits projection on the x-y plane.The algorithm maintains three data structures:1. A priority queue of vertex events. The \minimum" of this event queue is the unprocessed vertex withminimum y-value.2. An x-sorted list of active edges, where an edge is active if it goes from a processed vertex to anunprocessed vertex.3. A current boundary polygon in the form of an edge list, which surrounds the processed vertices andedges.Initially, the event queue contains the original hexahedron vertices sorted by y-value, and the active-edgelist and current boundary are empty. The algorithm proceeds as follows.while (eventQueue not empty)nextVertex = getMin(eventQueue); 6



currentY = y-value of nextVertex;for (edge in ActiveEdges)currentX[edge] = x-value of edge when its y-value is currentY;if (ActiveEdges is still sorted on currentX[edge])remove edges that end at nextVertex from ActiveEdges,call them remEdges;determine z-distance of nextVertex from face into which it projects;update currentBoundary with remEdges, creating some polygons ofthe projection; /* see text below */insert edges that begin at nextVertex into ActiveEdges in such a waythat all edges will be x-ordered if currentY isincreased slightly;deleteMin(eventQueue);elsefind (x,y) where two previously adjacent active edges intersected;build a new ``intersection vertex'', call it newVertex;chop off the two intersecting edges so they end at newVertex;the cut-off parts of the intersecting edges become new edges thatbegin at newVertex;insert the new edges into ActiveEdges in correct x-order as describedabove;insert(newVertex, eventQueue); /* it will be the minimum */This algorithm follows the standard pattern of sweep-line algorithms.Updating the current boundary proceeds as suggested in Figure 2. Insert the �rst removed edge and itsreversal into the current boundary edge list in such a way that the (nonconvex, nonsimple) polygon formedis planar (no edges cross); this forms a sort of needle. If there is a second removed edge, do likewise, butthis completes a counterclockwise polygon, which is spliced out. (The last vertex has a third removed edge,which creates a second polygon to be spliced out.)The above outline omits the details of handling \degeneracies". Projection degeneracies occur when anytwo projection vertices have the same x-value or y value. These can be removed by assuming a slight rotationof the screen space that does not change any nondegenerate topology. The details are tedious, but standard.A more di�cult and less standard degeneracy occurs when the original hexahedron is itself degenerate:if two points coincide in 3-space, no spatial transformation will separate them. Our solution was based oncertain assumptions about what degeneracies could occur.1. We assume no two adjacent edges have zero length;2. We assume no two adjacent faces have zero area;These assumptions leave a lot of exibility: tetrahedra and pentahedra can be represented as degeneratehexahedra.Suppose an edge of zero length is encountered. We want to perturb the hexahedron to give the edge somelength while maintaining convexity. This requires �nding a direction in which the two coinciding verticescan be \pulled apart". We take advantage of the fact that, under the above assumptions, the diagonallyopposite edge \in the same direction" cannot be degenerate. Form a triangle with this opposite edge as baseand the coinciding vertices as apex, then slightly \pull apart" the coinciding vertices in the plane of thetriangle. 7



3 OpacityIncluding opacity in direct volume rendering allows information to occlude that lying behind it. Sometimesthis is desirable, but at other times it may not be necessary. If the purpose of the rendering is to get a generalfeel for information in the volume, zero-opacity rendering ensures that all information comes through. Onthe other hand, sometimes one would like an important feature or range of values to stand out, and opacitymakes this possible. This is described in subsection 3.1.An additional issue becomes prominent in using opacity with hardware interpolation and blending. Asmentioned in earlier papers, linear interpolation used in Gouraud-shading polygons produces an incorrectestimate of intensity and opacity across the projected polygon, even when the vertex values are calculatedfairly accurately [MHC90, WVG91]. By using a method we call \multi-pass blending", we can approximatethe correct intensity and opacity and still use the hardware polygon renderer. This is described insubsection 3.2.3.1 Visibility OrderingA visibility ordering, which is an ordering on the cells such that no earlier cell occludes a later cell inscreen space, is necessary to render cells with semi-transparency. Visibility ordering issues for tetrahedrawere thoroughly explored by Williams [Wil92b], with attention to nonconvex volumes. This section outlinesan implementation for curvilinear grids that is considerably simpler and is robust in practice. The mainideas are applicable to tetrahedral grids as well. Two issues concerning visibility ordering are: does oneexist, and if so, how to �nd one. Although the theory is murky in the general case, in practice our methodhas never failed to �nd a visibility ordering. Williams reports similar practical experience.When the volume is given as hexahedra there are signi�cant advantages to keeping it in that form, ratherthan decomposing it into tetrahedra.1. Adjacency and much other topology can be done by arithmetic on indices, without auxiliary datastructures;2. Decomposing into tetrahedra multiplies the number of cells by 5.The other side of the coin is that tetrahedra are simpler to render.The main idea that is well known for e�cient visibility ordering is that of linear-time topological sorting[MHC90, Wil92b]. Recall that a topological sort of a directed acyclic graph is an ordering (or numbering)of its vertices such that there is no path from a smaller vertex to a larger one. This can be accomplishedin linear time by a depth-�rst search and post-order numbering. For the visibility application the graph'svertices are cells and its directed edges given by the immediately occludes relation: cell A immediately occludescell B if they share a face and A occludes B in screen space. For convex volumes, topological sort �nds avisibility order if one exists and discovers a cycle otherwise [MHC90, Wil92b]. Nonconvex volumes occuroften in practice, so it is important for an algorithm to work well on them, too. Here there is no de�nitetheory known. Williams describes an heuristic for nonconvex volumes. We present an alternative that isconsiderably simpler, for connected, possibly nonconvex, volumes.Our algorithm takes advantage of the fact that the underlying adjacency graph of the cells is undirected,where two cells are adjacent if they share a face. This undirected graph becomes directed by considering theorientation of the shared face in screen space, leading to the immediately occludes relation mentioned above.(The z component in screen space of the shared face normal determines which cell occludes the other.) Wecombine an undirected breadth-�rst search with directed depth-�rst searches.8



For curvilinear grids, edges need not be represented explicitly, as they can be determined by arithmeticon cell indices. As it turns out, edge directions do not need to represented explicitly either!The breadth-�rst search is implemented with a FIFO queue of cells. Initially, this FIFO queue containsone cell that has a vertex that is farthest from the viewpoint (minimum z in screen space), and all cells areunmarked.nextNum = 0;while (FIFOqueue not empty)nextCell = front(FIFOqueue);if (nextCell not marked)depthFirstsearch(nextCell,nextNum) yielding newNum;nextNum = newNum;dequeue(nextCell);The depth-�rst search also needs to test edge directionality, and post \uphill" neighbors to the FIFOqueue; otherwise it is quite standard.depthFirstSearch(cell, nextNum)mark cell;for (neighbor adjacent to cell)if (neighbor not marked)if (neighbor immediately occludes cell)enqueue(neighbor, FIFOqueue);elsedepthFirstSearch(neighbor, nextNum) yielding newNum;nextNum = newNum;elseError - Cycle in Order (has never happened in practice);visNumber[cell] = nextNum;return nextNum + 1;Williams reports that about 60,000 tetrahedra per second can be ordered (SGI 4D/VGX). We found thata comparable number of hexahedra per second were ordered by the above algorithm. Thus converting totetrahedra would increase visibility-ordering cost by a factor of 5.3.2 Multi-pass BlendingLinear interpolation is not always what is desired, but it is what the hardware o�ers. However, SGIworkstations have a blend function setting that permits the \source" color to be multiplied by \one minussource alpha", and added to the background (cells already rendered). This permits some quadratic functionsto be used for color interpolation, by multiplying two linear functions: color and alpha.Assume a cell is �lled with a semi-transparent light-emitting medium. When cell faces are planes, thedepth d of the cell varies linearly along any line, but the e�ective transmission of color varies as (1� e��d).This can be approximated between two vertices in the projection by a quadratic function of d that is zero atvertices of 0 depth and gives the correct value of color at dmax, the depth of the \thickest" vertex of the cellprojection. The remaining parameter of the quadratic was chosen to minimize the squared error between thequadratic and the exponential function it is approximating, on the interval [0; dmax]. Somewhat amazingly,this can be solved in closed form; the details require too much space, but are available from the authors.Many reasonable quadratics will give better interpolations than linear.9



The above trick only provides nonlinear interpolation for the added contribution of the cell. Thebackground needs to be reduced according to the cell's opacity, which again varies with depth accordingto an exponential decay. This time, the only trick is to use a linear function twice, with the blend function\one minus source alpha" applied to the background. The product of the two linear functions is a quadratic,and the alpha is rigged to give a reasonable quadratic approximation to the desired exponential decay.Thus three passes are required in all. The �rst two apply opacity of the new cell to the background andthe third adds the cell's own color. The extra time in computation and rendering are substantial (see Table1.4 Transfer Function ManipulationFor some time we have used an interactive transfer function editor to design the mapping between datavalues and color and opacity [Ram90]. While it is certainly more pleasant than designing mappings withoutit, we found it quite frustrating and time-consuming to try and guess which mappings bring out regions ofinterest.Therefore, we developed a fast method of scanning the volume. The user interactively picks a data valueand only data values within a user-controlled range around this center value are given a color. The usercan designate the color and opacity of this banded region. The transfer function is a simple isoceles trianglecentered at the designated center value. A slightly alternate approach is to use a pre-designed transferfunction and de�ne a transparent box around a designated data value. Only data within this box takes oncolor and opacity.Rendering with such a single-band transfer function is extremely fast because only cells whose data valueslie within the range of this triangle will have any visibility and need be rendered. Cells within this range canbe rapidly found by using a supplemental data structure. This data structure is a two-dimensional arrayof size 256 X 256. Each location is a linked list of pointers into the data. (We assume 8-bit channels forcolor and opacity.) The minimum data value of a cell (scaled into the range 0{255) determines the row ofthe array and the maximum data determines the column of the array with which a cell is associated. (Thiscould be more e�ciently done but space was not a problem so we use this for simplicity.)In drawing an image using the banded function, only those columns greater or equal to the minimumvalue of the band need be drawn; and within those columns, only rows less than or equal to the maximumvalue of the band need be drawn. In many cases, this method takes a small fraction of the time it takes torender the whole volume.A second feature of this method is that the band can easily and quickly be cycled, giving the e�ect of amoving fuzzy isosurface and helping indicate the relation of neighboring data regions.5 Restriction and Inverse MappingThe �nal approach in our recent attempts to make direct volume rendering more useful was to implementa method of interactively restricting the parts of the volume rendered. At the suggestion of Arsi Vaziri ofNAS/NASA-Ames, we invert the mapping for this restricted region to �nd the actual locations within thedata that are being drawn.Restriction is done by de�ning a simple bounding box whose location and size is de�ned interactivelyusing sliders. Only cells whose origins lie within this box are drawn. Adding the option to draw cell originsas points helps clarify the relation of the volume rendering to the sample points.If the restricted region is fairly small, it is practical to print the locations and values of the cells that liewithin the box to the screen. This allows the user to determine the actual computational space location of10



Figure 3: Single slices of the blunt �n (left) and post (right) curvilinear grids.Data Visibility Making Data Single-Pass Multi-passSet Sort Structures Rendering RenderingFaces Without Depth Blunt Fin 0.64 { 1.14 {Post 1.65 { 3.02 {Faces With Depth Blunt Fin 0.64 6.63 2.94 11.72Post 1.65 21.76 10.99 39.76Silhouette Splat Blunt Fin 0.64 { 7.74 {Post 1.65 { 22.98 {Incoherent Projection Blunt Fin 0.64 37.56 3.52 12.05Post 1.65 104.48 13.70 37.38Table 1: Rendering Times of Blunt Fin Data. (Time in CPU seconds.)features of interest.6 Experimental ResultsWe explored these methods on two curvilinear grids. (The software works on a regular grid, but it is notoptimized to take advantage of the greater simplicity of these grids.) The curvilinear grids tested were the\blunt �n" [HB85] and the \post" [RKK86], both from NASA-Ames Research Center. The curvilinear gridstructure for these grids can be seen in Figure 3. The blunt �n is a 40x32x32 grid containing 40,960 samples,and the post is a 38x76x38 grid containing 109,744 samples.Table 1 shows the rendering times for our four volume rendering methods using these two grids. Timesare user and system CPU seconds on a Silicon Graphics uniprocessor VGX. For comparison, Williams reportstimes of around 15 seconds for volumes comparable in size to the blunt �n [Wil92a]. His images might bedescribed as intermediate in quality. Coherent projection required about 4 to 7 seconds on a comparablerectilinear grid.First we consider our four direct volume rendering methods. Cell face projection without depth issigni�cantly faster than the others and is desirable for rapid scanning of the volume. We ignore the cost of11



making the data structure for this method because it is done once as the data is read in and never changesdespite orientation or mapping alternations. However, noticeable artifacts which delineate cell boundariesmay occur from certain angles.Cell face projection with depth uses the size and shape of cells more carefully, and requires renderinginformation that changes with orientation. We calculate this information (the \making data structures" costin Table 1) and store it. Actually drawing the image from these structures takes much less time (\Rendering"columns in Table 1). This approach is desirable because the image can be scaled, rotated, transfer functionschanged and intensity/opacity scaled, without recomputing the data structures.Because we only pursued silhouette splatting briey, this split between making data structures andrendering was never implemented for this method. We see from the costs that silhouette splatting is about2/3 as expensive as cell face projection with depth. The quality of the images, however, is often somewhatworse.Finally, our most careful and expensive method is as expected more time-consuming. However, thismethod is much less likely to produce noticeable artifacts from any angle. Again we split the calculation intodetermining orientation-speci�c information and then rendering. The cost of re-rendering without orientationchanges is not much worse than the cell faces with depth approach and does produce much better images.The linear-time visibility sort used contributed only minimally to the cost of rendering. Multi-passblending noticeably increased rendering time, by three or four times. However, the multi-pass method canproduce smoother images, so it may be desirable when animation is not needed.The videotape submitted with this paper show the images produced by the four volume renderingmethods, as well as transfer function banding and restriction.7 ConclusionsWe discovered that projection methods do provide reasonable speed for volume rendering medium-sizedcurvilinear grids, far beyond what we could achieve with ray-tracing approaches. Rendering opacity withany degree of accuracy is the most costly function.References[Cha90] Judy Challinger. Object-Oriented rendering of volumetric and geometric primitives. Master'sthesis, University of Califoria, Santa Cruz, UCSC Computer and Information Sciences, AppliedSciences Building, Santa Cruz, CA 95064, 1990.[DCH88] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering. Computer Graphics,22(4):65{74, July 1988.[Gar90] Michael P. Garrity. Raytracing irregular volume data. Computer Graphics, 24(5):35{40,December 1990.[HB85] Ching-Mao Hung and Pieter G. Buning. Simulation of blunt-�n-induced shock-wave andturbulent boundary-layer interaction. J. Fluid Mechanics, 154:163{185, 1985.[Kru90] Wolfgang Krueger. Volume rendering and data feature enhancement. Computer Graphics(Proceedings of the San Diego Workshop on Volume Visualization), 24(5):21 { 26, 1990.[Lev88] Marc Levoy. Display of surfaces from volume data. IEEE Computer Graphics and Applications,8(3):29{37, March 1988.[LH91] David Laur and Pat Hanrahan. Hierarchical splatting: A progressive re�nement algorithm forvolume rendering. Computer Graphics (ACM Siggraph Proceedings), 25(4):285{288, July 1991.12



[MHC90] Nelson Max, Pat Hanrahan, and Roger Craw�s. Area and volume coherence for e�cientvisualization of 3d scalar functions. Computer Graphics (ACM Workshop on VolumeVisualization), 24(5):27{33, December 1990.[Ram90] Shankar Ramamoorthy. An interactive transfer function editor. Internal Technical Report, 1990.[RKK86] S. E. Rogers, D. Kwak, and U. K. Kaul. A numerical study of three-dimensional incompressibleow around multiple posts, 1986. AIAA paper 86-0353, Reno, Nevada.[RW92] Shankar Ramamoorthy and Jane Wilhelms. An analysis of approaches to ray-tracing curvilineargrids. Technical Report UCSC-CRL-92-07, UCSC, University of California, CIS Board, SantaCruz, CA, January 1992.[ST90] Peter Shirley and Allan Tuchman. A polygonal approximation to direct scalar volume rendering.Computer Graphics, 24(5):63{70, December 1990.[UK88] Craig Upson and Michael Keeler. The v-bu�er: Visible volume rendering. Computer Graphics,22(4):59{64, July 1988.[Use91] Sam Uselton. Volume rendering for computational id dynamics: Initial results. TechnicalReport RNR-91-026, NAS-NASA Ames Research Center, Mo�ett Field, CA, 1991.[WCA+90] Jane Wilhelms, Judy Challinger, Naim Alper, Shankar Ramamoorthy, and Arsi Vaziri. Directvolume rendering of curvilinear volumes. Computer Graphics, 24(5):41{47, December 1990.[Wes90] Lee Westover. Footprint evaluation for volume rendering. Computer Graphics, 24(4):367{76,August 1990.[Wil92a] Peter Williams. Interactive splatting of nonrectilinear volumes. In Visualization '92, pages37{44. IEEE, October 1992.[Wil92b] Peter Williams. Visibility ordering meshed polyhedra. ACM Transactions on Graphics,11(2):103{126, April 1992.[WVG91] Jane Wilhelms and Allen Van Gelder. A coherent projection approach for direct volumerendering. Computer Graphics (Proceedings ACM Siggraph), 25(4):275{284, 1991.
13


