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1. Introduction 11 IntroductionThis paper presents a several learning results, including necessary and su�cient condi-tions for weak learning. To help introduce the learning terminology used in this paper weuse the problem of learning DFAs over a binary alphabet as an example learning problem.A learning algorithm is given random bitstrings (called instances) which are labeled with0 or 1 depending on whether they are rejected or accepted by some hidden target DFA.The labeled bitstrings are called examples and each possible target DFA de�nes a conceptconsisting of all bitstrings which it accepts (or equivalently, the associated indicator func-tion on bitstrings). The set of possible concepts is called the concept class. Assume thealgorithm is given two parameters: n, a length bound on the bitstrings, and s, a bound onthe size of (number of states in) the unknown target DFA. After seeing a reasonable numberof instances (bitstrings of length at most n) labeled by the hidden target DFA of size atmost s, the learning algorithm outputs a hypothesis which is intended to approximate theset of bitstrings of length at most n that are accepted by the hidden target DFA. We assumethat the instances are generated according to a �xed but arbitrary probability distributionand de�ne the error of the output hypothesis as the probability of the symmetric di�erencebetween the hypothesis and the target.A strong learning algorithm takes parameters n, s, � > 0 and � > 0 and must, withprobability at least 1 � �, output a hypothesis having error at most �. To generate thishypothesis, the algorithm is allowed to examine a number of examples equal to somepolynomial p(n; s; 1=�; 1=�). Learning algorithms are called polynomial if both their runningtime and the running time for evaluating the output hypotheses on instances of length atmost n is bounded by a polynomial in all four parameters.1This notion of learning was introduced by Valiant [Val84]. Not too many concept classeshave been shown to be polynomially strongly learnable and a less stringent de�nition oflearning was given by Kearns and Valiant [KV89]. A weak learning algorithm must, afterseeing m = p1(n; s) many examples, output a hypothesis having error at most 12 � 1=p2(m)with probability at least2 1=p3(m), where p1, p2 and p3 are polynomials.Surprisingly, it has been shown that any polynomial weak learning algorithm can beused to build a polynomial strong learning algorithm [Sch90, Fre90]. These constructionscreate many copies of the weak learning algorithm and each copy generates a hypothesisbased on a �ltered sequence of examples. These hypotheses are then combined to form amaster hypothesis. Thus to determine whether a concept class is polynomially learnable itsu�ces to construct polynomial weak learning algorithms. In this paper we give necessaryand su�cient conditions for polynomial weak learning.An Occam algorithm returns any hypothesis from some hypothesis class H that isconsistent with the examples seen. Thus the hypothesis class must be large enough torepresent the way that each possible target labels the examples. The hypothesis class His allowed to vary based on the parameters n and s, and the number of examples, m.When the hypothesis class is the same as the concept class, the Occam algorithm can be1More precisely, a polynomial learning algorithm is allowed to take time polynomial in the total bit lengthof all received instances as well as the four parameters. If n is an upper bound on the bit length of instancesthen the two de�nitions are equivalent. They di�er only when n measures some aspect of the instances otherthan their bit length.2In the original de�nition of weak learning the paramenter 1� � is used in place of 1=p3(m). The twode�nitions are polynomially equivalent (see Lemma 3.4 of [HKLW91]).



2 1. Introductionviewed as an oracle which returns a concept consistent with the set of examples. Previouslyit has been shown that if the cardinality of H is small (bounded by p(n; s)m1��, where� is a constant less than one), then the Occam algorithm is a strong learning algorithm[BEHW87]. We show that even if the size of the hypotheses class grows exponentially,Occam algorithms may already be weak learners. More precisely, our �rst result shows thatwhen the cardinality of H is moderately sized, bounded3 by 2m�1=p(m), then the Occamalgorithm is a weak learning algorithm. In contrast, we show that one Occam algorithm fora particular concept class that uses a slightly larger hypothesis class of size 2m+1 � 2 is nota weak learning algorithm.A consistency oracle for a concept class F is given parameters n, s, and a sequence oflabeled examples whose instances are words of length at most n. The consistency oracledetermines whether or not there is a concept of size at most s which is consistent withthe examples. The consistency oracle's answer is a simple yes/no decision, making it(apparently) much weaker than an oracle which returns a concept of size at most s consistentwith the examples.A probabilistic consistency oracle must answer \yes" with probability at least 50% (overits internal randomization) when given a set of examples consistent with a concept in theclass, and must always answer \no" on some sets of examples which are not consistent withany concept in the class. The asymmetry in this de�nition seems to be necessary as shownby the counterexample and discussion in Section 10. We show that any polynomial timeweak learning algorithm for F can be converted into a polynomial probabilistic consistencyoracle of F .We also show that if a polynomial time probabilistic consistency oracle is availablethen it can be used to construct a polynomial weak learning algorithm for F whenever Fis learnable at all with respect to an arbitrary distribution (i.e. the Vapnik-Chervonenkisdimension [VC71] of F grows polynomially in n and s [BEHW89]). Previously a directconstruction of a strong learning algorithm using consistency oracles was given by Haussler,Littlestone, and Warmuth [HLW]. However that algorithm is only polynomial if the VCdimension of F is a constant independent of n and s. Thus a class is polynomially learnableif and only if it has a polynomial probabilistic consistency oracle.The following section contains an introduction to our notation. We de�ne weak predic-tion algorithms in Section 3 and relate them to weak learning algorithms. Section 4 showsthat one kind of weak learning algorithm is a \weak Occam algorithm" (similar to the\strong" Occam algorithms studied by Blumer et al. [BEHW87], Board and Pitt [BP92])and Haussler4 et al. [HKLW91]. The next part of the paper concentrates on predictionalgorithms. In Section 5 we de�ne lookahead prediction algorithms which get the entire setof instances where predictions will be required before making any predictions. There weshow how to transform any lookahead prediction algorithm with a good total mistake boundinto a (normal) prediction algorithm which has a small probability of making a mistake onthe last trial. Section 6 presents and analyzes the Query Lookahead Algorithm, a genericlookahead prediction algorithm which uses a single query to a consistency oracle. Section 7shows that a polynomial weak prediction algorithm is created when the Query LookaheadAlgorithm uses a polynomial time consistency oracle and is transformed as described inSection 5. Furthermore, the resulting polynomial weak prediction algorithm makes only a3An equivalent condition is to bound the cardinality of H by 2m(1� 1=p0(m)), for some polynomial p0.4The kind of Occam algorithms studied there are called random polynomial time hypothesis �nders.



2. Notation 3single query to the consistency oracle. In contrast, our earlier prediction algorithm [HW92b]requires a large number of consistency oracle queries to make each prediction. In Section 8we show using our algorithm that sample size 2d�
(pdlogd) su�ces for weak learning (notnecessarily polynomial weak learning) of concept classes of VC dimension d. In Goldmanet al. [GKS90] it was shown that no algorithm can weakly learn some concept classes ofVC dimension d from d�O(log(d)) examples. Section 9 compares our prediction algorithmwith several of the standard prediction algorithms, as well as the weak prediction algorithmof [HW92b]. This comparison includes an improved bound on the expected total numberof mistakes made by the Gibbs prediction algorithm [HKS91] when learning a worst-caseconcept. In Section 10 we de�ne one-sided and probabilistic consistency oracles, and provethat a concept class is polynomially weakly learnable if and only if there is a polynomialprobabilistic consistency oracle for the class. In Section 11 we introduce polynomial \datainterpolators" and discuss how they generalize Weak Occam algorithms. We conclude inSection 12 by discussing a number of open problems raised by this research.Preliminary versions of several results presented here have appeared in conference papers[HW92b, HW92a].2 NotationThroughout, lg and ln denote the binary and natural logarithms, respectively. Whenlogarithms appear in asymptotic notation we use log, as the base is not relevant. We useN todenote the positive numbers, and adopt the convention that 0 = 1 and 1 = 0. Furthermore,if X is a set then X� is the set of all �nite sequences of elements from X (including theempty sequence) and X+ is the set of all �nite non-empty sequences of elements from X .Let X be an arbitrary set of instances called the domain, and F be a set of subsets of Xcalled the concept class (F � 2X). We use subsets of X and their corresponding indicatorfunctions interchangeably, so each concept f 2 F maps X to f0; 1g.Lower case bold letters, such as x and y denote (�nite) sequences of instances and jxjis the length of the sequence x. For 1 � t � jxj, we use:� xt to denote the tth component of x,� x�t to denote the t-vector (x1; x2; : : : ; xt),� x<t to denote the t � 1 vector (x1; x2; : : : ; xt�1), and� x>t to denote the jxj � t vector (xt+1; xt+2; : : : ; xjxj).All of x�0, x<1, and x>jxj denote the empty sequence �. We will often superscript sequencessolely to emphasize their length.Examples are instances labeled by either 0 or 1, i.e. elements of X �f0; 1g. Samples aresequences of examples. The sample of f on x is denoted by samf (x) and is the sequence ofexamples5 (x1; f(x1)); : : : ; (xjxj; f(xjxj)).We de�ne samF(x) = fsamf (x) : f 2 Fg. We also use sam�(x) to denote the set of 2jxjsamples where the �rst example contains x1, and second example contains x2, and so on.If samF (x) = sam�(x) then x is shattered by F .The Vapnik-Chervonenkis dimension, or VC dimension, of a concept class F on X isthe largest k such that there exists an x 2 Xk that is shattered by F [VC71, BEHW89].5If x is the empty sequence of instances, then samf (x) is the empty sequence of examples.



4 3. Weak Learning ModelsIf e is an example and S is a sample of length m then hS; ei is the sample of m + 1examples obtained by adding e to the end of S. We use � to denote the empty sequence(of samples or examples).We say that a function f is consistent with a sample S if there is an x (the sequence ofinstances in the sample) such that S = samf (x). Every f 2 F is consistent with the emptysample.We use Ea2P [z(a)] to denote the expectation of the random variable z under distributionP , and Pra2P [condition(a)] to denote the probability under the distribution P of theset containing all a satisfying the condition. We adopt the usual assumption that anyprobability used in this paper is measurable.Distribution D always denotes a probability distribution on X . We use U to denote var-ious uniform distributions { in particular U[0;1] is the uniform distribution on the continuousinterval [0; 1] and U(x) is the uniform distribution on the jxj! permutations of sequence x.We will also make frequent use of the following bounds on the function 2x.Fact 2.1: For any � 2 R, 1� � ln 2 � 2�� and if � 2 [0; 1] then 2�� � 1� �2 .3 Weak Learning ModelsA (randomized) prediction algorithm6 A takes a sample, an instance, and a randomnumber7 in [0; 1] as input and outputs a prediction from the set f0; 1g. Thus A : (X �f0; 1g)��X � [0; 1]! f0; 1g.A (randomized) learning algorithm A for a concept class F on X receives as inputa sample of some target concept f 2 F and random number r 2 [0; 1]. A outputsthe representation of a concept h in a second concept class H on X that is intendedto approximate f . Class H is called the hypothesis class. Let A(samf (x<m); r) denote(the representation of) the hypothesis output by algorithm A when run on the examplesequence samf (x<m) with randomization r. Each learning algorithm has an associated(deterministic) evaluation algorithm that takes as input the representation of a hypothesisand an instance x 2 X , and outputs the value of the hypothesis on x. There are triviallearning algorithms that simply output the pair (samf(x); r) as the representation of thehypothesis. In that case the evaluation algorithm does all the \work".The performance of prediction and learning algorithms can be evaluated in several ways.For learning algorithms we are primarily interested in how well the algorithm's hypothesisapproximates the function being learned. For prediction algorithms we look at both theexpected number of incorrect predictions made over a sequence of trials and the probabilityof an incorrect prediction on the mth trial.The error between a learning algorithm's hypothesis h and target concept f with respectto distribution D on X is denoted ErrD(f; h). Formally, ErrD(f; h) = Prx2D [f(x) 6= h(x)].6Here, and in the de�nition of \learning algorithm" we use the term \algorithm" loosely, without therequirement that the mapping be computable. However, all the algorithms we present here are computablewhen the volumes of samples can be computed (see De�nition 9.1).7For simplicity we let r be a real number drawn from the uniform distribution on [0; 1]. More preciselythe random input r given to an algorithm should be a �nite number of random bits and for polynomialalgorithms the number of random bits required must be polynomially bounded.



3. Weak Learning Models 5For any prediction algorithm A and concept f 2 F , we de�ne M(A; f;x) as theprobability that A makes a mistake on the last instance of x when learning f . Moreprecisely, when x is a sequence of m instances,M(A; f;x) = Er2U[0;1] �A(samf(x<m); xm; r) 6= f(xm)� ;where U[0;1] is the uniform distribution on [0; 1]. Thus the expected total number of mistakesmade by A on a sequence x of m instances labeled by target f is Pmt=1M(A; f;x�t).In some sense learning algorithms and prediction algorithms are interchangeable. Givenany prediction algorithm, A, one can create a trivial learning algorithm, A0, which uses Aas its hypothesis evaluator, i.e.A0(samf(x<m); r)(xm)def=A(samf (x<m); xm; r):Furthermore, any learning algorithm and its associated hypothesis evaluator can be usedto produce predictions.Our performance measures for learning and prediction algorithms can be related as fol-lows. Suppose prediction algorithm A when given samf (x<m), xm, and r �rst uses learningalgorithm A0 to produce a hypothesis h = A0(samf (x<m); r) and then predicts with thevalue h(xm). In this case (see [HKLW91]), with x<m and f �xed, Exm2D �M(A; f;x�m)� =Er2[0;1] [ErrD(f; h)]. The same relationship holds when learning algorithm A0 uses the pre-diction algorithm A as its hypothesis evaluator.Note that probabilistic learning and prediction algorithms can be easily converted intodeterministic learning and prediction algorithms by extracting random bits from additionalexamples ([HKLW91], Lemma 3.5). We use randomized learning and prediction algorithmsfor our basic models as our algorithms are naturally randomized.Usually we are not just interested in learning a �xed concept class F over a �xed domainX but instead we would like to learn a parameterized concept class F = F1 [F2 [ � � � overa parameterized domain X = X1 [ X2 [ � � �. Informally, the parameter s in Fs measuresthe \size" of the concepts and Fs contains all concepts of size at most s. Similarly, theparamenter n in Xn measures the \length" of the instances8 and Xn contains all instancesof length at most n. For the example in the introduction, Xn consists of all bitstrings oflength at most n and Fs contains all concepts accepted by DFAs of at most s states. Theprediction (or learning) algorithm is given both parameters as inputs, and the algorithm ispolynomial if its resource requirements grow polynomially in n, s, and the size of the inputsample.We extend the M(A; f;x) notation to handle these parameterized learning problems byde�ning Mn;s(A; f;x)def=Er2U[0;1] �A(samf (x<m); xm; r; n; s) 6= f(xm)� :Algorithm A is a weak learning algorithm [KV89] for Ss Fs on SnXn if there exist threepolynomials p1, p2, and p3 such that if A is given the parameters n and s then for allf 2 Fs and probability distributions D on Xn the following holds: upon receiving a randomnumber r 2 [0; 1] drawn according to U[0;1] together with a sample samf (x), where x is drawnaccording to Dm and m = p1(n; s), the algorithm outputs a hypothesis h = A[samf (x); r]on Xn for which8The parameter n need not be the bit length of the instances. Other measures of instance complexityare allowed.



6 3. Weak Learning ModelsPrx2Dm;r2U[0;1] �ErrD(f; h) > 12 � 1p2(m)� � 1� 1p3(m) (3.1)In the original de�nition of weak learning the paramenter � is used is place of 1� 1=p3(m).The two de�nitions are polynomially equivalent (see Lemma 3.4 of [HKLW91]).For a strong learning algorithm [Val84, BEHW89], Inequality (3.1) is replaced by theinequality Prx2Dm;r2U[0;1] [ErrD(f; h) > �] � �;where � and � are additional paramenters in [0; 1]. These parameters are given to thealgorithm and the sample size m is allowed to be polynomial in 1=� and 1=�, as well as nand s.The hypotheses output by a learning algorithm for Ss Fs on SnXn are polynomiallyevaluatable if the evaluation algorithm's running time on any hypothesis representationoutput by the learning algorithm and any instance x 2 Xn is bounded by a polynomial inthe parameters n and s of the learning algorithm and the bit length of x. A polynomialweak (strong) learning algorithm must output polynomially evaluatable hypotheses and thetotal running time of the weak learning algorithm must be polynomial in the total length ofits input,9 n, and s (or in the total length of its input, n, s, 1=�, and 1=� for strong learningalgorithms).It has been shown that any weak learning algorithm A for Ss Fs on SnXn can be usediteratively to build a strong learning algorithm for Ss Fs on SnXn [Sch90, Fre90]. Moreoverif the weak learning algorithm is polynomial then the resulting strong learning algorithm isalso polynomial.Note that one can not convert weak learning algorithms into strong learning algorithmsby simply increasing the sample size m. In fact, the error bound of 12 � 1p2(m) on thehypotheses produced by a weak learning algorithm can approach 12 as m increases. Theconversion algorithms of [Sch90] and [Fre90] repeatedly use the weak learning algorithm ondi�erent \small" samples of size m = p1(n; s) (where p1(n; s) is the �rst polynomial in theweak learning algorithm de�nition). These \small" samples are created by cleverly �lteringthe distribution and the resulting hypotheses are combined using the majority function.As discussed above, prediction algorithms are closely related to learning algorithms.Intuitively, a weak prediction algorithm must make predictions that are slightly better thanrandom guessing when given a polynomially sized sample. This is made precise in thefollowing de�nition.De�nition 3.1 (Weak Prediction Algorithm): Prediction algorithm A is a weak pre-diction algorithm for a concept class F = Ss Fs on X = SnXn if there are polynomials p1and p2 such that when m = p1(n; s) then for all concepts f 2 Fs and all distributions D onXn, Ex2Dm [Mn;s(A; f;x)] � 12 � 1p2(m) : (3.2)Furthermore, if there is a polynomial p3 such that the predictions made by A are computed intime bounded by p3(n; s; l) where l is the total bit length of the input, then A is a polynomialweak prediction algorithm.9We allow the algorithm to use the total bit length of its input in its running time bound since theparameterization of the domain need not be based on the bit lengths of the instances.



4. Weak Occam Algorithms 7Weak prediction algorithms perform well enough to be used as the hypothesis evaluatorsfor trivial weak learning algorithms. This follows from the following lemma (which isproven using Markov's Lemma) applied with � = 1=p2(m). The lemma states that ifthe prediction algorithm's expected error is 12 � �, then the error of the trivial learningalgorithm's hypothesis is at most 12 � �2 with probability at least 1� �1�� .Lemma 3.2: For any distribution D on X, any prediction algorithm A and any concept fon X, if Ex2Dm [M(A; f;x)] � 12 � �;and A0 is the trivial learning algorithm which uses A as its hypothesis evaluator thenPrDm�1�U[0;1] �ErrD(f; A0[samf (x<m); r])� 12 � �2 � � 1� �1� �:Proof: Recall that if learning algorithm A0 uses prediction algorithm A to evaluate itshypotheses then:Ex2Dm [M(A; f;x)] = Ex2Dm;r2U[0;1] �A(samf (x<m); xm; r) 6= f(xm)�= Ex2Dm�1 ;r2U[0;1] �Exm2D �A(samf(x<m); xm; r) 6= f(xm)� �= Ex2Dm�1 ;r2U[0;1] �ErrD(f; A0(samf(x<m); r))� :Markov's Lemma says that for any non-negative random variable R, any distributionD and z > 0, Pra2D [R(a) � zEb2D [R(b)] ] � 1=z. The lemma follows by usingErrD(f; A0[samf(�); �]) as the random variable mapping Xm�1� [0; 1] to [0; 1], Dm�1�U[0;1]as the distribution and z = (12 � �2 )=(12 � �).Although a weak prediction algorithm can trivially be used to create a weak learningalgorithm, the converse is not true. Inequality (3.2) is a stronger constraint on the predic-tion/learning algorithm than Inequality (3.1).4 Weak Occam AlgorithmsIn this section we de�ne a kind of learning algorithm called \weak Occam algorithms"and show that any weak Occam algorithm is also a weak learning algorithm. An \Occamalgorithm" is a learning algorithm that outputs consistent hypothesis from a \small" hy-pothesis class [BEHW87]. Algorithm A is a strong Occam algorithm for Ss Fs on SnXnif there exists a polynomial p and a constant � < 1 such that the following holds for alln; s � 1, targets f 2 Fs, and x 2 Xmn :when given n, s, and the sample samf (x), learning Algorithm A outputs ahypothesis on Xn that is consistent with the sample and is from a polynomiallyevaluatable class Hn;s;m of cardinality at most p(n; s)m�.It has been shown [BEHW87] that for each strong Occam algorithm for Ss Fs on SnXnthere is a sample size polynomial in n, s, 1=�, and 1=� for which this algorithm is a stronglearning algorithm. The above de�nition of (strong) Occam algorithm is less restrictive thanprevious de�nitions as they require that the hypotheses produced by the Occam algorithmbe in the concept class [BP92], or in a speci�ed hypotheses class [HKLW91]. We requireonly that the hypothesis class be polynomially evaluatable.



8 4. Weak Occam AlgorithmsHere we de�ne \weak Occam algorithms" whose hypothesis classes grow exponentiallyin m and show using the methods of Blumer et al. [BEHW87] that weak Occam algorithmslead to weak learning algorithms. Thus they can be used iteratively to build strong learningalgorithms [Sch90, Fre90].Algorithm A is a weak Occam algorithm for Ss Fs on SnXn if there exist polynomialsp1 and p2 such that the following holds for all n; s � 1, targets f 2 Fs, and x 2 Xmn form = p1(n; s):when given n, s, and the sample samf (x), Algorithm A outputs a hypothesis onXn that is consistent with the sample and is from a class Hn;s of cardinality atmost 2m(1� 1=p2(m)).Recall that the hypotheses output by a weak Occam algorithm using sample size m =p1(n; s) are called polynomially evaluatable if there is an algorithm that when given n, s,the representation of a hypothesis h 2 Hn;s and x 2 Xn, the algorithm can decide in timepolynomial in n and s and the total bitlength of its input whether x 2 h.A weak Occam algorithm is called polynomial if running time is polynomial in n and sand the total bitlength of its input and if its hypotheses are polynomially evaluatable.Clearly weak Occam algorithms can use much larger hypothesis classes than strongOccam algorithms (exponential as opposed to sub-linear inm). Using Fact 2.1, an equivalentde�nition of weak Occam algorithm is obtained by requiring jHn;sj � 2m�1=p2(m) instead ofjHn;sj � 2m(1� 1=p2(m)).Lemma 4.1: Let p be any polynomial, D be any distribution on X, sample size m be in N ,target f be any concept on X, and H be any hypothesis class on X of cardinality at most2m�1=p(m). If BAD = fx 2 Xm : 9h 2 H consistent with f on xand ErrD(f; h) � 12 � ln(2)4mp(m)g;then Prx2Dm [BAD] � 1� 11 + 2p(m)ln(2) :Proof: We repeatedly use the following for proving that some inequality a � b holds.We �nd an overestimate ~a of a (i.e. a � ~a) and an underestimate of ~b of b (i.e. ~b � b). Thenfor a � b to hold it su�ces to show that ~a � ~b.Let p0(m) = 4mp(m)= ln(2) and p00(m) = 1 + 2p(m)= ln(2). For each h 2 H, letBADh = fx 2 Xm : h is consistent with f on xand ErrD(f; h) � 12 � 1p0(m)g:Note that BAD = [h2HBADh. Clearly Prx2Dm [BADh] � (1�ErrD(f; h))m � (12+ 1p0(m))mand thus Prx2Dm [BAD] � 2m�1=p(m)�12 + 1p0(m)�m= 2�1=p2(m)�1 + 2p0(m)�m� 2�1=p(m)e2m=p0(m):



4. Weak Occam Algorithms 9To show Prx2Dm [BAD] � 1 � 1=p00(m), it su�ces to show that 2�1=p(m)e2m=p0(m) �1� 1=p00(m). Taking logarithms on both sides we get2mp0(m) � ln(2)p(m) � ln(1� 1p00(m)), 2mp0(m) � ln(1� 1p00(m)) � ln(2)p(m) :Since � ln(1� 1p00(m)) � 1=p00(m)1�1=p00(m) = 1p00(m)�1 , it su�ces to show that2mp0(m) + 1p00(m)� 1 � ln(2)p(m) :Recall that p0(m) = 4mp(m)= ln(2) and p00(m) = 1 + 2p(m)= ln(2). Therefore 2m=p0(m) =12 ln(2)=p(m) and 1=(p00(m) � 1) = 12 ln(2)=p(m), verifying the last inequality. Althoughthese choices su�ce, there are other choices for the polynomials p0 and p00.Theorem 4.2: If Algorithm A is a weak Occam algorithm for Ss Fs on SnXn then A isa weak learning algorithm for Ss Fs on SnXn. If A is a polynomial weak Occam algorithmthen A is a polynomial weak learning algorithm.Proof: The second part follows from the de�nitions and from the �rst part. Let p1 andp2 be the polynomials for the weak Occam algorithm A and Hn;s be its hypothesis classwhen the parameters are n and s. The proof applies Lemma 4.1 as follows: for any nand s, let D be any distribution on X = Xn, target f be any concept in Fs, sample sizem = p1(n; s), and H = Hn;s. When given a sample samf (x), where x 2 Xm, Algorithm Aoutputs a hypothesis from class H, a class which has cardinality at most 2m(1� 1=p2(m)).By Fact 2.1 the latter is equivalent to jHj � 2m�1=~p2(m), for some polynomial ~p2. Denotethe output hypothesis by A[samf (x)].De�ne BAD as in the Lemma 4.1 with polynomial p(m) set to ~p2(m). ThenPrx2Dm �ErrD(f; A[samf (x)])� 12 � ln(2)4m~p2(m)�� Prx2Dm [BAD] :From Lemma 4.1, Prx2Dm [BAD] is at most 1 � 1=(1 + 2~p2(m)= ln(2)) and A is a weaklearning algorithm.Note that a strong Occam algorithm produces hypotheses with smaller error when thesample size m is increased [BEHW87] and for some polynomial choice of m the strongOccam algorithm becomes a strong learning algorithm. This is not necessarily true for aweak Occam algorithm as the error (1=2�1=p2(m)) approaches 1=2 asm increases. Instead,the conversion algorithms of [Sch90, Fre90] use the weak Occam algorithm repeatedly fora number of di�erent samples of size p1(n; s), where p1(n; s) is the size of the sampleexpected by the Occam algorithm when the parameters are n and s. The samples aredrawn according to various �ltered distributions and the resulting hypotheses are combinedusing the majority function.It is interesting to investigate when an Occam style algorithm must be a weak learningalgorithm simply because of its sample size m (which is a function of n and s) and thesize of its hypothesis class (which is a function of n, s and m). By our de�nition of weak



10 4. Weak Occam AlgorithmsOccam algorithm and the proof of Theorem 4.2, sample size p1(n; s) and hypothesis classsize 2m�1=p2(n;s) (where p1 and p2 are polynomials) always assure weak learning. Note thatin this case the hypotheses can be encoded using m� 1=p2(n; s) bits, which is less thanm, the number of binary labels in the examples. Thus, for each n and s, a weak Occamalgorithm can be viewed as compressing samples of sizem = p1(n; s) down tom� 1=p2(n; s)bits.There are degenerate cases where sample size one and hypothesis class size two (i.e.\compressing" one label to one bit) does not lead to weak learning. Let the domain consistof two points and the concept class contain all four concepts on the two points (i.e. theVC dimension of the concept class is two). One Occam-style algorithm uses the hypothesisclass consisting of the all-zero and the all-one concept. After seeing a single example,the algorithm returns whichever hypothesis is consistent with that example. If the targetconcept is one of the concepts not in the hypothesis class and the distribution on the domainis the uniform distribution, then the error of the produced hypothesis is always exactly half,and this Occam-style algorithm is not a weak learning algorithm.We now present a second Occam-style algorithm which is not a weak learning algorithm.This algorithm outputs, from samples of size m = s, consistent hypotheses from a class ofsize 2m+1 � 2 which have error exactly 50%. Let Xn = f0; 1gn and Fs = ffv;b : v 2f0; 1gs; b 2 f0; 1gg, where fv;b(x) � v � x � b mod 2 for any x 2 f0; 1gs and 0 otherwise.Thus the learning problem is only interesting when n = s. Let 0 denote the all zero vector,and 1 the all one vector. The concepts f0;0 and f0;1 of Fs label all of f0; 1gs with 0 and 1,respectively. Call those two concepts of Fs the trivial concepts and the remaining conceptsof Fs the non-trivial concepts.Consider the Occam-style algorithm that when n 6= s outputs the trivial concept f0;0and if n = s, it seesm = n = s examples and forms its hypothesis as follows. If any of themexamples are labeled with 1 then it outputs any non-trivial concept in Fm that is consistentwith the sample. If all m examples are labeled with 0 then the Occam-style algorithm formsa matrix M from the examples (each example becomes a row of M). If M is singular thenit outputs a hypothesis fv;0 such that Mv � 0 and v 6= 0. If M is non-singular it outputsthe unique hypothesis fv;1 s.t. Mv � 1. Again v 6= 0.Note that in all cases the hypothesis output by this algorithm is consistent with thesample. If n = s = m, then the hypothesis is a nontrivial concept of Fm. Thus thehypothesis class used by the algorithm has size 2m+1 � 2. When the target concept is thetrivial concept f0;0 2 Fm then all m examples are labeled 0. Furthermore all non-trivialconcepts (including the hypothesis output by the algorithm) have error exactly 12 withrespect to target f0;0 and the uniform distribution on f0; 1gm � Xn. We conclude thatthe above Occam-style algorithm which uses a hypothesis class of size 2m+1� 2 when givensamples of size m is not a weak learning algorithm. (Note that jFmj = 2m+1 and the VCdimension10 of Fm is m+ 1, one larger than the number of examples.)Intuitively, \compressing" samples of size m to m bits should not be su�cient to showweak learning. A more speci�c conjecture is given in the �nal section of this paper.Note these results have certain negative implications. Since DFAs over a binary alphabetare not polynomially learnable under certain cryptographic assumptions [KV89, Kha92],there can't exist a polynomial weak Occam algorithm for this class. Thus, given thesame cryptographic assumptions, if there exists a polynomial algorithm that, on inputs10The m+ 1 bitvectors of f0; 1gm with at most one 1 are shattered by Fm.



5. Lookahead Prediction 11of m = p(n; s) many bitstrings of length at most n labelled by a DFA of at most s states,outputs a consistent hypothesis from a polynomially evaluatable classHn;s, then the fraction1=(m� lgjHn;sj) is not polynomial.5 Lookahead PredictionThe last section has analyzed weak Occam learning algorithms. In the next severalsections we develop and analyze a weak prediction algorithm. The presentation of this andthe next section is simpli�ed by omitting the parameters s and n on the concept class andinstance space. We will return to the parameterized case when considering the running timeof our algorithm in Section 7.Recall that a prediction algorithm A receives three inputs: a sample, the instance whoselabel is to be predicted, and a random number. Thus algorithm A can be viewed as afunction, A : (X � f0; 1g)� � X � [0; 1] ! f0; 1g. One would expect that a predictionalgorithm would be able to perform better if it knew ahead of time which instances it willbe asked to predict on.A lookahead prediction algorithm, L, receives a sequence of (unlabeled) instance as anadditional input. Formally, L : (X � f0; 1g)� � X � X� � [0; 1] ! f0; 1g. The sequenceof additional instances contains those instances where the algorithm will be asked forpredictions in the future.We now extend our M() notation for the probability of a mistake to handle lookaheadprediction algorithms. Recall that for a prediction algorithm A, M(A; f;x) denotes theprobability that algorithm A incorrectly predicts the label of xjxj when given the samplesamf (x<jxj).For a lookahead prediction algorithm L, we de�ne M(L; f;x; t) (for 1 � t � jxj) as theprobability that L incorrectly predicts the label of xt when the target concept is f and Lis given the labels of each xi for 1 < i < t, instance xt, and the additional instances xj fort < j � jxj. Formally,M(L; f;x; t)def=Er2U[0;1] hL(samf (x<t); xt;x>t; r) 6= f(xt)i :The natural use of lookahead algorithms is to predict on each of the instances of x inturn. For a given x 2 Xm and hidden target f 2 F , the lookahead algorithm is used asfollows.for t := 1 to m dopick r 2 U[0;1]use L(samf (x<t); xt;x>t; r) as the prediction of f(xt)receive feedback f(xt)Note that when predicting the label of xt, the lookahead algorithm is given only thelabels of the previous instances.Any lookahead prediction algorithm can be trivially used as a prediction algorithm bysimply supplying it with the empty sequence of additional instances. Since our goal is aweak prediction algorithm, we want to minimize the mistake probability on the last instanceof the sequence x. If each instance in x is independently drawn from the same distribution(as in the de�nitions of weak learning and weak prediction), then all permutations of a setof instances are equally likely. Thus it su�ces to bound the probability of a mistake on thelast instance of a random permutation of x (this was used extensively in [HLW]).



12 5. Lookahead PredictionLemma 5.1: Let X be any domain, D be any distribution on X, m 2 N, and R be arandom variable on Xm. ThenEx2Dm [R(x)] = Ex2Dm hEy2U(x) [R(x)]i :Lemma 9.2 shows that several good lookahead prediction algorithms have a mistakeprobability of 12 on the last instance of a random permutation of some x. Therefore thetrivial use of lookahead prediction algorithms as predictors does not appear to yield weakprediction algorithms. We now present a more sophisticated way to construct predictionalgorithms from lookahead algorithms.De�nition 5.2 (Lookahead Conversion, eL): For each lookahead prediction algorithmL, the Lookahead Conversion of L is the prediction algorithm eL described as follows:Input: A sample samf (x<jxj) for some x<jxj 2 X� and unknown f 2 F ,instance xjxj 2 X, and a random number r 2 U[0;1].Computation: Split r into a random t chosen uniformly from f1; � � � ; jxjg andan independent r0 chosen from U[0;1]. CallL(samf (x<t); xjxj; hxt+1; xt+2; � � � ; xjxj�1; xti; r0):Output: The prediction returned by lookahead algorithm L.In other words, the Lookahead Conversion of L, Algorithm eL, creates a new x0 byswapping xjxj with a randomly chosen xt and predicts as L does on the tth instance of thisnew x0 (because of the swap, x0t = xjxj).The following theorem bounds the probability that the Lookahead Conversion incorrectlypredicts the label of the last instance of a random permutation of x by (1= jxj) times theexpected total number of mistakes made by the lookahead algorithm when it predicts oneach instance of x in turn.Theorem 5.3: Let L be any lookahead prediction algorithm for concept class F on domainX, and eL be the Lookahead Conversion of L. For any sequence of instances x 2 X+ andtarget f 2 F , Ey2U(x) hM(eL; f;y)i = 1jxjEy2U(x)24 jxjXt=1M(L; f;y; t)35 :Proof: Recall that U(x) is the uniform distribution over the permutations of x. For anypermutation � of (1; � � � ; jxj) and sequence y of jxj instances, let �(y) = hy�(1); � � � ; y�(jxj)i.Note that Ey2U(x) [M(L; f;y; t)] = Ey2U(x) [M(L; f; �(y); t)] :Let �t be the permutation h1; � � � ; t� 1; jxj; t+1; � � � ; jxj� 1; ti. That is �t simply swaps jxjand t.It follows from the de�nition of eL, thatEy2U(x) hM(eL; f;y)i = 1jxj jxjXt=1Ey2U(x) [M(L; f; �t(y); t)]= 1jxj jxjXt=1Ey2U(x) [M(L; f;y; t)]= 1jxjEy2U(x)24 jxjXt=1M(L; f;y; t)35 :



6. The Query Lookahead Prediction Algorithm 13Theorem 5.3 shows that any good lookahead algorithm can be converted into a goodprediction algorithm (when each permutation of the example sequence is equally likely).Lemma 5.1 can be combined with Theorem 5.3, giving us the following corollary.Corollary 5.4: Let L be any lookahead prediction algorithm for concept class F on domainX, D be a distribution on X, m 2 N, and eL be the Lookahead Conversion of L. For anyf 2 F : Ex2Dm hM(eL; f;x)i = 1mEx2Dm " mXt=1M(L; f;x; t)# :In the next section we present and analyze a surprisingly simple general purpose looka-head prediction algorithm.6 The Query Lookahead Prediction AlgorithmThis section presents a lookahead algorithm which makes a single query to a consistencyoracle (de�ned below). In many situations the performance of this lookahead algorithm isgood enough so that the transformation of the preceding section leads to a weak learningalgorithm.De�nition 6.1 (Consistency Oracle): A consistency oracle for F on X is given asample11 S 2 sam�(x) where x 2 X� and answers \yes" if S 2 samF (x) and \no" oth-erwise.Note that the consistency oracle gives a yes/no answer rather than returning an f 2 F .De�nition 6.2 (Query Lookahead Prediction Algorithm Q): Let F be the conceptclass and X be the domain. The (one) Query Lookahead Prediction Algorithm Q works asfollows:Input: A sample samf (x<t) for some x<t 2 X t�1 and unknown f 2 F , aninstance xt 2 X, a sequence of future instances x>t, and a random numberr 2 U[0;1]. Algorithm Q also uses a consistency oracle for F on X.Computation: Extract jxj � t+ 1 independent random bits, bt; bt+ 1; � � � ; bjxj,from r and query the oracle on the sample:hsamf (x<t); (xt; bt); (xt+1; bt+1); � � � ; (xjxj; bjxj)i:Output: If the oracle answers \yes" then predict that the label of xt is bt. Ifthe oracle answers \no" then predict that the label of xt is bt.The Query Lookahead Prediction Algorithm is very simple. It randomly extends thesample to include the other instances. If the extended sample is consistent with some f 2 Fit predicts with the same label attached to the query instance in the extended sample. If nof 2 F is consistent with the extended sample then the algorithm predicts with the oppositelabel.De�nition 6.3 (Quantity NF(S;x)): For concept class F over X, x 2 X�, 0 � t � jxjand a sample S 2 sam�(x�t), let F 0 = ff 2 F : f is consistent with Sg. We de�ne\NF (S;x)" to be the number of samples in samF 0(x).11Recall that samF (x) is the set of all samf (x) where f 2 F and that sam�(x) is the set of all samg(x)where g is one of the 2jxj ways of labeling x.



14 6. The Query Lookahead Prediction AlgorithmIn other words, NF(S;x) is the number of ways functions in F can label x>t whileremaining consistent with the (sub-) sample S. Since every function is consistent with theempty sample �, we haveNF(�;x) = jsamF (x)j. If S is a sample in sam�(x�t)�samF(x�t),then no function in F is consistent with S and NF(S;x) = 0.The single query done by the Query Lookahead Prediction Algorithm is attempt-ing to determine which of NF(hsamf(x<t); (xt; 0)i;x) and NF(hsamf (x<t); (xt; 1)i;x) islarger. When bit bt = 1, the probability of Q(samf (x<t); xt;x>t; r) predicting 1 equalsNF(hsamf (x<t); (xt; 1)i;x)=2jxj�t. When bt = 0, the probability thatQ(samf (x<t); xt;x>t; r)predicts 1 is 1� (NF(hsamf (x<t); (xt; 0)i;x)=2jxj�t). Since bt is equally likely to be either0 or 1, the probability that Q(samf (x<t); xt;x>t; r) predicts 1 is12 + NF(hsamf (x<t); (xt; 1)i;x)�NF(hsamf (x<t); (xt; 0)i;x)2jxj�t+1 : (6.1)Note that this probability lies in [0; 1] as both values NF(hsamf (x<t); (xt; 1)i;x) andNF(hsamf (x<t); (xt; 0)i;x) are between 0 and 2jxj�t.The following lemma bounds the probability that Algorithm Q predicts incorrectly onthe tth instance.Lemma 6.4: For any class F on X, target f 2 F , instance sequence x 2 X+, and1 � t � jxj, if the Query Lookahead Prediction Algorithm Q uses a consistency oraclefor F then M(Q; f;x; t) = 12 + NF(hsamf (x<t); (xt; f(xt))i;x)2jxj�t+1� NF(hsamf(x<t); (xt; f(xt))i;x)2jxj�t+1 :Proof: Using Equation 6.1, the probability that Q(samf (x<t); xt;x>t; r) predicts f(xt)on xt is 12 + NF(hsamf (x<t); (xt; f(xt))i;x)2jxj�t+1 � NF(hsamf(x<t); (xt; f(xt))i;x)2jxj�t+1 :Thus the probability (and expectation) that algorithm Q makes a mistake by predictingf(xt) is 12 � NF (hsamf (x<t); (xt; f(xt))i;x)2jxj�t+1 + NF(hsamf (x<t); (xt; f(xt))i;x)2jxj�t+1as claimed.We are now ready to present the main theorem of this section.Theorem 6.5: For class F on X, f 2 F , and x 2 X�, if the Query Lookahead PredictionAlgorithm Q uses a consistency oracle for F , thenjxjXt=1M(Q; f;x; t) = jxj2 + jsamF (x)j2jxj � 1:In particular, if jsamF(x)j � 2jxj��, then Pjxjt=1M(Q; f;x; t)� jxj2 + 2�� � 1.



6. The Query Lookahead Prediction Algorithm 15Proof: The Theorem trivially holds when x = �. Otherwise, for 1 � t � jxj we de�neut = NF(hsamf (x<t); (xt; f(xt))i;x)2jxj�tand ut = NF(hsamf (x<t); (xt; f(xt))i;x)2jxj�t :Clearly ut = 12(ut+1 + ut+1) for 1 � t < jxj. Using this notation and Lemma 6.4,jxjXt=1M(Q; f;x; t) = jxj2 + 12 jxjXt=1(ut � ut): (6:2)We �rst show by induction on m thatmXt=1(ut � ut) = mXt=1 ut2t�1 + ( 12m�1 � 2)um (6:3)for each 1 � m � jxj. The base case m = 1 is trivial and if 1 < m � jxj then by inductionmXt=1(ut � ut) = m�1Xt=1 ut2t�1 + ( 12m�2 � 2)um�1 + um � um= m�1Xt=1 ut2t�1 + ( 12m�2 � 2)12(um + um) + um � um= mXt=1 ut2t�1 + ( 12m�1 � 2)um:Using the de�nition of ut we see thatjxjXt=1 ut2t�1 = 22jxj jxjXt=1NF(hsamf (x<t); (xt; f(xt))i;x)= 22jxj (jsamF(x)j � 1)as the sum counts every sample in samF (x) except for samf(x). Plugging this and the factthat ujxj = 1 into Equation 6.3 shows thatjxjXt=1(ut � ut) = 2(jsamF(x)j � 1)2jxj + ( 12jxj�1 � 2)= 2 jsamF (x)j2jxj � 2:Combining this with Equation 6.2 gives the �rst equality of the theorem.Corollary 6.6: Let F be a concept class on X, target f be in F , and x 2 X+. IfjsamF(x)j � 2jxj��, the Query Lookahead Prediction Algorithm Q uses a consistency oraclefor F and Prediction Algorithm eQ is the Lookahead Conversion of Q thenEy2U(x) hM( eQ; f;y)i = 12 � 1� 2��jxj :For � > 0 the above expectation is at least 12 � � ln 2jxj and for � 2 [0; 1] the expectation is atmost 12 � �2jxj .



16 7. Polynomially E�cient Weak LearningProof: The corollary follows from Theorem 6.5, Theorem 5.3, and Fact 2.1.Note that by Fact 2.1 jsamF(x)j � 2jxj(1� ln(2)�) implies jsamF (x)j � 2jxj��.7 Polynomially E�cient Weak LearningWe now return to the setting where F = Ss Fs is a parameterized concept class onthe parameterized domain X = SnXn. In this setting, algorithms and oracles are given nand s as additional parameters. We call an algorithm (or oracle) polynomial if its resourcerequirements12 are bounded by a polynomial in n, s, and the total bit length of the instancesin x.De�nition 7.1 (Polynomial Consistency Oracle): Algorithm O is a polynomial con-sistency oracle for F = Ss Fs on X = SnXn if O maps N�N� (X�f0; 1g)� to fyes; nog,and there is a polynomial p such that for each n; s 2 N and S 2 (Xn � f0; 1g)�:1. Algorithm O(n; s; S) answers \yes" if and only if S is consistent with some f 2 Fs,and2. The computation time of O(n; s; S) is bounded by p(n; s; l) where l is the total bitlength of the instances in S.This de�nition requires that the polynomial consistency oracle be correct on samplesof all lengths. In fact, our algorithm can get by with a weaker oracle. Calls to O(n; s; S)need answer correctly only when jSj = 2p(n; s) for some polynomial p(n; s) which is alwaysat least the VC dimension of Fs on Xn. Even weaker oracles with \one-sided error" wereconsidered in [HW92b] and are discussed in Section 10.We now consider the Lookahead Transform, eQ, of the parameterized Query LookaheadPrediction Algorithm. When F = Ss Fs on X = SnXn is learnable at all and has apolynomial consistency oracle then Prediction Algorithm eQ is a polynomial weak learningalgorithm. The following is description of the parameterized Prediction Algorithm eQ.De�nition 7.2 (Prediction Algorithm eQ): Prediction Algorithm eQ for F = Ss Fs onX = SnXn works as follows:Input: Parameters n and s; a sample samf (x<m) for some m 2 N, unknownf 2 Fs, and x<m 2 (Xn)m�1; the instance xm 2 Xn; and a random numberr 2 U[0;1]. The algorithm also uses a polynomial consistency oracle O forF on X.Computation: Extract from r a random t chosen uniformly from f1; : : : ; mgand an additional m� t+ 1 random bits, bt; bt+1; � � � ; bm, each chosen uni-formly from f0; 1g. Call O(n; s; hsamf (x<t); (xm; bm); (xt+1; bt+1); � � � ; (xt; bt)i).Output: If the oracle answers \yes" then predict that the label of xm is bm. Ifthe oracle answers \no" then predict that the label of xm is bm.Theorem 7.3: If F = Ss Fs on X = SnXn is learnable and the oracle O for F on X isa polynomial consistency oracle then eQ is a polynomial weak prediction algorithm.12The main resource we are interested in is running time in some standard computational model such asthe RAM [AHU74]. All of our algorithms can be implemented so that the space used and number of randombits required is bounded by the running time.



8. Sample Complexity of Weak Learning 17Proof: If F = Ss Fs on X = SnXn is learnable then the VC dimension of Fs on Xnis upper-bounded by some polynomial p(n; s) [BEHW89]. By Sauer's Lemma [Sau72], forany m and x 2 (Xn)m: jsamFs(x)j � Pp(n;s)i=0 �mi � � mp(n;s) + 1. Let m = 2p(n; s) so thatPp(n;s)i=0 �mi � = 2m�1, and jsamFs(x)j � 2m�1.We can now apply Theorem 6.5 with concept class Fs on domain Xn to get for all f 2 Fsand x 2 (Xn)m: mXt=1M(Q; f;x; t) = m2 + jsamFs(x)j2m � 1� m2 � 12 :Using Corollary 5.4 we see that:Ex2Dm hM( eQ; f;x)i = 1mEx2Dm " mXt=1M(Q; f;x; t)#� 12 � 12m:Thus for p1(n; s) = 2p(n; s) and p2(m) = 2m, Prediction Algorithm eQ is weak predictionalgorithm for F on X .The value t and the random bits can be extracted from r in O(m) time using realarithmetic.13 The running time of polynomial consistency oracle O is by de�nition boundedby some p0(n; s; l) where l is the bit length of the instances in the sample. Thus there isa p3(n; s; l) bounding the running time of eQ, and Prediction Algorithm eQ is a polynomialweak prediction algorithm.8 Sample Complexity of Weak LearningIn the proof of Theorem 7.3 we used a sample size m = 2p(n; s), where p(n; s) is an upperbound on the VC dimension of Fs onXn. Smaller sample sizes also su�ce. Algorithm eQ is aweak prediction algorithm provided that the sample size m is large enough so that, for somepolynomial q, Pp(n;s)i=0 �mi � � 2m�(1=q(m)). By Fact 2.1 this constraint on m is equivalent to:there exists a polynomial q0 such that Pp(n;s)i=0 �mi � � 2m(1� 1q0(m)).The goal of this section is to determine using our methods the smallest sample size (asa function of the VC dimension of the concept class) that implies weak learning. Since herewe are not interested in computational resources we omit the parameterization during thissection. Even though the results in Goldman et al. [GKS90] suggest the sample complexityfor weak learning is not well correlated with the VC dimension, the following theorem andcorollary gives the lowest sample size known to us (2d� O(pd log d)) for which there is ageneral weak learning algorithm.Theorem 8.1: Let d be the VC dimension of some concept class F on X and c be aconstant between 2=pd lgd and pd= lgd. If the sample size m = 2d+ 2� cpd lg d then forany x 2 Xm, Ey2U(x) hM( eQ; f;y)i � 12 � 12mc2+2 :13When integer arithmetic is used, the uniform distribution on t can be approximated to within 1=2musing m random bits.



18 8. Sample Complexity of Weak LearningProof: The constraint on c enforces the conditions that d+ 2 � m � 2d.Let q = mc2+1. We will show thatjsamF (x)j � 2m�(1=q); (8:1)from which we can apply Corollary 6.6 givingEy2U(x) hM( eQ; f;y)i � 12 � 12mq ;as desired.We will show Inequality 8.1 by giving a sequence of inequalities, each of which impliesthe previous inequality in the sequence. The �rst inequality is Inequality 8.1, and the lastinequality in the sequence will follow from the conditions of the theorem.By Fact 2.1 jsamF (x)j � 2m(1� ln 2q )implies Inequality 8.1. From Sauer's Lemma [Sau72], for any m and x 2 (Xn)m:jsamF(x)j � dXi=0  mi != 2m � mXi=d+1 mi !Let � = d+1m , so that 12 � � � 1. We use the following approximation to the binomialcoe�cient � m�m� (see [MS77], Lemma 7, page 309):mXi=d+1 mi ! �  m�m! � 2mH2(�)p8m�(1� �)where H2(�) = � lg 1� + (1� �) lg 11�� . ThusjsamF (x)j � 2m � 2mH2(�)p8m�(1� �)and it su�ces to show that 2m � 2mH2(�)p8m�(1��) � 2m(1� ln 2q ) (8.2)() qln 2 2mH2(�)p8m�(1��) � 2m: (8.3)Note that since 12 � � � 1, we have �(1� �) � 1=4, and it su�ces to showqln 2 2mH2(�)p2m � 2m;and since 1=(p2 ln 2) � 1, q2mH2(�)pm � 2m;



8. Sample Complexity of Weak Learning 19su�ces.Taking logs of both sides gives us thatlg(q=pm) +mH2(�) � msu�ces. Since H2(�) � 4�(1� �) for � 2 [0; 1], it su�ces to showlg(q=pm) + 4m�(1� �) � m() 4�(1� �) � 1� 1m lg(q=pm)() 4�(1� �) � 1� 12m lg(q2=m):Note that 4�(1� �) � 1 � x if and only if 12 � 12px � � � 12 + 12px. Therefore (usingx = 12m lg(q2=m)), since � � 12 , it su�ces to show that� � 12 + 12r 12m lg(q2=m) = 12 +r 18m lg(q2=m):Substituting d+1m for � gives us that this is equivalent tod+ 1m � 12 +r 18m lg(q2=m)or d+ 1 � m2 +rm8 lg(q2=m):Since m � 2d+ 2� cpd lgd, and q = mc2+1,m2 +rm8 lg(q2=m) � 2d+ 2� cpd lgd2 +rm8 lgm2c2+1� d+ 1� c2pd lg d+rm8 lgm2c2+1� d+ 1� c2pd lg d+sm2c28 lgm� d+ 1� c2pd lg d+ c2pd lgd� d+ 1Thus d+ 1 � m2 +qm8 lg(q2=2m), completing the proof.Corollary 8.2: Let d be the VC dimension of some concept class F on X. Then there isa weak learning algorithm for F using sample size 2d� O(pd log d).Proof: This follows from Theorem 8.1 and Lemma 5.1



20 9. Bounds on Gibbs and Bayesian prediction9 Bounds on Gibbs and Bayesian predictionIn this section we describe and compare a number of prediction algorithms related tothe query prediction algorithm presented in the previous sections. Some of these algorithmswill have better performance than the Query Lookahead Prediction Algorithm for sparserconcept classes, i.e. when jsamF (x)j = 2jxj�� for � � 1. Unfortunately, these algorithmsare generally not polynomial.In this section we take a Bayesian view point and assume that there is a prior probabilitydistribution P on the concept class F . For each f 2 F , P(f) represents the extent towhich the learning algorithm initially (before seeing any examples) believes that f is thetarget function to be learned. After seeing a number of examples some concepts might beinconsistent with the past examples and the class of possible targets shrinks. The volumewith respect to P of sample S is written V P(S) and denotes Prf2P [f is consistent with S].Note that the empty sample has unit volume and that the volume of a sample depends onlyon the examples in the sample and not the order in which they appear. Furthermore, forany sample S and x 2 X , we have V P(S) = V P(S; (x; 0))+ V P(S; (x; 1)).De�nition 9.1 (Volume Prediction Algorithm): Algorithm A is a volume predictionalgorithm for a prior P on F if there is a function g such that for all x 2 X+ the probabilitythat A(samf (x<jxj); xjxj; r) predicts 1 isg(V P(hsamf(x<jxj); (xjxj; 1)i); VP(hsamf(x<jxj); (xjxj; 0)i))and the probability that A predicts 0 isg(V P(hsamf (x<jxj); (xjxj; 0)i); VP(hsamf (x<jxj); (xjxj; 1)i)):Since every prediction algorithm predicts either 0 or 1, any g used in the above de�nitionhas the properties g(�; � 0) = 1� g(� 0; �) and g(�; �) = 12 . Although the function g used bya volume prediction algorithm may be simple, computing the volume of a sample may notbe computationally feasible.Here we consider three volume prediction algorithms. Algorithm GibbsP (Gibbs Algo-rithm) is well known [HKS91, HO91, GT90, HS90, STS90] and can be viewed as predictingwith a randomly chosen consistent concept from the class where the consistent conceptsare weighted according to the prior P . Algorithm GP is a special case of the aggregatingstrategy introduced by Vovk [Vov90], and was used as the basis for a polynomial weak pre-diction algorithm [HW92b]. The classical Bayes Prediction Algorithm, BayesP , is knownto be optimal when the target is drawn according to the prior. For any F on X , prior Pon F , prediction algorithm A, m 2 N, and x 2 Xm:Ef2P [M(A; f;x)] � Ef2P hM(BayesP ; f;x)i :Figure 9.1 gives the prediction rules and Figure 9.2 contains a graphical comparison ofthese three prediction algorithms. In Figures 9.1 and 9.2, �1 denotesV P(hsamf (x<m); (xm; 1)i)V P(samf (x<m))and �0 = 1� �1. SinceV P(hsamf(x<m); (xm; 0)i) + V P(hsamf (x<m); (xm; 1)i) = V P(samf (x<m))



9. Bounds on Gibbs and Bayesian prediction 21Algorithm probability prediction = 1 probability prediction = 0GibbsP �1 �0GP � lg �0� lg �0 � lg �1 � lg �1� lg �0 � lg �1BayesP 1 if �1 > 1212 if �1 = 120 if �1 < 12 1 if �0 > 1212 if �0 = 120 if �0 < 12Figure 9.1: Comparison of three prediction algorithms.
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Figure 9.2: The probability that the Algorithms GibbsP , GP , and BayesP predict1 as a function of �1=(�0 + �1).it is easy to see that �0 = V P(hsamf (x<m);(xm;0)i)V P(samf (x<m)) and the de�nitions of �1 and �0 aresymmetric.The information gain (or amount of surprise) in the last example of a sample hS; ei iscommonly de�ned as � lg(V P(hS; ei)=VP(S)). Using our � notation, the information gainon a trial is � lg �1 if the instance is labeled \1" and � lg �0 otherwise. Algorithm GPpredicts with the relative amount of information gained by the two possible outcomes, asshown in Figure 9.1 (See Appendix A for a more detailed treatment). Therefore we callAlgorithm GP the Information Gain Prediction Algorithm.In this paper our goal is to construct weak prediction algorithms. This requires thatwe minimize the worst case (over all possible targets f 2 F) probability of an incorrectpredication on the last instance. Bayes Algorithm minimizes the average case rather thanthe worst case. As the following lemma shows, all three algorithms can have a large (worstcase) probability of a mistake on the last instance of x, even when jFj � 2jxj.



22 9. Bounds on Gibbs and Bayesian predictionLemma 9.2: For every m there is a concept class F of m + 1 concepts on domain X,f 2 F , and x 2 Xm such that for any volume prediction algorithm AP using the uniformprior on F : Ey2U(x) hM(AP ; f;y)i = 12 :Proof: Let f1; � � � ; mg be the domain and F = ff0; � � � ; fmg where fi(j) = 1 if and onlyif i = j (for 0 � i � m and 1 � j � m). Thus f0 is the constant function 0 and each otherfi has the value 1 on exactly one instance. Let P be uniform on F and x = h1; � � � ; mi.Then for any permutation y 2 U(x),V P(samf0(y�m))V P(samf0(y<m)) = 12and thus when f0 is the target, any volume prediction algorithm incorrectly predicts thatthe label of ym is 1 with probability 12 .Note that the Bayes Algorithm makes at most one prediction error on the whole sequencey from the proof of Lemma 9.2. For Algorithms GibbsP and GP , the errors are also likelyto be concentrated at the end of the sequence. We use a simple trick to circumvent thispotential for volume algorithms to predict incorrectly on the last instance.We associate a special prior with the lookahead versions of volume prediction algorithms.Recall that a lookahead prediction algorithm is given not only some sequence of examples,samf(x<t), and the instance to predict on, xt, but also a sequence of unlabeled instances,x>t (representing future instances on which the algorithm will be asked to predict). Welet our prior depend on x, the entire sequence of instances presented to the lookaheadalgorithm. Since our goal is good worst-case prediction, it is natural to weight each labelingof x consistent with a target in F equally. Thus we use the uniform prior Px on samF (x)where each volume V Px(S) for S 2 samF (x) is 1jsamF(x)j . We then apply the LookaheadConversion to these lookahead algorithms with the special prior Px to obtain predictionalgorithms.We use gBayes to denote the algorithm that result from applying the Lookahead Con-version to the Bayes Algorithm. Thus Prediction Algorithm gBayes is given a samplesamf(x<jxj), an instance xjxj to predict on, and a random r from U[0;1]. Algorithm gBayes�rst constructs the prior Px giving each sample in samF (x) the same probability. Algo-rithm gBayes then splits r into a t chosen uniformly from f1; � � � ; jxjg and an r0 from U[0;1].Algorithm gBayes obtains its prediction by calling BayesPx(samf(x<t); xjxj; r0).Prediction Algorithms gGibbs and eG are the Gibbs and Information Gain Algorithmstransformed in the same way. Note that these transformed algorithms \manufacture" theirown \priors" from the instances rather than obtaining a prior from the outside world.We will apply Theorem 5.3 to bound the probability that the lookahead conversionspredict incorrectly. This requires that we obtain bounds on the expected total number ofmistakes made by the three lookahead algorithms. For any x 2 X�, target f 2 F , and priorP on F , the following bounds are known:jxjXt=1M(BayesP ; f;x) � � lgV P(samf (x)) (9.1)jxjXt=1M(GP ; f;x) � �12 lgV P(samf(x)) (9.2)



9. Bounds on Gibbs and Bayesian prediction 23jxjXt=1M(GibbsP ; f;x) � �(ln 2) lgV P(samf(x)) (9.3)The bounds on BayesP and GibbsP were shown in [HKS91] and the bound on GPappears in [Vov90] and is presented in Appendix A. It is easy to show that the constantsin these bounds cannot be improved unless the form of the bounds are changed. Considera single instance x (i.e. m = 1) and a prior P that is concentrated on only 2 functions, fand g, where f(x) 6= g(x).For the Bayes example, setP(f) = 12 + �; and P(g) = 12 � �so that M(BayesP ; g; x) = 1 and � lg V P(samg(x)) = � lg(12 � �):For Gibbs, set P(f) = �; and P(g) = 1� �so that M(GibbsP ; g; x) = � and � lg V P(samg(x)) = � lg(1� �):By letting � go to zero in both examples it can be seen that the constant factors of 1 forBayes in Equation 9.1 and ln(2) for Gibbs in Equations 9.3 cannot be improved.For the Information Gain Prediction algorithm, when P(f) = P(g) = 12 , the mistakeprobability M(GP; f;x) is 12 = �12 lg V P(samf (x)).These examples for BayesP and GibbsP rely on choosing a particular target. Betterbounds can be shown in the average case setting, where the target is chosen at randomusing the same distribution as the prior. For this average case setting, the constant of �12has also been obtained for the Gibbs and Bayes Algorithms [HKS91]. More precisely, theyshow that for any x 2 X�:Ef2P 24 jxjXt=1M(BayesP ; f;x)35 � Ef2P 24 jxjXt=1M(GibbsP ; f;x)35 � �12Ef2P hlg V P(samf (x))i :The bounds in Equations 9.1, 9.2, and 9.3 are unsatisfactory when the volume is small.When V P(samf(x)) < 1=4jxj, all three mistake bounds are greater than jxj, the numbertrials. Since the number of trials is a trivial bound on the number of mistakes made, theupper bounds are vacuous in this case.We now present an improved worst case bound onPjxjt=1M(GibbsP ; f;x) that is at mostjxj even when V P(samf (x)) is arbitrarily small.Theorem 9.3: For any instance sequence x 2 X+, target f 2 F , and prior P on F ,jxjXt=1M(GibbsP ; f;x�t) � jxj (1� (V P(samf (x)))1=jxj):



24 9. Bounds on Gibbs and Bayesian predictionProof: Let �t = V P(samf(x�t))=V P(samf (x<t)) for each 1 � t � jxj.If follows from the de�nition of GibbsP that M(GibbsP ; f;x�t) = 1� �t. Furthermore,jxjYt=1 �t = jxjYt=1 V P(samf (x�t))V P(samf (x<t)) = V P(samf(x)):Thus we are bounding the sumjxjXt=1M(GibbsP ; f;x�t) = jxjXt=1(1� �t) = jxj �Xt=1 �tsubject to the constraint that Qjxjt=1 �t = V P(samf(x)): The theorem follows from the factthat the sum of the mistake probabilities is maximized when each �t = (V P(samf (x)))1=jxj.Note that as V P(samf (x)) ! 0 the bound of Theorem 9.3 goes to jxj, whereas thebound in Equation 9.3 goes to1. Both bounds show that zero mistakes are expected whenV P(samf (x)) = 1. In fact, for any z 2 [0; 1] and m � 1, � ln z � m(1 � z1=m). Thusthe bound for GibbsP in Theorem 9.3 is always smaller than the bound of Equation 9.3.Furthermore, the same argument used to show that the constant in Equation 9.3 was tightshows that the constant factor of one in the bound of Theorem 9.3 can not be improved.We are now ready to state bounds on the performance of the converted PredictionAlgorithms gBayes, gGibbs, and eG.Theorem 9.4: Let F be a concept class on X. For all instance sequences x 2 X+ wherejsamF (x)j = 2jxj��, and targets f 2 F ,Ey2U(x) hM( gBayes; f;y)i � 1� �jxjEy2U(x) hM( eG; f;y)i � 12 � �2 jxjEy2U(x) hM( gGibbs; f;y)i � 1� 2 �jxj�1 � ln(2)� � ln(2)jxjProof: We �rst note that under the manufactured priors,V Px(samf (x)) = 1jsamF (x)j = 12jxj�� :Plugging this into Equations 9.1, 9.2, and 9.3, and the bound of Theorem 9.3 gives us:jxjXt=1M(BayesPx ; f;x) � jxj � �jxjXt=1M(GPx; f;x) � 12(jxj � �)jxjXt=1M(GibbsPx ; f;x) � jxj (1� 2 �jxj�1) � (ln 2)(jxj � �); (Fact 2.1).
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Figure 9.3: The bounds of Theorem 9.4 and Corollary 6.6 as a function of � whenjxj = 30.Now we can apply Theorem 5.3 to each of the above inequalities to obtain:Ey2U(x) hM( gBayes; f;y)i � 1� �jxjEy2U(x) hM( eG; f;y)i � 12 � �2 jxjEy2U(x) hM( gGibbs; f;y)i � 1� 2 �jxj�1 � ln(2)� � ln(2)jxjas desired.In Figure 9.3 we graph the above bounds for Algorithms gBayes, eG, and gGibbs togetherwith the bound for eQ given in Corollary 6.6:Ey2U(x) hM( eQ; f;y)i � 12 � 1jxj + 2��jxj :In contrast to Algorithm eQ, the other three algorithms ( gBayes, eG, and gGibbs) are notpolynomial since the uniform prior Px on samF(x) is not e�ciently computable. However,in our previous paper [HW92b] a polynomial approximation to eG was given. The numberof consistency oracle queries used by this approximation to eG is 
(2�0�1�0 ) where �0 is anunderestimate of � which must be supplied to the algorithm.The simple Algorithm eQ presented here which uses only one query works for all �,however its probability of predicting wrong on the last instance is never more than 1jxjbelow 12 .The optimal algorithm for minimizing the worst case (over targets f 2 F) probabilityof predicting wrong on the last instance of a random permutation of x is the 1-InclusionGraph Algorithm [HLW], here denoted by \1-Inc." For prediction algorithm A and anyx 2 X+,
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Figure 9.4: An expanded plot of part of Figure 9.3 showing the bounds of Theo-rem 9.4 and Corollary 6.6 as a function of � when jxj = 30.supf2FEy2U(x) [M(A; f;y)] � supf2FEy2U(x) [M(1-Inc; f;y)] = maxdensF(x)jxj (9:4)where maxdensF (x) is the maximum density (number of edges over number of vertices) ofany subgraph of the 1-inclusion graph with respect to F and x. In Haussler, Littlestone,and Warmuth [HLW] it is shown that maxdensF(x) is upper bounded by the Vapnik-Chervonenkis dimension of the class F [VC71, BEHW89]. The main drawback of the1-Inclusion Graph Prediction Algorithm is that it is not generally e�cient as it solves 
owproblems on graphs containing jsamF (x)j vertices.Since for any prediction algorithm (and in particular Algorithms eQ and eG) the prob-ability of predicting wrong on the last instance of a random permutation of any x 2 X+is at least maxdensF (x)= jxj (Inequality 9.4) we get two additional upper bounds onmaxdensF (x) from Theorem 9.4 and Corollary 6.6.Corollary 9.5: For any concept class F on X of VC dimension d, and any x 2 X+,maxdensF(x) � minfd; 12 lg jsamF (x)j ; 12 + jsamF (x)j2jxj � 1jxjg:In Appendix B we give the de�nition of the 1-inclusion graph, its density, and aninductive proof that maxdensF (x) � 12 lg jsamF(x)j. The inductive proof in the appendixis direct, and does not use the performance of Algorithm eG.The bound of 12 lg jsamF (x)j from Algorithm eG is better than the bound of d whenjxj < 2d+ 1. Also, as hinted in Figure 9.4, Algorithm eQ is better than the bounds provenfor Algorithm eG when � 2 (0; 1). Thus the last bound of Corollary 9.5, 12 + jsamF(x)j2jxj � 1jxj ,is the best of the three when samF (x) � 2jxj�1. This indicates that it may be possible toprove even better upper bounds on maxdensF (x).



10. A Characterization of Weak Learning Using Consistency Oracles 27Prob. of predicting 1Alg. n1 = 0 n1 = n0 n0 = 0GibbsPx 0 12 1Q 12 � n02jxj�t+1 12 12 + n12jxj�t+1Figure 9.5: Comparison of Algorithm GibbsPx and Algorithm Q.To get more intuition about our Algorithm eQ we compare it with gGibbs. Recall thatNF (S;x) is the number of samples in samF(x) that are consistent with S (De�nition 6.3).For a �xed t in f1; 2; � � � ; jxjg, letn0 = NF(hsamf (x<t); (xjxj; 0)i)and n1 = NF(hsamf (x<t); (xjxj; 1)i):Using this notation, Lookahead Algorithm Q on input samf(x<t), xt, x>t, and r 2 U[0;1]predicts one with probability12 + n1 � n02jxj�t+1 = 12 � n0 + n12jxj�t+1 + 2n1n0 + n1 � n0 + n12jxj�t+1 :In contrast the probability that the lookahead version of GibbsPx predicts one on the sameinput is 12 + n1 � n02(n0 + n1) = n1n0 + n1 :If n0+n12jxj�t+1 were a constant, then both algorithms would predict one with a probability thatis linear in n1n0+n1 . However, since n0 + n1 � 2jxj�t+1 the predictions of Q are more heavilybiased towards 12 than the predictions of GibbsPx . This bias decreases as n0+n1 approaches2jxj�t+1.Clearly Algorithm Q is not optimal since in the extreme case where n0 = 0 Algorithm Qincorrectly predicts 0 with positive probability (unless n1 = 2jxj�t). Algorithm Q can alsomake mistakes in the other extreme, when n1 = 0. Algorithm GibbsPx predicts optimallyfor these cases, as indicated in Figure 9.5.10 A Characterization of Weak Learning Using Consistency OraclesIn this section we show that Prediction Algorithm eQ remains a weak learning algo-rithm even when it uses a less powerful \one-sided" or \probabilistic" consistency oracle.In addition, we will show that any polynomial weak learning algorithm can be used to con-struct a polynomial \probabilistic" consistency oracle and visa versa. Therefore a conceptclass is polynomially weakly learnable if and only if the concept class has a polynomial\probabilistic" consistency oracle.A one-sided consistency oracle is a consistency oracle that need not always be correct.We call it \one-sided" because it can return false positives but not false negatives. Since anoracle that always answers \yes" is useless, we require that one-sided oracles answer \no"on a signi�cant (1/polynomial) fraction of their inputs.



28 10. A Characterization of Weak Learning Using Consistency OraclesDe�nition 10.1 (One-Sided Consistency Oracle): Oracle O is a one-sided consis-tency oracle for F = Ss Fs on X = SnXn if there exist polynomials p1 and p2 such that Ohas the following properties. When O is given the parameters n and s along with a sampleS 2 sam�(x), for x 2 (Xn)m where m = p1(n; s), Oracle O must answer \yes" if S isconsistent with a concept in Fs and may answer either \yes" or \no" otherwise. However,the total number of \no" answers on the 2m samples in sam�(x) must be at least 2m=p2(m).Such an oracle is called polynomial if its answers are computed in time polynomial in n, s,and the total bit length of S.Consistency oracles for large classes are often one-sided consistency oracles for smallerclasses. Let Hs be a class where each x of m = p(n; s) instances has at most 2m(1� 1p2(m))labelings that are consistent with concepts in Hs. Then a consistency oracle for Hs is alsoa one-sided consistency oracle for any Fs contained in Hs.If we have a polynomial weak Occam algorithm using hypothesis class Hn;s and apolynomial (in n, s, and the length of its input) decision algorithm which determines (whengiven n, s, and the representation of hypothesis h) whether or not hypothesis h is in Hn;s,then we can construct a polynomial one-sided consistency oracle. Simply run the polynomialweak Occam algorithm on the sample and check that the returned hypothesis is in Hn;s andthat it is consistent with the sample.We now extend Theorem 7.3 to show if when Algorithm eQ uses a polynomial one-sidedconsistency oracle then Algorithm eQ is a polynomial weak prediction algorithm.Theorem 10.2: If Algorithm eQ uses a polynomial one-sided consistency oracle for F =Ss Fs on X = SnXn then Algorithm eQ is a polynomial weak prediction algorithm for F onX.Proof: By de�nition, when m = p1(n; s) and x 2 (Xn)m, the number of \no" answersgiven by the oracle on queries in sam�(x) is is at least 2m=p2(m). Equivalently, the totalnumber of \yes" answers is at most 2m(1 � 1p2(m)). By Fact 2.1, there is a polynomial p02such that the total number of yes answers is at most 2m�(1=p02(m)). Now Corollary 6.6 andTheorem 7.3 imply that Algorithm eQ is a polynomial weak prediction algorithm.Although Algorithm eQ remains a weak learning algorithm when using a one-sidedconsistency oracle (which can give false positives), it is a di�erent matter if the \consistency"oracle can return false negatives. The following shows that Algorithm eQ can not weaklylearn even a very simple concept class when the consistency oracle is incorrect on only asingle labeling of each example sequence.Consider the concept class F containing two functions: one labeling the entire domainone, and the other labeling the entire domain zero. Thus for every sequence x ofm instances,exactly two samples in sam�(x) are consistent with F . Assume the target concept is theall-one concept and the consistency oracle answers \yes" on only all-zero labelings (andthus incorrectly answers \no" only on the all-one labeling). Half the time the random labelgiven to the instance to be predicted on by Algorithm eQ is one. In this case the faultyoracle answers \no" and Algorithm eQ incorrectly predicts zero. There is also some smallchance that all of the instances will be given random labels and all of the random labelsare set to zero. The oracle will answer yes in this case, and again Algorithm eQ incorrectlypredicts zero. Thus not only is Algorithm eQ not a weak learning algorithm, its probabilityof error is greater than 12 .It seems unlikely that an algorithm could exploit consistency oracles which give thesame answer on both those samples consistent with the target concept and those samplesinconsistent with any concept in the class.



10. A Characterization of Weak Learning Using Consistency Oracles 29De�nition 10.3 (Probabilistic Consistency Oracle): A randomized algorithm O is aprobabilistic consistency oracle for F = Ss Fs on X = SnXn if there exists polynomials p1and p2 such that when O is given the parameters n and s together with a sample S 2 sam�(x)for any x 2 (Xn)m where m = p1(n; s), Oracle O answers \yes" with probability at leasthalf when S is consistent with a concept in Fs, and answers no with probability one on atleast 2m=p2(m) of the 2m samples in sam�(x). Such an oracle is called polynomial if itsanswers are computed in time polynomial in n, s, and the total bit length of S.We will exploit the \one-sidedness" of probabilistic consistency oracles in the sameway that \random polynomial time hypothesis �nders" were exploited by Haussler et al.[HKLW91].Theorem 10.4: A polynomial weak learning algorithm for F = Ss Fs on X = SnXn canbe used to construct a polynomial probabilistic consistency oracle.Proof: Let A be a polynomial weak learning algorithm for F = Ss Fs onX = SnXn. Weassume that AlgorithmA is deterministic as polynomially many random bits can be obtainedfrom additional examples (see [HKLW91], Lemma 3.5). There exist three polynomialsp1, p2, and p3 such that if A is given the parameters n and s then for all f 2 Fs andprobability distributions D on Xn the following holds: upon receiving a sample samf (x),where x is drawn according to Dm and m = p1(n; s), Algorithm A outputs a hypothesish = A[samf (x)] on Xn for whichPrx2Dm �ErrD(f; h) > 12 � 1p2(m)� � 1� 1p3(m) :Furthermore, the hypothesis output by A are polynomially evaluatable and the runningtime of A is polynomial in the total length of its input, n, and s.The results of Freund [Fre90] imply that there is a randomized Algorithm B whichrepeatedly uses the weak learning algorithm A to compress a large sample. When givenn, s, and any sample S 2 sam�(x), where x 2 (Xn)m̂, Algorithm B outputs a sequenceS0 of 12p1(n; s)(p2(n; s))2 ln(m̂) examples from S. The output, S 0, should be viewed as12(p2(n; s))2 ln(m̂) blocks of p1(n; s) examples each, and represents the hypothesis h(S 0)de�ned as the majority function on the 12(p2(n; s))2 ln(m̂) hypotheses produced when A isrun on each block in turn. The hypotheses h(S 0) have the property that if S is labeledconsistently with some concept in Fs, then h(S 0) is consistent with S with probability atleast half (over the randomization of B). The running time of B is polynomial in n, s,and the total bit length of S. Also, since the hypothesis output by A are polynomiallyevaluatable, one can check in polynomial time whether h(S 0) is consistent with S.For each x of length m̂, the total number of compressed sequences S 0 containing12p1(n; s)(p2(n; s))2 ln(m̂) examples chosen from some sample S 2 sam�(x) is at mostm̂ 12p1(n;s)(p2(n;s))2 ln(m̂) = 2 12 ln 2p1(n;s)(p2(n;s))2 ln2(m̂):The number of labelings of x is 2m̂. Thus there are at least2m̂ � 2 12 ln 2p1(n;s)(p2(n;s))2 ln2(m̂)samples S 2 sam�(x) for which there is no sequence S 0 representing a hypothesis consistentwith the sample S. We now choose m̂ moderately large (polynomial in n and s) so thatthe number of nonrepresented samples of sam�(x) is at least a polynomial fraction of all 2m̂labelings.



30 11. A Characterization of Weak Learning Using Restricted Data InterpolatorsSo we can use B to construct a probabilistic consistency oracle: Construct a sequenceS0 using B and if the hypothesis represented by S 0 is consistent with the input sample Sof length m̂ then answer \yes" and otherwise answer \no". As this oracle answers no forall nonrepresented samples of S 2 sam�(x) and yes with probability at least half for allsamples S consistent with a target, it is a probabilistic consistency oracle.Corollary 10.5: A concept class F = Ss Fs on X = SnXn is polynomially weakly learn-able if and only if there is a polynomial probabilistic consistency oracle for F on X.Proof: In view of Theorem 10.4 we only have to show that a weak learning algorithmcan be constructed from a polynomial probabilistic consistency oracle O. We �rst constructa new oracle, Or, as follows: apply oracle O a total of r times to the input sample andanswer \yes" if any of the r calls to O returned \yes" and \no" otherwise. Clearly, Or is aprobabilistic consistency oracle with the more stringent property that if the input sampleis consistent with a concept in Fs, then the probability for answering \yes" is 1� 2�r.We say that Or fails if when given an input sample consistent with a concept in Fs itanswers \no". The failure probability of Or is at most 2�r. Under the assumption that Or isnot failing (i.e. Or acts like a regular one-sided consistency oracle) the proof of Theorem 7.3shows how eQ and Or can be used to get a weak learning algorithm whose probability ofa mistake on the last instance is at most 12 � 1p(n;s) , for some polynomial p. By choosingr = 1 + dlg(p(n; s))e the failure probability is at most 12p(n;s) and thus the probability of amistake on the last instance without the assumption that Or is failing is at most 12 � 12p(n;s) .Note that there are other less restrictive de�nitions of polynomial probabilistic consis-tency oracles for which the above corollary would hold. We used a version that was wellsuited for the proof of Theorem 10.4.11 A Characterization of Weak Learning Using Restricted DataInterpolatorsIn this section we characterize weak learning using certain \data interpolators" anddiscuss how they relate to weak Occam algorithms.The randomized algorithm A is a restricted data interpolator for Ss Fs on SnXn if thereexist polynomials p1 and p2 such that the following holds for all n; s � 1, targets f 2 Fs,and x 2 Xmn for m = p1(n; s):when given n, s, and the sample samf (x), randomized algorithm A outputs withprobability at least 12 a hypothesis on Xn that is consistent with the sample andis from a class Hn;s;x of cardinality at most 2m(1� 1=p2(m)).Although restricted data interpolators have a hypothesis cardinality constraint similarto that of weak Occam algorithms (see Section 4), the hypotheses class of a restricted datainterpolator is allowed to depend on the particular instance sequence x. Restricted datainterpolators also have a probabilistic nature similar to the probabilistic consistency oraclesof Section 10.The hypotheses output by a restricted data interpolator using sample size m = p1(n; s)are polynomially evaluatable if there is an algorithm that (when given n, s, x 2 Xmn , therepresentation of a hypothesis h 2 Hn;s;x and x 2 Xn) can decide in time polynomial in nand s and the total bitlength of its input whether x 2 h.



12. Conclusions and Directions for Further Research 31The hypotheses output by a restricted data interpolator using sample size m = p1(n; s)are polynomially recognizable if there is an algorithm that (when given n, s, x 2 Xmn andthe representation of a hypothesis h) can decide in time polynomial in n and s and the totalbitlength of its input whether h 2 Hn;s;x.A restricted data interpolator algorithm is called polynomial if:� its running time is polynomial in n and s and the total bitlength of its input,� its hypotheses are polynomially evaluatable, and� its hypotheses are polynomially recognizable.We now show that the existence of a polynomial restricted data interpolator for a classis a necessary and su�cient condition for the class to be polynomially weakly learnable.Theorem 11.1: A concept class F = Ss Fs on X = SnXn is polynomially weakly learnableif and only if there is a polynomial restricted data interpolator.Proof: Given a polynomial restricted data interpolator we can easily construct a prob-abilistic consistency oracle from it: the oracle says \yes" if the hypothesis produced by thepolynomial restricted data interpolator on input n, s, x 2 Xmn is both consistent and liesin Hn;s;x. Consistency can be checked in polynomial time since the polynomial restricteddata interpolator outputs polynomially evaluatable hypotheses. Membership in Hn;s;x canbe decided in polynomial time since the polynomial restricted data interpolator outputspolynomially recognizable hypotheses. Thus by Corollory 10.5 the existence of polynomialrestricted data interpolators implies polynomial weak learning.For the opposite direction we observe that the algorithm used in the proof of Corol-lory 10.5 is a polynomial restricted data interpolator. Its hypotheses are polynomiallyevaluatable and are represented by length bounded sequences of examples using instancesfrom x, and thus polynomially recognizable.As noted above, restricted data interpolators are a generalization of Occam algorithmsas the restricted data interpolators are probabilistic and their hypothesis class can dependon the actual instances as well as n, s, and m. As far as we know the above theoremis the �rst characterizion of learning using generalized Occam-style algorithms. Previouscharacterizations of polynomial learnability by Occam algorithms were in terms of a speci�chypothesis class used by the learning algorithms [BP92][HKLW91]. Our results placeno restriction on the hypothesis class used by the Occam algorithm, other than beingpolynomially evaluatable and polynomially recognizable.Recall that Theorem 4.2 shows that weak Occam algorithms are weak learning algo-rithms. The above theorem does not show the same for restricted data interpolators. Infact, the hypotheses produced by restricted data interpolators can be arbitrarily bad. Con-sider the concept class F = ff1; f2; :::; f2ng on X = f1; :::; 2ng where each fi = f1; :::; ig.When given a sample S of size m, a restricted data interpolator for this class could output ahypotheses which labels only those instances labeled one in the sample with one, and labelseverything else zero. We use restricted data interpolators in a more \sophisticated way,"converting them into oracles which are used by the our query lookahead algorithms.12 Conclusions and Directions for Further ResearchWe see two potential bene�ts from this line of research. First we hope that polynomialversions of the discussed one-sided consistency oracles and probabilistic consistency oraclescan be found for concept classes that have not previously been known to be learnable.



32 12. Conclusions and Directions for Further ResearchSecond, the interaction of our results with cryptography could be a promising direction.For example, there is no polynomial weak learning algorithm for DFAs given standardcryptographic assumptions [KV89]. More precisely, the concept class in this learningproblem is F = Ss Fs where Fs consists of all regular languages accepted by DFAs with atmost s states, and the domain is X = SnXn where Xn is the set of all words over f0; 1gof length at most n. Our results show that, under the same cryptographic assumptions, apolynomial probabilistic consistency oracle for F on X can not exist.For any �xed sequence x of m instances, jsamFs(x)j is at most mO(s log s) [Sau72], sincethe VC dimension of Fs is O(s log s). When m is a polynomial in s of degree 2 or greater,then jsamFs(x)j is much smaller than the 2m samples in sam�(x).Yet (given the cryptographic assumptions) there is no polynomial-time algorithm thatanswers \yes" with probability at least half on all of the mO(s log s) labelings consistent withDFAs of at most s states and \no" on at least 2m=p2(m) other labelings.We show in Section 8 that the sample complexity of weak learning an arbitrary conceptclasses of VC dimension d (disreguarding computational considerations) is at most 2d �
(pd lg d). It is shown in Goldman et al. [GKS90] that there are classes of VC dimensiond where every weak learning algorithm requires at least d � O(log d) examples. We wouldlike to see these bounds tightened. It is interesting to note that the natural dividing line ofd samples lies above the best current lower bound and below the best current upper bound.In another direction, if jsamF (x)j = 2jxj��(x) then by Corollary 6.6 the probability thatAlgorithm eQ predicts incorrectly on the last instance (averaged over permutations of x) is12 � 1jxj + 2��(x)jxj . Thus Algorithm eQ does not e�ectively exploit large �(x). In contrast theprobability that Algorithms gGibbs, gBayes, or eG predict wrong on the last instance goes to0 as �(x) goes to jxj (see Figure 9.3).Although Algorithms gGibbs, gBayes, and eG can not be implemented e�ciently, theycan be approximated by making many calls to a consistency oracle. We presented anapproximation to eG using this approach [HW92b]. However, this approximation to eG uses
(2�(x)�1�(x) ) calls14 to a consistency oracle. As �(x) goes to jxj, the number of queries usedgrows exponentially in �(x). Furthermore, the probability that this algorithm predictsincorrectly fails to drop to 0 as �(x) goes to jxj. Whether or not there exists an e�cient(polynomial time) method whose probability of of predicting wrong on the last instancegoes to 0 as �(x) goes to jxj is an open problem.During our comparison of Algorithm gGibbs with Algorithm eQ, we derived an improvedbound on the expected total number of mistakes made by Algorithm gGibbs (Theorem 9.3).Perhaps similar techniques will lead to better bounds on the Bayes and Information Gainprediction algorithms than those of inequalities 9.1 and 9.2, respectively.When computational considerations are ignored the algorithm that minimizessupf2FEy2U(x) [M(A; f;y)]is the 1-inclusion graph algorithm of Haussler, Littlestone, and Warmuth [HLW] (as dis-cussed in the Section 9). For that algorithm the supremum equals maxdensF(x)jxj wheremaxdensF (x) is the maximum density of any subgraph of the 1-inclusion graph with respectto F and x. We know from Corollary 9.5 that maxdensF(x) � minfd; 12 lg jsamF (x)j ; 12 +14Fewer calls su�ce for weak learning but result in poorer predictions.



13. Acknowledgements 33(jsamF (x)j=2jxj)� (1= jxj)g, where d is the VC dimension of F . However, this upper boundon maxdensF(x) is not tight. Another open problem is to determine the best possible upperbound on maxdensF (x) as a function of d and jsamF (x)j (or possibly other statistics of the1-inclusion graph with respect to F and x).In Sections 10 we show that a concept class has a polynomial weak learning algorithm ifand only if the concept class has a polynomial probabilistic consistency oracle. Furthermore,Section 11 shows that a concept class has a polynomial weak learning algorithm if andonly if the concept class has a polynomial restricted data interpolator. Are there othercharacterizations of polynomial learnability?Finally, we conjecture that the counterexamples at the end of Section 4 can be strength-ened to show the following.There is an Occam-style algorithm that uses sample size m = p(n; s), wherep is a polynomial, and a hypothesis class of size 2m � c, where c is a positiveconstant, that is not a weak learning algorithm.The existence of such an Occam-style non-learner would strengthen our belief that if the2m�1=p2(n;s) bound on the size of the hypothesis class in the de�nition of weak Occam algo-rithm is increased then weak Occam algorithms will no longer be weak learning algorithms.In other words, if an Occam-style algorithm does not compress a sample containingm bit la-bels down to a hypothesis from a polynomially evaluatable class that can be represented bym� 1=p2(n; s) bits, then combinatorial arguments alone cannot show that the Occam-stylealgorithm is a weak learning algorithm.13 AcknowledgementsWe are grateful to Lenny Pitt, Peter Frankle, Yoav Freund, David Haussler, Phil Long,and Phokian Kolaitis for valuable discussions and Hikoe Enomoto for decreasing the boundon size of the hypothesis class in the example following Theorem 4.2 by one.References[AHU74] Alfred V.Aho, JohnE.Hopcroft, and Je�reyD.Ullman. TheDesign andAnalysisof Computer Algorithms. Addison-Wesley, 1974.[AHW87] N. Alon, D. Haussler, and E. Welzl. Partitioning and geometric embedding ofrange spaces of �nite Vapnik-Chervonenkis dimension. In Proceedings of ThirdSymposium on Computational Geometry, pages 331{340, June 1987.[BEHW87] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Occam's razor.Information Processing Letters, 24:377{380, 1987.[BEHW89] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. War-muth. Learnability and the Vapnik-Chervonenkis dimension. Journal of theAssociation for Computing Machinery, 36(4):929{965, 1989.[Bon72] J. A. Bondy. Induced subsets. J. Comb. Theory, 12:201{202, 1972.[BP92] R. Board and L. Pitt. On the necessity of Occam algorithms. TheoreticalComputer Science, 100:157{184, 1992.[Fre90] Y. Freund. Boosting a weak learning algorithm bymajority. In Proceedings of the1990 Workshop on Computational Learning Theory, pages 202{231, San Mateo,CA, August 1990. Morgan Kaufmann.
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A. Bounds on the Information Gain Prediction Algorithm 35[VC71] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of rela-tive frequencies of events to their probabilities. Theory of Probability and itsApplication, 16(2):264{280, 1971.[Vov90] V. Vovk. Aggregating strategies. In Proceedings of the 1990 Workshop onComputational Learning Theory, pages 371{383, San Mateo, CA, August 1990.Morgan Kaufmann.A Bounds on the Information Gain Prediction AlgorithmDe�nition A.1: For all P on F , S 2 (X � f0; 1g)�, x 2 X and b 2 f0; 1g, let theinformation gain IP be de�ned as follows:IP(hS; (x; b)i) := �lg V P(hS; (x; b)i)V P(S) :Thus, the Information Gain Prediction Algorithm predicts b (see Figure 9.1) with proba-bility IP(hS; (x; 1� b)i)IP(hS; (x; 1)i)+ IP(hS; (x; 0)i)when V P(S) > 0.Even when V P(S) > 0, it is possible that either V P(hS; (x; 1)i) = 0 or V P(hS; (x; 0)i) =0. In that case if V P(hS; (x; 1)i) = 0 then IP(hS; (x; 1)i) = 1 and Algorithm GP predicts0 with probability 1. Similarly, Algorithm GP always predicts 1 when V P(hS; (x; 0)i) = 0.Lemma A.2: For all P on F , S 2 (X � f0; 1g)�, and x 2 X: if V P(S) > 0 thenIP(hS; (x; 0)i)+ IP(hS; (x; 1)i)� 2.Proof: Using the de�nition of IP , it su�ces to show that� lg V P(hS; (x; 0)i)V P(S) � lg V P(hS; (x; 1)i)V P(S) � 2:Since V P(S) = V P(hS; (x; 0)i) + V P(hS; (x; 1)i) > 0, this is equivalent to showing, 8p 2[0; 1], that � lg p � lg(1 � p) � 2. Clearly the left hand side is minimized when p = 12 andin that case the inequality is tight.Note that the lemma also holds when either V P(hS; (x; 0)i) = 0 or V P(hS; (x; 1)i) = 0,as then IP(hS; (x; 0)i)+ IP(hS; (x; 1)i) =1.We now state the well known fact that information is additive [HKS91].Lemma A.3: If V P(samf (x)) > 0 thenjxjXt=1 IP(samf (xt)) = � lgV P(samf(x)):Proof: jxjXt=1 IP(samf(xt)) = jxjXt=1� lg V P(samf (xt))V P(samf (x<t))= � lg V P(samf (x))V P(�)= � lg V P(samf (x))



36 B. A Simple Upper Bound on the Density of the 1-inclusion GraphWe are now ready to bound the probability that Algorithm GP predicts incorrectly.This bound is a special case (� = 0) of a bound proven by Vovk [Vov90] for a more generalaggregating strategy.Theorem A.4: For all P on F , f 2 F , and x 2 X�:jxjXt=1M(GP; f;xt) � �12 lgV P(samf(x)):Proof: If V P(samf (x)) = 0 then the theorem holds trivially. Otherwise, for each1 � t � jxj,M(GP ; f;xt) = IP(samf(xt))IP(hsamf(x<t); (xt; 1)i) + IP(hsamf(x<t); (xt; 1)i)� 12IP(samf(xt))using Lemma A.2. By the additivity of information (Lemma A.3),jxjXt=1M(GP ; f;xt) � �12 lg V P(samf (x))as desired.B A Simple Upper Bound on the Density of the 1-inclusion GraphIn Corollary 9.5 three upper bounds on maxdensF (x) are given. Here we give a simpleinductive proof of the second bound.Let X be an arbitrary set and F be any concept class on X . For any m � 1 andx 2 Xm, we construct an undirected graph called the 1-inclusion graph of F with respectto x, denoted by GF(x) [Bon72, AHW87, HLW]. The vertices of GF(x) are the samples ofsamF(x) and there is an edge between two vertices S and S 0 if S and S 0 disagree on thelabel of exactly one of the instances appearing in x, and that instance appears only once inx. The density of a graph is the number of vertices over the number of edges. The graphG = (V;E) is a subgraph of G0 = (V 0; E 0) if V � V 0 and E � G0. Let maxdensF (x) be themaximum density of any subgraph of GF(x).Theorem B.1: For any non-empty subgraph of a Boolean hypercube with g vertices thenumber of edges is at most g2 lg g and thus maxdensF (x) � 12 lg jsamF (x)j.Proof: Any subgraph of a 1-inclusion graph corresponds to a subgraph of a Booleanhypercube: Each instance in the sequence x is responsible for one dimension of the cube andthe Boolean labeling of x are the coordinates of the cube. Thus the fact that maxdensF (x) �12 lg jsamF (x)j follows from the number of edges being at most g2 lg g and that the numberof vertices in GF (x) is jsamF (x)j.



B. A Simple Upper Bound on the Density of the 1-inclusion Graph 37We prove that the number of edges in any subgraph of a boolean hypercube containingf vertices is at most g2 lg g by induction on the dimension of the hypercube. It clearlyholds for the 1-dimensional hypercube and g = 0; 1 or 2. For the induction step split thehypercube of dimension d into two subcubes of dimension d � 1. Let g1 and g2 be thenumber of vertices in the two subcubes. If either g1 or g2 is zero then the bound followsdirectly from the inductive hypothesis. Thus we assume 1 � g1 � g2. Clearly the numberof vertices crossing between the subcubes is at most g1. Applying the inductive hypothesis,the total number of vertices is at mostg1 lg g12 + g2 lg g22 + g1 = (g1 + g2) lg(g1 + g2)2 � g12 lg (g1 + g2)g1 � g22 lg (g1 + g2)g2 + g1� g lg g2 � g12 lg (g1 + g2)2g1g2 + g1= g lg g2 � g12 lg(g1g2 + g2g1 + 2) + g1� g lg g2 � g12 lg(4) + g1; since x+ (1=x) � 2 when x > 0;= g lg g2 ;which completes the proof.


