On Weak Learning

David P. Helmbold*and Manfred K. Warmuthf

UCSC-CRIL-92-54
December 16, 1992

Board of Studies in Computer and Information Sciences
University of California, Santa Cruz
Santa Cruz, CA 95064

ABSTRACT

An algorithm is a weak learning algorithm if with some small probability it out-
puts a hypothesis with error slightly below 50%. This paper presents relationships
between weak learning, weak prediction (where the probability of being correct is
slightly larger than 50%), and consistency oracles (which decide whether or not a
given set of examples is consistent with a concept in the class). Our main result is a
simple polynomial prediction algorithm which makes only a single query to a consis-
tency oracle and whose predictions have a polynomial edge over random guessing.
We compare this prediction algorithm with several of the standard prediction tech-
niques, deriving an improved worst case bound on Gibbs Algorithm in the process.
We use our algorithm to show that a concept class is polynomially learnable if and
only if there is a polynomial probabilistic consistency oracle for the class. Since
strong learning algorithms can be built from weak learning algorithms, our results
also characterizes strong learnability.

*David P. Helmbold was supported by NSF grant CCR-9102635, email: dph@cis.ucsc.edu.

"Manfred K. Warmuth was supported by ONR grant N00014-91-J-1162 and part of this work was
done while he was visiting the ITAS-SIS Institute of Fujitsu Laboratories, Numazu, Japan, email:
manfred@cis.ucsc.edu.

1. Introduction 1

1 Introduction

This paper presents a several learning results, including necessary and sufficient condi-
tions for weak learning. To help introduce the learning terminology used in this paper we
use the problem of learning DFAs over a binary alphabet as an example learning problem.
A learning algorithm is given random bitstrings (called instances) which are labeled with
0 or 1 depending on whether they are rejected or accepted by some hidden target DFA.
The labeled bitstrings are called examples and each possible target DFA defines a concept
consisting of all bitstrings which it accepts (or equivalently, the associated indicator func-
tion on bitstrings). The set of possible concepts is called the concept class. Assume the
algorithm is given two parameters: n, a length bound on the bitstrings, and s, a bound on
the size of (number of states in) the unknown target DFA. After seeing a reasonable number
of instances (bitstrings of length at most n) labeled by the hidden target DFA of size at
most s, the learning algorithm outputs a hypothesis which is intended to approximate the
set of bitstrings of length at most n that are accepted by the hidden target DFA. We assume
that the instances are generated according to a fixed but arbitrary probability distribution
and define the error of the output hypothesis as the probability of the symmetric difference
between the hypothesis and the target.

A strong learning algorithm takes parameters n, s, € > 0 and 6 > 0 and must, with
probability at least 1 — 4, output a hypothesis having error at most €. To generate this
hypothesis, the algorithm is allowed to examine a number of examples equal to some
polynomial p(n,s,1/€,1/8). Learning algorithms are called polynomial if both their running
time and the running time for evaluating the output hypotheses on instances of length at
most n is bounded by a polynomial in all four parameters.

This notion of learning was introduced by Valiant [Val84]. Not too many concept classes
have been shown to be polynomially strongly learnable and a less stringent definition of
learning was given by Kearns and Valiant [KV89]. A weak learning algorithm must, after
seeing m = pi(n,s) many examples, output a hypothesis having error at most % —1/pa(m)
with probability at least? 1/ps(m), where p1, py and p3 are polynomials.

Surprisingly, it has been shown that any polynomial weak learning algorithm can be
used to build a polynomial strong learning algorithm [Sch90, Fre90]. These constructions
create many copies of the weak learning algorithm and each copy generates a hypothesis
based on a filtered sequence of examples. These hypotheses are then combined to form a
master hypothesis. Thus to determine whether a concept class is polynomially learnable it
suffices to construct polynomial weak learning algorithms. In this paper we give necessary
and sufficient conditions for polynomial weak learning.

An Occam algorithm returns any hypothesis from some hypothesis class H that is
consistent with the examples seen. Thus the hypothesis class must be large enough to
represent the way that each possible target labels the examples. The hypothesis class ‘H
is allowed to vary based on the parameters » and s, and the number of examples, m.
When the hypothesis class is the same as the concept class, the Occam algorithm can be

! More precisely, a polynomial learning algorithm is allowed to take time polynomial in the total bit length
of all received instances as well as the four parameters. If n is an upper bound on the bit length of instances
then the two definitions are equivalent. They differ only when n measures some aspect of the instances other
than their bit length.

?In the original definition of weak learning the paramenter 1 — é is used in place of 1/pa(m). The two
definitions are polynomially equivalent (see Lemma 3.4 of [HKLW91]).

2 1. Introduction

viewed as an oracle which returns a concept consistent with the set of examples. Previously
it has been shown that if the cardinality of H is small (bounded by p(n,s) m!=", where
K is a constant less than one), then the Occam algorithm is a strong learning algorithm
[BEHWS7]. We show that even if the size of the hypotheses class grows exponentially,
Occam algorithms may already be weak learners. More precisely, our first result shows that
when the cardinality of H is moderately sized, bounded® by 27~1/P(™) then the Occam
algorithm is a weak learning algorithm. In contrast, we show that one Occam algorithm for
a particular concept class that uses a slightly larger hypothesis class of size 2t1 — 2 is not
a weak learning algorithm.

A consistency oracle for a concept class F is given parameters n, s, and a sequence of
labeled examples whose instances are words of length at most n. The consistency oracle
determines whether or not there is a concept of size at most s which is consistent with
the examples. The consistency oracle’s answer is a simple yes/no decision, making it
(apparently) much weaker than an oracle which returns a concept of size at most s consistent
with the examples.

A probabilistic consistency oracle must answer “yes” with probability at least 50% (over
its internal randomization) when given a set of examples consistent with a concept in the
class, and must always answer “no” on some sets of examples which are not consistent with
any concept in the class. The asymmetry in this definition seems to be necessary as shown
by the counterexample and discussion in Section 10. We show that any polynomial time
weak learning algorithm for F can be converted into a polynomial probabilistic consistency
oracle of F.

We also show that if a polynomial time probabilistic consistency oracle is available
then it can be used to construct a polynomial weak learning algorithm for F whenever F
is learnable at all with respect to an arbitrary distribution (i.e. the Vapnik-Chervonenkis
dimension [VCT71] of F grows polynomially in » and s [BEHWS89]). Previously a direct
construction of a strong learning algorithm using consistency oracles was given by Haussler,
Littlestone, and Warmuth [HLW]. However that algorithm is only polynomial if the VC
dimension of F is a constant independent of n and s. Thus a class is polynomially learnable
if and only if it has a polynomial probabilistic consistency oracle.

The following section contains an introduction to our notation. We define weak predic-
tion algorithms in Section 3 and relate them to weak learning algorithms. Section 4 shows
that one kind of weak learning algorithm is a “weak Occam algorithm” (similar to the
“strong” Occam algorithms studied by Blumer et al. [BEHWS8T7], Board and Pitt [BP92])
and Haussler? et al. [HKLW91]. The next part of the paper concentrates on prediction
algorithms. In Section 5 we define lookahead prediction algorithms which get the entire set
of instances where predictions will be required before making any predictions. There we
show how to transform any lookahead prediction algorithm with a good total mistake bound
into a (normal) prediction algorithm which has a small probability of making a mistake on
the last trial. Section 6 presents and analyzes the Query Lookahead Algorithm, a generic
lookahead prediction algorithm which uses a single query to a consistency oracle. Section 7
shows that a polynomial weak prediction algorithm is created when the Query Lookahead
Algorithm uses a polynomial time consistency oracle and is transformed as described in
Section 5. Furthermore, the resulting polynomial weak prediction algorithm makes only a

#An equivalent condition is to bound the cardinality of H by 2™(1 — 1/p’(m)), for some polynomial p’.

*The kind of Occam algorithms studied there are called random polynomial time hypothesis finders.

2. Notation 3

single query to the consistency oracle. In contrast, our earlier prediction algorithm [HW92b)]
requires a large number of consistency oracle queries to make each prediction. In Section 8
we show using our algorithm that sample size 2d — Q(+/dlogd) suffices for weak learning (not
necessarily polynomial weak learning) of concept classes of VC dimension d. In Goldman
et al. [GKS90] it was shown that no algorithm can weakly learn some concept classes of
VC dimension d from d — O(log(d)) examples. Section 9 compares our prediction algorithm
with several of the standard prediction algorithms, as well as the weak prediction algorithm
of [HW92b]. This comparison includes an improved bound on the expected total number
of mistakes made by the Gibbs prediction algorithm [HKS91] when learning a worst-case
concept. In Section 10 we define one-sided and probabilistic consistency oracles, and prove
that a concept class is polynomially weakly learnable if and only if there is a polynomial
probabilistic consistency oracle for the class. In Section 11 we introduce polynomial “data
interpolators” and discuss how they generalize Weak Occam algorithms. We conclude in
Section 12 by discussing a number of open problems raised by this research.

Preliminary versions of several results presented here have appeared in conference papers

[HW92b, HW92a].

2 Notation

Throughout, lg and In denote the binary and natural logarithms, respectively. When
logarithms appear in asymptotic notation we use log, as the base is not relevant. We use N to
denote the positive numbers, and adopt the convention that 0 = 1 and 1 = 0. Furthermore,
if X is a set then X* is the set of all finite sequences of elements from X (including the
empty sequence) and X T is the set of all finite non-empty sequences of elements from X.

Let X be an arbitrary set of instances called the domain, and F be a set of subsets of X
called the concept class (F C 2%). We use subsets of X and their corresponding indicator
functions interchangeably, so each concept f € F maps X to {0,1}.

Lower case bold letters, such as x and y denote (finite) sequences of instances and |x]|
is the length of the sequence x. For 1 <t < |x]|, we use:

e 1, to denote the tth component of x,

e x=! to denote the t-vector (z1,23,...,7,),
e x<! to denote the t — 1 vector (21, z2,...,2;-1), and
o x”" to denote the [x| — ¢ vector (z¢41, 2142, .., |x|)-

All of x50, x<', and x> /¥l denote the empty sequence A. We will often superscript sequences
solely to emphasize their length.

Fzamples are instances labeled by either 0 or 1, i.e. elements of X x {0,1}. Samples are
sequences of examples. The sample of f on x is denoted by sam¢(x) and is the sequence of
examples® (21, f(z1)),.. (@) f(2x)-

We define samz(x) = {sam(x): f € F}. We also use sam.(x) to denote the set of 21X
samples where the first example contains x1, and second example contains zs, and so on.
If samr(x) = sam.(x) then x is shattered by F.

The Vapnik-Chervonenkis dimension, or VC dimension, of a concept class F on X is
the largest k such that there exists an x € X* that is shattered by F [VC71, BEHW89].

°If x is the empty sequence of instances, then sam; (x) is the empty sequence of examples.

4 3. Weak Learning Models

If e is an example and S is a sample of length m then (9, ¢) is the sample of m + 1
examples obtained by adding e to the end of 5. We use A to denote the empty sequence
(of samples or examples).

We say that a function f is consistent with a sample S if there is an x (the sequence of
instances in the sample) such that § = sam¢(x). Every f € F is consistent with the empty
sample.

We use E,ep [2(a)] to denote the expectation of the random variable z under distribution
P, and Pr,ep [condition(a)] to denote the probability under the distribution P of the
set containing all e satisfying the condition. We adopt the usual assumption that any
probability used in this paper is measurable.

Distribution D always denotes a probability distribution on X. We use U to denote var-
ious uniform distributions — in particular U q) is the uniform distribution on the continuous
interval [0, 1] and U(x) is the uniform distribution on the |x|! permutations of sequence x.

We will also make frequent use of the following bounds on the function 2°.

Fact 2.1: Foranya € R, 1 —aln2 <27 and if a € [0,1] then 27 <1 - ¢.

3 Weak Learning Models

A (randomized) prediction algorithm® A takes a sample, an instance, and a random
number” in [0, 1] as input and outputs a prediction from the set {0,1}. Thus A : (X x
{0,1})*x X x [0,1] — {0,1}.

A (randomized) learning algorithm A for a concept class F on X receives as input
a sample of some target concept f € F and random number r € [0,1]. A outputs
the representation of a concept h in a second concept class H on X that is intended
to approximate f. Class H is called the hypothesis class. Let A(samg(x<™),r) denote
(the representation of) the hypothesis output by algorithm A when run on the example
sequence sam;(x<") with randomization r. Each learning algorithm has an associated
(deterministic) evaluation algorithm that takes as input the representation of a hypothesis
and an instance x € X, and outputs the value of the hypothesis on 2. There are trivial
learning algorithms that simply output the pair (sam¢(x),r) as the representation of the
hypothesis. In that case the evaluation algorithm does all the “work”.

The performance of prediction and learning algorithms can be evaluated in several ways.
For learning algorithms we are primarily interested in how well the algorithm’s hypothesis
approximates the function being learned. For prediction algorithms we look at both the
expected number of incorrect predictions made over a sequence of trials and the probability
of an incorrect prediction on the mth trial.

The error between a learning algorithm’s hypothesis h and target concept f with respect
to distribution D on X is denoted Errp(f, k). Formally, Errp(f, h) = Preep [f(2) # h(2)].

SHere, and in the definition of “learning algorithm” we use the term “algorithm” loosely, without the
requirement that the mapping be computable. However, all the algorithms we present here are computable
when the volumes of samples can be computed (see Definition 9.1).

"For simplicity we let r be a real number drawn from the uniform distribution on [0,1]. More precisely
the random input r given to an algorithm should be a finite number of random bits and for polynomial
algorithms the number of random bits required must be polynomially bounded.

3. Weak Learning Models 5

For any prediction algorithm A and concept f € F, we define M(A, f,x) as the
probability that A makes a mistake on the last instance of x when learning f. More
precisely, when x is a sequence of m instances,

M(A4, f,x) = Ere, [A(sam ¢ (x<™), @n, 1) # fl@m)],

where Upg 1 is the uniform distribution on [0, 1]. Thus the expected total number of mistakes
made by A on a sequence x of m instances labeled by target fis 7~ M(A, f,x<t).

In some sense learning algorithms and prediction algorithms are interchangeable. Given
any prediction algorithm, A, one can create a trivial learning algorithm, A’, which uses A
as its hypothesis evaluator, i.e.

Al(sam ¢(x<™), r)(xm)d:efA(samf(x<m), Ty T).

Furthermore, any learning algorithm and its associated hypothesis evaluator can be used
to produce predictions.

Our performance measures for learning and prediction algorithms can be related as fol-
lows. Suppose prediction algorithm A when given sam;(x<™), x,,, and r first uses learning
algorithm A’ to produce a hypothesis h = A’(samy(x<"),r) and then predicts with the
value A(x,,). In this case (see [HKLW91]), with x<™ and f fixed, E,, ep [M(A4, f,xS™)] =
E,¢cjoa][Errp(f, h)]. The same relationship holds when learning algorithm A’ uses the pre-
diction algorithm A as its hypothesis evaluator.

Note that probabilistic learning and prediction algorithms can be easily converted into
deterministic learning and prediction algorithms by extracting random bits from additional
examples ([HKLWO91], Lemma 3.5). We use randomized learning and prediction algorithms
for our basic models as our algorithms are naturally randomized.

Usually we are not just interested in learning a fixed concept class F over a fixed domain
X but instead we would like to learn a parameterized concept class F = Fy UF, U - - - over
a parameterized domain X = X7 U Xy U ---. Informally, the parameter s in F,; measures
the “size” of the concepts and F; contains all concepts of size at most s. Similarly, the
paramenter n in X, measures the “length” of the instances® and X, contains all instances
of length at most n. For the example in the introduction, X,, consists of all bitstrings of
length at most n and F; contains all concepts accepted by DFAs of at most s states. The
prediction (or learning) algorithm is given both parameters as inputs, and the algorithm is
polynomial if its resource requirements grow polynomially in n, s, and the size of the input
sample.

We extend the M(A, f,x) notation to handle these parameterized learning problems by

defining
def

M, s(4, f,x)= Eetp [A(sam g (x<"), @y 70, 8) # fam)] -

Algorithm A is a weak learning algorithm [KV89] for | J, Fs on UJ,, X, if there exist three
polynomials py, p2, and ps such that if A is given the parameters n and s then for all
[€ Fs and probability distributions D on X, the following holds: upon receiving a random
number 7 € [0, 1] drawn according to Upg ;] together with a sample sam ;(x), where x is drawn
according to D™ and m = py(n,s), the algorithm outputs a hypothesis h = A[sam(x), 7]
on X,, for which

8The parameter n need not be the bit length of the instances. Other measures of instance complexity
are allowed.

6 3. Weak Learning Models

1
2 pa(m)

PI'XGD’",TGU[OJ] Errp(f,h) > <1- (3.1)

pa(m)
In the original definition of weak learning the paramenter ¢ is used is place of 1 — 1/ps(m).
The two definitions are polynomially equivalent (see Lemma 3.4 of [HKLW91]).
For a strong learning algorithm [Val84, BEHWR89], Inequality (3.1) is replaced by the
inequality
Prxepm retiy, [Errn(f. h) > €] <6,

where ¢ and 6 are additional paramenters in [0,1]. These parameters are given to the
algorithm and the sample size m is allowed to be polynomial in 1/¢ and 1/, as well as n
and s.

The hypotheses output by a learning algorithm for J, F, on |J,, X,, are polynomially
evaluatable if the evaluation algorithm’s running time on any hypothesis representation
output by the learning algorithm and any instance z € X,, is bounded by a polynomial in
the parameters n and s of the learning algorithm and the bit length of . A polynomial
weak (strong) learning algorithm must output polynomially evaluatable hypotheses and the
total running time of the weak learning algorithm must be polynomial in the total length of
its input,? n, and s (or in the total length of its input, n, s, 1/¢, and 1/6 for strong learning
algorithms).

It has been shown that any weak learning algorithm A for | J, Fs on |J,, X,, can be used
iteratively to build a strong learning algorithm for | J, 5 on J,, X, [Sch90, Fre90]. Moreover
if the weak learning algorithm is polynomial then the resulting strong learning algorithm is
also polynomial.

Note that one can not convert weak learning algorithms into strong learning algorithms

by simply increasing the sample size m. In fact, the error bound of % — p2(1m) on the

hypotheses produced by a weak learning algorithm can approach % as m increases. The
conversion algorithms of [Sch90] and [Fre90] repeatedly use the weak learning algorithm on
different “small” samples of size m = pi(n,s) (where py(n,s) is the first polynomial in the
weak learning algorithm definition). These “small” samples are created by cleverly filtering
the distribution and the resulting hypotheses are combined using the majority function.
As discussed above, prediction algorithms are closely related to learning algorithms.
Intuitively, a weak prediction algorithm must make predictions that are slightly better than
random guessing when given a polynomially sized sample. This is made precise in the
following definition.
Definition 3.1 (Weak Prediction Algorithm): Prediction algorithm A is a weak pre-
diction algorithm for a concept class F = J, F, on X = J,, X,, if there are polynomials p,

and py such that when m = p1(n, s) then for all concepts f € Fs and all distributions D on
X?’L?

1
2 po(m)

EXEDm [Mn,s(Av f7 X)] S (32)
Furthermore, if there is a polynomial ps such that the predictions made by A are computed in
time bounded by ps(n, s,1) where | is the total bit length of the input, then A is a polynomial
weak prediction algorithm.

We allow the algorithm to use the total bit length of its input in its running time bound since the
parameterization of the domain need not be based on the bit lengths of the instances.

4. Weak Occam Algorithms 7

Weak prediction algorithms perform well enough to be used as the hypothesis evaluators
for trivial weak learning algorithms. This follows from the following lemma (which is
proven using Markov’s Lemma) applied with @ = 1/pa(m). The lemma states that if
the prediction algorithm’s expected error is % — «, then the error of the trivial learning

&4

algorithm’s hypothesis is at most % — 5 with probability at least 1 — 2.

11—«
Lemma 3.2: For any distribution D on X, any prediction algorithm A and any concept f
on X, if

1
EXED’" [M(Av fvx)] < 5 - Q,
and A’ is the trivial learning algorithm which uses A as its hypothesis evaluator then

(8% (8%

Prpm— XUlo,1] Errp(f, A/[Samf(x<m)7)z

Proof: Recall that if learning algorithm A’ uses prediction algorithm A to evaluate its
hypotheses then:

EXED’" [M(Av f7 X)] = EXED’",TEU[OJ] [A(Samf(x<m)7 Ty T) 7£ f(wTYL)]
= EXEDm—l,TEU[O,u [El’mED [A(samf(x<m), Tin,T) 7 f(waL)]]
= EXEDm_1 €U0 1 [EI’I’D(f, A/(Samf(x<m)v T))] .

Markov’s Lemma says that for any non-negative random variable R, any distribution
D and z > 0, Pryep[R(a)> zEpep[R(b)]] < 1/z. The lemma follows by using
Errp(f, A'[samy(-),]) as the random variable mapping X™~! x [0,1] to [0, 1], D™~ x Ulo 1]

as the distribution and z = (3 — $)/(3 — @). 0

Although a weak prediction algorithm can trivially be used to create a weak learning
algorithm, the converse is not true. Inequality (3.2) is a stronger constraint on the predic-
tion/learning algorithm than Inequality (3.1).

4 Weak Occam Algorithms

In this section we define a kind of learning algorithm called “weak Occam algorithms”
and show that any weak Occam algorithm is also a weak learning algorithm. An “Occam
algorithm” is a learning algorithm that outputs consistent hypothesis from a “small” hy-
pothesis class [BEHWS87]. Algorithm A is a strong Occam algorithm for |J, Fs on U, X,
if there exists a polynomial p and a constant x < 1 such that the following holds for all
n,s > 1, targets f € F,, and x € X":

when given n, s, and the sample sam¢(x), learning Algorithm A outputs a

hypothesis on X, that is consistent with the sample and is from a polynomially

evaluatable class H,, 5, of cardinality at most p(n,s)m”.
It has been shown [BEHWS8T7] that for each strong Occam algorithm for |J, Fs on U, X,
there is a sample size polynomial in n, s, 1/€, and 1/6 for which this algorithm is a strong
learning algorithm. The above definition of (strong) Occam algorithm is less restrictive than
previous definitions as they require that the hypotheses produced by the Occam algorithm
be in the concept class [BP92], or in a specified hypotheses class [HKLW91]. We require
only that the hypothesis class be polynomially evaluatable.

8 4. Weak Occam Algorithms

Here we define “weak Occam algorithms” whose hypothesis classes grow exponentially
in m and show using the methods of Blumer et al. [BEHWS87] that weak Occam algorithms
lead to weak learning algorithms. Thus they can be used iteratively to build strong learning
algorithms [Sch90, Fre90].

Algorithm A is a weak Occam algorithm for |J, F, on |J,, X, if there exist polynomials
p1 and po such that the following holds for all n,s > 1, targets f € F;, and x € X" for
m = pi(n,s):

when given n, s, and the sample samy(x), Algorithm A outputs a hypothesis on
X, that is consistent with the sample and is from a class 'H,, s of cardinality at
most 2™(1 — 1/pa(m)).

Recall that the hypotheses output by a weak Occam algorithm using sample size m =
p1(n,s) are called polynomially evaluatable if there is an algorithm that when given n, s,
the representation of a hypothesis h € H, s and x € X,,, the algorithm can decide in time
polynomial in n and s and the total bitlength of its input whether 2 € h.

A weak Occam algorithm is called polynomial if running time is polynomial in n and s
and the total bitlength of its input and if its hypotheses are polynomially evaluatable.

Clearly weak Occam algorithms can use much larger hypothesis classes than strong
Occam algorithms (exponential as opposed to sub-linear in m). Using Fact 2.1, an equivalent
definition of weak Occam algorithm is obtained by requiring |H,, 5| < om=1/p2(m) instead of
Hs] < 27(1 = 1/pa(m)).

Lemma 4.1: Let p be any polynomial, D be any distribution on X, sample size m be in N,

target f be any concept on X, and H be any hypothesis class on X of cardinality at most
om=1/p(m) [y

BAD = {x € X™ :3h € H consistent with f on x

1 In(2)
and Errp(f,h) > 5~ W}v

then
1

Pryxepm [BAD] < 1 — H—W'
In(2)
Proof: We repeatedly use the following for proving that some inequality a < b holds.
We find an overestimate @ of a (i.e. @ < @) and an underestimate of b of b (i.e. b < b). Then
for a < b to hold it suffices to show that a < b.

Let p'(m) = 4mp(m)/In(2) and p”’(m) =1+ 2p(m)/In(2). For each h € H, let

BAD, = {x € X™ : h is consistent with f on x
1 1
}.

and ETTD(f, h) Z 5 — M
Note that BAD = UpenBADy,. Clearly Pryepm [BADy] < (1—Errp(f,h))™ < (%—I— p,(lm))m
and thus

2 p(m)

2 m
— 9—1/p2(m) (1 + _)
p'(m)

< 9~1/p(m) 2m/p'(m)

4. Weak Occam Algorithms 9

To show Prxepm [BAD] < 1 — 1/p"(m), it suffices to show that 2=1/p(m)e2m/p'(m) <
1 —1/p"(m). Taking logarithms on both sides we get

2m In(2) 1
— < In(1—
p'(m) p(m) ~ (p”(m))

2m 1 In(2)

— —In(1 - < .

7o)~ M 5y <)

Since —1In(1 — p,,(lm)) < li/lz;;(,f(n%) = p,,(ﬂ{b)_l, it suffices to show that

2m n 1 < In(2)

p(m) p'(m)—17 p(m)

Recall that p/(m) = 4mp(m)/In(2) and p”(m) = 1+ 2p(m)/In(2). Therefore 2m/p'(m) =
2 In(2)/p(m) and 1/(p"(m) — 1) = £ In(2)/p(m), verifying the last inequality. Although
these choices suffice, there are other choices for the polynomials p’ and p”. L]

Theorem 4.2: If Algorithm A is a weak Occam algorithm for \J, Fs on |J,, X, then A is
a weak learning algorithm for \J, Fs on U, X,. If A is a polynomial weak Occam algorithm
then A is a polynomial weak learning algorithm.

Proof: The second part follows from the definitions and from the first part. Let p; and
p2 be the polynomials for the weak Occam algorithm A and H, s be its hypothesis class
when the parameters are n and s. The proof applies Lemma 4.1 as follows: for any n
and s, let D be any distribution on X = X,,, target f be any concept in F;, sample size
m = pi(n,s), and H = H,, ;. When given a sample sam¢(x), where x € X, Algorithm A
outputs a hypothesis from class H, a class which has cardinality at most 2™ (1 — 1/pa(m)).
By Fact 2.1 the latter is equivalent to |H| < 2m=1/52(m) for some polynomial p,. Denote
the output hypothesis by A[sam¢(x)].

Define BAD as in the Lemma 4.1 with polynomial p(m) set to pa(m). Then

Pryepn |Errp(f, Alsamy(x)]) > % _ %ﬁ()m)

< Pryepm [BAD].

From Lemma 4.1, Prgepm [BAD] is at most 1 — 1/(1 4 2p3(m)/In(2)) and A is a weak
learning algorithm.]

Note that a strong Occam algorithm produces hypotheses with smaller error when the
sample size m is increased [BEHWS87] and for some polynomial choice of m the strong
Occam algorithm becomes a strong learning algorithm. This is not necessarily true for a
weak Occam algorithm as the error (1/2—1/py(m)) approaches 1/2 as m increases. Instead,
the conversion algorithms of [Sch90, Fre90] use the weak Occam algorithm repeatedly for
a number of different samples of size pi(n,s), where pi(n,s) is the size of the sample
expected by the Occam algorithm when the parameters are n and s. The samples are
drawn according to various filtered distributions and the resulting hypotheses are combined
using the majority function.

It is interesting to investigate when an Occam style algorithm must be a weak learning
algorithm simply because of its sample size m (which is a function of n and s) and the
size of its hypothesis class (which is a function of n, s and m). By our definition of weak

10 4. Weak Occam Algorithms

Occam algorithm and the proof of Theorem 4.2, sample size pi(n,s) and hypothesis class
size 2m—1/p2(n.s) (where p; and py are polynomials) always assure weak learning. Note that
in this case the hypotheses can be encoded using m — 1/pa(n, s) bits, which is less than
m, the number of binary labels in the examples. Thus, for each n and s, a weak Occam
algorithm can be viewed as compressing samples of size m = py(n, s) down tom — 1/pa(n, s)
bits.

There are degenerate cases where sample size one and hypothesis class size two (i.e.
“compressing” one label to one bit) does not lead to weak learning. Let the domain consist
of two points and the concept class contain all four concepts on the two points (i.e. the
VC dimension of the concept class is two). One Occam-style algorithm uses the hypothesis
class consisting of the all-zero and the all-one concept. After seeing a single example,
the algorithm returns whichever hypothesis is consistent with that example. If the target
concept is one of the concepts not in the hypothesis class and the distribution on the domain
is the uniform distribution, then the error of the produced hypothesis is always exactly half,
and this Occam-style algorithm is not a weak learning algorithm.

We now present a second Occam-style algorithm which is not a weak learning algorithm.
This algorithm outputs, from samples of size m = s, consistent hypotheses from a class of
size 21 — 2 which have error exactly 50%. Let X, = {0,1}" and Fs = {fyp : v €
{0,1}°,6 € {0,1}}, where fyp(x) = v-x — b mod 2 for any x € {0,1}* and 0 otherwise.
Thus the learning problem is only interesting when n = s. Let 0 denote the all zero vector,
and 1 the all one vector. The concepts fp o and fp1 of F; label all of {0,1}® with 0 and 1,
respectively. Call those two concepts of F; the trivial concepts and the remaining concepts
of Fs the non-trivial concepts.

Consider the Occam-style algorithm that when n # s outputs the trivial concept fp g
and if n = s, it sees m = n = s examples and forms its hypothesis as follows. If any of the m
examples are labeled with 1 then it outputs any non-trivial concept in F,, that is consistent
with the sample. If all m examples are labeled with 0 then the Occam-style algorithm forms
a matrix M from the examples (each example becomes a row of M). If M is singular then
it outputs a hypothesis fy o such that Mv =0 and v # 0. If M is non-singular it outputs
the unique hypothesis fy 1 s.t. Mv = 1. Again v # 0.

Note that in all cases the hypothesis output by this algorithm is consistent with the
sample. If n = s = m, then the hypothesis is a nontrivial concept of F,,. Thus the
hypothesis class used by the algorithm has size 27*! — 2. When the target concept is the
trivial concept foo € F,, then all m examples are labeled 0. Furthermore all non-trivial
concepts (including the hypothesis output by the algorithm) have error exactly % with
respect to target fpo and the uniform distribution on {0,1}"™ C X,. We conclude that
the above Occam-style algorithm which uses a hypothesis class of size 27T1 — 2 when given
samples of size m is not a weak learning algorithm. (Note that |F,,| = 2*! and the VC
dimension!® of F,, is m + 1, one larger than the number of examples.)

Intuitively, “compressing” samples of size m to m bits should not be sufficient to show
weak learning. A more specific conjecture is given in the final section of this paper.

Note these results have certain negative implications. Since DFAs over a binary alphabet
are not polynomially learnable under certain cryptographic assumptions [KV89, Kha92],
there can’t exist a polynomial weak Occam algorithm for this class. Thus, given the
same cryptographic assumptions, if there exists a polynomial algorithm that, on inputs

9The m + 1 bitvectors of {0,1}™ with at most one 1 are shattered by Fp,.

5. Lookahead Prediction 11

of m = p(n,s) many bitstrings of length at most n labelled by a DFA of at most s states,
outputs a consistent hypothesis from a polynomially evaluatable class H,, ,, then the fraction
1/(m —lg|H, s|) is not polynomial.

5 Lookahead Prediction

The last section has analyzed weak Occam learning algorithms. In the next several
sections we develop and analyze a weak prediction algorithm. The presentation of this and
the next section is simplified by omitting the parameters s and n on the concept class and
instance space. We will return to the parameterized case when considering the running time
of our algorithm in Section 7.

Recall that a prediction algorithm A receives three inputs: a sample, the instance whose
label is to be predicted, and a random number. Thus algorithm A can be viewed as a
function, A : (X x {0,1})* x X x [0,1] — {0,1}. One would expect that a prediction
algorithm would be able to perform better if it knew ahead of time which instances it will
be asked to predict on.

A lookahead prediction algorithm, L, receives a sequence of (unlabeled) instance as an
additional input. Formally, L : (X X {0,1})* x X x X* x [0,1] — {0,1}. The sequence
of additional instances contains those instances where the algorithm will be asked for
predictions in the future.

We now extend our M() notation for the probability of a mistake to handle lookahead
prediction algorithms. Recall that for a prediction algorithm A, M(A, f,x) denotes the
probability that algorithm A incorrectly predicts the label of z x| when given the sample
sam (x <),

For a lookahead prediction algorithm L, we define M(L, f,x,t) (for 1 <t < |x|) as the
probability that L incorrectly predicts the label of x; when the target concept is f and L
is given the labels of each z; for 1 <+ < 7, instance z;, and the additional instances z; for
t < j < |x|. Formally,

M(L, f,%, 0% Brer, ,; [Llsamp(x<"), 2, %>, 1) £ f(2)]

The natural use of lookahead algorithms is to predict on each of the instances of x in
turn. For a given x € X™ and hidden target f € F, the lookahead algorithm is used as
follows.

for t := 1 tom do
pick r € U[OJ]
use L(samy(x<"),z;,x”% r) as the prediction of f(x;)
receive feedback f(z;)

Note that when predicting the label of xy, the lookahead algorithm is given only the
labels of the previous instances.

Any lookahead prediction algorithm can be trivially used as a prediction algorithm by
simply supplying it with the empty sequence of additional instances. Since our goal is a
weak prediction algorithm, we want to minimize the mistake probability on the last instance
of the sequence x. If each instance in x is independently drawn from the same distribution
(as in the definitions of weak learning and weak prediction), then all permutations of a set
of instances are equally likely. Thus it suffices to bound the probability of a mistake on the
last instance of a random permutation of x (this was used extensively in [HLW]).

12 5. Lookahead Prediction

Lemma 5.1: Let X be any domain, D be any distribution on X, m € N, and R be a
random variable on X™. Then

Excpm [R(x)] = Exepr [Eyer [R(X)]]

Lemma 9.2 shows that several good lookahead prediction algorithms have a mistake
probability of % on the last instance of a random permutation of some x. Therefore the
trivial use of lookahead prediction algorithms as predictors does not appear to yield weak
prediction algorithms. We now present a more sophisticated way to construct prediction
algorithms from lookahead algorithms.

Definition 5.2 (Lookahead Conversion, E) For each lookahead prediction algorithm
L, the Lookahead Conversion of L is the prediction algorithm L described as follows:
Input: A sample samf(x<|x|) for some x<Xl ¢ X* and unknown f € F,
instance x|x| € X, and a random number r € Ul 1].
Computation: Split v into a random t chosen uniformly from {1,---,|x|} and
an independent ' chosen from Uy 1). Call

L(sam ;(x<"), Tix|> (Tea1s Teaz, s Tpx|=15 T1)).

Output: The prediction returned by lookahead algorithm L.

In other words, the Lookahead Conversion of I, Algorithm E, creates a new x’ by
swapping z|x| with a randomly chosen z; and predicts as L does on the ¢th instance of this
new x’ (because of the swap, z = |x)).

The following theorem bounds the probability that the Lookahead Conversion incorrectly
predicts the label of the last instance of a random permutation of x by (1/|x|) times the
expected total number of mistakes made by the lookahead algorithm when it predicts on
each instance of x in turn.

Theorem 5.3: Let L be any lookahead prediction algorithm for concept class F on domain
X, and L be the Lookahead Conversion of L. For any sequence of instances x € X1 and
target f € F,

x|
EyeU [(L fv)] - |1| yeU(x [ZM L f7Y7)] .

Proof: Recall that U(x) is the uniform distribution over the permutations of x. For any

permutation o of (1,---,|x|) and sequence y of |x| instances, let o(y) = (Y1), s Yo(|x|))-
Note that
Eyevx) IM(L, f,y,0)] = Eyeu(x) [M(L, f,0(y),1)] -
Let o, be the permutation (1,---,t—1,|x|,t+1,---,|x| —1,¢). That is o, simply swaps |x|
and t.
It follows from the definition of L, that
N x|
Eyev(x) [M(Lﬂ}’)] =] ZEyeU M(L, f,0y),)]
|X|

= |X| Z yeU(x L f7Y7)]

x|
1
= mEyEU(X) [Z M(vav}’7t)] .

t=1

6. The Query Lookahead Prediction Algorithm 13

O

Theorem 5.3 shows that any good lookahead algorithm can be converted into a good
prediction algorithm (when each permutation of the example sequence is equally likely).
Lemma 5.1 can be combined with Theorem 5.3, giving us the following corollary.
Corollary 5.4: Let L be any lookahead prediction algorithm for concept class F on domain
X, D be a distribution on X, m € N, and L be the Lookahead Conversion of L. For any
ferF:

~ 1 m
Exepm [M(L,f,x)] = EEXEW lz M(L,f,x,t)] .
=1
In the next section we present and analyze a surprisingly simple general purpose looka-
head prediction algorithm.

6 The Query Lookahead Prediction Algorithm

This section presents a lookahead algorithm which makes a single query to a consistency
oracle (defined below). In many situations the performance of this lookahead algorithm is
good enough so that the transformation of the preceding section leads to a weak learning
algorithm.

Definition 6.1 (Consistency Oracle): A consistency oracle for F on X is given a
sample!! S € sam.(x) where x € X* and answers “yes” if S € samz(x) and “no” oth-
erwise.

Note that the consistency oracle gives a yes/no answer rather than returning an f € F.
Definition 6.2 (Query Lookahead Prediction Algorithm Q)): Let F be the concept
class and X be the domain. The (one) Query Lookahead Prediction Algorithm € works as
follows:

Input: A sample sam¢(x<') for some x<' € X'"! and unknown f € F, an
instance v; € X, a sequence of future instances x>, and a random number
r € Upy)- Algorithm Q also uses a consistency oracle for F on X.

Computation: Fuztract |x| —t 4 1 independent random bits, by, by + 1, - - iy
from r and query the oracle on the sample:

(samy(x<1), (24, 00), (Teg1,0641), 7 - (X)) D))

Output: If the oracle answers “yes” then predict that the label of x4 is by, If
the oracle answers “no” then predict that the label of x; is b;.

The Query Lookahead Prediction Algorithm is very simple. It randomly extends the
sample to include the other instances. If the extended sample is consistent with some f € F
it predicts with the same label attached to the query instance in the extended sample. If no
f € F is consistent with the extended sample then the algorithm predicts with the opposite
label.

Definition 6.3 (Quantity Nr(5,x)): For concept class F over X, x € X*, 0 <1t < [x|
and a sample S € sam.(xSY), let F' = {f € F : f is consistent with S}. We define
“Nr(S5,x)7 to be the number of sumples in samz/(x).

" Recall that sam#(x) is the set of all samy(x) where f € F and that sam.(x) is the set of all samg(x)
where g is one of the Xl ways of labeling x.

14 6. The Query Lookahead Prediction Algorithm

In other words, Nz(95,x) is the number of ways functions in F can label x>* while
remaining consistent with the (sub-) sample 5. Since every function is consistent with the
empty sample A, we have Nx(A,x) = |samz(x)|. If S is a sample in sam.(x<!)—sam r(x<F)
then no function in F is consistent with S and N#(5,x) = 0.

b

The single query done by the Query Lookahead Prediction Algorithm is attempt-
ing to determine which of Nz((sams(x<%), (74 0)),x) and Ng({sams(x<), (x4, 1)),x) is
larger. When bit b, = 1, the probability of Q(sams(x<"),z;,x”",r) predicting 1 equals
Nz((samp(x<Y), (24, 1)),x)/2KI=t. When b; = 0, the probability that Q(sam ;(x<!), z;, x>, r)
predicts 11is 1 — (N#({sam(x<"), (z¢,0)),x)/2KI=4). Since b; is equally likely to be either
0 or 1, the probability that Q(sams(x<"),zs,x”%, r) predicts 1 is

1 Np({samg(x<), (24,1)),x) = Nr((samp(x<"). (21,0)), X)

5 + St . (6.1)

Note that this probability lies in [0,1] as both values Nx((sam(x<"), (24, 1)),x) and
Nz((sam(x<"), (24,0)),x) are between 0 and 2XI=7,

The following lemma bounds the probability that Algorithm @ predicts incorrectly on
the tth instance.

Lemma 6.4: For any class F on X, target [€ F, instance sequence x € X1, and
1 <t < |x|, if the Query Lookahead Prediction Algorithm @) uses a consistency oracle
for F then

_ Nr((samy(x=F), (24, f(24))), %)
9lx|—t+1)

Proof: Using Equation 6.1, the probability that Q(sam(x<"), 2, x”%, 7) predicts f(a¢)
on x; is

Nr((samy (x<1), (21, f(20))), %) _ Np({samy(x<"), (21, [(21))), %)
9Ix[—1+1 9lx|—t+1 ’

Thus the probability (and expectation) that algorithm) makes a mistake by predicting
flay) is

1 Nf((SEme(X“)»(wtaf(wt))%x)+ N((sam s (x<1), (24, f(20))), x)
2 9lx|—t+1 9[x[—t+1

as claimed. [l

We are now ready to present the main theorem of this section.

Theorem 6.5: For class F on X, f € F, and x € X*, if the Query Lookahead Prediction
Algorithm @) uses a consistency oracle for F, then

x|
S M(Q. f.x.1) = |’2‘_| N w

t=1

— 1.

In particular, if |samz(x)| < 2%I=2, then ZL’;'I M(@Q, f,x,t) < % +27* 1.

6. The Query Lookahead Prediction Algorithm 15

Proof: The Theorem trivially holds when x = A. Otherwise, for 1 < ¢ < |x| we define
Nr({sams (x<), (24, (1)), %)

21x| -t

Uy =

and

_ Nf(<samf(x<|t)|a (26, [(21))), %)
2[x|-1 :

Clearly u; = %(Ut+1 + wi41) for 1 < ¢ < |x|. Using this notation and Lemma 6.4,

g
|

ZMQf,Xt 7 %Z (g — wy). (6.2)

m

> (W — u) = i % + (2ml_1 — 2)ty, (6.3)

t=1 t=

m m—-1 —
u 1
Z(u_t - ut) = Z t_tl + (2m—2 - 2)um—l + Uy — Up
m—1 o 1 1 o o
= T (2m_2 - 2)§(um + W) + U, — Uy
=1
o~ g 1
]
= D ot (Qm—l = 2)u,
=1
Using the definition of w; we see that
x| w o X
i NN
Dot = a2 NAllsamy (), (2, F(22)). %)

= Sagllsams(l - 1)

as the sum counts every sample in samr(x) except for sam¢(x). Plugging this and the fact
that ujx) = 1 into Equation 6.3 shows that

x| _
_ 2 [samz(x)] Ly
21| '

Combining this with Equation 6.2 gives the first equality of the theorem. L]
Corollary 6.6: Let F be a concept class on X, target f be in F, and x € XT. If
|samr(x)| < 2%1=9, the Query Lookahead Prediction Algorithm Q) uses a consistency oracle
for F and Prediction Algorithm @) is the Lookahead Conversion of () then

1 1-27°
EyeU [(Q fv)] = - |X|
For a > 0 the above expectation is at least % — aé?'? and for a € [0, 1] the expectation is at

1 o
most 27 I

16 7. Polynomially Efficient Weak Learning

Proof: The corollary follows from Theorem 6.5, Theorem 5.3, and Fact 2.1.]
Note that by Fact 2.1 [samz(x)| < 2XI(1 — In(2)a) implies [samz(x)| < 2XI=2.

7 Polynomially Efficient Weak Learning

We now return to the setting where F = J, Fs is a parameterized concept class on
the parameterized domain X = J,, X,,. In this setting, algorithms and oracles are given n
and s as additional parameters. We call an algorithm (or oracle) polynomial if its resource
requirements'? are bounded by a polynomial in n, s, and the total bit length of the instances
in x.

Definition 7.1 (Polynomial Consistency Oracle): Algorithm O is a polynomial con-
sistency oracle for F = J, Fs on X =U,, X, if O maps N x N x (X x{0,1})* to {yes, no},
and there is a polynomial p such that for each n,s € N and S € (X, x {0,1})*:

1. Algorithm O(n,s,S) answers “yes” if and only if S is consistent with some f € F,
and

2. The computation time of O(n,s,S) is bounded by p(n,s,l) where | is the total bit
length of the instances in 5.

This definition requires that the polynomial consistency oracle be correct on samples
of all lengths. In fact, our algorithm can get by with a weaker oracle. Calls to O(n,s,.S5)
need answer correctly only when |S| = 2p(n, s) for some polynomial p(n,s) which is always
at least the VC dimension of F, on X,,. Even weaker oracles with “one-sided error” were
considered in [HW92b] and are discussed in Section 10.

We now consider the Lookahead Transform, @, of the parameterized Query Lookahead
Prediction Algorithm. When F = |, Fs; on X = |, X, is learnable at all and has a
polynomial consistency oracle then Prediction Algorithm @ is a polynomial weak learning
algorithm. The following is description of the parameterized Prediction Algorithm Q.

Definition 7.2 (Prediction Algorithm @) Prediction Algorithm Q for F = U, Fs on
X =, X, works as follows:
Input: Parameters n and s; a sample sam ¢(x<™) for some m € N, unknown
€ Fs, andx<™ € (X,,))™ "L, the instance v, € X,,; and a random number
r € Uy The algorithm also uses a polynomial consistency oracle O for

F on X.
Computation: Extract from r a random t chosen uniformly from {1,...,m}
and an additional m —t+ 1 random bits, by, biy1,- - -, by, each chosen uni-

Jormly from {0,1}. Call O(n, s, (sam(x<%), (@, bm), (i1, b1g1), -5 (4, 00))).
Output: If the oracle answers “yes” then predict that the label of ©,, is b,,. If

the oracle answers “no” then predict that the label of x,, is b,,.

Theorem 7.3: If F = |, Fs on X = U, X,y is learnable and the oracle O for F on X is
a polynomial consistency oracle then Q) is a polynomial weak prediction algorithm.

12The main resource we are interested in is running time in some standard computational model such as
the RAM [AHUT74]. All of our algorithms can be implemented so that the space used and number of random
bits required is bounded by the running time.

8. Sample Complexity of Weak Learning 17

Proof: If F =, Fs on X = {J,, X, is learnable then the VC dimension of F; on X,
is upper-bounded by some polynomial p(n,s) [BEHWS89]. By Sauer’s Lemma [Sau72], for

any m and x € (X,,)™: [samz (x)| < Zfi%’s) (") < mPm®) 4+ 1. Let m = 2p(n, s) so that
PO () = 271, and fsamg (x)] < 27
We can now apply Theorem 6.5 with concept class F; on domain X,, to get for all f € F;
and x € (X,,)":

" m |samg,(x
=1
m 1
< =
- 2 2
Using Corollary 5.4 we see that:
~ 1 s
EXED’" [M(Q,f,X)] = EEXED’" [Z M(Qvaxvt)]
=1
o1
- 2 2m

Thus for pi1(n,s) = 2p(n,s) and pa(m) = 2m, Prediction Algorithm Q is weak prediction
algorithm for F on X.

The value ¢ and the random bits can be extracted from r in O(m) time using real
arithmetic.'® The running time of polynomial consistency oracle () is by definition bounded
by some p'(n,s,l) where [is the bit length of the instances in the sample. Thus there is
a ps(n,s,!) bounding the running time of @, and Prediction Algorithm @ is a polynomial
weak prediction algorithm.]

8 Sample Complexity of Weak Learning

In the proof of Theorem 7.3 we used a sample size m = 2p(n, s), where p(n, s) is an upper
bound on the VC dimension of F; on X ;. Smaller sample sizes also sufflice. Algorithm @ is a
weak prediction algorithm provided that the sample size m is large enough so that, for some
polynomial ¢, fi%’s) (T) < 2m=(1/4(m)) By Fact 2.1 this constraint on m is equivalent to:
there exists a polynomial ¢’ such that Zfi%’s) (") <2m(1-— m)

The goal of this section is to determine using our methods the smallest sample size (as
a function of the VC dimension of the concept class) that implies weak learning. Since here
we are not interested in computational resources we omit the parameterization during this
section. Even though the results in Goldman et al. [GKS90] suggest the sample complexity
for weak learning is not well correlated with the VC dimension, the following theorem and
corollary gives the lowest sample size known to us (2d — O(y/dlogd)) for which there is a
general weak learning algorithm.

Theorem 8.1: Let d be the VC dimension of some concept class F on X and ¢ be a
constant between 2/\/dlgd and \/d[1gd. If the sample size m = 2d + 2 — c/d1gd then for
any X € X™,

1 1

2 2mete

Eyecu(x) [M(éjv f&’)] <

13When integer arithmetic is used, the uniform distribution on ¢ can be approximated to within 1/2™
using m random bits.

18 8. Sample Complexity of Weak Learning

Proof: The constraint on ¢ enforces the conditions that d + 2 < m < 2d.
Let ¢ = m® 1. We will show that

|samzz(x)| < 27/, (8.1)

from which we can apply Corollary 6.6 giving

~ 1 1
EyEU(X) [M(Q7f7Y)] < 5 - M?

as desired.

We will show Inequality 8.1 by giving a sequence of inequalities, each of which implies
the previous inequality in the sequence. The first inequality is Inequality 8.1, and the last
inequality in the sequence will follow from the conditions of the theorem.

By Fact 2.1

In2
lsamr(x)| < 27(1 — —2)
q

implies Inequality 8.1. From Sauer’s Lemma [Sau72], for any m and x € (X,,)™:

d
samr()| < (m)

=0

Let A = d;'r'b—l, so that % < A < 1. We use the following approximation to the binomial
coefficient (,) (see [MS77], Lemma 7, page 309):

o (m m omHz(\)
Yol >
S\ Am 8mA(Ll—\)
where Hy(\) = Algt + (1 — A)lg 12. Thus
|samr(x)] < 2™ —

- V8mA(L— X)

and it suffices to show that

mo_ 2mH2(A) meq h1_2
2 s <2-) (8.2)
g 2mH2()\) m
= k2 8mA(1—)) z 2" (8.3)

Note that since % < A <1, we have A(1 — A) < 1/4, and it suffices to show

mHy (\)
g 2
In2 2m ~
and since 1/(v2In2) <1,

8. Sample Complexity of Weak Learning 19

suffices.

Taking logs of both sides gives us that

lg(q/v/m) + mHy(A) = m

suffices. Since Hy(A) > 4A(1 — A) for A € [0, 1], it suffices to show
lg(q/vm) +4mA(1 = X)) > m
1
S AMI=-A) > 1 - Elg(q/\/ﬁ)
= A= A) > 1 — ——To(g2/m)
2 om glg jm).

Note that 4A\(1 —A) > 1 — « if and only if + — 1\/z < X < I 4 1,/z. Therefore (using
v = 5-1g(q?/m)), since A > 1, it suffices to show that

1 1 1
< 242, [a2 — /_ 2
/_2—|—2 5 lg(¢?/m) = 2 lg /m).
Substituting - 1 o1 \ gives us that this is equivalent to
1
L 2
m 2 a/m)
or
m m
d+1< — +/ < la(¢?/m).
2 8
Since m > 2d 4 2 — ¢y/dlgd, and ¢ = m<+!,
m m 2d + 2 — ¢v/dlgd ¢m)
b i 2 > m 2241
5 Ty g lele?/m) = 5 tyglem
> d1- gx/dlgd—l— ,/@1gm2c2+1
> d—|—1—§\/d1 —I—\/—lgm
> d1- gx/dlgd—l— SVdlgd
> d+1
Thus d 4 1 < % + (/% 1g(¢?/2m), completing the proof. L]

Corollary 8.2: Let d be the VC dimension of some concept class F on X. Then there is
a weak learning algorithm for F using sample size 2d — O(\/dlogd).

Proof: This follows from Theorem 8.1 and Lemma 5.1 [l

20 9. Bounds on Gibbs and Bayesian prediction

9 Bounds on Gibbs and Bayesian prediction

In this section we describe and compare a number of prediction algorithms related to
the query prediction algorithm presented in the previous sections. Some of these algorithms
will have better performance than the Query Lookahead Prediction Algorithm for sparser
concept classes, i.e. when |samz(x)| = 2¥I=% for o > 1. Unfortunately, these algorithms
are generally not polynomial.

In this section we take a Bayesian view point and assume that there is a prior probability
distribution P on the concept class F. For each f € F, P(f) represents the extent to
which the learning algorithm initially (before seeing any examples) believes that f is the
target function to be learned. After seeing a number of examples some concepts might be
inconsistent with the past examples and the class of possible targets shrinks. The wvolume
with respect to P of sample S is written V7 (9) and denotes Pryep [f is consistent with S].
Note that the empty sample has unit volume and that the volume of a sample depends only
on the examples in the sample and not the order in which they appear. Furthermore, for
any sample S and x € X, we have V() = VP (S, (2,0)) + VP(S5,(z,1)).

Definition 9.1 (Volume Prediction Algorithm): Algorithm A is a volume prediction
algorithm for a prior P on F if there is a function g such that for allx € X the probability
that A(samf(x<|x|),x|x|,r) predicts 1 is

g(VP ((sams (x <), (1), 1)), VP ((samp(x <), (21, 0))))

and the probability that A predicts 0 is
g(VP ({sam ¢ (x <P, (1], 00)), VP ({sam(x <), (21, 1)))).

Since every prediction algorithm predicts either 0 or 1, any g used in the above definition
has the properties ¢g(v,v') =1 — ¢g(v/,v) and g(v,v) = % Although the function ¢ used by
a volume prediction algorithm may be simple, computing the volume of a sample may not
be computationally feasible.

Here we consider three volume prediction algorithms. Algorithm Gibbs” (Gibbs Algo-
rithm) is well known [HKS91, HO91, GT90, HS90, STS90] and can be viewed as predicting
with a randomly chosen consistent concept from the class where the consistent concepts
are weighted according to the prior P. Algorithm G7 is a special case of the aggregating
strategy introduced by Vovk [Vov90], and was used as the basis for a polynomial weak pre-
diction algorithm [HW92b]. The classical Bayes Prediction Algorithm, Bayes” , is known
to be optimal when the target is drawn according to the prior. For any F on X, prior P
on F, prediction algorithm A, m € N, and x € X™:

Esep [M(4, f,%)] > Esep [M(Bayes”, f,x)] .

Figure 9.1 gives the prediction rules and Figure 9.2 contains a graphical comparison of
these three prediction algorithms. In Figures 9.1 and 9.2, p; denotes
VP((samy (<), (2, 1))
VP(samg(z<m))

and pg = 1 — py. Since

VP ((samy(z<™), (2, 0)) + V7 ((samys (), (20, 1)) = V7 (samp(2<™))

9. Bounds on Gibbs and Bayesian prediction 21

Algorithm | probability prediction = 1 | probability prediction = 0
Gibbs” 1 P20
e —lg po —lg p1
—lgpo—lgp —lgpo—lgp
1ifp1>% 1ifp0>%
P . .

Bayes %1f,01:% §1f,00_%

Oifp1<% Oifp0<§

Figure 9.1: Comparison of three prediction algorithms.

1.4 o

1.2 Gibbs? —
Bayesp —_—

prob. 0.8
pred.
1s1

o
[
T
|

0.4 i
0.2 - i

0 0.2 0.4 p 0.6 0.8 1
po+ p1

Figure 9.2: The probability that the Algorithms Gibbs”, GP, and Bayes” predict
1 as a function of p1/(po + p1).

VP((samy (a<™),(vm,0)))

it is easy to see that py = VP (sam; (m<m)

and the definitions of p; and pg are
symmetric.

The information gain (or amount of surprise) in the last example of a sample (9, ¢€) is
commonly defined as —lg(V"”((9,€))/VF(9)). Using our p notation, the information gain
on a trial is —lgp; if the instance is labeled “1” and —lgpg otherwise. Algorithm G7
predicts with the relative amount of information gained by the two possible outcomes, as
shown in Figure 9.1 (See Appendix A for a more detailed treatment). Therefore we call
Algorithm G7 the Information Gain Prediction Algorithm.

In this paper our goal is to construct weak prediction algorithms. This requires that
we minimize the worst case (over all possible targets f € F) probability of an incorrect
predication on the last instance. Bayes Algorithm minimizes the average case rather than
the worst case. As the following lemma shows, all three algorithms can have a large (worst
case) probability of a mistake on the last instance of x, even when |F| < 2l

22 9. Bounds on Gibbs and Bayesian prediction

Lemma 9.2: For every m there is a concept class F of m + 1 concepts on domain X,
f e F, and x € X™ such that for any volume prediction algorithm AT using the uniform
prior on F:

EyEU(x) [M(Ap,f,y)] = %

Proof: Let {1,---,m} be the domain and F ={fo,---, fin} where f;(j) =1 if and only
ifi=j(for0<i¢<mand1l<j<m). Thus fyis the constant function 0 and each other
fi has the value 1 on exactly one instance. Let P be uniform on F and x = (1,---,m).
Then for any permutation y € U(x),

VP (samy, (y<™)) _ 1

VP(samy, (y<m)) 2

and thus when fy is the target, any volume prediction algorithm incorrectly predicts that
the label of y,, is 1 with probability % L]

Note that the Bayes Algorithm makes at most one prediction error on the whole sequence
y from the proof of Lemma 9.2. For Algorithms Gibbs” and G7, the errors are also likely
to be concentrated at the end of the sequence. We use a simple trick to circumvent this
potential for volume algorithms to predict incorrectly on the last instance.

We associate a special prior with the lookahead versions of volume prediction algorithms.
Recall that a lookahead prediction algorithm is given not only some sequence of examples,
samf(x<"), and the instance to predict on, 2¢, but also a sequence of unlabeled instances,
x>t (representing future instances on which the algorithm will be asked to predict). We
let our prior depend on x, the entire sequence of instances presented to the lookahead
algorithm. Since our goal is good worst-case prediction, it is natural to weight each labeling
of x consistent with a target in F equally. Thus we use the uniform prior Px on samz(x)
where each volume VFX(§) for § € samz(x) is m. We then apply the Lookahead
Conversion to these lookahead algorithms with the special prior Px to obtain prediction
algorithms.

We use BgyJeS to denote the algorithm that result from applying the Lookahead Con-
version to the Bayes Algorithm. Thus Prediction Algorithm Bayes is given a sample
samf(x<|x|), an instance x|y to predict on, and a random r from Up ;. Algorithm Bayes
first constructs the prior Px giving each sample in samz(x) the same probability. Algo-
rithm Bayes then splits r into a ¢ chosen uniformly from {1,--+,[x[} and an 7’ from Upg 4.
Algorithm Bayes obtains its prediction by calling Bayespx(samf(x<t), Tix|, ')

Prediction Algorithms Gibbs and G are the Gibbs and Information Gain Algorithms
transformed in the same way. Note that these transformed algorithms “manufacture” their
own “priors” from the instances rather than obtaining a prior from the outside world.

We will apply Theorem 5.3 to bound the probability that the lookahead conversions
predict incorrectly. This requires that we obtain bounds on the expected total number of
mistakes made by the three lookahead algorithms. For any x € X*, target f € F, and prior
P on F, the following bounds are known:

x|

Z_:M(Bayesp,f,x) < —lgVP(samy(x)) (9.1)
x|
STM(GT, f.x) < —%lgvp(samf(x)) (9.2)

t=1

9. Bounds on Gibbs and Bayesian prediction 23

x|
ZM(GibbsP,f,X) < —(In2)lg V7P (sam¢(x)) (9.3)

t=1

The bounds on Bayes” and Gibbs” were shown in [HKS91] and the bound on GF
appears in [Vov90] and is presented in Appendix A. It is easy to show that the constants
in these bounds cannot be improved unless the form of the bounds are changed. Consider
a single instance x (i.e. m = 1) and a prior P that is concentrated on only 2 functions, f

and g, where f(z) # g(z).

For the Bayes example, set

P(/)= 3 +e and Plg)= 5 ¢

so that

M(Bayes”,g,z) =1 and —1g Vp(samg(x)) = _1g(% — o).
For Gibbs, set

P(f)=¢€ and P(g)=1—¢

so that
M(Gibbs”,g,2) = e and —lg V" (sam,(z)) = —lg(1 —).

By letting ¢ go to zero in both examples it can be seen that the constant factors of 1 for
Bayes in Equation 9.1 and In(2) for Gibbs in Equations 9.3 cannot be improved.

For the Information Gain Prediction algorithm, when P(f) = P(g) = 1, the mistake
probability M(G?, f,x)is + = —L11g V" (samy(x)).

These examples for Bayes” and Gibbs” rely on choosing a particular target. Better
bounds can be shown in the average case setting, where the target is chosen at random
using the same distribution as the prior. For this average case setting, the constant of —%
has also been obtained for the Gibbs and Bayes Algorithms [HKS91]. More precisely, they
show that for any x € X™:

x|

ZM(BayesP, fyx)

t=1

x|

ZM(GibbsP,f,x)] < —%Efep [lg Vp(samf(x))] .

t=1

Ejfep < Ejep

The bounds in Equations 9.1, 9.2, and 9.3 are unsatisfactory when the volume is small.
When VP (sams(x)) < 1/4Xl, all three mistake bounds are greater than |x|, the number
trials. Since the number of trials is a trivial bound on the number of mistakes made, the
upper bounds are vacuous in this case.

We now present an improved worst case bound on 21'5)21 M(Gibbsp, f,x) that is at most
|x| even when V7 (sam(x)) is arbitrarily small.

Theorem 9.3: For any instance sequence x € X ¥, target f € F, and prior P on F,

x|
STM(Gibbs”, f, xSt < x| (1 — (V7 (samy(x)))/F).

t=1

24 9. Bounds on Gibbs and Bayesian prediction

Proof: Let v, = V7 (sam(x<!))/V7 (sam;(x<!)) for each 1 < t < |x|.
If follows from the definition of Gibbs” that M(Gibbsp, f,x5%) = 1 — v;. Furthermore,

x| x| VP(f(th)) Cop
H v = H VP (sam (x20)) V7 (samg(x)).

Thus we are bounding the sum

x| x|

ZM(GibbSP,f,XSt) = Z(l —un) = x| - Zl/t

subject to the constraint that HLX|1 v, = VP(sam(x)). The theorem follows from the fact
that the sum of the mistake probabilities is maximized when each vy = (V7 (sam(x)))"/Kl.

O

Note that as V7 (sams(x)) — 0 the bound of Theorem 9.3 goes to |x|, whereas the
bound in Equation 9.3 goes to co. Both bounds show that zero mistakes are expected when
VP(sams(x)) = 1. In fact, for any z € [0,1] and m > 1, —lnz > m(1 — z%/™). Thus
the bound for Gibbs” in Theorem 9.3 is always smaller than the bound of Equation 9.3.
Furthermore, the same argument used to show that the constant in Equation 9.3 was tight
shows that the constant factor of one in the bound of Theorem 9.3 can not be improved.

We are now ready to state bounds on the performance of the converted Prediction

Algorithms Bayes Gibbs, and G.

Theorem 9.4: Let F be a concept class on X. For all instance sequences x € X+ where
|[samr(x)| = 2XlI=o and targets f € F,

— «
EyEU(X) [M(Bayes, f7Y)] < m
~ 1 a
EyEU(x) [M(Gva’)] < 5~ m
E M(Gibb < 1—a®l cp(2) - 2B)
yGU(X)[(t Sva}I)] = - = Il()_ |X|

Proof: We first note that under the manufactured priors,

1 1
P _ —
V7 X (samy(x)) = samz ()] ~ 2Ma

Plugging this into Equations 9.1, 9.2, and 9.3, and the bound of Theorem 9.3 gives us:

x|

S M(Bayes™, f,x) < |x|—a

=1
x|)
ZM(GPX,f,X) < _(|X|_a)
=1 2

x|
ST M(GibbsPx, f,x) < [x[(1—2mT

t=1

) < (In2)(|x| — a), (Fact 2.1).

9. Bounds on Gibbs and Bayesian prediction 25

Eycu(x) [M(+, f,¥)]

1 | |
_G—
0.8 Gibbs — 4
Bayes —
0.6 i
04 i
0.2 i
0 ! ! ! ! !
0 5 10 15 20 25 30

Figure 9.3: The bounds of Theorem 9.4 and Corollary 6.6 as a function of & when
|x| = 30.

Now we can apply Theorem 5.3 to each of the above inequalities to obtain:

— a
EyEU(X) [M(Bayesv f7 Y)] < m
~ 1 «Q
Eycu(x) [M(Gv f7Y)] < ST
— a _ aln(2
EYEU(X) [M(Glbbsv f7Y)] < 1 =2 ! < 111(2) - |X(|)
as desired. [l

In Figure 9.3 we graph the above bounds for Algorithms Bg};es, é, and Gibbs together
with the bound for ¢) given in Corollary 6.6:

1 27«

~ 1
EYEU(X) [M(Q7f7Y)] < 5 — m +

x|

In contrast to Algorithm @, the other three algorithms (Bg};es, é, and Gﬁﬁos) are not
polynomial since the uniform prior Px on samz(x) is not efficiently computable. However,
in our previous paper [HW92b] a polynomial approximation to G was given. The number

of consistency oracle queries used by this approximation to G is Q(Qaa,_l) where o’ is an

underestimate of a which must be supplied to the algorithm.

The simple Algorithm @ presented here which uses only one query works for all a,
however its probability of predicting wrong on the last instance is never more than |)1(—|

below % .

The optimal algorithm for minimizing the worst case (over targets f € F) probability
of predicting wrong on the last instance of a random permutation of x is the 1-Inclusion
Graph Algorithm [HLW], here denoted by “I-Inc.” For prediction algorithm A and any
xeXT,

26 9. Bounds on Gibbs and Bayesian prediction

Eyeux) IM(-, f,¥)]

0.5

0.49
0.48
0.47
0.46
0.45

0.44

Figure 9.4: An expanded plot of part of Figure 9.3 showing the bounds of Theo-
rem 9.4 and Corollary 6.6 as a function of a when |x| = 30.

maxdens r(x
up Byerro) (A, £.3)] > sup Bycrg [M(LTnc, fy)] = B350 g)
feF feF X
x|

where maxdensz(x) is the maximum density (number of edges over number of vertices) of
any subgraph of the 1-inclusion graph with respect to F and x. In Haussler, Littlestone,
and Warmuth [HLW] it is shown that maxdensz(x) is upper bounded by the Vapnik-
Chervonenkis dimension of the class F [VC71, BEHWS89]. The main drawback of the
1-Inclusion Graph Prediction Algorithm is that it is not generally efficient as it solves flow
problems on graphs containing |samr(x)| vertices.

Since for any prediction algorithm (and in particular Algorithms @ and é) the prob-
ability of predicting wrong on the last instance of a random permutation of any x € X T
is at least maxdensrs(x)/|x| (Inequality 9.4) we get two additional upper bounds on
maxdensr(x) from Theorem 9.4 and Corollary 6.6.

Corollary 9.5: For any concept class F on X of VC dimension d, and anyx € X,

1 1 1
mazdensy(x) < min{d, §lg |[samz(x)|, 3 + w)

In Appendix B we give the definition of the 1-inclusion graph, its density, and an
inductive proof that maxdensz(x) < 1lg|samz(x)|. The inductive proof in the appendix
is direct, and does not use the performance of Algorithm G.

The bound of }lg|samz(x)| from Algorithm G is better than the bound of d when
|x| < 2d + 1. Also, as hinted in Figure 9.4, Algorithm () is better than the bounds proven
for Algorithm G when o € (0,1). Thus the last bound of Corollary 9.5, %—I— W - |)1(—|,
is the best of the three when samz(x) > 2/¥I=1. This indicates that it may be possible to
prove even better upper bounds on maxdensr(x).

10. A Characterization of Weak Learning Using Consistency Oracles 27

Prob. of predicting 1
Alg. n =0 n1 = no ng =0
Gibbs"x 0 : 1
Q |s-gwfwr | 3 |3t

Figure 9.5: Comparison of Algorithm Gibbs”* and Algorithm Q.

To get more intuition about our Algorithm Q we compare it with Gibbs. Recall that
Nr(S5,x)is the number of samples in samr(x) that are consistent with .5 (Definition 6.3).
For a fixed ¢t in {1,2,---, x|}, let

no = Nr({sams(x<'), (21, 0)))
and
ni = Nr((samy(x<), (2, 1)))-

Using this notation, Lookahead Algorithm @ on input sam¢(x<"), z¢, x”!, and r € Upo,1]
predicts one with probability

1 n1 — No

I no+m 2nq ng + nq
2 " oxX[—t+1 T 9 olx|-t+1 no + nq olx|—t+1"

In contrast the probability that the lookahead version of Gibbs”* predicts one on the same
input is
1 n1 — Mo (5

+ = .
2 2no+mn1) motm
If no+ni

SIT—i4T were a constant, then both algorithms would predict one with a probability that
|x|—t+1

.1 . n .
is linear in v However, since ng + nq1 < 2

biased towards % than the predictions of Gibbs™X. This bias decreases as ng+nq approaches
2|X|—t-|—1 .

the predictions of) are more heavily

Clearly Algorithm) is not optimal since in the extreme case where ng = 0 Algorithm)
incorrectly predicts 0 with positive probability (unless nq = 2|X|_t). Algorithm ¢ can also
make mistakes in the other extreme, when ny = 0. Algorithm Gibbs”™* predicts optimally
for these cases, as indicated in Figure 9.5.

10 A Characterization of Weak Learning Using Consistency Oracles

In this section we show that Prediction Algorithm () remains a weak learning algo-
rithm even when it uses a less powerful “one-sided” or “probabilistic” consistency oracle.
In addition, we will show that any polynomial weak learning algorithm can be used to con-
struct a polynomial “probabilistic” consistency oracle and visa versa. Therefore a concept
class is polynomially weakly learnable if and only if the concept class has a polynomial
“probabilistic” consistency oracle.

A one-sided consistency oracle is a consistency oracle that need not always be correct.
We call it “one-sided” because it can return false positives but not false negatives. Since an
oracle that always answers “yes” is useless, we require that one-sided oracles answer “no”
on a significant (1/polynomial) fraction of their inputs.

28 10. A Characterization of Weak Learning Using Consistency Oracles

Definition 10.1 (One-Sided Consistency Oracle): Oracle O is a one-sided consis-
tency oracle for F =J, Fs on X =, X, if there exist polynomials p1 and ps such that O
has the following properties. When O is given the parameters n and s along with a sample
S € sam.(x), for x € (X,)™ where m = pi(n,s), Oracle O must answer “yes” if S is
consistent with a concept in Fs and may answer either “yes” or “no” otherwise. However,
the total number of “no” answers on the 2™ samples in sam.(x) must be at least 2™ [pa(m).
Such an oracle is called polynomial if its answers are computed in time polynomial in n, s,
and the total bit length of 5.

Consistency oracles for large classes are often one-sided consistency oracles for smaller
classes. Let H; be a class where each x of m = p(n, s) instances has at most 2 (1 — p2(1m))
labelings that are consistent with concepts in Hs. Then a consistency oracle for H; is also
a one-sided consistency oracle for any F; contained in H,.

If we have a polynomial weak Occam algorithm using hypothesis class H, s and a
polynomial (in n, s, and the length of its input) decision algorithm which determines (when
given n, s, and the representation of hypothesis h) whether or not hypothesis A is in H,, s,
then we can construct a polynomial one-sided consistency oracle. Simply run the polynomial
weak Occam algorithm on the sample and check that the returned hypothesis is in H,_ s and
that it is consistent with the sample.

We now extend Theorem 7.3 to show if when Algorithm @ uses a polynomial one-sided
consistency oracle then Algorithm @ is a polynomial weak prediction algorithm.
Theorem 10.2: If Algorithm @ uses a polynomial one-sided consistency oracle for F =
U, Fs on X = U, X,, then Algorithm @ 15 a polynomial weak prediction algorithm for F on
X.

Proof: By definition, when m = pi(n,s) and x € (X,,)™, the number of “no” answers
given by the oracle on queries in sam.(x) is is at least 27 /pa(m). Equivalently, the total

number of “yes” answers is at most 27 (1 — p2(1m))' By Fact 2.1, there is a polynomial p,

such that the total number of yes answers is at most 2m—(1/p3(m)) Now Corollary 6.6 and
Theorem 7.3 imply that Algorithm ¢ is a polynomial weak prediction algorithm. L]

Although Algorithm (remains a weak learning algorithm when using a one-sided
consistency oracle (which can give false positives), it is a different matter if the “consistency”
oracle can return false negatives. The following shows that Algorithm Q can not weakly
learn even a very simple concept class when the consistency oracle is incorrect on only a
single labeling of each example sequence.

Consider the concept class F containing two functions: one labeling the entire domain
one, and the other labeling the entire domain zero. Thus for every sequence x of m instances,
exactly two samples in sam.(x) are consistent with F. Assume the target concept is the
all-one concept and the consistency oracle answers “yes” on only all-zero labelings (and
thus incorrectly answers “no” only on the all-one labeling). Half the time the random label
given to the instance to be predicted on by Algorithm @ is one. In this case the faulty
oracle answers “no” and Algorithm @ incorrectly predicts zero. There is also some small
chance that all of the instances will be given random labels and all of the random labels
are set to zero. The oracle will answer yes in this case, and again Algorithm @ incorrectly
predicts zero. Thus not only is Algorithm @ not a weak learning algorithm, its probability
of error is greater than %

It seems unlikely that an algorithm could exploit consistency oracles which give the
same answer on both those samples consistent with the target concept and those samples
inconsistent with any concept in the class.

10. A Characterization of Weak Learning Using Consistency Oracles 29

Definition 10.3 (Probabilistic Consistency Oracle): A randomized algorithm O is a
probabilistic consistency oracle for F = J, F, on X = J,, X, if there exists polynomials pq
and py such that when O is given the parameters n and s together with a sample S € sam,(x)
for any x € (X,)™ where m = p1(n,s), Oracle O answers “yes” with probability at least
half when S is consistent with a concept in F;, and answers no with probability one on at
least 2™ [pa(m) of the 2™ samples in sam.(x). Such an oracle is called polynomial if its
answers are computed in time polynomial in n, s, and the total bit length of 5.

We will exploit the “one-sidedness” of probabilistic consistency oracles in the same
way that “random polynomial time hypothesis finders” were exploited by Haussler et al.
[HKLW91].

Theorem 10.4: A polynomial weak learning algorithm for F =J, Fs on X =, X,, can
be used to construct a polynomial probabilistic consistency oracle.

Proof: Let A be a polynomial weak learning algorithm for 7 = |J, Fson X =, X,,. We
assume that Algorithm A is deterministic as polynomially many random bits can be obtained
from additional examples (see [HKLWO91], Lemma 3.5). There exist three polynomials
p1, p2, and ps such that if A is given the parameters n and s then for all f € F, and
probability distributions D on X,, the following holds: upon receiving a sample samy(x),
where x is drawn according to D™ and m = pi(n,s), Algorithm A outputs a hypothesis
h = Afsam¢(x)] on X, for which

1 1 1

Preepn |Erro(f.h) > 2 pa(m) =1 pa(m)
Furthermore, the hypothesis output by A are polynomially evaluatable and the running
time of A is polynomial in the total length of its input, n, and s.

The results of Freund [Fre90] imply that there is a randomized Algorithm B which
repeatedly uses the weak learning algorithm A to compress a large sample. When given
n, s, and any sample S € sam,(x), where x € (X,)™, Algorithm B outputs a sequence
5" of Lpi(n,s)(pa(n,s))*In(m) examples from 5. The output, 5, should be viewed as
2(p2(n, $))?In(7n) blocks of pi(n,s) examples each, and represents the hypothesis h(.5”)
defined as the majority function on the %(pg(n, s))?In(mn) hypotheses produced when A is
run on each block in turn. The hypotheses h(S") have the property that if S is labeled
consistently with some concept in Fy, then h(S’) is consistent with S with probability at
least half (over the randomization of B). The running time of B is polynomial in n, s,
and the total bit length of 5. Also, since the hypothesis output by A are polynomially
evaluatable, one can check in polynomial time whether h(S5’) is consistent with 5.

For each x of length 7, the total number of compressed sequences S’ containing
Ip1(n, s)(p2(n, s))? In(ri) examples chosen from some sample § € sam.(x) is at most

iy 521 (1,3) (02 ()2 () _ 957501 (m,9) (03 (mo5))? In® (1)

The number of labelings of x is 2. Thus there are at least

A Qﬁpl (n,8)(p2(n,s))? In? (1)

samples S € sam.(x) for which there is no sequence S’ representing a hypothesis consistent
with the sample 5. We now choose 7 moderately large (polynomial in n and s) so that
the number of nonrepresented samples of sam,.(x) is at least a polynomial fraction of all 2m
labelings.

30 11. A Characterization of Weak Learning Using Restricted Data Interpolators

So we can use B to construct a probabilistic consistency oracle: Construct a sequence
S’ using B and if the hypothesis represented by S’ is consistent with the input sample S
of length m then answer “yes” and otherwise answer “no”. As this oracle answers no for
all nonrepresented samples of S € sam.(x) and yes with probability at least half for all
samples S consistent with a target, it is a probabilistic consistency oracle. L]

Corollary 10.5: A concept class F = |J, Fs on X = J,, X, is polynomially weakly learn-
able if and only if there is a polynomial probabilistic consistency oracle for F on X.

Proof: In view of Theorem 10.4 we only have to show that a weak learning algorithm
can be constructed from a polynomial probabilistic consistency oracle . We first construct
a new oracle, O,, as follows: apply oracle O a total of r times to the input sample and
answer “yes” if any of the r calls to O returned “yes” and “no” otherwise. Clearly, O, is a
probabilistic consistency oracle with the more stringent property that if the input sample
is consistent with a concept in Fs, then the probability for answering “yes” is 1 — 277,

We say that O, fails if when given an input sample consistent with a concept in Fj it
answers “no”. The failure probability of O, is at most 27". Under the assumption that O, is
not failing (i.e. O, acts like a regular one-sided consistency oracle) the proof of Theorem 7.3
shows how) and O, can be used to get a weak learning algorithm whose probability of
a mistake on the last instance is at most % — p(i,s)’ for some polynomial p. By choosing
r =1+ [lg(p(n, s))] the failure probability is at most m and thus the probability of a
mistake on the last instance without the assumption that O, is failing is at most % - m.

O

Note that there are other less restrictive definitions of polynomial probabilistic consis-
tency oracles for which the above corollary would hold. We used a version that was well
suited for the proof of Theorem 10.4.

11 A Characterization of Weak Learning Using Restricted Data
Interpolators

In this section we characterize weak learning using certain “data interpolators” and
discuss how they relate to weak Occam algorithms.

The randomized algorithm A is a restricted data interpolator for | J, F, on |J,, X,, if there
exist polynomials p; and py such that the following holds for all n,s > 1, targets f € Fj,
and x € X" for m = py(n,s):

when given n, s, and the sample sam¢(x), randomized algorithm A outputs with
probability at least % a hypothesis on X,, that is consistent with the sample and
is from a class H,, s x of cardinality at most 27 (1 — 1/py(m)).

Although restricted data interpolators have a hypothesis cardinality constraint similar
to that of weak Occam algorithms (see Section 4), the hypotheses class of a restricted data
interpolator is allowed to depend on the particular instance sequence x. Restricted data
interpolators also have a probabilistic nature similar to the probabilistic consistency oracles
of Section 10.

The hypotheses output by a restricted data interpolator using sample size m = py(n, s)
are polynomially evaluatable if there is an algorithm that (when given n, s, x € X, the

representation of a hypothesis h € H,, ;x and z € X)) can decide in time polynomial in n
and s and the total bitlength of its input whether = € h.

12. Conclusions and Directions for Further Research 31

The hypotheses output by a restricted data interpolator using sample size m = py(n, s)
are polynomially recognizable if there is an algorithm that (when given n, s, x € X™ and
the representation of a hypothesis h) can decide in time polynomial in n and s and the total
bitlength of its input whether h € H,, 5 x.

A restricted data interpolator algorithm is called polynomial if:

e its running time is polynomial in n and s and the total bitlength of its input,

e its hypotheses are polynomially evaluatable, and

e its hypotheses are polynomially recognizable.
We now show that the existence of a polynomial restricted data interpolator for a class
is a necessary and sufficient condition for the class to be polynomially weakly learnable.

Theorem 11.1: A concept class F = |J, Fs on X = J,, X, is polynomially weakly learnable
if and only if there is a polynomial restricted data interpolator.

Proof: Given a polynomial restricted data interpolator we can easily construct a prob-
abilistic consistency oracle from it: the oracle says “yes” if the hypothesis produced by the
polynomial restricted data interpolator on input n, s, x € X" is both consistent and lies
in H,sx. Consistency can be checked in polynomial time since the polynomial restricted
data interpolator outputs polynomially evaluatable hypotheses. Membership in H, s x can
be decided in polynomial time since the polynomial restricted data interpolator outputs
polynomially recognizable hypotheses. Thus by Corollory 10.5 the existence of polynomial
restricted data interpolators implies polynomial weak learning.

For the opposite direction we observe that the algorithm used in the proof of Corol-
lory 10.5 is a polynomial restricted data interpolator. Its hypotheses are polynomially
evaluatable and are represented by length bounded sequences of examples using instances
from x, and thus polynomially recognizable. L]

As noted above, restricted data interpolators are a generalization of Occam algorithms
as the restricted data interpolators are probabilistic and their hypothesis class can depend
on the actual instances as well as n, s, and m. As far as we know the above theorem
is the first characterizion of learning using generalized Occam-style algorithms. Previous
characterizations of polynomial learnability by Occam algorithms were in terms of a specific
hypothesis class used by the learning algorithms [BP92][HKLW91]. Our results place
no restriction on the hypothesis class used by the Occam algorithm, other than being
polynomially evaluatable and polynomially recognizable.

Recall that Theorem 4.2 shows that weak Occam algorithms are weak learning algo-
rithms. The above theorem does not show the same for restricted data interpolators. In
fact, the hypotheses produced by restricted data interpolators can be arbitrarily bad. Con-
sider the concept class F = {fi, fo, ..., fon} on X = {1,...,2"} where each f; = {1,...,i}.
When given a sample S of size m, a restricted data interpolator for this class could output a
hypotheses which labels only those instances labeled one in the sample with one, and labels
everything else zero. We use restricted data interpolators in a more “sophisticated way,”
converting them into oracles which are used by the our query lookahead algorithms.

12 Conclusions and Directions for Further Research

We see two potential benefits from this line of research. First we hope that polynomial
versions of the discussed one-sided consistency oracles and probabilistic consistency oracles
can be found for concept classes that have not previously been known to be learnable.

32 12. Conclusions and Directions for Further Research

Second, the interaction of our results with cryptography could be a promising direction.
For example, there is no polynomial weak learning algorithm for DIFAs given standard
cryptographic assumptions [KV89]. More precisely, the concept class in this learning
problem is F = |J, F, where F, consists of all regular languages accepted by DFAs with at
most s states, and the domain is X = |J,, X,, where X, is the set of all words over {0,1}
of length at most n. Our results show that, under the same cryptographic assumptions, a
polynomial probabilistic consistency oracle for 7 on X can not exist.

For any fixed sequence x of m instances, [samz, (x)| is at most m©(*1°8) [Sau72], since
the VC dimension of F; is O(slogs). When m is a polynomial in s of degree 2 or greater,
then [samz (x)|is much smaller than the 27 samples in sam.(x).

Yet (given the cryptographic assumptions) there is no polynomial-time algorithm that
answers “yes” with probability at least half on all of the m©(slogs) labelings consistent with
DFAs of at most s states and “no” on at least 2 /py(m) other labelings.

We show in Section 8 that the sample complexity of weak learning an arbitrary concept
classes of VC dimension d (disreguarding computational considerations) is at most 2d —
Q(+/dlgd). Tt is shown in Goldman et al. [GKS90] that there are classes of VC dimension
d where every weak learning algorithm requires at least d — O(log d) examples. We would
like to see these bounds tightened. It is interesting to note that the natural dividing line of
d samples lies above the best current lower bound and below the best current upper bound.

In another direction, if |[samz(x)| = 21XI=2(%) then by Corollary 6.6 the probability that
Algorithm @ predicts incorrectly on the last instance (averaged over permutations of x) is
1 2-X)

3 - |)1(—| + Thus Algorithm @ does not effectively exploit large a(x). In contrast the

probability that Algorithms Gﬁﬁos, Bg}j(es, or G predict wrong on the last instance goes to
0 as a(x) goes to |x| (see Figure 9.3).

Although Algorithms Gﬁﬁos, Bgy/es, and G can not be implemented efficiently, they
can be approximated by making many calls to a consistency oracle. We presented an

approximation to G using this approach [HW92b]. However, this approximation to G uses
22X 1
U0
grows exponentially in a(x). Furthermore, the probability that this algorithm predicts
incorrectly fails to drop to 0 as a(x) goes to |x|. Whether or not there exists an efficient
(polynomial time) method whose probability of of predicting wrong on the last instance

goes to 0 as a(x) goes to |x| is an open problem.

) calls'? to a consistency oracle. As a(x) goes to |x|, the number of queries used

During our comparison of Algorithm Gibbs with Algorithm @, we derived an improved
bound on the expected total number of mistakes made by Algorithm Gibbs (Theorem 9.3).
Perhaps similar techniques will lead to better bounds on the Bayes and Information Gain
prediction algorithms than those of inequalities 9.1 and 9.2, respectively.

When computational considerations are ignored the algorithm that minimizes

sup EyeU(x) [M(A, f,y)]
fer

is the l-inclusion graph algorithm of Haussler, Littlestone, and Warmuth [HLW] (as dis-
cussed in the Section 9). For that algorithm the supremum equals maxdens s(x) where

x|
maxdensz(x) is the maximum density of any subgraph of the 1-inclusion graph with respect
to F and x. We know from Corollary 9.5 that maxdensz(x) < min{d, 1 lg [sam#(x)|, % +

"Fewer calls suffice for weak learning but result in poorer predictions.

13. Acknowledgements 33

(Jsamz(x)| /2K = (1/ |x|)}, where d is the VC dimension of F. However, this upper bound
on maxdensz(x) is not tight. Another open problem is to determine the best possible upper
bound on maxdensz(x) as a function of d and [samz(x)| (or possibly other statistics of the
1-inclusion graph with respect to F and x).

In Sections 10 we show that a concept class has a polynomial weak learning algorithm if
and only if the concept class has a polynomial probabilistic consistency oracle. Furthermore,
Section 11 shows that a concept class has a polynomial weak learning algorithm if and
only if the concept class has a polynomial restricted data interpolator. Are there other
characterizations of polynomial learnability?

Finally, we conjecture that the counterexamples at the end of Section 4 can be strength-
ened to show the following.

There is an Occam-style algorithm that uses sample size m = p(n,s), where

p is a polynomial, and a hypothesis class of size 2™ — ¢, where ¢ is a positive

constant, that is not a weak learning algorithm.
The existence of such an Occam-style non-learner would strengthen our belief that if the
2m=1/p2(5) hound on the size of the hypothesis class in the definition of weak Occam algo-
rithm is increased then weak Occam algorithms will no longer be weak learning algorithms.
In other words, if an Occam-style algorithm does not compress a sample containing m bit la-
bels down to a hypothesis from a polynomially evaluatable class that can be represented by
m — 1/pa(n, s) bits, then combinatorial arguments alone cannot show that the Occam-style
algorithm is a weak learning algorithm.

13 Acknowledgements

We are grateful to Lenny Pitt, Peter Frankle, Yoav Freund, David Haussler, Phil Long,
and Phokian Kolaitis for valuable discussions and Hikoe Enomoto for decreasing the bound
on size of the hypothesis class in the example following Theorem 4.2 by one.

References

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1974.

[AHWS87] N. Alon, D. Haussler, and E. Welzl. Partitioning and geometric embedding of
range spaces of finite Vapnik-Chervonenkis dimension. In Proceedings of Third
Symposium on Computational Geometry, pages 331-340, June 1987.

[BEHWS&7] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Occam’s razor.
Information Processing Letters, 24:377-380, 1987.

[BEHWS&9] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. War-
muth. Learnability and the Vapnik-Chervonenkis dimension. Journal of the
Association for Computing Machinery, 36(4):929-965, 1989.

[BonT72] J. A. Bondy. Induced subsets. J. Comb. Theory, 12:201-202, 1972.

[BP92] R. Board and L. Pitt. On the necessity of Occam algorithms. Theoretical
Computer Science, 100:157-184, 1992.

[Fre90] Y. Freund. Boosting a weak learning algorithm by majority. In Proceedings of the

1990 Workshop on Computational Learning Theory, pages 202-231, San Mateo,
CA, August 1990. Morgan Kaufmann.

34

[GKS90]

[GT90]

[HKLW91]

[HKS91]

[HLW]

[HO91]

[HS90]

[HW92a]

[HW92b]
[Kha92]

[KV89]

[MS77]
[Sau72]
[Sch90]
[STS90]

[Val84]

References

Sally A. Goldman, Michael J. Kerns, and Robert E. Schapire. On the sample
complexity of weak learning. In Proceedings of the 1990 Workshop on Computa-
tional Learning Theory, pages 217-231, San Mateo, CA, August 1990. Morgan
Kaufmann.

G. Gyorgyi and N. Tishby. Statistical theory of learning a rule. In K. Thuemann
and R. Koeberle, editors, Neural Networks and Spin Glasses. World Scientific,
1990.

D. Haussler, M. Kearns, N. Littlestone, and M. K. Warmuth. Equivalence of
models for polynomial learnability. Information and Computation, 95(2):129-
161, December 1991.

D. Haussler, M. Kearns, and R. Schapire. Bounds on the sample complexity of
Bayesian learning using information theory and the VC dimension. In Proceedings
ofthe 1991 Workshop on Computational Learning Theory, San Mateo, CA, August
1991. Morgan Kaufmann. To appear in Machine Learning.

D. Haussler, N. Littlestone, and M. K. Warmuth. Predicting {0,1} functions
on randomly drawn points. To appear in Information and Computation. An
extended abstract appeared in COLT 88.

D. Haussler and M. Opper. Calculation of the learning curve of Bayes optimal
classification algorithm for learning a perceptron with noise. In Proceedings of
the 1991 Workshop on Computational Learning Theory. Morgan Kaufmann, San
Mateo, CA, August 1991.

D. Hansel and H. Sompolinsky. Learning from examples in a single-layer neural
network. Furophys. Lett., 11(7):687-692, 1990.

D. Helmbold and M. K. Warmuth. On weak learning. In Proceedings of the
Third NEC Research Symposium on Computational Learning and Cognition, 3600
University City Science Center, Philadelphia, PA 19104-2688, May 1992. STAM.

D. Helmbold and M. K. Warmuth. Some weak learning results. In Proceedings
of the 1992 Workshop on Computational Learning Theory. ACM, July 1992.

Michael Kharitonov. Cryptographic hardness of distribution-specific learning.
unpublished manuscript, 1992.

M. Kearns and L. G. Valiant. Cryptographic limitations on learning Boolean
formulae and finite automata. In Proceedings of the 21st Annual ACM Symposium
on Theory of Computing, pages 433-444, New York, May 1989. ACM. To appear
in Journal of the ACM.

F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes.
North-Holland, 1977.

N. Sauer. On the density of families of sets. Journal of Combinatorial Theory
(Series A), 13:145-147,1972.

R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197—
227, 1990.

H. Sompolinsky, N. Tishby, and H.S. Seung. Learning from examples in large
neural networks. Phys. Rev. Lett., 65:1683-1686, 1990.

L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, 1984.

A. Bounds on the Information Gain Prediction Algorithm 35

[VCT1] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of rela-
tive frequencies of events to their probabilities. Theory of Probability and its
Application, 16(2):264-280, 1971.

[Vov90] V. Vovk. Aggregating strategies. In Proceedings of the 1990 Workshop on
Computational Learning Theory, pages 371-383, San Mateo, CA, August 1990.
Morgan Kaufmann.

A Bounds on the Information Gain Prediction Algorithm

Definition A.1: For all P on F, S € (X x{0,1})*, z € X and b € {0,1}, let the
information gain I7 be defined as follows:
VRS (b))

178, (2.0) = g

Thus, the Information Gain Prediction Algorithm predicts b (see Figure 9.1) with proba-

bility
IP({S. (#,1-b)))
IP((S, (2, 1)) + 1P ((S, (,0)))

when VF(5) > 0.

Even when V7 () > 0, it is possible that either V7 ({S,(2,1))) = 0 or V7 ({5, (2,0))) =
0. In that case if V7 ({9, (z,1))) = 0 then I7({S,(z,1))) = oo and Algorithm G predicts
0 with probability 1. Similarly, Algorithm G” always predicts 1 when V7 ({5, (z,0))) = 0.
Lemma A.2: For all P on F, S € (X x {0,1})%, and » € X: if VF(S) > 0 then
IP((S, (2, 00)) + 17 ({8 (2, 1)) > 2.
Proof: Using the definition of I7, it suffices to show that

VIS, (2,0)) VS, (2. 1))
R G

Since VP () = VP ({9, (2,0))) + VP((S9,(x,1))) > 0, this is equivalent to showing, Vp €
[0,1], that —lgp —lg(1 — p) > 2. Clearly the left hand side is minimized when p = % and
in that case the inequality is tight. L]
Note that the lemma also holds when either V7 ({S$,(2,0))) = 0 or V7 ({5, (x,1))) = 0,
as then I7((S,(z,0)))+ I7 ({5, (z,1))) = oc.
We now state the well known fact that information is additive [HKS91].
Lemma A.3: If VP (sam(x)) > 0 then

_1g

x|

Z_: IP(sams(x")) = —1g VP (sam¢(x)).

Proof:
Z|X| r t Z|X| V7 (sam;(x'))
t—1I (samyslac’)) = t=1 - VP(Samf(X<t))
B Vp(sam (x))
= g

= —lgV7(samy(x))

36 B. A Simple Upper Bound on the Density of the 1-inclusion Graph

O

We are now ready to bound the probability that Algorithm GF predicts incorrectly.
This bound is a special case (8 = 0) of a bound proven by Vovk [Vov90] for a more general
aggregating strategy.

Theorem A.4: Forall P on F, f€ F, and x € X*:

x|

STM(GP, f.xt) < —% le VP (sam 1 (x)).

t=1

Proof: If VP(sams(x)) = 0 then the theorem holds trivially. Otherwise, for each
1<t < x|,

I7 (sam ;(x!))
TP ((samp(x<f), (24, 1)) + 17 ((samy(x<F), (24, 1))
< ST (samy(x))

M(G", fx!) =

using Lemma A.2. By the additivity of information (Lemma A.3),

x|

STM(GT, f.x1) < —% le V7 (sam (x))

t=1

as desired. [l

B A Simple Upper Bound on the Density of the 1-inclusion Graph

In Corollary 9.5 three upper bounds on maxdensz(x) are given. Here we give a simple
inductive proof of the second bound.

Let X be an arbitrary set and F be any concept class on X. For any m > 1 and
x € X™, we construct an undirected graph called the I-inclusion graph of F with respect
to x, denoted by G'r(x) [Bon72, AHWS87, HLW]. The vertices of Gz(x) are the samples of
samr(x) and there is an edge between two vertices 5 and S’ if 5 and S5’ disagree on the
label of exactly one of the instances appearing in x, and that instance appears only once in
X.

The density of a graph is the number of vertices over the number of edges. The graph
G = (V,E)is a subgraph of G' = (V' E') it V. C V' and E C (i'. Let maxdensz(x) be the
maximum density of any subgraph of Gr(x).

Theorem B.1: For any non-empty subgraph of a Boolean hypercube with g vertices the
number of edges is at most £1g g and thus mazdensr(x) < %lg [samp(x)|.

Proof: Any subgraph of a 1-inclusion graph corresponds to a subgraph of a Boolean
hypercube: Each instance in the sequence x is responsible for one dimension of the cube and
the Boolean labeling of x are the coordinates of the cube. Thus the fact that maxdensz(x) <
1lg [samp(x)| follows from the number of edges being at most £1g g and that the number
of vertices in G'r(x) is [samp(x)|.

B. A Simple Upper Bound on the Density of the 1-inclusion Graph 37

We prove that the number of edges in any subgraph of a boolean hypercube containing
[vertices is at most Zlgg by induction on the dimension of the hypercube. It clearly
holds for the 1-dimensional hypercube and ¢ = 0,1 or 2. For the induction step split the
hypercube of dimension d into two subcubes of dimension d — 1. Let ¢g; and g9 be the
number of vertices in the two subcubes. If either g; or g is zero then the bound follows
directly from the inductive hypothesis. Thus we assume 1 < g1 < g,. Clearly the number
of vertices crossing between the subcubes is at most ¢;. Applying the inductive hypothesis,
the total number of vertices is at most

1 1 1
g1lgg1 | 921892 g = (91+92)18(91+ 92) g_llg (91 +92) g—zlg (1 +92) +g
2 2 2 2 o 2 g2
1 + g2)?
< ggg_g_llg(gl g2) b
2 2 9192
9129 91, 91 | 92
= —V———-Flg(=—=+=+2)+
5) 5) g(92 7)+ 91
1
< %—%lg@l)—l—gl, since z 4+ (1/x) > 2 when z > 0,
_ ylgg
2 ?

which completes the proof. L]

