
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

Weak-consistency group communication and membership

A dissertation submitted in partial satisfaction
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in
COMPUTER AND INFORMATION SCIENCES

by
Richard Andrew Golding

December 1992

The dissertation of Richard Andrew Golding is
approved:

Prof. Darrell Long

Prof. Charles McDowell

Dr. Kim Taylor

Dr. John Wilkes

Dean of Graduate Studies and Research



Copyright c by

Richard Andrew Golding

1992



iii

Contents

Abstract ix

Acknowledgments x

1 Introduction 1
1.1 Requirements : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3
1.2 Using replication : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4
1.3 Group communication mechanism : : : : : : : : : : : : : : : : : : : : : : : : : 5
1.4 Weak consistency : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6
1.5 The Refdbms 3.0 system : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8
1.6 Conventions in the text : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9
1.7 Organization of the dissertation : : : : : : : : : : : : : : : : : : : : : : : : : : 9

2 Terms and definitions 11
2.1 Consensus : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11
2.2 Principals : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12
2.3 Time and clocks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13
2.4 Network : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14
2.5 Network services : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

3 A framework for group communication systems 16
3.1 The framework : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17
3.2 The application : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

3.2.1 The Refdbms application : : : : : : : : : : : : : : : : : : : : : : : : : 20
3.2.2 The Tattler system : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22
3.2.3 Handling update collisions : : : : : : : : : : : : : : : : : : : : : : : : : 23

3.3 Message delivery : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24
3.3.1 Propagating messages versus state : : : : : : : : : : : : : : : : : : : : : 27

3.4 Message ordering : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28
3.4.1 Using message ordering : : : : : : : : : : : : : : : : : : : : : : : : : : 30

3.5 Group membership : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31
3.5.1 Using group membership : : : : : : : : : : : : : : : : : : : : : : : : : 33

3.6 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34

4 Existing group communication systems 35
4.1 Centralized protocols : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36



iv

4.2 Consistent replication protocols : : : : : : : : : : : : : : : : : : : : : : : : : : 37
4.3 Orca RTS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38
4.4 Isis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39
4.5 Epsilon serializability : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 40
4.6 Psync : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41
4.7 A reliable multicast protocol : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42
4.8 OSCAR : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43
4.9 Lazy Replication : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 44
4.10 Epidemic replication : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 45
4.11 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

5 Weak-consistency communication 48
5.1 Reliable, eventual message delivery : : : : : : : : : : : : : : : : : : : : : : : : 48

5.1.1 Data structures for timestamped anti-entropy : : : : : : : : : : : : : : : 50
5.1.2 The timestamped anti-entropy protocol : : : : : : : : : : : : : : : : : : 55

5.2 Correctness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 58
5.2.1 Logical communication topology : : : : : : : : : : : : : : : : : : : : : 59
5.2.2 Eventual communication : : : : : : : : : : : : : : : : : : : : : : : : : : 60
5.2.3 Summary vector progress : : : : : : : : : : : : : : : : : : : : : : : : : 63

5.3 Purging the message log : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66
5.4 Extensions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 67

5.4.1 Selecting a session partner : : : : : : : : : : : : : : : : : : : : : : : : : 67
5.4.2 Principal failure and volatile storage : : : : : : : : : : : : : : : : : : : : 69
5.4.3 Combining anti-entropy with unreliable multicast : : : : : : : : : : : : : 70
5.4.4 Anti-entropy with unsynchronized clocks : : : : : : : : : : : : : : : : : 73

5.5 Message ordering : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 74
5.6 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 79

6 Group membership 81
6.1 Message delivery and dynamic membership : : : : : : : : : : : : : : : : : : : : 82
6.2 Correctness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 83
6.3 Fault tolerance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 84
6.4 Protocols : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 86

6.4.1 Data structures : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 86
6.4.2 Initializing a new group : : : : : : : : : : : : : : : : : : : : : : : : : : 88
6.4.3 Group join : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 88
6.4.4 Group leave : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92
6.4.5 Failure recovery : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 94

6.5 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 95

7 Performance of weak-consistency protocols 97
7.1 Message reliability : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 97

7.1.1 Analytical modeling : : : : : : : : : : : : : : : : : : : : : : : : : : : : 98
7.1.2 Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 99
7.1.3 Volatile storage : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 101

7.2 Message latency : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 101



v

7.2.1 Simulation modeling : : : : : : : : : : : : : : : : : : : : : : : : : : : : 102
7.2.2 Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 102

7.3 Group membership resilience : : : : : : : : : : : : : : : : : : : : : : : : : : : 105
7.3.1 Simulation modeling : : : : : : : : : : : : : : : : : : : : : : : : : : : : 106
7.3.2 Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 106

7.4 Traffic : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 112
7.4.1 Simulation modeling : : : : : : : : : : : : : : : : : : : : : : : : : : : : 113
7.4.2 Results using ring topology : : : : : : : : : : : : : : : : : : : : : : : : 114
7.4.3 Results using backbone topology : : : : : : : : : : : : : : : : : : : : : 115
7.4.4 Traffic and propagation time : : : : : : : : : : : : : : : : : : : : : : : : 117

7.5 Consistency : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 118
7.5.1 Simulation modeling : : : : : : : : : : : : : : : : : : : : : : : : : : : : 118
7.5.2 Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 120

7.6 Comparison : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 124
7.6.1 Efficiency : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 124
7.6.2 Implementation effort : : : : : : : : : : : : : : : : : : : : : : : : : : : 125

7.7 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 127

8 Multiple membership roles 129
8.1 Limiting write access : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 129
8.2 Clients : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 131
8.3 Storing a subset of group state : : : : : : : : : : : : : : : : : : : : : : : : : : : 132

8.3.1 Caches : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 133
8.3.2 Slices : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 134
8.3.3 Using slices for resource discovery : : : : : : : : : : : : : : : : : : : : 135

8.4 Location service : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 136
8.4.1 Existing location services : : : : : : : : : : : : : : : : : : : : : : : : : 139

9 Continuing work 141
9.1 Performance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 141
9.2 Fault tolerance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 141
9.3 Reducing space requirements : : : : : : : : : : : : : : : : : : : : : : : : : : : 141
9.4 Hybrid consistency : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 142
9.5 Authentication : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 143
9.6 Location services : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 143
9.7 Refdbms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 144

10 Summary 145

Bibliography 147



vi

List of Figures

1.1 Overall system architecture. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2
1.2 Placing replicas in an internetwork. : : : : : : : : : : : : : : : : : : : : : : : : 5
1.3 Components of a group communication mechanism. : : : : : : : : : : : : : : : : 6
1.4 An example reference. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

3.1 A framework for constructing a group communication system. : : : : : : : : : : 18
3.2 Structure of a Refdbms principal. : : : : : : : : : : : : : : : : : : : : : : : : : 21
3.3 Structure of a Tattler. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

5.1 The timestamp data structure. : : : : : : : : : : : : : : : : : : : : : : : : : : : 50
5.2 The timestamp vector data structure. : : : : : : : : : : : : : : : : : : : : : : : : 51
5.3 Data structures used by the TSAE communication protocol. : : : : : : : : : : : : 52
5.4 How the summary vector summarizes the messages in the log. : : : : : : : : : : 53
5.5 Summary and acknowledgment vectors for principals with loosely-synchronized

clocks. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54
5.6 An example anti-entropy session. : : : : : : : : : : : : : : : : : : : : : : : : : 56
5.7 Originator’s protocol for TSAE with loosely-synchronized clocks. : : : : : : : : 57
5.8 Partner’s protocol for TSAE with loosely-synchronized clocks. : : : : : : : : : : 58
5.9 A function to purge messages from the message log. : : : : : : : : : : : : : : : : 66
5.10 The checksum vector data type. : : : : : : : : : : : : : : : : : : : : : : : : : : 71
5.11 Originator’s protocol for TSAE combined with unreliable multicast. : : : : : : : 72
5.12 Summary and acknowledgment data structures for TSAE for unsynchronized clocks. 74
5.13 Function to deliver messages in per-principal FIFO order. : : : : : : : : : : : : : 76
5.14 Function to deliver messages in a total order. : : : : : : : : : : : : : : : : : : : 77
5.15 Function to deliver messages in a causal order. : : : : : : : : : : : : : : : : : : 78

6.1 The group membership view data structure. : : : : : : : : : : : : : : : : : : : : 87
6.2 Initializing a new group. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 88
6.3 The join protocol followed by a new member. : : : : : : : : : : : : : : : : : : : 90
6.4 Obtaining the first sponsor. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 91

7.1 Model of message receipt and failure for five principals. : : : : : : : : : : : : : : 99
7.2 Probability of failing to deliver a message to all sites (linear vertical scale). : : : : 100
7.3 Probability of failing to deliver a message to all sites (logarithmic vertical scale). : 100
7.4 Cumulative probability distribution for propagating a message to all principals. : : 103



vii

7.5 Cumulative probability distribution for receiving an acknowledgment from all prin-
cipals. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 103

7.6 Effect of partner selection policy on scaling of propagation time. : : : : : : : : : 104
7.7 Effect of partner selection policy on scaling of mean time to acknowledgment. : : 105
7.8 Progress of the minimum cut and in-degree measures in a group of 25 principals,

using one sponsor, with no failures. : : : : : : : : : : : : : : : : : : : : : : : : 107
7.9 Progress of the minimum cut and in-degree measures in a group of 25 principals,

using two sponsors, with one initial failure. : : : : : : : : : : : : : : : : : : : : 108
7.10 Progress of the group membership resilience, with varying numbers of sponsors. : 108
7.11 Progress of the average in-degree as anti-entropy propagates membership information.109
7.12 Mean time for views to converge, varying number of sponsors. : : : : : : : : : : 110
7.13 Mean time for views to converge, varying number of failing principals. : : : : : : 111
7.14 The ring and backbone physical topologies simulated for traffic analysis. : : : : : 113
7.15 Traffic per network link on a ring network, varying the number of principals. : : : 114
7.16 Effect of partner selection policy on the average number of network links used in

an anti-entropy session. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 116
7.17 Effect of partner selection policy on the mean traffic per link, for all links. : : : : 116
7.18 Effect of partner selection policy on the mean traffic per backbone ring link. : : : 117
7.19 Scatterplot of the relationship between link traffic and propagation delay. : : : : : 118
7.20 Relationship between link traffic and time to acknowledgment. : : : : : : : : : : 119
7.21 Probability of getting old value as the per-principal anti-entropy rate varies, for 500

principals. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 121
7.22 Expected data age as anti-entropy rate varies, for 500 principals. : : : : : : : : : 122
7.23 Probability of getting old value as the number of principals varies, with anti-entropy

occurring 100 times as often as writes. : : : : : : : : : : : : : : : : : : : : : : : 122
7.24 Expected data age as the number of principals varies, with anti-entropy occurring

100 times as often as writes. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 123
7.25 Effect of partner selection policy on expected data age. : : : : : : : : : : : : : : 123

8.1 A skeleton client. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 131
8.2 The interface to the location service. : : : : : : : : : : : : : : : : : : : : : : : : 136
8.3 How the location service receives and propagates samples of membership views. : 138



viii

List of Tables

2.1 Conditions under which consensus is possible. : : : : : : : : : : : : : : : : : : : 12

3.1 Possible message delivery reliability guarantees, from strongest to weakest. : : : : 25
3.2 Possible message delivery latency guarantees. : : : : : : : : : : : : : : : : : : : 26
3.3 Some popular message ordering guarantees. : : : : : : : : : : : : : : : : : : : : 29

4.1 The group communication systems surveyed. : : : : : : : : : : : : : : : : : : : 36

5.1 Partner selection policies. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 68

7.1 Performance comparison of several group communication systems. : : : : : : : : 126
7.2 Implementation complexity of Isis compared with TSAE in Refdbms. : : : : : : : 127

8.1 Refdbms privilege levels. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 130



Weak-consistency group communication and membership

Richard Andrew Golding

ABSTRACT

Many distributed systems for wide-area networks can be built conveniently, and operate effi-

ciently and correctly, using a weak consistency group communication mechanism. This mechanism

organizes a set of principals into a single logical entity, and provides methods to multicast messages

to the members. A weak consistency distributed system allows the principals in the group to differ

on the value of shared state at any given instant, as long as they will eventually converge to a single,

consistent value. A group containing many principals and using weak consistency can provide the

reliability, performance, and scalability necessary for wide-area systems.

I have developed a framework for constructing group communication systems, for classify-

ing existing distributed system tools, and for constructing and reasoning about a particular group

communication model. It has four components: message delivery, message ordering, group mem-

bership, and the application. Each component may have a different implementation, so that the

group mechanism can be tailored to application requirements.

The framework supports a new message delivery protocol, called timestamped anti-entropy,

which provides reliable, eventual message delivery; is efficient; and tolerates most transient proces-

sor and network failures. It can be combined with message ordering implementations that provide

ordering guarantees ranging from unordered to total, causal delivery. A new group membership

protocol completes the set, providing temporarily inconsistent membership views resilient to up tok simultaneous principal failures.

The Refdbms distributed bibliographic database system, which has been constructed using this

framework, is used as an example. Refdbms databases can be replicated on many different sites,

using the group communication system described here.



x

Acknowledgments

Several people have assisted in this research. Kim Taylor, at UC Santa Cruz, assisted with the proofs;

she was supported in part by NSF grant CCR–9111132. Darrell Long assisted with some of the

performance evaluation; he was supported in part by the National Science Foundation under Grant

NSF CCR–9111220, by the Institute for Scientific Computing Research at Lawrence Livermore

National Laboratory, and by the Office of Naval Research under grant N00014–92–J–1807. John

Wilkes, at Hewlett-Packard Laboratories, provided additional suggestions and critique, particularly

during the early exploration of the ideas.

The Refdbms 3.0 system was derived from the original refdbms system, written by John Wilkes

in the Concurrent Systems Project at Hewlett-Packard Laboratories. Development of version 3 was

aided by Eric Allman and the Mammoth Project at UC Berkeley under National Science Foundation

Infrastructure Grant CDA–8722788. George Neville-Neil wrote the X11 user interface for version

3.0, and the alpha testers have provided important feedback in improving the system.

This research was supported by several different organizations. Early portions of this work

were supported by the Concurrent Systems Project at Hewlett-Packard Laboratories, and by a

University of California Seed Grant. The Santa Cruz Operation provided me with a one-year

graduate fellowship.

Some simulation results were obtained with the aid of SIMSCRIPT II.5, a simulation language

developed and supported by CACI Products Company of La Jolla, California.

Alan Emtage and Peter Deutsch, of Bunyip Information Systems and McGill University helped

me understand the properties that wide-area information services need. Calton Pu, of Columbia

University, encouraged me to work on the classification approach. Daniel Barbará, at the Mat-

sushita Information Technology Laboratory, encouraged my investigation of weak consistency and

information services.



xi

The other graduate students in the Concurrent Systems Laboratory provided encouragement and

support, most particularly Dean Long and William Osser.

My committee has been helpful in refining my ideas from a confused pudding of “things I’d like

to look at” and “interesting directions” into a coherent whole. John Wilkes taught me how to write;

Kim Taylor taught me how to prove correctness; Charlie McDowell kept me honest; and Darrell

Long, my advisor, made me quantify my claims.

Three people have provided the love and support I needed to finish a work this size in altogether

too short a time: Alan Emtage, Craig Cruz, and my partner, George Neville-Neil. These three have

put up with my fears, grouchiness, and elation.

This dissertation is dedicated to the memory of my grandfather, Harry Lawrence Golding

(1908–69). I think he would have liked it.



1

Chapter 1

Introduction

Most systems to date that operate across wide-area networks have been developed without a

consistent set of tools for reasoning about or organizing their structure. As a result, wide-area

systems are viewed as difficult to write, and ensuring their good performance is a black art.

My thesis is that many wide-area distributed systems can be built conveniently, and can operate

efficiently and correctly, using the weak consistency group communication approach presented in

this dissertation. In it, a set of principals are organized into a group, which applications can commu-

nicate with as if it were a single logical entity (Figure 1.1). The group communication mechanism

is decomposed into a framework [Campbell92] of well-defined components and interfaces. The

implementations of each component can be customized to meet application requirements. In partic-

ular, the state kept by the principals can be weakly consistent, meaning that the copies are allowed

to diverge temporarily, as long as they will eventually come to agreement.

The framework provides a way to construct the group communication mechanism. The mech-

anism provides a group multicast service, allowing a principal to send a message to every group

member, and a group membership service, allowing principals to join and leave the group. Each

component can be implemented using one of many different protocols, providing different levels

of service. For example, the component that sends and receives messages over the network will

provide one of several message reliability guarantees. The framework approach allows code to be

reused between applications, and ensures that the group communication semantics closely match

application requirements.

This approach is useful for reasoning about distributed systems. The semantics of each com-

ponent can be used to classify existing distributed systems. For example, systems can be classified



2

Cache

Group
communication

Network

Group
communication

Network

Service

Group
communication

Network

Group
communication

Network

Slice

Group
communication

Network

Group
communication

Network

Service

Group
communication

Network

Group
communication

Network

Logical
group

FIGURE 1.1: Overall system architecture. A wide-area system consists of a group of principals. Members
and clients logically communicate with the group, and the group communication mechanism coordinates the
communication with each member.

by the reliability of their message delivery mechanism. The correctness, performance, and fault

tolerance of each component can be evaluated separately.

Using this framework, I have developed protocols that provide weak consistency, and inves-

tigated their correctness and performance. Weak consistency is provided by delivering messages

reliably and eventually. Reliable delivery ensures that every principal will eventually observe

any group message, while eventual delivery allows messages to be delayed while systems are not

functioning or are disconnected from the network. A group membership protocol complements the

message delivery protocol.



3

The protocols have been used in the Refdbms 3.0 distributed bibliographic database system.

This prototype system indicates that the framework is appropriate for building wide-area systems,

and that the weak consistency protocols can be built simply.

1.1 Requirements

Wide-area systems must take network behavior and user expectations into account. These include

the scale and reliability of the network, mobile computing systems, and application availability.

Two hosts on an Ethernet can exchange a pair of datagram packets in a few milliseconds, while

hosts on different continents can require many hundreds of milliseconds. Packet loss rates of 40%

are common, and can go much higher [Golding91b]. This argues for a system taking advantage of

locality: using nearby hosts when possible, and avoiding long-distance communication.

Despite this environment, users expect a service to behave as if it were being provided on a local

system. Several studies have shown that people work best if response time is under one second

for queries presenting new information, and much less for queries that provide additional details

[Schatz90].

Users also expect to be able to make use of the service as long as their local system is functioning.

A widely-used information system should be unavailable to any user at most a few minutes each

year, as long as the user’s local system is functioning. A recent study of host reliability [Long91]

shows that most hosts are available better than 90% of the time, and are continuously available for

ten days on the average. My own research [Golding91b] has found that hosts within North America

respond when polled about 90% of the time, indicating that long-term network failure is probably

uncommon. This study also showed that communication between two hosts near each other was

more reliable than between distant hosts.

There are many points in the Internet that can fail and partition the network; indeed, it is

usually partitioned into several non-communicating subsets. The system therefore cannot assume

that the principals that compose it will be able to communicate with each other all the time. The

introduction of mobile computer systems exacerbates this problem, since they can be disconnected

from the network for a long time, or may be “semi-connected” by an expensive low-bandwidth



4

connection. Several researchers are investigating file systems that can tolerate disconnection

[Kistler91, Heidemann92, Alonso90a].

The application architecture must also scale to the vast number of users that can access a widely

available service. The Internet included more than a million hosts in July 1992 [Long91]; the

potential user base was probably then in the several millions, and these numbers are increasing

by about 30% every four to six months [Lottor92, Ganatra92]. Specialized services with limited

audiences currently receive on the order of 10 000 queries per day (0.12 queries per second mean)

[Emtage92b], while widely-used services such as library card catalogues can receive nearly 100

queries per second [Emtage92a].

1.2 Using replication

These requirements cannot be met without replicating parts of the system. A replicated system

allows load to be shared by many replicas, improving availability and scalability. Clients use the

service by contacting one replica. The service is available as long as the client can connect to at

least one functioning replica. The replicas in turn communicate amongst themselves to coordinate

the service.

Figure 1.2 shows how replicas might be placed in a simple internetwork. Portable systems

include clients, and can possibly include replicas. When a portable system maintains a replica the

service continues to be available even when the system has been disconnected from the network.

The local replica does not receive updates made by other replicas until the system is reconnected to

the network.

Clients can contact the nearest replica, improving communication locality. This reduces com-

munication latency. It also decreases the load each communication imposes on the network by

reducing the number of routers and communication links that must handle the messages. One

approach is to place one replica in each geographic region or organization. Clients must be able

to identify which replicas are nearby and maintain performance when nearby replicas fail; I have

considered this problem elsewhere [Golding92b, Golding92c].



5

Portable Portable

Server

Full server

Slice serverClient

Client

Client

Client Slice server

Full server

Portable

Client Workstation

Client Slice server

Workstation

Server

Workstation

FIGURE 1.2: Placing replicas in an internetwork. Some local-area networks will have a nearby replica, while
others must communicate with more distant replicas. Portable systems may include a “slice” replica that
maintains a copy of part of the database. Properly-placed replicas that cache service information can
improve performance.

1.3 Group communication mechanism

A group communication mechanism can be used to construct a replicated service. This mechanism

(sometimes called a distributed process group mechanism) organizes a set of principals into a group

[Birman87, Cheriton84]. The group acts as a single abstract entity.

The group supports two kinds of operations: group multicast to send messages to group mem-

bers, and group membership to add or delete principals from the set of members. Applications apply

group operations without concern for the principals that make up the group, and the group com-

munication mechanism converts operations on the abstract group to communication with principals

(Figure 1.3).



6

Client

Group
communication

Network Performance
service

Location
service

Ordering component

Membership component

Communication component

FIGURE 1.3: Components of a group communication mechanism. The group membership mechanism
provides a group multicast protocol, which is implemented in the ordering and communication components,
and a group membership protocol, which is implemented in the membership component. These mechanisms
may make use of other outside services, including a location service or a performance prediction service.

The group multicast operation sends a message from one principal to every group member. The

operation can be implemented using one of many different protocols. The implementation defines

whether messages are delivered reliably or not, and how long delivery takes. Likewise, there are

>many possible implementations of the group membership operations.

Both the multicast and membership implementations may rely on other network services. For

example, the membership protocol might use a location service to learn what servers make up the

group when a principal joins. The communication component might make use of a performance

prediction service (Section 2.5) to improve performance.

1.4 Weak consistency

Each group member has a copy of group state, and uses the group communication mechanism to

coordinate changes to it with the other members. The copies are consistent if they have the same

value, while inconsistent copies can differ. The group multicast protocol determines the degree of

consistency by providing guarantees on how reliably and quickly messages containing state changes

will be delivered to group members.

Many existing group communication systems, among them Isis [Birman87, Birman91], Psync

[Mishra89], Arjuna [Little90], and Lazy Replication [Ladin91], provide strong consistency guaran-

tees, meaning that the system provides a multicast message service that ensures that every principal



7

views every message in a strictly controlled order, and that no two principals can differ at any

moment by more than a limited degree.

Other approaches provide intermediate guarantees. The quasi-copy approach allows specific

bounds on the difference between copies [Alonso90b, Barbará90, Alonso90a], while epsilon seri-

alizability relaxes traditional serializability definitions to control the number of updates by which

copies can differ [Pu91b, Pu91a].

In contrast, the timestamped anti-entropy group multicast protocols presented in this dissertation

provide eventual or weak consistency. While multicast messages will be delivered to every group

member, the time required is unbounded (though finite.) Thus, any two group members can hold

different copies of group state at any instant, but eventually both members will receive the same set

of state-change messages.

These weaker guarantees can have important performance and availability benefits as compared

to strong consistency, particularly when considering wide-area and mobile systems. Strong consis-

tency systems require expensive protocols, and perform poorly (or not at all) when communication

is unreliable or when the network is partitioned. By contrast, weak consistency protocols can

use fewer network packets, allow caching and delayed operation for mobile systems, and are not

affected >by many forms of processor and network failure.

The timestamped anti-entropy protocol, like other weak-consistency protocols, achieves its

fault-tolerance and efficiency by performing delayed communication between principals. Rather

than multicasting a message right away, messages are placed in a queue and delivered later. Pairs of

principals periodically contact each other to exchange the messages in their queues. This exchange

is called an anti-entropy session. If a host is unavailable for some time, the principals that it hosts

can perform exchanges when they begin functioning again. In this way the group communication

mechanism hides host and network failures.

Many existing information systems, such as Usenet [Quarterman86] and the Xerox Clearing-

house system [Oppen81], use similar techniques. The work presented in this dissertation formalizes

the weak consistency model and provides new mechanisms to make weak consistency group com-

munication flexible, controllable, and robust.



8

1.5 The Refdbms 3.0 system

Refdbms 3.0 is a distributed bibliographic database system. Its implementation uses the weak-

consistency protocols presented in this dissertation. I used its implementation to test many of the

ideas presented here, and it will provide motivating examples through the next several chapters.

The Refdbms 3.0 system is based on the refdbms version 1 system that has been under devel-

opment for several years at Hewlett-Packard Laboratories [Wilkes91]. That system emphasizes

bibliographic information shared within a research group. Users can search databases by keywords,

use references in TEX, locate copies of papers, and add, change, or delete references. I have extended

it into a distributed, replicated database [Golding92a]. (Version 2 is an independent version, also

based on the original.)

The extended system provides multiple databases distributed to widely dispersed sites. Data-

bases can be specialized to particular topics, such as operating systems or an organization’s technical

reports. Each database can be replicated at several sites on the Internet, and users can create their

own copy of interesting parts of the database. When a user enters a new reference in one copy,

the reference is propagated to all other copies. The system also includes a simple mechanism for

notifying users when interesting papers are entered into the database.

Refdbms stores references in a format similar to that used by refer [Lesk78, Tuthill83], as shown

in Figure 1.4. Every reference has a type, such as TechReport or Article, and a unique, mnemonic

tag like Lamport78a. Since these tags are determined by users and can potentially collide, the

system internally uses a unique identifier consisting of a timestamp plus the address of the site that

created the reference. References are stored in hashed and b-tree files using the BSD 4.4 libdb
library, and are indexed both by tag and by keyword.

The weak-consistency framework in this dissertation was used to design and implement the new

version of Refdbms. In general this has not affected the use of the system: users can do all of the

same operations they could on the older centralized system. However, since replicas at different sites

can have different contents while updates are propagating, users will occasionally see inconsistent

information. This could be a problem when two authors at different sites are collaborating on a

paper, or when one person tells another about an interesting reference they just found. Refdbms



9%z Article (the type)%K Lamport78a (the tag)%A Leslie Lamport%T Time, clocks, and the ordering of events in a distributed system%J CACM.%V 21%N 7%D 1978%P 558 565%x The concept of one event happening before another in a distributed%x system is examined, and is shown to de�ne a partial ordering of%x the events. A distributed algorithm is given for synchronizing a%x system of logical clocks which can be used to totally order the%x events. The use of the total ordering is illustrated with a method%x for solving synchronization problems. The algorithm is then%x specialized for synchronizing physical clocks, and a bound is%x derived on how far out of synchrony the clocks can become.%k causal consistency, asynchrony, happens before%k clock synchronization
FIGURE 1.4: An example reference.

resolves this problem by making potentially-inconsistent information available, but only if users

ask for it. These problems are discussed further in Chapter 3.

1.6 Conventions in the text

When multiple citations are presented together, they are listed in order of decreasing importance or

relevance. While this is not the usual practice, I have found it to be more useful than ordering them

alphabetically. The references were maintained and formated using Refdbms.

Program fragments, user commands, and variable names are presented in a sans-serif face.

Names of protocols are printed in a bold face. Most other names are presented in a standard Roman

face.

1.7 Organization of the dissertation

In the next chapter I will define a number of terms and assumptions used in later chapters. In

Chapter 3, I discuss group communication systems, and present a framework for constructing



10

them and tailoring them to specific application requirements. Chapter 4 is a survey of existing

group communication systems. I present the timestamped anti-entropy protocol in Chapter 5.

That protocol guarantees reliable eventual message delivery, which is used in weak consistency

group communication. Chapter 6 includes a group membership protocol that is a companion to

timestamped anti-entropy. Chapter 7 investigates the performance of these protocols. Chapter 8

explores how the group communication framework can be extended to build sophisticated wide-

area information systems. Finally, Chapters 9 and 10 present topics for future research and my

conclusions on this work.



11

Chapter 2

Terms and definitions

In this chapter I will define a number of terms and assumptions used throughout this dissertation.

The term protocol is used throughout to mean a computational procedure that is performed by

two or more separate principals and coordinated by messages passed over a network. This is distinct

from an algorithm, which is more generally any computational procedure.

2.1 Consensus

The problem of reaching consistency between copies of group state is a form of distributed consensus

[Turek92, Fischer85]. Consensus has been studied extensively, and it is well known that specific

conditions on processors and the network are required for it to be possible. Some of these conditions

are listed in Table 2.1.

The Internet and the hosts on it cannot formally achieve consensus because they cannot meet

the necessary conditions. However, in practice the Internet closely approximates several of the

conditions. These approximations will be presented briefly here, and discussed more completely in

later sections of this chapter.

Hosts on the Internet approximate synchronous processors: there is some bound on the differ-

ences between the rates at which hosts operate. In practice this means there is a bound on the time

required for any host to complete any protocol step.

The Internet provides at worst unbounded communication latency. In practice a bound can be

established on the latency between two hosts when they are able to communicate, but network

failures can delay messages for arbitrarily long periods.



12

TABLE 2.1: Conditions under which consensus is possible. Adapted from Turek and Shasha [Turek92].

Point- Broadcast Point-
to-point transmission to-point

Unordered Ordered
Processors Communication messages messages

Asynchronous Unbounded No No Yes No
Asynchronous Bounded No No Yes No

Synchronous Bounded Yes Yes Yes Yes
Synchronous Unbounded No No Yes Yes

Finally, principals do not fail. A principal may appear to stop for some time while the host on

which it runs is out of service. However, when the host has recovered the principal will recreate its

state from stable storage and resume operation.

2.2 Principals

Principals are the entities that participate in group operations. Other terms such as site, replica,

process, and server might seem appropriate, but are well-defined in other contexts and have inap-

propriate connotation.

Principals survive temporary failures and host crashes. They have some form of stable storage

to record information that must survive failure. They also have volatile storage that is lost on

failure. Both principals and hosts fail by stopping (also called crashing), so that spurious data are

never transmitted on the network or written to stable storage. In practice a carefully implemented

disk storage system can closely approximate this ideal [Gray86, Sullivan92, Seltzer90]. Many Unix

network services, such as network file systems, name services, and mail routing behave in just this

way: they are created afresh from data on disk every time a host recovers [Leffler89].

Principals have a mean time-to-failure (MTTF) much longer than the time required to perform

certain protocols. Such principals can be constructed from less-reliable principals if stable storage

is available. These assumptions eliminate pathological situations where principals recover, stay up

for a very short time, then fail again. Studies of host reliability [Long91] indicate that most hosts

function continuously for several days between crashes, while most protocols take at most a few

minutes to complete.



13

Each principal has a unique identity, and principals that cease to exist do so for all time. It is

not possible in the short term to distinguish between a slow principal and one that has exhibited

a temporary failure and will soon recover. However, in the long term principals make progress

at a bounded rate. When functioning, no principal is infinitely fast, and any temporary failure is

recovered within a bounded interval.

2.3 Time and clocks

Throughout this dissertation, the word time refers to the time that might be measured by an external

observer, as opposed to any internal or virtual time measure. When an event is said to happen

eventually after time t, the probability that the event will not happen during the period (t; t + �]
goes to zero as � !1.

Clocks provide monotonically increasing time-like measures within the system. Clocks progress

at the same rate as real time in the long term; however, over short intervals clocks may advance at

uneven rates.

Every principal p has access to some clock, denoted clock(p); the value of the clock at time t
is clock(p; t). This clock allows every important event performed by the principal to be assigned

a distinct timestamp. The clocks can be loosely synchronized, meaning that the clocks at any two

principals differ by at most a constant � :(8t)(8p; q 2 P )jclock(p; t)� clock(q; t)j < �:
This assumption is not required for most of the results in this dissertation. The text indicates any

place where loose clock synchrony is assumed. Clock synchronization is a well-studied problem

[Lamport78, Cristian89], and the NTP protocol currently provides this degree of synchrony on the

Internet [Mills88].

In my experience most host clocks are within half an hour of the correct time, indicating a

maximum � of an hour. Hosts that synchronize using NTP are much more accurate, and an � of

about a minute appears sufficient.



14

2.4 Network

Hosts are connected by a network, and communicate using messages. In the short term, message

transmission latency between two functioning hosts is bounded [Golding92b]. This assumption

is required for standard Internet protocols such as TCP [Postel80, Comer88]. In the long term,

temporary host and network failures, coupled with message retry, make message transmission

latency finite but unbounded.

The network includes both the physical communication media and the low-level protocols that

use it. For the Internet, this includes the long-distance backbone links, local-area networks, and the

IP communication protocols.

The communication network does not always deliver messages in FIFO order, and it may lose

or duplicate messages from time to time. It does not spontaneously create messages.1

Networks have both a physical topology and a logical topology. The physical topology is

determined by connections between physical components, and many parts are often tree-like in

structure where a single failure can disconnect, or partition, the network. The logical topology

of the open Internet is a completely-connected graph, because the IP protocols hide the physical

topology to allow every host to communicate with every other host. However, I make a weaker

assumption: the network is connected, but it need not be complete. Since many organizations choose

to protect their internal networks from the rest of the Internet, in practice the logical topology of

the Internet is composed of a number of completely-connected subcomponents. A host has a set of

neighbors in the logical network with which it can communicate.

No part of the network fails permanently, though temporary partitions can occur. The network

need never be free of partitions, as long as any principal can eventually send a message to any other

principal on a neighboring host if it continually tries to send until it receives an acknowledgment.

This is a much weaker assumption than requiring periods when the network is free of partitions.

My studies of message reliability on the Internet [Golding92b] suggest that the probability that the

1Spurious packets can occur on the Internet; however, it is unlikely that they would fall into an existing TCP
conversation and have a valid checksum.



15

Internet is ever free of partitions is effectively zero, and the advent of portable computing systems

ensures that there will ever be a time when all systems are connected and functioning.

Semi-partitions are possible, where only a low-bandwidth connection is available. For example,

a mobile system could be connected through a low-bandwidth cellular modem or a noisy telephone

line.

2.5 Network services

As mentioned earlier, clients must be able to identify the group members that are near them. This

presumes the existence of two services: a name or location service, which identifies the principals

in a group, and a performance prediction service that orders principals by locality.

The location service might, for example, map a service name into a set of server addresses. This

service might be implemented using the current DNS, or by a more advanced system [Bowman90,

Deutsch92]. Indeed, it can be implemented using weak consistency, as in the Xerox Clearinghouse

system [Oppen81]. The service must always provide some way of locating at least one current

group member, as long as the group still exists. I will discuss some related issues in Chapter 8.

The performance prediction service provides a way to select from the principals based on

expected communication performance. Expected performance is based on a prediction of com-

munication latency, failure, and bandwidth. If an operation requires that only a small amount of

information be moved between sites, message and processing latency will dominate performance.

If large amounts of information must be transferred, then bandwidth will dominate. The prediction

should be biased by the probability that the client can communicate with the member. Concurrent

with my work on group communication,I have begun investigating the problems of performance pre-

diction [Golding91b, Golding92b] and of using these predictions in the quorum multicast protocol

[Golding91a, Golding92d]. Preliminary results suggest that significant performance improvements

can be achieved using simple prediction strategies.



16

Chapter 3

A framework for group communication
systems

A wide-area system can include a large number of principals running at different sites in the network.

In Chapter 1 I proposed using a group communication mechanism to coordinate the activities of

these principals. The mechanism must be flexible, so that it can be adapted to the needs of an

application. It should also provide a structure that can be used to reason about a system, and to

re-use code between systems.

A framework is an object-oriented description of the components that make up a system,

and the interfaces between them. It generalizes concepts such as layered design, often used in

specifying network protocols [Tanenbaum81], and structured design [PageJones88]. It is related to

the Object-Oriented Design methodology [Rumbaugh91]. The Choices object-oriented operating

system provides frameworks for process management, virtual memory, storage, and other services

[Campbell92, Islam92].

Each principal that is a member of a group will include an instance of the group communication

framework. The framework defines components, which abstractly document the essential semantics

of the system and can be viewed as abstract object classes. Concrete classes specialize these abstract

classes by providing an implementation of the component. An instance of the framework consists

of various objects instantiated from the concrete classes.

A framework is useful both as a tool to design components, and as a method for sharing design

and coding effort between applications. In this chapter I will present a framework for constructing

a group communication mechanism.



17

3.1 The framework

The group communication framework has four components, as shown in Figure 3.1: application,

message delivery, message ordering, and group membership components. They communicate

through three shared data structures: a message log, message summary information, and a group

view. A principal includes one instance of each component and data structure.

The message delivery component implements a multicast communication service that exchanges

messages with other principals. It decodes incoming messages and writes them to the message

log, from which they will be delivered to the application or group membership component. It

also maintains summary information of the messages sent and received that can be used by the

message ordering component. The message delivery component determines whether the group

communication system provides weak or strong consistency, by providing eventual or immediate

message delivery.

The group membership component maintains a set of the principals that are in the group. The

set is called the local view of the group. When the set changes, this component communicates with

the group components at other principals according to a group membership protocol. The protocol

ensures a degree of consistency between group views. The communication consists of messages

sent through the message delivery component.

The network and the message delivery component can reorder messages arbitrarily. The message

ordering component processes the stream of incoming messages to ensure they are presented to

the application according to some ordering. This step may require delaying some messages until

the ordering component can correctly establish the order. To ensure this is possible, the ordering

component also processes outgoing messages so that the ordering components at other principals

will have enough information to properly order messages, usually by adding a header to each

message.

The application manages group state. It might receive requests from clients outside the group,

and translate those requests into group messages. The message would be given to the message

ordering component, which would add a header containing ordering information. The message

would then be stored in the log until the message delivery component sent it to the other principals.



18

Application

Summary

timestamps
Message

log

membership

Group

Message
ordering

Message

delivery

Membership

messages

Membership

messagesTimestamped

messages

Timestamped

messages

Group
view

App Group

Messages

Memberships

Other principals

FIGURE 3.1: A framework for constructing a group communication system. Each principal in the group
includes an instance of this framework, in the form of objects instantiated from concrete implementation
classes.

At the other principal, the message would be received by the message delivery component and

written to the message log. Some time later, enough information would be available so the ordering

component could deliver the message to the application. The application component in this second

principal would then act on the message and change its copy of the group state.



19

In the following sections I will discuss how this framework has been used to build two different

wide-area services: the Refdbms bibliographic database [Golding92a] and the Tattler distributed

reliability monitor [Long92]. I then detail each component and the implementations used by the

two applications.

3.2 The application

The application component maintains the principal’s copy of group state. The state has a logical

data model, whether or not the principals actually store the data. The data model defines of the data

to be shared, the operations to be performed on that data, and correctness constraints that must be

maintained. The model determines what guarantees must be provided by the other components of

the framework, and therefore what implementations can be used for them.

When a principal needs to perform an operation that effects a change to the group state, it

encodes the operation in a message that is sent to the group. When it receives the message back,

it performs the operation. When a principal is to execute an operation that does not change group

state, it might be able to perform the operation using only local information, or it may need to send

the operation to the group.

Some operations can tolerate inconsistent or out-of-date information. For example, updating a

host address in a distributed name service does not require knowing the previous address, and it is

not necessary for every replica in the service to observe the change immediately as long the change is

propagated without too much delay. If every operation on the group state can tolerate inconsistency,

then the message delivery component can be implemented with a protocol that provides weak

consistency.

The operations allowed on the data can dictate a particular message ordering. If all operations

are commutative, that is, if they can be applied in any order with the same net result, the message

ordering component need not impose an order on the messages specifying the operations. It is more

likely that operations will be order-dependent, in which case a total message order will ensure that

every principal computes the same result for each operation.



20

If operations are order-dependent and messages are delivered eventually, the application will

need to provide mechanisms for detecting and resolving conflicting messages. For example, one

principal could send a message changing the state to one value, and another could concurrently

send a message changing it to a different value. Local-area distributed systems can use locking

mechanisms to avoid conflicts, but many wide-area applications cannot wait for a global locking

operation before performing an update. Instead, principals make optimistic updates that must be

checked before they are applied to the database. A message ordering implementation that delivers

messages in a total order can provide a basis for consistent conflict detection.

Some applications require that the data contain unique identifiers. Unique identifiers are a

common source of update collisions in weakly consistent systems, because different principals can

use the same identifier in different ways. In some cases identifiers can be generated internally, but

in other cases they must be provided by the user. Their presence can also determine whether two

groups can merge their state.

The shared data may include explicit version or timestamp information. If they do, it may be

possible to resolve update conflicts without requiring strict message orderings, and the ordering

component may not need to append timestamp information to messages.

3.2.1 The Refdbms application

As discussed in Chapter 1, the Refdbms 3.0 system implements a distributed bibliographic database.

A Refdbms database consists of a set of references, each with an internal unique identifier and a

tag like Smith91 that humans can use to name a reference. At all times the internal identifier

is guaranteed to be unique. The tag should be unique, but this is not guaranteed for newly-added

references until all sites holding a replica of the database can observe and resolve conflicting updates.

The references are indexed by the tag and by an inverted index of content keywords.

Three operations can update the database: adding, changing, and deleting references. The

update operations are neither commutative nor idempotent, meaning that every update operation

must be performed exactly once, and in exactly the same order by every principal, if the databases



21

Message delivery
daemon

Message delivery
program

Post

Database

Log

Delete

Change

Add

Search

Other

principals

FIGURE 3.2: Structure of a Refdbms principal. The system uses reliable eventual delivery, implemented in
the message delivery program and daemon, and total message ordering, implemented in the posting program.

are to reach agreement. This suggests that a message delivery component should deliver update

messages in a total order, and that messages should be delivered reliably.

Users at different sites can submit conflicting updates. There are three sources of conflict:

adding two different references with the same tag; changing one reference in two different ways;

or deleting a reference then submitting another operation on it to a different principal. The basic

mechanism for handling conflicts is to process update messages in the same order at every principal.

I will discuss how conflicts are resolved in more detail in Section 3.2.3.

Users can also search for references. Searches need not return completely current information,

as long as a search will eventually reflect any update. This implies that eventual message delivery

is acceptable in the message delivery component.

Refdbms is implemented as a set of programs that communicate over the Internet using TCP

(see Figure 3.2). Users can submit operations, which are written as messages to a log. From time to

time the message delivery program propagates these messages to another replica by connecting to

a daemon there, which in turn writes the update message to its log. Group membership changes are



22

exchanged at the same time. The message delivery program and daemon together form the message

delivery and group membership components. The message ordering component is contained in a

posting program that periodically determines what updates can be delivered to the database.

3.2.2 The Tattler system

The Tattler system is a distributed availability monitor for the Internet [Long92], built by Long and

Sriram. It monitors a set of Internet hosts, measuring how often they are rebooted and what fraction

of the time they are available. The measurements are taken from several different network sites to

minimize the effect of network failure on the results, and to make the sampling mechanism very

reliable.

Each measurement site runs a tattler, which samples host uptimes and shares these measurements

with other tattlers. Collectively the tattlers maintain a list of hosts to monitor and collect statistics

on them. A record of the form hhost address, poll method, poll intervali is kept for each host. The

client interface allows hosts to be added or deleted from this list. The recorded statistics are stored

in a database, which stores tuples of the form hhost address, boot time, sample timei.
Only one operation updates a Tattler database: merging a set of samples. Each sample represents

an interval when the host was known to be available. A sample that is being merged into a database

will either be disjoint from every other sample recorded for the same host, or it will overlap with

another sample. If it overlaps, the two samples are combined. Otherwise, the host has been rebooted

and a new interval has begun.

Each time a tattler obtains a new sample, it logically multicasts the sample to other tattlers.

Sample merging is commutative and idempotent, so message ordering is unimportant as long as

messages are delivered reliably. However, unlike Refdbms, the Tattler does not explicitly implement

a message log. The database contains all the information that would be maintained in the message

log, so the implementations of the message ordering and delivery components can work directly

from the database.

Each tattler is composed of four parts: a client interface, a polling daemon, a data base daemon,

and a tattler daemon. Figure 3.3 shows this structure. The polling daemon produces sample



23

Client
interface

Polling
daemon

Data base
daemon

Tattler
daemon

Other
tattler

daemons

FIGURE 3.3: Structure of a Tattler.

observations. It takes samples at a specified rate, and can be requested to start or stop sampling

using the client interface. The data base daemon provides stable storage for sample observations

(from the polling daemon), and meta-data from the client interface and the tattler daemon. All of

the group communication components are implemented in the tattler daemon, which exchanges

samples, host lists, and membership information between tattler sites using a reliable, eventual

delivery protocol.

3.2.3 Handling update collisions

Wide-area applications generally perform optimistic updates to group state that may conflict with

other updates because pessimistic conflict-prevention mechanisms involve expensive, consistent

coordination steps. In some applications, such as the Tattler, optimism is not a problem since all

operations are commutative and cannot conflict. Other applications, including Refdbms, define

operations that can conflict, so these applications must provide mechanisms to detect and resolve

conflicting updates. These applications can also provide mechanisms to make conflicts unlikely

even when they cannot be prevented.

As noted earlier, there are three kinds of conflict in Refdbms: between two add operations,

between two change operations, and between a deletion and any other update. Different techniques

are used to detect, resolve, and avoid each kind of conflict. All of the techniques make use of

messages being delivered in the same order at every principal.

Two newly-added references conflict if they have the same tag. Recall that tags are assigned

by users and are supposed to be unique within a database, but this cannot be guaranteed when users



24

at different sites add references independently. This kind of conflict is detected when the second

add message is delivered to the application at each principal. The first reference will already have

been added to the database. When Refdbms finds that the tag has already been used, it computes a

new tag for the reference by adjusting a suffix on the tag: Smith90 would become Smith90a, andJones90b would be changed to Jones90c. There is a limit of up to ten suffix characters, but it is

most unlikely that there will be more than 2610 references from one author in one year. The update

message can then be re-processed using the new tag.

There is one problem with this scheme: users may have submitted change or delete operations

for the modified reference. These operations should not be associated with the tag of that reference,

since it could change when the add operation is performed and the change would then be applied to

the wrong reference. Instead, each reference is given an internal identifier composed of a host name

and timestamp that is guaranteed always to be unique and is never modified. Change operations

can then be associated with the correct reference, even if its tag has been modified.

Conflicting change operations in Refdbms are more complex. They are not explicitly detected

or resolved; instead, change operations are simply applied in the same order by every principal.

However, change operation messages only carry the difference the change is supposed to apply

to the reference. In this way if one user corrects the spelling of an author’s name while another

user at a different principal independently adds keywords, both changes will eventually appear in

the reference. Fields can be grouped together, and a separate policy is used for each group of

fields. For example, a change to any author-related field will result in all author-related fields being

overwritten, while location lines can be inserted or deleted individually. This technique reduces the

probability that two change operations will conflict, even if they apply to the same reference.

Finally, deletion cancels any other operations. Change or delete operations delivered after a

reference has been deleted are simply ignored.

3.3 Message delivery

The message delivery component fills the same function as the transport layer in the ISO layered

network model [Tanenbaum81], in that it exchanges messages with other principals without inter-



25

TABLE 3.1: Possible message delivery reliability guarantees, from strongest to weakest.

Kind Guarantee

Atomic Message is either delivered to every group member, or to none.
Message is aborted if any group member fails.

Reliable Delivered to every functioning group member or to none, but
failed members need not receive the message. If the sender fails,
delivery is not guaranteed but may occur.

Quorum Delivered to at least some fraction of the membership. If the
sender fails, delivery is not guaranteed.

Best effort Delivery attempted to every member, but none are guaranteed to
receive the message.

preting message contents. In my group communication framework, it retrieves messages entered

into a message log by other components and transmits them to other principals.

The delivery component provides guarantees on message reliability and latency. The reliability

guarantee determines which principals must receive a copy of the message, and latency determines

how long delivery will take.

There are several possible message reliability levels, ranging from atomic to best effort, as

listed in Table 3.1. Reliable mechanisms generally require extra state at each principal and induce

more message traffic than unreliable ones. They require the sender to retain a copy of the message

in its message log so the message can be retransmitted if necessary, and they require receivers to

acknowledge incoming messages. Best effort mechanisms need not keep a copy of the message.

Reliable delivery was used for both Refdbms and the Tattler. Reliable delivery is essential

for Refdbms, because even a single lost message can cause some principal to miss an update and

permanently diverge from the proper value. Reliability is less essential for the Tattler, because that

system can recover from a lost message the next time two databases are merged.

Message latency complements reliability: it determines how long principals may have to wait

to receive a message if it is delivered to them. There are two aspects to latency: when the delivery

process begins, and when it ends. The process can either begin immediately, or messages can

be queued for later delivery. Once started, delivery can complete in either a bounded time, or



26

TABLE 3.2: Possible message delivery latency guarantees.

Kind Guarantee

Synchronous Delivery begins immediately, and completes within a bounded
time.

Interactive Delivery begins immediately, but may require a finite but un-
bounded time.

Bounded Messages may be queued or delayed, but delivery will complete
within a bounded time.

Eventual Messages may be queued or delayed, and may require a finite but
unbounded time to deliver.

eventually. The four combinations are listed in Table 3.2. Other guarantees can be used that fall

between the ones listed.

Eventual delivery was used in both systems because synchronous or interactive delivery can

severely limit fault tolerance. In particular it makes the system less tolerant of network partitions

and site failures. If messages can be delayed, they can be delivered after the network or system

failure has been repaired. The Internet is essentially never without partitions, and mobile computers

may spend a substantial fraction of the time disconnected.

Eventual delivery also allows the system to delay messages until inexpensive communication

is available. This might mean waiting to transmit messages until evening when the network is less

loaded. Some mobile systems spend long periods “semi-connected” through a low-bandwidth wire-

less link, and it may be more effective to wait to transmit messages until the system is reconnected

to a higher-speed link.

While interactive delivery is not necessary, both Refdbms and the Tattler are most convenient

when updates propagate quickly. The Tattler takes steps to increase the propagation rate on observing

changes to group membership or the list of monitored hosts. This propagates important changes

quickly, while ordinary updates are propagated normally.

Reliable eventual delivery provides weak consistency. Every update to group state is encoded in

a message, which is delivered to every principal. While the message is being sent, some principals



27

will have received the message while others will not. This inconsistency between principals is

removed when delivery completes.

I have developed the timestamped anti-entropy protocol as one implementation of the message

delivery component. It provides reliable eventual message delivery in wide-area distributed sys-

tems. Chapter 5 discusses this protocol in detail. It maintains a summary of the messages and

acknowledgments it has received, and periodically exchanges batches of messages between pairs

of principals. The summaries make the exchange efficient by allowing each principal to send only

the messages the other has not yet received. As long as every principal periodically performs these

exchanges, every message will eventually be delivered to every principal, thus providing reliable

eventual delivery. It masks transient failures by periodically retrying message exchanges, making

it ideal for for the Internet and mobile computing.

3.3.1 Propagating messages versus state

There are two models for storing and transmitting messages. In the first model, each message is

entered into a message log, sent to other principals, and later applied to the group state by each

principal. Alternately, it can be immediately applied to the group state and its effects can be logged

and transmitted to other principals. Refdbms uses a message log, while the Tattler operates from

the sample database.

Message logs are simple. Every update operation produces one update message, which is then

sent to every group member. After the message arrives at other principals, its operation can be

applied to the group state. The messages can be tagged with timestamp information so that any

ordering is possible. The group state need not include any extra information to ensure that messages

are applied in the right order.

Propagating effects rather than updates is more complex, but it can be a more efficient solution

when eventual delivery is allowable. If a part of the group state is updated very often, the results of

several operations can be collapsed into a single result. That result can be sent to other principals,

rather than one message for each operation.



28

Since there are no messages, the group state must include ordering or timestamp information.

In the Tattler each sample contains a timestamp. When updates are propagated from one principal

to another, samples are exchanged and merged into the other database. In the Tattler, the sample

timestamp is used just as a message timestamp would be. A sample in the database may reflect the

merging of several measurements, so there can be fewer samples sent between principals than if

each measurement were logged individually. Some systems that use state exchange can also tolerate

some lost “messages” because the value can be obtained from a different principal in a later update

exchange.

Unfortunately, many applications cannot use state exchange. It is impossible to construct

global orderings on updates before they are applied to the database because updates are always

applied immediately. In some distributed systems, such as Refdbms, update conflicts cannot be

resolved without global message orderings. Other applications simply cannot maintain the necessary

information in their group state.

Deleting items from the group state requires special consideration when message logs are not

used. Deletion should be a stable property: once an item has been deleted, it should remain so

forever. The item should not spontaneously reappear, though of course a new item with the same

value could be added by an application. A record of the deletion must be maintained until the deletion

has been observed by all principals, so that no principal can miss the operation and re-introduce

the item to other principals. In the Clearinghouse these records were called death certificates

[Demers88], while the Bloch-Daniels-Spector distributed dictionary algorithm [Bloch87] places

timestamps on the gaps between items as well as on the items themselves. The Tattler uses the

death certificate approach to track hosts that should no longer be polled.

3.4 Message ordering

The message ordering component is responsible for ensuring that messages are delivered to the

application in a well-defined order. This order may be different from the order in which messages

are received. For example, an application should receive updates to a database record after the



29

TABLE 3.3: Some popular message ordering guarantees.

Kind Guarantee

Total, causal The strongest ordering. Messages are delivered in the same order
at every principal, and that order respects potential causal relations
between messages.

Total, noncausal Messages are delivered in the same order at every principal, but
that order may not always respect potential causal relations.

Causal Messages are delivered in an order that respects potential causal
relations. If two messages could be causally related they are
delivered in the same order at every principal. If they are not,
they may be delivered in different orders.

FIFO Messages from each principal will be delivered in order, but the
messages from different principals may be interleaved in any
order.

Unordered Messages are delivered without regard for order.

message creating the record. Even if the messages were sent in the right order, they may be

rearranged in transit and arrive at their destination in a different order.

Table 3.3 lists some of the most common message orderings. Some of these ensure that every

principal delivers messages in the same order. An application can use this property to ensure that

updates occur in the same order everywhere. Total causal ordering, for example, is provided by the

Isis ABCAST protocol [Birman90]. Other orderings respect potential causality [Lamport78]. If

there is any possibility that the contents of one message depend on the effects of another message,

the ordering component guarantees that the other message will be delivered first. The Isis CBCAST

protocol provides this ordering.

Message ordering guarantees can be limited just to message senders, to the principal group, or

among all principals anywhere in the network. The FIFO guarantee is limited to message senders,

and can be useful when each principal is sending out an independent stream of updates. Limiting

consistency to the group is more common, but it is insufficient when the group must interact with

other systems. Ladin’s Lazy Replication mechanism [Ladin91] provides ways to order messages



30

by any potential causal relation that can be detected by a principal, even those caused by activities

outside the group. This guarantee is sometimes called external causal consistency.

A message ordering mechanism can be evaluated by the amount of extra information that must

be appended to messages, by the amount of state each principal must maintain, and by the delay it

imposes between receipt and delivery. Some causally-consistent mechanisms require that messages

be tagged with a number of timestamps or message identifiers [Mishra89]. Total orderings can

be accomplished with a per-principal counter or timestamp, though the resulting order will not be

causal unless the counter or timestamp respects the happens-before relation [Lamport78].

3.4.1 Using message ordering

The Tattler does not require a message order because the operation of merging a sample into the

database is not order-dependent. A sample represents a range of times that a host was known to be

continuously available. When a new sample is to be processed, it will either overlap an existing

sample, in which case the two will be combined, or it represents a new range.

The operations on a Refdbms database, on the other hand, are order-dependent. The value of a

reference is the value of the last update applied to it. For two principals to record the same value

for a reference, they must apply the same updates in the same order. For Refdbms, each update

message is tagged with a timestamp from its originator’s clock. Messages are then applied to the

database in timestamp order. Recall that every principal has access to a local clock that is loosely

synchronized with other clocks, and that every event can be marked with a unique timestamp from

that clock.

This simple ordering is total, but it is not necessarily causal. Consider two principals A and B
that can communicate with latency �; where this latency is much smaller the difference � between

their clocks. A sends a message to B; which then sends another message. The second message is

causally dependent upon the first message. However, if the clock at A is ahead of the clock at B;
the first message will receive a timestamp greater than that of the second message.

Furthermore, this scheme is biased so that messages from principals whose clocks lag behind

others will always be applied before those with faster-running clocks. As long as clocks are loosely



31

synchronized to within some � and the mean time between updates to a reference is larger than �
this bias has little effect.

Message ordering can require delaying updates for extended periods. Users, on the other hand,

may need to use the results of an update immediately. Refdbms resolves this by making recent

database changes available in a pending image of a reference. If there are conflicting updates, the

contents of the pending image are only an approximation of the final reference. The pending image

is removed when there are no update operations pending for the reference. The pending image

can be retrieved by providing a tag of the form Smith92.pending. This allows citations of pending

references to be embedded in a LATEX document or sent to another user by electronic mail.

My performance evaluation in Chapter 7 shows that the simple total ordering used in Refdbms

does not substantially delay message delivery on average. Messages are delayed at most by the

maximum difference between clocks, plus the delay between receiving a message and receiving

a greater or equal timestamp from every other group member. The difference between clocks is

bounded by �: The performance evaluation of the timestamped anti-entropy protocol shows that the

variance in delivery latency is small, so that a message with one timestamp will arrive at about the

same time as messages with similar timestamps from other principals.

3.5 Group membership

This component is responsible for maintaining the view of what principals make up the group. The

group components at different principals exchange messages among themselves separate from the

normal application messages. In some systems these group operation messages are processed by

the message ordering component so that group changes are consistent with application messages.

For example, every member can observe a principal joining the group at the same point in the

message sequence. In the Refdbms and Tattler systems, however, this sort of consistency is not

important because none of the operations on group state depend on the membership. Therefore

group messages are delivered independent of application update messages.

There are two fundamentally different models for group membership, depending on whether

group membership is based on a join/leave protocol or whether it is a process of discovering



32

group members. The first mechanism is used in many existing systems, including Isis, Arjuna,

most replication protocols, Refdbms, and the Tattler. The second mechanism has been proposed

by Cristian [Cristian91], and works by discovering what principals believe they are members. It

generally requires global broadcast, which is infeasible in networks the size of the Internet. This

mechanism is not considered further.

Four operations can be performed on the membership view: hosts can join, leave, fail, and

recover. The membership component incrementally builds up group membership as principals

execute protocols for each of the four operations. Some implementations will also provide a

protocol for merging two groups. A principal is considered to be a member if it has successfully

executed the join protocol, and it remains so until it executes the leave protocol. This implies that

there is some notion of the existence of a group independent of the principals that make it up. It

might even be possible for a group to exist without any members.

Group state management is an essential part of the join and leave protocols. When a principal

finishes executing the join protocol, it must have received a copy of the group state. This copy will be

derived from the state maintained by one or more principals that were already group members. The

new member also must receive a copy of the message log, message summaries, and group view. It is

important that this state transfer not violate the message reliability and ordering guarantees provided

by the other components. For example, the message log should include any update message that has

not yet been applied to the group state, but which has been received by the principals that supplied

the state. If it were otherwise, an update message might never be delivered to a new member

and its copy of the group state could permanently diverge from other copies. Group membership

mechanisms that allow groups to merge must also provide a way to merge the state of both groups.

The group membership component must provide a guarantee on its fault tolerance, which is

measured by resilience to member failure. Since a principal can only contact member principals

in its view, the group membership mechanism will fail if the only principal to know about another

fails. The “knows-about” graph is correct if the transitive closure of all views is equal to the group

membership. This ensures that every group member can contact every other group member, and

that no other principals are in a view at any principal. To ensure that the graph stays correct after as



33

many as k failures, the minimum vertex-cut of the graph between any two principals must be k+ 1

or greater.

The group mechanism can also be evaluated by the amount of state each principal must maintain.

Existing mechanisms range from centralized registries to fully distributed systems where every

principal is a peer. Few mechanisms require more than O(n) state in the number of group members,

and some require only Θ(logn):
3.5.1 Using group membership

I have developed two group membership mechanisms, one that only allows principals to join

and leave, the other allowing group merges (Chapter 6). Both implementations maintain a tuplehprincipal, status, timestampi for each principal in a view, requiring Θ(n) state at every principal.

These protocols ensure fault-tolerance by requiring new members to obtain at least k + 1 sponsors

among the membership, ensuring that the minimum vertex-cut is never too low. As long as fewer

than k member principals fail, the graph will remain connected.

Refdbms uses the join-leave implementation because there is neither any need nor any sensible

way to merge two databases. In Refdbms, a partitioned membership view graph will usually cause

some updates never to be propagated from one partition to another, because the update will disappear

once it has propagated everywhere in the partition. I balanced the expense of obtaining multiple

sponsors against these problems, and decided that principals should obtain two sponsors when they

join the group. This ensures that the view graph will always be resilient to at least one member

failure.

The Tattler uses the implementation that allows group merges because its sampling operation is

based on merging sample results. It allows principals to obtain just a single sponsor when joining

because the effects of partitioning are not very severe. Tattlers can merge their sample databases

after a partition has healed and no information will be lost. The only negative effect is that some

principals in a membership view or hosts in a polling list that had been been deleted in one partition

will reappear when the two are reconnected. This occurs because the record of deletion is maintained

only until every principal in the partition has observed it.



34

3.6 Summary

The Refdbms and Tattler applications have been built and are running on the Internet. These

represent two of the many kinds of wide-area applications that are likely to become available in the

next several years. Both applications were constructed as a collection of principals organized into

a weak-consistency principal group.

Weak consistency mechanisms provide fault tolerance and communication efficiency. The

applications can tolerate extended host failure and can continue to operate when a principal becomes

disconnected from others in the group. Messages can be delayed and batched to reduce the load the

applications impose on the Internet. In particular I have found that the timestamped anti-entropy

protocol provides a convenient message delivery mechanism that is flexible enough to support both

applications.

I have developed a framework for constructing group communication mechanisms. The frame-

work consists of an application, which defines the semantics of the state shared among the group;

a message delivery component, which communicates messages from one member to another; a

message ordering component, which assembles the incoming stream of messages into a coherent

order and delivers them to the application; and a group membership component, which maintains a

view of the membership. Each component can be implemented in many different ways, in order to

match the semantics required by the application.

Eventually I expect this work to lead to a general-purpose toolkit, but even now it provides a

structure for reasoning about and designing applications, and it is a valuable alternative to ad hoc

application construction. Some modular architecture of this sort is necessary if wide-area distributed

applications are to become common, efficient, and easy to construct.

Building programming language translators was once an expensive process, requiring many

years of programmer effort; the separation of compilation into a distinct set of phases and the

introduction of interoperable tools for each phase has made compiler-writing a subject for one-

semester undergraduate courses. I believe that this approach to structuring wide-area applications

will yield similar results for wide-area applications.



35

Chapter 4

Existing group communication systems

Several group communication systems have been proposed or built. Many other mechanisms have

been developed that provide similar functions under a different name. In this chapter I will survey

some existing approaches to constructing group communication mechanisms, discussing how each

can be built and the guarantees they provide. These approaches are classified according to the

component guarantees presented in Chapter 3 so that they can be compared with each other and

with the weak-consistency implementations I have developed.

Each section in this chapter concentrates on one particular approach. The first two sections of

this chapter cover two general approaches: centralization and consistent replication. While there are

many variations on each, they all provide essentially the same guarantees. Since neither approach

is well suited to large-scale wide-area systems, I only discuss them briefly. The remaining sections

present different protocols or systems, each of which provides group communication in a different

way.

The systems can be classified by the message reliability, latency, and ordering guarantees

they provide. Table 4.1 summarizes the guarantees provided by each of the systems surveyed. The

systems are organized vertically by increasing strength of the message ordering guarantee. Columns

show the latency and reliability guarantees.

The sections that follow are organized roughly from strongest guarantee to weakest. The

approaches in the first sections do not work well for large-scale groups, while the later sections

discuss systems explicitly built for the wide area.



36

TABLE 4.1: The group communication systems surveyed. Listed in roughly increasing strength of ordering
guarantee.

Message Reliable delivery Unreliable
ordering Interactive Eventual delivery

Unordered Reliable multicast Anti-entropy Direct mail
Tattler Rumor mongery
OSCAR

Causal Lazy Replication Lazy Replication
ISIS CBCAST
Psync

Total, �-serializability Refdbms
noncausal OSCAR

Total, ISIS ABCAST
causal Centralized systems

Orca RTS
Consistent replication

4.1 Centralized protocols

The simplest way to build a wide-area service is to implement a server and allow clients every-

where to connect to it. This is the centralized approach. A centralized group communication

system requires that all group members communicate with the central group server to send and

receive every message. Many current wide-area services have taken this approach, including the

WAIS text-retrieval system [Kahle89, Kahle91], the World Wide Web distributed hypertext system

[Berners-Lee92], and the Archie FTP location service [Emtage92b]. A central server is easy to im-

plement and uncomplicated to communicate with. Unfortunately, it is only as available as the host

it runs on and the network between it and its clients. If the service becomes popular, a centralized

server has no mechanism for spreading load to other systems – which was a problem for the Archie

system within a year of its introduction.

The fault tolerance and scalability of a centralized server can be improved by providing additional

servers using a primary copy or master-slave approach. Application requests are sent to the

primary copy, which synchronously sends the request to all secondary copies. The primary copy is

responsible for sequencing operations. When a replica recovers from a failure, or when the primary



37

fails, an election is held to determine which replica becomes the primary. The Echo file system

[Mann89, Hisgen90], for example, combined primary-copy replication with client caching. The

Sun Network Interface Service [Sun88] (commonly called the “Yellow Pages” service) also uses

primary and secondary servers.

The Domain Name Service [Mockapetris87] and the Clearinghouse name service [Oppen81]

both combine centralization and replication. In both systems, the name space database is divided

into a set of domains, and each domain must be stored at one or more servers. A server may store

more than one domain. Some domains have only one server, while other domains are replicated to

several servers. The Clearinghouse used epidemic replication (Section 4.10) to maintain multiple

copies of a domain.

The quasi-copy technique [Alonso90b, Barbará90, Alonso90a] provides a way to specify bounds

on the inconsistency allowed between master and slave copies of data. A user can specify that the

value of a copy should differ from the “real” value by no more than some constant, or that it should

not be out-of-date by more than some period or number of versions.

4.2 Consistent replication protocols

A replication protocol defines operations on a replicated data object. One principal is a client, and

one or more principals are servers or replicas. The protocols provide client-to-server operations to

read and write data, and server-to-server operations for adding and removing replicas and to handle

replica failure. A principal can act both as a client and as a replica. Every read and write operation

is atomic and consistent, the protocol aborts any operation that cannot observe an up-to-date value.

There are three broad classes of replication protocol: available copy, voting, and hybrids. The

available copy protocols [Bernstein84, Bernstein87] are sometimes called the “read-one-write-all”

protocols. Update operations must be applied at all available replicas, while a client can read from

any replica. Correct execution of these protocols require that the network never partition, and

that messages be delivered reliably. In the voting protocols, each replica is assigned one or more

votes. Each operation collects votes from replicas, and can proceed when it has collected a quorum

of votes. Majority Consensus Voting protocols [Thomas79, Gifford79] assign each replica one



38

vote, and require each operation to collect a majority of votes. Other voting protocols change vote

assignments when replicas fail [Barbará86], or change quorum requirements [Davčev85, Jajodia87,

Long88]. The Virtual Partition protocol [El-Abbadi86] is a hybrid between available copy and

voting.

Most of these protocols cannot scale to large numbers of replicas and require excessive commu-

nication overhead on wide-area networks. The voting protocols generally require communication

with several replicas for every operation. All consistent replication protocols block a replica from

providing service when it is partitioned from the rest of the network. The protocols rely on interac-

tive message delivery, so they are sensitive to transient network and host failure. I have considered

how several replication protocols can be implemented using a group multicast message delivery

protocol [Golding92d, Golding91b].

4.3 Orca RTS

The Orca programming language [Bal89, Bal90] provides language constructs for distributed pro-

gramming. Distributed applications are written in terms of shared data objects that can be accessed

by any cooperating process. The shared objects are similar to a distributed shared memory, except

that each object is a structured encapsulation of data values and operations. All update operations

on distributed shared objects are serializable; that is, their effects are the same as if they had been

applied in a serial order on a single central copy of the object.

The Orca compiler generates code that uses a run time system to manipulate shared objects. The

run time system includes a group communication system and a process manager. Bal discusses three

distributed run time systems, as well as one for a shared-memory multiprocessor [Bal89, Chapter

6]. One of the distributed implementations relied on reliable multicast, one on unreliable multicast,

while the third used Amoeba RPC [Mullender90, Mullender86].

The first implementation is based upon a reliable, interactive multicast protocol that delivers

update messages in a total order. Every process is multithreaded, and contains an object manager

thread plus some application threads. When a thread issues an update operation, it multicasts an

update message to every process and then blocks. The object manager receives these messages and



39

executes the operations in the order received. When the update message has been executed at the

process that issued the update, the blocked thread is awakened and proceeds. This implementation

is simple because the underlying multicast protocol provides semantics that match the requirements

of the application data model.

The second implementation, based on an unreliable interactive multicast protocol, is more

complex. Processes maintain a count of the messages they have sent, along with a vector of the

message counts of other processes. A process appends its message count vector to every outgoing

message. When a process receives a message that was multicast by another process, it increments

its view of the message count for the other process, then compares the vector on the message with

its own. If they do not match, the process has missed some messages and can contact the process

for which counts to not match to obtain the missing ones. Since missing messages are detected only

when other messages are received, the run time system periodically generates dummy messages

to ensure missing messages are detected in a timely fashion. This results in reliable, interactive

message delivery.

The message count vector is similar to the message summary maintained by the timestamped

anti-entropy protocol. Both mechanisms summarize the set of messages that have been received,

and are used to detect messages that a principal or process has not yet received.

The Amoeba RPC implementation achieves serializability using a primary-copy update protocol.

One process is designated to maintain the primary copy of an object, and all write operations are

forwarded to that process. Different objects can use different processes to maintain their primary

copy. Other processes can maintain read-only secondary copies, which are updated by the primary

copy using a two-phase locking protocol. The run time system dynamically allocates secondary

copies at those processes that perform frequent read-only operations.

4.4 Isis

The Isis distributed programming toolkit [Birman87, Birman91] is without doubt one of the most

successful group communication systems yet developed. It has been used to develop many appli-

cations, ranging from replicated file systems to financial applications.



40

Isis provides atomic, interactive delivery with total or causal message orderings. Processes use

a group membership service to join and leave process groups, and a process can belong to more than

one group. Processes join groups either as a member or as a client. Group multicast is provided

using either the ABCAST totally-ordered multicast protocol or the CBCAST causally-ordered

protocol.

The newest Isis implementation is expected to be composed of a number of different compo-

nents. Application processes include a toolkit library that implements some of the higher-level

group membership services, and provides access to lower-level components. The basic group

communication and membership protocols are implemented in another component, which in turn

uses a raw communication component. Other services, including naming and failure detection, are

implemented as user-level processes with which an application can communicate.

Isis addresses different problems than weak-consistency mechanisms do. Its intended audience

is different: it is aimed at smaller systems that must often provide consistent, interactive service.

It coordinates groups of transient processes, unlike the fault-tolerant “processes” assumed for wide

area services. Isis is also intended as a toolkit that even unsophisticated programmers can use,

and thus presents a safer, more comprehensive application interface than the framework I have

developed.

4.5 Epsilon serializability

Epsilon serializability (ESR) is a correctness criterion for controlling transaction concurrency, and

is not specific to distributed systems. Unlike most of the other mechanisms in this chapter, it is

concerned with transactions where several operations must be executed as a group. It is an extension

of strict serializability that allows transactions to observe controlled inconsistency [Pu91b, Pu91a].

Rather than enforcing a strict ordering on all transactions, perhaps using a two-phase locking

protocol, orderings are applied only to update operations.

Pu and Leff [Pu91a] discuss four methods for implementing a replication control protocol that

works with an ESR concurrency control protocol. These replica control protocols use asynchronous

message propagation. Each update message contains the effects of an entire transaction. The



41

Ordered Update method executes update transactions in the same order at every process, which is

trivial to implement with totally-ordered, reliable, eventual message delivery. The Commutative

Operations method is limited to commutative update operations, while the Read-independent Time-

stamped Updates method is limited to operations that either append information or only overwrite

older versions. These methods can use unordered, reliable, eventual message delivery. Some

of the methods used in Refdbms for avoiding update conflicts take advantage of commutative and

append-only operations. Finally, an optimistic method applies operations right away, then uses com-

pensations to undo the effects of transactions that have caused or observed too much inconsistency

or that have violated serializability.

An ESR concurrency control protocol allows applications to limit the amount of inconsistency

a transaction can observe. Transactions can acquire a certain number of read-write or write-write

locks on objects – locks that are disallowed under strict two-phase locking. If a transaction attempts

to acquire more conflicting locks than the limit, the transaction is blocked. Commutative and

timestamped operations introduce additional kinds of locks.

Because ESR requires locking, it is not a good choice for services that must scale to large

numbers of replicas. However, it scales better than strictly serialized systems, and the definitions

of operation compatibility can be used to build conflict-reduction mechanisms in weak-consistency

systems that do not provide concurrency control (Section 3.2.3).

4.6 Psync

The Psync system [Mishra89] is a complete group communication system that provides causally

consistent, atomic, interactive message delivery and group membership operations.

The system is based around the Psync communication protocol. Processes start communication

by joining a group, which is called a conversation in Psync. Each message has an identifier. The

protocol appends causal information to each message, and group members use this information to

construct a graph of the causal relations between messages. The causal information consists of the

identifiers of every message on which this message depends, which requires O(n) space for each

message.



42

Messages are sent to group members using a best-effort multicast. A recipient can detect when

it has missed a message, because some other message will name it as a predecessor. The recipient

can request a copy of the message it missed from the process that sent the other message.

Psync allows fine-grained control over delivery order. As messages are received and added

to the dependence graph, some messages may become deliverable. They are delivered to the

application, which performs the corresponding operations. The set of operations can be partitioned

into sets of related commutative operations, and each partition assigned a priority. Within a partition,

operations that are not causally related are executed in any order, while non-commutative operations

are executed in order by priority.

Psync allows processes to join multiple groups, though it only ensures causal consistency within

a group. Every message must be qualified by the identifier of the group to which it is sent. Processes

join a group by executing a join protocol, after which they will begin receiving group messages.

The protocol includes a special operation to remove a temporarily failed process from the group,

and another operation to allow that process to recover.

The weak-consistency protocols used in Refdbms avoid the overhead of attaching O(n) state to

each message by attaching causal information to batches of messages. Each message only carries

a single timestamp, which is used to identify the message, while communication sessions includeO(n) timestamps.

The Consul system [Mishra92] provides a more complete group communication system, adding

failure detection, group membership, and stable storage modules to the basic Psync protocol. This

modularization of a group communication system includes many more parts than my framework

because it includes support for failure detection and recovery. This support is not as important in

a weak-consistency system like Refdbms that uses long-lived principals and a message delivery

protocol that hides transient host failure.

4.7 A reliable multicast protocol

Garcia-Molina and Kogan [Garcia-Molina88] have developed an internetwork multicast protocol

that provides reliable interactive delivery. It uses an unreliable interactive (best-effort) multicast



43

protocol to try to disseminate a message. Messages include sequencing information that allows

receivers to detect when they have missed one or more earlier messages. When a receiver detects

one or more missing messages, it contacts another principal to obtain a copy of them. As in the Orca

unreliable multicast protocol, senders periodically send null messages if they have not recently sent

a useful message, allowing receivers to detect missing messages quickly.

One unique feature of this protocol is that it takes advantage of network topology. Each

principal has a prioritized list of other principals, and it selects in order from that list when it needs

to contact another principal to retrieve a missing message. The protocol includes an algorithm for

building priority lists that form a spanning tree over the principals. It uses communication distance

between hosts, or the number of network links that messages between the two must traverse, to

order principals.

This protocol is similar to the Orca protocol based on unreliable multicast. Both protocols

attach sequencing information to messages, and use this information to detect messages that have

been missed. Both send periodic null messages to ensure progress.

The way this protocol recovers from missed messages and partitions is similar to the timestamped

anti-entropy protocol, except that it tries to deliver messages individually and interactively rather

than queuing messages for delivery in batches. The protocol builds a spanning tree over the

principals in the group, and messages are propagated along edges in that tree rather than between

arbitrary pairs of principals. If the spanning tree is built carefully, this approach can minimize

network traffic, though it can increase the time required to propagate a message. It is not clear how

to build a group membership system that properly recomputes the spanning tree as principals join

and leave a group without either centralizing the computation or involving the entire group.

4.8 OSCAR

OSCAR (Open System for Consistency and Replication) [Downing90a, Downing90b] implements

weak-consistency replication using a mixture of distributed and centralized elements. It provides

reliable eventual message delivery, with a variety of message orderings. The system is notable



44

because it is implemented as a set of cooperating components, though the architecture is significantly

different than that in Chapter 3.

Every replica is paired with a replicator and a mediator. During normal operation, whenever an

update is initiated at a replica the corresponding replicator sends an unreliable multicast message to

other replicators. The message includes a version number and timestamp. The replicators use this

information to present update messages to their local replicas in a correct order. From time to time

a master mediator polls every replicator, obtaining a version vector for every database item. The

version vectors from different replicas are combined, and the result is multicast to every replicator.

Replicators use the vector to detect messages they have missed, and to determine when messages

in their local logs can be purged.

When the network partitions, one mediator becomes master in each partition. Mediators are

prioritized, and a low-priority mediator becomes active when it has received no messages from

higher-priority mediators for a certain period. When the network partition is repaired, the lower-

priority mediator will become dormant, while the higher-priority mediator takes over for the entire

partition. Updates missed by replicas in one partition or the other will be propagated the next time

the mediator broadcasts a version vector.

This approach is not as efficient as my weak-consistency protocols over wide-area networks, and

cannot scale as well. Replicators perform an interactive multicast every time they send a message.

This causes much more network traffic than pairwise message exchange, which can approximate

an optimal spanning tree. Likewise, mediators must communicate interactively with replicators,

which causes a similar amount of network traffic and can overload the mediator if the group grows

too large. Further, this approach cannot function if the logical network topology is not completely

connected, while the timestamped anti-entropy protocol can.

4.9 Lazy Replication

The Lazy Replication system [Ladin90, Ladin91, Liskov87] provides reliable eventual message

delivery with a mix of causally and totally consistent orderings. Applications can specify exactly

what causal relations should be enforced between messages, so weaker orderings can be specified



45

by omitting some specification. Applications can also specify that causal relationships caused by

events outside the group should be considered when ordering messages.

The system uses message count vectors much like those in the Orca unreliable multicast RTS

(Section 4.3). The message count vector summarizes a set of messages. Two message count vectors

are attached to each message: one that specifies what messages must be delivered before this one,

the other serving as a unique identifier. Each principal maintains a vector summarizing the messages

that have been applied to the database, along with copies of the vectors from other principals.

The Lazy Replication protocol resembles a version of the timestamped anti-entropy protocol

that allows unsynchronized clocks (Unsync TSAE). This protocol is detailed in Section 5.4.4.

Both protocols store incoming messages in a log, and use message count or timestamp vectors to

summarize sets of messages. Both lazily update principals, and use the vectors to guide message

exchange and delivery.

The timestamped anti-entropy protocol is more efficient than Lazy Replication, because Lazy

Replication does not take full advantage of the information available in its timestamps. It causes prin-

cipals to transmit a message from one to the other many times, even when the message has already

been observed. It also requires both Θ(n2) state for acknowledgments and an extra message log to

ensure that duplicate messages are not processed twice, even though it requires loosely-synchronized

clocks for good performance. The TSAE protocols can use Θ(n) state when loosely-synchronized

clocks are available. Lazy replication performs one-way updates in its gossip messages, instead of

bidirectional updates.

4.10 Epidemic replication

The Xerox Clearinghouse service [Oppen81] is the name and location service for Xerox Network

Systems. It maintains a distributed database that maps structured names into a set of properties,

such as network addresses. The names are organized into a three-level hierarchical space, structured

into organizations, domains within organizations, and local names within domains. The mappings

for each domain are stored at one or more Clearinghouse servers. Clients can request any server to



46

look up the binding for a name, and the server will forward the request to the appropriate server if

necessary.

The Clearinghouse uses three different mechanisms to propagate updates between servers:

direct mail, anti-entropy, and rumor mongery [Demers88, Demers89]. Direct mail is simply an

unreliable best-effort multicast.

Rumor mongery provides unreliable eventual delivery, but it is more reliable than a one-time

best-effort multicast. To be a rumor monger, a principal selects another principal and sends it one

or more hot rumors. Hot rumors are recent update messages that the principal believes the other

is not likely to have observed. Several different stopping rules will ensure that a message does not

continue propagating forever, but none of the rules can ensure that a message has been propagated

to every principal before stopping.

The Clearinghouse anti-entropy protocol guarantees reliable eventual delivery, as does the

timestamped anti-entropy protocol. To execute the protocol, one principal selects another, and the

two exchange update messages until they are mutually consistent. Unlike timestamped anti-entropy,

messages are not timestamped, and the protocol does not maintain summaries of the messages

that have been received. Instead, database contents are exchanged directly, using checksums to

determine when enough entries have been exchange to make both principals mutually consistent.

Demers et al. describe heuristics for reducing the expense of this exchange, including building an

index on the message log so messages can be ordered from most recently received to least recent.

This anti-entropy protocol provided inspiration for the timestamped anti-entropy protocol. How-

ever, the Clearinghouse protocol can only provide unordered message delivery because it operates

from the database rather than a message log. It provides no mechanism to detect when a message

has been received everywhere, so database entries cannot be deleted reliably, and a principal can

receive a message more than once. The Clearinghouse protocols therefore could not be used for

applications like Refdbms that need stronger guarantees.



47

4.11 Summary

Many group communication systems have been proposed and implemented. They provide guar-

antees ranging from atomic, synchronous, totally-ordered message delivery to unreliable eventual

delivery. Only a few provide reliable eventual delivery, the guarantee used in the Tattler and

Refdbms systems. The Clearinghouse anti-entropy protocol and Lazy Replication are closest to the

timestamped anti-entropy protocol presented in the next chapter.

The weak-consistency protocols I have developed improve on these systems by providing

a combination of efficiency and well-defined guarantees. In particular, the timestamped anti-

entropy protocol delivers a message at most once to any principal, allows correct detection of fully-

acknowledged messages, and can be composed with a number of message ordering components. It

improves efficiency by transmitting messages in batches rather than singly.



48

Chapter 5

Weak-consistency communication

The previous chapters introduced a framework for building a group communication system as the

basis of a wide-area application. In this chapter I focus attention on the message delivery and

ordering components of the framework. These two components deliver application messages to

group members, and ensure that the messages are delivered in order. As discussed in Chapter 3, there

are several guarantees that can be provided by an implementation of either component. For delivery

component, the timestamped anti-entropy protocol provides reliable, eventual delivery. Various

implementations of the corresponding message ordering component can provide any ordering

guarantee.

5.1 Reliable, eventual message delivery

Systems like Refdbms and the Tattler use the timestamped anti-entropy protocol, which is used

to build a message delivery component that provides reliable, eventual delivery. This means that

every functioning group member will receive every message, but the message may require a finite

unbounded time for delivery. These guarantees reflect a tension between an application’s needs for

timely information, accurate information, and reliability.

Reliable delivery was chosen because information services are generally expected to provide

authoritative answers to queries. If one Refdbms replica were to miss an update, for example, the

database copy at that replica could permanently diverge from others. Systems like location services

that provide hints rather than authoritative answers are good candidates for unreliable mechanisms

[Terry85, Oppen81, Jul88, Fowler85].



49

Eventual delivery trades latency for reliability. The message delivery component can mask

out transient network and host failures by delaying messages and resending them after the fault is

repaired. It also allows messages to be batched together form transmission, which is often more

efficient than transmitting each message singly. Both of these features are especially important for

mobile systems that can be disconnected from the Internet for extended periods.

The timestamped anti-entropy (TSAE) protocol is similar to the anti-entropy protocol used in

the Xerox Clearinghouse [Demers88, Demers89]. Each principal periodically contacts another

principal, and the two exchange messages from their logs until both logs contain the same set of

messages. The TSAE protocol maintains extra data structures that summarize the messages each

principal has received, and uses this information to guide the exchanges. There are two versions

of the TSAE protocol: one that requires loosely-synchronized clocks, and one that does not. The

loosely-synchronized version is presented in this section, while the general version is deferred until

Section 5.4.4.

One important feature of TSAE is that it delivers messages in batches. Consider the stream

of messages sent from a particular principal. Those messages will be received by other principals

in batches, where each batch is a run of messages, with no messages missing in the middle of the

run. When a principal receives a batch, the run of messages will immediately follow any messages

already received from that sender. In this way principals receive streams of messages, without ever

observing a “gap” in the sequence.

The TSAE protocol provides additional features that are necessary for information services. The

protocol can be composed with a message ordering component to produce specific message ordering

guarantees. The ordering component makes use of the batching property to reduce overhead. TSAE

provides positive acknowledgment when all principals have received a message, so that the message

can be removed from logs and so that death certificates can be removed from the database. It also

provides a mechanism for two principals to measure how far out of date they are with respect to each

other. Applications can use this feature to prioritize communication when resources are limited,

and to prompt users of mobile systems to temporarily connect to a high-bandwidth link.



50class timestamp fhostId host;clockSample clock;Boolean sameHost(timestamp t);Boolean lessThan(timestamp t);// (etc: : : )gtimestamp CurrentTimestamp();// returns a unique timestamp for the local host
FIGURE 5.1: The timestamp data structure.

In this chapter, the group is assumed to have a fixed membership M of n principals. This

restriction is removed in Chapter 6. Chapter 7 explores the performance of these protocols.

5.1.1 Data structures for timestamped anti-entropy

Timestamps are used in every component to represent temporal relations and to name events. As

shown in Figure 5.1, a timestamp consists of a sample of the clock at a host, and is represented as

the tuple hhostId, clocki. The clock resolution must be fine enough that every important event in a

principal, such as sending a message or performing anti-entropy, can be given a unique timestamp.

Timestamps are compared based only on their clock samples, so that timestamps from different

hosts can be compared. The more specialized case of only comparing samples from a single host is

a trivial extension. Each host provides a function to retrieve a current timestamp; this function will

be named CurrentTimestamp in this dissertation.

Timestamps can be organized into timestamp vectors. A timestamp vector is a set of timestamps,

each from a different principal, indexed by their host identifiers (Figure 5.2). It represents a snapshot

of the state of communication in a system. In particular, it represents a cut of the communication.

Mattern [Mattern88] provides a well-written introduction to the use of time measures such as cuts

in reasoning about the global states of distributed systems.



51typedef set h principalId, timestamp i timestampSet;class timestampVector ftimestampSet timestamps;// update the entry for one principalupdate(principalId, timestamp);// merge in another vector, taking the elementwise maximumupdateMax(timestampVector);// determine temporal relation of a timestampBool laterThan(timestamp);Bool earlierThan(timestamp);Bool concurrentWith(timestamp);// determine temporal relation of another vectorBool laterThan(timestampVector);Bool earlierThan(timestampVector);Bool concurrentWith(timestampVector);// return the smallest timestamp in this vectortimestamp minElement();g
FIGURE 5.2: The timestamp vector data structure.

Some of the operations on a timestamp vector deserve special mention. Two timestamp vectors

can be combined by computing their elementwise maximum. A timestamp is considered later than

a timestamp vector if the vector contains a lesser timestamp for the same host. A timestamp is

considered concurrent with a vector if either the vector has exactly the same timestamp for the

same host, or the vector does not include a timestamp for the host. Note that these comparisons are

limited to one host, and do not consider possible temporal relations between different hosts. One

timestamp vector is later than another if every timestamp in the first vector is greater than or equal

to the corresponding timestamp in the other, and the two vectors are not equal.

Each principal executing the TSAE protocol must maintain three data structures: a message

log and two timestamp vectors (Figure 5.3). These data structures must be maintained on stable

storage, so they are not lost when the host or principal crashes.



52timestampVector summary;timestampVector ack;typedef list h principalId, timestamp, message, delivered i msgList;class msgLog fmsgList messages;// manipulate messages in the logadd(principalId, timestamp, message)deliver(principalId, timestamp)remove(principalId, timestamp, message)// query the log for all messages newer than some vectormsgList listNewer(timestampVector)// query the log for all messages older than some timestampmsgList listOlder(timestamp)// query for all messages sent by a principal between two timestamps// can use special value `ANY' for principalIdmsgList listMsgs(principalId, timestamp �rst, timestamp last)gmsgLog log;
FIGURE 5.3: Data structures used by the TSAE communication protocol.

The message log contains messages that have been received by a principal. A timestamped

message is entered into the log on receipt, and removed when all other principals have also received

it Messages are eventually delivered from the log to the application. The log includes functions to

retrieve messages that were sent later than the events recorded in a timestamp vector.

Not all applications will use a message log. Many applications, including the Tattler, can

operate directly from the copy of group state maintained by the application application component,

as discussed in Section 3.3.1. In that case the application must provide an interface to retrieve

“messages” along with the associated principal identifier and timestamp from the group state.

Principals maintain a summary timestamp vector to record what updates they have observed.

The vector contains one timestamp for every group member, and each member has received every

message with lesser timestamps. Figure 5.4 shows how the summary vector relates to the messages



53

4

3

12

Message log Summary vector

1 3 5 12A

3B

2 3 4C

FIGURE 5.4: How the summary vector summarizes the messages in the log. Each message is marked with its
timestamp. The timestamped anti-entropy protocol ensures that there are no “gaps” in the sequence of
messages in the log, so that the last timestamp stands for every previous message.

in the log. Recall that messages are transmitted in batches, and that there are never gaps in the

message sequence, so the timestamp of the latest message indicates that every message with an

earlier timestamp has been received.

The summary vector provides a fast mechanism for transmitting information about the state of

a principal. It is used during an anti-entropy exchange to determine which messages have not yet

been received by a principal, and two principals can compare their summary vectors to measure

how far out of date they are with respect to each other.

Formally, the summary vector maintained by principal A is written summaryA; the subscript

will be omitted when it is clear from context. Principal A records a timestamp t for principal B
in summaryA(B) when A has received all messages generated at B with timestamps less than or

equal to t. The timestamp t is measured from the clock at B. Each principal maintains one such

timestamp for every principal in the group.

Each principal also maintains information about message acknowledgments. Rather than ex-

plicitly send an acknowledgment for every message, the information in the summary vector is used

to build a summary acknowledgment. As long as principals use loosely-synchronized clocks, the

smallest timestamp in the summary vector can be used as a single acknowledgement timestamp for

all messages received by the principal (Figure 5.5). Clearly every message with a timestamp less

than or equal to the minimum has been received, though there are later messages that are not yet



54

Summary
vector

Ack
vector

6 4 4 5 5 4 55 4

98 8

10 12 10

6 5 5

A B C
Principal Principal Principal

FIGURE 5.5: Summary and acknowledgment vectors for principals with loosely-synchronized clocks. The
dark cell in the acknowledgment vector contains the minimum timestamp from the summary vector, while
the other cells contain copies, usually slightly out of date, of the minima from other principals.

acknowledged. The TSAE protocol ensures that the acknowledgment timestamp makes forward

progress, so every message will eventually be acknowledged.

Each principal stores a copy of the acknowledgment timestamp of every other group mem-

ber. The TSAE protocol propagates acknowledgment timestamps just as it propagates application

messages.

The acknowledgment timestamp vector at principal A is written ackA. Principal A holds a

timestamp t for principal B as ackA(B) if B has received every message from any sender with

timestamps less than or equal to t. Principal B periodically sets its entry in its acknowledgment

vector – that is, ackB(B) – to the minimum timestamp recorded in its summary vector (Figure 5.5).

A principal can determine that every other group member has observed a particular message

when the message timestamp is earlier than all entries in the local ack vector. This feature is used

to purge messages from the log safely, and in handling dynamic group membership (Chapter 6).



55

5.1.2 The timestamped anti-entropy protocol

The anti-entropy protocol maintains the timestamp vectors and message log at each principal. It

does so by periodically exchanging messages between pairs of principals.

From time to time, a principal A will select a partner principal B and start an anti-entropy

session. A session begins with the two principals allocating a session timestamp, then exchanging

their summary and acknowledgment vectors. Each principal determines if it has messages the other

has not yet received, by seeing if some of its summary timestamps are greater than the corresponding

ones of its partner. These messages are retrieved from the log and sent to the other principal using a

reliable stream protocol. If any step of the exchange fails, either principal can abort the session, and

any changes made to the state of either principal are discarded. The session ends with an exchange

of acknowledgment messages.

At the end of a successful session, both principals have received the same set of messages.

Principals A and B set their summary and acknowledgement vectors to the elementwise maximum

of their current vector and the one received from the other principal.

Figure 5.6 shows what might happen to two principals during an anti-entropy session. The

two principals start with the logs shown at the top of the figure, where A has messages from itself

and from C that B has not yet received, while B has sent messages that A has not received.

They determine which messages must be sent by comparing their summary vectors (middle row),

discovering that the lightly shaded messages must be sent from A and the darker shaded messages

must be sent from B: At the end of the session, both principals have received the same set of

messages and update their summary vector to the value shown in the bottom row.

Figure 5.7 details the protocol executed by a principal originating an anti-entropy session, while

Figure 5.8 shows the corresponding protocol the partner principal must follow.

After anti-entropy sessions have completed, the message ordering component can deliver mes-

sages from the log to the database and purge unneeded log entries. It uses the summary and

acknowledgment vectors to guide this principal, as discussed in Sections 5.3 and 5.5.

By the end of an anti-entropy session, the originator and partner principals have both received

any messages sent by either one of them up to the time the exchange started. In addition, one or



56

4

12

2

Summary A

3

11

2

Summary B

Principal A Principal B

5--11

3--4

5--12

A

B

C

12

4

11

Summary after exchange

2 4 2

2 2 5 6 9 11

1 3 5 12 1 3

3

FIGURE 5.6: An example anti-entropy session. Principals A and B begin with the logs in the top of the
figure. They exchange summary vectors, discovering that the shaded messages must be exchanged. After
the exchange, they update their summary vectors to the bottom vector.

both will probably have received messages from principals other than its partner. In the example

in Figure 5.6, principal A forwarded messages originally sent by C. This means that one principal

need not directly contact another to receive its messages. Instead, some sequence of principals

exchanging messages can eventually propagate the message. The correctness of TSAE is based on

the reliability of this kind of diffusion, as discussed in the next section.



57// Information about the partnerprincipalId partner;timestampVector partnerSummary, partnerAck;// A temporary copy of the local summary and ack vectors, to avoid// timing problems with concurrent sessionstimestampVector localSummary, localAck;msgList messages;partner = selectPartner();// update local vectors and exchange them with partnersummary[thisPrincipal] = CurrentTimestamp();localSummary = summary;ack[thisPrincipal] = minElement(localSummary);localAck = ack;send(partner, \AE request", localSummary, localAck);receive(partner, partnerSummary, partnerAck);// exchange messagesmessages = log.listNewer(partnerSummary);for h pid, timestamp, message i in messages:send(partner, pid, timestamp, message);while (receive(partner, pid, timestamp, message)):log.add(pid,timestamp,message);// �nish communicationsend(partner, \Acknowledged");receive(partner, \Acknowledged");// update summaries and trigger the message ordering componentsummary.updateMax(partnerSummary);ack.updateMax(partnerAck);DeliverMessages();
FIGURE 5.7: Originator’s protocol for TSAE with loosely-synchronized clocks. Note that error handling is
not included to make the presentation readable. An anti-entropy session is aborted if either principal detects
an error in communication, in which case any updates to the message log or timestamp vectors are
discarded. The acknowledgment vector is updated by this protocol but used by the message ordering and log
purging functions.



58// Information about the other principalprincipalId originator;timestampVector originatorSummary, originatorAck;// A temporary copy of the local summary and ack vectors, to avoid// timing problems with concurrent sessionstimestampVector localSummary, localAck;msgList messages;// receive request from originator and update local statereceive(originator, \AE request", originatorSummary, originatorAck);summary[thisPrincipal] = CurrentTimestamp();localSummary = summary;ack[thisPrincipal] = minElement(summary);localAck = ack;send(originator, localSummary, localAck)// exchange messageswhile (receive(originator, pid, timestamp, message)):log.add(pid,timestamp,message);messages = log.listNewer(originatorSummary);for h pid, timestamp, message i in messages:send(originator, pid, timestamp, message);// �nish communicationreceive(originator, \Acknowledged");send(originator, \Acknowledged");// update summaries and trigger the message ordering componentsummary.updateMax(originatorSummary);ack.updateMax(originatorAck);DeliverMessages();
FIGURE 5.8: Partner’s protocol for TSAE with loosely-synchronized clocks.

5.2 Correctness

In this section I define correctness for reliable eventual delivery protocols, and establish it for TSAE.

Discussion is limited to the version of TSAE that uses loosely-synchronized clocks.

Recall that the term eventually was defined in Chapter 2 to mean that an event occurs in a finite

but unbounded time after some time t.



59

The reliability condition can then be stated formally:

Condition 5.1 If a message is sent by principal p at real time t, the message will eventually be

received at any group member principal q.

Note that correctness is defined in terms of time as might be measured by an external observer,

and not in terms of virtual time or clocks [Mattern88]. There are two reasons for this choice. First,

I found it easier to reason about behavior of the protocol using time rather than clocks, especially

when replica and message failure is involved. In addition, I believe that this formulation is more

useful, since the intended application of these techniques is for applications interacting with people

and physical devices. This implies that the applications will have channels of communication

outside of the group communication system, and outside the domain covered by any virtual time

measure. This is the same problem that motivated Lamport’s Strong Clock Condition [Lamport78].

Recall also that the group membership is assumed static, that the network need not be fully

connected, and that principals do not fail permanently. The static membership limitation is removed

in Chapter 6.

Using the TSAE protocol, every principal periodically attempts to perform an anti-entropy

session with each of its neighbor principals to deliver a message. Eventually, sessions will succeed

with each of them, propagating the message. Each of those principals in turn will eventually contact

all of their neighbors, and so on until all principals have received the message. In the next several

sections I detail a proof of this property.

5.2.1 Logical communication topology

Consider the communications between principals. Recall that the network is connected but not

necessarily complete (Section 2.4). The relation T defines the logical topology of the network by

specifying which hosts are neighbors. P is the set of all principals.

Definition 5.2 The logical principal topology graph GT = (P; T ) is an undirected graph. The

relation T : P ! P is a symmetric relation that defines what pairs of principals can exchange

messages, that is,



60(A;B) 2 T $ A;B 2 P ^A can communicate with B:
The logical topology graph GT must be connected. In an environment such as an Ethernet, GT

is the complete graph C jP j, that is, every principal can communicate with every other principal.

In systems such as Usenet, GT � C jP j because each node only communicates with a few other

nodes. While the physical links in most internetworks do not form a complete graph, the logical

communication topology provided by the IP protocol is a complete graph. In practice the Internet

is composed of a few communication cliques.

Definition 5.3 Communication cliques are completely connected subgraphs of the topology graphGT . If a principal is a member of a communication clique, it can communicate with every other

principal in that clique.

An application can elect to restrict the logical topology graph to a subset of the topology provided

by the network protocols on which it is built. For example, it may be advantageous to structure the

principals into a tree or a ring.

Recall that there are no permanent failures in the communication network or principals. That

is, any pair of principals connected in the logical topology graph can eventually successfully send

and receive a message, or more formally, the probability that on principal cannot successfully send

a message to another principal during the time interval (t; t+ �) goes to zero as � !1.

5.2.2 Eventual communication

The first step of the proof is to show that the TSAE protocol eventually performs anti-entropy

sessions between every pair of principals connected in the logical topology graph.

Definition 5.4 (Attempted communication relation) The relation A(t; t+ �) : P ! P is the set

of ordered pairs of principals where the first principal has attempted to send one or more messages

to the second principal during the period (t; t+ �).



61

I assume that A � T , so that no attempt is ever made to communicate between two principals

that the logical topology prevents from communicating directly. The graph GA is defined in the

obvious way.

Definition 5.5 (Successful communication relation) The relation S(t; t + �) : P ! P contains

a pair for every principals that successfully sent a message to another principal during the time

period (t; t+ �). The graph GS is defined in the obvious way.S(t; t+ �) is clearly a subset of A(t; t+ �).
Lemma 5.6 (Eventual communication) As � ! 1, S(t; t+ �) converges to A(t; t + �) as long

as principals periodically retry messages that failed to be delivered.

Proof: If S 6! A, then there is a pair (a; b) 2 A such that (a; b) 62 S for all times t + �.

However, if a message failed during a period (t; t+ �1), by assumption the message will be

retried during some period (t+ �1; t+ �1 + �2). As �2 !1 the probability of the message

not getting through goes to zero. Thus the probability of there being a pair (a; b) that have

not been able to communicate goes to zero, and S converges to A. 2
Principals periodically perform anti-entropy sessions with neighbor principals. I assume there

is an upper bound k on the time between attempts to communicate, and that a principal selects its

partner so that every neighbor will eventually be selected after any time t: The probability that a

principal a has not performed an anti-entropy session with a neighbor b during a period � is thus

bounded by the probability sb of selecting neighbor b on each attempt, raised to the power of a

lower bound on the number of times a has performed the anti-entropy algorithm:

Pr(a has not performed anti-entropy with b during �) � (1� sb)�1)b �k c: (5:1)
As � ! 1, the probability of not attempting anti-entropy goes to zero. This formulation accounts

for both host failure, which must not be permanent to satisfy this constraint, and for the distribution

times between anti-entropy sessions.



62

The attempted anti-entropy relation Aae(t; �) is defined in the same way as the attempted

communication relation. Since the probability of not attempting an anti-entropy session with a

neighbor goes to zero as � goes to infinity,Aae(t; �) converges to the topology relation T as � !1.

The relation Sae(t; �) is in turn defined as the set of anti-entropy sessions that have completed

successfully during the period (t; t + �). The protocol presented in Section 5.1.2 either completes

successfully or aborts; an abort occurs only when one or both principals detect probable failure in

either principal.

The mechanism for detecting failure must be accurate. That is, if both principals are functioning

correctly, and they are able to communicate, the failure detection must not systematically report

failure. However, if either principal or the network have failed, it must report failure. Formally,

Pr(reporting failurej no actual failure) < 1: In practice, timeouts can be used to implement this kind

of failure detector on the Internet.

Lemma 5.7 (Eventual anti-entropy) If a principal repeatedly attempts to perform an anti-entropy

session with another, starting at any time t; eventually one of these sessions must execute to

completion.

Proof: Assume that some principal A repeatedly attempts to perform anti-entropy with prin-

cipal B: By Lemma 5.6, A and B will eventually be able to exchange messages. The

mean time-to-failure for principals was assumed to be much larger than the time required

to execute the anti-entropy protocol, so the probability of one or both principals failing

during the session is less than one. When both principals and the communication medium

are functioning, probability that the failure detector will falsely report failure is also less

than one. If the failure detector does not report failure, then the session can run to com-

pletion. Therefore the probability of any particular session failing is less than one, and the

probability of every sessions failing goes to zero as the number of attempts goes to infinity. 2
Since every principal repeatedly attempts to perform anti-entropy with its neighbors, and re-

peated attempts will eventually succeed, it follows that Sae(t; �) converges to Aae(t; �) as � goes to

infinity. Since Aae(t; �)! T , this implies Sae(t; �)! T .



63

5.2.3 Summary vector progress

Now that it has been shown that all principals will eventually perform anti-entropy with all their

neighbors, the proof turns to the rôle of the summary timestamp vector in the TSAE protocol.

The summary vector is only modified during successful anti-entropy sessions, and one value of

the vector (stored in localSummary in Figure 5.7) is associated with the session. These vectors

satisfy the requirements for a vector time measure as defined by Mattern [Mattern88]. The happens-

before relation (or the equivalent happens-after relation) is defined between the timestamp vectors

associated with two sessions to determine whether the sessions could be causally related:

Definition 5.8 (Happened before) A timestamp vector v is said to have happened before another

vector w; written v � w; iff 8i : v[i] � w[i]:
The final step in showing that the anti-entropy algorithm makes progress is to show that any

given anti-entropy session will eventually happen before sessions involving every principal. The set

of principals that have participated in sessions causally later than the session in question is defined

as:

Definition 5.9 If a successful anti-entropy session begins at time t0 at principal p0, the setV (p0; t0; �) is the set of principals at time t0 + � that have performed a successful anti-entropy

session that causally follows the anti-entropy session performed by p0 at t0.

In each of these anti-entropy sessions, summaryp(p0) � t0 since the session happened-after the

session initiated at time t0.

Lemma 5.10 (Diffusion) As � !1; V (p0; t0; �) converges to the set of members M .1

Proof: Obviously, p0 2 V (p0; t0; �) for any � � 0: Another principal pn 2 V (p0; t0; �n)
if and only if it has performed anti-entropy with some predecessor principal that was inV at an earlier time. Formally, there must be another principal pn�1 2 V (p0; t0; �n�1) at

1It is instructive to compare this definition and proof of diffusion to that used by Cristian [Cristian86, Cristian90] in
his work on atomic broadcast.



64�n�1 < �n, such that (pn�1; pn) 2 Sae(t + �n�1; �n � �n�1). The predecessor principalpn�1 can be equal to p0. Since the communication topology graph GT is connected, it

is possible to construct at least one sequence of principals (p0; p1; : : : ; pn�1; pn) to every

principal pn. Another way of stating this property is that a spanning tree rooted at p0 can

be constructed on the logical topology graph. Each pair (pi�1; pi) will eventually appear

(in order) in Sae(t0; t0 + �) as � increases, making each pi 2 V (p0; t0; �) and eventuallypn 2 V (p0; t0; �): Thus V (p0; t0; �)!M as � !1. 2
Note that anti-entropy sessions between principals pn�1 and pn update summaryn�1(p0) andsummaryn(p0) to be greater than or equal to t0.

Since the TSAE protocol is eventually performed at every principal, it is easy to show that

messages are delivered to every principal. Consider a message sent by principal p at time t. This

event either occurs after some preceding anti-entropy session, or after the principal joins the group

if it has not yet performed anti-entropy, and it occurs before the next anti-entropy session.

Definition 5.11 The timestamp vector prevp;t, the previous summary vector at principal p at time t,
is the summary timestamp vector summaryp produced by the anti-entropy algorithm with the latest

value summaryp(p) < t. This vector is associated with the previous session. Similarly the next

summary vector, nextp;t; is the copy of summaryp with the least summaryp(p) > t. This vector is

associated with the next session.

Recall that there is an upper bound on the period between anti-entropy sessions at principals,

so every event, such as sending a message, will have well-defined prevp and nextp vectors. Recall

also that all events at a principal are associated with unique timestamps, so there can never be an

anti-entropy event with the same timestamp as a message.

The principal is certain to have a copy of the message when the next anti-entropy session occurs,

even if there have been failures since it was sent. The state of the principal at the end of the preceding

session, including the message, will have been preserved on stable storage.

Theorem 5.12 If a message is sent at principal p0 at time t; every principal eventually receives a

copy of the message.



65

Proof: Initially, the message has only been received by the principal p0 that sent it. The

message has timestamp � = clock(p0; t): At the beginning of the next anti-entropy session

between p0 and some other principal p1, summary1(p0) � prev0;t(p0) < � , since the latest

clock value that any other principal could have for principal p0 is that in the previous summary

vector prev0;t. This relation implies that the message will be sent from p0 to p1 during

the anti-entropy session. At the end of the session, summary0(p0) = summary1(p0) =
next0;t(p0) > �:
Consider an anti-entropy session at time tn; between principal pn�1; which has already

performed an anti-entropy session that causally follows the message and has therefore

received a copy, and principal pn; which has not yet done so. Since pn�1 has performed

a causally-related anti-entropy session, summaryn�1(p0) � next0;t(p0) > �: Since pn has

not, summaryn(p0) � prev0;t(p0) < �: Since summaryn�1(p0) > � > summaryn(p0);
the anti-entropy protocol will transmit a copy of the message to pn during the anti-entropy

session.

By Lemma 5.10, every principal will eventually perform an anti-entropy session that causally

follows next0;t : In each of these sessions, the message will be transmitted to the principal.

Thus the message will eventually spread to every principal. 2
One side-effect of this protocol is that every principal will receive each message exactly once.

The summary vector entry for p0 at every principal will transition from a value less than � to one

greater than � at most once.

Note that the use of an unreliable multicast protocol in combination with TSAE does not

invalidate this proof, since the proof relies solely on timestamps recorded during anti-entropy

sessions and the existence of messages in the log. However, this can cause a principal to receive a

message more than once. Section 5.4.3 discusses optimizations for this case.



66PurgeLog()f msgList messages;timestamp minAck;minAck = ack.minElement();msgList = log.listOlder(minAck);for h principalId, timestamp, message, delivered i in messages:if (delivered)log.remove(pid, timestamp, message);g
FIGURE 5.9: A function to purge messages from the message log.

5.3 Purging the message log

The message log must be periodically purged so that it does not grow without bound. Even if

there is no log, as in applications that work directly from an application database (Section 3.3.1),

unneeded death certificates must be purged. Message purging is correct if it does not interfere with

message propagation, and if every message is eventually purged.

Whether a message log is used or not, a message or death certificate can safely be removed

when every member principal has received it. This condition can be detected when the message is

earlier than all events in the acknowledgment timestamp vector. Figure 5.9 shows show this could

be implemented.

The acknowledgment vector ackp maintained at principal p is updated during every successful

anti-entropy session. In each session, p acknowledges that it has received a set of messages by

setting the acknowledgment timestamp for itself, ackp(p): The minimum timestamp in summaryp
acknowledges every message with a lesser timestamp. As a consequence of Lemma 5.10, as long

as every principal regularly performs anti-entropy sessions, every timestamp in every summary
vector will eventually pass the timestamp for a given message m. Every principal will eventually

acknowledge that it received m when it sets its acknowledgment timestamp to a value greater

than the timestamp on m. Just as with messages, this acknowledgment (or possibly a later one)



67

will eventually propagate to every other principal, and every principal will learn that m has been

received and acknowledged everywhere.

After a message m has been acknowledged everywhere, no principal can have yet to receive m,

and so its deletion will not affect message receipt. Since every message is eventually acknowledged,

every message will eventually be purged.

When the logical communication topology of the network is not complete, that is, ifGT � C jP j,
then there may be the possibility of purging log entries early at some principals. A message sent

at time t can safely be purged at principal p if all the neighbor principals of p have acknowledged

messages up to and including t. This is especially advantageous in systems where many principals

have few neighbors, such as rings, trees, meshes, and lattices. In the Internet, it means that principals

on closed subnets need only wait for each other and gateway principals, and not for principals on

other parts of the Internet.

5.4 Extensions

The basic timestamped anti-entropy protocol can be extended in several ways. There are many

ways that a principal can select a partner for anti-entropy sessions; TSAE can be combined with

unreliable multicast; there are techniques to improve performance after transient failures; and the

protocol can be modified to tolerate unsynchronized clocks and to reduce space requirements.

5.4.1 Selecting a session partner

There are several possible policies for selecting a partner for an anti-entropy session. Table 5.1 lists

eight of them. The proof in Section 5.2 only requires that every neighbor eventually be contacted

to ensure that messages are delivered reliably, and weaker constraints can work for some network

topologies.

The policies can be divided into three classes: random, deterministic, and topological. Random

policies assign a probability to each neighbor, then randomly select a partner for each session. The

deterministic policies use a fixed rule to determine the neighbor to select as partner, possibly using

some extra state such as a sequence counter. Topological policies organize the principals into some



68

TABLE 5.1: Partner selection policies.

Random policies:
Uniform Every neighbor principal has an equal probability of being ran-

domly selected.
Distance-biased Nearby neighbors have a greater probability than more distant

neighbors of being randomly selected.
Oldest-biased The probability of selecting a neighbor is proportional to the age

of its entry in the summary vector.

Deterministic policies:
Oldest-first Always selects the neighborn with the oldest value summary(n):

Latin squares Builds a deterministic schedule guaranteed to propagate messages
in Θ(logn) rounds.

Topological policies:
Ring Organizes the principals into a ring.

Binary tree Principals are organized into a binary tree, and propagate messages
randomly along the arcs in the tree.

Mesh Organizes the principals into a two-dimensional rectangular mesh.

fixed graph structure such as a ring or a mesh, and propagate messages along edges in the graph.

Chapter 7 examines the performance implications of different policies.

The uniform policy assigns every neighbor an equal probability of selection, and selects

randomly from them. This is a simple policy that meets the correctness requirement of contacting

every neighbor.

Uniform selection can lead to overloaded network links in an internetwork where the physical

topology is less connected than the logical. Demers et al. compared uniform to distance-biased

selection for the Clearinghouse [Demers88]. Their study found that biasing partner selection by

distance could reduce traffic on critical intercontinental links in the Xerox Corporate Internetwork

by more than an order of magnitude. Selection can also be biased by the cost of communication,

perhaps measured in terms of latency, or monetary cost of using a communication link.

Alon et al. [Alon87] proposed the latin square policy, which guarantees that a message is

received by all principals in O(logn) time (assuming no principal failure). A latin square is anN�N matrix ofN entries, where every row and column includes every entry once. The policy builds

a communication schedule by constructing a random latin square, where the columns in the matrix

are the schedules for each principal. A principal cycles through its schedule, contacting partners



69

in the order given, and skipping over itself. It is not evident how to take advantage of topological

information in this approach. It is also not clear how to extend it for dynamically changing principal

groups without perform a consistent computation to build new schedules (Chapter 6), since each

principal must build and follow the same schedule for selecting partners.

The oldest-biased and oldest-first policies attempt to produce the same effect as latin squares

without computing a global schedule. Oldest-biased randomly selects a partner with probability

proportional to the age of its entry in the summary vector. Oldest-first always selects the oldest

entry, breaking ties by selecting the “closer” entry if it can be determined.

The topological policies, including ring, binary tree, and mesh, organize principals into a

regular graph. Messages are propagated along edges in the graph. A topological policy can work

well when its structure can be mapped onto the structure of the network.

5.4.2 Principal failure and volatile storage

Principals fail temporarily. When they recover they must recover their state from stable storage. If

a principal takes any significant amount of time to repair and recover, it will likely be out of date

by the time recovery is complete. It would be appropriate for the principal to immediately perform

an anti-entropy session with another principal, to bring itself up to date. The process of purging

message logs will have been delayed at other principals while the principal was unavailable, and so

an immediate anti-entropy will update the recovering copy and allow other sites to begin purging

their logs.

The proofs in Section 5.2 rely on messages and summaries being maintained on stable storage.

If not implemented properly, using disk to approximate stable storage can be slow and can interfere

with other operations on the host. The usual Unix approach is to use delayed writeback to avoid

synchronous disk activity. Messages can be lost if a host fails before these data are written to disk.

The analysis in Chapter 7 shows that the probability of this happening is negligible for well-written

systems. However, in practice the update rates of many wide-area systems will be small enough

that this problem is unimportant. Further, careful implementation can avoid most of the expense

anyway [Birrell87].



70

5.4.3 Combining anti-entropy with unreliable multicast

Timestamped anti-entropy can be combined with an unreliable multicast to spread information

rapidly. When a principal first sends a message, it can multicast it to other principals. Some of them

will not receive the multicast, either because the network did not deliver the message or because the

principal was temporarily unavailable. These principals will receive the message later when they

conduct an anti-entropy session with another site that has received the message. This can speed

dissemination when message order is not important.

The combination of unreliable multicast and TSAE is somewhat like the selective retransmission

technique used in network protocols that implement reliable streams [Tanenbaum81, Section 4.2]:

the TSAE protocol delivers messages that the receiver has missed. However, as the TSAE protocol

was presented in Figure 5.7, a principal only considers summary vectors when deciding whether to

transmit a message to a partner, regardless of whether the partner has already received the message

by multicast. These duplicate transmissions are wasteful, and can be reduced by performing more

accurate checks before sending a message.

Recall that a principal has received every message with timestamps earlier than the correspond-

ing entry its summary vector. If TSAE is being used in isolation, it will have received no messages

timestamped later than the summary vector entry. However, a multicast can deliver a message with

a later timestamp. Messages timestamped later that the summary vector have been delivered to a

principal early.

The problem of eliminating unnecessary retransmissions is to detect early messages. The

obvious way to detect these messages would be for each principal to transmit a list of the identifiers

of the early messages it has received along with its summary vector at the beginning of an anti-

entropy session. However, in some applications the size of a message identifier may be a large

fraction of the average message size, so transmitting the list would produce nearly as much network

traffic as simply transmitting the early messages. One technique that is both simple and more

efficient would be to exchange a checksum of all the early messages a principal has received. Each

principal would first compute a checksum of its early messages, and send the checksum to its

partner along with a copy of its summary summary vector. After receiving the partner’s summary



71class checksumVector fseth partition, count, checksum i checksums;// add a message to the checksum for one partitionaddMessage(partition, message);// determine whether the checksum for a partition is di�erent from// the checksum for that partition in another vectorBoolean di�erent(partition, checksumVector);g
FIGURE 5.10: The checksum vector data type.

vector and checksum, the principal would compute a checksum for the messages in its log that are

timestamped later than the partner’s summary vector. If the received and computed checksums are

the same, no messages need to be send to the partner.

This approach works well only when the probability of missing a multicast message is low.

Even if the partner has missed only a single message, the principal will have to send every message

that is timestamped later than the partner’s summary vector. The simple approach can be improved

by partitioning the messages, and computing checksums for each partition.

There are several ways to partition messages. One way is to apply a known hash function to the

messages to divide them into a fixed number of partitions. A simpler approach is to group messages

by their sender.

Once the messages have been partitioned, the participants in the anti-entropy session compute

and exchange a checksum vector (Figure 5.10) to summarize the early messages they have received.

The checksum vector is similar in structure to the summary vector, containing one checksum and a

count of messages for each partition.

The modified TSAE protocol for the originator is shown in Figure 5.11. The partner’s protocol

is similar. The protocol has been augmented by adding steps to compute the checksum vectors and

exchange them with the partner principal. Before each message is sent, the protocol checks whether

both principals have received the same set of messages. If so, there is no need to send the message.



72principalId partner;timestampVector partnerSummary, partnerAck;timestampVector localSummary, localAck;checksumVector localCksum, partnerCksum, localPartnerCksum;msgList messages;partner = selectPartner();// update local vectors and exchange them with partnersummary[thisPrincipal] = CurrentTimestamp();localSummary = summary;ack[thisPrincipal] = minElement(localSummary);localAck = ack;send(partner, \AE request", localSummary, localAck);receive(partner, partnerSummary, partnerAck);// compute and exchange checksum vectorsmessages = log.listNewer(localSummary);for h pid, timestamp, message i in messages:localCksum.addMessage(partition(message), message);send(partner, localCksum);receive(partner, partnerCksum);// compute checksums on messages newer than partner's// summary vector.messages = log.listNewer(partnerSummary);for h pid, timestamp, message i in messages:localPartnerCksum.addMessage(partition(message), message);// exchange messagesfor h pid, timestamp, message i in messages:if (localPartnerCksum.di�erent(partition(message),partnerCksum)) thensend(partner, pid, timestamp, message);while (receive(partner, pid, timestamp, message)):log.add(pid,timestamp,message);// �nish communicationsend(partner, \Acknowledged");receive(partner, \Acknowledged");// update summaries and trigger the message ordering componentsummary.updateMax(partnerSummary);ack.updateMax(partnerAck);DeliverMessages();
FIGURE 5.11: Originator’s protocol for TSAE combined with unreliable multicast. Partitions early messages
using a partition function, and computes a checksum vector over the partitions to avoid retransmitting
messages.



73

This mechanism does not completely eliminate duplicate transmissions, but it can significantly

reduce them. Consider a principal that sends and multicasts a number of new messages, then

is disconnected from the network before it can perform anti-entropy. No principal can advance

its summary timestamp vector to include the multicast messages because it cannot perform anti-

entropy with the sender, so they will always be eligible for exchange in the basic TSAE protocol.

The checksum method allows principals to detect that these messages need not be exchanged at the

cost of computing and exchanging the checksum vectors.

5.4.4 Anti-entropy with unsynchronized clocks

The TSAE protocol as presented requires loosely-synchronized clocks so that each principal can

acknowledge messages using a single timestamp (Figure 5.5). If clocks are not synchronized, the

clock at one principal may be much greater than the clock at another. If the minimum timestamp

were selected to summarize the messages a principal has received, messages from the principal with

the fast clock might never be acknowledged.

A principal’s summary vector is a more general and exact measure of the messages that have

been received. If the entire summary vector is used as an acknowledgment, then clock values from

different hosts need never be compared.

To use summary vectors for acknowledgment, each principal must maintain a two-dimensional

acknowledgment matrix of timestamps, as shown in Figure 5.12. The summary vector is part of the

acknowledgment matrix: the ith column in the matrix is the summary vector for the local principalpi: Other columns are old copies of the summary vectors from other principals.

The unsynchronized-clock version of the TSAE protocol is little different from the synchronized-

clock version. During anti-entropy sessions, principals exchange the entire matrix and update the

entire matrix using an elementwise maximum at the end of a session.

The only other difference arises when the message ordering component is called upon to

determine whether a message has been acknowledged by every principal. Consider a message sent

from principal p at time t. A principal q knows that every other principal has observed the message

when every timestamp in the p row of the message vector at q is greater than t.



74

CA B CA B CAB

A B C
Principal Principal Principal

2 81 2 1 2 2 2

2 11 62 2 2 6 2 6

12 3 33 3 3 3 3 3

4

FIGURE 5.12: Summary and acknowledgment data structures for TSAE for unsynchronized clocks. The dark
column is the summary timestamp vector, while the other columns are snapshots of the summary vectors
from other principals.

The acknowledgment matrix requires Θ(n2) space, which is not useful if the principal group

is to include thousands of members. The techniques in the next section can be used to reduce the

space requirement. In addition, the space can sometimes be dramatically reduced by noting that

there is no need to store a row of the acknowledgment matrix unless the principal associated with

the row has messages in the message log. If s principals are sending messages, the storage space is

then O(sn).
The unsynchronized-clocks TSAE protocol was developed independently by Agrawal and Mal-

pani [Agrawal91]. However, their work did not consider the effects of dynamic group membership.

5.5 Message ordering

The message ordering component ensures that messages are delivered from the message log to the

application in order (Section 3.4). It also purges log entries, as discussed in Section 5.3. Both these

operations use the timestamps in the summary vector and on messages to compute the order.

Other distributed protocols that support strong message orderings, such as Psync (Section 4.6),

Lazy Replication (Section 4.9), or the Orca unreliable multicast RTS (Section 4.3), append a number

of timestamps to each message. The TSAE protocol reduces this overhead by transmitting messages



75

in batches, and appending some of the necessary temporal information (in the form of the summary
vector) to the entire batch, rather than to individual messages.

Section 3.4 listed five possible message orderings. A total, causal ordering ensures that every

principal receives every message in the same order, and that the order respects causality. A total,

noncausal ordering only ensures that every principal receives messages in the same order. A causal

ordering ensures that a message that is causally dependent upon another message is not delivered

first, but allows messages that are unrelated to be delivered in any order. A FIFO ordering delivers

messages sent by each principal in the order they were sent, but makes no guarantees about the

interleaving of streams of messages from different principals. Finally, it is possible to guarantee no

particular order.

It is trivial to construct a message ordering component that provides no ordering guarantees:

messages can simply be delivered when they are received.

Unordered delivery works well when TSAE is combined with an unreliable multicast. However,

the implementations for all the other orderings in this section rely on the reliability and batching

properties of TSAE, and therefore cannot make use of unreliable multicast.

A component that delivers messages in a per-principal FIFO order is only slightly more difficult

than unordered delivery. At the end of every anti-entropy session, a principal has received a batch

of zero or more messages sent by another principal. Further, all the messages received in the

batch follow the messages in previous batches, precede all messages in later batches, without gaps

anywhere in the sequence. To deliver messages in FIFO order, therefore, the ordering component

only needs to sort messages in a batch by timestamp and deliver batches in the order they occur.

Figure 5.13 shows a way to implement this.

Total, noncausal orders are only slightly more complex, as long as clocks are loosely synchro-

nized. As with the FIFO ordering, messages are sorted and delivered in timestamp order. However,

it is necessary to delay delivery until the ordering component can be sure that no messages with

lesser timestamps will be received. No messages will be received with timestamps greater than the

minimum timestamp in the summary vector. The principalId is used to break ordering ties. The

function in Figure 5.14 presents this approach.



76deliveredMessages: timestampVector;DeliverMessages()f timestampVector localSummary;principalId pid;msgList messages;localSummary = summary;for each pid in group:messages = log.listMsgs(pid,deliveredMessages(pid),localSummary(pid));sort messages by timestamp;for h pid, timestamp, message i in messages:log.deliver(pid, timestamp);deliveredMessages.updateMax(localSummary);PurgeLog();g
FIGURE 5.13: Function to deliver messages in per-principal FIFO order. Each anti-entropy session produces
a batch of messages from each principal. They are arranged into a FIFO order by sorting by timestamp.

This ordering method is slightly biased, in that messages from principals with slow-running

clocks are delivered before messages from principals with faster-running clocks. Since clocks are

assumed to be loosely synchronized to within some �, this bias is limited. Further, if the time

between updates is greater than � the bias has no effect.

The simple total order will not respect potential causal relations unless the timestamps appended

to each message already reflect causality. Since system clocks are unlikely to include causal

information, they can be augmented by maintaining a logical clock [Lamport78] at each principal.

A logical clock is a counter that is incremented every time a principal sends a message or performs

an anti-entropy session. The counter is appended to every message or anti-entropy session. Every

time a counter value is received from another principal in a message or anti-entropy session, the

local counter is set to a value larger than the counter in the message. In this way, if there is a potential

causal relation between two events, then the timestamp for one event will be greater than the other.

(Note that the converse is not true: a relation between two timestamps does not imply potential



77lastTimestamp: timestamp;DeliverMessages()f timestamp localTimestamp;msgList messages;localTimestamp = summary.minElement();messages = log.listMsgs(ANY,lastTimestamp,localTimestamp);sort messages by timestamp, and by pid within timestamp;for h pid, timestamp, message i in messages:log.deliver(pid, timestamp);lastTimestamp = localTimestamp;PurgeLog();g
FIGURE 5.14: Function to deliver messages in a total order. No messages can be received with timestamps
less than the minimum entry in the summary vector, so any undelivered messages in the log timestamped
earlier than the minimum are delivered in timestamp order.

causality.) The existing timestamp class is easily extended to include a logical clock counter as well

as a system clock sample. A total, causal ordering is obtained by sorting and delivering messages

in logical clock order.

Causal, but not total, orderings are used when causal relations are important, and messages

should be delivered as early as possible. There is a simple implementation of this ordering that

requires slight modifications to the interface to the DeliverMessages function and to the message log.

The implementation is only correct when TSAE is used in isolation, and not with an early-delivery

mechanism like an unreliable multicast.

Consider a message being transmitted during an anti-entropy session. Assume that the originator

of the anti-entropy session is also the principal that sent the message to the group. During the anti-

entropy session, the originator will send to the partner every other message it has received; in

particular, it will send every message on which the message in question could be causally dependent

that the partner has not yet received. Furthermore, the partner could not yet have received any



78DeliverMessages(msgList messages)f sort messages by delivery timestamp;for h pid, timestamp, delivery timestamp, message i in messages:log.deliver(pid, timestamp);PurgeLog();g
FIGURE 5.15: Function to deliver messages in a causal order. This implementation relies on the way TSAE
delivers batches of messages. It requires that the message log be modified to maintain two timestamps for
each message: one set by the message sender, and another set whenever the message is delivered. The
delivery timestamp is used to reconstruct causal relationships within a batch of messages.

messages that are causally dependent upon the message, because it would already have received the

message when it received the dependent message.

This property can be exploited to ensure that messages are delivered in a causal order. Batches

can be delivered upon receipt, because there is no need to wait for messages on which the messages

in the batch could depend. However, the partner must deliver messages in a way that respects

causality within the batch.

Figure 5.15 shows how this can be done. It requires two modifications to the system as it

has been defined: messages must be timestamped twice, once by the sender and once when they

are delivered, and the anti-entropy session must pass a list of the messages in each batch to theDeliverMessages function. When a message is delivered from the message log to the application, the

ordering component must timestamp it. When the message is sent to the partner in an anti-entropy

session, the delivery timestamp is transmitted as well. The partner then uses the delivery timestamp

to order the messages in the batch so that messages are delivered after the ones on which they are

dependent. The partner will overwrite the local delivery timestamp on the message when it does so.

The Lazy Replication system, which uses a mechanism similar to TSAE, allows applications to

specify external causal consistency constraints. That is, applications can specify causal constraints

created using some system other than the group. Applications can present a timestamp vector along



79

with messages, where the vector summarizes the messages that must be delivered first. This vector

could potentially include timestamps from principals outside the group.

The Psync protocol can take advantage of commutativity between different kinds of messages.

The message ordering component must be provided with commutative information to be able to

make this possible.

5.6 Summary

This chapter has introduced complementary implementations of the message delivery and message

ordering components. The message delivery component uses the timestamped anti-entropy protocol,

which provides reliable, eventual delivery. Several message ordering implementations were listed,

which provide a range of ordering possibilities. Together they provide weak-consistency group

communication.

The timestamped anti-entropy (TSAE) protocol performs periodic exchanges of messages be-

tween pairs of principals, called anti-entropy sessions. The sessions deliver batches of messages

so that each batch immediately follows any earlier batches the principal has received, and so that

there are never “gaps” in the message sequence. This property can be exploited by build simple

mechanisms to summarize the messages that a principal has received and to propagate message

acknowledgments throughout the group.

A reliable, eventual message delivery protocol is correct if every principal eventually receives a

copy of every message sent to the group. The TSAE protocol has been proven to meet this criterion,

even when the underlying network is not a completely-connected graph. Furthermore, there is a

simple algorithm for purging messages from the message log based on acknowledgments that does

not interfere with message propagation.

The basic TSAE protocol can be customized in several ways. There are several policies that

can be used to select a partner for anti-entropy sessions. Anti-entropy can be combined with an

unreliable multicast that will delivery messages more rapidly than TSAE will propagate them.

Finally, there is a generalized version of the TSAE protocol that work when clocks are not loosely

synchronized, though at the expense of extra state at each principal.



80

The message ordering component can be implemented using one of several algorithms,providing

ordering guarantees ranging from total, causal orders to no ordering. Most of the implementations

are very simple, using timestamp information in messages and the batching behavior of TSAE

to advantage. A causal non-total ordering is slightly more complex, but much simpler and more

efficient than other systems that must attach complex causal information to each message.



81

Chapter 6

Group membership

A group membership mechanism is the final component in a group communication system. This

mechanism allows principals to join and leave a group dynamically. For example, consider a

replication service in which each data item is to be stored at some number of replicas. If that

number increases or some of the replicas are removed from service, other replicas will need to join

the group dynamically in order to maintain the required resilience.

Every principal in the group maintains a view of the membership. This view is the set of

principals it believes are in the group. A member will always have itself in its view. The view

may also contain status information and timestamps to help coordinate updates to the set. The

message delivery component uses the view to identify what principals should receive messages, and

some implementationsof the message ordering component use group information when determining

whether a message is deliverable or not.

I have developed a new weakly consistent group membership mechanism. The mechanism

allows temporary inconsistencies in the view each principal maintains of the group, in exchange for

low communication overhead and fault tolerance. The mechanism only allows a principal to be a

member of one group at a time.

A group comes into existence when the first member initializes it, and ceases to exist when the

last member leaves. Each group has a unique identity, so every newly-initialized group is distinct

from all other groups, past or present. A principal becomes a member by executing a join protocol

with one or more group members. Those members, which sponsor the new principal, provide it

with a copy of the application-maintained group state as well as a copy of the data structures used

by the group communication system. Principals stop being members by executing a leave protocol.



82

For completeness, I also consider how the group membership system can eject a member that has

failed, even though principals have been assumed to be free of failure.

In contrast to the weak consistency mechanism presented in this chapter, other group membership

mechanisms ensure greater consistency of group views at the expense of latency and communication

overhead. Both the ISIS system [Birman87, Birman91] and a group membership mechanism by

Cristian [Cristian89] are built on top of atomic broadcast protocols, and hence provide each principal

with the same sequence of group views. Ricciardi [Ricciardi91] is investigating an alternative group

membership mechanism for Isis that does not use the underlying atomic broadcast. However, it

uses two- and three-phase commit protocols to maintain consistent group views. The Arjuna system

[Little90] maintains a logically centralized group view via atomic transactions.

This chapter begins by considering how dynamic principal group membership interacts with

message reliability. The reliability guarantee developed in Chapter 5 assumed static group mem-

bership. This is followed by definitions of correctness and fault tolerance for membership views.

Finally, the protocols for initializing, joining, and leaving a group are presented, and they are shown

to maintain correct and fault-tolerant views.

6.1 Message delivery and dynamic membership

The timestamped anti-entropy (TSAE) protocol presented in Chapter 5 provides reliable, eventual

message delivery for a static member principal population. A reliable delivery guarantee implies

that every principal eventually receives every message. Likewise, the TSAE protocol provides

mechanisms to detect when every member principal has acknowledged a message. These merit

special definition if the group membership is changing.

Consider a message sent at time t. As before, time means time as measured by an external

observer. The simplest definition of reliable delivery is that every principal that is a member at t
must receive a copy of the message. But what about principals that join after it is sent? And what

of principals that leave before they can receive the message?

One answer to these questions is to order group operations along with application messages.

This was the approach taken in Isis [Birman87, Birman91]. If messages are delivered in a total



83

order, then the set of member principals is well-defined and consistent at every principal whenever

a message is delivered. Principal join and leave operations will be delayed while other messages

are being propagated. A principal that joins after a message is sent will be given a copy of the

group state that includes the effects of the message. A principal that tries to leave the group after a

message is sent will receive the message before it can finish leaving.

There are problems with this approach. The membership is only well-defined if a total message

ordering is applied. Isis, for example, enforces extra message ordering constraints when the group

membership changes. Applications that could otherwise use a weaker ordering will have to wait

unnecessarily for message delivery. In addition, it will cause group operations to be delayed so they

can be ordered with respect to messages from other principals. New principals will have to wait for

their request to be delivered before they can begin participating in the group.

The Refdbms and Tattler systems use a different approach. A message sent at time t will

eventually be received by every principal that is a member at t, even if the principal that sends

the message does not yet know the other principal has joined. Any principal that joins after t will

either receive the message, or will receive a copy of the group state that reflects the contents of the

message. This definition allows a principal to join immediately, though it requires somewhat longer

delay on leaving than the total-ordering approach.

The message delivery component records acknowledgments so that other components can detect

when a message has been delivered everywhere. This is used to determine when messages can be

purged from the log. If some principal purges a message too early, it will not be able to propagate

that message to another principal that has not yet received it. The method in Section 5.3 purges a

message when the acknowledgment timestamp for every principal in the view is later than that of

the message. The membership protocols in Section 6.4 do not compromise this method.

6.2 Correctness

As noted earlier, other group membership protocols provide consistent views of group membership;

that is, every group member observes changes to the membership in the same order. The weak

consistency protocols guarantee that all principals will eventually converge to a single consistent



84

view if all membership changes cease. More specifically, given the last such change in membership

at time t, the probability that two principals, p and q, disagree on group membership at time t + �
goes to zero as � increases. The same condition holds with respect to each principal’s view of the

membership status of individual principals. To avoid pathological situations, the set of principals

in the universe is assumed to be finite.

The view information for one group can be represented as a view relation V = P � P: For

principals p and q 2 P , there will be a pair (p; q) in the relation if q is in p’s view, and a pair (q; p) ifp is in q’s view. There will be an pair (p; p) for every principal that believes it is part of the group.

The set of such principals is the member set M .

The structure of the view relation is correct at any time iff all principals can eventually converge

to the same view. One principal can only propagate information to another when it has the other

principal in its view. Therefore, every member principal should be in the transitive closure of every

other member’s view.

Definition 6.1 (View correctness) Let M be the set of principals p 2 P for which there is a pair(p; p) in the view relation V ; that is, the set of group members. Let V � be the transitive closure ofV . V is correct iff (8p 2M)(8q 2M)((p; q) 2 V �):
Every group operation must preserve the correctness of the view relation. As part of this,

whenever a principal joins or leaves the group, it must find other principals to act as its sponsor.

The sponsors are the source of the new member’s state, and membership information propagates

from the sponsors to other existing members.

6.3 Fault tolerance

The membership system should be able to withstand some number k of simultaneous permanent

principal failures without compromising the correctness of members’ views. If principals never fail

permanently, then the TSAE delivery protocol coupled with the membership protocols in Section 6.4

will work correctly if every principal obtains one sponsor when they join. However, if principals



85

can permanently fail then it is possible to obtain an incorrect view relation. A view relation that can

withstand up to k simultaneous principal failures and still be correct is called k-resilient.

Note that this definition of resilience is only concerned with the correctness of group membership

information. Principal failures can cause a message to be lost if the message has not propagated to

other (non-faulty) principals. However, k-resilience implies that messages will propagate from a

non-faulty sender to other non-faulty principals in the face of k failures.

The fault tolerance arguments in this chapter apply only to systems implemented on networks

with a completely connected logical topology. While the extension to non-completely connected

networks is important, it complicates the exposition of the protocols and does not contribute to the

basic analysis.

In the analyses that follow, it is sometimes useful to treat the view relation as a directed graphK = (P; V ) where the vertices are principals and the edges are pairs in the view relation.

Lemma 6.2 For any two members m;m0 2M , a correct view digraph K can be viewed as a flow

graph with source m and sinkm0. The view relation V is k-resilient if, for all membersm;m0 2M ,

the minimum vertex cut of the associated flow graph with source m and sink m0 in K is at leastk + 1.

Proof: If the minimum vertex cut of the flow graph from m to m0 is at least k + 1, then up

to k vertices can be removed from K while maintaining a path from m to m0. Call the set

of failed principals F ; jF j � k. Since there is a path from m to m0 in K � F , there is an

edge (m;m0) in the transitive closure of K � F . Since this condition holds for all pairs of

members, the view relation is still correct after removing the failed principals F . 2
The membership protocols defined in the next section ensure that this condition holds by

constructing a (k + 2)-clique in the view graph around every member as it joins, and ensures that

every principal remains part of a (k + 2)-clique as principals leave or fail.



86

6.4 Protocols

The group membership protocols allow for creating a new group, joining and leaving a group, and

handling member failure. Each protocol will be presented in this section, along with a discussion of

how these protocols provide k-resilience, and why they do not interfere with the reliable message

delivery.

There are four group protocols. Initialization creates a new group. Join adds a new principal

to a group, and transfers a copy of the group state to the new principal. A member can voluntarily

leave. The group can eject a failed member, then recover from the failure.

The membership protocols preserve correctness if they transform one correct view relation into

another. They are k-resilient if they transform one correct, k-resilient relation into another.

6.4.1 Data structures

Each member principal maintains a view of the group membership, defining the set of principals it

believes are a part of the group. The view includes a set containing the identity of each member, its

status, and a timestamp on that status. Figure 6.1 shows the details. In a practical implementation

such as Refdbms, the membership view, summary vector, and acknowledgment vector can be stored

together.

The view data structure includes a groupId, which uniquely identifies the group. The details

of how the group identifier is constructed have been omitted to avoid cluttering the presentation.

The type need only support initialization and checking for equality with another group identifier. Atimestamp would be sufficient.

Updates to the view are propagated using information in the view set, rather than by keeping an

explicit log of group membership changes. This implies that death certificates must be maintained

after a principal has left the group (Section 3.3.1) until every principal has observed the change.

Death certificates are purged in just the same way as the message log (Section 5.3).

Every principal in the view has a status. A principal that is part of the group will have statusmember, while one that has voluntarily left the group will have status left. A failed principal is

marked as failed. The left and failed records are death certificates.



87class groupId f// an identi�cation keygtypedef enum f member, leaving, failed, pendingMember g memberStatus;class memberEntry fprincipalId pid;memberStatus status;timestamp t;gtypedef sethmemberEntryi memberSet;class memberView fgroupId group;memberSet members;// maintain the viewadd(principalId, memberStatus, timestamp);update(principalId, memberStatus, timestamp);delete(principalId);merge(memberView);// list entriesmemberSet listLater(timestampVector);memberSet listEarlier(timestamp);gmemberView view;
FIGURE 6.1: The group membership view data structure.

The timestamp for principal p records the clock at p, clock(p; t) when the principal entered its

current state. For failed status the timestamp can either be in�nity, or an approximation obtained

from the clock at another principal. The approximation must be distinct from and later than any

clock value from the failed principal. This will be taken up in more detail in Section 6.4.5.



88InitializeView(groupId gid)f view.group = gid;view.add(thisPrincipal,member,0);summary.update(thisPrincipal,0);ack.update(thisPrincipal,0);
inform location service;g

FIGURE 6.2: Initializing a new group. Code for creating the group identifier has been omitted for clarity.

6.4.2 Initializing a new group

A principal can create a new group by performing an initialization operation. This has two effects.

First, it creates a new group identity. Second, it sets up a membership view at the principal. The

view contains only the initializing principal, with status member at time zero (Figure 6.2).

Since there is only one principal in the group, there are no concerns about consistency or

failure resilience. Until k additional members have joined the group, there is no possibility ofk-resilience. The join protocol presented in the next section will form a complete view graph when

the membership is small (i.e. n � k + 2).

A newly-created group will need to be registered with a location service so that other principals

can locate it. The join protocol expects to obtain a list of possible group members from the location

service. The location service is discussed further in Chapter 8.

6.4.3 Group join

A principal joins a group by finding one or more group members, then contacting them until it

has obtained enough sponsors among the current membership to ensure k-resilience. Anti-entropy

sessions will eventually propagate information about the new member throughout the group. As

noted in Chapter 2, this protocol assumes the existence of a fault-tolerant location service. The

location service must always provide at least one location that is a member. Principals leaving the

group will return forwarding addresses to other members.



89

To keep the view relation k-resilient, a principal joining the group must obtain k + 1 sponsors

before becoming a full-fledged group member. If this is impossible because the group is too small,

the graph is kept as resilient as possible by using all members as sponsors. These sponsors put

the principal in their view, meeting the fault-tolerance criterion. The protocol followed by a new

principal is shown in Figure 6.3. The joining principal is considered to be a group member after

changing its status to member. The sponsors and new member propagate the updated membership

view to the rest of the group in anti-entropy sessions.

The getFirstSponsor and getAdditionalSponsor routines are the heart of the protocol (Fig-

ure 6.4). In them, the principal contacts another principal that is possibly a member, and requests

that principal to sponsor it. If the principal is not a member or is leaving the group, it declines

sponsorship. Each sponsor must add the new principal to its view, then send a copy of the updated

view to the new member. The first sponsor must also send a copy of the application database, and

the message log, summary vector, and acknowledgment vector used by other group communication

components.

If a sponsor fails while the join protocol is being executed, one of two events can occur. The

new member may detect the failure while trying to interact with the failed member, in which case

the new member can simply try another sponsor. If the sponsor fails after the new member has

finished interacting with it, the failure can be ignored because at most k of the k + 1 sponsors can

fail.

The implementation in Figure 6.4 can be extended to allow a possible sponsor to return a

forwarding address for one or more members if it is not itself a member [Fowler85, Jul88]. This

allows the location service to maintain information that is less up-to-date, as long as the principals

that have left the group provide forwarding addresses for some period. This topic is taken up in

more detail in Chapter 8.

Theorem 6.3 The join protocol preserves k-resilience in the view relation.

Proof: The principal j is joining a group with members M . Assume that the set S � M is

the set of sponsors it obtains; jSj = k + 1. Denote the view graph before this protocol is

executed as KM , which is assumed to be k-resilient.



90JoinGroup(groupId gid, int nsponsors)f sethprincipalIdi possibleMembers;principalId possible;int nfound = 0;// Obtain a list of possible members from the location service.// This list must contain at least one group member.possibleMembers = LocationService.�nd(gid);// Initialize the local viewview.group = gid;view.add(thisPrincipal,pendingMember,0);// Initialize message delivery data structuressummary.update(thisPrincipal,0);ack.update(thisPrincipal,0);// Get the �rst sponsordo f possible = possibleMembers.pickAndDeleteRandom();if (getFirstSponsor(possible,gid))nfound = 1;g while ((nfound == 0) && !possibleMembers.empty());// get additional sponsorswhile ((nfound < nsponsors) && !possibleMembers.empty()) fpossible = possibleMembers.pickAndDeleteRandom();if (getAdditionalSponsor(possible,gid)) fnfound = nfound+1;ggview.update(thisPrincipal, member, CurrentTimestamp());// optional: initiate anti-entropy session with some other memberg
FIGURE 6.3: The join protocol followed by a new member. Error handling has been elided for clarity.

After executing this protocol, up to k failures occur in the set F = ff1; : : : ; fkg. Assume

that j 62 F . The failed principals can be divided into two sets: the members of FS = F \ S
are sponsors for j, and those of FM = F \ (M � S) are not.

For every member m that has not failed (m 2 M � F ), there is a path m; : : : ;ms in the

view graph, where ms 2 S, since jSj > jF j and the original view relation is k-resilient.



91BoolgetFirstSponsor(principalId possible, groupId gid)f memberView view;send(possible, \Request First Sponsorship", gid);receive(possible, status, otherView);if (status == ACCEPTED) fview.merge(otherView);
transfer group state;
transfer message log and summary vectors;return True;g else f// request failed or was declinedreturn False;gg

FIGURE 6.4: Obtaining the first sponsor. Obtaining additional sponsors is similar, except that the transfers of
application and group communication state do not occur.

Since there is an edge (ms; j) in the new view graph, for every functioning member m there

is a path m; : : : ;ms; j.

The same argument holds in reverse for paths from j to all other members in M � F , so the

new view graph is correct after up to k failures. Therefore it is k-resilient. 2
In addition, the protocol forms an n-clique in the view graph when the number of members n

is not more than k + 2. Once a (k + 2)-clique is reached, k-resilience is established.

Members joining a group do not interfere with message delivery. A message sent at time t
by principal A is to be delivered to every principal that is a member at t: The proof of diffusion

(Lemma 5.10) can be extended by noting that the group membership at t is a fixed finite set, and

by substituting the view relation for the logical communication topology in the proofs. A correct

view relation is a connected graph, so every principal that is a member at t will eventually perform

an anti-entropy session that is causally dependent upon the message-sending event at t. If a B joins



92

after t; it will either receive the message or be given group state from a sponsor that already received

the message.

6.4.4 Group leave

When a member leaves the group, it must not cause the view relation to become less than k-resilient

or incorrect. This can happen when removing the member from the group causes the minimum

vertex-cut to drop below k+ 1 vertices. The protocol must also ensure that all messages have been

propagated to other principals.

To alleviate this problem, a principal that wants to leave the group must do so in two steps.

1. The principal declares its intent to leave by changing its status to left and performing anti-

entropy with one or more other members.

2. The principal then waits until all principals that were group members at the time it declared

its intent have observed the status change. Then the member can destroy its state.

During this delay, the principal cannot send new messages, and so should not accept operations

from clients or sponsor other principals. However, it must maintain all its state and actively

participate in anti-entropy sessions with any other group member.

The first step of the protocol must complete eventually, since a principal can change its own state

in minimal time and any principal can eventually complete an anti-entropy session with another.

For the second step to complete, every principal that is a member at the time of declaration t
must perform an anti-entropy session that causally follows the declaration event. Since the group

membership at t is fixed and finite, and the view relation is correct, it follows from Lemma 5.10 on

diffusion that every member will eventually perform such an anti-entropy session.

Further, if the group is k-resilient at t and no more than k principals fail, the member that is

leaving can still communicate with the remaining group members to complete the protocol.

When a member A declares its intent to leave, another other member B may already have

declared its intent to leave. Principal B may collect its acknowledgments and leave the group before

explicitly acknowledging the declaration from A. However, A will also detect that B collected its



93

acknowledgments and will delete B from its view. A need then only wait for acknowledgments

from the other group members.

The delay in leaving ensures that the view relation cannot become vulnerable to k or fewer

failures, and that no messages sent from the principal will be lost. This also ensures that the leaving

principal does not compromise the correctness condition for reliable message delivery. The delay

completes when all members have acknowledged that the principal has expressed its intent to leave.

This requires a chain of anti-entropy events starting after time t between it and all other members,

then a chain of anti-entropy sessions from every other member back to the leaving principal. The

return sessions ensure leaving principal will receive every message sent up to time t along with

acknowledgement of its state change.

When the last principal leaves a group, the group ceases to exist. The location services should

be so informed.

Theorem 6.4 The leave protocol preserves k-resilience in the view relation as long as at least k+1

principals remain in the group.

Proof: Consider any path m1; : : : ; mn in the view graph. Assume some subsetfl1; : : : ; lmg � fm2; : : : ; mn�1g of these have declared their intent to leave the group.

Without loss of generality, assume that l1 is the first to find that its change has been observed

by all group members, and that this occurs at time t1. At time t2 � t1, the second principall2 will find that it has met its condition and will cease to exist. Assume that the view graph

is k-resilient for t � t1. Then for the period t1 < t � t2 the part of the path mk�1; l1; mk+1

can be replaced by the sequence mk�1; mk+1 since mk�1 must have every member in its

view that l1 had. These steps can be repeated for each member as it leaves the group.

Since the graph was originally k-resilient, after some k failures there must still be some pathm1; : : : ; mn between any two principals. This path will still exist after l1 : : : lm leave the

group. 2



94

As with the join protocol, this protocol forms a n-clique when there are fewer than k+ 1 group

members.

6.4.5 Failure recovery

Principals can exhibit either temporary performance failures or permanent failures. Host rebooting,

transient load, and network router failure are typical temporary failures. A principal that has

permanently failed will never recover, or recovery will take so long that it might as well be forever.

Extended repair, disaster, or unexpected removal from service are permanent failures.

The mechanism for detecting that a principal has failed is beyond the scope of this dissertation.

Standard probabilistic failure detection mechanisms, such as timeouts, do not apply to the long-

lived, crash-resilient principals used to build information services. For many applications, failure

will be sufficiently rare that human detection is feasible.

The TSAE protocol already handles temporary failures. Soon after the principal recovers, it

will start to perform anti-entropy sessions. Between state that was saved on stable storage and the

information preserved at other principals, these operations will catch it up to the current state of the

system.

Permanent failures are a different problem. Most seriously, they compromise reliable delivery

guarantees. Information that has not propagated out of the failed principal may be trapped there

and lost. Without remedy, this would be especially serious for group information, as it could create

an incorrect view relation. For example, a single principal that has just joined the group with one

sponsor can become isolated from the rest of the group if its sponsor fails.

The only way to solve this problem is to ensure that information is recorded at several principals

before a group membership operation is complete. The group membership protocols in this chapter

maintain a k-resilient view relation, where information is always recorded by at least k+1 principals.

A principal that has failed must be ejected from the group. Ejection proceeds as follows:

when principal p finds that principal f has failed, it marks f as status failed in its view, and sets

the timestamp of the status change to in�nity. This will prevent a principal from recovering and

claiming to be a group member, then propagating messages that have been delivered and purged



95

by other members. Anti-entropy sessions then propagate the failure information to all other group

members. Principal f is ejected, and the failure recovered from, when all group members have

observed and acknowledged its failure. As with group leaves, k-resilience is then restored.

When a principal must be ejected from the group, the view relation can become less than k-

resilient, just as with group leaves. If the system were only to experience k failures over all time,

the loss of one failed principal would not cause a loss of resilience; only k � 1 failures would be

possible and k � 1 resilience still holds.

However, it is not possible to bound the number of failures a long-lived system will incur. The

membership mechanisms in this chapter re-obtain k-resilience even though as many as k principals

have already failed. As long as the number of members has not dropped below k + 1, anti-entropy

among the members will eventually restore k-resilience. In fact, anti-entropy will eventually

generate a complete graph among the members if the membership is stable long enough.

This approach leaves the group vulnerable for the time it takes to restore k-resilience. The

length of time the group is vulnerable can be decreased by increasing the rate at which members

perform anti-entropy. The duration, and degree, of vulnerability is the subject of Section 7.3.

6.5 Summary

The group membership component can provide weak consistency semantics: all principals will

eventually see membership changes, but only one or a few see the change initially. The basic

timestamped anti-entropy message delivery protocol is correct when used with this group imple-

mentation, even when the group membership changes dynamically.

The group membership protocols provide for four operations: initialization, join, leave, and

failure recovery. Each of these protocols proceeds immediately at only a few principals, providing

better scalability than existing consistent group membership protocols. The operations maintain a

view of group membership at each principal that records the members that principal knows about.

The views define a view relation, which is correct if its transitive closure is equal to the group

membership.



96

The protocols take care to maintain a correct view relation even in the presence of a few failures.

In particular, the graph is said to be k-resilient if up to k members can fail and not compromise

the graph. The join and leave protocols preserve k-resilience. These algorithms handle permanent

failure – as distinguished from transient failure – though it reduces the resilience of the view relation

until it is restored by normal message propagation.

Refdbms uses these protocols in its group membership mechanism.



97

Chapter 7

Performance of weak-consistency
protocols

The last several chapters have presented an architecture for a weak consistency group communication

system and protocols for constructing it. How well can these protocols be expected to work? How

do they compare to other approaches? In this chapter I investigate a number of performance

measures.

Several of the measures are related to the guarantees provided by the components. Message

reliability measures how often the message delivery component will fail to deliver a message

because principals are removed from service without notice, while message latency measures how

long the component takes to deliver a message. Membership resilience measures how well the

group join and leave protocols preserve correctness and resilience.

Two additional measures are not related to any specific component. Message traffic indicates

how many messages applications built using the TSAE protocol will generate, and indirectly how

they interfere with other network activity, while consistency measures how up-to-date each principal

can be expected to be.

I conclude the chapter with a brief comparison of the performance of the TSAE protocol with

the protocols surveyed in Chapter 4.

7.1 Message reliability

The timestamped anti-entropy message delivery protocol provides reliable eventual delivery. How-

ever, reliable delivery does not guarantee that a message is delivered when its sender fails. For



98

the TSAE protocol to fail to deliver a message, every principal that has received a copy – which

includes the sender – must fail. This section examines how often this happens.

Delivery reliability can be measured by the probability that a message will be delivered to every

principal before all recipients can fail. The probability is affected by the rate at which anti-entropy

sessions propagate messages, and the rate at which principals fail.

In earlier chapters, principals were assumed not to fail. In practice, the only way a principal can

fail is in a sudden, catastrophic removal from service – a fire or hardware failure, for example. This

sort of failure is extremely rare for systems on the Internet. The analysis in this section, however,

explores a wide range of failure rates.

7.1.1 Analytical modeling

Message loss can be modeled using a state transition system like that shown in Figure 7.1. Each state

is labeled with a pair hm; fi, where m is the number of functioning principals that have observed a

message, and f is the total number of functioning principals. The system starts in state h1; ni;with

one principal having observed a message out of n possible (5 in the example). The system can then

either propagate the information using anti-entropy, in which case the system moves to state h2; ni;
or a principal can be removed from service and the system moves into state h0; n� 1i:The message

has been lost when the system reaches a state h0; xi; and it is delivered when it reaches hx; xi:
Anti-entropy and principal failure are treated as Poisson processes with rate �a and �f ; because

Poisson processes are easy to model and analyze. Real systems often follow more complex

distributions, but this simplifying assumption is common practice.

The rate of useful anti-entropy sessions, where a principal that has received the message contacts

one that has not, is a function of m; f; and the partner selection policy. In particular, f principals

will be initiating anti-entropy sessions. If principals choose their partners randomly, each principal

that has observed the update has a chance (f �m)=(f � 1) of contacting a principal that has not

yet observed the update. Since anti-entropy is a Poisson process, the rate of useful anti-entropy

sessions is mf �mf � 1
�a:



99���0,4 ���1,4 ���2,4 ���3,4 ���4,4

���1,5 ���2,5 ���3,5 ���4,5 ���5,5���0,3 ���1,3 ���2,3 ���3,3���0,2 ���1,2 ���2,2���0,1 ���1,1

Z Z Z Z~ Z Z Z Z~Z Z Z Z~Z Z Z Z~ Z Z Z Z~Z Z Z Z~ Z Z Z Z~Z Z Z Z~Z Z Z Z~Z Z Z Z~? ?? ??? ????
- -- --- ----�a3

2�a3
2�a�a �f2�f3�f4�f

4�f3�f2�f�f �a4
3�a�a �f2�f3�f

3�f2�f�f �a�a �f2�f
2�f�f �a�f�f

FIGURE 7.1: Model of message receipt and failure for five principals. Each state is labeled hm; fi; where m
is the number of functioning principals that have received the message, and f is the total number of
functioning principals. This model only includes permanent failure; transient failure and recovery would
add an additional dimension of states.

Since removal from service is a permanent event, the state transition graph is acyclic, with Θ(n2)
states in the number of principals. The probability pi of reaching each state i can be computed

using a sequential walk of the states. The probability density functions pi(t) of the time at which

the system enters each state can be derived analytically or numerically. The analytic solution forpi(t) can be found by convolving the entry-time distribution pj(t) for each predecessor state j with

the probability density of the time required for the transition from j to i. Alternately, the system

can be solved numerically using a simple Monte Carlo evaluation.

7.1.2 Results

Figures 7.2 and 7.3 show the probability of removal from service interfering with message delivery

for different numbers of principals. The probability is a function of � = �a=�f ; the ratio of the

anti-entropy rate to the permanent site failure rate. The two graphs are identical in content, but are

plotted using different vertical scales to properly show the behavior for both small and large values

of �:
Internet sites generally are removed from service after several years of service, and then usually

with enough notice to run a leave protocol. The anti-entropy rate is therefore likely to be many



100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000 10000

P
ro

ba
bi

lit
y 

of
 lo

ss

Relative propagation rate

3 principals
10 principals

100 principals
1000 principals

FIGURE 7.2: Probability of failing to deliver a message to all sites (linear vertical scale). The relative
propagation rate � is the ratio of the anti-entropy rate �a to the permanent site failure rate �f : The linear
scale emphasizes the effect of the number of principals for small values of �:

1e-05

0.0001

0.001

0.01

0.1

1

0.1 1 10 100 1000 10000

P
ro

ba
bi

lit
y 

of
 lo

ss

Relative propagation rate

3 principals
10 principals

100 principals
1000 principals

FIGURE 7.3: Probability of failing to deliver a message to all sites (logarithmic vertical scale). The
logarithmic scale emphasizes the effect of large values of �: the probability decreases as � increases.



101

thousands of times higher than the permanent failure rate. As a result, there will be almost no

messages lost because of removal from service.

7.1.3 Volatile storage

Some implementations may buffer messages in volatile storage before copying them to the stable

message log. This is the default behavior of several operating systems, including the Unix file

system. These implementations will lose the information in volatile storage when a principal

temporarily fails and recovers.

Volatile storage complicates the state transition model. States must be labeled with four values:

the number of functioning principals that have not observed a message, the number that have written

it to volatile store, the number that have written it to disk, and the number that have temporarily

failed. The state transitions are complex and the solution is impractical for realistic numbers of

principals.

However, the effect of volatile storage can be bounded by considering the probability that a

failure will occur while there are messages that have not been made stable. Assume that temporary

failure is a Poisson process with rate �t and that volatile data is flushed to stable storage every s
time units. The probability that a failure occurs before writeback isp = �2e�s�t + s2�2t � 2s�t + 2

2s�2t :
For a typical value of s = 30 seconds and 1=�t = 15 days, p is so close to zero as to be negligible.

7.2 Message latency

The message component provides latency guarantees as well as reliability. The TSAE protocol only

guarantees eventual delivery, but in practice messages propagate to every principal rapidly.

If information is propagated quickly, clients using different principals will not often observe

different information, and loss of an update from site failure will be unlikely. The size of the message



102

log is related to this measure, since messages are removed from the log when acknowledgments

have been received from every principal.

7.2.1 Simulation modeling

I constructed a discrete event simulation model of the timestamped anti-entropy protocol to measure

propagation latency. The latency simulator measured the time required for an update message,

entered at time zero, and its acknowledgments to propagate to all available principals. The time

required to send a message from one principal to another was assumed to be negligible compared

to the time between anti-entropy sessions. The simulator could be parameterized to use different

partner selection policies and numbers of sites. The simulator was run until either the 95% confidence

intervals were less than 5%, or 10 000 updates had been processed. In practice 95% confidence

intervals were generally between 1 and 2%.

The simulation modeled only the TSAE protocol, and did not consider the effect of combining

TSAE with a best-effort multicast. Therefore the results in this section represent worst-cast behavior

that would be improved if a multicast were added.

7.2.2 Results

Figure 7.4 shows the cumulative probability over time that a message has been received by all

principals for varying numbers of principals. Time is measured as multiples of the mean interval

at which principals initiate anti-entropy events. The simulations in this graph use uniform partner

selection. The time required to propagate a message appears to scale well with the number of sites.

The time required to propagate message acknowledgments everywhere is also an important

measure, because it determines how quickly messages can be purged from the message log. Fig-

ure 7.5 shows the latency required from the time a message is sent to the time acknowledgments

are received by every principal from every principal. Once again the time required appears to scale

well.

The partner selection policy also affects the speed of message propagation. Figure 7.6 shows the

mean time required to propagate a message to every principal for several policies as the number of



103

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Time (multiples of mean anti-entropy time)

5 principals
10 principals
20 principals
40 principals
80 principals

160 principals

FIGURE 7.4: Cumulative probability distribution for propagating a message to all principals. Measured for
uniform partner selection.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Time (multiples of mean anti-entropy time)

5 principals
10 principals
20 principals
40 principals
80 principals

160 principals

FIGURE 7.5: Cumulative probability distribution for receiving an acknowledgment from all principals.
Measured for uniform partner selection.



104

1

10

100

5 10 100 160

M
ea

n 
tim

e

Number of principals

Ring
Binary tree

Mesh
Uniform

Latin squares
Distance-biased

Oldest-biased
Oldest-first

FIGURE 7.6: Effect of partner selection policy on scaling of propagation time.

sites increases. The uniform, latin squares, and distance-biased policies give essentially identical

performance. Age-biased appears to provide slightly better performance, which would appear

to contradict the claim by Alon that the latin squares policy is fastest [Alon87]. I believe the

difference arises from a slight difference in implementation: Alon’s implementation requires that

every principal propagate messages in well-defined rounds, while this simulation allows propagation

to occur at random intervals. This may mitigate some of the benefit derived from Alon’s latin

squares policy. The policies that simulate a fixed topology – ring, mesh, or binary tree – have the

worst performance and scaling.

The results for acknowledgment time (Figure 7.7) are similar. Again uniform, distance-biased,

and latin squares all have essentially the same latency, while age-biased performs slightly better.

The oldest-first policy performs best of all for small groups, and is about the same as the random

policies for large groups. The oldest-first policy was notably worse than these protocols for message

propagation latency. Again the fixed-topology policies perform worse than all the others.

These results indicate that simple random policies, such as uniform selection or age biasing,

perform quite well. Uniform partner selection was therefore selected for the Refdbms system.



105

1

10

100

1000

5 10 100 160

M
ea

n 
tim

e

Number of principals

Ring
Binary tree

Mesh
Uniform

Latin squares
Distance-biased

Oldest-biased
Oldest-first

FIGURE 7.7: Effect of partner selection policy on scaling of mean time to acknowledgment.

7.3 Group membership resilience

The group membership component (Chapter 6) maintains weakly consistent views of the membership

at every principal. It provides protocols for principals to join and leave the group, and to eject a

principal that has failed. The views define a view relation between principals. The view relation is

correct if its transitive closure is equal to the group membership. The view relation can be made

resilient to some number of failing principals by adjusting the number of sponsors a principal must

obtain upon joining the group.

The latency of the membership protocols depends on the message and acknowledgment latencies

investigated in the previous section. The join protocol executes immediately, and notice of a new

member is then propagated throughout the group. The leave and eject protocols require a message

to be disseminated to and acknowledged by the group.

There are two related measures that can be taken of the view relation. The in-degree of a

principal measures how many other principals have it in their view. The in-degree measures how

far knowledge of a principal’s membership has spread. The minimum vertex cut between two



106

principals determines how many principals can fail before disconnecting them. This measures the

failure resilience of the view relation.

Both steady state and transient behavior can be determined for each measure. In practice

the steady-state behavior is not interesting because information spreads rapidly through a group.

Transient behavior is more interesting, showing how quickly members’ views converge.

7.3.1 Simulation modeling

A discrete-event simulation was used to model a system of n principals. For each run of the

simulator, each of the n principals joined the group, acquiring k randomly-selected sponsors during

the join protocol. Some number f of the principals, selected at random, then failed. The principals

then began conducting anti-entropy sessions, with sessions occurring as a Poisson process. The

sessions continued until all member views converged, or until the view relation became incorrect.

Two measures were collected at the end of each run: the mean time required for views to

converge, and the probability that they converged. Six additional measures were sampled during

the run: the average, minimum, and maximum in-degree of principals, and the average, minimum,

and maximum minimum vertex cut of the relation. The mean time between anti-entropy sessions

was used as the time base for all measurements.

Computing the minimum vertex cut proved to be an expensive operation. Finding the minimum

vertex cut between any two principals requires Θ(n2) applications of a maximum flow algorithm,

which requires O(n2) time. The simulator required several hours on a SparcStation 2 to complete

3000 runs of a 25-principal system.

The simulator used the batch-means method [Jain91] to determine when the confidence interval

of the sampled mean time-to-convergence was less than 2%. Each batch consisted of 500 runs, and

at most 3000 batches were collected.

7.3.2 Results

Membership views converge rapidly, reaching nearly complete consistency after only a few rounds

of anti-entropy. Figure 7.8 shows the time-varying measures collected for a system of 25 principals,



107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7

F
ra

ct
io

n 
of

 p
ri

nc
ip

al
s

Time (multiples of mean anti-entropy time)

Maximum min-cut
Average in-degree

Average min-cut
Minimum in-degree

Minimum min-cut

FIGURE 7.8: Progress of the minimum cut and in-degree measures in a group of 25 principals, using one
sponsor, with no failures.

none of which failed, with principals obtaining one sponsor when joining. The minimum min-cut

(the lowest curve on the graph) reports the smallest fraction of the group that can fail to render the

view relation incorrect. This begins at 1=24th, since initially some principal is known by only one

of the other 24 principals. The resilience increases rapidly, and within six time units the views have

almost always converged.

The average and maximum min-cut curves in Figure 7.8 show the range of principals that can

fail before rendering the view relation incorrect. The expected resilience is always better than the

minimum. The graph also shows that the average and minimum in-degree increase quickly as the

group views converge.

Figure 7.9 shows how using two sponsors and one failed principal affect the measures. The

views converge slightly faster than in the previous figure, partly because there are only 24 principals

left in the group, but more because each new member was known by more members at the start.

The number of sponsors has a significant effect on the resilience and speed of convergence.

Figure 7.10 shows the minimum resilience (min-cut) for a group of 25 principals, varying the



108

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7

F
ra

ct
io

n 
of

 p
ri

nc
ip

al
s

Time (multiples of mean anti-entropy time)

Maximum min-cut
Average in-degree

Average min-cut
Minimum in-degree

Minimum min-cut

FIGURE 7.9: Progress of the minimum cut and in-degree measures in a group of 25 principals, using two
sponsors, with one initial failure.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7

F
ra

ct
io

n 
of

 p
ri

nc
ip

al
s

Time (multiples of mean anti-entropy time)

10 sponsors
5 sponsors
4 sponsors
3 sponsors
2 sponsors
1 sponsor

FIGURE 7.10: Progress of the group membership resilience, with varying numbers of sponsors. Measured for
a group of 25 principals. The minimum cut is reported as the fraction of the principals that must fail to
render the view relation incorrect.



109

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7

F
ra

ct
io

n 
of

 p
ri

nc
ip

al
s

Time (multiples of mean anti-entropy time)

10 sponsors
9 sponsors
8 sponsors
7 sponsors
6 sponsors
5 sponsors
4 sponsors
3 sponsors
2 sponsors
1 sponsor

FIGURE 7.11: Progress of the average in-degree as anti-entropy propagates membership information.
Measured for a group of 25 principals. The in-degree is measured as a fraction of the 24 principals that
could know about each principal.

number of sponsors from one to ten. The views converge much more rapidly as sponsors are added.

However, the benefit of adding sponsors decreases as they are added: using two sponsors instead

of one produces a much greater improvement in resilience than adding a third sponsor.

Figure 7.11 shows how the number of sponsors affects the in-degree. Again, adding sponsors

can significantly increase the fraction of the group that knows about each principal, and the greatest

increase is obtained between one and two sponsors. This measure shows that even though the

minimum resilience of the view relation may start low, the actual connectivity (as shown by the

average min-cut and in-degree) is dense from the start. The low resilience comes from a small

number of principals that are known only to a few others, while most of the rest of the group are

known by several other members.

Figures 7.12 and 7.13 summarize the effect of the number of sponsors and number of failures

on the time required for views to converge. Increasing the number of sponsors speeds convergence,

and views converge faster with fewer failures. Increasing the number of failures causes only a slight

increase in the mean time to convergence because the loss of information is offset by a decrease in



110

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10

Ti
m

e 
(m

ul
tip

le
s 

of
 m

ea
n 

an
ti-

en
tr

op
y 

tim
e)

Number of sponsors

10 fail
9 fail
8 fail
7 fail
6 fail
5 fail
4 fail
3 fail
2 fail
1 fail

No fail

FIGURE 7.12: Mean time for views to converge, varying number of sponsors. Measured for 25 principals, of
which between zero and ten fail. Note that the number of failures was not allowed to exceed the number of
sponsors, to avoid an incorrect view relation. The discrepancy between zero and one failures with one
sponsor arises because the single failure does not significantly affect the connectivity of the relation, but
decreases the number of principals that must reach consensus.

the number of principals. There appears to be a marked decrease when the number of failures is

only one or two less than the number of sponsors.



111

0

5

10

15

20

25

30

35

0 1 2 3 4 5

Ti
m

e 
(m

ul
tip

le
s 

of
 m

ea
n 

an
ti-

en
tr

op
y 

tim
e)

Number of failing principals

25 principals
20 principals
17 principals
15 principals
12 principals
10 principals
9 principals
8 principals
7 principals
6 principals

FIGURE 7.13: Mean time for views to converge, varying number of failing principals. Joining principals
obtained five sponsors. As the number of failures approaches the number of principals, the time to
convergence decreases because the number of principals that much reach consensus becomes small.



112

7.4 Traffic

A group communication system must not overload the network on which it operates. This is

particularly important if the group is to scale to a large size. The traffic induced by a system, as

measured by the number of network packets that are sent and by the distance the packets traverse,

is the primary measure of how the system will affect the network.

Researchers at Xerox PARC found that the original version of the Clearinghouse system over-

loaded their internetwork [Demers88, Demers89]. The original implementation used anti-entropy

sessions with a best-effort multicast, and used a uniform partner selection policy during anti-entropy.

A revised implementation reduced the network load by a combination of fixing implementation bugs,

investigating a distance-biased partner selection policy, and adding a rumor mongery propagation

method. The Clearinghouse protocols were discussed in Section 4.10.

Network traffic is measured by the number of packets sent, and by how many network links they

must traverse. The number of packets is determined by the number of messages each principal sends,

their size, and how often principals perform anti-entropy. In the absence of principal or network

failures, the TSAE protocol ensures that every message is sent exactly once to each principal. The

number of links each packet must cross is determined by the topology of the network and by the

partner selection policy that principals use when performing anti-entropy.

Different network links can have different costs. For example, intercontinental links have long

latencies, while IP running over a local Ethernet usually delivers a packet in a few milliseconds.

Traffic measures and partner selection policies should account for this cost.

For this performance evaluation, I introduced two partner selection policies in addition to those

discussed in Section 5.4.1. The cost-biased policies preferentially select low cost partners. This is

different from distance-biased selection when network links have different costs. The cost-biased

policy selects a principal with probability proportional to the inverse of the difference between its

cost and the highest cost in the group. The cost-squared-biased selects with probability proportional

to the difference squared, increasing the probability that low-cost partners will be selected.



113

(a) (b)

FIGURE 7.14: The ring and backbone physical topologies simulated for traffic analysis. (a) Principals are
connected by a ring. (b) Principals are organized into 5-cliques; one principal acts as a gateway onto a
backbone ring.

7.4.1 Simulation modeling

The system was modeled in a discrete-event simulation. Principals initiated anti-entropy sessions

according to a Poisson process. Each run of the simulation performed 1000 anti-entropy sessions,

collecting link traffic and cost statistics. At least 100 runs were performed, and they were repeated

either until 1000 runs completed or until a batch-means analysis indicated that the 95% confidence

interval width for each measure was less than 1% of the measured value. A complete set of runs

required between half an hour and six hours on a DECstation 5000/200, depending on the number

of principals and the partner selection policy.

The simulator programs modeled two different physical network topologies (Figure 7.14).

Neither topology corresponds to the real structure of the Internet. Instead, they were selected

as representative of topologies that can concentrate traffic onto a few links. The first topology

connects principals in a ring. Rings are simple to model, and are the simplest structure that shows

how distance can affect traffic without creating the edge effects produced by linear networks. The

second topology groups principals into 5-cliques, and connects the cliques through a backbone ring.

This is similar to the structure of the Internet today: regions of high connectivity, with regions

weakly connected through a backbone network. Communication within a region is fast, while



114

1

10

100

1000

10 100 1000

Tr
af

fic
 p

er
 li

nk
 p

er
 s

es
si

on

Number of principals

Uniform
Distance biased

Oldest biased
Latin squares

Oldest first
Ring

FIGURE 7.15: Traffic per network link on a ring network, varying the number of principals.

communication between regions can be expensive. Demers et al. noted that this kind of topology

was a problem for the original Clearinghouse protocols [Demers88].

Each simulator run was parameterized by the partner selection policy and the topology. The

binary tree and mesh partner selection policies were not tested because they were patently inappro-

priate on ring-like topologies. For the ring topology, the number of principals could be specified;

this ranged from ten to one thousand. For the backbone topology, the number of principals was

fixed at 30 (six 5-cliques) but the cost of the backbone links relative to the intra-clique cost could

be specified. This cost ranged from 1 through 160.

7.4.2 Results using ring topology

As expected, the amount of traffic scales with the number of principals (Figure 7.15). The

uniform, oldest-biased, and latin squares policies all produced the same amount of traffic, which

is not surprising since they also exhibited similar propagation delays (Figure 7.6). Distance biasing

produced some improvement, while the ring policy produced a constant traffic of one link per

anti-entropy session. I believe that the anomalous result for the oldest-first policy is due to a minor



115

implementation detail: when several principals are equally old, the nearest one will be selected. I

suspect that when the group becomes large the policy often propagates a message from one principal

to its neighbor in a “wave” of propagation, which would behave much like the ring policy.

7.4.3 Results using backbone topology

The clique-and-backbone topology is more interesting than the simple ring because it provides a

more realistic basis for comparing policies. The backbone links can have a different cost than the

intra-clique links, and the connectivity between principals is more varied.

The cost-biased partner selection policies are appropriate for this topology. They are similar

to distance-biasing, except that the likelihood of selecting a principal as partner is proportional to

the difference between the minimal communication cost and the cost of communicating with that

partner. The cost-squared-biased policy sets the likelihood to be proportional to the difference

squared, favoring nearby sites. The advantage of these policies is that they are not based on an

arbitrary topology, but rather upon observable performance measures. This makes them appropriate

for use in a wide-area internetwork where topological information is likely to be unavailable.

The ring and distance-biased polices had to be mapped onto the backbone topology. Principals

were assigned an index, starting with zero at the gateway of one clique. The other four principals

in the clique where numbered one through four, the gateway of the next clique clockwise around

the ring was numbered five, and so on. The ring policy used this ordering for its logical ring, while

the distance-biased policy used the difference between indexes as its “distance”.

Figure 7.16 shows the average cost of the links traversed by an anti-entropy session. As on a

simple ring, the uniform, oldest-biased, oldest-first, and latin squares policies all performed about

the same, while distance-biasing improves performance somewhat. The ring policy is somewhat

better than all of these, though it scales in about the same way. The cost-biasing protocols produce

somewhat more traffic when the backbone cost is low, but scale better as the backbone cost increases.

The final two figures in this section, Figures 7.17 and 7.18, show how the anti-entropy traffic

is divided between the cliques and the backbone. In Figure 7.17 the cost-biasing policies decrease

the traffic per link, approaching one as the cost of the backbone increases. The other policies do



116

1

10

100

300

1 10 100 160

D
is

ta
nc

e 
pe

r 
se

ss
io

n

Cost of ring links

Uniform
Distance biased

Cost biased
Cost squared biased

Oldest biased
Latin squares

Oldest first
Ring

FIGURE 7.16: Effect of partner selection policy on the average number of network links used in an
anti-entropy session. Measured on a ring of six 5-cliques. The cost of the backbone ring links varied from 1
to 160.

1

2

3

3.5

1 10 100 160

Tr
af

fic
 p

er
 li

nk
 p

er
 s

es
si

on

Cost of ring links

Uniform
Distance biased

Cost biased
Cost squared biased

Oldest biased
Latin squares

Oldest first
Ring

FIGURE 7.17: Effect of partner selection policy on the mean traffic per link, for all links. The cost of the
backbone ring links varied from 1 to 160. Only the cost-biased policies adapt to the cost of backbone links.



117

0.001

0.01

0.1

1

3

1 10 100 160

Tr
af

fic
 p

er
 b

ac
kb

on
e 

lin
k 

pe
r 

se
ss

io
n

Cost of ring links

Uniform
Distance biased

Cost biased
Cost squared biased

Oldest biased
Latin squares

Oldest first
Ring

FIGURE 7.18: Effect of partner selection policy on the mean traffic per backbone ring link.

not account for link cost, and the link traffic remains constant as link cost changes. Figure 7.18

shows that the cost decrease is achieved by concentrating communication within a clique. When

backbone links cost 80 times as much as a clique link, the cost-biased policy only allows between 1

and 2% of all anti-entropy sessions to cross between cliques. Fewer than 0.3% of all sessions cross

backbone links when cost-squared-biasing is used. Clearly cost-biasing ensures that communication

is predominantly local.

7.4.4 Traffic and propagation time

While one might want to reduce network traffic as much as possible, a reduction in traffic generally

requires an increase in the time required to propagate a message. Figure 7.19 shows the relationship

between the two. For a membership of 30 principals, the time required to propagate a message is

plotted as a function of the link traffic for each of several partner selection protocols. All of the

policies excepting the ring policy appear to fit on a smooth curve. Figure 7.20 shows that a similar

result holds for the time required to propagate acknowledgments.



118

1

10

100

1 10

M
ea

n 
pr

op
ag

at
io

n 
tim

e

Mean link traffic

Dist biased
Latin square

Age biased
Oldest

Uniform
Ring

Cost biased
Cost squared biased

FIGURE 7.19: Scatterplot of the relationship between link traffic and propagation delay. Measured for 30
principals. Time is measured in multiples of mean time between anti-entropy sessions. Every protocol
except cost-biased and cost-squared-biased is represented by a single point. Multiple points are reported
for the cost-biased protocols, showing how they respond to different backbone link costs.

7.5 Consistency

Weak consistency protocols allow principals to contain out-of-date information. There are two

related measures of this effect – one concerning the propagation of a single message, the other

concerning the consistency of group state. The time required to propagate an message from one

principal to others shows how quickly information will be made available to clients; this was

investigated in Section 7.2. The likelihood that a principal is out-of-date with respect to other

principals, and the difference between them, aggregates the effects of several messages.

7.5.1 Simulation modeling

A discrete event simulation modeled the TSAE protocol to measure information age. The simulator

used five events: one each to start and stop the simulation, one to send a message, one to perform

anti-entropy, and one to sample the state of a principal. The simulation was first allowed to run for

1 000 time units so it would reach steady state, then measurements began. The simulation ended



119

1

10

100

1 10

M
ea

n 
tim

e 
to

 a
ck

no
w

le
dg

m
en

t

Mean link traffic

Dist biased
Latin square

Age biased
Oldest

Uniform
Ring

Cost biased
Cost squared biased

FIGURE 7.20: Relationship between link traffic and time to acknowledgment. Measured for 30 principals.
Time is measured in multiples of mean time between anti-entropy session. See Figure 7.19 for more details.

at 50 000 time units. Read, write, and anti-entropy events were modeled as Poisson processes with

parameterizable rates. These rates were measured per principal. The simulator included different

partner selection protocols and an optional unreliable multicast on writes.

The state of a principal was modeled as a single data value, and messages were treated as updates

to that value. In this way the simulation results show the currency of each data value in a principal,

given the rate at which the value is updated.

The simulator maintained two data structures for each principal: the anti-entropy summary

vector and a message number. It also maintained a global message counter. When a message was

sent, the global counter was incremented and the sender’s message number was assigned that value.

If an unreliable multicast was being used, the message number would be copied to other principals if

a the datagram was received. Anti-entropy events propagated message numbers between principals,

as well as updating the principals’ summary vectors.

Sampling events were used to collect measures of the expected age of data and the probability

of finding old data. A principal was selected at random, and the message number for that principal



120

was compared to the global counter. The difference showed how many messages the principal had

yet to receive.

7.5.2 Results

A system like Refdbms stores thousands of values in its group state, while the simulation results

concern a single data value. The results can be viewed in two ways. Each data value can be

considered separately, and the performance results considered in terms of the update rate per value.

Alternately, the the values can be considered collectively, and the results interpreted in terms of the

overall update rate. In Refdbms the overall update rate will be thousands of times greater than the

rate per item.

The age of a principal’s state depends on the ratio of the anti-entropy rate to the update rate

for the state. Many wide-area services have extremely low update rates; some services write new

entries and never change them. A low update rate means that anti-entropy has a better chance

of propagating an update before another update enters the system. In the Domain Name Service

[Mockapetris87], a host name or address rarely changes more than once every few months. In

systems like Refdbms, new entries are added, corrected quickly, then remain stable. I expect the

update rate for most wide-area services to be about a thousand times lower than the anti-entropy

rate. Most of the graphs in this section were generated using a mean time-to-update of 1 000

time units; the maximum anti-entropy rate investigated was only 200 times greater, giving a mean

time-to-anti-entropy of five. This implies that all the results presented here are more pessimistic

than would actually be observed.

Figure 7.21 shows the likelihood of a principal holding an out-of-date value, while Figure 7.22

shows the expected age of that value. Clearly, adding an unreliable multicast on write significantly

improves both measures. The message success probability is the most important influence on

information age in large groups of principals. For small numbers of principals, increasing the

anti-entropy rate dramatically improves both the probability of getting up-to-date information and

the expected age.



121

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 100 1000

P
ro

ba
bi

lit
y 

of
 o

ld
 v

al
ue

Mean time to anti-entropy

0.1 fail
0.3 fail
0.5 fail
0.9 fail

0.95 fail
No multicast

FIGURE 7.21: Probability of getting old value as the per-principal anti-entropy rate varies, for 500 principals.
Mean time-to-write 1 000; uniform partner selection. Anti-entropy was combined with a best-effort
multicast. The different curves show the effect of the probability of multicast message failure.

Figures 7.23 and 7.24 show how consistency depends on the number of principals. For these

simulations the anti-entropy rate was fixed at 100 times that of writes. This value might be typical

for a Refdbms entry soon after it is entered, when updates are most likely. Later updates will be less

frequent and the ratio will increase, improving the consistency. Once again an unreliable multicast

provides considerable improvement.

I also investigated the effect of partner selection policy on information age, as shown in

Figure 7.25. The results show that expected age is related to propagation time, since the policies are

ranked in exactly the same order as in Figure 7.6, which shows the mean propagation time for the

different policies. The topological policies (Ring, binary tree, and mesh) propagate more slowly,

and give a greater expected age, than other policies. The other policies are nearly equal, though

oldest-first has a slight advantage.



122

0.01

0.1

1

10

100

1000

5 10 100 1000

E
xp

ec
te

d 
ag

e

Mean time to anti-entropy

0.1 fail
0.3 fail
0.5 fail
0.9 fail

0.95 fail
No multicast

FIGURE 7.22: Expected data age as anti-entropy rate varies, for 500 principals. Mean time-to-write 1 000;
uniform partner selection. Again, anti-entropy was combined with a best-effort multicast, for which the
message failure rate varied.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 100 500

P
ro

ba
bi

lit
y 

of
 o

ld
 v

al
ue

Number of principals

0.1 fail
0.3 fail
0.5 fail
0.9 fail

0.95 fail
No multicast

FIGURE 7.23: Probability of getting old value as the number of principals varies, with anti-entropy occurring
100 times as often as writes. Uniform partner selection, combined with best-effort multicast.



123

0.01

0.1

1

10

100

5 10 100 500

E
xp

ec
te

d 
ag

e

Number of principals

0.1 fail
0.3 fail
0.5 fail
0.9 fail

0.95 fail
No multicast

FIGURE 7.24: Expected data age as the number of principals varies, with anti-entropy occurring 100 times as
often as writes. Uses uniform partner selection. Also shows the effect of varying message failure rates in a
best-effort multicast.

1

10

100

5 10 100 1000

E
xp

ec
te

d 
ag

e

Mean time to anti-entropy

Ring
Binary tree

Mesh
Uniform

Latin squares
Distance-biased

Oldest-biased
Oldest-first

FIGURE 7.25: Effect of partner selection policy on expected data age. 160 principals; mean time-to-write
1 000. No best-effort multicast was used for this graph.



124

7.6 Comparison

The preceding sections have presented an analysis of the performance of the timestamped anti-

entropy protocol. In this section I compare my framework, using timestamped anti-entropy, with

other systems.

7.6.1 Efficiency

Table 7.1 compares the amount of state and network traffic that TSAE and the surveyed systems will

produce, along with the guarantees each can provide. Any protocol will require at least O(1) state

per message in addition to the message contents, assuming the message must be marked with the

sender’s identity. Likewise, every principal must maintain a list of group members, so the minimum

state per principal is O(n): Each application-level message will induce some number of network

packets. At best one packet would be sent to each recipient. Hardware multicast can reduce this

traffic somewhat, but in a wide-area network it is unlikely that many of the principals would reside

on common networks.

Timestamped anti-entropy compares favorably with the other systems. It can produce total

or causal orders without either adding extra state per message or sending extra messages. The

approach of attaching causal information to batches appears to be a good idea.

The centralized systems and consistent replication all use a minimal amount of state per message

because messages are processed one-at-a-time. They also produce low network traffic. The

drawback is that they must operate synchronously, which makes them infeasible for wide-area

networks.

The systems that provide interactive delivery all begin by sending an unreliable multicast that

is backed by a reliable protocol. Most of them transmit extra information with each message so

that missing messages can be detected, and most require principals to periodically transmit null

messages if they have not generated any real traffic.

Eventual delivery, however, appears to require much less state per message. Excepting Lazy

Replication, the eventual delivery systems attach O(1) state to each message. The anti-entropy

protocols require only a small amount of extra network traffic per message. The Lazy Replication



125

protocol can probably use some of the techniques in TSAE to reduce its per-principal state and per-

message traffic, but it cannot reduce its per-message state because it guarantees causal consistency

with events outside the group.

7.6.2 Implementation effort

The implementation of TSAE, group communication, and message ordering in Refdbms can be

compared with the implementation of another system, such as Isis version 2.1. The differences

between the two are striking. I used lines of code as a simple complexity metric.

These measures must be used with caution. The comparison is not entirely fair, because the

Refdbms implementation is not a general-purpose toolkit. Isis is a more mature package than

Refdbms, having been in development for several years, while Refdbms is only in early testing.

The size of code and implementation effort should be amortized over the number of applications

that use the code, in which case the complexity of interfaces is a more useful, though unquantifiable,

measure.

The Isis V2.1 toolkit is structured into four major components: two libraries that are linked

with user programs, and two programs that provide communication services between hosts and fault

tolerance services. The toolkit implements the ABCAST and CBCAST protocols already discussed

and several variations on them. It also provides a number of higher-level services, including failure

detection and recovery, threads, persistent storage, a primitive name service, and a number of

high-level distributed services.

Refdbms consists of several dozen programs, mostly concerned with user interfaces, the search

engine, and output formatting. For this analysis I have only considered those programs that relate to

distributed operation, and I have removed parts of those programs that implement specific Refdbms

functions (such as constructing the indices).

Table 7.2 compares TSAE, as implemented in Refdbms, with Isis. TSAE appears to be of a

similar complexity to an Isis protocol, although the amount of comment lines in Refdbms (1̃5%) is

much higher than in the Isis sources, and the Refdbms numbers include some application code as

well as “toolkit” code. However, TSAE uses only a total of 2 600 lines for communication, while



126

TABLE 7.1: Performance comparison of several group communication systems.

Guarantees State per Traffic per
System Delivery Order message principal message

Optimum — — O(1) O(n) n
TSAE R,E any O(1) O(n) O(n) + n=k [5]k > 0

Centralized A,S total O(1) 1 2n
Consistent A,S total O(1) O(n) O(n) [2]
replication

Isis ABCAST A,I total O(n) O(n) (1 + 1=k)(2n+ 2�n);k � 1 [6]
Isis CBCAST A,I causal O(n) O(n) 2n+ 2�n

Psync A,I causal O(n) O(n) n+ 2�n
Orca RTS [1] R,I total O(n) O(n) n+ 2�n

Rel. multicast R,I ? ? O(n) 2n+ 2�n [5]
OSCAR R,I none, FIFO, O(1) O(n) n+ 2�n+ 2n2=k;

or total k � 1 [6]
Lazy Replication R,E causal [3] O(n) O(n2) O(n2)

Clearinghouse R,E none O(1) O(n) O(n) + 1=k [5]
anti-entropy

Rumor mongery U,E none O(1) O(n) large [4,5]

Abbreviations:n Number of principals.� Probability of message failure for an unreliable multicast.k Number of ordinary messages per control message or batch.

R Reliable delivery.

U Unreliable delivery.

S Synchronous delivery.

I Interactive delivery.

E Eventual delivery.

Notes:

[1] Orca is represented by the implementation based on unreliable multicast.

[2] Traffic for consistent replication depends on the particular protocol chosen, how that protocol is
parameterized, and the ratio of read to write operations.

[3] Lazy replication can maintain causal relations generated outside the group.

[4] Depending on the stopping rules used, rumor mongery can send a message many times to each principal.

[5] These systems can take advantage of network topology to reduce communication distance.

[6] Isis and OSCAR both use a coordinator. The coordinator sends control messages every k normal
messages on average.



127

TABLE 7.2: Implementation complexity of Isis compared with TSAE in Refdbms. Lines rounded to the
nearest hundred.

Isis TSAE/Refdbms
Component Subcomponent Lines Subcomponent Lines

Ordered messages ABCAST 700 Ordering 100
GBCAST 1 000 Anti-entropy 1 400
CBCAST 1 100 Send message 100

2 800 1 600

Low-level communication 8 500 1 000

Groups 3 400 General 500
Join 1 400
Leave 200

3 400 2 100

Other Failure 1 900
Threads 2 100

Total size 52 000 9 200

Isis uses 11 300 because it implements three different protocols, and it uses a much more elaborate

infrastructure to implement them. Isis requires half again as much code to implement its groups,

though it provides functions, such as subsetting a group, that Refdbms does not.

The total size of the two packages is striking: Isis is more than five times larger than the

distributed portions of Refdbms. This suggests that an implementation tailored to application

requirements can be simpler and more efficient.

7.7 Summary

This chapter presented a number of performance evaluations of the components of the weak-

consistency group communication system, including network traffic, message latency, fault toler-

ance, and consistency.

The TSAE message delivery protocol scales well to large groups of principals. The time required

to propagate an update from one principal to all others increases as the log of the size of the group,

and the partner selection policy can be chosen to control network traffic as the membership grows.

Each principal need only store O(n) state in the group size.



128

Fault tolerance is the ability of a system to provide correct service even when some parts fail.

The TSAE protocol provides excellent fault tolerance by delaying communication until a principal

is available. This implies that the message delivery component will not fail to deliver a message to

the group unless the sender and several other principals fail, and this was found to be an unlikely

event.

The negative aspect of weak consistency protocols is that principals will have out-of-date

information. This investigation found that an unreliable multicast can mitigate most of this problem,

and that at reasonable propagation rates principals are rarely more than a few updates behind. Many

applications, including name services and bibliographic databases, work well with this level of

inconsistency.



129

Chapter 8

Multiple membership roles

The group communication mechanisms presented in the last several chapters are correct and efficient,

and have been used to build the Refdbms system. Other features are needed to build a complete

wide-area information service. In this chapter I discuss how the additional pieces can be constructed

from weak-consistency components.

Group members and their clients may vary in their roles within an application, and consequently

vary in certain behaviors and privileges. For example, some principals may be restricted from

initiating certain operations on the group state. Some principals will act as clients of the application.

Other principals may store only a subset of the group state. A location service is needed to allow

principals to locate the group.

Consider an information service client. The client must be able to find a group member in order

to provide service to a user. This is the job of the location service. If the client is running on a

disconnected mobile computer, it will not be able to contact the service unless a copy has already

been placed locally. When a mobile computer has disk space, techniques to store a subset of the

service database reduce storage requirements. Nearby principals that store a subset are useful even

when a client is connected to the network, because communication with these nearby principals will

be faster than with distant authoritative principals.

8.1 Limiting write access

In Refdbms, not every principal is allowed to submit changes to the database. For example, the

UCSC Technical Reports database should only be updated by users at UCSC; other sites should

only read the database. This is implemented by giving members a privilege level of either full,



130

TABLE 8.1: Refdbms privilege levels.

Level Can sponsor Privilege

Full Full Can perform any operation, and can sponsor another principal
with any privilege level.

Read-write Read-only Can read and update the database, but can only sponsor a principal
with read-only privilege.

Read-only None Can only read the database; cannot sponsor another principal.read-write, or read-only. A member’s privileges are set when it joins the group, and are derived

from the privileges of its sponsors.

Table 8.1 shows the privilege levels used in Refdbms. Full and read-write members can perform

any operation on the database, while read-only members cannot update it. A principal obtains its

privilege level from its first sponsor. If that sponsor is a full member, the new member is also a full

member; if it is a read-write member, the new member is read-only. Read-only principals cannot

serve as primary sponsors. (This last design decision was arbitrary, and will be revisited in future

versions of the system.)

A more general solution could use capabilities to define what privileges a principal has. For

example, the Amoeba distributed operating system uses encrypted capabilities that can be managed

in user code [Mullender86, Tanenbaum86]. These capabilities include one bit for each kind of

operation that can be performed on the group state, allowing fine-grained privileges.

The Refdbms system has no safeguards to ensure that a principal does not incorrectly claim to

have greater privilege than it should. Authentication and checking for correct behavior are important

problems, but current approaches are generally centralized and will not work well for very large

systems. Section 9.5 discusses some possible approaches.

Multiple privilege levels can be used to reduce the amount of space required by the summary

timestamp vector. This vector only needs to include a timestamp for every principal that has

modified the group state, and so read-only members can be excluded from the vector. However,

read-only principals cannot be excluded from the acknowledgment vector, since they must receive

each message.



131Client(groupId gid, request)f listhprincipali possibleMembers;// Obtain a list of possible members from the location service.// This list must contain at least one group member.possibleMembers = LocationService.�nd(gid);// Order the members by distancePerformanceService.order(possibleMembers, criterion);// Try each possible member, starting with those nearbyfor each hpidi in possibleMembers fsend(pid,request);receive(pid, returnCode, results);if (returnCode == SUCCESS)return SUCCESS;ggreturn FAILURE;g
FIGURE 8.1: A skeleton client. The location service provides one or more possible members, and the
performance prediction service orders them from best to worst. The ordering can be based on several
criteria, including message latency, available bandwidth, and reliability.

8.2 Clients

A client is transient, unlike principals. It requests that one operation be performed on the group

state, then exits. It does not become a part of the group, but instead sends its requests to a member.

This is unlike the Isis system (Section 4.4), where clients join a group in a special role. A client in

that system multicasts its requests to the non-clients in the group, and receives one or more replies.

Figure 8.1 shows a skeleton of what a client must do. The location service provides the client

with the addresses of group members. As noted earlier, it must provide at least one address as

long as the group exists. The client orders the addresses using the performance prediction service

(Section 2.5) to determine which principals are nearby. It contacts the best available member to

perform the operation.



132

Refdbms includes clients to add, change, and delete references, to search the keyword index,

and to retrieve reference entries. These clients communicate with a local group member through a

database residing on a common file system, typically a local file system or one mounted from an

NFS server. This approach distributes searching to local workstations and eliminates the need for

a location service. However, clients cannot use database replicas at other sites if the local copy is

unavailable. This is not a problem for Refdbms clients since it is unlikely that any workstations

will function unless the shared file system is available.

8.3 Storing a subset of group state

A properly-implemented group containing several members will provide a highly reliable, scalable

service. With enough members, the network distance between clients and members should be small

on the average – perhaps on the same continent, or in the same region. However, mobile computers

require that group state be stored locally, and copies on a nearby server can improve performance

of workstation clients. Most of these systems, particularly mobile computers, will not have the disk

space to store the group state in its entirety. Instead, they can store a subset of it.

There are two ways the subset can be defined: either as an arbitrary set of state items, or as

all items that satisfy a query. The former are called caches, and the latter are called slices. Some

principals may maintain a combination.

Cache principals maintain copies of recently-accessed state items. This can improve perfor-

mance if a user or organization repeatedly accesses a small set of items. In Refdbms, this might

happen while a user is writing a paper: the references cited in the text would be retrieved repeatedly

as the paper was edited and reformated.

Slice principals prefetch items according to user-specified interests. Users specify a query, and

the slice principal maintains a copy of every item that matches the query. Alonso, Barbará, and

Garcia-Molina have researched similar issues for systems that maintain quasi-copies of a central

database [Alonso90b]. They point out that slices are similar to materialized views in a relational

database. As with database views, the items in a slice are determined by evaluating an expression



133

that has the same form as a query on the group state. In the quasi-copy system, each slice also has

a coherency condition that specifies how far out of date the items in a slice can be.

Caches and slices differ in their handling of new state items: slice principals will store a copy

of a new item if it matches some predicate, while cache principals will not.

When a principal stores only part of the group state, it will not be able to answer every query.

Instead, some queries must be forwarded to some other principal. As in the Domain Name Service,

the forwarding can be recursive, where the principal forwards the query to another principal, or

iterative, where it informs the client of other principals that might answer the query. Recursive

forwarding makes for simple clients, but increases the dependence of clients on the correctness of

the members.

Refdbms does not currently implement caches or slices.

8.3.1 Caches

A cache principal maintains a message log and summary and acknowledgment vectors, just as

ordinary members do. It periodically performs anti-entropy sessions with principals maintaining a

full copy of the group state, propagating any updates it originated to other principals and receiving

updates to the items it has cached.

Update propagation between a cache and another principal is asymmetric, unlike a normal

anti-entropy session. The cache may discard many of the messages it receives because it is not

maintaining a copy of the items to which they apply. Another principal therefore cannot rely on

receiving a full set of update messages from the cache principal, other than those messages originally

sent by the cache principal. During an anti-entropy session, the cache principal sends its partner a

complete copy of its summary and acknowledgment timestamp vectors, while the partner sends only

the single timestamp it maintains for the cache along with a complete copy of its acknowledgment

vector.

Every group member, including every cache and slice principal, must still maintain an acknowl-

edgment timestamp (or timestamp vector, if clocks are not synchronized) for every other member.

Cache principals must not purge messages from their log until every member has received the



134

message, and the conditions for doing so are not affected by maintaining only a subset of the group

state.

A cache principal cannot authoritatively answer all user queries. For example, if a user asks for

all references related to marsupials, there is no guarantee that the cache will have those references.

Instead, the cache principal must forward the query request to another member.

Many different policies can be applied to determine what items should be cached. The burden

of identifying items that are candidates for caching can be placed on clients, which can explicitly

request that the cache principal maintain certain items. Alternately, all retrieval requests can be

directed to the cache principal, which can add items to the cache set and remove them when the

disk space required to store the items has grown past some bound.

8.3.2 Slices

Slice principals act much like cache principals, except that they store a subset of the group state

determined by a query, or selection condition, rather than an arbitrary set of items. The principal

must store this query in addition to the group state and communication data structures. The selection

condition is a predicate on items. For simplicity assume the predicate is in disjunctive normal form;

that is, it has the form (p1 ^ p2) _ (p1 ^ p3)_ (p4):
When a client queries a slice principal, the slice can determine whether it can satisfy the query

if the query is equivalent to a subset of the slice predicates. For example, a Refdbms slice principal

could answer a query on marsupials if it stored references on marsupials _ australian animals:
The slice principal conducts anti-entropy sessions to maintain its information. As with caches,

information flow must be asymmetric because the slice only contains a subset of the group state.

The slice server must select as its partner a principal that maintains a superset of its state . Usually,

this will be a principal maintaining a full copy. The slice principal and its partner exchange

complete summary and acknowledgment vectors during an anti-entropy session. The partner will

send updates from any other group member, while the slice principal only sends messages it has



135

originated. If network bandwidth is limited, the slice can send its selection condition, and the

partner can transmit updates for only those items that meet the condition.

Several users on a local network may share a common slice principal. The combined selection

condition is the union of individual users’ conditions, which can be computed in O(n logn) time

in the size of the predicates if they are in disjunctive normal form.

The selection conditions will need to be changed from time to time to reflect changing user

interest. When a slice principal changes its condition, it potentially increases or decreases the

information it maintains. The principal computes the difference between the old and new conditions,

then performs a special anti-entropy session to both become consistent with another member and

retrieve items matching the difference condition. If the change narrows the scope of the slice, the

principal can discard consistent items without communicating with other principals.

The slicing mechanism is particularly useful for portable computing systems. These systems

may be disconnected from the network, or connected only by a low-bandwidth wireless link. A

user can create a small slice principal on their system to keep important information local. The

volume of updates to the slice may then be small enough to send over the wireless link. A slice

principal can also obtain a summary timestamp vector from a full-copy principal to determine how

many updates the slice lacks. When the difference exceeds some bound, the slice principal can

prompt the user to connect their machine to a higher bandwidth network, perhaps an Ethernet or a

telephone connection, to get the missing updates.

8.3.3 Using slices for resource discovery

Complex information systems should proactively find useful information for their users. Users can

specify a query and expect to be notified whenever new information that matches the query becomes

available. In Refdbms, the user should be notified when references matching one or more keywords

is added to a database.

Many information services, including Refdbms, split their information into several separate

databases, so users can have private copies and to reflect different administrative domains. When



136class locationService f// retrieve the principals associated with a groupmemberSet �nd(groupId gid);// merge a sample of a member's view into the service copyupdate(groupId gid, memberSet view, timestamp acktime);glocationService LocationService;
FIGURE 8.2: The interface to the location service.

multiple databases exist, there is the separate problem of finding out about databases as they are

added.

The usual solution is to have a meta-database that lists the databases that are available, and a

description of their contents. The meta-database can be built using this architecture as well, perhaps

as part of a descriptive naming service [Bowman90]. A user can specify what databases they want

to use by specifying a selection condition on the meta-database entries. This condition can be used

to build a slice of the meta-database, and user queries can be routed to those databases. As new

databases become available, they will be added to the slice and thus become available to the user.

The user can install an agent to automatically create a slice of each new database using the user’s

selection condition.

8.4 Location service

The location service is responsible for mapping a group identifier into a set of addresses of possible

group members. Among those possibilities there must be at least one member, as long as the group

still exists. This service is used by clients to locate members that can perform operations, and by

new members as they join the group.

Weak consistency group communication should be used to build the location service. The

combination of the group members and the location service should create less network traffic and

require less state than simply placing a principal everywhere people needed to use the service.



137

Figure 8.2 shows the interface that the service provides. It maintains a database that maps a

group identifier onto a timestamped membership view.

From time to time group members send the location service a copy of their membership view

and their minimum acknowledgement timestamp. The view and timestamp are merged into the

copy the service already has, and the merged values are then propagated as an update message

throughout the location service group (Figure 8.3). Recall that the memberSet type that represents

a membership view includes a principal identifier, status, and the time at which the principal entered

that status. The minimum acknowledgment timestamp is used in the leave protocol to determine

when every member has observed the declaration that a principal is leaving the group.

The rules for merging two membership views A and B in the location service are simple, but

they are slightly different than those used in the group membership component (Chapter 6). As long

as both A and B have an entry for principal p, the later entry is used. However, if A has an entry

for p but B does not, the rules must determine whether B is lacking because p has just joined the

group, or because p has left the group and A is out of date. The acknowledgment timestamp acts

as an implicit death certificate for principals that have failed or left the group: if A’s entry for p is

less thanB’s acknowledgment timestamp, then B must have more up-to-date information and p has

left the group. On the other hand, if the entry at A is later than B’s acknowledgment timestamp, p
must have joined the group. This approach allows the location service to receive group membership

samples and eventually become consistent with the actual group membership.

The client specification in Section 8.2 and the group join protocol in Section 6.4.3 both assume

that the location service will provide at least one group member. The approach presented so far

cannot make this guarantee, because any sample of a membership view can become arbitrarily far

out of date. It is possible that every principal in that view has failed or left the group since it

was recorded. If those principals leave forwarding addresses [Fowler85, Jul88] for other group

members, then there is always a way to find a member based on location service information.

Often, a change in group membership is most important to nearby clients. For example, when a

new principal is added to the group, nearby clients may want to start using the new principal instead

of another. The location service can take advantage of this property by using an anti-entropy partner



138

View
a

View
b

No
viewNo

view

Member
A

Member
B

Location
Service

View b
View a

View
a

View
b

No
view

Member
A

Member
B

Location
Service

Merge
a,b

View a

View b

FIGURE 8.3: How the location service receives and propagates samples of membership views. Different
group members can send samples to different location servers. These samples are exchanged using TSAE,
and eventually merged.

selection policy that prefers nearby partners. The performance analysis in Chapter 7 shows that

these policies substantially reduce network traffic without adversely affecting message delivery. In

this way, a new server becomes visible quickly in its area of the net while eventually becoming

visible to more distant regions.



139

8.4.1 Existing location services

A number of location or name services have been constructed. Most of them can be implemented

with multiple replicas, but most do not provide adequate support for locating groups with dynamic

membership.

The Internet Domain Name System (DNS) [Mockapetris87] is in use throughout the world,

primarily for translating host names to IP addresses. The names are organized hierarchically,

and portions of the name space are under separate administrative control. All the information

in an administrative zone is maintained by an authoritative name server. Name servers can be

replicated, and no particular replication technique is required. However, the DNS protocol provides

a mechanism for primary-copy replication with periodic refreshes of secondary copies. Information

can be cached by local name servers, and a timeout is provided to limit inconsistency.

The division of the name space into different zones is one of the most important features of

the DNS. Division of authority keeps the load on any individual server low, allows for a lower

degree of replication, and encourages independence between organizations. It also complicates

query processing, since a single server can only answer queries related to its zone. DNS zones are

linked together at their boundaries using special resource entries, and this information is used to

direct a query to a more appropriate server.

The DNS can be extended into the location service described above. A new resource type can be

added to the DNS that maintains group view information, and replicated name servers can exchange

this information. The current name space is oriented toward host names, which usually possess a

high degree of locality within a name zone, but this is not intrinsic to the design.

The Clearinghouse name service was very similar to the DNS, excepting that it could map a

name into a list of names, as well as into an address. It used weak-consistency replication rather

than primary-copy replication for replicated name servers.

The Cambridge Universal Name Service (UNS) [Ma92] combines consistent and inconsistent

replication by introducing two classes of name server. The first class servers are called replicas,

and use a consistent update protocol. The second class servers contain read-only copies, and are



140

updated asynchronously from the first class servers. Caches act as an unofficial third class of service

to which updates are not propagated.

The Advanced Networked Systems Architecture (ANSA) defines an architecture for object-

oriented distributed computing [ANSA89, ANSA91]. It includes many components, including

group communication. The Trader provides a descriptive name service, which maps content-

oriented queries, which include typing information, into references to objects that implement the

appropriate service. The references can be used to perform a location-transparent invocation of

operations on the service. The underlying mechanism appears to use forwarding addresses to

accommodate migration.



141

Chapter 9

Continuing work

As always in work of this scope, there are many subjects worthy of further investigation.

9.1 Performance

The performance evaluations reported in Chapter 7 are all based on simulation and analysis. As the

Refdbms system comes into wider use, many of these performance measures can be re-evaluated

based on its logs. The traffic analysis would also benefit from a re-evaluation using real network

costs.

It appears that there is a relationship between network traffic and the time required to propagate

a message (Section 7.4.4). This relationship is worthy of further investigation; I suspect that there

is a simple relation between the two.

9.2 Fault tolerance

The analyses of fault tolerance in the weak-consistency group membership implementation in

Chapter 6 assume a completely connected network topology. While it appears that the results in

that chapter are easily extended to less-connected networks, I have not yet completed the proofs.

9.3 Reducing space requirements

The TSAE protocol requires maintenance of Θ(n) timestamps, in addition to the message log.

Every principal must maintain information on every other group member, leading to a complete

view relation between principals. For some systems, even Θ(n) state is unacceptably large. This



142

space can be reduced by imposing structure on the view relation so that principals need only know

about a few others.

One way to reduce the amount of state is to divide the group into subgroups, and impose a

hierarchical structure the subgroups. Members would maintain information on the other members

in their subgroup. Some of those members would act as representatives to a supergroup. Messages

would be sent throughout a subgroup, then forwarded to other subgroups by exchanges between

representatives in the supergroup. The hierarchy could be extended to additional layers if needed.

A similar possibility is to structure subgroups as a b-tree. Each subgroup would contain a

number of members. When that number becomes greater than a limit, some members would either

be added to sibling subgroups, or the group would split. Likewise, if the number becomes too

small, subgroups could be coalesced. Messages would be propagated between subgroups using

representatives.

A final possibility is to use a simpler, sparsely-connected logical communication topology.

The Usenet messaging system [Quarterman86] uses the Unix-to-Unix copy program (UUCP) to

propagate messages. The logical (and physical) topology of that network is sparsely connected. Few

sites are connected to more than two or three other sites, each site only knows about its neighbors.

The Usenet software implements a simple flooding protocol [Tanenbaum81] that forwards each

message to neighbor sites. Each site must maintain a log of the message identifiers it has received

so that messages do not propagate forever. The message identifiers must be stored long enough that

there is no possibility of a message still being in transit somewhere, usually a few weeks to a month.

9.4 Hybrid consistency

There are several variations on the weak consistency model. In one, principals would be clustered

into cliques, where all of the principals in a clique would use a consistent (reliable, interactive)

message delivery protocol. Messages would be sent between cliques using eventual delivery

protocols. It has been conjectured that this approach could reduce the amount of state principals

would maintain, allow message logs to be purged more rapidly, and produce lower message traffic

than the system presented here.



143

9.5 Authentication

Every authentication system of which I am aware either requires a trusted authentication service, or

the a priori presence of shared information [Burrows89b, Burrows89a, Lampson91]. For example,

the Kerberos authentication service [Steiner88] uses a trusted server. This violates the assumption

that no part of the system is centralized. These systems also implicitly assume a completely

connected logical network topology. If the network provides a different logical topology – as the

Usenet does – the traditional authentication model no longer holds. It appears that a new model of

authentication will be required for mobile, weakly-connected systems. I expect that a probabilistic,

rather than absolute, model of truth and belief will be required. I am investigating this problem

further.

9.6 Location services

The location service model presented in Section 8.4 uses stable forwarding addresses to ensure that

a principal can always find a group member when acting as a client or joining the group. Stable

forwarding addresses are somewhat unrealistic, because they require that a principal continue to

exist for a long time. When a principal leaves the group, it is likely that the system on which it

was operating is being removed from service or changed, and the burden of maintaining forwarding

information is not likely to be welcome.

Another possibility is to delegate the maintenance of a forwarding address to another principal.

In particular, all requests for a forwarding address could be forwarded to a nearby location server.

The forwarding address can then take the form of a group membership view that is maintained just

as all views in the location service are. How to locate the location server to which the problem has

been delegated, and how to ensure that the location service can eventually purge the forwarding

address, are matters for future consideration.



144

9.7 Refdbms

The Refdbms system is a prototype, and at the time of writing several parts of the distributed

system architecture have not been implemented. It uses the TSAE message delivery and the group

membership protocols, but without any frills. It does not now provide slices or caches, and clients

communicate with a group member through a shared file system.

I plan to add a meta-database and location service to Refdbms. The metadatabase will allow

users to find databases of interest by querying database descriptions. The location service will

provide a simple database-to-membership mapping until a sufficiently functional standard Internet

location service is available. This will also allow clients to contact any group member, rather than

requiring each site that will use a database to maintain a copy. Slices, along with a mechanism

for submitting persistent queries to notify a user when interesting new references are added to the

database, are other priorities.



145

Chapter 10

Summary

Wide-area distributed systems can be built conveniently, efficiently, and correctly using the group

communication framework presented in this dissertation. In the framework, a group communication

system is constructed from four components, providing message delivery, message ordering, group

membership, and application functions. The group communication system provides ways for one

member to multicast a message to the other group members, and for members to join and leave the

group.

The system as a whole provides weak consistency. A weakly consistent group allows the

principals that make up the group to differ at any particular moment on their views of group state,

as long as they will eventually reach consensus. The framework provides weak consistency using

a reliable, eventual message delivery protocol. Reliable delivery assures that consensus will be

reached when every principal receives group messages. Eventual delivery allows the system to

delay messages in order to improve efficiency and to wait for transient system faults to be repaired.

This approach to constructing a wide-area system is different from the way most wide-area

applications have been developed to date. Most of these applications have been developed in an ad

hoc fashion, with no attempt to systematize the process of building wide-area distributed systems.

The group communication architecture I have presented is a step toward developing a set of tools

and a discipline to make system construction simpler. The architecture is useful as a way to reason

about and classify distributed systems, and to define interfaces for reusable modules.

The group communication framework is different from other group communication systems

because of its emphasis on weak consistency and on customization to meet application requirements.

Systems such as Isis, Arjuna, Psync, and others provide tools for building distributed systems on

a smaller scale. They can provide fast, efficient mechanisms with strong guarantees for local-area



146

systems, but they do not provide convenient and efficient mechanisms for wide-area groups that

might scale into the thousands of principals. The architecture presented here defines a small number

of interfaces between components, so that different implementations of each component can be

provided to meet application needs. This is unlike most other distributed programming systems,

which provide a fixed, limited set of protocols.

I have developed the timestamped anti-entropy (TSAE) message delivery protocol, which

implements reliable, eventual delivery. TSAE uses periodic exchange of messages between pairs of

principals to propagate a message throughout the group. These exchanges are called anti-entropy

sessions. Incoming messages are stored in a message log, and later delivered to the application in

some well-defined order. The TSAE protocol maintains summary information on the messages it

has received, which is used to improve the efficiency of the exchange, to purge messages from the

log, and to order messages for delivery to the application.

The group membership protocol avoids interactive communication between members without

compromising the message delivery guarantee. Each principal in the group maintains a view of the

membership, and these views are exchanged during anti-entropy sessions. Eventually, every group

member will receive every membership change and the group will reach consensus. A new member

joins the group by obtaining one or more sponsors from among the existing members. These

sponsors provide it with a copy of the state of the group. Members can leave the group by declaring

their intent to do so, then waiting for the declaration to propagate throughout the membership.

The TSAE message delivery protocol and the related group membership protocol exhibit good

performance. I have investigated the fault tolerance of message delivery and group membership,

and found that the system responds quickly to failure. The latency in receiving a message is small,

and scales well in the number of principals. Likewise, the message traffic imposed on the network

scales well with the size of the group. The policy used to select partners influences both message

latency and traffic, and policies can be selected to trade latency for traffic or vice versa. Finally,

given reasonably frequent anti-entropy sessions, principals will maintain up-to-date views of group

state.



147

Bibliography

[Agrawal91] D. Agrawal and A. Malpani. Efficient dissemination of information in computer
networks. Computer Journal, 34(6):534–41 (December 1991).

[Alon87] Noga Alon, Amnon Barak, and Udi Manber. On disseminating information reliably
without broadcasting. Proceedings of 7th International Conference on Distributed
Computing Systems (Berlin), pages 74–81 (September 1987).

[Alonso90a] Rafael Alonso, Daniel Barbará, and Luis L. Cova. Using stashing to increase node
autonomy in distributed file systems. Proceedings of the 9th IEEE Symposium on
Reliable Distributed Systems (October 1990).

[Alonso90b] Rafael Alonso, Daniel Barbará, and Hector Garcia-Molina. Data caching issues in
an information retrieval system. ACM Transactions on Database Systems, 15(3)
(September 1990).

[ANSA89] Architecture Projects Management Ltd. ANSA: An Engineer’s Introduction to the
Architecture (November 1989).

[ANSA91] Architecture Projects Management Ltd. ANSA: A System Designer’s Introduction to
the Architecture (April 1991).

[Bal89] Henri E. Bal. The Shared Data-Object Model as a Paradigm for Programming
Distributed Systems. PhD thesis (1989). Vrije Universiteit Amsterdam.

[Bal90] Henri E. Bal, Andrew S. Tanenbaum, and M. Frans Kaashoek. Orca: a language for
distributed programming. SIGPLAN Notices, 25(5):17–24 (May 1990).

[Barbará86] Daniel Barbará, Hector Garcia-Molina, and Annemarie Spauster. Policies for dynamic
vote reassignment. Proceedings of the 6th International Conference on Distributed
Computing Systems (Cambridge, Massachusetts), pages 37–44 (May 1986).

[Barbará90] Daniel Barbará and Hector Garcia-Molina. The case for controlled inconsistency in
replicated data (position paper). Proceedings of the Workshop on the Management of
Replicated Data (Houston, Texas), pages 35–8 (November 1990).

[Berners-Lee92] Tim Berners-Lee, Robert Cailliau, Jean-François Groff, and Bernd Pollermann.
World-Wide Web: the information universe. Electronic Networking: Research,
Applications, and Policy, 1(2) (Spring 1992).



148

[Bernstein84] Philip A. Bernstein and Nathan Goodman. An algorithm for concurrency control
and recovery in replicated distributed databases. ACM Transactions on Database
Systems, 9(4):596–615 (December 1984).

[Bernstein87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery
in database systems (1987). Addison-Wesley, Reading, Massachusetts.

[Birman87] Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the presence
of failures. ACM Transactions on Computer Systems, 5(1):47–76 (February 1987).

[Birman90] Kenneth Birman, Andre Schiper, and Pat Stephenson. Fast causal multicast. Tech-
nical report TR–1105 (13 April 1990). Department of Computer Science, Cornell
University.

[Birman91] Kenneth P. Birman, Robert Cooper, and Barry Gleeson. Programming with process
groups: group and multicast semantics. Technical report TR–91–1185 (29 January
1991). Department of Computer Science, Cornell University.

[Birrell87] Andrew D. Birrell, Michael B. Jones, and Edward P. Wobber. A simple and effi-
cient implementation for small databases. Proceedings of the 11th ACM Symposium
on Operating Systems Principles (Austin, Texas). Published as Operating Systems
Review, 21(5):149–54 (November 1987).

[Bloch87] Joshua J. Bloch, Dean S. Daniels, and Alfred Z. Spector. A weighted voting algorithm
for replicated directories. Journal of the ACM, 34(4):859–909 (October 1987).

[Bowman90] C. Mic Bowman. Univers: the construction of an internet-wide descriptive naming
system. Technical report TR 90–27 (10 August 1990). Department of Computer
Science, University of Arizona.

[Burrows89a] Michael Burrows, Martı́n Abadi, and Roger Needham. A logic of authentication.
Proceedings of the 12th ACM Symposium on Operating Systems Principles (Litchfield
Park, Arizona). Published as Operating Systems Review, 23(5):1–13 (December
1989).

[Burrows89b] Michael Burrows, Martı́n Abadi, and Roger Needham. A login of authentication.
Technical report 39 (February 1989). Digital Equipment Corporation Systems Re-
search Center, Palo Alto, CA.

[Campbell92] Roy H. Campbell, Nayeem Islam, and Peter Madany. Choices, frameworks, and
refinement. Computing Systems, 5(3):217–57 (Summer 1992). Usenix Association.

[Cheriton84] David R. Cheriton and Willy Zwaenepoel. One-to-many interprocess communication
in the V-system. Technical report STAN–CS–84–1011 (August 1984). Computer
Systems Laboratory, Department of Computer Science, Stanford University.

[Comer88] Douglas Comer. Internetworking with TCP/IP: principles, protocols, and architecture
(1988). Prentice Hall, Englewood Cliffs, NJ.



149

[Cristian86] Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev. Atomic broadcast:
from simple message diffusion to Byzantine agreement. Technical report RJ 5244
(30 July 1986). IBM Almaden Research Center.

[Cristian89] Flaviu Cristian. A probabilistic approach to distributed clock synchronization. Pro-
ceedings of the 9th International Conference on Distributed Computing Systems
(Newport Beach, CA), pages 288–96 (1989).

[Cristian90] Flaviu Cristian. Synchronous atomic broadcast for redundant broadcast channels.
Technical report RJ 7203 (December 1989, revised April 1990). IBM Almaden
Research Center.

[Cristian91] Flaviu Cristian. Reaching agreement on processor-group membership in synchronous
distributed systems. Distributed Computing, 4(4):175–87 (1991).

[Davčev85] Daňco Davčev and Walter A. Burkhard. Consistency and recovery control for repli-
cated files. Proceedings of the 10th ACM Symposium on Operating Systems Principles
(Orcas Island, Washington). Published as Operating Systems Review, 19(5):87–96
(December 1985).

[Demers88] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for replicated
database maintenance. Operating Systems Review, 22(1):8–32 (January 1988).

[Demers89] Alan Demers, Mark Gealy, Dan Greene, Carl Hauser, Wes Irish, John Larson, Sue
Manning, Scott Shenker, Howard Sturgis, Dan Swinehart, Doug Terry, and Don
Woods. Epidemic algorithms for replicated database maintenance. Technical report
CSL–89–1 (January 1989). Xerox Palo Alto Research Center, CA.

[Deutsch92] Peter Deutsch. Resource discovery in an Internet environment. Master’s thesis (June
1992). School of Computer Science, McGill University.

[Downing90a] Alan R. Downing, Ira B. Greenberg, and Jon M. Peha. OSCAR: an architecture for
weak-consistency replication. Proceedings of IEEE PARBASE-90 (March 1990).

[Downing90b] Alan R. Downing, Ira B. Greenberg, and Jon M. Peha. OSCAR: a system for weak-
consistency replication. Proceedings of the Workshop on Management of Replicated
Data (Houston, Texas), pages 26–30 (November 1990).

[El-Abbadi86] A. El-Abbadi and S. Toueg. Availability in partitioned replicated databases. Pro-
ceedings of the 5th SIGACT-SIGMOD Symposium on Principles of Database Systems,
pages 240–51 (1986).

[Emtage92a] Alan Emtage. Personal communication (1992). Electronic mail message.

[Emtage92b] Alan Emtage and Peter Deutsch. Archie – an electronic directory service for the
Internet. Proceedings of the Winter 1992 Usenix Conference (San Francisco), pages
93–110 (January 1992).



150

[Fischer85] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374–82 (April 1985).

[Fowler85] Robert Joseph Fowler. Decentralized object finding using forwarding addresses.
PhD thesis, published as Technical report 85–12–1 (December 1985). University of
Washington.

[Ganatra92] Nitin K. Ganatra. Census: collecting host information on a wide area network. Tech-
nical report UCSC–CRL–92–34 (June 1992). Computer and Information Sciences
Board, University of California at Santa Cruz.

[Garcia-Molina88] Hector Garcia-Molina and Boris Kogan. An implementation of reliable broad-
cast using an unreliable multicast facility. Proceedings of the 7th Symposium on
Reliable Distributed Systems (Ohio State University, Columbus, OH), pages 101–11
(10–12 October 1988).

[Gifford79] D. K. Gifford. Weighted voting for replicated data. Proceedings of the 7th ACM
Symposium on Operating Systems Principles (Pacific Grove, California), pages 150–
62 (December 1979).

[Golding91a] Richard Golding and Darrell D. E. Long. Accessing replicated data in a large-scale
distributed system. International Journal in Computer Simulation, 1(2) (1991, to
appear).

[Golding91b] Richard A. Golding. Accessing replicated data in a large-scale distributed systems.
Master’s thesis; published as Technical report UCSC–CRL–91–18 (June 1991). Com-
puter and Information Sciences Board, University of California at Santa Cruz.

[Golding92a] Richard Golding. A weak-consistency architecture for distributed information ser-
vices. Computing Systems, 5(4) (Fall 1992). Usenix Association.

[Golding92b] Richard Golding. End-to-end performance prediction for the Internet – progress
report. Technical report UCSC–CRL–92–26 (June 1992). Computer and Information
Sciences Board, University of California at Santa Cruz.

[Golding92c] Richard A. Golding. A weak-consistency architecture for distributed information ser-
vices. Technical report UCSC–CRL–92–30 (June 1992). Computer and Information
Sciences Board, University of California at Santa Cruz.

[Golding92d] Richard A. Golding and Darrell D. E. Long. Quorum-oriented multicast proto-
cols for data replication. Proceedings of the 8th International Conference on Data
Engineering (Tempe, Arizona), pages 490–7 (February 1992).

[Gray86] Jim Gray. Why do computers stop and what can be done about it? Proceedings of the
5th Symposium on Reliability in Distributed Software and Database Systems, pages
3–11 (1986).

[Heidemann92] John S. Heidemann, Thomas W. Page, Richard G. Guy, and Gerald J. Popek.
Primarily disconnected operation: experiences with Ficus. Proceedings of 2nd Work-
shop on the Management of Replicated Data (Monterey, CA), pages 2–5 (November
1992).



151

[Hisgen90] Andy Hisgen, Andrew Birrell, Chuck Jerian, Timothy Mann, Michael Schroeder, and
Garret Swart. Granularity and semantic level of replication in the Echo distributed
file system. Proceedings of the Workshop on the Management of Replicated Data
(Houston, Texas), pages 2–4 (November 1990).

[Islam92] Nayeem Islam and Roy H. Campbell. Object-oriented framework design and imple-
mentation. Technical report UIUCDCS–R–92–1737 (March 1992). Department of
Computer Science, University of Illinois at Urbana-Champaign.

[Jain91] Raj Jain. The Art of Computer Systems Performance Analysis (1991). John Wiley,
New York.

[Jajodia87] Sushil Jajodia and David Mutchler. Dynamic voting. Proceedings of the ACM
SIGMOD 1987 Annual Conference, pages 227–38 (May 1987).

[Jul88] Eric Jul. Object mobility in a distributed object-oriented system. PhD thesis, published
as Technical report 88–12–06 (December 1988). Computer Science Department,
University of Washington.

[Kahle89] Brewster Kahle. Wide area information server concepts. Technical report TMC–202
(3 November 1989). Thinking Machines Corporation.

[Kahle91] Brewster Kahle and Art Medlar. An information system for corporate users: wide area
information servers. Technical report TMC–199 (8 April 1991). Thinking Machines
Corporation.

[Kistler91] James J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file
system. Proceedings of the 13th ACM Symposium on Operating Systems Principles
(Pacific Grove, CA), pages 213–25 (13 October 1991).

[Ladin90] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. Lazy replication:
exploiting the semantics of distributed services. Technical report MIT/LCS/TR–484
(July 1990). Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, MA.

[Ladin91] Rivka Ladin, Barbara Liskov, and Liuba Shrira. Lazy replication: exploiting the
semantics of distributed services. Position paper for 4th ACM-SIGOPS European
Workshop (Bologna). Published as Operating Systems Review, 25(1):49–55 (January
1991).

[Lamport78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–65 (1978).

[Lampson91] Butler Lampson, Martín Abadi, Michael Burrows, and Edward Wobber. Authentica-
tion in distributed systems: theory and practice. Proceedings of 13th ACM Symposium
on Operating Systems Principles (Asilomar, Pacific Grove, CA), pages 165–82 (13
October 1991).



152

[Leffler89] Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S. Quar-
terman. Design and implementation of the 4.3BSD UNIX operating system (1989).
Addison-Wesley.

[Lesk78] M. E. Lesk. Some applications of inverted indexes on the UNIX system. Computing
Science technical report 69 (June 1978). Bell Laboratories.

[Liskov87] Barbara Liskov. Highly-available distributed services. Programming Methodology
Group Memo 52 (February 1987). Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, MA.

[Little90] Mark C. Little and Santosh K. Shrivastava. Replicated k-resilient objects in Arjuna.
Proceedings of the Workshop on Management of Replicated Data (Houston, Texas),
pages 53–8 (November 1990).

[Long88] Darrell D. E. Long and Jehan-François Pâris. A realistic evaluation of optimistic
dynamic voting. Proceedings of the 7th IEEE Symposium on Reliable Distributed
Systems (Columbus, OH), pages 129–37 (October 1988).

[Long91] Darrell D. E. Long, John L. Carroll, and C. J. Park. A study of the reliability of
Internet sites. Proceedings of the 10th IEEE Symposium on Reliable in Distributed
Systems (Pisa, Italy), pages 177–86 (September 1991).

[Long92] Darrell D. E. Long. A replicated monitoring tool. Proceedings of the 2nd Workshop
on the Management of Replicated Data (November 1992).

[Lottor92] Mark K. Lottor. Internet growth (1981–1991). RFC 1296 (January 1992). Network
Information Systems Center, SRI International.

[Ma92] Chaoying Ma. Designing a Universal Name Service. PhD thesis (1992). University
of Cambridge Computer Laboratory.

[Mann89] Timothy Mann, Andy Hisgen, and Garret Swart. An algorithm for data replication.
Report #46 (June 1989). Digital Equipment Corporation Systems Research Center,
Palo Alto, CA.

[Mattern88] Friedemann Mattern. Virtual time and global states of distributed systems. Technical
report SFB124–38/88 (October 1988). Department of Computer Science, University
of Kaiserslautern.

[Mills88] D. Mills. Network Time Protocol (version 1) specification and implementation.
Network Working Group RFC 1059 (July 1988). Network Information Center.

[Mishra89] Shikavant Mishra, Larry L. Peterson, and Richard D. Schlichting. Imnplementing
fault-tolerant replicated objects using Psync. Proceedings of the 8th Symposium on
Reliable Distributed Systems (Seattle, WA), pages 42–52 (10–12 October 1989).

[Mishra92] Shivakant Mishra, Larry L. Peterson, and Richard D. Schlichting. Protocol modularity
in systems for managing replicated data. Proceedings of the 2nd Workshop on the
Management of Replicated Data (Monterey, CA), pages 78–81 (November 1992).



153

[Mockapetris87] P. Mockapetris. Domain names – concepts and facilities. RFC 1034 (November
1987). ARPA Network Working Group.

[Mullender86] S. J. Mullender and A. S. Tanenbaum. The design of a capability-based distributed
operating system. Computer Journal, 29(4):289–99 (1986).

[Mullender90] Sape J. Mullender, Guido van Rossum, Andrew S. Tanenbaum, Robbert van Re-
nesse, and Hans van Staveren. Amoeba: a distributed system for the 1990s. IEEE
Computer, 23(5):44–53 (May 1990).

[Oppen81] D. C. Oppen and Y. K. Dahl. The Clearinghouse: a decentralized agent for locating
named objects in a distributed environment. Technical report OPD–T8103 (1981).
Xerox Office Products Division, Palo Alto, Ca.

[PageJones88] Meilir Page-Jones. The Practical Guide to Structured Systems Design, second
edition (1988). Yourdon Press.

[Postel80] J. Postel. Transmission Control Protocol, RFC 761 (January 1980). USC Information
Sciences Institute.

[Pu91a] Calton Pu and Avraham Leff. Epsilon-serializability. Technical report CUCS–054–90
(15 January 1991). Department of Computer Science, Columbia University.

[Pu91b] Calton Pu and Avraham Leff. Replica control in distributed systems: an asynchronous
approach. Technical report CUCS–053–090 (8 January 1991). Department of Com-
puter Science, Columbia University.

[Quarterman86] John S. Quarterman and Josiah C. Hoskins. Notable computer networks. Com-
munications of the ACM, 29(10):932–71 (October 1986).

[Ricciardi91] Aleta M. Ricciardi and Kenneth P. Birman. Using process groups to implement failure
detection in asynchronous environments. Technical report TR91–1188 (7 February
1991). Department of Computer Science, Cornell University.

[Rumbaugh91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen. Object-Oriented Modeling and Design (1991). Prentice-Hall,
Englewood Cliffs, NJ.

[Schatz90] Bruce Raymond Schatz. Interactive retrieval in information spaces distributed across
a wide-area network. Technical report TR 90–35 (December 1990). Department of
Computer Science, University of Arizona.

[Seltzer90] Margo Seltzer and Michael Stonebraker. Transaction support in read optimized and
write optimized file systems. Technical report UCB/ERL M90/37 (April 1990).
Electronics Research Laboratory, College of Engineering, University of California at
Berkeley.

[Steiner88] Jennifer G. Steiner, Clifford Neuman, and Jeffrey I. Schiller. Kerberos: an authenti-
cation service for open network systems. USENIX Winter Conference (Dallas, TX),
pages 191–202 (9–12 February 1988).



154

[Sullivan92] Mark Sullivan and Michael Olson. An index implementation supporting fast recovery
for the POSTGRES storage system. Proceedings of the 8th International Conference
on Data Engineering, pages 293–300 (February 1992).

[Sun88] Sun Microsystems, Incorporated. Network Programming (1988).

[Tanenbaum81] A. S. Tanenbaum. Computer networks (1981). Prentice-Hall.

[Tanenbaum86] Andrew S. Tanenbaum, Sape J. Mullender, and Robbert Van Renesse. Using sparse
capabilities in a distributed operating system. Proceedings of the 6th International
Conference on Distributed Computing Systems (Cambridge, Mass), pages 558–63
(May 1986).

[Terry85] Douglas Brian Terry. Distributed name servers: naming and caching in large dis-
tributed computing environments. PhD thesis, published as Technical report CSL–
85–1 (February 1985). Xerox Palo Alto Research Center, CA.

[Thomas79] R. H. Thomas. A majority consensus approach to concurrency control. ACM Trans-
actions on Database Systems, 4:180–209 (1979).

[Turek92] John Turek and Dennis Shasha. The many faces of consensus in distributed systems.
IEEE Computer, 25(6):8–17 (June 1992).

[Tuthill83] Bill Tuthill. Development of refer: Bug Fixes and Enhancements (or (unofficially)
“Refer Madness”). Usenix Conference Proceedings (San Diego, CA), pages 99–103
(Winter 1983). Usenix Association.

[Wilkes91] John Wilkes. The refdbms bibliography database user guide and reference manual.
Technical report HPL–CSP–91–11 (20 May 1991). Hewlett-Packard Laboratories.


