
Spray Rendering:
A New Framework for Visualization

Alex Pang and Kyle Smith

UCSC-CRL-93-01
January 1993

Board of Studies in Computer and Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064

email addresses: pang@cse.ucsc.edu, kyle@cse.ucsc.edu
Supported in part by Office of Naval Research grant no. N-00014-92-J-1807

Abstract

We propose a new framework for doing scientific visualization that allows the
users to freely explore their data set. This framework uses a metaphorical abstraction
of a virtual can of spray paint that can be used to render data sets and make them visi-
ble. Different cans of spray paint may be used to color the data differently. Different
types of spray paint may also be used to highlight different features in the data set.
To achieve this, individual paint particles are endowed with intelligent behavior.
This idea offers several advantages over existing methods: (1) it generalizes the
current techniques of surface, volume and flow visualization under one coherent
framework; (2) it works with regular and irregular grids as well as sparse and dense
data sets; (3) it allows selective progressive refinement and can be implemented on
parallel architectures in a straight forward manner; (4) it is modular, extensible and
provides scientists with the flexibility for exploring relationships in their data sets in
natural and artistic ways.

1

1. Overview

Rendering a data set is like painting. Given a data set, the rendering algo-
rithm makes the set of numbers visible by assigning appropriate colors to the display
that will faithfully mimic what the numbers are trying to represent. A crude
equivalent to this process is pouring a bucket of paint over an invisible object in order
to make it visible. The invisible object corresponds to the set of numbers that one is
trying to visualize, while the rendering algorithm or the paint is the mechanism for
making the data visible. One can further imagine holding a can of spray paint, aim-
ing the nozzle at the invisible object, and selectively painting areas of interest by
moving the spray can around.

Spray rendering uses the metaphorical abstraction of providing the visualiza-
tion user with virtual cans of spray paint for rendering their data. The power of this
abstraction can be realized when we consider what additional functions these paint
particles can do aside from sticking to invisible surfaces and highlighting those sur-
faces with the paint. Arbitrary characteristics can be assigned to the spray paint.
Therefore, instead of painting the object using the color of the paint, one can imagine
a formula X spray paint for highlighting specific surface temperatures. That is, these
paint particles would behave differently depending on the data that they encounter.
Furthermore, one can create a formula Y spray paint that will be activated only when
it encounters a certain range of surface temperatures. Both of these particles are
endowed with the ability to seek out certain target features in the data set. Once
those target features are identified, the particles then behave or manifest themselves
in various ways. Since these paint particles are smart, we refer to them as smart par-
ticles or sparts for short. Visualization users who use spray rendering can picture
themselves with an entire shelf of virtual spray paint cans that can be applied to their
data sets (see Figure 1). Depending on the type of spart within the can, data will be
rendered to highlight different features.

SPART PALETTE

SS FT VT Meta

SAVE SPRAY TOOLS
ORIENTATION

LOAD

Data and Rendering Controls:

RENDERING WINDOW

NOZZLES

2

Figure 1. A mock panel showing a palette of sparts that the user selects from to fill
the spray can. Data are then selectively visualized as the user moves the virtual spray
can around the data set.

2. Challenges to current visualization techniques

In recent years, there has been significant advances in visualization tech-
niques. A major driving force is fulfilling the flow visualization requirements usually
found in Computational Fluid Dynamics (CFD) experiments. Examples of tech-
niques that came out of this effort include: particle traces along trajectories, streams
and ribbons, [Hult90, Helm91] as well as volume visualization of vector field vari-
ables. These are often incorporated in large visualization projects developed at the
nation’s leading research laboratories such as those reported in [Phil90]. Some of the
more recent work in flow visualization include a virtual environment interface
[Brys92], an interactive flow visualization using color lookup tables [VanG92], and
extending direct volume visualization from scalar to vector fields [Craw92].

Another driving force in visualization is medical imaging. Non-invasive tech-
niques for data gathering produce cross-sectional views that must be reconstructed
(e.g. curved coronal views of the lumbar spine [Rhod85]) to facilitate understanding
of the underlying three dimensional structure and aid in pre-surgical planning
[Gold85]. Techniques for viewing three dimensional data volumes have evolved
from image processing and data conversion. A few examples would be extracting
contour edges and surface tiling [Fuch77], finding isosurfaces with the marching
cubes algorithm [Lore87] and 3D surface shading in the cuberille and voxel environ-
ment [Chen85, Kauf88, Levo88], and finally to direct volume visualization that simu-
lates the amount of material traversed by a light ray in an opacity parameter [Dreb88,
Upso88, Sabe88]. More recent work in this area are geared towards extending
volume rendering to work with non-rectangular grids such as curvilinear grids com-
monly found in CFD data [Wilh90]. Significant work is also aimed at speeding up
volume rendering either through hierarchical organizations [Laur91] or parallel com-
putation such as those reported in the 1992 workshop on volume visualization held in
Boston. Because data come in different forms and from different disciplines, a con-
venient way of handling this apparent inhomogeneity is through a data flow model
where data is transformed as it goes through different modules in the network. Once
this abstraction is made, graphical user interfaces can be built to provide a relatively
easy framework for interacting with the data and to offer a flexible, customized solu-
tion to a wide variety of applications. Recent advances in visualization platforms
such as AVS, apE, Khoros and Explorer which incorporate very user friendly inter-
faces have all contributed to the wider acceptance of visualization tools by the
scientific community.

3

Overall, there has been significant progress in different areas such as com-
puter graphics, vision, image processing, human computer interfaces and computa-
tional sciences during the last few years. The NSF panel report on visualization in
scientific computing [McCo87] served to bring these disciplines together in a focused
and concerted effort at pushing the frontiers of visualization forward. Since then, the
synergy between these different disciplines and application domains such as CFD,
medicine, molecular modeling have produced a reciprocal relationship where visuali-
zation may help lead to new discoveries which in turn help drive the need to improve
visualization technology. However, there are still some major obstacles to be
addressed. For example, most of the visualization work to date has dealt with data
rich environments where errors introduced by interpolation to fill in holes in the data
set were at an acceptable level. In data poor environment, data are sparsely distri-
buted and often in unstructured, irregular grids. An initial work along this direction
that handles unorganized data points is already being undertaken [Hopp92]. Another
consideration is that data may be noisy and users must be given a visual assessment
of data quality at different spatial locations. Still another challenge is to provide
interactive steering capabilities to computational problems. This requirement places
strong demands on the computational power, communication bandwidth, intelligent
hierarchical organizations and difficult tradeoff decisions.

3. Spray rendering

There are several concerns with current visualization techniques that spray
rendering can address. First of all, most current rendering techniques are designed to
display data of a particular type and generate a specific type of image (e.g. polygonal
surfaces or volume rendering). Hence, users who need to visualize different data
types or combine different visual effects are forced to learn different packages.
Secondly, most visualization packages only deal with dense data on either regular or
curvilinear grids. There is a need for a single platform that deals with dense data on
regular and curvilinear grids, as well as sparse unstructured data. Thirdly, most visu-
alization packages require a pre-processor to do feature extraction that seeks out rela-
tionships in the data set. Typically, the features from the entire data set are extracted
and then passed on to the renderer. This approach does not provide an interactive
interface where less promising searches can be quickly discarded and efforts
redirected to the more interesting paths. Finally, the visualization package should
grow gracefully with the visualization needs of the users, and be extensible to new
data types.

4

3.1. The paradigm

The underlying mechanism behind spray rendering is the specification of
sparts with different targets and behaviors. To a certain extent, this technique is a
combination of behavioral animation [Reyn87] and particle systems [Reev83,
Sims90, Szel92] in that each particle is endowed with instructions on what to seek out
and how to react to its changing environment. Particle systems were originally
developed as a means of modeling natural phenomena such as fire, forests and grass
that would have been difficult or nearly impossible with classical polygonal represen-
tation. The novel feature of particle systems is the procedural method of specifying
the models. For example, particles are defined to have initial attributes such as color,
trajectory and life span. Particles are then fired from some defined region and may
spread and/or produce new particles of their own. Already, visualization researchers
are using similar ideas in fluid flow visualization where tracer particles are injected
and their paths traced. Behavioral animation, on the other hand, found its initial util-
ity in computer animation applications by specifying group behavior such as those
found in schools of fish or flocks of birds. Typically, some heuristics are imposed on
individual characters to determine how the group as a whole will behave. Examples
usually include avoiding collision, maintaining average speed and direction, as well
as not straying too far away from the group center. More recently, interaction of the
characters with their environment has been incorporated. An example of this is the
leaves in the wind simulation [Wejc91]. Although both particle systems and
behavioral animation were originally designed for modeling and animation applica-
tions, the combination of these two ideas provide a synergy with very promising con-
tributions in the context of a framework for visualization.

The power of this framework can be realized if one takes a closer look at the
different possibilities for defining individual sparts. First of all, it is convenient to
think of sparts as small spherical balls or light emitting points. However, the indivi-
dual sparts may also take the form of glyphs [Ells88] or 3D icons. For example, one
can create paint particles that are shaped like leaves. These particles can then be
sprayed or thrown into the wind to highlight wind flow and the presence of vortices.
Other attributes that can be attached to a spart are the target features it is programmed
to seek out within its local data set. A simple example would be sparts that seek out
surfaces. A more interesting target would be one that shows relationships among dif-
ferent variables. For instance, a spart may be defined to manifest itself only if the
wind speed is between 15 and 30 knots, air temperature is above 70 degrees
Fahrenheit and irradiance is at least 300 watts/m 2 (i.e. good sailing conditions). Yet
another attribute of a spart is its behavior once a target is identified. This is undoubt-
edly the most flexible and powerful component of a spart. For example, surfaces can
be highlighted using the spart color or the surface color. The behavior may also be

5

modified so that instead of sticking to the first surface that a spart encounters, it
bounces off thereby simulating highly reflective surfaces. Alternatively, x-ray like
sparts can be created that penetrate through the data and accumulate density and color
information resulting in fuzzy, transparent, volume rendered images. Sparts can also
be defined to look for clean data or differences in data compared to historical or cali-
brated data sets and effectively highlight data quality. In addition, sparts can be
instructed to alter their own appearance or color as they move around the data set
and/or leave a trail of their path. These sparts can be used to show flow patterns in
vector data where the paths of the sparts are influenced and advected by the local
forces within the data set. Likewise, they can be used to search and highlight iso-
potential fields.

Sparts are dynamic entities. Thus, another simple extension would be to
change the color of the path that a spart traces out to indicate the age of the spart.
New sparts may be born, and older ones may be extinguished. Sparts may either
work individually, which facilitates asynchronous parallel implementation, or they
may work cooperatively and share information about their local surroundings. There-
fore, in addition to defining spart to data interactions, one can also specify spart to
spart interactions. Looking at the leaves example again, spart to spart interactions
correspond to the collision of leaves. The amount of collision may then be mapped to
rustling sounds or visual cues signifying the intensity of the wind. Spart designers
also have the flexibility of organizing simple sparts into groups and hierarchies so
that one can think of spart-tuples. Such an organization of sparts may correspond to
flow ribbons or rakes used in flow visualization.

It should be obvious that using the appropriate sparts, spray rendering is capa-
ble of effects similar to those obtained by traditional surface, volume and flow visual-
ization. Thus, by using this platform, a visualization user can effectively investigate
the data set with a combination of different visualization techniques. The user also
has the flexibility of mixing and matching different cans of sparts in visualizing,
exploring, analyzing and hopefully gaining some insight on their data set. In addi-
tion, the spray paint metaphor provides a natural way of incorporating virtual
environment interfaces within the same framework. Thus, one can envision scientists
entering into a virtual world where they can pick different spray cans, walk around
their data set, explore and highlight different features in the data, all within the realm
of this virtual environment.

It should be noted that each spart has a changing set of local data and neigh-
boring sparts. There is no specific requirements that the data to be rendered must lie
within some grid system. Except for efficiency concerns, it does not matter whether
the data are available at regular or irregular grid points and whether the data are

6

dense or sparse. For sparse data sets, a spart may extend its local domain to a larger
area, or it may simply not manifest itself if there is insufficient local data.

The complexity of spray rendering is dependent on the number of active
sparts and the size of a spart’s local neighborhood. If this neighborhood includes a
substantial amount of data, then the performance of spray rendering will be slower.
However, because sparts are not directly dependent on the size of the entire data set,
spray rendering can allow the user to investigate very large data sets interactively.
This is achieved by the following methods: (a) Adjust the nozzle of the spray can so
that it has a wide area of coverage. After the initial spray, selectively highlight areas
of interest with a narrower beam of sparts. (b) Adjust the density or the number of
active sparts being sprayed. During the initial exploratory spray, use less but larger
sparts. Using a combination of these two methods, one can progressively refine on
earlier renderings and incrementally focus in on interesting sections of the data set.

As new data types need to be incorporated or new targets or behaviors need to
be implemented, new sparts can be programmed to handle them. Thus, sparts offer a
modular and extensible mechanism for adapting to the changing needs of the user. It
is expected that early designers for sparts will have to do programming. However,
once a set of spart attributes has been created, a new spart can be generated interac-
tively from a pick list or palette of targets and behaviors involving minimal or no pro-
gramming. These attributes are described in the next section and are meant to give a
glimpse of what a spart may contain.

3.2. The whole picture

Spray rendering provides a framework from which to apply diverse rendering
techniques in a unified manner. It is born out of a need for scientists to be able to
render large data sets with widely varying data structures without learning several
different packages. The interface for launching sparts appears intuitive and
encourages users to interactively explore their data sets.

There is no inherent restriction on the structure of the data. Data sets may be
sparse or densely packed. They may be presented on regular grids or on curvilinear
substrates. Data at each point may be scalar or vectors of arbitrary lengths. New data
formats are easily incorporated by designing new sparts that handle them. Further-
more, there is no inherent restriction on the type of calculations that a spart can per-
form when searching for their target or how they will manifest and reproduce them-
selves.

7

With so few restrictions on the sparts it is valid to ask what distinguishes
spray rendering from a collection of arbitrary processes which act upon a common
data set. In essence, there is no difference. The utility of spray rendering comes
from the user interface which allows different sparts to be selected in an ad-hoc
manner. The ability to mix-and-match different sparts simultaneously provide the
capability of producing images that are composed by using different visualization
techniques.

Sparts make decisions based on their current state. Sparts have some notion
of their current position and use local information to determine their next position or
state. Another attribute of state is the current age of the spart, where age can be
defined arbitrarily by the spart, but has been commonly understood to be the number
of state changes since the spart was activated or born. At each state change
throughout the lifetime of a spart, the spart can output an abstract visualization object
(AVO) [Haber90], give birth to other sparts and/or die (see Figure 2). The AVO’s
resulting from spray rendering a data set may be thought of as visual data, for they
can take on any intermediate form that is convenient for the target physical display
device.

8

SPRAY RENDERING DATA FLOW DIAGRAM

Data Sets Sparts Renderer Physical
Displays

Visualization

Objects

Abstract

Structure
 Regular
 Curvilinear
 Unorganized

Data Type
 Scalar
 Vector

Distribution
 Sparse
 Dense

Asynchronous Data Flow

Figure 2. Arbitrary data types are processed by different sparts which leave invisible
markers and output abstract visualization objects for the renderer to display.

The spray rendering user interface is both a window from which to view the
AVO’s output by sparts, both extant and extinct, and a platform from which to launch
new sparts. However, it does not exercise control over the lives of sparts once they
are launched. Each spart may be initiated as a separate process running on a distal
machine, so long as all have access to a common database. The implementation of
sparts may change to take advantage of the underlying architecture, be it parallel,
vector or Von Neumann.

4. Sample sparts for spray rendering

This section outlines some examples of sparts that mimic current visualization
techniques as well as some examples that go beyond current techniques. We start out
by describing the canonical spart which can be used as a template for describing the
major parts of a spart and a spray can.

SPRAY CAN:

State:
NozzleType(cone, flood, rake, etc.) ; pattern of spray
Location(x, y, z) ; initial nozzle location
Attitude(x, y, z) ; direction of spray
SpartType(SS, VP, FT, etc.) ; different type of sparts
SpartOrganization(single, tuple, hierarchical)
SpartDistribution(n, d) ; number & distribution of sparts

9

Methods:
Spray() ; deliver a dose of sparts
LoadSpart(spart type) ; load new sparts in can
VaryDistribution(n, d) ; change density & distribution
VaryNozzle(nozzle type)
MoveCan(x, y, z)
PointCan(x, y, z)

SPART:

State:
Position(x, y, z) ; current position of spart
Trajectory(x, y, z) ; current trajectory of spart
Age ; number of state changes since birth
Lifetime ; maximum state changes till death
SpartAppearance ; color, transparency, shape,

; size, texture, etc.
TraceAppearance ; color, transparency, shape,

; size, texture, etc.
DataType(point, surface, volume, etc.) ; data type managed by spart

Methods:
TargetFunction() ; determines if a target is reached

; e.g. surface, gradients, flows, etc.
DirectionFunction() ; calculates next trajectory
SpawnFunction() ; determines number of new sparts
DeathFunction() ; determines if spart should die
AVOFunction() ; outputs AVO’s. e.g. spart color,

; object color, trace, etc.
MarkerFunction() ; outputs markers, see below
Map() ; modifies mapping, see below

The Map() function is used for mapping n -dimensional data sets without
explicit spatial information, into a cartesian coordinate system that the spray cans and
sparts understand. Up to three independent parameters can be mapped to the
corresponding x,y,z world coordinates. The rest of the n −3 parameters are then
treated as a vector of parameters at various world coordinates. In essence, this is a
projection map of a higher dimensional space to three space. This usage of the Map()
function allows the spray can to be positioned relative to the mapped 3D projection.

10

Another possible use of the Map() function is to calculate a set of new coordinates,
different from the spray can coordinates, in which the spart will operate. Thus, it is
possible to distinguish between the coordinate system where the spray can is being
used and the coordinate system where the AVO’s are rendered.

There are two types of data that a spart can output. The first are abstract visu-
alization objects which are visual objects that show up on the physical display device.
The second type of data output by a spart are markers. Markers are not visual
objects, and are not rendered on the display. They are used by sparts to communicate
with other cooperating sparts. In order to communicate, cooperating sparts are
assumed to understand the marker format of the other sparts. All markers have a
location that corresponds to the (x,y,z) location of the spart where they were dropped.
They also have tags that identify what types of data are stored within the marker.
The value and structure of the data that each tag identifies within a marker is deter-
mined by the spart that dropped it. Note that while markers have locations within the
coordinate system of the original data, they do not modify the original data. They
exist in a separate but equivalent coordinate system. No spart ever modifies the origi-
nal data set.

4.1. Surface seeking sparts

A surface seeking (SS) spart travels forward until it intersects with a surface.
The determination of what constitutes a surface is made locally by the spart. So, it
can find more general surfaces than are present in the standard polygonal world. For
example, a surface may be represented as a bilinear patch by a spart’s four nearest
points. Thus, these SS sparts can provide effects similar to iso-surface rendering and
traditional polygonal rendering. The behavior of the spart is not limited to highlight-
ing the entire polygonal surface that it hits. It may simply display the intersection
point. Alternatively, the spart can blot the surface with a paint spot partially
highlighting the area around the intersection point. Yet another possible behavior is
for the spart to bounce off the intersected surface or continue through at an angle of
refraction. While this seems like raytracing, the effects are different since the eye
vector does not coincide with the spray nozzle vector. A closer counterpart to this
would be a step in a progressive radiosity algorithm where each patch has to deter-
mine where to shoot its accumulated energy.

Figures 3 and 4 show two different behaviors for a SS spart when applied to a
terrain that is modeled as a height field. The former highlights the entire polygonal
surface that is intersected while the latter highlights only a small neighborhood
around the intersection point.

11

Figure 3. The entire polygon is highlighted as soon as a spart hits it.

Figure 4. A small paint spot (splat) is displayed where a spart hits a surface.
Polygon boundaries are displayed for illustration purposes only and are not part of the
spart behavior.

4.2. Volume penetrating sparts

The volume penetrating (VP) sparts do not seek out surfaces. In fact, they do
not have specific targets. Instead, they act like high energy particles that are bom-
barding the data sets. The visual effects of passing these sparts through the data set
depend on their behavioral description. For example, ray marching algorithms can be
simulated with VP sparts that accumulate density and integrate color information
along its path. If the sampling ray is required to diverge into many rays, the VP spart
can likewise spawn off additional VP sparts. If an average of samples is required,
then the VP spart can leave its contribution to the final value as a marker. Each sub-
sequent VP spart that encounters the same target can make the appropriate adjustment
to the marker.

12

Another behavioral manifestation of VP sparts would be to imagine a slightly
less energetic spart or a data set that exerts very strong influence on the VP spart so as
to influence its path. This type of spart may be used to visualize the refraction effects
of light particles going through materials of varying density. Even if the data is very
sparse, VP sparts can be used to visualize how light bends as it is influenced by
strong gravitational forces.

4.3. Flow tracking sparts

Flow tracking (FT) sparts are ideal for visualizing vector fields. The FT
sparts typically do not have specific targets and usually do not have an initial velocity
or trajectory. Instead, they are introduced into vector fields where they are influenced
and carried around by the surrounding neighboring forces. The phenomena of
interest are usually the flow patterns rather than surface or accumulated energy.
Therefore, FT sparts manifests themselves by leaving a trace of their path as they
advance from one state to another. FT sparts may work in pairs or groups so as to
form flow ribbons and rakes respectively.

4.4. Meta-sparts

Meta-sparts are slightly different when compared to the previous sparts
because their targets are not based on the original data set. Instead, meta-sparts seek
out markers left behind by other sparts. An example of a meta-spart is a garbage col-
lecting (GC) spart that simply removes the visual cues from the rendered image.
Typical uses for such a GC spart include editing, cleaning the rendered scene and
reducing the overall scene complexity. With meta-sparts, one can also create sparts
that produce secondary effects by combining results of previous sparts. It is impor-
tant to note that the original data set is left untouched by this and all other types of
sparts.

4.5. Other eccentric sparts

The power and richness of spray rendering comes from the ability of specify-
ing arbitrary attributes for the sparts. Novel visualization effects can be created by
defining the appropriate spart target and behavioral attributes. Furthermore, sparts
can highlight relationships among different data parameters. Below is a collection of
some possible sparts that come to mind.

Define a SS spart whose behavior is to paint the surface according to its
height, slope, temperature or other variables. Once a surface is found, make arrange-
ments for the spart to slide down the slope of the surface thereby simulating the path
that a rain drop would make as it rolls down the slope because of gravity. If FT

13

sparts were presented with a scalar field, rather than a vector field, they can be used to
identify iso-potential fields by highlighting paths or surfaces the sparts trace out as
they are forced through the field. For example, contour lines and surfaces showing
isobars are formed by sparts that travel through a section of data where different data
points are exerting an equal amount of pressure (or whatever the relevant parameter
happens to be). Additionally, aging and interaction among parameters can be
highlighted by sparts that may represent oil spill particles being dispersed by wind,
current and tidal forces as well as being broken down by chemical reactions. Sparts
with arbitrarily complex shapes such as leaves and perhaps birds or fishes can be
used. It is also possible to compare data sets with historical data and where the vari-
ance exceeds a certain tolerance, those points may be emphasized. That is, the spart
attributes are combined with data pre-processing and feature extraction operations.
In short, the combinations are endless.

5. Summary

The immediate benefit of spray rendering is the ability to combine, in a single
image, the abstract visualization objects which have been produced by any combina-
tion of sparts. Thus, by learning a single visualization system, the scientist can pro-
duce images employing multiple resolutions and multiple rendering techniques. In
addition, since the spart designer has the freedom of defining new targets and
behaviors in their sparts, it is relatively easy to produce novel visualization effects.

Another benefit of spray rendering is the incremental manner in which an
image can be rendered. With spray cans, various sparts can be tested on a subset of
the data to determine the effect of applying different types of sparts. The user selects
the type of sparts to fill up the spray can, and also chooses various spray nozzle pro-
perties. For instance, the shape of the nozzle can be circular which delivers a cone of
sparts in a directed manner to a particular region of the data set. Alternatively, the
nozzle can be so wide that it floods the entire screen with sparts. This allows interac-
tive exploration of very large data sets.

Finally, spray rendering allows for a modular way of combining rendering
algorithms on the fly, without programming. The spray rendering user interface
allows for the construction of sparts from a palette of pre-wired behaviors. A spart
may be constructed by selecting target features which drive the movement of the
spart within the data, and behaviors to control how the spart manifests itself and the
target feature. Other parameters that represent the lifetime, shape and color of the
spart can also be specified in a similar manner. Thus, with a very small set of
predefined attributes, the user is able to create a large number of unique sparts. To
draw on the analogy of paint particles, this is akin to mixing paints to come up with

14

just the right color.

We have shown that spray rendering has great potentials. At the same time, it
must address several issues of practical concern. With so much flexibility built into
the system, the challenge is to design a system which is reasonably efficient. Several
factors affect the interactivity of sparts and its apparent performance. The most
important factor is the number of active sparts that must be tracked. The complexity
of the spart geometry, its target and behavioral attributes are also primary factors that
influence the performance of sparts. Another significant factor is the size of a spart’s
local neighborhood. As the spart traverses through the data, it’s local set of data
points must be updated to include new ones that come within its spatial domain and
discard those that are too far away. Obviously, judicious tradeoffs need to be made
between the amount and the complexity of sparts, between interactivity and visual
resolution, and between the amount of particle to particle cooperation and the cost of
communication among sparts. Fortunately, the nature of sparts make them very suit-
able for parallel implementation. However, care must be taken to ensure that imple-
mentation details, such as taking advantage of any underlying parallel or vector pro-
cessors, are transparent to the users’ view of the virtual cans of spray paint.

6. References

[Brys92] Bryson, S. and C. Levit, ‘‘The Virtual Wind Tunnel,’’ IEEE Com-
puter Graphics and Applications 12(4), pp. 25-34 (1992).

[Chen85] Chen, L. S., G. T. Herman, R. A. Reynolds, and J. K. Udupa, ‘‘Sur-
face Shading in the Cuberille Environment,’’ IEEE Computer Graph-
ics and Applications 5(12), pp. 33-43 (1985).

[Craw92] Crawfis, R. and N. Max, ‘‘Direct Volume Visualization of Three-
Dimensional Vector Fields,’’ ACM Workshop on Volume Visualiza-
tion, pp. 55-60 (1992).

[Dreb88] Drebin, R., L. Carpenter, and P. Hanrahan, ‘‘Volume Rendering,’’
Computer Graphics 22(4), pp. 65-74 (1988).

[Ells88] Ellson, R. and D. Cox, ‘‘Visualization of Injection Molding,’’ Simu-
lation 51(5), pp. 184-188 (1988).

[Fuch77] Fuchs, H., Z. M. Kedem, and S. P. Uselton, ‘‘Optimal Surface
Reconstruction from Planar Contours,’’ Communications of the ACM
20(10), pp. 693-702 (1977).

[Gold85] Goldwasser, S. M., R. A. Reynolds, T. Bapty, D. Baraff, J. Summers,
D. A. Talton, and E. Walsh, ‘‘Physician’s Workstation with Real-
Time Performance,’’ IEEE Computer Graphics and Applications
5(12), pp. 44-56 (1985).

15

[Habe90] Haber, R. B. and David A. McNabb, ‘‘Visualization Idioms: A Con-
ceptual Model for Scientific Visualization Systems,’’ pp. 74-93. in
Visualization in Scientific Computing, ed. G. M. Nielson, B. Shriver
and L. J. Rosenblum, IEEE Computer Society Press (1990).

[Helm91] Helman, J. L. and L. Hesselink, ‘‘Visualizing Vector Field Topology
in Fluid Flows,’’ IEEE Computer Graphics and Applications 11(3),
pp. 36-46 (1991).

[Hopp92] Hoppe, H., T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
‘‘Surface Reconstruction from Unorganized Points,’’ Computer
Graphics 26(2), pp. 71-78 (1992).

[Hult90] Hultquist, J., ‘‘Interactive Numerical Flow Visualization Using
Stream Surfaces,’’ Tech. Rep. RNR-90-009, NASA Ames Research
Center, (1990).

[Kauf88] Kaufman, A. and R. Bakalash, ‘‘Memory and Processing Architec-
ture for 3D Voxel-Based Imagery,’’ IEEE Computer Graphics and
Applications 8(11), pp. 10-23 (1988).

[Laur91] Laur, D. and P. Hanrahan, ‘‘Hierarchical Splatting: A Progressive
Refinement Algorithm for Volume Rendering,’’ Computer Graphics
25(4), pp. 285-288 (1991).

[Levo88] Levoy, M., ‘‘Display of Surfaces From Volume Data,’’ IEEE Com-
puter Graphics and Applications 8(5), pp. 29-37 (1988).

[Lore87] Lorensen, W. E. and H. E. Cline, ‘‘Marching Cubes: A High-
Resolution 3D Surface Construction Algorithm,’’ Computer Graph-
ics‘ 21(4), pp. 163-169 (1987).

[McCo87] McCormick, B. H., T. A. DeFanti, and M. D. Brown, ‘‘Visualization
in Scientific Computing,’’ Computer Graphics 21(6) (1987).

[Phil90] Phillips, R. L., B. Cabral, C. L. Hunter, R. B. Haber, G. V. Bancroft,
T. Plessel, F. Merritt, P. P. Walatka, and L. J. Rosenblum, ‘‘Scientific
Visualization at Research Laboratories,’’ pp. 209-253 in Visualiza-
tion in Scientific Computing, ed. G. M. Nielson, B. Shriver and L. J.
Rosenblum, IEEE Computer Society Press (1990).

[Reev83] Reeves, W. T., ‘‘Particle Systems − A Technique for Modelling a
Class of Fuzzy Objects,’’ Computer Graphics 17(3), pp. 359-376
(1983).

[Reyn87] Reynolds, C. W., ‘‘Flocks, Herds, and Schools: A Distributed
Behavioral Model,’’ Computer Graphics 21(4), pp. 25-34 (1987).

[Rhod85] Rhodes, M. L., Yu-Ming Azzawi, E. Tivattanasuk, A. Pang, K. Ly,
H. Panicker, and R. Amador, ‘‘Curved-Surface Digital Image Refor-
mations in Computed Tomography,’’ Proceedings of SPIE, Medical
Image Processing 593, pp. 89-95 (1985).

16

[Sabe88] Sabella, P., ‘‘A Rendering Algorithm for Visualizing 3D Scalar
Fields,’’ Computer Graphics 22(4), pp. 51-55 (1988).

[Sims90] Sims, K., ‘‘Particle Animation and Rendering Using Data Parallel
Computation,’’ Computer Graphics 24(4), pp. 405-413 (1990).

[Szel92] Szeliski, R. and D. Tonnesen, ‘‘Surface Modeling with Oriented Par-
ticle Systems,’’ Computer Graphics 26(2), pp. 185-194 (1992).

[Upso88] Upson, C. and M. Keeler, ‘‘V-Buffer: Visible Volume Rendering,’’
Computer Graphics 22(4), pp. 59-64 (1988).

[VanG92] Van Gelder, A. and J. Wilhelms, ‘‘Interactive Animated Visualiza-
tion of Flow Fields,’’ ACM Workshop on Volume Visualization, pp.
47-54 (1992).

[Wejc91] Wejchert, J. and D. Haumann, ‘‘Animation Aerodynamics,’’ Com-
puter Graphics 25(4), pp. 19-22 (1991).

[Wilh90] Wilhelms, J., J. Challinger, N. Alper, S. Ramamoorthy, and A.
Vaziri, ‘‘Direct Volume Rendering of Curvilinear Volumes,’’ Com-
puter Graphics 24(5), pp. 41-47 (1990).

17

