UNIVERSITY OF CALIFORNIA
SANTA CRUZ

Weak-consistency group communication and member ship

A dissertation submitted in partia satisfaction
of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in
COMPUTER AND INFORMATION SCIENCES
by
Richard Andrew Golding
December 1992

The dissertation of Richard Andrew Goldingis
approved:

Prof. Darrell Long

Prof. Charles McDowell

Dr. Kim Taylor

Dr. John Wilkes

Dean of Graduate Studies and Research

Copyright © by
Richard Andrew Golding
1992

Contents

Abstract iX
Acknowledgments X
1 [Introduction 1
11 RequirementS e e 3

12 Usingreplication 4

1.3 Group communicationmechanism L. 5

14 Weak conSiStency e 6

15 TheRefdoms30system 8

16 Conventionsinthetext. 9

1.7 Organization of thedissertation 9

2 Termsand definitions 11
21 CONSENSUS . . . v v v e e e e e e e e e e e 11

22 Principals 12

23 Timeandclocks e 13
24 Network e 14

25 Neworkservices. e 15

3 A framework for group communication systems 16
31 Theframework 17

3.2 Theapplication. 19
321 TheRefdbmsapplication 20

322 TheTattlersystem 22

3.23 Handlingupdatecollisons., 23

3.3 Messageddivery 24
3.3.1 Propagating messagesversusstate L oo 27

34 Messageordering 28
341 Usingmessageordering oo 30

35 Groupmembership. 31
351 Usinggroupmembership 33

3.6 Summary L e e e 34

4 Existing group communication systems 35
41 Centralizedprotocols. e 36

42 Consistentreplicationprotocolso 37
43 OrcaRTS e 38
A4 ISIS e 39
45 Epsilonseridizabilityo 40
46 PsynC. e e e 41
4.7 Avrdiablemulticastprotocol oL oL 42
4.8 OSCAR . . . e e 43
49 LazyReplication 44
410 Epidemicreplicationo 45
411 SUMMAY . . . o e e e e e e e e e e e e e e 47
Weak-consistency communication 48
5.1 Rdiable eventual messagedelivery 48
5.1.1 Datastructuresfor timestamped anti-entropy 50
5.1.2 Thetimestamped anti-entropy protocol 55
52 COIrectness e e e 58
521 Logica communicationtopology 59
522 Eventua communication. oo 60
523 Summary vector progressl e e e e e e 63
53 Purgingthemessagelog 66
54 EXIENSIONS e e 67
54.1 Sedectingasessonpartner 67
54.2 Principal fallureand volatilestorage 69
5.4.3 Combining anti-entropy with unreliablemulticast 70
54.4 Anti-entropy with unsynchronizedclocks 73
55 Messageordering 74
56 Summary e e 79
Group membership 81
6.1 Messageddivery anddynamicmembership Lo 82
6.2 COIMectness e e 83
6.3 Faulttolerance e 84
6.4 Protocols 86
6.4.1 Datastructures. L 86
6.4.2 Initidizinganew group L. 88
6.4.3 Groupjoin e 88
644 Groupleave 92
6.45 Falurerecovery L 94
6.5 Summary e 95
Performance of weak-consistency protocols 97
7.1 Messagerdiability 97
711 Anayticamodeling 98
712 Results. 99
7.1.3 \Volailestorage 101

7.2 Messagelatency 101

7.3

7.4

75

7.6

1.7

721 Smulationmodeing.
722 Results. e
Group membershipresilience oL
731 Smulationmodeling. Lo
732 Results.
Traffic e
741 Smulationmodeing.
74.2 Resultsusingringtopology oL
74.3 Resultsusing backbonetopology L.
744 Trafficand propagationtime
Consistency L
751 Smulationmodeling. L
752 Results. e
Comparison L e
76.1 Efficiency
7.6.2 Implementationeffort oL
SUMMarY L e e

8 Multiple membership roles

8.1
8.2
8.3

84

LimitingwriteacCcess e
Clients e
Storingasubset of group state L oL oL
831 Caches.
832 Slices
8.3.3 Usingdicesforresourcediscovery
Locationservice e e e
84.1 Exigtinglocationservices o

9 Continuing work

9.1
9.2
9.3
94
9.5
9.6
9.7

Performance
Faulttolerance
Reducing spacerequirements
Hybridconsistency
Authentication
LocationServices. e
Refdoms

10 Summary

Bibliography

145

147

Vi

List of Figures

11
12
13
14

31
3.2
3.3

51
52
53
54
55

56
5.7
5.8
59
5.10
511
512
5.13
514
5.15

6.1
6.2
6.3
6.4

7.1
7.2
7.3
74

Overdl systemarchitecture. 2
Placingreplicasinaninternetwork.o oL 5
Components of agroup communicationmechanism. 6
Anexamplereference. 9
A framework for constructing a group communicationsystem. 18
Structureof aRefdoms principal. oo oL 21
Structureof aTattler. 23
Thetimestamp datastructure. 50
Thetimestamp vector datastructure. 51
Data structures used by the TSAE communication protocol. 52
How the summary vector summarizesthe messagesinthelog. 53
Summary and acknowledgment vectors for principas with loosely-synchronized

cocks. . . . 54
Anexampleanti-entropy session. Lo 56
Originator’s protocol for TSAE with loosely-synchronizedclocks. 57
Partner’s protocol for TSAE with loosely-synchronized clocks. 58
A function to purge messages fromthemessagelog. 66
Thechecksum vector datatype. 71
Originator’s protocol for TSAE combined with unreliable multicast. 72
Summary and acknowledgment data structures for TSAE for unsynchronized clocks. 74
Function to deliver messagesin per-principal FIFO order. 76
Functionto deliver messagesinatotal order. 77
Functionto deliver messagesinacausal order. 78
Thegroup membershipview datastructure. 87
Initidizinganew group. L. 88
Thejoin protocol followed by anewmember. 90
Obtainingthefirstsponsor. 91
Model of messagereceipt and failurefor fiveprincipals. 99
Probability of failing to deliver amessageto all sites (linear vertical scale). 100
Probahility of failing to deliver amessage to dl sites (logarithmic vertical scale). . 100

Cumulative probability distribution for propagating a messageto al principals. . . 103

75

7.6
1.7
7.8

79

7.10
711
7.12
7.13
7.14
7.15
7.16

7.17
7.18
7.19
7.20
7.21

7.22
7.23

71.24

7.25

8.1
8.2
8.3

Vii

Cumulative probability distribution for receiving an acknowledgment from all prin-

CIPalS. e 103
Effect of partner selection policy on scaling of propagationtime. 104
Effect of partner selection policy on scaling of mean timeto acknowledgment. . . 105
Progress of the minimum cut and in-degree measures in a group of 25 principals,

using one sponsor, withnofailures. 107
Progress of the minimum cut and in-degree measures in a group of 25 principals,

using two sponsors, with oneinitial failure. 108

Progress of the group membership resilience, with varying numbers of sponsors. . 108
Progress of the average in-degree as anti-entropy propagates membershipinformation.109

Mean time for views to converge, varying number of sponsors. 110
Mean time for views to converge, varying number of failing principas. 111
Thering and backbone physical topologies simulated for traffic analysis. 113
Traffic per network link on aring network, varying the number of principals. . . . 114
Effect of partner selection policy on the average number of network links used in

ananti-entropy SESSION. e 116
Effect of partner selection policy on the mean traffic per link, for dl links. 116
Effect of partner selection policy on the mean traffic per backboneringlink. . . . 117
Scatterplot of the relationship between link traffic and propagation delay. 118
Relationship between link traffic and timeto acknowledgment. 119
Probahility of getting old value as the per-principal anti-entropy rate varies, for 500

principals. e 121
Expected data age as anti-entropy rate varies, for 500 principals. 122
Probahility of getting old value asthe number of principal svaries, with anti-entropy

occurring 100 timesasoftenaswrites. oL L. 122
Expected data age as the number of principals varies, with anti-entropy occurring

100timesasoftenaswrites. L 123
Effect of partner selection policy on expected dataage. 123
Askeletonclient.. 131
Theinterfacetothelocationservice. 136

How the location service receives and propagates samples of membershipviews. . 138

viii

List of Tables

21

31
3.2
3.3

41

51

7.1
7.2

8.1

Conditionsunder which consensusispossible. 12
Possible message delivery reliability guarantees, from strongest to weakest. 25
Possiblemessage delivery latency guarantees. L. 26
Some popular message orderingguarantees. oL oL L 29
Thegroup communicationsystemssurveyed. 36
Partner selection policies. 68
Performance comparison of several group communication systems. 126
Implementation complexity of Isis compared with TSAE in Refdbms. 127

Refdomsprivilegelevels. o 130

Weak-consistency group communication and member ship
Richard Andrew Golding

ABSTRACT

Many distributed systems for wide-area networks can be built conveniently, and operate effi-
ciently and correctly, using aweak consistency group communication mechanism. This mechanism
organizes aset of principalsinto asinglelogical entity, and provides methodsto multicast messages
to the members. A weak consistency distributed system allows the principalsin the group to differ
onthevalue of shared state at any given instant, aslong asthey will eventually convergetoasingle,
consistent value. A group containing many principals and using weak consistency can provide the
reliability, performance, and scalability necessary for wide-area systems.

| have developed a framework for constructing group communication systems, for classify-
ing existing distributed system tools, and for constructing and reasoning about a particular group
communication model. It has four components: message delivery, message ordering, group mem-
bership, and the application. Each component may have a different implementation, so that the
group mechanism can be tailored to application requirements.

The framework supports a new message delivery protocol, called timestamped anti-entropy,
which providesreliable, eventual message delivery; isefficient; and tolerates most transient proces-
sor and network failures. It can be combined with message ordering implementationsthat provide
ordering guarantees ranging from unordered to total, causal delivery. A new group membership
protocol completes the set, providing temporarily inconsi stent membership views resilient to up to
k simultaneous principal failures.

The Refdbms distributed bibliographic database system, which has been constructed using this
framework, is used as an example. Refdbms databases can be replicated on many different sites,

using the group communication system described here.

Acknowledgments

Several peoplehaveassistedinthisresearch. Kim Taylor, at UC SantaCruz, assisted with the proof's;
she was supported in part by NSF grant CCR—9111132. Darrell Long assisted with some of the
performance eval uation; he was supported in part by the National Science Foundation under Grant
NSF CCR-9111220, by the Institute for Scientific Computing Research at Lawrence Livermore
National Laboratory, and by the Office of Naval Research under grant N0O0014-92—-3-1807. John
Wilkes, at Hewlett-Packard Laboratories, provided additi onal suggestionsand critique, particularly
during the early exploration of the ideas.

The Refdbms 3.0 system was derived from the original refdbms system, written by John Wilkes
in the Concurrent Systems Project at Hewlett-Packard L aboratories. Development of version 3 was
aided by Eric Allman and the Mammoth Project at UC Berkeley under National Science Foundation
Infrastructure Grant CDA—8722788. George Neville-Neil wrote the X11 user interface for version
3.0, and the a pha testers have provided important feedback in improving the system.

This research was supported by severa different organizations. Early portions of this work
were supported by the Concurrent Systems Project at Hewlett-Packard Laboratories, and by a
University of California Seed Grant. The Santa Cruz Operation provided me with a one-year
graduate fellowship.

Some simulation results were obtained with the aid of SIMSCRIPT 11.5, a simulation language
devel oped and supported by CACI Products Company of La Jolla, California

Alan Emtage and Peter Deutsch, of Bunyip Information Systems and McGill University hel ped
me understand the properties that wide-area information services need. Calton Pu, of Columbia
University, encouraged me to work on the classification approach. Daniel Barbarg, at the Mat-
sushita Information Technology L aboratory, encouraged my investigation of weak consistency and

information services.

Xi

The other graduate studentsin the Concurrent Systems L aboratory provided encouragement and
support, most particularly Dean Long and William Osser.

My committee has been helpful in refining my ideas from a confused pudding of “things!’d like
tolook at” and “interesting directions” into a coherent whole. John Wilkes taught me how to write;
Kim Taylor taught me how to prove correctness; Charlie McDowell kept me honest; and Darrell
Long, my advisor, made me quantify my claims.

Three people have provided the love and support | needed to finish awork thissizein altogether
too short atime: Alan Emtage, Craig Cruz, and my partner, George Neville-Neil. These three have
put up with my fears, grouchiness, and elation.

This dissertation is dedicated to the memory of my grandfather, Harry Lawrence Golding
(1908-69). | think he would have liked it.

Chapter 1
| ntroduction

Most systems to date that operate across wide-area networks have been developed without a
consistent set of tools for reasoning about or organizing their structure. As a result, wide-area
systems are viewed as difficult to write, and ensuring their good performance is ablack art.

My thesisisthat many wide-area distributed systems can be built conveniently, and can operate
efficiently and correctly, using the weak consistency group communication approach presented in
thisdissertation. Init, aset of principa sare organized into agroup, which applications can commu-
nicate with asif it were asinglelogical entity (Figure 1.1). The group communication mechanism
is decomposed into a framework [Campbell92] of well-defined components and interfaces. The
implementati onsof each component can be customized to meet application requirements. In partic-
ular, the state kept by the principals can be weakly consistent, meaning that the copies are allowed
to diverge temporarily, as long as they will eventually come to agreement.

The framework provides a way to construct the group communication mechanism. The mech-
anism provides a group multicast service, alowing a principal to send a message to every group
member, and a group membership service, alowing principals to join and leave the group. Each
component can be implemented using one of many different protocols, providing different levels
of service. For example, the component that sends and receives messages over the network will
provide one of several message reliability guarantees. The framework approach alows code to be
reused between applications, and ensures that the group communication semantics closely match
application requirements.

This approach is useful for reasoning about distributed systems. The semantics of each com-

ponent can be used to classify existing distributed systems. For example, systems can be classified

Slice N

Group AN
communication \

Network
Cache o g Service
Y, T
Group {' Logical ! Group
communication \ group b communication
\
\ /
Network R o Network
-~ 7A _ - -
|
|
|
|
l
Service
Group

communication

Network

FIGURE 1.1: Overall system architecture. A wide-area system consi sts of a group of principals. Members
and clientslogically communicate with the group, and the group communication mechanism coordinates the
communication with each member.

by the reliability of their message delivery mechanism. The correctness, performance, and fault
tolerance of each component can be evaluated separately.

Using this framework, | have developed protocols that provide weak consistency, and inves-
tigated their correctness and performance. Weak consistency is provided by delivering messages
reliably and eventually. Reliable delivery ensures that every principal will eventually observe
any group message, while eventua delivery allows messages to be delayed while systems are not
functioning or are disconnected from the network. A group membership protocol complementsthe

message delivery protocol.

The protocols have been used in the Refdbms 3.0 distributed bibliographic database system.
This prototype system indicates that the framework is appropriate for building wide-area systems,

and that the weak consistency protocols can be built simply.

1.1 Requirements

Wide-area systems must take network behavior and user expectationsinto account. These include
the scale and reliability of the network, mobile computing systems, and application availability.

Two hosts on an Ethernet can exchange a pair of datagram packets in afew milliseconds, while
hosts on different continents can require many hundreds of milliseconds. Packet loss rates of 40%
are common, and can go much higher [Golding91b]. This argues for a system taking advantage of
locality: using nearby hosts when possible, and avoiding ong-distance communication.

Despitethisenvironment, users expect aserviceto behave asif it were being provided on alocal
system. Severa studies have shown that people work best if response time is under one second
for queries presenting new information, and much less for queries that provide additiona details
[Schatz90].

Usersal so expect to be ableto make use of theservice aslong astheir local systemisfunctioning.
A widely-used information system should be unavailable to any user at most a few minutes each
year, as long as the user’s local system isfunctioning. A recent study of host reliability [Long91]
shows that most hosts are available better than 90% of the time, and are continuously available for
ten dayson the average. My own research [Golding91b] has found that hostswithin North America
respond when polled about 90% of the time, indicating that long-term network failure is probably
uncommon. This study also showed that communication between two hosts near each other was
more reliable than between distant hosts.

There are many points in the Internet that can fail and partition the network; indeed, it is
usually partitioned into severa non-communicating subsets. The system therefore cannot assume
that the principals that compose it will be able to communicate with each other all the time. The
introduction of mobile computer systems exacerbates this problem, since they can be disconnected

from the network for a long time, or may be “semi-connected” by an expensive low-bandwidth

connection. Several researchers are investigating file systems that can tolerate disconnection
[Kistler9l, Heidemann92, Alonso904].

The application architecture must also scal e to the vast number of usersthat can access awidely
available service. The Internet included more than a million hosts in July 1992 [Long91]; the
potential user base was probably then in the several millions, and these numbers are increasing
by about 30% every four to six months [Lottor92, Ganatra92]. Specialized services with limited
audiences currently receive on the order of 10000 queries per day (0.12 queries per second mean)
[Emtage9d2b], while widely-used services such as library card catalogues can receive nearly 100
gueries per second [Emtage924].

1.2 Usingreplication

These requirements cannot be met without replicating parts of the system. A replicated system
allows load to be shared by many replicas, improving availability and scalability. Clients use the
service by contacting one replica. The service is available as long as the client can connect to at
least one functioning replica. The replicas in turn communi cate amongst themselvesto coordinate
the service.

Figure 1.2 shows how replicas might be placed in a simple internetwork. Portable systems
include clients, and can possibly include replicas. When a portable system maintains areplica the
service continues to be available even when the system has been disconnected from the network.
Thelocal replica does not receive updates made by other replicas until the system is reconnected to
the network.

Clients can contact the nearest replica, improving communication locality. This reduces com-
munication latency. It aso decreases the load each communication imposes on the network by
reducing the number of routers and communication links that must handle the messages. One
approach is to place one replicain each geographic region or organization. Clients must be able
to identify which replicas are nearby and maintain performance when nearby replicas fail; | have

considered this problem el sewhere [Golding92b, Golding92c].

Client Slice server

Workstation

4L 00000/
\

[l -
I —
; Server

| : - a

I I

I

1 I
Workstation Workstation
__ Sewver
4 00000/ o P -

-

FIGURE 1.2: Placing replicas in an internetwork. Some local-area networkswill have a nearby replica, while
others must communicate with more distant replicas. Portable systems may includea“dice’ replicathat
maintains a copy of part of the database. Properly-placed replicas that cache service information can
improve performance.

1.3 Group communication mechanism

A group communi cation mechanism can be used to construct a replicated service. This mechanism
(sometimes called adistributed process group mechanism) organizes a set of principal sinto agroup
[Birman87, Cheriton84]. The group acts as asingle abstract entity.

The group supports two kinds of operations: group multicast to send messages to group mem-
bers, and group member ship to add or del ete principalsfrom the set of members. Applicationsapply
group operations without concern for the principals that make up the group, and the group com-
muni cation mechani sm converts operations on the abstract group to communication with principa s

(Figure 1.3).

Client - Ordering component
Location

service

Group

communication Membership component

Performance
service

Network T~

N Communication component

FIGURE 1.3: Components of a group communication mechanism. The group membership mechanism
provides a group multicast protocol, which isimplemented in the ordering and communication components,
and a group membership protocol, which isimplemented in the membership component. These mechanisms
may make use of other outside services, including alocation service or a performance prediction service.

The group multicast operation sends a message from one principal to every group member. The
operation can be implemented using one of many different protocols. The implementation defines
whether messages are delivered reliably or not, and how long delivery takes. Likewise, there are
>many possibleimplementations of the group membership operations.

Both the multicast and membership implementations may rely on other network services. For
example, the membership protocol might use a location service to learn what servers make up the
group when a principal joins. The communication component might make use of a performance

prediction service (Section 2.5) to improve performance.

1.4 Weak consistency

Each group member has a copy of group state, and uses the group communication mechanism to
coordinate changes to it with the other members. The copies are consistent if they have the same
value, while inconsistent copies can differ. The group multicast protocol determines the degree of
consistency by providing guarantees on how reliably and qui ckly messages containing state changes
will be delivered to group members.

Many existing group communication systems, among them Isis [Birman87, Birman91], Psync
[Mishra89], Arjuna[Little90], and Lazy Replication [Ladin91], provide strong consistency guaran-

tees, meaning that the system provides a multicast message service that ensures that every principal

views every message in a strictly controlled order, and that no two principals can differ at any
moment by more than alimited degree.

Other approaches provide intermediate guarantees. The quasi-copy approach allows specific
bounds on the difference between copies [Alonso90b, Barbar&90, Alonso90a], while epsilon seri-
alizability relaxes traditiona serializability definitions to control the number of updates by which
copies can differ [Pu91b, Pu9la).

In contrast, the timestamped anti-entropy group multicast protocol s presented in thisdissertation
provide eventual or weak consistency. While multicast messages will be delivered to every group
member, the time required is unbounded (though finite.) Thus, any two group members can hold
different copies of group state at any instant, but eventual ly both memberswill receive the same set
of state-change messages.

These weaker guarantees can have important performance and avail ability benefits as compared
to strong consistency, particularly when considering wide-area and mobile systems. Strong consis-
tency systems require expensive protocols, and perform poorly (or not at all) when communication
is unreliable or when the network is partitioned. By contrast, weak consistency protocols can
use fewer network packets, alow caching and delayed operation for mobile systems, and are not
affected >by many forms of processor and network failure.

The timestamped anti-entropy protocol, like other weak-consistency protocols, achieves its
fault-tolerance and efficiency by performing delayed communication between principals. Rather
than multi casting a message right away, messages are placed in aqueue and delivered later. Pairs of
principals periodically contact each other to exchange the messagesin their queues. Thisexchange
is caled an anti-entropy session. If a host is unavailable for some time, the principals that it hosts
can perform exchanges when they begin functioning again. In thisway the group communication
mechanism hides host and network failures.

Many existing information systems, such as Usenet [Quarterman86] and the Xerox Clearing-
house system [Oppen81], use similar techniques. Thework presented in thisdissertation formalizes
the weak consistency model and provides new mechanisms to make weak consistency group com-

munication flexible, controllable, and robust.

1.5 TheRefdbms 3.0 system

Refdoms 3.0 is a distributed bibliographic database system. Its implementation uses the weak-
consistency protocols presented in this dissertation. | used its implementation to test many of the
ideas presented here, and it will provide motivating exampl es through the next severa chapters.

The Refdbms 3.0 system is based on the refdbms version 1 system that has been under devel-
opment for severa years at Hewlett-Packard Laboratories [Wilkes91]. That system emphasizes
bibliographicinformation shared within aresearch group. Users can search databases by keywords,
usereferencesin TeX, locate copies of papers, and add, change, or deletereferences. | have extended
it into a distributed, replicated database [Golding92a]. (Version 2 is an independent version, also
based on the original.)

The extended system provides multiple databases distributed to widely dispersed sites. Data
bases can be specialized to particul ar topics, such asoperating systemsor an organi zation’stechnical
reports. Each database can be replicated at several siteson the Internet, and users can create their
own copy of interesting parts of the database. When a user enters a new reference in one copy,
the reference is propagated to all other copies. The system also includes a simple mechanism for
notifying users when interesting papers are entered into the database.

Refdbms storesreferencesin aformat similar to that used by refer [Lesk78, Tuthill83], as shown
in Figure 1.4. Every reference has a type, such as TechReport or Article, and a unigue, mnemonic
tag like Lamport78a. Since these tags are determined by users and can potentially collide, the
systeminternally uses aunique identifier consisting of a timestamp plus the address of the site that
created the reference. References are stored in hashed and b-tree files using the BSD 4.4 libdb
library, and are indexed both by tag and by keyword.

The weak-consi stency framework in thisdissertation was used to design and implement the new
version of Refdbms. In general this has not affected the use of the system: users can do all of the
same operationsthey could onthe older centralized system. However, sincereplicasat different sites
can have different contents while updates are propagating, users will occasionally see inconsistent
information. This could be a problem when two authors at different sites are collaborating on a

paper, or when one person tells another about an interesting reference they just found. Refdbms

%z Article (thetype)

%K Lamport78a (thetag)

%A Leslie Lamport

%T Time, clocks, and the ordering of events in a distributed system
%J CACM.

%V 21

%N 7

%D 1978

%P 558 565

%x The concept of one event happening before another in a distributed
%x system is examined, and is shown to define a partial ordering of
%x the events. A distributed algorithm is given for synchronizing a
%x system of logical clocks which can be used to totally order the
%x events. The use of the total ordering is illustrated with a method
%x for solving synchronization problems. The algorithm is then

%x specialized for synchronizing physical clocks, and a bound is

%x derived on how far out of synchrony the clocks can become.

%k causal consistency, asynchrony, happens before

%k clock synchronization

FIGURE 1.4: An example reference.

resolves this problem by making potentially-inconsistent information available, but only if users

ask for it. These problems are discussed further in Chapter 3.

1.6 Conventionsin thetext

When multiplecitations are presented together, they are listed in order of decreasing importance or
relevance. Whilethisisnot the usua practice, | have found it to be more useful than ordering them
alphabetically. The references were maintained and formated using Refdbms.

Program fragments, user commands, and variable names are presented in a sans-serif face.
Names of protocolsare printed in abold face. Most other names are presented in a standard Roman

face.

1.7 Organization of the dissertation

In the next chapter | will define a number of terms and assumptions used in later chapters. In

Chapter 3, | discuss group communication systems, and present a framework for constructing

10

them and tailoring them to specific application requirements. Chapter 4 is a survey of existing
group communication systems. | present the timestamped anti-entropy protocol in Chapter 5.
That protocol guarantees reliable eventual message delivery, which is used in weak consistency
group communication. Chapter 6 includes a group membership protocol that is a companion to
timestamped anti-entropy. Chapter 7 investigates the performance of these protocols. Chapter 8
explores how the group communication framework can be extended to build sophisticated wide-
area information systems. Finally, Chapters 9 and 10 present topics for future research and my

conclusions on thiswork.

11

Chapter 2
Terms and definitions

In this chapter | will define a number of terms and assumptions used throughout this dissertation.
The term protocol is used throughout to mean a computational procedure that is performed by
two or more separate principal sand coordinated by messages passed over anetwork. Thisisdistinct

from an algorithm, which is more generally any computational procedure.

2.1 Consensus

Theproblem of reaching consi stency between copiesof group stateisaform of distributed consensus
[Turek92, Fischer85]. Consensus has been studied extensively, and it is well known that specific
conditionson processorsand the network arerequired for it to be possible. Some of these conditions
arelisted in Table 2.1.

The Internet and the hosts on it cannot formally achieve consensus because they cannot meet
the necessary conditions. However, in practice the Internet closely approximates several of the
conditions. These approximationswill be presented briefly here, and discussed more completely in
later sections of this chapter.

Hosts on the Internet approximate synchronous processors: there is some bound on the differ-
ences between the rates at which hosts operate. In practice this means there is a bound on the time
required for any host to complete any protocol step.

The Internet provides at worst unbounded communication latency. In practice a bound can be
established on the latency between two hosts when they are able to communicate, but network

failures can delay messages for arbitrarily long periods.

12

TABLE 2.1: Conditionsunder which consensusis possible. Adapted from Turek and Shasha [Turek92].

Point- Broadcast Point-
to-point transmission to-point
Unordered Ordered
Processors Communication messages messages
Asynchronous Unbounded No No Yes No
Asynchronous Bounded No No Yes No
Synchronous Bounded Yes Yes Yes Yes
Synchronous Unbounded No No Yes Yes

Finally, principals do not fail. A principal may appear to stop for some time while the host on
which it runsisout of service. However, when the host has recovered the principa will recreate its

state from stabl e storage and resume operation.

2.2 Principals

Principals are the entities that participate in group operations. Other terms such as site, replica,
process, and server might seem appropriate, but are well-defined in other contexts and have inap-
propriate connotation.

Principals survive temporary failures and host crashes. They have some form of stable storage
to record information that must survive failure. They also have volatile storage that is lost on
failure. Both principals and hosts fail by stopping (also called crashing), so that spurious data are
never transmitted on the network or written to stable storage. In practice a carefully implemented
disk storage system can closely approximatethisideal [Gray86, Sullivan92, Seltzer90]. Many Unix
network services, such as network file systems, name services, and mail routing behavein just this
way: they are created afresh from data on disk every time a host recovers [L effler89].

Principals have a mean time-to-failure (MTTF) much longer than the time required to perform
certain protocols. Such principals can be constructed from less-reliable principalsif stable storage
isavailable. These assumptionseliminate pathologica situationswhere principals recover, stay up
for a very short time, then fail again. Studies of host reliability [Long91] indicate that most hosts
function continuously for several days between crashes, while maost protocols take at most a few

minutes to complete.

13

Each principal has a unique identity, and principals that cease to exist do so for al time. It is
not possible in the short term to distinguish between a slow principal and one that has exhibited
a temporary failure and will soon recover. However, in the long term principals make progress
at a bounded rate. When functioning, no principal is infinitely fast, and any temporary failure is

recovered within abounded interval.

2.3 Timeand clocks

Throughout this dissertation, the word time refers to the time that might be measured by an externa
observer, as opposed to any internal or virtua time measure. When an event is said to happen
eventually after time ¢, the probability that the event will not happen during the period (¢, + 6]
goestozero as & — oo.

Clocks providemonotonically i ncreasing time-like measureswithin the system. Clocks progress
a the samerate as real timein the long term; however, over short intervals clocks may advance at
uneven rates.

Every principal p has access to some clock, denoted clock(p); the value of the clock at time ¢
isclock(p,t). Thisclock allows every important event performed by the principal to be assigned
adistinct timestamp. The clocks can be loosely synchronized, meaning that the clocks at any two

principals differ by at most a constant ¢ :

(Vt)(Vp, q € P)|clock(p,t) — clock(q, t)| < .

This assumption is not required for most of the resultsin this dissertation. The text indicates any
place where loose clock synchrony is assumed. Clock synchronization is a well-studied problem
[Lamport78, Cristian89], and the NTP protocol currently provides this degree of synchrony on the
Internet [Mills88].

In my experience most host clocks are within half an hour of the correct time, indicating a
maximum ¢ of an hour. Hosts that synchronize using NTP are much more accurate, and an ¢ of

about a minute appears sufficient.

14

2.4 Network

Hosts are connected by a network, and communicate using messages. |n the short term, message
transmission latency between two functioning hosts is bounded [Golding92b]. This assumption
is required for standard Internet protocols such as TCP [Postel80, Comer88]. In the long term,
temporary host and network failures, coupled with message retry, make message transmission
latency finite but unbounded.

The network includes both the physical communication media and the low-level protocols that
useit. For the Internet, thisincludes the long-distance backbone links, |ocal -area networks, and the
I P communication protocols.

The communication network does not always deliver messages in FIFO order, and it may lose
or duplicate messages from time to time. 1t does not spontaneously create messages.*

Networks have both a physical topology and a logical topology. The physical topology is
determined by connections between physical components, and many parts are often tree-like in
structure where a single failure can disconnect, or partition, the network. The logical topology
of the open Internet is a completely-connected graph, because the IP protocols hide the physical
topology to alow every host to communicate with every other host. However, | make a weaker
assumption: the network isconnected, but it need not be complete. Since many organi zations choose
to protect their internal networks from the rest of the Internet, in practice the logical topology of
the Internet is composed of a number of completely-connected subcomponents. A host has a set of
neighborsin thelogical network with which it can communicate.

No part of the network fails permanently, though temporary partitions can occur. The network
need never befree of partitions, aslong as any principa can eventually send a messageto any other
principa on a neighboring host if it continualy tries to send until it receives an acknowledgment.
This is a much weaker assumption than requiring periods when the network is free of partitions.

My studies of message reliability on the Internet [Golding92b] suggest that the probability that the

Spurious packets can occur on the Internet; however, it is unlikely that they would fall into an existing TCP
conversation and have a valid checksum.

15

Internet is ever free of partitionsis effectively zero, and the advent of portable computing systems

ensures that there will ever be atimewhen al systems are connected and functioning.
Semi-partitionsare possible, where only alow-bandwidth connectionisavailable. For example,

amabile system could be connected through a low-bandwidth cellular modem or a noisy telephone

line.

2.5 Network services

As mentioned earlier, clients must be able to identify the group members that are near them. This
presumes the existence of two services. a name or location service, which identifies the principals
in a group, and a performance prediction service that orders principal s by locality.

Thelocation service might, for example, map a service nameinto aset of server addresses. This
service might be implemented using the current DNS, or by a more advanced system [Bowman90,
Deutsch92]. Indeed, it can be implemented using weak consistency, as in the Xerox Clearinghouse
system [Oppen8l]. The service must always provide some way of locating at least one current
group member, aslong as the group still exists. | will discuss somerelated issuesin Chapter 8.

The performance prediction service provides a way to select from the principals based on
expected communication performance. Expected performance is based on a prediction of com-
munication latency, failure, and bandwidth. If an operation requires that only a small amount of
information be moved between sites, message and processing latency will dominate performance.
If large amounts of information must be transferred, then bandwidth will dominate. The prediction
should be biased by the probability that the client can communicate with the member. Concurrent
with my work on group communication, | have beguninvestigating the problems of performancepre-
diction [Golding91b, Golding92b] and of using these predictionsin the quorum multicast protocol
[Golding91a, Golding92d]. Preliminary results suggest that significant performance improvements

can be achieved using simple prediction strategies.

16

Chapter 3
A framework for group communication
systems

A wide-area system can include alarge number of principal srunning at different sitesin the network.
In Chapter 1 | proposed using a group communication mechanism to coordinate the activities of
these principals. The mechanism must be flexible, so that it can be adapted to the needs of an
application. 1t should also provide a structure that can be used to reason about a system, and to
re-use code between systems.

A framework is an abject-oriented description of the components that make up a system,
and the interfaces between them. It generalizes concepts such as layered design, often used in
specifying network protocols[Tanenbaum81], and structured design [PageJones88]. It isrelated to
the Object-Oriented Design methodology [Rumbaugh91]. The Choices object-oriented operating
system provides frameworks for process management, virtual memory, storage, and other services
[Campbel192, Iam92].

Each principal that isamember of agroup will include an instance of the group communication
framework. Theframework defines components, which abstractly document the essential semantics
of the system and can be viewed as abstract object classes. Concrete classes specializethese abstract
classes by providing an implementation of the component. An instance of the framework consists
of various objects instantiated from the concrete classes.

A framework is useful both as atool to design components, and as a method for sharing design
and coding effort between applications. In thischapter | will present a framework for constructing

a group communication mechanism.

17

3.1 Theframework

The group communication framework has four components, as shown in Figure 3.1: application,
message delivery, message ordering, and group membership components. They communicate
through three shared data structures: a message log, message summary information, and a group
view. A principal includes one instance of each component and data structure.

Themessage delivery component i mplementsamulti cast communication service that exchanges
messages with other principals. It decodes incoming messages and writes them to the message
log, from which they will be delivered to the application or group membership component. It
also maintains summary information of the messages sent and received that can be used by the
message ordering component. The message delivery component determines whether the group
communication system provides weak or strong consistency, by providing eventual or immediate
message delivery.

The group member ship component maintains a set of the principals that are in the group. The
set iscalled theloca view of the group. When the set changes, this component communicates with
the group components at other principal s according to a group membership protocol. The protocol
ensures a degree of consistency between group views. The communication consists of messages
sent through the message delivery component.

Thenetwork and themessage delivery component can reorder messagesarbitrarily. The message
ordering component processes the stream of incoming messages to ensure they are presented to
the application according to some ordering. This step may require delaying some messages until
the ordering component can correctly establish the order. To ensure thisis possible, the ordering
component also processes outgoing messages so that the ordering components at other principals
will have enough information to properly order messages, usualy by adding a header to each
message.

The application manages group state. 1t might receive requests from clients outside the group,
and translate those requests into group messages. The message would be given to the message
ordering component, which would add a header containing ordering information. The message

would then be stored in thelog until the message delivery component sent it to the other principals.

18

Application Group
membership
Member ship
Messages ges
Message
ordering
App | Group
; Membership
Timestamped messages
messages

Summary
timestamps

Timestamped

Memberships
messages

Message
delivery

N

VoV
Other principals

FIGURE 3.1: A framework for constructing a group communication system. Each principal in the group
includes an instance of thisframework, in the form of objects instantiated from concrete implementation
classes.

At the other principal, the message would be received by the message delivery component and
written to the messagelog. Sometimelater, enough information would be avail able so the ordering
component could deliver the message to the application. The application component in this second

principa would then act on the message and change its copy of the group state.

19

In thefollowing sections | will discuss how thisframework has been used to build two different
wide-area services. the Refdbms bibliographic database [Golding92a] and the Tattler distributed
reliability monitor [Long92]. | then detail each component and the implementations used by the

two applications.

3.2 Theapplication

The application component maintains the principal’s copy of group state. The state has a logical
data model, whether or not the principal s actually store the data. The datamodel defines of the data
to be shared, the operations to be performed on that data, and correctness constraints that must be
maintained. The model determines what guarantees must be provided by the other components of
the framework, and therefore what implementations can be used for them.

When a principal needs to perform an operation that effects a change to the group state, it
encodes the operation in a message that is sent to the group. When it receives the message back,
it performs the operation. When a principal isto execute an operation that does not change group
state, it might be able to perform the operation using only local information, or it may need to send
the operation to the group.

Some operations can tolerate inconsistent or out-of-date information. For example, updating a
host address in a distributed name service does not require knowing the previous address, and it is
not necessary for every replicainthe serviceto observe the changeimmediately aslong thechangeis
propagated without too much delay. If every operation on the group state can tolerate inconsi stency,
then the message delivery component can be implemented with a protocol that provides weak
consistency.

The operations allowed on the data can dictate a particular message ordering. If al operations
are commutative, that is, if they can be applied in any order with the same net result, the message
ordering component need not impose an order on the messages specifying the operations. It ismore
likely that operations will be order-dependent, in which case atotal message order will ensure that

every principal computes the same result for each operation.

20

If operations are order-dependent and messages are delivered eventually, the application will
need to provide mechanisms for detecting and resolving conflicting messages. For example, one
principal could send a message changing the state to one value, and another could concurrently
send a message changing it to a different value. Local-area distributed systems can use locking
mechanisms to avoid conflicts, but many wide-area applications cannot wait for a global locking
operation before performing an update. Instead, principal s make optimistic updates that must be
checked before they are applied to the database. A message ordering implementation that delivers
messages in atota order can provide abasis for consistent conflict detection.

Some applications require that the data contain unique identifiers. Unique identifiers are a
common source of update collisionsin weakly consistent systems, because different principals can
use the same identifier in different ways. In some cases identifiers can be generated internaly, but
in other cases they must be provided by the user. Their presence can aso determine whether two
groups can merge their state.

The shared data may include explicit version or timestamp information. If they do, it may be
possible to resolve update conflicts without requiring strict message orderings, and the ordering

component may not need to append timestamp information to messages.

3.21 TheRefdbmsapplication

Asdiscussed in Chapter 1, the Refdbms 3.0 system implementsadi stri buted bibliographi c database.
A Refdbms database consists of a set of references, each with an internal unique identifier and a
tag like Smith91 that humans can use to name a reference. At al times the internal identifier
is guaranteed to be unique. The tag should be unique, but thisis not guaranteed for newly-added
references until all sitesholding areplicaof thedatabase can observeand resolve conflicting updates.
Thereferences are indexed by the tag and by an inverted index of content keywords.

Three operations can update the database: adding, changing, and deleting references. The
update operations are neither commutative nor idempotent, meaning that every update operation

must be performed exactly once, and in exactly the same order by every principal, if the databases

21

Add
Message delivery |
program T
Other
Change _ principas
~—_| Messagedelivery |- -~

daemon

Delete
Post
Database Search

FIGURE 3.2: Structure of a Refdbms principal. The system uses reliable eventual delivery, implemented in
the message delivery program and daemon, and total message ordering, implemented in the posting program.

are to reach agreement. This suggests that a message delivery component should deliver update
messages in atota order, and that messages should be delivered reliably.

Users at different sites can submit conflicting updates. There are three sources of conflict:
adding two different references with the same tag; changing one reference in two different ways;
or deleting a reference then submitting another operation on it to a different principal. The basic
mechanism for handling conflictsisto process update messagesin the same order at every principal.
I will discuss how conflicts are resolved in more detail in Section 3.2.3.

Users can also search for references. Searches need not return completely current information,
as long as a search will eventualy reflect any update. Thisimpliesthat eventual message delivery
is acceptable in the message delivery component.

Refdbms is implemented as a set of programs that communicate over the Internet using TCP
(seeFigure 3.2). Users can submit operations, which are written as messagesto alog. From timeto
time the message delivery program propagates these messages to another replica by connecting to

a daemon there, which in turn writes the update messageto itslog. Group membership changes are

22

exchanged at the sasmetime. The message delivery program and daemon together form the message
delivery and group membership components. The message ordering component is contained in a

posting program that periodically determines what updates can be delivered to the database.

3.2.2 TheTattler system

The Tattler system is adistributed availability monitor for the Internet [Long92], built by Long and
Sriram. It monitorsaset of Internet hosts, measuring how often they are rebooted and what fraction
of thetimethey are available. The measurements are taken from severa different network sitesto
minimize the effect of network failure on the results, and to make the sampling mechanism very
reliable.

Each measurement siterunsatattl er, which sampleshost uptimesand sharesthese measurements
with other tattlers. Collectively the tattlers maintain alist of hoststo monitor and collect statistics
on them. A record of the form (host address, poll method, poll interval) is kept for each host. The
client interface allows hosts to be added or deleted from thislist. The recorded statistics are stored
in a database, which stores tuples of the form (host address, boot time, sampletime).

Only one operation updates a Tattler database: merging aset of samples. Each samplerepresents
aninterval when the host was known to be available. A samplethat isbeing merged into a database
will either be disjoint from every other sample recorded for the same host, or it will overlap with
another sample. If it overlaps, thetwo samplesare combined. Otherwise, the host has been rebooted
and a new interval has begun.

Each time a tattler obtains a new sample, it logically multicasts the sample to other tattlers.
Sample merging is commutative and idempotent, So message ordering is unimportant as long as
messagesaredeliveredreliably. However, unlikeRefdbms, the Tattler doesnot explicitly implement
amessage log. The database contains al the information that would be maintained in the message
log, so the implementations of the message ordering and delivery components can work directly
from the database.

Each tattler iscomposed of four parts: aclientinterface, apolling daemon, a data base daemon,

and a tattler daemon. Figure 3.3 shows this structure. The polling daemon produces sample

23

Palling
daemon \
Data base Tatler - Other
daemon daemon L . tattler
/ daemons
Client
interface

FIGURE 3.3: Structure of a Tattler.

observations. It takes samples at a specified rate, and can be requested to start or stop sampling
using the client interface. The data base daemon provides stable storage for sample observations
(from the polling daemon), and meta-data from the client interface and the tattler daemon. All of
the group communication components are implemented in the tattler daemon, which exchanges
samples, host lists, and membership information between tattler sites using a reliable, eventua

delivery protocol.

3.2.3 Handling updatecollisions

Wide-area applications generally perform optimistic updates to group state that may conflict with
other updates because pessimistic conflict-prevention mechanisms involve expensive, consistent
coordination steps. In some applications, such as the Tattler, optimism is not a problem since al
operations are commutative and cannot conflict. Other applications, including Refdoms, define
operations that can conflict, so these applications must provide mechanisms to detect and resolve
conflicting updates. These applications can also provide mechanisms to make conflicts unlikely
even when they cannot be prevented.

As noted earlier, there are three kinds of conflict in Refdbms: between two add operations,
between two change operations, and between a deletion and any other update. Different techniques
are used to detect, resolve, and avoid each kind of conflict. All of the techniques make use of
messages being delivered in the same order at every principal.

Two newly-added references conflict if they have the same tag. Recall that tags are assigned

by users and are supposed to be unique within a database, but this cannot be guaranteed when users

24

at different sites add references independently. This kind of conflict is detected when the second
add message is delivered to the application at each principal. Thefirst reference will aready have
been added to the database. When Refdbms finds that the tag has already been used, it computes a
new tag for the reference by adjusting a suffix on the tag: Smith90 would become Smith90a, and
Jones90b would be changed to Jones90c. There isalimit of up to ten suffix characters, but it is
most unlikely that there will be more than 261° references from one author in one year. The update
message can then be re-processed using the new tag.

There is one problem with this scheme: users may have submitted change or delete operations
for the modified reference. These operations should not be associated with the tag of that reference,
sinceit could change when the add operation is performed and the change would then be applied to
thewrong reference. Instead, each referenceisgiven aninternal identifier composed of ahost name
and timestamp that is guaranteed aways to be unique and is never modified. Change operations
can then be associated with the correct reference, even if its tag has been modified.

Conflicting change operations in Refdbms are more complex. They are not explicitly detected
or resolved; instead, change operations are simply applied in the same order by every principal.
However, change operation messages only carry the difference the change is supposed to apply
to the reference. In this way if one user corrects the spelling of an author’s name while another
user a adifferent principal independently adds keywords, both changes will eventually appear in
the reference. Fields can be grouped together, and a separate policy is used for each group of
fields. For example, achange to any author-related field will result in all author-related fields being
overwritten, while location lines can beinserted or deleted individually. Thistechnique reducesthe
probability that two change operations will conflict, even if they apply to the same reference.

Finally, deletion cancels any other operations. Change or delete operations delivered after a

reference has been deleted are simply ignored.

3.3 Messagedelivery

The message ddlivery component fills the same function as the transport layer in the 1SO layered

network model [Tanenbaum81], in that it exchanges messages with other principals without inter-

25

TABLE 3.1: Possible message delivery reliability guarantees, from strongest to weakest.

Kind Guarantee

Atomic Message is either delivered to every group member, or to none.
Message is aborted if any group member fails.

Reliable Ddlivered to every functioning group member or to none, but
failed members need not receive the message. If the sender fails,
delivery is not guaranteed but may occur.

Quorum Delivered to at least some fraction of the membership. If the
sender fails, delivery is not guaranteed.

Best effort Delivery attempted to every member, but none are guaranteed to
receive the message.

preting message contents. In my group communication framework, it retrieves messages entered
into a message log by other components and transmits them to other principals.

The delivery component provides guarantees on message reliability and latency. Thereliability
guarantee determines which principal s must receive a copy of the message, and latency determines
how long delivery will take.

There are severa possible message reliability levels, ranging from atomic to best effort, as
listed in Table 3.1. Reliable mechanisms generally require extra state at each principa and induce
more message traffic than unreliable ones. They require the sender to retain a copy of the message
in its message log so the message can be retransmitted if necessary, and they require receivers to
acknowledge incoming messages. Best effort mechanisms need not keep a copy of the message.

Reliable delivery was used for both Refdoms and the Tattler. Reliable delivery is essentia
for Refdbms, because even a single lost message can cause some principal to miss an update and
permanently diverge from the proper value. Reliability islessessential for the Tattler, because that
system can recover from alost message the next time two databases are merged.

M essage latency complements reliability: it determines how long principals may have to wait
to receive amessageif it is delivered to them. There are two aspectsto latency: when the delivery
process begins, and when it ends. The process can either begin immediately, or messages can

be queued for later delivery. Once started, delivery can complete in either a bounded time, or

26

TABLE 3.2: Possible message delivery latency guarantees.

Kind Guarantee

Synchronous Delivery begins immediately, and completes within a bounded
time,

Interactive Delivery begins immediately, but may require a finite but un-
bounded time,

Bounded Messages may be queued or delayed, but delivery will complete
within a bounded time,

Eventual M essages may be queued or delayed, and may require a finite but
unbounded timeto deliver.

eventualy. The four combinations are listed in Table 3.2. Other guarantees can be used that fall
between the ones listed.

Eventual delivery was used in both systems because synchronous or interactive delivery can
severely limit fault tolerance. In particular it makes the system less tolerant of network partitions
and site failures. If messages can be delayed, they can be delivered after the network or system
failure hasbeen repaired. The Internet is essentially never without partitions, and mobile computers
may spend a substantial fraction of the time disconnected.

Eventual delivery aso alows the system to delay messages until inexpensive communication
isavailable. Thismight mean waiting to transmit messages until evening when the network is less
loaded. Some mobile systems spend long periods* semi-connected” through alow-bandwidth wire-
lesslink, and it may be more effective to wait to transmit messages until the system is reconnected
to a higher-speed link.

While interactive delivery is not necessary, both Refdbms and the Tattler are most convenient
when updates propagatequickly. TheTattler takes stepstoincreasethe propagation rate on observing
changes to group membership or the list of monitored hosts. This propagates important changes
quickly, while ordinary updates are propagated normally.

Reliable eventua delivery providesweak consistency. Every updateto group stateisencoded in
amessage, which is delivered to every principal. While the message is being sent, some principals

27

will have received the message while others will not. This inconsistency between principals is
removed when delivery completes.

| have devel oped the timestamped anti-entropy protocol as one implementation of the message
delivery component. It provides reliable eventual message delivery in wide-area distributed sys-
tems. Chapter 5 discusses this protocol in detail. It maintains a summary of the messages and
acknowledgments it has received, and periodically exchanges batches of messages between pairs
of principas. The summaries make the exchange efficient by allowing each principal to send only
the messages the other has not yet received. Aslong as every principal periodically performs these
exchanges, every message will eventually be delivered to every principal, thus providing reliable
eventual delivery. It masks transient failures by periodically retrying message exchanges, making

itideal for for the Internet and mobile computing.

3.3.1 Propagating messages ver sus state

There are two models for storing and transmitting messages. In the first model, each message is
entered into a message log, sent to other principals, and later applied to the group state by each
principa. Alternately, it can be immediately applied to the group state and its effects can be logged
and transmitted to other principals. Refdbms uses a message log, while the Tattler operates from
the sample database.

Message logs are simple. Every update operation produces one update message, which isthen
sent to every group member. After the message arrives at other principals, its operation can be
applied to the group state. The messages can be tagged with timestamp information so that any
ordering ispossible. The group state need not include any extrainformation to ensure that messages
are applied in theright order.

Propagating effects rather than updates is more complex, but it can be a more efficient solution
when eventual delivery isallowable. If apart of the group state is updated very often, the results of
several operations can be collapsed into asingle result. That result can be sent to other principals,

rather than one message for each operation.

28

Since there are no messages, the group state must include ordering or timestamp information.
In the Tattler each sample contains a timestamp. When updates are propagated from one principal
to another, samples are exchanged and merged into the other database. In the Tattler, the sample
timestamp isused just as a message timestamp would be. A samplein the database may reflect the
merging of severa measurements, so there can be fewer samples sent between principals than if
each measurement were logged individually. Some systemsthat use state exchange can also tolerate
somelost “messages’ because the value can be obtained from a different principal in alater update
exchange.

Unfortunately, many applications cannot use state exchange. It is impossible to construct
global orderings on updates before they are applied to the database because updates are aways
applied immediately. In some distributed systems, such as Refdoms, update conflicts cannot be
resol ved without global message orderings. Other applicationssimply cannot maintain the necessary
information in their group state.

Deleting items from the group state requires special consideration when message logs are not
used. Deletion should be a stable property: once an item has been deleted, it should remain so
forever. The item should not spontaneously reappear, though of course a new item with the same
valuecould beadded by an application. A record of thedel etion must bemaintai ned until thedeletion
has been observed by all principas, so that no principal can miss the operation and re-introduce
the item to other principals. In the Clearinghouse these records were called death certificates
[Demers88], while the Bloch-Daniels-Spector distributed dictionary algorithm [Bloch87] places
timestamps on the gaps between items as well as on the items themselves. The Tattler uses the

death certificate approach to track hosts that should no longer be polled.

3.4 Messageordering

The message ordering component is responsible for ensuring that messages are delivered to the
application in awell-defined order. This order may be different from the order in which messages

are received. For example, an application should receive updates to a database record after the

29

TABLE 3.3: Some popular message ordering guarantees.

Kind Guarantee

Total, causa The strongest ordering. Messages are delivered in the same order
at every principal, and that order respects potential causal relations
between messages.

Tota, noncausal Messages are delivered in the same order at every principal, but
that order may not always respect potential causal relations.

Causal Messages are delivered in an order that respects potentia causa
relations. If two messages could be causally related they are
delivered in the same order a every principal. If they are not,
they may be delivered in different orders.

FIFO Messages from each principal will be delivered in order, but the
messages from different principals may be interleaved in any
order.

Unordered M essages are delivered without regard for order.

message creating the record. Even if the messages were sent in the right order, they may be
rearranged in transit and arrive at their destination in a di fferent order.

Table 3.3 lists some of the most common message orderings. Some of these ensure that every
principa delivers messages in the same order. An application can use this property to ensure that
updates occur in the same order everywhere. Total causal ordering, for example, is provided by the
Isis ABCAST protocol [Birman90]. Other orderings respect potential causality [Lamport78]. If
thereis any possibility that the contents of one message depend on the effects of another message,
the ordering component guarantees that the other messagewill beddlivered first. ThelsisCBCAST
protocol providesthis ordering.

M essage ordering guarantees can be limited just to message senders, to the principal group, or
among all principals anywhere in the network. The FIFO guarantee is limited to message senders,
and can be useful when each principal is sending out an independent stream of updates. Limiting
consistency to the group is more common, but it is insufficient when the group must interact with

other systems. Ladin’s Lazy Replication mechanism [Ladin91] provides ways to order messages

30

by any potentia causal relation that can be detected by a principal, even those caused by activities
outside the group. This guarantee is sometimes called external causal consistency.

A message ordering mechanism can be evaluated by the amount of extra information that must
be appended to messages, by the amount of state each principal must maintain, and by the delay it
imposes between receipt and delivery. Some causally-consi stent mechani sms require that messages
be tagged with a number of timestamps or message identifiers [Mishra39]. Total orderings can
be accomplished with a per-principal counter or timestamp, though the resulting order will not be

causal unlessthe counter or timestamp respects the happens-before relation [Lamport78].

34.1 Using message ordering

The Tattler does not require a message order because the operation of merging a sample into the
database is not order-dependent. A sample represents arange of times that a host was known to be
continuously available. When a new sample is to be processed, it will either overlap an existing
sample, in which case the two will be combined, or it represents a new range.

The operations on a Refdbms database, on the other hand, are order-dependent. The value of a
reference is the value of the last update applied to it. For two principals to record the same value
for a reference, they must apply the same updates in the same order. For Refdbms, each update
message is tagged with a timestamp from its originator’s clock. Messages are then applied to the
database in timestamp order. Recall that every principa has access to alocal clock that isloosely
synchronized with other clocks, and that every event can be marked with a unique timestamp from
that clock.

Thissimple ordering istotal, but it is not necessarily causal. Consider two principals A and B
that can communicate with latency A, where this latency is much smaller the difference ¢ between
their clocks. A sends a message to B, which then sends another message. The second message is
causally dependent upon the first message. However, if the clock a A is ahead of the clock at B,
the first message will receive atimestamp greater than that of the second message.

Furthermore, this scheme is biased so that messages from principals whose clocks lag behind

otherswill aways be applied before those with faster-running clocks. Aslong as clocks are loosely

31

synchronized to within some ¢ and the mean time between updates to a reference is larger than ¢
this bias has little effect.

M essage ordering can require delaying updates for extended periods. Users, on the other hand,
may need to use the results of an update immediately. Refdbms resolves this by making recent
database changes available in a pending image of areference. If there are conflicting updates, the
contents of the pending image are only an approximation of the fina reference. The pendingimage
is removed when there are no update operations pending for the reference. The pending image
can beretrieved by providing atag of the form Smith92.pending. Thisallows citations of pending
references to be embedded in a IATEX document or sent to another user by electronic mail.

My performance evaluation in Chapter 7 shows that the simple tota ordering used in Refdbms
does not substantially delay message delivery on average. Messages are delayed at most by the
maximum difference between clocks, plus the delay between receiving a message and receiving
a greater or equal timestamp from every other group member. T he difference between clocks is
bounded by ¢. The performance evaluation of the timestamped anti-entropy protocol showsthat the
variancein delivery latency is small, so that a message with one timestamp will arrive at about the

same time as messages with similar timestamps from other principals.

3.5 Group membership

This component is responsible for maintaining the view of what principals make up the group. The
group components at different principal s exchange messages among themselves separate from the
normal application messages. In some systems these group operation messages are processed by
the message ordering component so that group changes are consistent with application messages.
For example, every member can observe a principal joining the group at the same point in the
message sequence. In the Refdbms and Tattler systems, however, this sort of consistency is not
important because none of the operations on group state depend on the membership. Therefore
group messages are delivered independent of application update messages.

There are two fundamentally different models for group membership, depending on whether

group membership is based on a join/leave protocol or whether it is a process of discovering

32

group members. The first mechanism is used in many existing systems, including Isis, Arjuna,
most replication protocols, Refdbms, and the Tattler. The second mechanism has been proposed
by Cristian [Cristian91], and works by discovering what principas believe they are members. It
generaly requires global broadcast, which is infeasible in networks the size of the Internet. This
mechanism is not considered further.

Four operations can be performed on the membership view: hosts can join, leave, fail, and
recover. The membership component incrementally builds up group membership as principas
execute protocols for each of the four operations. Some implementations will also provide a
protocol for merging two groups. A principal is considered to be a member if it has successfully
executed the join protocol, and it remains so until it executes the leave protocol. Thisimpliesthat
there is some notion of the existence of a group independent of the principals that make it up. It
might even be possiblefor a group to exist without any members.

Group state management is an essentia part of the join and leave protocols. When a principal
finishes executing thej oin protocol, it must havereceived acopy of the group state. Thiscopy will be
derived from the state maintained by one or more principal s that were already group members. The
new member al So must receive acopy of the message log, message summaries, and group view. Itis
important that this statetransfer not viol ate the message reliability and ordering guarantees provided
by the other components. For example, the message log should include any update message that has
not yet been applied to the group state, but which has been received by the principals that supplied
the state. If it were otherwise, an update message might never be delivered to a new member
and its copy of the group state could permanently diverge from other copies. Group membership
mechanisms that allow groups to merge must a so provide a way to merge the state of both groups.

The group membership component must provide a guarantee on its fault tolerance, which is
measured by resilience to member failure. Since a principal can only contact member principas
in its view, the group membership mechanism will fail if the only principal to know about another
fails. The“knows-about” graphis correct if the transitive closure of all viewsis equal to the group
membership. This ensures that every group member can contact every other group member, and

that no other principalsarein aview at any principal. To ensurethat the graph stays correct after as

33

many as k failures, the minimum vertex-cut of the graph between any two principalsmust be & + 1
or greater.

The group mechanism can al so be eval uated by the amount of state each principa must maintain.
Existing mechanisms range from centralized registries to fully distributed systems where every
principal isapeer. Few mechanismsrequire morethan O(n) statein the number of group members,

and some require only ©(logn).

3.5.1 Using group membership

| have developed two group membership mechanisms, one that only allows principals to join
and leave, the other allowing group merges (Chapter 6). Both implementations maintain a tuple
(principal, status, timestamp) for each principa in aview, requiring ©(n) state at every principal .
These protocol s ensure fault-tol erance by requiring new membersto obtain at least &£ + 1 sponsors
among the membership, ensuring that the minimum vertex-cut is never too low. Aslong as fewer
than & member principalsfail, the graph will remain connected.

Refdbms uses the join-leave implementation because there is neither any need nor any sensible
way to merge two databases. 1n Refdbms, a partitioned membership view graph will usually cause
someupdates never to be propagated from one partition to another, because the updatewill disappear
once it has propagated everywhere in the partition. | balanced the expense of obtaining multiple
sponsors against these problems, and decided that principal s should obtain two sponsors when they
join the group. This ensures that the view graph will always be resilient to at least one member
failure.

The Tattler uses the implementation that allows group merges because its sampling operationis
based on merging sample results. It alows principalsto obtain just a single sponsor when joining
because the effects of partitioning are not very severe. Tattlers can merge their sample databases
after a partition has healed and no information will be lost. The only negative effect is that some
principalsin amembership view or hostsin apolling list that had been been deleted in one partition
will reappear when thetwo arereconnected. Thisoccurs becausetherecord of deletionismaintained

only until every principa in the partition has observed it.

34

3.6 Summary

The Refdoms and Tattler applications have been built and are running on the Internet. These
represent two of the many kinds of wide-area applicationsthat are likely to become availablein the
next severa years. Both applications were constructed as a collection of principals organized into
aweak-consistency principal group.

Weak consistency mechanisms provide fault tolerance and communication efficiency. The
applicationscan tol erate extended host failure and can continueto operate when aprincipal becomes
disconnected from othersin the group. Messages can be delayed and batched to reduce theload the
applications impose on the Internet. In particular | have found that the timestamped anti-entropy
protocol provides a convenient message delivery mechanism that is flexible enough to support both
applications.

| have devel oped a framework for constructing group communi cation mechanisms. The frame-
work consists of an application, which defines the semantics of the state shared among the group;
a message delivery component, which communicates messages from one member to another; a
message ordering component, which assembles the incoming stream of messages into a coherent
order and deliversthem to the application; and a group membership component, which maintains a
view of the membership. Each component can be implemented in many different ways, in order to
match the semantics required by the application.

Eventually | expect thiswork to lead to a general-purpose toolkit, but even now it provides a
structure for reasoning about and designing applications, and it is a valuable alternative to ad hoc
application construction. Somemodular architecture of thissort isnecessary if wide-areadistributed
applications are to become common, efficient, and easy to construct.

Building programming language translators was once an expensive process, requiring many
years of programmer effort; the separation of compilation into a distinct set of phases and the
introduction of interoperable tools for each phase has made compiler-writing a subject for one-
semester undergraduate courses. | believe that this approach to structuring wide-area applications

will yield similar results for wide-area applications.

35

Chapter 4
Existing group communication systems

Several group communication systems have been proposed or built. Many other mechanisms have
been developed that provide similar functions under a different name. In this chapter | will survey
some existing approaches to constructing group communication mechanisms, discussing how each
can be built and the guarantees they provide. These approaches are classified according to the
component guarantees presented in Chapter 3 so that they can be compared with each other and
with the weak-consistency implementations | have devel oped.

Each section in this chapter concentrates on one particular approach. The first two sections of
thischapter cover two general approaches: centralization and consistent replication. Whilethereare
many variations on each, they all provide essentially the same guarantees. Since neither approach
iswell suited to large-scale wide-area systems, | only discuss them briefly. The remaining sections
present different protocols or systems, each of which provides group communication in a different
way.

The systems can be classified by the message reliability, latency, and ordering guarantees
they provide. Table 4.1 summarizes the guarantees provided by each of the systemssurveyed. The
systemsare organized vertically by increasing strength of the message ordering guarantee. Columns
show the latency and reliability guarantees.

The sections that follow are organized roughly from strongest guarantee to weakest. The
approaches in the first sections do not work well for large-scale groups, while the later sections

discuss systems explicitly built for the wide area.

36

TABLE 4.1: The group communication systems surveyed. Listed in roughly increasing strength of ordering
guarantee.

Message Reliable delivery Unreliable
ordering Interactive Eventual delivery
Unordered Reliable multicast Anti-entropy Direct mail
Tattler Rumor mongery
OSCAR
Causal Lazy Replication Lazy Replication
ISISCBCAST
Psync
Total, e-serializability Refdbms
noncausal OSCAR

Total, ISISABCAST
causa Centralized systems
OrcaRTS
Consistent replication

4.1 Centralized protocols

The simplest way to build a wide-area service is to implement a server and allow clients every-
where to connect to it. This is the centralized approach. A centralized group communication
system requires that al group members communicate with the central group server to send and
receive every message. Many current wide-area services have taken this approach, including the
WAIS text-retrieval system [Kahle89, Kahle91], the World Wide Web distributed hypertext system
[Berners-Lee92], and the Archie FTP location service [Emtage92b]. A central server iseasy toim-
plement and uncomplicated to communicate with. Unfortunately, it isonly as available as the host
it runs on and the network between it and its clients. If the service becomes popular, a centralized
server has no mechanism for spreading load to other systems— which was a problem for the Archie
system within ayear of itsintroduction.

Thefault toleranceand scal ability of acentralized server can beimproved by providing additional
servers using a primary copy or master-slave approach. Application requests are sent to the
primary copy, which synchronously sends the request to al secondary copies. The primary copy is

responsiblefor sequencing operations. When areplicarecovers from afailure, or when the primary

37

fails, an election is held to determine which replica becomes the primary. The Echo file system
[Mann89, Hisgen9(], for example, combined primary-copy replication with client caching. The
Sun Network Interface Service [Sun88] (commonly called the “Yellow Pages’ service) also uses
primary and secondary servers.

The Domain Name Service [Mockapetris87] and the Clearinghouse name service [Oppen81]
both combine centralization and replication. In both systems, the name space database is divided
into a set of domains, and each domain must be stored at one or more servers. A server may store
more than one domain. Some domains have only one server, while other domains are replicated to
several servers. The Clearinghouse used epidemic replication (Section 4.10) to maintain multiple
copies of adomain.

Thequasi-copy technique[Alonso90b, Barbar&90, Alonso90a] providesaway to specify bounds
on the inconsistency allowed between master and slave copies of data. A user can specify that the
value of acopy should differ from the “real” value by no more than some constant, or that it should

not be out-of-date by more than some period or number of versions.

4.2 Consistent replication protocols

A replication protocol defines operations on areplicated data object. One principal is aclient, and
one or more principals are servers or replicas. The protocols provide client-to-server operationsto
read and write data, and server-to-server operationsfor adding and removing replicas and to handle
replicafailure. A principal can act both asaclient and as areplica. Every read and write operation
isatomic and consistent, the protocol aborts any operation that cannot observe an up-to-date value.

There are three broad classes of replication protocol: available copy, voting, and hybrids. The
available copy protocols [Bernstein84, Bernstein87] are sometimes called the “read-one-write-all”
protocols. Update operations must be applied at al available replicas, while a client can read from
any replica. Correct execution of these protocols require that the network never partition, and
that messages be delivered reliably. In the voting protocols, each replicais assigned one or more
votes. Each operation collects votes from replicas, and can proceed when it has collected a quorum

of votes. Mgjority Consensus Voting protocols [Thomas79, Gifford79] assign each replica one

38

vote, and require each operation to collect a majority of votes. Other voting protocols change vote
assignmentswhen replicas fail [Barbar&36], or change quorum requirements [DavCev85, Jgjodial7,
Long88]. The Virtua Partition protocol [ElI-Abbadi86] is a hybrid between available copy and
voting.

M ost of these protocol s cannot scale to large numbers of replicas and require excessive commu-
nication overhead on wide-area networks. The voting protocols generally require communication
with several replicas for every operation. All consistent replication protocols block a replicafrom
providing service when it is partitioned from the rest of the network. The protocolsrely on interac-
tive message delivery, so they are sensitive to transient network and host failure. | have considered
how several replication protocols can be implemented using a group multicast message delivery
protocol [Golding92d, Golding91b].

43 OrcaRTS

The Orca programming language [Bal89, Bal90] provides language constructs for distributed pro-
gramming. Distributed applicationsare written in terms of shared data objects that can be accessed
by any cooperating process. The shared objects are similar to a distributed shared memory, except
that each object is a structured encapsulation of data values and operations. All update operations
on distributed shared objects are serializable; that is, their effects are the same as if they had been
applied in aserial order on asingle central copy of the object.

The Orcacompiler generates code that uses arun time system to manipul ate shared objects. The
run time system includesagroup communication system and a process manager. Bal discussesthree
distributed run time systems, as well as one for a shared-memory multiprocessor [Bal89, Chapter
6]. One of the distributed implementationsrelied on reliable multicast, one on unreliable multicast,
while the third used Amoeba RPC [Mullender90, Mullender86].

The first implementation is based upon a reliable, interactive multicast protocol that delivers
update messages in atotal order. Every process is multithreaded, and contains an object manager
thread plus some application threads. When a thread issues an update operation, it multicasts an

update message to every process and then blocks. The object manager receives these messages and

39

executes the operations in the order received. When the update message has been executed at the
process that issued the update, the blocked thread is awakened and proceeds. Thisimplementation
issimpl e because the underlying multicast protocol provides semanticsthat match the requirements
of the application data model.

The second implementation, based on an unreliable interactive multicast protocol, is more
complex. Processes maintain a count of the messages they have sent, along with a vector of the
message counts of other processes. A process appends its message count vector to every outgoing
message. When a process receives a message that was multicast by another process, it increments
its view of the message count for the other process, then compares the vector on the message with
itsown. If they do not match, the process has missed some messages and can contact the process
for which countsto not match to obtain the missing ones. Since missing messages are detected only
when other messages are received, the run time system periodically generates dummy messages
to ensure missing messages are detected in a timely fashion. This results in reliable, interactive
message delivery.

The message count vector is similar to the message summary maintained by the timestamped
anti-entropy protocol. Both mechanisms summarize the set of messages that have been received,
and are used to detect messages that a principal or process has not yet received.

The AmoebaRPCimplementation achieves serializability using aprimary-copy update protocol.
One process is designated to maintain the primary copy of an object, and al write operations are
forwarded to that process. Different objects can use different processes to maintain their primary
copy. Other processes can maintain read-only secondary copies, which are updated by the primary
copy using a two-phase locking protocol. The run time system dynamically alocates secondary

copies at those processes that perform frequent read-only operations.

44 |sis

The Isis distributed programming toolkit [Birman87, Birman91] is without doubt one of the most
successful group communication systems yet developed. It has been used to develop many appli-

cations, ranging from replicated file systemsto financial applications.

40

Isis provides atomic, interactive delivery with total or causal message orderings. Processes use
agroup membership serviceto join and leave process groups, and a process can belong to more than
one group. Processes join groups either as a member or as a client. Group multicast is provided
using either the ABCAST totally-ordered multicast protocol or the CBCAST causally-ordered
protocol.

The newest Isis implementation is expected to be composed of a number of different compo-
nents. Application processes include a toolkit library that implements some of the higher-level
group membership services, and provides access to lower-level components. The basic group
communication and membership protocols are implemented in another component, which in turn
uses araw communication component. Other services, including naming and failure detection, are
implemented as user-level processes with which an application can communicate.

Isis addresses different problemsthan weak-consi stency mechanismsdo. Itsintended audience
isdifferent: itisamed at smaller systems that must often provide consistent, interactive service.
It coordinates groups of transient processes, unlike the fault-tolerant “processes’ assumed for wide
area services. Isisis also intended as a toolkit that even unsophisticated programmers can use,
and thus presents a safer, more comprehensive application interface than the framework | have

devel oped.

45 Epsilon serializability

Epsilon seridizability (ESR) is a correctness criterion for controlling transaction concurrency, and
is not specific to distributed systems. Unlike most of the other mechanisms in this chapter, it is
concerned with transactionswhere several operations must be executed asagroup. Itisan extension
of strict seriaizability that allows transactionsto observe controlled inconsistency [Pu91b, Pu91q].
Rather than enforcing a strict ordering on all transactions, perhaps using a two-phase locking
protocol, orderings are applied only to update operations.

Pu and Leff [Pu9la] discuss four methods for implementing areplication control protocol that
workswith an ESR concurrency control protocol. These repli cacontrol protocol s use asynchronous

message propagation. Each update message contains the effects of an entire transaction. The

41

Ordered Update method executes update transactions in the same order at every process, which is
trivial to implement with totally-ordered, reliable, eventual message delivery. The Commutative
Operationsmethod islimited to commutative update operations, while the Read-independent Time-
stamped Updates method is limited to operations that either append information or only overwrite
older versions. These methods can use unordered, reliable, eventual message delivery. Some
of the methods used in Refdbms for avoiding update conflicts take advantage of commutative and
append-only operations. Finally, an optimistic method applies operationsright away, then uses com-
pensations to undo the effects of transactionsthat have caused or observed too much inconsistency
or that have violated seridizahility.

An ESR concurrency control protocol allows applicationsto limit the amount of inconsistency
a transaction can observe. Transactions can acquire a certain number of read-write or write-write
locks on objects—locksthat are disallowed under strict two-phaselocking. If atransaction attempts
to acquire more conflicting locks than the limit, the transaction is blocked. Commutative and
timestamped operations introduce additional kinds of locks.

Because ESR requires locking, it is not a good choice for services that must scale to large
numbers of replicas. However, it scales better than strictly serialized systems, and the definitions
of operation compatibility can be used to build conflict-reduction mechanismsin weak-consistency

systemsthat do not provide concurrency control (Section 3.2.3).

46 Psync

The Psync system [Mishra89] is a complete group communication system that provides causally
consistent, atomic, interactive message delivery and group membership operations.

The system is based around the Psync communication protocol. Processes start communication
by joining a group, which is called a conversation in Psync. Each message has an identifier. The
protocol appends causal information to each message, and group members use this information to
construct a graph of the causal relations between messages. The causal information consists of the

identifiers of every message on which this message depends, which requires O(n) space for each
message.

42

M essages are sent to group members using a best-effort multicast. A recipient can detect when
it has missed a message, because some other message will name it as a predecessor. The recipient
can request a copy of the message it missed from the process that sent the other message.

Psync allows fine-grained control over delivery order. As messages are received and added
to the dependence graph, some messages may become deliverable. They are delivered to the
application, which performs the corresponding operations. The set of operations can be partitioned
into setsof related commutativeoperations, and each partitionassigned apriority. Withinapartition,
operationsthat are not causally related are executed in any order, while non-commutativeoperations
are executed in order by priority.

Psync allows processesto join multiplegroups, thoughit only ensures causal consistency within
agroup. Every message must be qualified by theidentifier of the group to whichitis sent. Processes
join a group by executing a join protocol, after which they will begin receiving group messages.
The protocol includes a specia operation to remove a temporarily failed process from the group,
and another operation to allow that process to recover.

The weak-consistency protocols used in Refdbms avoid the overhead of attaching O(n) stateto
each message by attaching causal information to batches of messages. Each message only carries
a single timestamp, which is used to identify the message, while communication sessions include
O(n) timestamps.

The Consul system [Mishra92] provides a more complete group communication system, adding
failure detection, group membership, and stable storage modules to the basic Psync protocol. This
modularization of a group communication system includes many more parts than my framework
because it includes support for failure detection and recovery. This support is not as important in
a weak-consistency system like Refdbms that uses long-lived principals and a message delivery

protocol that hides transient host failure.

4.7 A reliable multicast protocol

GarciaMolina and Kogan [GarciaMolina88] have developed an internetwork multicast protocol

that provides reliable interactive delivery. It uses an unreliable interactive (best-effort) multicast

43

protocol to try to disseminate a message. Messages include sequencing information that allows
receivers to detect when they have missed one or more earlier messages. When areceiver detects
one or more missing messages, it contacts another principal to obtain acopy of them. AsintheOrca
unreliable multicast protocol, senders periodically send null messagesif they have not recently sent
a useful message, allowing receivers to detect missing messages quickly.

One unique feature of this protocol is that it takes advantage of network topology. Each
principa has a prioritized list of other principals, and it selectsin order from that list when it needs
to contact another principal to retrieve a missing message. The protocol includes an algorithm for
building priority liststhat form a spanning tree over the principals. It uses communication distance
between hosts, or the number of network links that messages between the two must traverse, to
order principals.

This protocol is similar to the Orca protocol based on unreliable multicast. Both protocols
attach sequencing information to messages, and use this information to detect messages that have
been missed. Both send periodic null messages to ensure progress.

Theway thisprotocol recoversfrom missed messagesand partitionsissimil ar to thetimestamped
anti-entropy protocol, except that it tries to deliver messages individually and interactively rather
than queuing messages for delivery in batches. The protocol builds a spanning tree over the
principals in the group, and messages are propagated aong edges in that tree rather than between
arbitrary pairs of principals. If the spanning tree is built carefully, this approach can minimize
network traffic, though it can increase the time required to propagate a message. It is not clear how
to build a group membership system that properly recomputes the spanning tree as principals join

and leave a group without either centralizing the computati on or involving the entire group.

4.8 OSCAR

OSCAR (Open System for Consistency and Replication) [Downing90a, Downing90b] implements
weak-consistency replication using a mixture of distributed and centralized elements. It provides

reliable eventual message delivery, with a variety of message orderings. The system is notable

44

becauseitisimplemented asaset of cooperating components, though thearchitectureissignificantly
different than that in Chapter 3.

Every replicais paired with areplicator and a mediator. During normal operation, whenever an
updateisinitiated at areplicathe corresponding replicator sends an unreliable multicast messageto
other replicators. The message includes a version number and timestamp. The replicators use this
information to present update messagesto their local replicasin a correct order. From timeto time
a master mediator polls every replicator, obtaining a version vector for every database item. The
version vectors from different replicas are combined, and the result is multicast to every replicator.
Replicators use the vector to detect messages they have missed, and to determine when messages
in their local logs can be purged.

When the network partitions, one mediator becomes master in each partition. Mediators are
prioritized, and a low-priority mediator becomes active when it has received no messages from
higher-priority mediators for a certain period. When the network partition is repaired, the lower-
priority mediator will become dormant, while the higher-priority mediator takes over for the entire
partition. Updates missed by replicas in one partition or the other will be propagated the next time
the mediator broadcasts a version vector.

Thisapproach isnot asefficient asmy weak-consistency protocol sover wide-areanetworks, and
cannot scale as well. Replicators perform an interactive multicast every time they send a message.
This causes much more network traffic than pairwise message exchange, which can approximate
an optimal spanning tree. Likewise, mediators must communicate interactively with replicators,
which causes a similar amount of network traffic and can overl oad the mediator if the group grows
too large. Further, this approach cannot function if the logical network topology is not completely

connected, while the timestamped anti-entropy protocol can.

4.9 Lazy Replication

The Lazy Replication system [Ladin90, Ladin91, Liskov87] provides reliable eventua message
delivery with a mix of causally and totally consistent orderings. Applications can specify exactly

what causal relations should be enforced between messages, so weaker orderings can be specified

45

by omitting some specification. Applications can aso specify that causal relationships caused by
events outside the group should be considered when ordering messages.

The system uses message count vectors much like those in the Orca unreliable multicast RTS
(Section 4.3). The message count vector summarizes aset of messages. Two message count vectors
are attached to each message: one that specifies what messages must be delivered before this one,
the other serving asauniqueidentifier. Each principal maintainsavector summarizing the messages
that have been applied to the database, along with copies of the vectors from other principals.

The Lazy Replication protocol resembles a version of the timestamped anti-entropy protocol
that alows unsynchronized clocks (Unsync TSAE). This protocol is detailed in Section 5.4.4.
Both protocols store incoming messages in a log, and use message count or timestamp vectors to
summarize sets of messages. Both lazily update principals, and use the vectors to guide message
exchange and delivery.

The timestamped anti-entropy protocol is more efficient than Lazy Replication, because Lazy
Replication doesnot takefull advantage of theinformation availableinitstimestamps. It causesprin-
cipal sto transmit a message from one to the other many times, even when the message has already
been observed. It also requires both ©(7?) state for acknowledgments and an extra message log to
ensurethat duplicate messages are not processed twice, even though it requiresloosely-synchronized
clocks for good performance. The TSAE protocols can use O(n) state when |oosely-synchronized
clocks are available. Lazy replication performs one-way updates in its gossip messages, instead of
bidirectional updates.

4.10 Epidemicreplication

The Xerox Clearinghouse service [Oppen81] is the name and location service for Xerox Network
Systems. It maintains a distributed database that maps structured names into a set of properties,
such asnetwork addresses. The namesare organized into athree-level hierarchical space, structured
into organi zations, domains within organizations, and local names within domains. The mappings

for each domain are stored at one or more Clearinghouse servers. Clients can request any server to

46

look up the binding for a name, and the server will forward the request to the appropriate server if
necessary.

The Clearinghouse uses three different mechanisms to propagate updates between servers:
direct mail, anti-entropy, and rumor mongery [Demers88, Demers89]. Direct mail is simply an
unreliabl e best-effort multicast.

Rumor mongery provides unreliable eventual delivery, but it is more reliable than a one-time
best-effort multicast. To be a rumor monger, a principal sel ects another principal and sends it one
or more hot rumors. Hot rumors are recent update messages that the principal believes the other
isnot likely to have observed. Severa different stopping rules will ensure that a message does not
continue propagating forever, but none of the rules can ensure that a message has been propagated
to every principa before stopping.

The Clearinghouse anti-entropy protocol guarantees reliable eventua delivery, as does the
timestamped anti-entropy protocol. To execute the protocol, one principa selects another, and the
two exchange update messages until they are mutually consistent. Unliketimestamped anti-entropy,
messages are not timestamped, and the protocol does not maintain summaries of the messages
that have been received. Instead, database contents are exchanged directly, using checksums to
determine when enough entries have been exchange to make both principals mutually consistent.
Demers et al. describe heuristics for reducing the expense of this exchange, including building an
index on the message |og so messages can be ordered from most recently received to least recent.

Thisanti-entropy protocol provided inspiration for theti mestamped anti-entropy protocol. How-
ever, the Clearinghouse protocol can only provide unordered message delivery because it operates
from the database rather than a message log. It provides no mechanism to detect when a message
has been received everywhere, so database entries cannot be deleted reliably, and a principa can
receive a message more than once. The Clearinghouse protocols therefore could not be used for

applications like Refdbms that need stronger guarantees.

47

411 Summary

Many group communication systems have been proposed and implemented. They provide guar-
antees ranging from atomic, synchronous, totally-ordered message delivery to unreliable eventua
delivery. Only a few provide reliable eventua delivery, the guarantee used in the Tattler and
Refdbms systems. The Clearinghouse anti-entropy protocol and Lazy Replication are closest to the
timestamped anti-entropy protocol presented in the next chapter.

The weak-consistency protocols | have developed improve on these systems by providing
a combination of efficiency and well-defined guarantees. In particular, the timestamped anti-
entropy protocol delivers amessage at most once to any principal, alows correct detection of fully-
acknowledged messages, and can be composed with a number of message ordering components. It

improves efficiency by transmitting messages in batches rather than singly.

48

Chapter 5
Weak-consistency communication

The previous chapters introduced a framework for building a group communication system as the
basis of a wide-area application. In this chapter | focus attention on the message delivery and
ordering components of the framework. These two components deliver application messages to
group members, and ensurethat the messagesare delivered in order. Asdiscussedin Chapter 3, there
are severa guaranteesthat can be provided by an implementation of either component. For delivery
component, the timestamped anti-entropy protocol provides reliable, eventual delivery. Various
implementations of the corresponding message ordering component can provide any ordering

guarantee.

5.1 Réeliable, eventual message delivery

Systems like Refdbms and the Tattler use the timestamped anti-entropy protocol, which is used
to build a message delivery component that provides reliable, eventual delivery. This means that
every functioning group member will receive every message, but the message may require afinite
unbounded time for delivery. These guarantees reflect atension between an application’s needs for
timely information, accurate information, and reliability.

Reliable delivery was chosen because information services are generally expected to provide
authoritative answers to queries. If one Refdbms replica were to miss an update, for example, the
database copy at that replica could permanently diverge from others. Systemslike location services
that provide hints rather than authoritative answers are good candidates for unreliable mechanisms

[Terry85, Oppen8l, Jul88, Fowler85].

49

Eventual delivery trades latency for reliability. The message delivery component can mask
out transient network and host failures by delaying messages and resending them after the fault is
repaired. It also allows messages to be batched together form transmission, which is often more
efficient than transmitting each message singly. Both of these features are especially important for
mobile systemsthat can be disconnected from the Internet for extended periods.

The timestamped anti-entropy (TSAE) protocol is similar to the anti-entropy protocol used in
the Xerox Clearinghouse [Demers88, Demers89]. Each principal periodically contacts another
principal, and the two exchange messages from their logs until both logs contain the same set of
messages. The TSAE protocol maintains extra data structures that summarize the messages each
principa has received, and uses this information to guide the exchanges. There are two versions
of the TSAE protocol: one that requires loosely-synchronized clocks, and one that does not. The
loosely-synchronized version is presented in this section, whilethe general version is deferred until
Section 5.4.4.

One important feature of TSAE is that it delivers messages in batches. Consider the stream
of messages sent from a particular principal. Those messages will be received by other principals
in batches, where each batch is arun of messages, with no messages missing in the middle of the
run. When a principa receives a batch, the run of messages will immediately follow any messages
already received from that sender. In thisway principals receive streams of messages, without ever
observing a“gap” in the sequence.

TheTSAE protocol providesadditional featuresthat are necessary for information services. The
protocol can be composed with amessage ordering component to produce specific message ordering
guarantees. The ordering component makes use of the batching property to reduce overhead. TSAE
provides positiveacknowledgment when all principal s have received amessage, so that the message
can be removed from logs and so that death certificates can be removed from the database. It also
providesamechanism for two principal sto measure how far out of date they are with respect to each
other. Applications can use this feature to prioritize communication when resources are limited,

and to prompt users of mobile systemsto temporarily connect to a high-bandwidth link.

50

class timestamp {
hostld host:
clockSample clock;

Boolean sameHost(timestamp t);
Boolean lessThan(timestamp t);

// (etc...)
}

timestamp CurrentTimestamp();
// returns a unique timestamp for the local host

FIGURE 5.1: The timestamp data structure.

In this chapter, the group is assumed to have a fixed membership M of n principals. This

restriction isremoved in Chapter 6. Chapter 7 explores the performance of these protocols.

5.1.1 Datastructuresfor timestamped anti-entropy

Timestamps are used in every component to represent temporal relations and to name events. As
shown in Figure 5.1, atimestamp consists of a sample of the clock at a host, and is represented as
the tuple (hostld, clock). The clock resolution must be fine enough that every important event in a
principal, such as sending a message or performing anti-entropy, can be given a unique timestamp.
Timestamps are compared based only on their clock samples, so that timestamps from different
hosts can be compared. The more specialized case of only comparing samplesfrom asinglehostis
atrivial extension. Each host provides afunction to retrieve a current timestamp; this function will
be named Current Timestamp in this dissertation.

Timestampscan be organized into timestamp vectors. A timestampvector isaset of timestamps,
each from adifferent principal, indexed by their host identifiers (Figure 5.2). 1t represents asnapshot
of the state of communication in a system. In particular, it represents a cut of the communication.
Mattern [Mattern88] provides a well-written introduction to the use of time measures such as cuts

in reasoning about the global states of distributed systems.

51

typedef set (principalld, timestamp) timestampSet;

class timestampVector {
timestampSet timestamps;

// update the entry for one principal

update(principalld, timestamp);

// merge in another vector, taking the elementwise maximum
updateMax(timestampVector);

// determine temporal relation of a timestamp
Bool later Than(timestamp);

Bool earlier Than(timestamp);

Bool concurrentWith(timestamp);

// determine temporal relation of another vector
Bool later Than(timestampVector);

Bool earlier Than(timestampVector);

Bool concurrentWith(timestampVector);

// return the smallest timestamp in this vector
timestamp minElement();

FIGURE 5.2: The timestamp vector data structure.

Some of the operations on atimestamp vector deserve special mention. Two timestamp vectors
can be combined by computing their elementwise maximum. A timestamp is considered later than
a timestamp vector if the vector contains a lesser timestamp for the same host. A timestamp is
considered concurrent with a vector if either the vector has exactly the same timestamp for the
same host, or the vector does not include a timestamp for the host. Note that these comparisonsare
limited to one host, and do not consider possible temporal relations between different hosts. One
timestamp vector is later than another if every timestamp in the first vector is greater than or equal
to the corresponding timestamp in the other, and the two vectors are not equal.

Each principal executing the TSAE protocol must maintain three data structures: a message
log and two timestamp vectors (Figure 5.3). These data structures must be maintained on stable

storage, so they are not lost when the host or principal crashes.

52

timestampVector summary;
timestampVector ack;

typedef list { principalld, timestamp, message, delivered) msgList;

class msglog {
msgList messages;

// manipulate messages in the log
add(principalld, timestamp, message)
deliver(principalld, timestamp)
remove(principalld, timestamp, message)

// query the log for all messages newer than some vector

msgList listNewer(timestampVector)

// query the log for all messages older than some timestamp

msgList listOlder(timestamp)

// query for all messages sent by a principal between two timestamps
// can use special value ‘ANY’ for principalld

msgList listMsgs(principalld, timestamp first, timestamp last)

}

msglog log;

FIGURE 5.3: Data structures used by the TSAE communication protocol.

The message log contains messages that have been received by a principal. A timestamped
messageis entered into the log on receipt, and removed when all other principals have al so received
it Messages are eventually delivered from the log to the application. The log includes functionsto
retrieve messages that were sent later than the events recorded in atimestamp vector.

Not al applications will use a message log. Many applications, including the Tattler, can
operate directly from the copy of group state maintained by the application application component,
as discussed in Section 3.3.1. In that case the application must provide an interface to retrieve
“messages’ along with the associated principal identifier and timestamp from the group state.

Principals maintain a summary timestamp vector to record what updates they have observed.
The vector contains one timestamp for every group member, and each member has received every

message with lesser timestamps. Figure 5.4 shows how the summary vector relates to the messages

53

A 1 3 5 12 12

B 3 — 3

C 2 3 4 4
Message log Summary vector

FIGURE 5.4: How the summary vector summarizes the messages in thelog. Each message is marked with its
timestamp. The timestamped anti-entropy protocol ensures that there are no “gaps’ in the sequence of
messages in thelog, so that the last timestamp stands for every previous message.

in the log. Recall that messages are transmitted in batches, and that there are never gaps in the
message sequence, so the timestamp of the latest message indicates that every message with an
earlier timestamp has been received.

The summary vector provides a fast mechanism for transmitti ng information about the state of
aprincipa. It isused during an anti-entropy exchange to determine which messages have not yet
been received by a principal, and two principals can compare their summary vectors to measure
how far out of date they are with respect to each other.

Formally, the summary vector maintained by principal A is written summary 4; the subscript
will be omitted when it is clear from context. Principal A records a timestamp ¢ for principal B
in summary 4(B) when A has received all messages generated at B with timestamps less than or
equal to ¢. The timestamp ¢ is measured from the clock at B. Each principal maintains one such
timestamp for every principa in the group.

Each principal aso maintains information about message acknowledgments. Rather than ex-
plicitly send an acknowledgment for every message, the information in the summary vector is used
to build a summary acknowledgment. As long as principals use loosely-synchronized clocks, the
smallest timestamp in the summary vector can be used as a single acknowledgement timestamp for
all messages received by the principal (Figure 5.5). Clearly every message with a timestamp less

than or equal to the minimum has been received, though there are later messages that are not yet

54

Principal Principal Principal
A B C
6 5 5
Summary |- 10 12 10
vector | | L]
8 8 9
Ack 6 4 4 5 5 4 5 4 3)
vector

FIGURE 5.5: Summary and acknowledgment vectors for principal s with loosely-synchronized clocks. The
dark cell in the acknowledgment vector contains the minimum timestamp from the summary vector, while
the other cells contain copies, usually dightly out of date, of the minima from other principals.

acknowledged. The TSAE protocol ensures that the acknowledgment timestamp makes forward
progress, so every message will eventually be acknowledged.

Each principal stores a copy of the acknowledgment timestamp of every other group mem-
ber. The TSAE protocol propagates acknowledgment timestampsjust asit propagates application
messages.

The acknowledgment timestamp vector at principal A is written ack4. Principal A holds a
timestamp ¢ for principal B as ack4(B) if B has received every message from any sender with
timestamps less than or equal to ¢. Principal B periodically sets its entry in its acknowledgment
vector —that is, ack g(B)) —to the minimum timestamp recorded in its summary vector (Figure5.5).

A principal can determine that every other group member has observed a particular message
when the message timestamp is earlier than all entriesin the loca ack vector. Thisfeatureis used

to purge messages from the log safely, and in handling dynamic group membership (Chapter 6).

55

5.1.2 Thetimestamped anti-entropy protocol

The anti-entropy protocol maintains the timestamp vectors and message log at each principal. It
does so by periodically exchanging messages between pairs of principals.

From time to time, a principal A will select a partner principal B and start an anti-entropy
session. A session begins with the two principals all ocating a session timestamp, then exchanging
their summary and acknowledgment vectors. Each principa determinesif it has messagesthe other
hasnot yet received, by seeing if someof itssummary timestampsare greater than the corresponding
ones of itspartner. These messages are retrieved from thelog and sent to the other principal using a
reliable stream protocol. If any step of the exchangefails, either principal can abort the session, and
any changes made to the state of either principal are discarded. The session ends with an exchange
of acknowledgment messages.

At the end of a successful session, both principals have received the same set of messages.
Principals A and B set their summary and acknowledgement vectors to the elementwise maximum
of their current vector and the one received from the other principal.

Figure 5.6 shows what might happen to two principals during an anti-entropy session. The
two principals start with the logs shown at the top of the figure, where A has messages from itself
and from C' that B has not yet received, while B has sent messages that A has not received.
They determine which messages must be sent by comparing their summary vectors (middle row),
discovering that the lightly shaded messages must be sent from A and the darker shaded messages
must be sent from B. At the end of the session, both principals have received the same set of
messages and update their summary vector to the value shown in the bottom row.

Figure 5.7 detail sthe protocol executed by aprincipal originating an anti-entropy session, while
Figure 5.8 shows the corresponding protocol the partner principal must follow.

After anti-entropy sessions have completed, the message ordering component can deliver mes-
sages from the log to the database and purge unneeded log entries. It uses the summary and
acknowledgment vectors to guide this principal, as discussed in Sections 5.3 and 5.5.

By the end of an anti-entropy session, the originator and partner principals have both received

any messages sent by either one of them up to the time the exchange started. In addition, one or

56

Principal A Principal B
A 1 3 5 12 1 3
B 2 2 5 6 9 11
C 2 3 4 2
5--12
12 3
5-11
2 11
3-4
4 2
Summary A Summary B
12
11
4

Summary after exchange

FIGURE 5.6: An example anti-entropy session. Principals A and B begin with thelogsin the top of the
figure. They exchange summary vectors, discovering that the shaded messages must be exchanged. After
the exchange, they update their summary vectors to the bottom vector.

both will probably have received messages from principals other than its partner. In the example
in Figure 5.6, principal A forwarded messages originally sent by C'. This means that one principal
need not directly contact another to receive its messages. Instead, some sequence of principals
exchanging messages can eventually propagate the message. The correctness of TSAE isbased on

the reliability of thiskind of diffusion, as discussed in the next section.

57

// Information about the partner

principalld partner;

timestampVector partnerSummary, partnerAck;

// A temporary copy of the local summary and ack vectors, to avoid
// timing problems with concurrent sessions

timestampVector localSummary, localAck;

msgList messages;

partner = selectPartner();

// update local vectors and exchange them with partner
summary[thisPrincipal] = CurrentTimestamp();
localSummary = summary;

ack[thisPrincipal] = minElement(localSummary);
localAck = ack:

send(partner, “AE request”, localSummary, localAck);
receive(partner, partnerSummary, partnerAck);

/] exchange messages

messages = log.listNewer(partnerSummary);

for (pid, timestamp, message) in messages:
send(partner, pid, timestamp, message);

while (receive(partner, pid, timestamp, message)):
log.add(pid,timestamp,message);

// finish communication
send(partner, “Acknowledged”);
receive(partner, “Acknowledged”);

// update summaries and trigger the message ordering component
summary.updateMax(partnerSummary);
ack.updateMax(partnerAck);

DeliverMessages();

FIGURE 5.7: Originator’sprotocol for TSAE with loosealy-synchronized clocks. Notethat error handling is
not included to make the presentation readable. An anti-entropy session is aborted if either principal detects
an error in communication, in which case any updates to the message log or timestamp vectors are
discarded. The acknowledgment vector is updated by this protocol but used by the message ordering and 1og
purging functions.

58

// Information about the other principal

principalld originator;

timestampVector originatorSummary, originatorAck;

// A temporary copy of the local summary and ack vectors, to avoid
// timing problems with concurrent sessions

timestampVector localSummary, localAck;

msgList messages;

/] receive request from originator and update local state
receive(originator, “AE request”, originatorSummary, originatorAck);
summary[thisPrincipal] = CurrentTimestamp();

localSummary = summary;

ack[thisPrincipal] = minElement(summary);

localAck = ack:

send(originator, localSummary, localAck)

/] exchange messages

while (receive(originator, pid, timestamp, message)):
log.add(pid,timestamp,message);

messages = log.listNewer(originatorSummary);

for (pid, timestamp, message) in messages:
send(originator, pid, timestamp, message);

// finish communication
receive(originator, “Acknowledged”);
send(originator, “Acknowledged”);

// update summaries and trigger the message ordering component
summary.updateMax(originatorSummary);
ack.updateMax(originatorAck);

DeliverMessages();

FIGURE 5.8: Partner’s protocol for TSAE with loosely-synchronized clocks.

5.2 Correctness

Inthissection | define correctnessfor reliableeventual delivery protocols, and establishit for TSAE.

Discussionislimited to the version of TSAE that uses loosely-synchronized clocks.

Recall that the term eventual ly was defined in Chapter 2 to mean that an event occursin afinite

but unbounded time after sometimez.

59

Thereliability condition can then be stated formally:

Condition 5.1 If a message is sent by principal p at real time ¢, the message will eventually be

received at any group member principal .

Note that correctness is defined in terms of time as might be measured by an external observer,
and not in terms of virtual time or clocks [Mattern88]. There are two reasons for this choice. First,
| found it easier to reason about behavior of the protocol using time rather than clocks, especialy
when replica and message failure is involved. In addition, | believe that this formulation is more
useful, since theintended application of these techniquesisfor applicationsinteracting with people
and physical devices. This implies that the applications will have channels of communication
outside of the group communication system, and outside the domain covered by any virtua time
measure. Thisisthe same problem that motivated Lamport’s Srong Clock Condition [Lamport78].

Recall aso that the group membership is assumed static, that the network need not be fully
connected, and that principalsdo not fail permanently. The static membership limitationisremoved
in Chapter 6.

Using the TSAE protocol, every principa periodicaly attempts to perform an anti-entropy
session with each of its neighbor principalsto deliver amessage. Eventually, sessionswill succeed
with each of them, propagating the message. Each of those principalsinturn will eventually contact
all of their neighbors, and so on until al principals have received the message. In the next severa

sections | detail a proof of this property.

5.2.1 Logical communication topology

Consider the communications between principals. Recall that the network is connected but not
necessarily complete (Section 2.4). The relation 7" defines the logical topology of the network by
specifying which hosts are neighbors. P isthe set of all principals.

Definition 5.2 The logica principal topology graph G = (P,T') is an undirected graph. The
relation T : P — P isasymmetric relation that defines what pairs of principals can exchange

messages, that is,

60

(A,B)e T <~ A,B € P A A can communicate with B.

Thelogical topology graph G must be connected. In an environment such as an Ethernet, G'r
is the complete graph C'”!, that is, every principal can communicate with every other principal.
In systems such as Usenet, G' ¢ C'! because each node only communicates with a few other
nodes. While the physical links in most internetworks do not form a complete graph, the logical
communication topology provided by the IP protocol is a complete graph. In practice the Internet

is composed of afew communication cligues.

Definition 5.3 Communication cliques are completely connected subgraphs of the topol ogy graph
Gr. If aprincipal is a member of a communication clique, it can communicate with every other

principal in that clique.

Anapplication can el ect torestrict thel ogical topol ogy graph to asubset of thetopol ogy provided
by the network protocols onwhich it isbuilt. For example, it may be advantageous to structure the
principalsinto atree or aring.

Recall that there are no permanent failures in the communication network or principals. That
is, any pair of principals connected in the logical topology graph can eventually successfully send
and receive a message, or more formally, the probability that on principal cannot successfully send

amessage to another principal during the timeinterval (¢,¢ + 6) goesto zero as§ — oc.

5.2.2 Eventual communication

The first step of the proof is to show that the TSAE protocol eventually performs anti-entropy

sessions between every pair of principals connected in the logical topology graph.

Definition 5.4 (Attempted communication relation) Therelation A(t,¢ 4+ 6) : P — P istheset
of ordered pairs of principalswhere thefirst principal has attempted to send one or more messages

to the second principal during the period (¢, 4).

61

| assumethat A C T, so that no attempt is ever made to communicate between two principals
that the logical topology prevents from communicating directly. The graph G 4 is defined in the

obviousway.

Definition 5.5 (Successful communication relation) Therelation S(¢,¢ 4+ ¢) : P — P contains
a pair for every principals that successfully sent a message to another principal during the time

period (¢,t + ¢). The graph G is defined in the obvious way.
S(t,t+ ¢)isclearly asubset of A(t,t+ 6).

Lemma 5.6 (Eventual communication) Asé — oo, S(t,t + §) convergesto A(t,t + ¢) aslong

as principals periodically retry messages that failed to be delivered.

Proof: If 5 /4 A, then thereisapair (a,b) € A such that (a,b) ¢ 5 for dl timest + 6.
However, if amessage failed during aperiod (¢, ¢ + 61), by assumption the message will be
retried during some period (¢ + 81,t + 61 4 62). Asda — oo the probability of the message
not getting through goes to zero. Thus the probability of there being a pair («, b) that have

not been able to communicate goes to zero, and 5’ convergesto A. O

Principals periodically perform anti-entropy sessions with neighbor principals. | assume there
isan upper bound % on the time between attempts to communicate, and that a principal selects its
partner so that every neighbor will eventually be selected after any time ¢. The probability that a
principa « has not performed an anti-entropy session with a neighbor & during a period ¢ is thus
bounded by the probability s, of selecting neighbor 5 on each attempt, raised to the power of a

lower bound on the number of times ¢ has performed the anti-entropy algorithm:
Pr(a has not performed anti-entropy with b during §) < (1 — s,)"4)t%). (5.1)

As é — oo, the probability of not attempting anti-entropy goes to zero. Thisformulation accounts
for both host failure, which must not be permanent to satisfy this constraint, and for the distribution

times between anti-entropy sessions.

62

The attempted anti-entropy relation A,.(t,¢) is defined in the same way as the attempted
communication relation. Since the probability of not attempting an anti-entropy session with a
neighbor goesto zero as ¢ goesto infinity, A,.(¢,) convergesto thetopology relation 7" as § — oc.

Therelation 5,.(¢,) isin turn defined as the set of anti-entropy sessions that have completed
successfully during the period (¢,t 4 ¢). The protocol presented in Section 5.1.2 either completes
successfully or aborts; an abort occurs only when one or both principals detect probable failurein
either principal.

The mechanism for detecting failure must be accurate. That is, if both principal s are functioning
correctly, and they are able to communicate, the failure detection must not systematically report
failure. However, if either principal or the network have failed, it must report failure. Formally,
Pr(reporting failure| no actud failure) < 1. In practice, timeoutscan be used to implement thiskind

of faillure detector on the Internet.

Lemma 5.7 (Eventual anti-entropy) If aprincipal repeatedly attemptsto performan anti-entropy
session with another, starting at any time ¢, eventually one of these sessions must execute to

compl etion.

Proof: Assumethat some principa A repeatedly attemptsto perform anti-entropy with prin-
cipd B. By Lemma 5.6, A and B will eventually be able to exchange messages. The
mean time-to-failure for principals was assumed to be much larger than the time required
to execute the anti-entropy protocol, so the probability of one or both principals failing
during the session is less than one. When both principals and the communication medium
are functioning, probability that the failure detector will falsely report failure is also less
than one. If the failure detector does not report failure, then the session can run to com-
pletion. Therefore the probability of any particular session failing is less than one, and the

probability of every sessionsfailing goesto zero asthe number of attemptsgoestoinfinity. O

Since every principal repeatedly attempts to perform anti-entropy with its neighbors, and re-
peated attempts will eventually succeed, it followsthat S, (¢, §) convergesto A,.(¢,) asé goesto
infinity. Since A,.(t,6) — T, thisimplies S,.(¢,6) — T.

63

5.2.3 Summary vector progress

Now that it has been shown that all principals will eventually perform anti-entropy with all their
neighbors, the proof turns to the role of the summary timestamp vector in the TSAE protocol.
The summary vector is only modified during successful anti-entropy sessions, and one value of
the vector (stored in localSummary in Figure 5.7) is associated with the session. These vectors
satisfy the requirements for a vector time measure as defined by Mattern [M attern88]. The happens-
before relation (or the equivalent happens-after relation) is defined between the timestamp vectors

associated with two sessionsto determine whether the sessions could be causally related:

Definition 5.8 (Happened before) A timestamp vector » is said to have happened before another

vector w, written v < w, iff Vi : v[i] < wli].

The fina step in showing that the anti-entropy algorithm makes progress is to show that any
given anti-entropy session will eventually happen before sessionsinvolving every principal. Theset
of principalsthat have participated in sessions causally later than the session in question is defined

as

Definition 5.9 If a successful anti-entropy session begins at time #p at principal pg, the set
V(po, to,) isthe set of principals at time ¢o + ¢ that have performed a successful anti-entropy

session that causally follows the anti-entropy session performed by pg at ¢g.

In each of these anti-entropy sessions, summary,(po) > o Since the session happened-after the

session initiated at timetg.

Lemma 5.10 (Diffusion) Asé — oo, V(po, to, ¢) converges to the set of members M .1

Proof: Obviously, po € V(po,to0,6) for any 6 > 0. Another principal p, € V(po,?o, 6,)
if and only if it has performed anti-entropy with some predecessor principa that was in

V at an earlier time. Formally, there must be another principal p,—1 € V(po,to,6,—1) &

LIt isinstructive to compare this definition and proof of diffusion to that used by Cristian [Cristian86, Cristian90] in
his work on atomic broadcast.

64

0p—1 < b, such that (p,—1,pn) € Sae(t + 6,1, 6, — 6,-1). The predecessor principal
Pn—1 Can be equal to pg. Since the communication topology graph G'r is connected, it
is possible to construct at least one sequence of principals (po, p1, - - -, Pr—1, Pn) tO every
principa p,. Another way of stating this property isthat a spanning tree rooted at pg can
be constructed on the logical topology graph. Each pair (p;_1, p;) will eventualy appesr
(in order) in S,.(t0,to + &) as § increases, making each p; € V(po, to,) and eventually

pn € V(po,to,¢). ThusV(po,to,6) — M asé — oo. O

Note that anti-entropy sessions between principals p,,—1 and p,, update summary,,_1(po) and
summary, (po) to be greater than or equal to 7.

Since the TSAE protocol is eventually performed at every principal, it is easy to show that
messages are delivered to every principal. Consider a message sent by principa p at timet. This
event either occurs after some preceding anti-entropy session, or after the principal joinsthe group

if it has not yet performed anti-entropy, and it occurs before the next anti-entropy session.

Definition 5.11 The timestamp vector prev_,, the previous summary vector at principal p at timet,

Pt
is the summary timestamp vector summary,, produced by the anti-entropy algorithmwith the latest
value summary,(p) < t. Thisvector is associated with the previous session. Similarly the next
summary vector, next, ¢, is the copy of summary,, with the least summary, (p) > t. This vector is

associated with the next session.

Recall that there is an upper bound on the period between anti-entropy sessions at principals,
so every event, such as sending a message, will have well-defined prev,, and next, vectors. Recall
also that al events at a principal are associated with unique timestamps, so there can never be an
anti-entropy event with the same timestamp as a message.

The principal iscertain to have acopy of the message when the next anti-entropy session occurs,
evenif there have been failuressinceit wassent. Thestateof theprincipal at theend of the preceding

session, including the message, will have been preserved on stable storage.

Theorem 5.12 If a message is sent at principal pg at time ¢, every principal eventually receives a

copy of the message.

65

Proof: Initially, the message has only been received by the principa pg that sent it. The
message has timestamp = = clock(po,). At the beginning of the next anti-entropy session
between po and some other principal p1, summary;(po) < prevg,(po) < 7, since the latest
clock valuethat any other principal could havefor principal pgisthat inthe previoussummary
vector prevy,. This relation implies that the message will be sent from po to p; during
the anti-entropy session. At the end of the session, summaryg(po) = summary,(po) =

nexto +(po) > 7.

Consider an anti-entropy session at time t,,, between principal p,_1, which has aready
performed an anti-entropy session that causally follows the message and has therefore
received a copy, and principa p,,, which has not yet done so. Since p,,_1 has performed
a causally-related anti-entropy session, summary,,_1(po) > nexto(po) > 7. Since p,, has
not, summary, (po) < Prevg,(po) < 7. Since summary, 1(po) > 7 > summary, (po).
the anti-entropy protocol will transmit a copy of the message to p,, during the anti-entropy
session.

By Lemmab.10, every principal will eventually perform an anti-entropy sessionthat causally
follows nextp . In each of these sessions, the message will be transmitted to the principal.

Thus the message will eventually spread to every principal. O

One side-effect of this protocol is that every principa will receive each message exactly once.
The summary vector entry for pg a every principa will transition from a value less than 7 to one
greater than T at most once.

Note that the use of an unreliable multicast protocol in combination with TSAE does not
invalidate this proof, since the proof relies solely on timestamps recorded during anti-entropy
sessions and the existence of messages in the log. However, this can cause a principal to receive a

message more than once. Section 5.4.3 discusses optimizationsfor this case.

66

Purgelog()
{

msgList messages;
timestamp minAck;

minAck = ack.minElement();

msgList = log.listOlder(minAck);

for (principalld, timestamp, message, delivered) in messages:
if (delivered)

log.remove(pid, timestamp, message);

FIGURE 5.9: A function to purge messages from the message 1og.

5.3 Purgingthe message log

The message log must be periodically purged so that it does not grow without bound. Even if
there is no log, as in applications that work directly from an application database (Section 3.3.1),
unneeded death certificates must be purged. Message purging iscorrect if it does not interfere with
message propagation, and if every messageis eventually purged.

Whether a message log is used or not, a message or death certificate can safely be removed
when every member principal hasreceived it. This condition can be detected when the messageis
earlier than al events in the acknowledgment timestamp vector. Figure 5.9 shows show this could
be implemented.

The acknowledgment vector ack, maintained at principa p is updated during every successful
anti-entropy session. In each session, p acknowledges that it has received a set of messages by
setting the acknowledgment timestamp for itself, ack,(p). The minimum timestamp in summary,,
acknowledges every message with a lesser timestamp. As a consequence of Lemma5.10, as long
as every principal regularly performs anti-entropy sessions, every timestamp in every summary
vector will eventually pass the timestamp for a given message m. Every principal will eventually
acknowledge that it received m when it sets its acknowledgment timestamp to a value greater

than the timestamp on m. Just as with messages, this acknowledgment (or possibly a later one)

67

will eventualy propagate to every other principal, and every principal will learn that m has been
received and acknowledged everywhere.

After amessage m has been acknowledged everywhere, no principal can have yet to receive m,
and soitsdeletion will not affect message receipt. Since every messageiseventually acknowledged,
every message will eventually be purged.

When thelogical communication topology of the network isnot complete, that is, if G ¢ C'F1,
then there may be the possibility of purging log entries early at some principals. A message sent
a timet can safely be purged at principal p if al the neighbor principals of p have acknowledged
messages up to and including ¢. Thisis especially advantageous in systemswhere many principals
havefew neighbors, such asrings, trees, meshes, and lattices. In thelnternet, it meansthat principals
on closed subnets need only wait for each other and gateway principals, and not for principals on

other parts of the Internet.

5.4 Extensions

The basic timestamped anti-entropy protocol can be extended in several ways. There are many
ways that a principal can select a partner for anti-entropy sessions; TSAE can be combined with
unreliable multicast; there are techniques to improve perf ormance after transient failures; and the

protocol can be modified to tolerate unsynchronized clocks and to reduce space requirements.

54.1 Selecting a session partner

There are several possible policiesfor selecting a partner for an anti-entropy session. Table 5.1 lists
eight of them. The proof in Section 5.2 only requires that every neighbor eventually be contacted
to ensure that messages are delivered reliably, and weaker constraints can work for some network
topologies.

The policiescan be divided into three classes: random, deterministic, and topological. Random
policies assign a probability to each neighbor, then randomly select a partner for each session. The
deterministic policies use afixed rule to determine the neighbor to select as partner, possibly using

some extra state such as a sequence counter. Topological policies organize the principal sinto some

68

TABLE 5.1: Partner selection policies.

Random policies:
Uniform Every neighbor principal has an equa probability of being ran-
domly selected.
Distance-biased Nearby neighbors have a greater probability than more distant
neighbors of being randomly selected.
Oldest-biased The probability of selecting a heighbor is proportional to the age
of itsentry inthe summary vector.

Deterministic policies:
Oldest-first Always selects the neighbor » with the oldest value summary(n).
Latin squares Buildsa deterministic schedul e guaranteed to propagate messages
in©(logn) rounds.

Topological policies:
Ring Organizes the principasinto aring.
Binary tree Principal sareorganizedinto abinary tree, and propagatemessages
randomly along the arcsin the tree.
Mesh Organi zesthe principal sintoatwo-dimensional rectangul ar mesh.

fixed graph structure such as a ring or a mesh, and propagate messages aong edges in the graph.
Chapter 7 examines the performance implications of different policies.

The uniform policy assigns every neighbor an equa probability of selection, and selects
randomly from them. Thisis a simple policy that meets the correctness requirement of contacting
every neighbor.

Uniform selection can lead to overloaded network linksin an internetwork where the physical
topology is less connected than the logical. Demers et a. compared uniform to distance-biased
selection for the Clearinghouse [Demers88]. Their study found that biasing partner selection by
distance could reduce traffic on critical intercontinental linksin the Xerox Corporate Internetwork
by more than an order of magnitude. Selection can also be biased by the cost of communication,
perhaps measured in terms of latency, or monetary cost of using a communication link.

Alon et al. [Alon87] proposed the latin square policy, which guarantees that a message is
received by al principals in O(logn) time (assuming no principal failure). A latin square is an
N x N matrix of N entries, whereevery row and columnincludesevery entry once. Thepolicy builds
a communication schedule by constructing a random latin square, where the columns in the matrix

are the schedules for each principal. A principal cycles through its schedule, contacting partners

69

in the order given, and skipping over itself. It is not evident how to take advantage of topological
informationin thisapproach. Itisaso not clear how to extend it for dynamically changing principal
groups without perform a consistent computation to build new schedules (Chapter 6), since each
principal must build and follow the same schedule for selecting partners.

The oldest-biased and oldest-fir st policies attempt to produce the same effect as latin squares
without computing a global schedule. Oldest-biased randomly selects a partner with probability
proportional to the age of its entry in the summary vector. Oldest-first always selects the oldest
entry, breaking ties by selecting the “closer” entry if it can be determined.

The topological policies, including ring, binary tree, and mesh, organize principals into a
regular graph. Messages are propagated along edges in the graph. A topological policy can work

well when its structure can be mapped onto the structure of the network.

5.4.2 Principal failureand volatile storage

Principalsfail temporarily. When they recover they must recover their state from stable storage. If
a principal takes any significant amount of time to repair and recover, it will likely be out of date
by the time recovery is complete. It would be appropriate for the principal to immediately perform
an anti-entropy session with another principal, to bring itself up to date. The process of purging
message logs will have been delayed at other principals while the principa was unavailable, and so
an immediate anti-entropy will update the recovering copy and allow other sites to begin purging
their logs.

The proofsin Section 5.2 rely on messages and summaries being maintained on stable storage.
If not implemented properly, using disk to approximate stable storage can be slow and can interfere
with other operations on the host. The usua Unix approach is to use delayed writeback to avoid
synchronous disk activity. Messages can belost if a host fails before these data are written to disk.
The analysisin Chapter 7 shows that the probability of this happening is negligiblefor well-written
systems. However, in practice the update rates of many wide-area systems will be small enough
that this problem is unimportant. Further, careful implementation can avoid most of the expense

anyway [Birrel187].

70

5.4.3 Combining anti-entropy with unreliable multicast

Timestamped anti-entropy can be combined with an unreliable multicast to spread information
rapidly. When aprincipal first sendsamessage, it can multicast it to other principals. Some of them
will not receive the multicast, either because the network did not deliver the message or because the
principa was temporarily unavailable. These principals will receive the message later when they
conduct an anti-entropy session with another site that has received the message. This can speed
dissemination when message order is not important.

The combination of unreliablemulticast and TSAE issomewhat likethe sel ectiveretransmission
technique used in network protocols that implement reliabl e streams [Tanenbaum81, Section 4.2]:
the TSAE protocol delivers messages that the receiver has missed. However, asthe TSAE protocol
was presented in Figure 5.7, aprincipa only considers summary vectors when deciding whether to
transmit a message to a partner, regardless of whether the partner has already received the message
by multicast. These duplicate transmissions are wasteful, and can be reduced by performing more
accurate checks before sending a message.

Recall that aprincipal has received every message with timestampsearlier than the correspond-
ing entry its summary vector. If TSAE isbeing used inisolation, it will have received no messages
timestamped later than the summary vector entry. However, a multicast can deliver amessage with
a later timestamp. Messages timestamped later that the summary vector have been delivered to a
principa early.

The problem of eliminating unnecessary retransmissions is to detect early messages. The
obviousway to detect these messages would be for each principal to transmit alist of theidentifiers
of the early messages it has received along with its summary vector at the beginning of an anti-
entropy session. However, in some applications the size of a message identifier may be a large
fraction of the average message size, so transmitting the li st would produce nearly as much network
traffic as simply transmitting the early messages. One technique that is both simple and more
efficient would be to exchange a checksum of all the early messages a principal hasreceived. Each
principal would first compute a checksum of its early messages, and send the checksum to its

partner along with a copy of its summary summary vector. After receiving the partner’s summary

71

class checksumVector {
set(partition, count, checksum) checksums;

// add a message to the checksum for one partition
addMessage(partition, message);

// determine whether the checksum for a partition is different from
// the checksum for that partition in another vector

Boolean different(partition, checksumVector);

FIGURE 5.10: The checksum vector datatype.

vector and checksum, the principal would compute a checksum for the messagesin itslog that are
timestamped | ater than the partner’s summary vector. If the received and computed checksums are
the same, no messages need to be send to the partner.

This approach works well only when the probability of missing a multicast message is low.
Even if the partner has missed only a single message, the principal will haveto send every message
that istimestamped later than the partner’s summary vector. The simple approach can be improved
by partitioning the messages, and computing checksums for each partition.

There are several waysto partition messages. One way isto apply aknown hash function to the
messagesto dividethem into afixed number of partitions. A simpler approach isto group messages
by their sender.

Once the messages have been partitioned, the participants in the anti-entropy session compute
and exchange a checksum vector (Figure 5.10) to summarize the early messages they havereceived.
The checksum vector is similar in structure to the summary vector, containing one checksum and a
count of messages for each partition.

The modified TSAE protocol for the originator is shown in Figure 5.11. The partner’s protocol
issimilar. The protocol has been augmented by adding steps to compute the checksum vectors and
exchange them with the partner principal. Before each messageis sent, the protocol checks whether

both principals have received the same set of messages. If so, thereis no need to send the message.

72

principalld partner;

timestampVector partnerSummary, partnerAck;
timestampVector localSummary, localAck;

checksumVector localCksum, partnerCksum, localPartnerCksum;
msgList messages;

partner = selectPartner();

// update local vectors and exchange them with partner
summary[thisPrincipal] = CurrentTimestamp();
localSummary = summary;

ack[thisPrincipal] = minElement(localSummary);
localAck = ack;

send(partner, “AE request”, localSummary, localAck);
receive(partner, partnerSummary, partnerAck);

// compute and exchange checksum vectors

messages = log.listNewer(localSummary);

for { pid, timestamp, message) in messages:
localCksum.addMessage(partition(message), message);

send(partner, localCksum);

receive(partner, partnerCksum);

// compute checksums on messages newer than partner’s

// summary vector.

messages = log.listNewer(partnerSummary);

for { pid, timestamp, message) in messages:
localPartnerCksum.addMessage(partition(message), message);

// exchange messages
for { pid, timestamp, message) in messages:
if (localPartnerCksum.different(partition(message),partnerCksum)) then
send(partner, pid, timestamp, message);
while (receive(partner, pid, timestamp, message)):
log.add(pid,timestamp, message);

// finish communication
send(partner, “Acknowledged”);
receive(partner, “Acknowledged”);

// update summaries and trigger the message ordering component
summary.updateMax(partnerSummary);
ack.updateMax(partnerAck);

DeliverMessages();

FIGURE 5.11: Originator’sprotocol for TSAE combined with unreliable multicast. Partitions early messages
using a partition function, and computes a checksum vector over the partitionsto avoid retransmitting

messages.

73

This mechanism does not completely eliminate duplicate transmissions, but it can significantly
reduce them. Consider a principal that sends and multicasts a number of new messages, then
is disconnected from the network before it can perform anti-entropy. No principal can advance
its summary timestamp vector to include the multicast messages because it cannot perform anti-
entropy with the sender, so they will always be eligible for exchange in the basic TSAE protocol.
The checksum method allows principals to detect that these messages need not be exchanged at the

cost of computing and exchanging the checksum vectors.

54.4 Anti-entropy with unsynchronized clocks

The TSAE protocol as presented requires loosely-synchronized clocks so that each principal can
acknowledge messages using a single timestamp (Figure 5.5). If clocks are not synchronized, the
clock at one principal may be much greater than the clock at another. If the minimum timestamp
were sel ected to summarize the messagesa principal has received, messages from the principal with
the fast clock might never be acknowledged.

A principal’s summary vector is a more general and exact measure of the messages that have
been received. If the entire summary vector isused as an acknowledgment, then clock values from
different hosts need never be compared.

To use summary vectors for acknowledgment, each principa must maintain atwo-dimensional
acknowledgment matrix of timestamps, as shown in Figure 5.12. The summary vector is part of the
acknowledgment matrix: the ith column in the matrix is the summary vector for the local principal
p;. Other columns are old copies of the summary vectors from other principals.

Theunsynchronized-clock version of the TSAE protocol islittledifferent from the synchronized-
clock version. During anti-entropy sessions, principals exchange the entire matrix and update the
entire matrix using an elementwise maximum at the end of a session.

The only other difference arises when the message ordering component is called upon to
determine whether amessage has been acknowledged by every principal. Consider a message sent
from principal p attimet. A principal ¢ knowsthat every other principal has observed the message

when every timestamp in the p row of the message vector at ¢ is greater than ¢.

74

Principal Principal Principal
A B C
A B C A B C A B C
12 3 3 3 3 3 3 3 3
2 2 2 2 11 6 2 6 6
4 1 2 1 2 2 2 2 8

FIGURE 5.12: Summary and acknowledgment data structuresfor TSAE for unsynchronized clocks. The dark
column isthe summary timestamp vector, while the other columns are snapshots of the summary vectors
from other principals.

The acknowledgment matrix requires ©(n?) space, which is not useful if the principa group
is to include thousands of members. The techniques in the next section can be used to reduce the
space requirement. In addition, the space can sometimes be dramatically reduced by noting that
there is no need to store a row of the acknowledgment matrix unless the principal associated with
the row has messages in the message log. If s principals are sending messages, the storage spaceis
then O(sn).

The unsynchronized-clocks TSAE protocol was devel oped independently by Agrawal and Mal-

pani [Agrawal91]. However, their work did not consider the effects of dynamic group membership.

5.5 Messageordering

The message ordering component ensures that messages are delivered from the message log to the
applicationin order (Section 3.4). It dso purgeslog entries, as discussed in Section 5.3. Both these
operations use the timestamps in the summary vector and on messages to compute the order.

Other distributed protocols that support strong message orderings, such as Psync (Section 4.6),
Lazy Replication (Section 4.9), or the Orcaunreliable multicast RTS (Section 4.3), append anumber
of timestampsto each message. The TSAE protocol reduces this overhead by transmitting messages

75

in batches, and appending some of the necessary temporal information (in the form of the summary
vector) to the entire batch, rather than to individual messages.

Section 3.4 listed five possible message orderings. A total, causal ordering ensures that every
principal receives every message in the same order, and that the order respects causality. A total,
noncausal ordering only ensures that every principal receives messagesin the same order. A causal
ordering ensures that a message that is causally dependent upon another message is not delivered
first, but allows messages that are unrelated to be delivered in any order. A FIFO ordering delivers
messages sent by each principal in the order they were sent, but makes no guarantees about the
interleaving of streams of messages from different principas. Finally, it is possibleto guarantee no
particular order.

It is trivial to construct a message ordering component that provides no ordering guarantees:
messages can simply be delivered when they are received.

Unordered delivery workswell when TSAE iscombined withan unreliable multicast. However,
the implementations for all the other orderings in this section rely on the reliability and batching
properties of TSAE, and therefore cannot make use of unreliable multicast.

A component that delivers messagesin aper-principal FIFO order isonly slightly moredifficult
than unordered delivery. At the end of every anti-entropy session, a principal has received a batch
of zero or more messages sent by another principal. Further, al the messages received in the
batch follow the messages in previous batches, precede all messagesin later batches, without gaps
anywhere in the sequence. To deliver messagesin FIFO order, therefore, the ordering component
only needs to sort messages in a batch by timestamp and deliver batches in the order they occur.
Figure 5.13 shows away to implement this.

Total, noncausal orders are only slightly more complex, as long as clocks are loosely synchro-
nized. Aswiththe FIFO ordering, messages are sorted and delivered in timestamp order. However,
it is necessary to delay delivery until the ordering component can be sure that no messages with
lesser timestampswill be received. No messages will be received with timestamps greater than the
minimum timestamp in the summary vector. The principalld is used to break ordering ties. The

function in Figure 5.14 presents this approach.

76

deliveredMessages: timestampVector;

DeliverMessages()

{
timestampVector localSummary;
principalld pid;
msgList messages;

localSummary = summary;
for each pid in group:
messages = log.listMsgs(pid,deliveredMessages(pid),localSummary(pid));
sort messages by timestamp;
for (pid, timestamp, message) in messages:
log.deliver(pid, timestamp);

deliveredMessages.updateMax(localSummary);
Purgelog();

FIGURE 5.13: Function to deliver messages in per-principa FIFO order. Each anti-entropy session produces
abatch of messages from each principal. They are arranged into a FIFO order by sorting by timestamp.

This ordering method is dightly biased, in that messages from principals with slow-running
clocks are delivered before messages from principals with faster-running clocks. Since clocks are
assumed to be loosely synchronized to within some ¢, this bias is limited. Further, if the time
between updatesis greater than ¢ the bias has no effect.

Thesimpletota order will not respect potential causal rel ations unlessthe timestamps appended
to each message already reflect causality. Since system clocks are unlikely to include causa
information, they can be augmented by maintaining alogical clock [Lamport78] at each principal.
A logical clock isacounter that isincremented every timeaprincipa sendsamessage or performs
an anti-entropy session. The counter is appended to every message or anti-entropy session. Every
time a counter value is received from another principal in a message or anti-entropy session, the
local counter isset to avaluelarger than the counter inthe message. Inthisway, if thereisapotentia
causal relation between two events, then the timestamp for one event will be greater than the other.

(Note that the converse is not true: a relation between two timestamps does not imply potential

77

lastTimestamp: timestamp;

DeliverMessages()
timestamp localTimestamp;
msgList messages;

localTimestamp = summary.minElement();
messages = log.listMsgs(ANY,lastTimestamp,local Timestamp);
sort messages by timestamp, and by pid within timestamp;
for (pid, timestamp, message) in messages:
log.deliver(pid, timestamp);

lastTimestamp = localTimestamp;
Purgelog();

FIGURE 5.14: Function to deliver messages in atotal order. No messages can be received with timestamps
less than the minimum entry in the summary vector, so any undelivered messages in the log timestamped
earlier than the minimum are delivered in timestamp order.

causality.) Theexistingtimestamp classiseasily extended to includealogica clock counter aswell
as a system clock sample. A total, causal ordering is obtained by sorting and delivering messages
inlogical clock order.

Causal, but not total, orderings are used when causal relations are important, and messages
should be delivered as early as possible. There is a simple implementation of this ordering that
requiresslight modificationsto theinterface to the DeliverMessages function and to the messagel og.
Theimplementationis only correct when TSAE isused in isolation, and not with an early-delivery
mechanism like an unreliable multicast.

Consider amessagebei ng transmitted during an anti-entropy session. Assumethat the originator
of the anti-entropy session is also the principal that sent the message to the group. During the anti-
entropy session, the originator will send to the partner every other message it has received; in
particular, it will send every message on which the messagein question could be causally dependent

that the partner has not yet received. Furthermore, the partner could not yet have received any

78

DeliverMessages(msgList messages)

{
sort messages by delivery timestamp;
for (pid, timestamp, delivery timestamp, message) in messages:
log.deliver(pid, timestamp);
Purgelog();
}

FIGURE 5.15: Function to deliver messages in a causal order. Thisimplementation relies on theway TSAE
delivers batches of messages. It requires that the message | og be modified to maintain two timestamps for
each message: one set by the message sender, and another set whenever the message is delivered. The
delivery timestamp is used to reconstruct causal relationshipswithin a batch of messages.

messages that are causally dependent upon the message, because it would aready have received the
message when it received the dependent message.

This property can be exploited to ensure that messages are delivered in acausal order. Batches
can be delivered upon receipt, because there isno need to wait for messages on which the messages
in the batch could depend. However, the partner must deliver messages in a way that respects
causality within the batch.

Figure 5.15 shows how this can be done. It requires two modifications to the system as it
has been defined: messages must be timestamped twice, once by the sender and once when they
are delivered, and the anti-entropy session must pass a list of the messages in each batch to the
DeliverMessages function. When amessageisdelivered from the messagelogto the application, the
ordering component must timestamp it. When the message is sent to the partner in an anti-entropy
session, the delivery timestamp istransmitted aswell. The partner then uses the delivery timestamp
to order the messages in the batch so that messages are delivered after the ones on which they are
dependent. The partner will overwritethelocal delivery timestamp on the message when it does so.

The Lazy Replication system, which uses a mechanism similar to TSAE, alowsapplicationsto
specify external causal consistency constraints. That is, applications can specify causal constraints

created using some system other than the group. Applicationscan present atimestamp vector along

79

with messages, where the vector summarizes the messages that must be delivered first. Thisvector
could potentialy include timestamps from principal s outside the group.

The Psync protocol can take advantage of commutativity between different kinds of messages.
The message ordering component must be provided with commutative information to be able to

make this possible.

5.6 Summary

This chapter has introduced complementary implementations of the message delivery and message
ordering components. Themessagedelivery component usesthetimestamped anti-entropy protocol,
which provides reliable, eventual delivery. Several message ordering implementationswere listed,
which provide a range of ordering possibilities. Together they provide weak-consistency group
communication.

The timestamped anti-entropy (TSAE) protocol performs periodic exchanges of messages be-
tween pairs of principas, called anti-entropy sessions. The sessions deliver batches of messages
so that each batch immediately follows any earlier batches the principal has received, and so that
there are never “gaps’ in the message sequence. This property can be exploited by build simple
mechanisms to summarize the messages that a principal has received and to propagate message
acknowledgments throughout the group.

A reliable, eventual message delivery protocol is correct if every principa eventually receives a
copy of every message sent to the group. The TSAE protocol has been proven to meet thiscriterion,
even when the underlying network is not a completely-connected graph. Furthermore, there is a
simple agorithm for purging messages from the message log based on acknowledgments that does
not interfere with message propagation.

The basic TSAE protocol can be customized in severa ways. There are severa policies that
can be used to select a partner for anti-entropy sessions. Anti-entropy can be combined with an
unreliable multicast that will delivery messages more rapidly than TSAE will propagate them.
Finally, there is a generaized version of the TSAE protocol that work when clocks are not loosely

synchronized, though at the expense of extra state at each principal.

80

Themessageordering component can beimplemented using one of several a gorithms, providing
ordering guarantees ranging from total, causal orders to no ordering. Most of the implementations
are very simple, using timestamp information in messages and the batching behavior of TSAE
to advantage. A causa non-total ordering is slightly more complex, but much simpler and more

efficient than other systemsthat must attach complex causal information to each message.

81

Chapter 6
Group membership

A group membership mechanism is the final component in a group communication system. This
mechanism allows principals to join and leave a group dynamically. For example, consider a
replication service in which each data item is to be stored at some number of replicas. If that
number increases or some of the replicas are removed from service, other replicas will need to join
the group dynamically in order to maintain the required resilience.

Every principa in the group maintains a view of the membership. This view is the set of
principas it believes are in the group. A member will always have itself in its view. The view
may also contain status information and timestamps to help coordinate updates to the set. The
message delivery component usesthe view to identify what principal s should receive messages, and
someimplementationsof the message ordering component use group i nformation when determining
whether a message is deliverable or not.

| have developed a new weskly consistent group membership mechanism. The mechanism
allowstemporary inconsistenciesin the view each principal maintains of the group, in exchange for
low communication overhead and fault tolerance. The mechanism only alows a principal to be a
member of one group at atime.

A group comes into existence when the first member initializesit, and ceases to exist when the
last member leaves. Each group has a unique identity, so every newly-initialized group is distinct
from al other groups, past or present. A principal becomes a member by executing ajoin protocol
with one or more group members. Those members, which sponsor the new principal, provide it
with acopy of the application-maintained group state as well as a copy of the data structures used

by the group communication system. Principals stop being members by executing aleave protocol .

82

For completeness, | also consider how the group membership system can gject a member that has
failed, even though principal s have been assumed to be free of failure.

In contrast to theweak consi stency mechani sm presented in thischapter, other group membership
mechani smsensure greater consi stency of group views at the expense of | atency and communication
overhead. Both the ISIS system [Birman87, Birman91] and a group membership mechanism by
Cristian [Cristian89] are built ontop of atomic broadcast protocols, and hence provide each principal
with the same sequence of group views. Ricciardi [Ricciardi91] isinvestigating an aternativegroup
membership mechanism for Isis that does not use the underlying atomic broadcast. However, it
uses two- and three-phase commit protocol sto maintain consistent group views. The Arjunasystem
[Little90] maintainsalogically centralized group view viaatomic transactions.

This chapter begins by considering how dynamic principal group membership interacts with
message reliability. The reliability guarantee developed in Chapter 5 assumed static group mem-
bership. Thisis followed by definitions of correctness and fault tolerance for membership views.
Finally, the protocolsfor initializing, joining, and leaving agroup are presented, and they are shown

to maintain correct and fault-tolerant views.

6.1 Messagedelivery and dynamic member ship

The timestamped anti-entropy (TSAE) protocol presented in Chapter 5 provides reliable, eventua
message delivery for a static member principa population. A reliable delivery guarantee implies
that every principa eventually receives every message. Likewise, the TSAE protocol provides
mechanisms to detect when every member principal has acknowledged a message. These merit
special definition if the group membership is changing.

Consider a message sent at time ¢. As before, time means time as measured by an external
observer. The simplest definition of reliable delivery is that every principal that is a member at ¢
must receive a copy of the message. But what about principals that join after it is sent? And what
of principals that |eave before they can receive the message?

One answer to these questions is to order group operations a ong with application messages.

This was the approach taken in Isis [Birman87, Birman91l]. If messages are delivered in a total

83

order, then the set of member principalsiswell-defined and consistent at every principa whenever
amessage is delivered. Principal join and leave operations will be delayed while other messages
are being propagated. A principa that joins after a message is sent will be given a copy of the
group state that includes the effects of the message. A principa that tries to leave the group after a
message is sent will receive the message before it can finish leaving.

There are problems with this approach. The membership isonly well-defined if atotal message
ordering is applied. Isis, for example, enforces extra message ordering constraints when the group
membership changes. Applications that could otherwise use a weaker ordering will have to wait
unnecessarily for message delivery. In addition, it will cause group operationsto be delayed so they
can be ordered with respect to messages from other principal s. New principalswill haveto wait for
their request to be delivered before they can begin participating in the group.

The Refdbms and Tattler systems use a different approach. A message sent at time ¢ will
eventualy be received by every principal that is a member at ¢, even if the principal that sends
the message does not yet know the other principa hasjoined. Any principal that joins after ¢ will
either receive the message, or will receive a copy of the group state that reflects the contents of the
message. Thisdefinition allowsaprincipa to joinimmediately, though it requires somewhat longer
delay on leaving than the total -ordering approach.

Themessage delivery component records acknowledgments so that other components can detect
when a message has been delivered everywhere. Thisis used to determine when messages can be
purged from the log. If some principal purges a message too early, it will not be able to propagate
that message to another principal that has not yet received it. The method in Section 5.3 purges a
message when the acknowledgment timestamp for every principal in the view is later than that of

the message. The membership protocolsin Section 6.4 do not compromise this method.

6.2 Correctness

Asnoted earlier, other group membership protocol s provide consistent views of group membership;
that is, every group member observes changes to the membership in the same order. The weak

consistency protocols guarantee that al principals will eventually converge to a single consistent

84

view if all membership changes cease. More specifically, given thelast such changein membership
a time ¢, the probability that two principas, p and ¢, disagree on group membership at time ¢ + ¢
goesto zero as ¢ increases. The same condition holds with respect to each principal’s view of the
membership status of individual principals. To avoid pathologica situations, the set of principals
in the universeis assumed to befinite.

The view information for one group can be represented as a view relation V.= P x P. For
principalsp and ¢ € P, therewill beapair (p, ¢) intherelationif ¢ isin p'sview, and apair (¢, p) if
pising’sview. Therewill bean pair (p, p) for every principa that believesit is part of the group.
The set of such principalsisthe member set M.

Thestructure of theview relationis correct at any timeiff all principalscan eventually converge
to the same view. One principal can only propagate information to another when it has the other
principa initsview. Therefore, every member principa should bein thetransitive closure of every

other member’s view.

Definition 6.1 (View correctness) Let M be the set of principals p € P for which thereisa pair
(p,p) intheview relation V'; that is, the set of group members. Let V* be the transitive closure of

V. Viscorrect iff (Vp € M)(Vg € M)((p,q) € V*).

Every group operation must preserve the correctness of the view relation. As part of this,
whenever a principal joins or leaves the group, it must find other principals to act as its sponsor.
The sponsors are the source of the new member’s state, and membership information propagates

from the sponsors to other existing members.

6.3 Fault tolerance

The membership system should be able to withstand some number % of simultaneous permanent
principal failureswithout compromising the correctness of members' views. If principals never fail
permanently, thenthe TSAE delivery protocol coupled with the membership protocolsin Section 6.4

will work correctly if every principal obtains one sponsor when they join. However, if principals

85

can permanently fail then it is possibleto obtain anincorrect view relation. A view relation that can
withstand up to & simultaneous principal failures and still be correct is called k-resilient.

Notethat thisdefinition of resilienceisonly concerned with the correctness of group membership
information. Principal failures can cause a message to be lost if the message has not propagated to
other (non-faulty) principals. However, k-resilience implies that messages will propagate from a
non-faulty sender to other non-faulty principalsin the face of & failures.

The fault tolerance arguments in this chapter apply only to systems implemented on networks
with a completely connected logica topology. While the extension to non-completely connected
networks isimportant, it complicates the exposition of the protocols and does not contribute to the
basic analysis.

In the analyses that follow, it is sometimes useful to treat the view relation as a directed graph

K = (P, V) wherethe vertices are principals and the edges are pairsin the view relation.

Lemma 6.2 For any two membersm,m’ € M, acorrect view digraph A can be viewed as a flow
graphwith source m and sinkm’. Theview relation V' isk-resilientif, for all membersm, m’ € M,
the minimum vertex cut of the associated flow graph with source m and sink m/ in K is at least

k4 1.

Proof: If the minimum vertex cut of the flow graph from m to m/ isat least £ + 1, then up
to & vertices can be removed from A while maintaining a path from m to m’. Cal the set
of failed principals F'; |F| < k. Since thereis a path from m tom’ in K — F, thereisan
edge (m, m') in thetransitive closure of K — F'. Since this condition holds for al pairs of

members, the view relation is till correct after removing the failed principals #'. O

The membership protocols defined in the next section ensure that this condition holds by
constructing a (k + 2)-clique in the view graph around every member as it joins, and ensures that

every principal remains part of a (k + 2)-clique as principalsleave or fail.

86

6.4 Protocols

The group membership protocols allow for creating a new group, joining and leaving a group, and
handling member failure. Each protocol will be presented in this section, a ong with a discussion of
how these protocols provide k-resilience, and why they do not interfere with the reliable message
delivery.

There are four group protocols. Initialization creates a new group. Join adds a new principal
to agroup, and transfers a copy of the group state to the new principal. A member can voluntarily
leave. The group can gject afailed member, then recover from the failure.

The membership protocols preserve correctnessif they transform one correct view relation into

another. They are k-resilient if they transform one correct, k-resilient relation into another.

6.4.1 Datastructures

Each member principal maintainsa view of the group membership, defining the set of principalsit
believes are a part of the group. The view includes a set containing the identity of each member, its
status, and a timestamp on that status. Figure 6.1 shows the details. In a practical implementation
such as Refdbms, the membership view, summary vector, and acknowledgment vector can be stored
together.

The view data structure includes a groupld, which uniquely identifies the group. The details
of how the group identifier is constructed have been omitted to avoid cluttering the presentation.
Thetype need only support initialization and checking for equality with another group identifier. A
timestamp would be sufficient.

Updatesto the view are propagated using information in the view set, rather than by keeping an
explicit log of group membership changes. Thisimpliesthat death certificates must be maintained
after a principa has left the group (Section 3.3.1) until every principa has observed the change.
Death certificates are purged in just the same way as the message |og (Section 5.3).

Every principa in the view has a status. A principal that is part of the group will have status
member, while one that has voluntarily left the group will have status left. A failed principal is

marked as failed. The left and failed records are death certificates.

87

class groupld {
// an identification key
}

typedef enum { member, leaving, failed, pendingMember } memberStatus;

class memberEntry {
principalld pid;
memberStatus status;
timestamp t;

}

typedef set(memberEntry) memberSet;

class memberView {
groupld group;
memberSet members;

// maintain the view

add(principalld, memberStatus, timestamp);
update(principalld, memberStatus, timestamp);
delete(principalld);

merge(memberView);

// list entries

memberSet listLater(timestampVector);
memberSet listEarlier(timestamp);

}

memberView view:

FIGURE 6.1: The group membership view data structure.

The timestamp for principal p records the clock at p, clock(p, t) when the principal entered its
current state. For failed status the timestamp can either be infinity, or an approximation obtained
from the clock at another principal. The approximation must be distinct from and later than any

clock value from thefailed principal. Thiswill be taken up in more detail in Section 6.4.5.

88

InitializeView(groupld gid)

{
view.group = gid;
view.add(thisPrincipal,member,0);
summary.update(thisPrincipal,0);
ack.update(thisPrincipal,0);
inform|location service;

}

FIGURE 6.2: Initializing a new group. Code for creating the group identifier has been omitted for clarity.

6.4.2 Initializing a new group

A principal can create a new group by performing an initialization operation. Thishas two effects.
First, it creates a new group identity. Second, it sets up a membership view at the principal. The
view contains only the initializing principal, with status member at time zero (Figure 6.2).

Since there is only one principa in the group, there are no concerns about consistency or
failure resilience. Until & additiona members have joined the group, there is no possibility of
k-resilience. Thejoin protocol presented in the next section will form acomplete view graph when
the membershipissmall (i.e. n < k + 2).

A newly-created group will need to be registered with alocation service so that other principals
can locateit. Thejoin protocol expectsto obtain alist of possible group membersfrom the location

service. Thelocation service is discussed further in Chapter 8.

6.4.3 Groupjoin

A principal joins a group by finding one or more group members, then contacting them until it
has obtained enough sponsors among the current membership to ensure k-resilience. Anti-entropy
sessions will eventually propagate information about the new member throughout the group. As
noted in Chapter 2, this protocol assumes the existence of a fault-tolerant location service. The
location service must always provide at least one location that is a member. Principals leaving the

group will return forwarding addresses to other members.

89

To keep the view relation k-resilient, a principal joining the group must obtain & + 1 sponsors
before becoming a full-fledged group member. If thisisimpossible because the group istoo small,
the graph is kept as resilient as possible by using all members as sponsors. These sponsors put
the principa in their view, meeting the fault-tolerance criterion. The protocol followed by a new
principa is shown in Figure 6.3. The joining principal is considered to be a group member after
changing its status to member. The sponsors and new member propagate the updated membership
view to therest of the group in anti-entropy sessions.

The getFirstSponsor and getAdditionalSponsor routines are the heart of the protocol (Fig-
ure 6.4). In them, the principal contacts another principal that is possibly a member, and requests
that principal to sponsor it. If the principal is not a member or is leaving the group, it declines
sponsorship. Each sponsor must add the new principal to its view, then send a copy of the updated
view to the new member. The first sponsor must also send a copy of the application database, and
the messagelog, summary vector, and acknowledgment vector used by other group communication
components.

If a sponsor fails while the join protocol is being executed, one of two events can occur. The
new member may detect the failure while trying to interact with the failed member, in which case
the new member can simply try another sponsor. If the sponsor fails after the new member has
finished interacting with it, the failure can be ignored because at most 4 of the & + 1 sponsors can
fail.

The implementation in Figure 6.4 can be extended to allow a possible sponsor to return a
forwarding address for one or more members if it is not itself a member [Fowler85, Jul88]. This
allows the location service to maintain information that is less up-to-date, as long as the principals
that have left the group provide forwarding addresses for some period. This topic is taken up in

more detail in Chapter 8.
Theorem 6.3 Thejoin protocol preserves k-resiliencein the view relation.
Proof: The principa j isjoining a group with members M. Assumethat theset S C M is

the set of sponsorsit obtains; |S| = & 4+ 1. Denote the view graph before this protocol is

executed as K 'ps, which is assumed to be k-resilient.

90

JoinGroup(groupld gid, int nsponsors)

set(principalld) possibleMembers;
principalld possible;
int nfound = 0;

// Obtain a list of possible members from the location service.
// This list must contain at least one group member.
possibleMembers = LocationService.find(gid);

// Initialize the local view
view.group = gid;
view.add(thisPrincipal,pendingMember,0);

// Initialize message delivery data structures
summary.update(thisPrincipal,0);
ack.update(thisPrincipal,0);

// Get the first sponsor
do {
possible = possibleMembers.pickAndDeleteRandom();
if (getFirstSponsor(possible,gid))
nfound = 1;

+ while ((nfound == 0) && !possibleMembers.empty());

// get additional sponsors
while ((nfound < nsponsors) && !possibleMembers.empty()) {
possible = possibleMembers.pickAndDeleteRandom();
if (getAdditionalSponsor(possible,gid)) {
nfound = nfound+1;
}

1

view.update(thisPrincipal, member, CurrentTimestamp());
// optional: initiate anti-entropy session with some other member

FIGURE 6.3: Thejoin protocol followed by a new member. Error handling has been elided for clarity.

After executing this protocol, up to k failures occur intheset F' = {f1,..., fr}. Assume
that j ¢ F. Thefailed principals can be divided into two sets: the membersof Fg = F'N S

are sponsorsfor j, and those of £y = F'N (M — 5) are not.

For every member m that has not failed (m € M — F), thereisapath m, ..., m; inthe

view graph, where m, € 5, since |S| > |F| and the original view relation is k-resilient.

91

Bool
getFirstSponsor(principalld possible, groupld gid)

{

memberView view;

send(possible, “Request First Sponsorship”, gid);
receive(possible, status, otherView);
if (status == ACCEPTED) {
view.merge(otherView);
transfer group state;
transfer message log and summary vectors;
return True;
}else {
// request failed or was declined
return False;

FIGURE 6.4: Obtaining the first sponsor. Obtaining additional sponsorsis similar, except that the transfers of
application and group communication state do not occur.

Since thereisan edge (m, j) inthe new view graph, for every functioning member m: there

isapahm,...,mg,j.

The same argument holdsin reverse for paths from j to all other membersin M — F, so the

new view graph is correct after up to & failures. Thereforeitis k-resilient. O

In addition, the protocol forms an n-clique in the view graph when the number of members »
isnot morethan k + 2. Once a(k + 2)-cliqueisreached, k-resilience is established.

Members joining a group do not interfere with message delivery. A message sent at time ¢
by principal A isto be delivered to every principa that is a member at ¢. The proof of diffusion
(Lemma 5.10) can be extended by noting that the group membership at ¢ is a fixed finite set, and
by substituting the view relation for the logical communication topology in the proofs. A correct
view relation isa connected graph, so every principal that isa member at ¢ will eventually perform

an anti-entropy session that is causally dependent upon the message-sending event at ¢. If a B joins

92

after ¢, it will either receive the message or be given group state from asponsor that already received

the message.

6.4.4 Group leave

When amember leavesthe group, it must not cause the view relation to become lessthan k-resilient
or incorrect. This can happen when removing the member from the group causes the minimum
vertex-cut to drop below & + 1 vertices. The protocol must also ensure that all messages have been
propagated to other principals.

To aleviate this problem, a principal that wants to leave the group must do so in two steps.

1. The principa declares itsintent to leave by changing its status to left and performing anti-

entropy with one or more other members.

2. Theprincipal then waits until al principals that were group members at the timeit declared

itsintent have observed the status change. Then the member can destroy its state.

During thisdelay, the principal cannot send new messages, and so should not accept operations
from clients or sponsor other principals. However, it must maintain al its state and actively
participate in anti-entropy sessions with any other group member.

Thefirst step of the protocol must complete eventually, since aprincipal can changeitsown state
in minimal time and any principal can eventually complete an anti-entropy session with another.

For the second step to complete, every principal that is a member at the time of declaration ¢
must perform an anti-entropy session that causally follows the declaration event. Since the group
membership at ¢ isfixed and finite, and the view relation is correct, it followsfrom Lemma5.10 on
diffusion that every member will eventually perform such an anti-entropy session.

Further, if the group is k-resilient at ¢ and no more than & principals fail, the member that is
leaving can still communicate with the remaining group members to complete the protocol .

When a member A declares its intent to leave, another other member B may aready have
declared itsintent to leave. Principa B may collect itsacknowledgmentsand leave the group before

explicitly acknowledging the declaration from A. However, A will aso detect that B collected its

93

acknowledgments and will delete B from its view. A need then only wait for acknowledgments
from the other group members.

The delay in leaving ensures that the view relation cannot become vulnerable to % or fewer
failures, and that no messages sent from the principal will belost. This also ensuresthat theleaving
principa does not compromise the correctness condition for reliable message delivery. The delay
completeswhen all members have acknowledged that the principal has expressed itsintent to leave.
This requires a chain of anti-entropy events starting after time ¢ between it and all other members,
then a chain of anti-entropy sessions from every other member back to the leaving principal. The
return sessions ensure leaving principal will receive every message sent up to time ¢ along with
acknowledgement of its state change.

When the last principal leaves a group, the group ceases to exist. The location services should

be so informed.

Theorem 6.4 Theleaveprotocol preserves k-resilienceintheviewrelationaslongasatleast & + 1

principals remain in the group.

Proof: Consider any path mg1,...,m, in the view graph. Assume some subset
{l1,..., I} C {mg,...,m,_1} Of these have declared their intent to leave the group.
Without loss of generality, assumethat /1 isthefirst to find that its change has been observed
by all group members, and that this occurs at time ¢1. Attimet, > ¢1, the second principal
I> will find that it has met its condition and will cease to exist. Assume that the view graph
isk-resilient for ¢ < 1. Thenfor the period 1 < ¢ < 5 the part of the path my_1, 1, mg41
can be replaced by the sequence m_1, mx4+1 SiNCe my_1 must have every member in its

view that /; had. These steps can be repeated for each member asit leaves the group.

Sincethe graph was originaly k-resilient, after some k failuresthere must still be some path
ma, ..., m, between any two principals. This path will still exist after /1. ../, leave the

group. O

94

Aswith thejoin protocol, this protocol forms a n-clique when there are fewer than & + 1 group

members.

6.4.5 Failurerecovery

Principals can exhibit either temporary performance failures or permanent failures. Host rebooting,
transient load, and network router failure are typical temporary failures. A principa that has
permanently failed will never recover, or recovery will take so long that it might aswell beforever.
Extended repair, disaster, or unexpected removal from service are permanent failures.

The mechanism for detecting that a principa hasfailed is beyond the scope of this dissertation.
Standard probabilistic failure detection mechanisms, such as timeouts, do not apply to the long-
lived, crash-resilient principals used to build informati on services. For many applications, failure
will be sufficiently rare that human detection isfeasible.

The TSAE protocol already handles temporary failures. Soon after the principa recovers, it
will start to perform anti-entropy sessions. Between state that was saved on stable storage and the
information preserved at other principals, these operationswill catch it up to the current state of the
system.

Permanent failures are a different problem. Most seriously, they compromise reliable delivery
guarantees. Information that has not propagated out of the failed principal may be trapped there
and lost. Without remedy, thiswould be especially seriousfor group information, asit could create
an incorrect view relation. For example, a single principal that has just joined the group with one
sponsor can become isolated from the rest of the group if its sponsor fails.

Theonly way to solvethis problemisto ensurethat informati onisrecorded at several principals
before a group membership operation is complete. The group membership protocolsin this chapter
maintainak-resilient view relation, whereinformationisalwaysrecorded by at |east &+ 1 principals.

A principal that has failed must be gected from the group. Ejection proceeds as follows:
when principa p finds that principal f hasfailed, it marks f as status failed in its view, and sets
the timestamp of the status change to infinity. This will prevent a principa from recovering and

claiming to be a group member, then propagating messages that have been delivered and purged

95

by other members. Anti-entropy sessions then propagate the failure information to al other group
members. Principa f is gected, and the failure recovered from, when all group members have
observed and acknowledged itsfailure. Aswith group leaves, k-resilience is then restored.

When a principal must be gected from the group, the view relation can become less than k-
resilient, just as with group leaves. If the system were only to experience k failures over al time,
the loss of one failed principal would not cause aloss of resilience; only & — 1 failures would be
possibleand k& — 1 resilience still holds.

However, it is not possible to bound the number of failures along-lived system will incur. The
membership mechanismsin this chapter re-obtain k-resilience even though as many as & principals
have aready failed. Aslong asthe number of members has not dropped below & + 1, anti-entropy
among the members will eventualy restore k-resilience. In fact, anti-entropy will eventually
generate a complete graph among the membersif the membership is stable long enough.

This approach leaves the group vulnerable for the time it takes to restore k-resilience. The
length of time the group is vulnerable can be decreased by increasing the rate at which members

perform anti-entropy. The duration, and degree, of vulnerability is the subject of Section 7.3.

6.5 Summary

The group membership component can provide weak consistency semantics: all principals will
eventually see membership changes, but only one or a few see the change initially. The basic
timestamped anti-entropy message delivery protocol is correct when used with this group imple-
mentation, even when the group membership changes dynamically.

The group membership protocols provide for four operations: initiaization, join, leave, and
failure recovery. Each of these protocols proceeds immediately at only afew principas, providing
better scalability than existing consistent group membership protocols. The operations maintain a
view of group membership at each principal that records the members that principal knows about.
The views define a view relation, which is correct if its transitive closure is equal to the group

membership.

96

The protocol stake care to maintain acorrect view relation even inthe presence of afew failures.
In particular, the graph is said to be k-resilient if up to £ members can fail and not compromise
the graph. The join and leave protocols preserve k-resilience. These algorithms handle permanent
failure— asdistinguished from transient failure—thoughit reduces the resilience of the view relation

until it is restored by normal message propagation.

Refdbms uses these protocolsin its group membership mechanism.

97

Chapter 7
Perfor mance of weak-consistency
protocols

Thelast several chaptershave presented an architecturefor aweak consi stency group communication
system and protocolsfor constructing it. How well can these protocols be expected to work? How
do they compare to other approaches? In this chapter | investigate a number of performance
measures.

Several of the measures are related to the guarantees provided by the components. Message
reliability measures how often the message delivery component will fail to deliver a message
because principals are removed from service without notice, while message latency measures how
long the component takes to deliver a message. Membership resilience measures how well the
group join and leave protocol s preserve correctness and resilience.

Two additional measures are not related to any specific component. Message traffic indicates
how many messages applications built using the TSAE protocol will generate, and indirectly how
they interfere with other network activity, while consi stency measures how up-to-date each principal
can be expected to be.

I conclude the chapter with a brief comparison of the performance of the TSAE protocol with

the protocols surveyed in Chapter 4.

7.1 Messagereliability

The timestamped anti-entropy message delivery protocol provides reliable eventual delivery. How-

ever, reliable delivery does not guarantee that a message is delivered when its sender fails. For

98

the TSAE protocol to fail to deliver a message, every principa that has received a copy — which
includes the sender — must fail. This section examines how often this happens.

Delivery reliability can be measured by the probability that a message will be delivered to every
principa before al recipients can fail. The probability is affected by the rate at which anti-entropy
sessions propagate messages, and the rate at which principalsfail.

In earlier chapters, principalswere assumed not to fail. In practice, the only way aprincipa can
fail isin asudden, catastrophic remova from service —afire or hardware failure, for example. This
sort of failure is extremely rare for systemson the Internet. The analysisin this section, however,

explores awide range of failure rates.

7.1.1 Analytical modeling

M essagelosscan be model ed using astatetransition system likethat shownin Figure 7.1. Each state
islabeled with apair (m, f), where m isthe number of functioning principals that have observed a
message, and f isthe total number of functioning principals. The system startsin state (1, n), with
one principal having observed a message out of n possible (5 in the example). The system can then
either propagate the information using anti-entropy, in which case the system movesto state (2, n),
or aprincipa can be removed from service and the system movesinto state (0, » — 1). The message
has been lost when the system reaches a state (0,), and it is delivered when it reaches (z, z).

Anti-entropy and principal failure are treated as Poisson processes with rate A, and A ¢, because
Poisson processes are easy to model and anayze. Real systems often follow more complex
distributions, but this simplifying assumption is common practice.

Therate of useful anti-entropy sessions, where a principal that has received the message contacts
one that has not, is afunction of m, f, and the partner selection policy. In particular, f principals
will beinitiating anti-entropy sessions. If principals choose their partners randomly, each principal
that has observed the update has a chance (f — m)/(f — 1) of contacting a principal that has not
yet observed the update. Since anti-entropy is a Poisson process, the rate of useful anti-entropy

sessionsis

FIGURE 7.1: Model of message receipt and failurefor five principals. Each stateislabeled (m, f), where m
isthe number of functioning principa sthat have received the message, and f isthe total number of
functioning principals. Thismodel only includes permanent failure; transient failure and recovery would
add an additional dimension of states.

Sinceremoval from serviceisapermanent event, the statetransitiongraphisacyclic, with ©(n?)
states in the number of principals. The probability p; of reaching each state 7 can be computed
using a sequential walk of the states. The probability density functions p;(¢) of the time at which
the system enters each state can be derived analytically or numerically. The analytic solution for
pi(t) can befound by convolving the entry-time distribution p;(¢) for each predecessor state j with
the probability density of the time required for the transition from j to ¢. Alternately, the system

can be solved numerically using a simple Monte Carlo evaluation.

7.1.2 Results

Figures 7.2 and 7.3 show the probability of removal from serviceinterfering with message delivery
for different numbers of principals. The probability is afunction of p = A,/A¢, the ratio of the
anti-entropy rate to the permanent site failure rate. The two graphs are identical in content, but are
plotted using different vertical scales to properly show the behavior for both small and large values
of p.

Internet sites generally are removed from service after several years of service, and then usually

with enough natice to run a leave protocol. The anti-entropy rate is therefore likely to be many

100

A
3 principals —
0.9+ N 10 principals ——-—
Tl 100 principals - - - -
084 SN 1000 principals -------
\\ ‘
0.7 N
\
8 NS
o 0.6 \
= A
o A
> !
£ 05- ke
3
S 04 4
& ’\
0.3 ‘\\\
\
\
0.2 \
\\\
0.1
O T T T T 1
0.1 1 10 100 1000 10000

Relative propagation rate

FIGURE 7.2: Probability of failing to deliver amessage to all sites (linear vertical scale). The relative
propagation rate p istheratio of the anti-entropy rate A, to the permanent sitefailurerate Ay . The linear
scale emphasi zes the effect of the number of principalsfor small values of p.

1 oo ‘\—: .
T 3principas ——
> 10 principals ——-—
A 100 principals - - - -
0.1 1000 principals -------
A
o 0.014
ko]
2
g
<) 0.001 4
a
0.0001
1le-05 T T T T 1
0.1 1 10 100 1000 10000

Relative propagation rate

FIGURE 7.3: Probability of failing to deliver a message to all sites (logarithmic vertical scale). The
logarithmic scale emphasi zes the effect of large values of p: the probability decreases as p increases.

101

thousands of times higher than the permanent failure rate. As a result, there will be almost no

messages lost because of removal from service.

7.1.3 Volatilestorage

Some implementations may buffer messages in volatile storage before copying them to the stable
message log. This is the default behavior of several operating systems, including the Unix file
system. These implementations will lose the information in volatile storage when a principal
temporarily fails and recovers.

Volatile storage complicatesthe state transition model . States must be labeled with four values:
the number of functioning principalsthat have not observed amessage, the number that have written
it to volatile store, the number that have written it to disk, and the number that have temporarily
failed. The state transitions are complex and the solution is impractical for realistic numbers of
principals.

However, the effect of volatile storage can be bounded by considering the probability that a
failure will occur while there are messages that have not been made stable. Assumethat temporary
failure is a Poisson process with rate A; and that volatile data is flushed to stable storage every s

time units. The probability that a failure occurs before writeback is

— 25N 52/\152 — 28\ + 2

P= 2512

For atypical valueof s = 30 secondsand 1/ \; = 15 days, p isso closeto zero asto be negligible.

7.2 Messagelatency

The message component provideslatency guarantees aswell asreliability. The TSAE protocol only
guarantees eventual delivery, but in practice messages propagate to every principal rapidly.
If information is propagated quickly, clients using different principals will not often observe

different information, and lossof an updatefrom sitefailurewill beunlikely. Thesize of themessage

102

log is related to this measure, since messages are removed from the log when acknowledgments

have been received from every principal.

7.2.1 Simulation modeling

| constructed adiscrete event simulation model of the timestamped anti-entropy protocol to measure
propagation latency. The latency simulator measured the time required for an update message,
entered at time zero, and its acknowledgments to propagate to al available principals. The time
required to send a message from one principa to another was assumed to be negligible compared
to the time between anti-entropy sessions. The simulator could be parameterized to use different
partner sel ection policiesand numbersof sites. Thesimulator wasrun until either the 95% confidence
intervals were less than 5%, or 10000 updates had been processed. In practice 95% confidence
intervals were generally between 1 and 2%.

The simulation modeled only the TSAE protocol, and did not consider the effect of combining
TSAE with abest-effort multicast. Thereforetheresultsin thissection represent worst-cast behavior

that would be improved if a multicast were added.

7.2.2 Realts

Figure 7.4 shows the cumulative probability over time that a message has been received by all
principals for varying numbers of principals. Time is measured as multiples of the mean interva
at which principalsinitiate anti-entropy events. The simulationsin this graph use uniform partner
selection. The time required to propagate a message appears to scale well with the number of sites.

The time required to propagate message acknowledgments everywhere is aso an important
measure, because it determines how quickly messages can be purged from the message log. Fig-
ure 7.5 shows the latency required from the time a message is sent to the time acknowledgments
arereceived by every principa from every principal. Once again the time required appears to scale
well.

Thepartner selection policy a so affects the speed of message propagation. Figure 7.6 showsthe

mean time required to propagate a message to every principal for several policies as the number of

103

2

=

Q

[=)

o

2

8

£

]

O
5 principals —
10 principals ——-—
20 principals ----
40 principals -------
80 principals —-—

160 principals — - -

8 10 12
Time (multiples of mean anti-entropy time)

FIGURE 7.4: Cumulative probability distributionfor propagating a message to all principals. Measured for
uniform partner selection.

15 e e e
p ST
/ .
0.94 '/' K
/ ’/
0.8 / I
/ /
s>, 0.7 ,/‘ I
= i I
€ 06 / /
3 J
S} | I
s | i ;
g 0 oy
5 j |
c_é 0.4 1 / !
> /' ‘/
© 03 i / -
| | 5 principals ——
0.2 / 10 principals ——-—
' : : 20 principals -- - -
! ! 40 principals -
0.1 ! ! 80 principals — —
, /,/ Y 160 principals —- -
0 T T — /I ""I = T T 1

o 2 4 6 8 10 12 14 16 18 20
Time (multiples of mean anti-entropy time)

FIGURE 7.5: Cumulative probability distributionfor receiving an acknowledgment from all principals.
Measured for uniform partner selection.

104

1004
Ring —-——

Binary tree —+ -
Mesh -&--

Uniform ->----

Latin squares —- —
Distance-biased —* —
Oldest-biased -+ --
Oldest-first -+- -

10

Mean time

5 10 100 160
Number of principals

FIGURE 7.6: Effect of partner selection policy on scaling of propagation time.

sitesincreases. The uniform, latin squares, and distance-biased policiesgive essentially identical
performance. Age-biased appears to provide slightly better performance, which would appear
to contradict the claim by Alon that the latin squares policy is fastest [Alon87]. | believe the
difference arises from a slight difference in implementation: Alon’s implementation requires that
every principal propagate messagesin well-defined rounds, whilethissimulation allows propagation
to occur at random intervals. This may mitigate some of the benefit derived from Alon’s latin
squares policy. The policiesthat simulate afixed topology —ring, mesh, or binary tree —havethe
worst performance and scaling.

Theresultsfor acknowledgment time (Figure 7.7) are similar. Again unifor m, distance-biased,
and latin squares al have essentially the same latency, while age-biased performs slightly better.
The oldest-first policy performs best of al for small groups, and is about the same as the random
policiesfor large groups. The oldest-fir st policy was notably worse than these protocol sfor message
propagation latency. Again the fixed-topology policies perform worse than all the others.

These results indicate that simple random policies, such as uniform selection or age biasing,

perform quite well. Uniform partner selection was therefore selected for the Refdbms sy stem.

105

1000 -
Ring —-——

Binary tree —+ -
Mesh -=--

Uniform -x----

Latin squares —- —
Distance-biased —* —
Oldest-biased -o --
100 5 Oldest-first -+- -

Mean time

1 T T 1
5 10 100 160
Number of principals

FIGURE 7.7: Effect of partner selection policy on scaling of mean time to acknowledgment.

7.3 Group membership resilience

Thegroup membership component (Chapter 6) maintainsweakly cons stent views of themembership
a every principal. It provides protocols for principals to join and leave the group, and to gect a
principa that hasfailed. The views define a view relation between principals. Theview relationis
correct if its transitive closure is equa to the group membership. The view relation can be made
resilient to some number of failing principals by adjusting the number of sponsors a principal must
obtain upon joining the group.

Thelatency of themembership protocol sdepends on the message and acknowledgment latencies
investigated in the previous section. The join protocol executes immediately, and notice of a new
member is then propagated throughout the group. The leave and gject protocols require a message
to be disseminated to and acknowledged by the group.

There are two related measures that can be taken of the view relation. The in-degree of a
principal measures how many other principals have it in their view. The in-degree measures how

far knowledge of a principa’s membership has spread. The minimum vertex cut between two

106

principal s determines how many principals can fail before disconnecting them. This measures the
failure resilience of the view relation.

Both steady state and transient behavior can be determined for each measure. In practice
the steady-state behavior is not interesting because information spreads rapidly through a group.

Transient behavior is more interesting, showing how quickly members’ views converge.

7.3.1 Simulation modeling

A discrete-event simulation was used to model a system of »n principals. For each run of the
simulator, each of the »n principals joined the group, acquiring & randomly-sel ected sponsors during
the join protocol. Some number f of the principals, selected at random, then failed. The principals
then began conducting anti-entropy sessions, with sessions occurring as a Poisson process. The
sessions continued until all member views converged, or until the view relation became incorrect.

Two measures were collected at the end of each run: the mean time required for views to
converge, and the probability that they converged. Six additional measures were sampled during
the run: the average, minimum, and maximum in-degree of principas, and the average, minimum,
and maximum minimum vertex cut of the relation. The mean time between anti-entropy sessions
was used as the time base for all measurements.

Computing the minimum vertex cut proved to be an expensive operation. Finding the minimum
vertex cut between any two principals requires ©(n?) applications of a maximum flow agorithm,
which requires O(n?) time. The simulator required several hours on a SparcStation 2 to complete
3000 runs of a 25-principal system.

Thesimulator used the batch-means method [Jain91] to determine when the confidence interval
of the sampled mean time-to-convergence was less than 2%. Each batch consisted of 500 runs, and

at most 3000 batches were collected.

7.3.2 Reaults

M embership views converge rapidly, reaching nearly complete consistency after only afew rounds

of anti-entropy. Figure 7.8 showsthe time-varying measures collected for a system of 25 principals,

107

1- P S S e]
X
4 .
0.9 P x 7
. a
/7 , L .
/ . ,/
0.8 + */ N Koor
/ ’ '/
0.7 S S
% J/ K X,' 7/
a * ; ke
s 0.6 / K y
c / , / .
= / . ; /
S / . ‘
S 0.5 44/ J/ /x/
c / al X
) / , ’/
8 0.4+)/ J A
© / / B /
i A SR
034 o x o,
4 ’ K . .
|) S Maximum min-cut ——
0.24 ‘ oK Average in-degree
5 N agein-degree ———
, e Average min-cut - - -
0.1—[7 &;’/' Min_irr_lumin—d_egree e
ko Minimum min-cut — —
O T T T T T T 1
0 1 2 3 4 5 6 7

Time (multiples of mean anti-entropy time)

FIGURE 7.8: Progress of the minimum cut and in-degree measures in agroup of 25 principals, using one
sponsor, with no failures.

none of which failed, with principals obtaining one sponsor when joining. The minimum min-cut
(the lowest curve on the graph) reports the smallest fraction of the group that can fail to render the
view relation incorrect. Thisbeginsat 1/24th, sinceinitially some principa is known by only one
of the other 24 principals. Theresilience increases rapidly, and within six timeunitsthe views have
almost always converged.

The average and maximum min-cut curves in Figure 7.8 show the range of principals that can
fail before rendering the view relation incorrect. The expected resilience is always better than the
minimum. The graph also shows that the average and minimum in-degree increase quickly as the
group views converge.

Figure 7.9 shows how using two sponsors and one failed principal affect the measures. The
views converge slightly faster than in the previousfigure, partly because there are only 24 principals
left in the group, but more because each new member was known by more members at the start.

The number of sponsors has a significant effect on the resilience and speed of convergence.

Figure 7.10 shows the minimum resilience (min-cut) for a group of 25 principas, varying the

108

(2]
©
o
G
£
s
5 .
5 d L
S oad - A
g)/ i
LL) A
0.2 ,>§"/ Maximum min-cut ——
' 2 Average in-degree ——
e Averagemin-cut -= - -
014 = Minimum in-degree -x----
T Minimum min-cut — —
0 T T T T T . ,
0 1 2 3 4 5 6 7

Time (multiples of mean anti-entropy time)

FIGURE 7.9: Progress of the minimum cut and in-degree measures in agroup of 25 principals, using two
sponsors, with one initia failure.

Fraction of principals

SOl S 10 sponsors —o—
02_/,’ <« / 5 sponsors —+ —
10 : 4 sponsors -= - -

e o« 3 sponsors -<----
01y -~ - 2 sponsors - —
T 1 sponsor — —

0 T T T T T T 1

0 1 2 3 4 5 6 7
Time (multiples of mean anti-entropy time)

FIGURE 7.10: Progress of the group membership resilience, with varying numbers of sponsors. Measured for
agroup of 25 principals. The minimum cut is reported as the fraction of the principalsthat must fail to
render the view relation incorrect.

109

0.6 1

10 sponsors ——
9 sponsors —+—
8 sponsors -=- -
7 SpONSOrs -----
6 sponsors —-—
5 sponsors — —
4 sponsors -o --
3 sponsors -+- -
2 sponsors -e--

1 sponsor —~<—

054

Fraction of principals

0.4 1

0.3 1

0.2

0 1 2 3 4 5 6 7
Time (multiples of mean anti-entropy time)

FIGURE 7.11: Progress of the average in-degree as anti-entropy propagates membership information.
Measured for a group of 25 principas. The in-degreeis measured as a fraction of the 24 principalsthat
could know about each principal.

number of sponsorsfrom oneto ten. The views converge much more rapidly as sponsors are added.
However, the benefit of adding sponsors decreases as they are added: using two sponsors instead
of one produces a much greater improvement in resilience than adding a third sponsor.

Figure 7.11 shows how the number of sponsors affects the in-degree. Again, adding sponsors
can significantly increase the fraction of the group that knows about each principal, and the greatest
increase is obtained between one and two sponsors. This measure shows that even though the
minimum resilience of the view relation may start low, the actua connectivity (as shown by the
average min-cut and in-degree) is dense from the start. The low resilience comes from a small
number of principals that are known only to a few others, while most of the rest of the group are
known by severa other members.

Figures 7.12 and 7.13 summarize the effect of the number of sponsors and number of failures
on thetime required for viewsto converge. Increasing the number of sponsors speeds convergence,
and views converge faster with fewer failures. Increasing the number of failures causes only adlight

increase in the mean time to convergence because the loss of information is offset by a decreasein

110

10 fail —o—
) ofal —+ -
\ 8fal -o--
4550 7fail <
6fail ——
5fail —x -
4fail -o--
3fail -+ -
2fail -e--
1fail ——

35 No fail —- -

30

25

Time (multiples of mean anti-entropy time)

e
O ox b xm + o

20

1 2 3 4 5 6 7 8
Number of sponsors

©
=
o

FIGURE 7.12: Mean timefor viewsto converge, varying number of sponsors. Measured for 25 principals, of
which between zero and ten fail. Note that the number of failures was not allowed to exceed the number of
sponsors, to avoid an incorrect view relation. The discrepancy between zero and one failures with one
sponsor arises because the single failure does not significantly affect the connectivity of the relation, but
decreases the number of principalsthat must reach consensus.

the number of principals. There appears to be a marked decrease when the number of failuresis

only one or two less than the number of sponsors.

111

354

25 principals ——
20 principals —+ -
17 principals -= - -
15 principals ->---
12 principals —- —
10 principals — —
9 principals -+ --
8 principals -+- -
7 principals -=--
6 principals ——

Time (multiples of mean anti-entropy time)

2 3
Number of failing principals

FIGURE 7.13: Mean time for viewsto converge, varying number of failing principals. Joining principals
obtai ned five sponsors. Asthe number of failures approaches the number of principas, the timeto
convergence decreases because the number of principalsthat much reach consensus becomes small.

112

7.4 Traffic

A group communication system must not overload the network on which it operates. This is
particularly important if the group is to scale to a large size. The traffic induced by a system, as
measured by the number of network packets that are sent and by the distance the packets traverse,
is the primary measure of how the system will affect the network.

Researchers at Xerox PARC found that the original version of the Clearinghouse system over-
loaded their internetwork [Demers88, Demers89]. The origina implementation used anti-entropy
sessionswith abest-effort multicast, and used auniform partner sel ection policy during anti-entropy.
A revisedimplementation reduced the network |oad by acombi nation of fixing implementation bugs,
investigating a distance-biased partner selection policy, and adding a rumor mongery propagation
method. The Clearinghouse protocolswere discussed in Section 4.10.

Network traffic ismeasured by the number of packets sent, and by how many network linksthey
must traverse. Thenumber of packetsisdetermined by thenumber of messages each principal sends,
their size, and how often principas perform anti-entropy. In the absence of principal or network
failures, the TSAE protocol ensures that every message is sent exactly once to each principal. The
number of links each packet must cross is determined by the topology of the network and by the
partner selection policy that principals use when performi ng anti-entropy.

Different network links can have different costs. For example, intercontinental links have long
latencies, while IP running over a local Ethernet usually delivers a packet in a few milliseconds.
Traffic measures and partner selection policies should account for this cost.

For this performance evaluation, | introduced two partner selection policiesin addition to those
discussed in Section 5.4.1. The cost-biased policies preferentially select low cost partners. Thisis
different from distance-biased selection when network links have different costs. The cost-biased
policy selects a principal with probability proportional to the inverse of the difference between its
cost and the highest cost inthegroup. The cost-squar ed-biased sel ectswith probability proportional

to the difference squared, increasing the probability that low-cost partners will be selected.

113

(@

FIGURE 7.14: The ring and backbone physical topologiessimulated for traffic analysis. (a) Principalsare
connected by aring. (b) Principals are organized into 5-cliques; one principal acts as a gateway onto a
backbone ring.

7.4.1 Simulation modeling

The system was modeled in a discrete-event simulation. Principalsinitiated anti-entropy sessions
according to a Poisson process. Each run of the simulation performed 1000 anti-entropy sessions,
collecting link traffic and cost statistics. At least 100 runs were performed, and they were repeated
either until 1000 runs completed or until a batch-means analysisindicated that the 95% confidence
interval width for each measure was less than 1% of the measured value. A complete set of runs
required between half an hour and six hours on a DECstation 5000/200, depending on the number
of principals and the partner selection policy.

The simulator programs modeled two different physical network topologies (Figure 7.14).
Neither topology corresponds to the real structure of the Internet. Instead, they were selected
as representative of topologies that can concentrate traffic onto a few links. The first topology
connects principalsin aring. Rings are smpleto model, and are the simplest structure that shows
how distance can affect traffic without creating the edge effects produced by linear networks. The
second topol ogy groups principal sinto 5-cliques, and connects the cliques through a backbonering.
This is similar to the structure of the Internet today: regions of high connectivity, with regions

weakly connected through a backbone network. Communication within a region is fast, while

114

1000 -
Uniform ——
Distance biased —+ —
Oldest biased -& - -
Latin squares -x----
Oldest first —- — .
- Ring — - 7
5 100+
o}
o
x
=
(&)
E 10
|_
&
14
10

Number of principals

FIGURE 7.15: Traffic per network link on aring network, varying the number of principals.

communi cation between regions can be expensive. Demers et al. noted that this kind of topology
was a problem for the original Clearinghouse protocols [Demers88].

Each simulator run was parameterized by the partner selection policy and the topology. The
binary tree and mesh partner selection policies were not tested because they were patently inappro-
priate on ring-like topologies. For the ring topology, the number of principals could be specified;
this ranged from ten to one thousand. For the backbone topology, the number of principals was
fixed at 30 (six 5-cliques) but the cost of the backbone links relative to the intra-clique cost could
be specified. This cost ranged from 1 through 160.

7.4.2 Resultsusingring topology

As expected, the amount of traffic scales with the number of principals (Figure 7.15). The
uniform, oldest-biased, and latin squares policies all produced the same amount of traffic, which
isnot surprising since they a so exhibited similar propagation delays (Figure 7.6). Distance biasing
produced some improvement, while the ring policy produced a constant traffic of one link per

anti-entropy session. | believe that the anomal ous result for the oldest-fir st policy isdue to aminor

115

implementation detail: when severa principals are equally old, the nearest one will be selected. |
suspect that when the group becomeslarge the policy often propagates amessage from one principal

toitsneighbor in a“wave’ of propagation, which would behave much like thering policy.

7.4.3 Resultsusing backbonetopology

The clique-and-backbone topology is more interesting than the simple ring because it provides a
more redlistic basis for comparing policies. The backbone links can have a different cost than the
intra-clique links, and the connectivity between principalsis more varied.

The cost-biased partner selection policies are appropriate for this topology. They are similar
to distance-biasing, except that the likelihood of selecting a principal as partner is proportional to
the difference between the minima communication cost and the cost of communicating with that
partner. The cost-squared-biased policy sets the likelihood to be proportional to the difference
squared, favoring nearby sites. The advantage of these policies is that they are not based on an
arbitrary topology, but rather upon observabl e performance measures. This makesthem appropriate
for usein awide-area internetwork where topological information islikely to be unavailable.

Thering and distance-biased polices had to be mapped onto the backbone topology. Principas
were assigned an index, starting with zero at the gateway of one clique. The other four principals
in the clique where numbered one through four, the gateway of the next clique clockwise around
the ring was numbered five, and so on. The ring policy used thisordering for itslogical ring, while
the distance-biased policy used the difference between indexes asits “distance’.

Figure 7.16 shows the average cost of the links traversed by an anti-entropy session. Ason a
simplering, theuniform, oldest-biased, oldest-fir st, and latin squares policiesall performed about
the same, while distance-biasing improves performance somewhat. The ring policy is somewhat
better than all of these, though it scales in about the same way. The cost-biasing protocols produce
somewhat moretraffic when the backbonecost islow, but scal e better asthe backbone cost increases.

The final two figures in this section, Figures 7.17 and 7.18, show how the anti-entropy traffic
is divided between the cliques and the backbone. In Figure 7.17 the cost-biasing policies decrease

the traffic per link, approaching one as the cost of the backbone increases. The other policies do

116

300+

Uniform —— ;
Distance biased — - P
Cost biased -=- - e
1004 Cost squared biased -+ v
Oldest biased —- — 7
Latin squares — — rd
Oldest first - -- 7
Ring -+- - 7 -

Distance per session

1 10 100 160
Cost of ring links

FIGURE 7.16: Effect of partner selection policy on the average number of network linksused in an
anti-entropy session. Measured on aring of six 5-cliques. The cost of the backbone ring linksvaried from 1
to 160.

3.5+

Uniform ——
Distance biased — -
Cost biased -=- -

2NN Cost squared biased ->---
2 Oldest biased - —
=K Latin squares — —
i Oldest first - --
Ring -+- -

Traffic per link per session

Cost of ring links

FIGURE 7.17: Effect of partner selection policy on the mean traffic per link, for all links. The cost of the
backbone ring links varied from 1 to 160. Only the cost-biased policies adapt to the cost of backbone links.

117

3-
T T T T T T T A T T T T T AT T
Tl
s =k
_O
g o
T B
oo} + * + . R . L .
o
£ 0.1+ e
o .
c
o
S _
2 x.
Qo
g Uniform —o—
o 0.014 Distance biased — -
B ' Cost biased -= - - x..
= Cost squared biased ->---
Oldest biased —- —
Latin squares — —
Oldest first - - <.
Ring -+- - .

0.001 , e .

! 10 100 160

Cost of ring links

FIGURE 7.18: Effect of partner selection policy on the mean traffic per backbone ring link.

not account for link cost, and the link traffic remains constant as link cost changes. Figure 7.18
shows that the cost decrease is achieved by concentrating communication within a cliqgue. When
backbonelinks cost 80 timesas much as a cliquelink, the cost-biased policy only allows between 1
and 2% of all anti-entropy sessionsto cross between cliques. Fewer than 0.3% of all sessions cross
backbonelinkswhen cost-squared-biasingisused. Clearly cost-biasing ensuresthat communication

is predominantly local.

7.4.4 Traffic and propagation time

While one might want to reduce network traffic as much as possible, areduction in traffic generally
requires an increase in the timerequired to propagate amessage. Figure 7.19 showstherelationship
between the two. For a membership of 30 principals, the time required to propagate a message is
plotted as a function of the link traffic for each of severa partner selection protocols. All of the
policies excepting thering policy appear to fit on a smooth curve. Figure 7.20 showsthat a similar

result holdsfor the time required to propagate acknowledgments.

118

100+
Dist biased

Latin square

Age biased

Oldest

Uniform

Ring

Cost biased -+ --

+ Cost squared biased -

o X b X O+ 0

10

Mean propagation time

Mean link traffic

FIGURE 7.19: Scatterplot of the relationship between link traffic and propagation delay. Measured for 30
principals. Timeis measured in multiples of mean time between anti-entropy sessions. Every protocol
except cost-biased and cost-squared-biased is represented by asingle point. Multiple points are reported
for the cost-biased protocols, showing how they respond to different backbone link costs.

7.5 Consistency

Weak consistency protocols alow principals to contain out-of-date information. There are two
related measures of this effect — one concerning the propagation of a single message, the other
concerning the consistency of group state. The time required to propagate an message from one
principa to others shows how quickly information will be made available to clients; this was
investigated in Section 7.2. The likelihood that a principal is out-of-date with respect to other

principals, and the difference between them, aggregates the effects of severa messages.

7.5.1 Simulation modeling

A discrete event simul ation model ed the TSAE protocol to measure information age. The simulator
used five events: one each to start and stop the simulation, one to send a message, one to perform
anti-entropy, and one to sample the state of aprincipal. The simulationwas first allowed to run for

1000 time units so it would reach steady state, then measurements began. The simulation ended

119

1004
Dist biased

Latin square

+ Age biased
\ Oldest
40 Uniform
oq Ring
Cost biased -o --
Yo Cost squared biased -

o X b X O+ 0

10 1 T e o -6 -0

Mean time to acknowl edgment
4
y

Mean link traffic

FIGURE 7.20: Relationship between link traffic and time to acknowledgment. Measured for 30 principals.
Time is measured in multiples of mean time between anti-entropy session. See Figure 7.19 for more details.

at 50 000 time units. Read, write, and anti-entropy events were model ed as Poisson processes with
parameterizable rates. These rates were measured per principal. The simulator included different
partner selection protocols and an optional unreliable multicast on writes.

Thestate of aprincipa wasmodeled asasingledatavalue, and messagesweretreated as updates
to that value. In thisway the simulation results show the currency of each datavaluein aprincipal,
given therate at which the value is updated.

The simulator maintained two data structures for each principal: the anti-entropy summary
vector and a message number. 1t a'so maintained a globa message counter. When a message was
sent, the global counter was incremented and the sender’s message number was assigned that value.
If an unreliable multicast was being used, the message number would be copied to other principalsif
athedatagram wasreceived. Anti-entropy events propagated message numbers between principals,
aswell as updating the principals summary vectors.

Sampling events were used to collect measures of the expected age of data and the probability

of finding old data. A principal was selected at random, and the message number for that principal

120

was compared to the global counter. The difference showed how many messages the principal had

yet to receive.

75.2 Reaults

A system like Refdbms stores thousands of values in its group state, while the simulation results
concern a single data value. The results can be viewed in two ways. Each data value can be
considered separately, and the performance results considered in terms of the update rate per value.
Alternately, the the values can be considered collectively, and the resultsinterpreted in terms of the
overall update rate. In Refdbms the overall update rate will be thousands of times greater than the
rate per item.

The age of a principa’s state depends on the ratio of the anti-entropy rate to the update rate
for the state. Many wide-area services have extremely low update rates; some services write new
entries and never change them. A low update rate means that anti-entropy has a better chance
of propagating an update before another update enters the system. In the Domain Name Service
[Mockapetris87], a host name or address rarely changes more than once every few months. In
systems like Refdbms, new entries are added, corrected quickly, then remain stable. | expect the
update rate for most wide-area services to be about a thousand times lower than the anti-entropy
rate. Most of the graphs in this section were generated using a mean time-to-update of 1000
time units; the maximum anti-entropy rate investigated was only 200 times greater, giving a mean
time-to-anti-entropy of five. Thisimpliesthat all the results presented here are more pessimistic
than would actually be observed.

Figure 7.21 shows the likelihood of aprincipal holding an out-of-date value, while Figure 7.22
shows the expected age of that value. Clearly, adding an unreliable multicast on write significantly
improves both measures. The message success probability is the most important influence on
information age in large groups of principals. For small numbers of principals, increasing the
anti-entropy rate dramatically improves both the probability of getting up-to-date information and

the expected age.

121

1 - —- N K- — - — - — K — - — - — s — s — - — - — - K- — - — - — %
09{ T S D
X “““““
084
0.1fail —~—
o 074 0.3fa!I ——
% 0.5fal -&--
g 0.9fail
5 064 0.95 fail ——
o No multicast — —
S 05- [s oo o
§ 0.4 &
S
& 03 [PR S +
e
024
0.1
0 : . .
5 10 100 1000

Mean time to anti-entropy

FIGURE 7.21: Probability of getting old value as the per-principal anti-entropy rate varies, for 500 principals.
Mean time-to-write 1 000; uniform partner selection. Anti-entropy was combined with a best-effort
multicast. The different curves show the effect of the probability of multicast message failure.

Figures 7.23 and 7.24 show how consistency depends on the number of principals. For these
simulationsthe anti-entropy rate was fixed at 100 timesthat of writes. This value might be typical
for a Refdbms entry soon after it isentered, when updates are most likely. Later updateswill beless
frequent and the ratio will increase, improving the consistency. Once again an unreliable multicast
provides considerable improvement.

| dso investigated the effect of partner selection policy on information age, as shown in
Figure 7.25. Theresultsshow that expected ageisrelated to propagation time, sincethe policiesare
ranked in exactly the same order as in Figure 7.6, which shows the mean propagation time for the
different policies. Thetopologica policies (Ring, binary tree, and mesh) propagate more slowly,
and give a greater expected age, than other policies. The other policies are nearly equal, though

oldest-first has adlight advantage.

122

1000
0.1fail —-—
0.3fail —-
05fail -o-- o
0.9 fail -x--- -
1004 0.95fail -~ — o
Nomilticast —« - _x- "
/x/// $~~‘M>Akkkkrrrrk 77777)
& 103 - T e . |
g ST T
o
S -
t oo e o +
SR
0.1
0.01 . | I
| lo e 1000

Mean time to anti-entropy

FIGURE 7.22: Expected data age as anti-entropy rate varies, for 500 principals. Mean time-to-write 1 000;
uniform partner selection. Again, anti-entropy was combined with a best-effort multicast, for which the
message failurerate varied.

R il —
%,»*'/ B A —.—a
0.9 T T L)
%(' '/' e 7 olf I
K & >< 5 al ——
08+ v 0.3fal —+
ROl 0.5fail -=--
o 07 S 0.9fal -x--
=] RO 0.95fail ——
= 06+ ¥ No multicast — —
=) AR
2 ;s
o i oA
..? 05 /,/ ,//><"l /////Dii_/,,,_,>77—u
= S B
s -
ig 044 . y
=)’ //,E’
- 0.3 // =0 S 4
e e
024 e e
P ///*/
014 ////+///
O T T 1
5 10 100 500

Number of principals

FIGURE 7.23: Probability of getting old value as the number of principal s varies, with anti-entropy occurring
100 times as often as writes. Uniform partner sel ection, combined with best-effort multicast.

123

1004
0.1 fal —— T
0.3fal —+- T
0.5fal -=-- o

0.9fail - S

0.95fail — — x T e
104 No multicast — — PR U

Expected age
r

0.01 . T 1
5 10 100 500
Number of principals

FIGURE 7.24: Expected data age as the number of principalsvaries, with anti-entropy occurring 100 times as
often as writes. Uses uniform partner selection. Also showsthe effect of varying message failureratesin a
best-effort multicast.

1004

10

Expected age

. s Ring ——
/ ’ Binary tree —+-
Ay Mesh -=--
Pl Uniform ->---
A Latin squares — —
L 2 Distance-biased — —
Oldest-biased -« --
Oldest-first -+- -

5 10 100 1000
Mean time to anti-entropy

FIGURE 7.25: Effect of partner selection policy on expected data age. 160 principals, mean time-to-write
1000. No best-effort multicast was used for this graph.

124

7.6 Comparison

The preceding sections have presented an analysis of the performance of the timestamped anti-
entropy protocol. In this section I compare my framework, using timestamped anti-entropy, with

other systems.

7.6.1 Efficiency

Table 7.1 comparesthe amount of state and network traffic that TSAE and the surveyed systemswill
produce, along with the guarantees each can provide. Any protocol will require at least O(1) state
per message in addition to the message contents, assuming the message must be marked with the
sender’sidentity. Likewise, every principal must maintain alist of group members, so the minimum
state per principal is O(n). Each application-level message will induce some number of network
packets. At best one packet would be sent to each recipient. Hardware multicast can reduce this
traffic somewhat, but in a wide-area network it is unlikely that many of the principals would reside
on common networks.

Timestamped anti-entropy compares favorably with the other systems. It can produce total
or causal orders without either adding extra state per message or sending extra messages. The
approach of attaching causal information to batches appears to be a good idea.

Thecentralized systemsand consi stent replication al use aminimal amount of state per message
because messages are processed one-at-atime. They also produce low network traffic. The
drawback is that they must operate synchronously, which makes them infeasible for wide-area
networks.

The systems that provide interactive delivery all begin by sending an unreliable multicast that
is backed by areliable protocol. Most of them transmit extra information with each message so
that missing messages can be detected, and most require principals to periodically transmit null
messages if they have not generated any readl traffic.

Eventual delivery, however, appears to require much less state per message. Excepting Lazy
Replication, the eventual delivery systems attach O(1) state to each message. The anti-entropy

protocols require only a small amount of extra network traffic per message. The Lazy Replication

125

protocol can probably use some of the techniquesin TSAE to reduce its per-principal state and per-
message traffic, but it cannot reduce its per-message state because it guarantees causal consistency

with events outside the group.

7.6.2 Implementation effort

The implementation of TSAE, group communication, and message ordering in Refdbms can be
compared with the implementation of another system, such as Isis version 2.1. The differences
between the two are striking. | used lines of code as a simple complexity metric.

These measures must be used with caution. The comparison is not entirely fair, because the
Refdbms implementation is not a general-purpose toolkit. Isis is a more mature package than
Refdbms, having been in development for several years, while Refdbms is only in early testing.
The size of code and implementation effort should be amortized over the number of applications
that usethe code, in which case the complexity of interfacesisamore useful, though unquantifiable,
measure.

The Isis V2.1 toolkit is structured into four major components: two libraries that are linked
with user programs, and two programsthat provide communication services between hostsand fault
tolerance services. Thetoolkitimplementsthe ABCAST and CBCAST protocolsalready discussed
and several variations on them. It also providesa number of higher-level services, including failure
detection and recovery, threads, persistent storage, a primitive name service, and a number of
high-level distributed services.

Refdbms consists of several dozen programs, mostly concerned with user interfaces, the search
engine, and output formatting. For thisanalysis| have only considered those programsthat relate to
distributed operation, and | have removed parts of those programs that i mplement specific Refdbms
functions (such as constructing the indices).

Table 7.2 compares TSAE, as implemented in Refdbms, with Isis. TSAE appears to be of a
similar complexity to an Isis protocol, although the amount of comment linesin Refdbms (15%) is
much higher than in the Isis sources, and the Refdbms numbers include some application code as

well as “toolkit” code. However, TSAE uses only atotal of 2600 lines for communication, while

126

TABLE 7.1: Performance comparison of several group communication systems.

Guarantees State per Traffic per
System Delivery Order message principa message
Optimum — — 0(1) O(n) n
TSAE R.E any 0(1) O(n) O(n) + n/k[9]
k>0
Centralized AS total 0(1) 1 2n
Consistent AS total 0(1) O(n) O(n)[2]
replication
IssABCAST Al totd O(n) O(n) (14 1/k)(2n + 2¢n),
k> 11[6]
IsisCBCAST Al causa O(n) O(n) 2n + 2¢n
Psync Al causal O(n) O(n) n+ 2¢n
OrcaRTS[1] R, total O(n) O(n) n+ 2¢n
Rel. multicast R, ? ? O(n) 2n + 2¢n [9]
OSCAR R none, FIFO, 0(1) O(n) n 4 2¢n + 2n?/k,
or tota k> 11[6]
Lazy Replication RE causal [3] O(n) O(n?) O(n?)
Clearinghouse RE none 0(1) O(n) O(n) + 1/k [9]
anti-entropy
Rumor mongery UE none 0(1) O(n) large [4,5]

Abbreviations:

n Number of principals.
¢ Probability of message failurefor an unreliable multicast.
k Number of ordinary messages per control message or batch.
R Reliableddivery.
U Unreliableddivery.
S Synchronous delivery.
| Interactive delivery.
E Eventua delivery.

Notes:

[1] Orcaisrepresented by the implementation based on unreliable multicast.

[2] Traffic for consistent replication depends on the particular protocol chosen, how that protocol is
parameterized, and the ratio of read to write operations.

[3] Lazy replication can maintain causa relations generated outside the group.
[4] Dependingonthe stopping rulesused, rumor mongery can send amessage many timesto each principal .
[5] These systems can take advantage of network topology to reduce communication distance.

[6] Isis and OSCAR both use a coordinator. The coordinator sends control messages every & normal
messages on average.

127

TABLE 7.2: Implementation complexity of Isis compared with TSAE in Refdbms. Lines rounded to the
nearest hundred.

Isis TSAE/Refdbms
Component Subcomponent Lines Subcomponent Lines
Ordered messages ABCAST 700 Ordering 100
GBCAST 1000 Anti-entropy 1400
CBCAST 1100 Send message 100
2800 1600
Low-level communication 8500 1000
Groups 3400 General 500
Join 1400
Leave 200
3400 2100
Other Failure 1900
Threads 2100
Total size 52000 9200

Isis uses 11 300 because it implementsthree different protocols, and it uses a much more elaborate
infrastructure to implement them. Isis requires half again as much code to implement its groups,
though it provides functions, such as subsetting a group, that Refdbms does not.

The total size of the two packages is striking: Isis is more than five times larger than the
distributed portions of Refdbms. This suggests that an implementation tailored to application

requirements can be simpler and more efficient.

7.7 Summary

This chapter presented a number of performance evaluations of the components of the weak-
consistency group communication system, including network traffic, message latency, fault toler-
ance, and consistency.

TheTSAE messagedelivery protocol scaleswell tolarge groupsof principals. Thetimerequired
to propagate an update from one principal to all others increases as the log of the size of the group,
and the partner selection policy can be chosen to control network traffic as the membership grows.

Each principal need only store O(n) state in the group size.

128

Fault tolerance is the ability of a system to provide correct service even when some parts fail.
The TSAE protocol provides excellent fault tolerance by del aying communication until a principal
isavailable. Thisimpliesthat the message delivery component will not fail to deliver a messageto
the group unless the sender and several other principalsfail, and this was found to be an unlikely
event.

The negative aspect of weak consistency protocols is that principals will have out-of-date
information. Thisinvestigationfound that an unreliable multicast can mitigate most of thisproblem,
and that at reasonabl e propagation rates principalsare rarely more than afew updates behind. Many
applications, including name services and bibliographic databases, work well with this level of

inconsi stency.

129

Chapter 8
Multiple membership roles

Thegroup communi cation mechanisms presented i n thel ast several chaptersare correct and efficient,
and have been used to build the Refdbms system. Other features are needed to build a complete
wide-areainformation service. Inthischapter | discusshow the additional pieces can be constructed
from weak-consistency components.

Group membersand their clientsmay vary intheir roleswithi n an application, and consequently
vary in certain behaviors and privileges. For example, some principals may be restricted from
initiating certain operations on the group state. Some principaswill act as clients of the application.
Other principals may store only a subset of the group state. A location service is needed to allow
principalsto locate the group.

Consider an information service client. The client must be ableto find a group member in order
to provide service to a user. Thisis the job of the location service. If the client is running on a
disconnected mobile computer, it will not be able to contact the service unless a copy has already
been placed locally. When a mobile computer has disk space, techniques to store a subset of the
service database reduce storage requirements. Nearby principalsthat store a subset are useful even
when aclient is connected to the network, because communi cati on with these nearby principalswill

be faster than with distant authoritative principals.

8.1 Limiting write access

In Refdbms, not every principal is allowed to submit changes to the database. For example, the
UCSC Technical Reports database should only be updated by users at UCSC; other sites should

only read the database. This is implemented by giving members a privilege level of either full,

130

TABLE 8.1: Refdbms privilegelevels.

Leve Can sponsor Privilege

Full Full Can perform any operation, and can sponsor another principal
with any privilegelevel.

Read-write Read-only Can read and update the database, but can only sponsor a principal
with read-only privilege.

Read-only None Can only read the database; cannot sponsor another principal .

read-write, Or read-only. A member’s privileges are set when it joins the group, and are derived
from the privileges of its sponsors.

Table8.1 showsthe privilegelevelsused in Refdbms. Full and read-write members can perform
any operation on the database, while read-only members cannot update it. A principal obtainsits
privilegelevel from itsfirst sponsor. If that sponsor isafull member, the new member isalso afull
member; if it is a read-write member, the new member is read-only. Read-only principals cannot
serve as primary sponsors. (Thislast design decision was arbitrary, and will be revisited in future
versions of the system.)

A more general solution could use capabilities to define what privileges a principa has. For
example, the Amoeba distributed operating system uses encrypted capabilitiesthat can be managed
in user code [Mullender86, Tanenbaum86]. These capabilities include one bit for each kind of
operation that can be performed on the group state, allowing fine-grained privileges.

The Refdbms system has no safeguards to ensure that a principal does not incorrectly claim to
havegreater privilegethanit should. Authenticationand checking for correct behavior areimportant
problems, but current approaches are generaly centralized and will not work well for very large
systems. Section 9.5 discusses some possible approaches.

Multiple privilege levels can be used to reduce the amount of space required by the summary
timestamp vector. This vector only needs to include a timestamp for every principa that has
modified the group state, and so read-only members can be excluded from the vector. However,
read-only principals cannot be excluded from the acknowledgment vector, since they must receive

each message.

131

Client(groupld gid, request)
{

list(principal) possibleMembers;

// Obtain a list of possible members from the location service.
// This list must contain at least one group member.
possibleMembers = LocationService.find(gid);

// Order the members by distance
PerformanceService.order(possibleMembers, criterion);

// Try each possible member, starting with those nearby
for each (pid) in possibleMembers {

send(pid,request);

receive(pid, returnCode, results);

if (returnCode == SUCCESS)

return SUCCESS;

}

}

return FAILURE;

FIGURE 8.1: A skeleton client. The location service provides one or more possible members, and the
performance prediction service orders them from best to worst. The ordering can be based on severa
criteria, including message latency, available bandwidth, and reliability.

8.2 Clients

A client istransient, unlike principals. It requests that one operation be performed on the group
state, then exits. 1t does not become a part of the group, but instead sends its requests to a member.
Thisisunlikethe Isis system (Section 4.4), where clientsjoin agroup in aspecial role. A clientin
that system multicastsits requests to the non-clientsin the group, and receives one or more replies.

Figure 8.1 shows a skeleton of what a client must do. The location service provides the client
with the addresses of group members. As noted earlier, it must provide at least one address as
long as the group exists. The client orders the addresses using the performance prediction service
(Section 2.5) to determine which principals are nearby. It contacts the best available member to

perform the operation.

132

Refdbms includes clients to add, change, and delete references, to search the keyword index,
and to retrieve reference entries. These clients communicate with aloca group member through a
database residing on a common file system, typicaly alocal file system or one mounted from an
NFS server. This approach distributes searching to local workstations and eliminates the need for
alocation service. However, clients cannot use database replicas at other sitesif theloca copy is
unavailable. Thisis not a problem for Refdbms clients since it is unlikely that any workstations

will function unless the shared file system is available.

8.3 Storing a subset of group state

A properly-implemented group containing several memberswill provide ahighly reliable, scalable
service. With enough members, the network distance between clients and members should be small
on the average — perhaps on the same continent, or in the same region. However, mobile computers
require that group state be stored locally, and copies on a nearby server can improve performance
of workstation clients. Most of these systems, particularly mobile computers, will not have the disk
space to store the group state in its entirety. Instead, they can store a subset of it.

There are two ways the subset can be defined: either as an arbitrary set of state items, or as
al itemsthat satisfy a query. The former are called caches, and the latter are called slices. Some
principals may maintain a combination.

Cache principals maintain copies of recently-accessed state items. This can improve perfor-
mance if a user or organization repeatedly accesses a small set of items. In Refdbms, this might
happen whileauser iswriting apaper: the references cited i n the text would be retrieved repeatedly
as the paper was edited and reformated.

Slice principals prefetch items according to user-specified interests. Users specify a query, and
the slice principal maintains a copy of every item that matches the query. Alonso, Barbarg, and
GarciaMolina have researched similar issues for systems that maintain quasi-copies of a centra
database [Alonso90b]. They point out that slices are similar to materialized views in a relationa

database. Aswith database views, the itemsin a dlice are determined by evaluating an expression

133

that has the same form as a query on the group state. I1n the quasi-copy system, each slice also has
a coherency condition that specifies how far out of date theitemsin adlice can be.

Caches and slices differ in their handling of new state items: slice principals will store a copy
of anew itemif it matches some predicate, while cache principaswill not.

When a principal stores only part of the group state, it will not be able to answer every query.
Instead, some queries must be forwarded to some other principal. Asinthe Domain Name Service,
the forwarding can be recursive, where the principal forwards the query to another principal, or
iterative, where it informs the client of other principals that might answer the query. Recursive
forwarding makes for simple clients, but increases the dependence of clients on the correctness of
the members.

Refdbms does not currently implement caches or dlices.

8.3.1 Caches

A cache principal maintains a message log and summary and acknowledgment vectors, just as
ordinary membersdo. It periodically performs anti-entropy sessionswith principals maintaining a
full copy of the group state, propagating any updates it originated to other principals and receiving
updates to theitemsit has cached.

Update propagation between a cache and another principal is asymmetric, unlike a normal
anti-entropy session. The cache may discard many of the messages it receives because it is not
maintaining a copy of the items to which they apply. Another principal therefore cannot rely on
receiving afull set of update messagesfrom the cache principal, other than those messagesoriginally
sent by the cache principal. During an anti-entropy session, the cache principal sendsits partner a
complete copy of itssummary and acknowledgment timestamp vectors, whilethe partner sendsonly
the single timestamp it maintains for the cache along with a complete copy of its acknowledgment
Vector.

Every group member, including every cache and slice principal, must still maintain an acknowl-
edgment timestamp (or timestamp vector, if clocks are not synchronized) for every other member.

Cache principals must not purge messages from their log until every member has received the

134

message, and the conditionsfor doing so are not affected by maintaining only a subset of the group
state.

A cache principal cannot authoritatively answer all user queries. For example, if auser asksfor
all references related to marsupias, there is no guarantee that the cache will have those references.
Instead, the cache principal must forward the query request to another member.

Many different policies can be applied to determine what items should be cached. The burden
of identifying items that are candidates for caching can be placed on clients, which can explicitly
request that the cache principal maintain certain items. Alternately, all retrieval requests can be
directed to the cache principal, which can add items to the cache set and remove them when the

disk space required to store the items has grown past some bound.

8.3.2 Slices

Slice principals act much like cache principals, except that they store a subset of the group state
determined by a query, or selection condition, rather than an arbitrary set of items. The principa
must storethisquery in addition to the group state and communication datastructures. The selection
conditionisapredicate onitems. For simplicity assumethe predicate isin disjunctivenormal form;

that is, it hasthe form

(PLAp2) V(pLAp3)V (pa)

When aclient queries a dlice principa, the glice can determine whether it can satisfy the query
if the query isequivalent to a subset of the slice predicates. For example, a Refdbms slice principa
could answer aquery on marsupialsif it stored references on marsupials v australian animals.

Thedlice principal conducts anti-entropy sessionsto maintain itsinformation. As with caches,
information flow must be asymmetric because the slice only contains a subset of the group state.
The slice server must select asits partner a principal that maintainsa superset of its state . Usually,
this will be a principal maintaining a full copy. The dslice principal and its partner exchange
complete summary and acknowledgment vectors during an anti-entropy session. The partner will

send updates from any other group member, while the slice principal only sends messages it has

135

originated. If network bandwidth is limited, the slice can send its selection condition, and the
partner can transmit updates for only those items that meet the condition.

Several users on aloca network may share acommon slice principal. The combined selection
condition is the union of individual users' conditions, which can be computed in O(nlogn) time
in the size of the predicates if they are in disjunctive normal form.

The selection conditions will need to be changed from time to time to reflect changing user
interest. When a dlice principal changes its condition, it potentially increases or decreases the
informationit maintains. Theprincipa computesthe difference between the old and new conditions,
then performs a special anti-entropy session to both become consistent with another member and
retrieve items matching the difference condition. If the change narrows the scope of the dlice, the
principal can discard consistent items without communicating with other principals.

The dlicing mechanism is particularly useful for portable computing systems. These systems
may be disconnected from the network, or connected only by a low-bandwidth wireless link. A
user can create a small dlice principal on their system to keep important information local. The
volume of updates to the slice may then be small enough to send over the wireless link. A dlice
principal can also obtain a summary timestamp vector from afull-copy principa to determine how
many updates the dice lacks. When the difference exceeds some bound, the slice principal can
prompt the user to connect their machine to a higher bandwidth network, perhaps an Ethernet or a

telephone connection, to get the missing updates.

8.3.3 Using dicesfor resource discovery

Complex information systems should proactively find useful information for their users. Users can
specify aquery and expect to be notified whenever new information that matches the query becomes
available. In Refdbms, the user should be notified when references matching one or more keywords
is added to a database.

Many information services, including Refdoms, split their information into several separate

databases, so users can have private copies and to reflect different administrative domains. When

136

class locationService {
// retrieve the principals associated with a group
memberSet find(groupld gid);
// merge a sample of a member’s view into the service copy
update(groupld gid, memberSet view, timestamp acktime);

}

locationService LocationService;

FIGURE 8.2: Theinterface to the location service.

multiple databases exist, there is the separate problem of finding out about databases as they are
added.

The usua solution is to have a meta-database that lists the databases that are available, and a
description of their contents. The meta-database can be built using thisarchitecture aswell, perhaps
as part of adescriptive naming service [Bowman90]. A user can specify what databases they want
to use by specifying a sel ection condition on the meta-database entries. This condition can be used
to build a dice of the meta-database, and user queries can be routed to those databases. As new
databases become available, they will be added to the slice and thus become available to the user.
The user can install an agent to automatically create a slice of each new database using the user’s

sdl ection condition.

8.4 Location service

Thelocation serviceis responsiblefor mapping a group identifier into a set of addresses of possible
group members. Among those possibilitiesthere must be at |east one member, aslong as the group
still exists. This service isused by clients to locate members that can perform operations, and by
new members as they join the group.

Weak consistency group communication should be used to build the location service. The
combination of the group members and the location service should create less network traffic and

require less state than simply placing a principal everywhere people needed to use the service.

137

Figure 8.2 shows the interface that the service provides. It maintains a database that maps a
group identifier onto a timestamped membership view.

From time to time group members send the location service a copy of their membership view
and their minimum acknowledgement timestamp. The view and timestamp are merged into the
copy the service already has, and the merged values are then propagated as an update message
throughout the location service group (Figure 8.3). Recall that the memberSet type that represents
amembership view includesa principa identifier, status, and the time at which the principal entered
that status. The minimum acknowledgment timestamp is used in the leave protocol to determine
when every member has observed the declaration that a princi pal isleaving the group.

The rules for merging two membership views A and B in the location service are smple, but
they are dlightly different than those used in the group membership component (Chapter 6). Aslong
as both A and B have an entry for principa p, the later entry is used. However, if A has an entry
for p but B does not, the rules must determine whether B is lacking because p has just joined the
group, or because p has left the group and A is out of date. The acknowledgment timestamp acts
as an implicit death certificate for principals that have failed or left the group: if A’sentry for pis
lessthan B’s acknowledgment timestamp, then B must have more up-to-dateinformation and p has
left the group. On the other hand, if the entry at A islater than B’s acknowledgment timestamp, p
must have joined the group. Thisapproach alowsthelocation serviceto receive group membership
samples and eventually become consistent with the actual group membership.

The client specification in Section 8.2 and the group join protocol in Section 6.4.3 both assume
that the location service will provide at least one group member. The approach presented so far
cannot make this guarantee, because any sample of a membership view can become arbitrarily far
out of date. It is possible that every principal in that view has failed or left the group since it
was recorded. If those principals leave forwarding addresses [Fowler85, Jul88] for other group
members, then there is always away to find amember based on location service information.

Often, a change in group membership is most important to nearby clients. For example, when a
new principal isadded to the group, nearby clients may want to start using the new principal instead

of another. Thelocation service can take advantage of thisproperty by using an anti-entropy partner

138

Location
Service

Location
Service

Member Member

FIGURE 8.3: How the location service receives and propagates sampl es of membership views. Different
group members can send samples to different location servers. These samples are exchanged using TSAE,
and eventually merged.

selection policy that prefers nearby partners. The performance anaysis in Chapter 7 shows that
these policies substantially reduce network traffic without adversely affecting message delivery. In
this way, a new server becomes visible quickly in its area of the net while eventually becoming

visibleto more distant regions.

139

8.4.1 Existinglocation services

A number of location or name services have been constructed. Most of them can be implemented
with multiplereplicas, but most do not provide adequate support for locating groups with dynamic
membership.

The Internet Domain Name System (DNS) [Mockapetris87] is in use throughout the world,
primarily for translating host names to IP addresses. The names are organized hierarchicaly,
and portions of the name space are under separate administrative control. All the information
in an administrative zone is maintained by an authoritative name server. Name servers can be
replicated, and no particular replication techniqueisrequired. However, the DNS protocol provides
amechanism for primary-copy replication with periodic ref reshes of secondary copies. Information
can be cached by local name servers, and atimeout is provided to limit inconsi stency.

The division of the name space into different zones is one of the most important features of
the DNS. Division of authority keeps the load on any individual server low, allows for a lower
degree of replication, and encourages independence between organizations. It also complicates
guery processing, since a single server can only answer queries related to its zone. DNS zones are
linked together at their boundaries using special resource entries, and this information is used to
direct a query to a more appropriate server.

The DNS can be extended into the location service described above. A new resourcetype can be
added to the DN S that maintainsgroup view information, and replicated name servers can exchange
thisinformation. The current name space is oriented toward host names, which usually possess a
high degree of locality within aname zone, but thisis not intrinsic to the design.

The Clearinghouse name service was very similar to the DNS, excepting that it could map a
name into alist of names, as well as into an address. It used weak-consistency replication rather
than primary-copy replication for replicated name servers.

The Cambridge Universal Name Service (UNS) [Ma92] combines consistent and inconsi stent
replication by introducing two classes of name server. The first class servers are called replicas,

and use a consistent update protocol. The second class servers contain read-only copies, and are

140

updated asynchronously from thefirst class servers. Caches act asan unofficial third class of service
to which updates are not propagated.

The Advanced Networked Systems Architecture (ANSA) defines an architecture for object-
oriented distributed computing [ANSA89, ANSA91]. It includes many components, including
group communication. The Trader provides a descriptive name service, which maps content-
oriented queries, which include typing information, into references to objects that implement the
appropriate service. The references can be used to perform a location-transparent invocation of
operations on the service. The underlying mechanism appears to use forwarding addresses to

accommodate migration.

141

Chapter 9
Continuing work

Asawaysinwork of this scope, there are many subjects worthy of further investigation.

9.1 Performance

The performance evaluations reported in Chapter 7 are al based on simulation and analysis. Asthe
Refdbms system comes into wider use, many of these performance measures can be re-evaluated
based on itslogs. The traffic analysis would also benefit from a re-evaluation using real network
costs.

It appears that there is arelationship between network traffic and the time required to propagate
amessage (Section 7.4.4). Thisreationship isworthy of further investigation; | suspect that there

isasimplerelation between the two.

9.2 Fault tolerance

The analyses of fault tolerance in the weak-consistency group membership implementation in
Chapter 6 assume a completely connected network topology. While it appears that the resultsin

that chapter are easily extended to less-connected networks, | have not yet completed the proofs.

9.3 Reducing spacerequirements

The TSAE protocol requires maintenance of ©(n) timestamps, in addition to the message log.
Every principal must maintain information on every other group member, leading to a complete

view relation between principals. For some systems, even ©(n) state is unacceptably large. This

142

space can be reduced by imposing structure on the view relation so that principals need only know
about afew others.

One way to reduce the amount of state is to divide the group into subgroups, and impose a
hierarchical structure the subgroups. Members would maintain information on the other members
in their subgroup. Some of those members would act as representatives to a supergroup. Messages
would be sent throughout a subgroup, then forwarded to other subgroups by exchanges between
representatives in the supergroup. The hierarchy could be extended to additional layersif needed.

A similar possihility is to structure subgroups as a b-tree. Each subgroup would contain a
number of members. When that number becomes greater than a limit, some members would either
be added to sibling subgroups, or the group would split. Likewise, if the number becomes too
small, subgroups could be coalesced. Messages would be propagated between subgroups using
representatives.

A fina possibility is to use a ssimpler, sparsely-connected logical communication topol ogy.
The Usenet messaging system [Quarterman86] uses the Unix-to-Unix copy program (UUCP) to
propagate messages. Thelogical (and physical) topology of that network is sparsely connected. Few
sites are connected to more than two or three other sites, each site only knows about its neighbors.
The Usenet software implements a simple flooding protocol [Tanenbaum81] that forwards each
message to neighbor sites. Each site must maintain alog of the message identifiersit has received
so that messages do not propagate forever. The message identifiers must be stored long enough that

thereisno possibility of amessage still being in transit somewhere, usually afew weeksto amonth.

9.4 Hybrid consistency

There are severa variations on the weak consistency model. In one, principals would be clustered
into cligues, where al of the principas in a clique would use a consistent (reliable, interactive)
message delivery protocol. Messages would be sent between cliques using eventua delivery
protocols. It has been conjectured that this approach could reduce the amount of state principas
would maintain, allow message logs to be purged more rapidly, and produce lower message traffic

than the system presented here.

143

9.5 Authentication

Every authentication system of which | am aware either requires atrusted authentication service, or
thea priori presence of shared information [Burrows89b, Burrows89a, L ampson91]. For example,
the Kerberos authentication service [Steiner88] uses a trusted server. This violates the assumption
that no part of the system is centralized. These systems also implicitly assume a completely
connected logical network topology. If the network provides a different logical topology — as the
Usenet does — the traditional authentication model no longer holds. It appears that a new model of
authentication will be required for mobile, weakly-connected systems. | expect that a probabilistic,
rather than absolute, model of truth and belief will be required. | am investigating this problem

further.

9.6 Location services

Thelocation service model presented in Section 8.4 uses stabl e forwarding addresses to ensure that
a principal can always find a group member when acting as a client or joining the group. Stable
forwarding addresses are somewhat unrealistic, because they require that a principal continue to
exist for along time. When a principal leaves the group, it is likely that the system on which it
was operating is being removed from service or changed, and the burden of maintaining forwarding
information is not likely to be welcome.

Another possibility isto delegate the maintenance of aforwarding address to another principal.
In particular, al requests for a forwarding address could be forwarded to a nearby location server.
The forwarding address can then take the form of a group membership view that is maintained just
asal viewsin thelocation service are. How to locate the location server to which the problem has
been delegated, and how to ensure that the location service can eventualy purge the forwarding

address, are matters for future consideration.

144

9.7 Refdbms

The Refdoms system is a prototype, and at the time of writing several parts of the distributed
system architecture have not been implemented. It uses the TSAE message delivery and the group
membership protocols, but without any frills. 1t does not now provide slices or caches, and clients
communicate with a group member through a shared file system.

| plan to add a meta-database and location service to Refdbms. The metadatabase will alow
users to find databases of interest by querying database descriptions. The location service will
provide a simpl e database-to-membership mapping until a sufficiently functional standard Internet
location service is available. Thiswill also alow clients to contact any group member, rather than
requiring each site that will use a database to maintain a copy. Slices, along with a mechanism
for submitting persistent queries to notify a user when interesting new references are added to the

database, are other priorities.

145

Chapter 10
Summary

Wide-area distributed systems can be built conveniently, efficiently, and correctly using the group
communi cation framework presented in thisdissertation. I ntheframework, agroup communication
systemis constructed from four components, providing message delivery, message ordering, group
membership, and application functions. The group communication system provides ways for one
member to multicast a message to the other group members, and for membersto join and leave the
group.

The system as a whole provides weak consistency. A weakly consistent group allows the
principal s that make up the group to differ at any particular moment on their views of group state,
as long as they will eventually reach consensus. The framework provides weak consistency using
areliable, eventual message delivery protocol. Reliable delivery assures that consensus will be
reached when every principal receives group messages. Eventua delivery alows the system to
delay messagesin order to improve efficiency and to wait for transient system faults to be repaired.

This approach to constructing a wide-area system is different from the way most wide-area
applications have been devel oped to date. Most of these applications have been developed in an ad
hoc fashion, with no attempt to systematize the process of building wide-area distributed systems.
The group communication architecture | have presented is a step toward developing a set of tools
and a discipline to make system construction simpler. The architecture is useful as away to reason
about and classify distributed systems, and to define interfaces for reusable modules.

The group communication framework is different from other group communication systems
because of itsemphasisonweak consistency and on customization to meet application requirements.
Systems such as Isis, Arjuna, Psync, and others provide tools for building distributed systems on

asmaller scale. They can provide fast, efficient mechanisms with strong guarantees for local-area

146

systems, but they do not provide convenient and efficient mechanisms for wide-area groups that
might scaleinto thethousandsof principals. Thearchitecture presented here defines asmall number
of interfaces between components, so that different implementations of each component can be
provided to meet application needs. Thisis unlike most other distributed programming systems,
which provide afixed, limited set of protocols.

| have developed the timestamped anti-entropy (TSAE) message delivery protocol, which
implementsreliable, eventual delivery. TSAE uses periodi c exchange of messages between pairs of
principals to propagate a message throughout the group. These exchanges are called anti-entropy
sessions. Incoming messages are stored in a message log, and later delivered to the application in
some well-defined order. The TSAE protocol maintains summary information on the messages it
has received, which is used to improve the efficiency of the exchange, to purge messages from the
log, and to order messages for delivery to the application.

The group membership protocol avoids interactive communication between members without
compromising the message delivery guarantee. Each principa in the group maintains a view of the
membership, and these views are exchanged during anti-entropy sessions. Eventually, every group
member will receive every membership change and the group will reach consensus. A new member
joins the group by obtaining one or more sponsors from among the existing members. These
sponsors provideit with acopy of the state of the group. Members can leave the group by declaring
their intent to do so, then waiting for the declaration to propagate throughout the membership.

The TSAE message delivery protocol and the related group membership protocol exhibit good
performance. | have investigated the fault tolerance of message delivery and group membership,
and found that the system responds quickly to failure. The latency in receiving a messageis small,
and scales well in the number of principals. Likewise, the message traffic imposed on the network
scales well with the size of the group. The policy used to select partners influences both message
latency and traffic, and policies can be selected to trade latency for traffic or vice versa. Finadly,
given reasonably frequent anti-entropy sessions, principa swill maintain up-to-date views of group

state.

147

Bibliography

[Agrawal91]

[Alon87]

[Alonso90q]

[Alonso90b]

[ANSASY]

[ANSAO]]

[Bal89]

[Bal90]

[Barbar&36]

[Barbar&90]

D. Agrawa and A. Malpani. Efficient dissemination of information in computer
networks. Computer Journal, 34(6):534—41 (December 1991).

Noga Alon, Amnon Barak, and Udi Manber. On disseminating information reliably
without broadcasting. Proceedings of 7th International Conference on Distributed
Computing Systems (Berlin), pages 74-81 (September 1987).

Rafael Alonso, Daniel Barbarg, and Luis L. Cova. Using stashing to increase node
autonomy in distributed file systems. Proceedings of the 9th IEEE Symposium on
Reliable Distributed Systems (October 1990).

Rafael Alonso, Daniel Barbarg, and Hector GarciasMolina. Data caching issuesin
an information retrieval system. ACM Transactions on Database Systems, 15(3)
(September 1990).

Architecture Projects Management Ltd. ANSA: An Engineer’s Introduction to the
Architecture (November 1989).

Architecture Projects Management Ltd. ANSA: A System Designer’s Introduction to
the Architecture (April 1991).

Henri E. Ba. The Shared Data-Object Model as a Paradigm for Programming
Distributed Systems. PhD thesis (1989). Vrije Universiteit Amsterdam.

Henri E. Bal, Andrew S. Tanenbaum, and M. Frans Kaashoek. Orca: alanguage for
distributed programming. S GPLAN Notices, 25(5):17—24 (May 1990).

Daniel Barbarg, Hector Garcia-Molina, and Annemarie Spauster. Policiesfor dynamic
vote reassignment. Proceedings of the 6th International Conference on Distributed
Computing Systems (Cambridge, M assachusetts), pages 37—44 (May 1986).

Daniel Barbara and Hector Garcia-Molina. The case for controlled inconsistency in
replicated data (position paper). Proceedings of the Workshop on the Management of
Replicated Data (Houston, Texas), pages 35-8 (November 1990).

[Berners-Lee92] Tim Berners-Lee, Robert Cailliau, Jean-Francgois Groff, and Bernd Pollermann.

World-Wide Web: the information universe. Electronic Networking: Research,
Applications, and Policy, 1(2) (Spring 1992).

148

[Bernstein84] Philip A. Bernstein and Nathan Goodman. An algorithm for concurrency control
and recovery in replicated distributed databases. ACM Transactions on Database
Systems, 9(4):596-615 (December 1984).

[Bernstein87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery
in database systems (1987). Addison-Wesley, Reading, M assachusetts.

[Birman87] Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the presence
of failures. ACM Transactions on Computer Systems, 5(1):47—76 (February 1987).

[Birman90] Kenneth Birman, Andre Schiper, and Pat Stephenson. Fast causal multicast. Tech-
nical report TR—1105 (13 April 1990). Department of Computer Science, Cornell
University.

[Birman9l] Kenneth P. Birman, Robert Cooper, and Barry Gleeson. Programming with process
groups: group and multicast semantics. Technica report TR—91-1185 (29 January
1991). Department of Computer Science, Cornell University.

[Birrell87] Andrew D. Birrell, Michadl B. Jones, and Edward P. Wobber. A simple and effi-
cient implementation for small databases. Proceedings of the 11th ACM Symposium
on Operating Systems Principles (Austin, Texas). Published as Operating Systems
Review, 21(5):149-54 (November 1987).

[Bloch87] JoshuaJ. Bloch, Dean S. Daniels, and Alfred Z. Spector. A weighted voting algorithm
for replicated directories. Journal of the ACM, 34(4):859-909 (October 1987).

[Bowman90] C. Mic Bowman. Univers: the construction of an internet-wide descriptive naming
system. Technica report TR 90—27 (10 August 1990). Department of Computer
Science, University of Arizona.

[Burrows89a] Michael Burrows, Martin Abadi, and Roger Needham. A logic of authentication.
Proceedingsof the 12th ACM Symposiumon Oper ating Systems Principles(Litchfield
Park, Arizona). Published as Operating Systems Review, 23(5):1-13 (December
1989).

[Burrows89b] Michael Burrows, Martin Abadi, and Roger Needham. A login of authentication.
Technical report 39 (February 1989). Digital Equipment Corporation Systems Re-
search Center, Palo Alto, CA.

[Campbell92] Roy H. Campbell, Nayeem Islam, and Peter Madany. Choices, frameworks, and
refinement. Computing Systems, 5(3):217-57 (Summer 1992). Usenix Association.

[Cheriton84] David R. Cheriton and Willy Zwaenepoel. One-to-many interprocess communication
in the V-system. Technica report STAN-CS-84-1011 (August 1984). Computer
Systems Laboratory, Department of Computer Science, Stanford University.

[Comer88] DouglasComer. Internetworking with TCP/IP: principles, protocols, and architecture
(1988). Prentice Hall, Englewood Cliffs, NJ.

[Cristian86]

[Cristian89]

[Cristian90]

[Cristian91]

[Davcev85]

[Demers88]

[Demers89]

[Deutsch92]

149

Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev. Atomic broadcast:
from simple message diffusion to Byzantine agreement. Technica report RJ 5244
(30 July 1986). IBM Almaden Research Center.

Flaviu Cristian. A probabilistic approach to distributed clock synchronization. Pro-
ceedings of the 9th International Conference on Distributed Computing Systems
(Newport Beach, CA), pages 28896 (1989).

Flaviu Cristian. Synchronous atomic broadcast for redundant broadcast channels.
Technical report RJ 7203 (December 1989, revised April 1990). IBM Almaden
Research Center.

Flaviu Cristian. Reaching agreement on processor-group membershipin synchronous
distributed systems. Distributed Computing, 4(4):175-87 (1991).

Darico Davtev and Walter A. Burkhard. Consistency and recovery control for repli-
catedfiles. Proceedingsof the 10th ACM Symposiumon Oper ating SystemsPrinciples
(Orcas Idland, Washington). Published as Operating Systems Review, 19(5):87-96
(December 1985).

Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic a gorithmsfor replicated
database maintenance. Operating Systems Review, 22(1):8-32 (January 1988).

Alan Demers, Mark Gealy, Dan Greene, Carl Hauser, Wes Irish, John Larson, Sue
Manning, Scott Shenker, Howard Sturgis, Dan Swinehart, Doug Terry, and Don
Woods. Epidemic algorithmsfor replicated database maintenance. Technica report
CSL—-89-1 (January 1989). Xerox Palo Alto Research Center, CA.

Peter Deutsch. Resource discovery in an Internet environment. Master’s thesis (June
1992). School of Computer Science, McGill University.

[Downing90a] Alan R. Downing, IraB. Greenberg, and Jon M. Peha. OSCAR: an architecture for

weak-consistency replication. Proceedings of IEEE PARBASE-90 (March 1990).

[Downing90b] Alan R. Downing, IraB. Greenberg, and Jon M. Peha. OSCAR: a system for weak-

consistency replication. Proceedings of the Workshop on Management of Replicated
Data (Houston, Texas), pages 26—30 (November 1990).

[El-Abbadi86] A. El-Abbadi and S. Toueg. Availability in partitioned replicated databases. Pro-

ceedings of the 5th SGACT-S GMOD Symposiumon Principlesof Database Systems,
pages 240-51 (1986).

[Emtage92a] Alan Emtage. Personal communication (1992). Electronic mail message.

[Emtage92b] Alan Emtage and Peter Deutsch. Archie — an electronic directory service for the

Internet. Proceedings of the Winter 1992 Usenix Conference (San Francisco), pages
93-110 (January 1992).

150

[Fischer85] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374-82 (April 1985).

[Fowler85] Raobert Joseph Fowler. Decentralized object finding using forwarding addresses.
PhD thesis, published as Technical report 85-12—1 (December 1985). University of
Washington.

[Ganatra92] Nitin K. Ganatra. Census: collecting host information on awide area network. Tech-
nical report UCSC—CRL—-92-34 (June 1992). Computer and Information Sciences
Board, University of Californiaat Santa Cruz.

[GarciasMolina88] Hector GarciaMolinaand Boris Kogan. An implementation of reliable broad-
cast using an unreliable multicast facility. Proceedings of the 7th Symposium on
Reliable Distributed Systems (Ohio State University, Columbus, OH), pages 101-11
(10-12 October 1988).

[Gifford79] D. K. Gifford. Weighted voting for replicated data. Proceedings of the 7th ACM
Symposium on Operating Systems Principles (Pacific Grove, California), pages 150—
62 (December 1979).

[Golding91a] Richard Golding and Darrell D. E. Long. Accessing replicated datain alarge-scale
distributed system. International Journal in Computer Smulation, 1(2) (1991, to

appear).

[Golding91b] Richard A. Golding. Accessing replicated datain alarge-scale distributed systems.
Master’sthesis; published as Technical report UCSC-CRL-91-18 (June1991). Com-
puter and Information Sciences Board, University of California at Santa Cruz.

[Golding92a] Richard Golding. A weak-consistency architecture for distributed information ser-
vices. Computing Systems, 5(4) (Fall 1992). Usenix Association.

[Golding92b] Richard Golding. End-to-end performance prediction for the Internet — progress
report. Technical report UCSC—CRL—92-26 (June 1992). Computer and Information
Sciences Board, University of Californiaat Santa Cruz.

[Golding92c] Richard A. Golding. A weak-consistency architecture for distributed information ser-
vices. Technical report UCSC—CRL—92—-30 (June 1992). Computer and Information
Sciences Board, University of Californiaat Santa Cruz.

[Golding92d] Richard A. Golding and Darrell D. E. Long. Quorum-oriented multicast proto-
cols for data replication. Proceedings of the 8th International Conference on Data
Engineering (Tempe, Arizona), pages 490—7 (February 1992).

[Gray86] Jim Gray. Why do computers stop and what can be done about it? Proceedings of the
5th Symposium on Reiability in Distributed Software and Database Systems, pages
3-11 (1986).

[Heidemann92] John S. Heidemann, Thomas W. Page, Richard G. Guy, and Gerald J. Popek.
Primarily disconnected operation: experienceswith Ficus. Proceedings of 2nd Work-
shop on the Management of Replicated Data (Monterey, CA), pages 2-5 (November
1992).

[Hisgen90]

[1slam92]

[Jain91]

[Jajodia87]

[Jul88]

[K ahlesg)]

[K ahle1]

[Kistlerol]

[Ladin90]

[Ladin91]

[Lamport78]

151

Andy Hisgen, Andrew Birrell, Chuck Jerian, Timothy Mann, Michael Schroeder, and
Garret Swart. Granularity and semantic level of replication in the Echo distributed
file system. Proceedings of the Workshop on the Management of Replicated Data
(Houston, Texas), pages 2—4 (November 1990).

Nayeem Islam and Roy H. Campbell. Object-oriented framework design and imple-
mentation. Technical report UIUCDCS-R-92-1737 (March 1992). Department of
Computer Science, University of Illinois at Urbana-Champaign.

Ra Jain. The Art of Computer Systems Performance Analysis (1991). John Wiley,
New York.

Sushil Jgjodia and David Mutchler. Dynamic voting. Proceedings of the ACM
SIGMOD 1987 Annual Conference, pages 227-38 (May 1987).

EricJul. Object mobilityinadistributed object-oriented system. PhD thesis, published
as Technical report 88-12-06 (December 1988). Computer Science Department,
University of Washington.

Brewster Kahle. Wide area information server concepts. Technica report TM C-202
(3 November 1989). Thinking Machines Corporation.

Brewster Kahleand Art Medlar. Aninformation systemfor corporate users: widearea
information servers. Technical report TMC-199 (8 April 1991). Thinking Machines
Corporation.

James J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file
system. Proceedings of the 13th ACM Symposium on Operating Systems Principles
(Pecific Grove, CA), pages 213-25 (13 October 1991).

RivkaLadin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. Lazy replication:
exploiting the semantics of distributed services. Technical report MIT/LCSTR-484
(July 1990). L aboratory for Computer Science, M assachusetts| nstitute of Technol ogy,
Cambridge, MA.

Rivka Ladin, Barbara Liskov, and Liuba Shrira. Lazy replication: exploiting the
semantics of distributed services. Position paper for 4th ACM-SGOPS European
Workshop (Bologna). Published as Operating Systems Review, 25(1):49-55 (January
1991).

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-65 (1978).

[Lampson91] Butler Lampson, Martin Abadi, Michael Burrows, and Edward Wobber. Authentica-

tionindistributed systems: theory and practice. Proceedingsof 13th ACM Symposium
on Operating Systems Principles (Asilomar, Pacific Grove, CA), pages 165-82 (13
October 1991).

[Lefflersg]

[Lesk78]

[Liskov87]

[Little90]

[Long88]

[Long9]]

[Long92]

[Lottor92]

[Ma92]

[Mann89]

[Mattern88]

[Mills88]

[Mishragg]

[Mishrag2]

152

Samuel J. Leffler, Marshall Kirk McKusick, Michadl J. Karels, and John S. Quar-
terman. Design and implementation of the 4.3BSD UNIX operating system (1989).
Addison-Wesley.

M. E. Lesk. Some applications of inverted indexes on the UNIX system. Computing
Science technical report 69 (June 1978). Bell Laboratories.

Barbara Liskov. Highly-available distributed services. Programming Methodol ogy
Group Memo 52 (February 1987). Laboratory for Computer Science, M assachusetts
Institute of Technology, Cambridge, MA.

Mark C. Little and Santosh K. Shrivastava. Replicated k-resilient objectsin Arjuna.
Proceedings of the Workshop on Management of Replicated Data (Houston, Texas),
pages 53-8 (November 1990).

Darrell D. E. Long and Jehan-Francois Paris. A redlistic evaluation of optimistic
dynamic voting. Proceedings of the 7th IEEE Symposium on Reliable Distributed
Systems (Columbus, OH), pages 12937 (October 1988).

Darrell D. E. Long, John L. Carroll, and C. J. Park. A study of the reliability of
Internet sites. Proceedings of the 10th IEEE Symposium on Reliable in Distributed
Systems (Pisa, Italy), pages 177-86 (September 1991).

Darrell D. E. Long. A replicated monitoring tool. Proceedings of the 2nd Workshop
on the Management of Replicated Data (November 1992).

Mark K. Lottor. Internet growth (1981-1991). RFC 1296 (January 1992). Network
Information Systems Center, SRI International.

Chaoying Ma. Designing a Universal Name Service. PhD thesis (1992). University
of Cambridge Computer Laboratory.

Timothy Mann, Andy Hisgen, and Garret Swart. An algorithm for data replication.
Report #46 (June 1989). Digital Equipment Corporation Systems Research Center,
Palo Alto, CA.

Friedemann Mattern. Virtual timeand global states of distributed systems. Technical
report SFB124-38/88 (October 1988). Department of Computer Science, University
of Kaiserslautern.

D. Mills. Network Time Protocol (version 1) specification and implementation.
Network Working Group RFC 1059 (July 1988). Network Information Center.

Shikavant Mishra, Larry L. Peterson, and Richard D. Schlichting. Imnplementing
fault-tolerant replicated objects using Psync. Proceedings of the 8th Symposium on
Reliable Distributed Systems (Seattle, WA), pages 4252 (10-12 October 1989).

Shivakant Mishra, Larry L. Peterson, and Richard D. Schlichting. Protocol modularity
in systems for managing replicated data. Proceedings of the 2nd Workshop on the
Management of Replicated Data (Monterey, CA), pages 78-81 (November 1992).

153

[Mockapetris87] P. Mockapetris. Domain names — concepts and facilities. RFC 1034 (November
1987). ARPA Network Working Group.

[Mullender86] S. J. Mullender and A. S. Tanenbaum. The design of a capability-based distributed
operating system. Computer Journal, 29(4):289-99 (1986).

[Mullender90] Sape J. Mullender, Guido van Rossum, Andrew S. Tanenbaum, Robbert van Re-
nesse, and Hans van Staveren. Amoeba: a distributed system for the 1990s. |IEEE
Computer, 23(5):44-53 (May 1990).

[Oppen8l] D.C. Oppenand Y. K. Dahl. The Clearinghouse: a decentralized agent for locating
named abjects in a distributed environment. Technical report OPD-T8103 (1981).
Xerox Office Products Division, Palo Alto, Ca.

[PageJones88] Meilir Page-Jones. The Practical Guide to Structured Systems Design, second
edition (1988). Yourdon Press.

[Postel80] J. Postel. Transmission Control Protocol, RFC 761 (January 1980). USC Information
Sciences Institute.

[Pu9iq Calton Puand Avraham Leff. Epsilon-seriaizability. Technical report CUCS-054-90
(15 January 1991). Department of Computer Science, Columbia University.

[Pu9ib] Calton Pu and Avraham L eff. Replicacontrol in distributed systems: an asynchronous
approach. Technical report CUCS-053-090 (8 January 1991). Department of Com-
puter Science, Columbia University.

[Quarterman86] John S. Quarterman and Josiah C. Hoskins. Notable computer networks. Com-
muni cations of the ACM, 29(10):932—71 (October 1986).

[Ricciardi9l] AletaM.Ricciardi and Kenneth P. Birman. Using process groupstoimplement failure
detection in asynchronous environments. Technical report TR91-1188 (7 February
1991). Department of Computer Science, Cornell University.

[Rumbaugh91] James Rumbaugh, Michagl Blaha, William Premerlani, Frederick Eddy, and
William Lorensen. Object-Oriented Modeling and Design (1991). Prentice-Hall,
Englewood Cliffs, NJ.

[Schatz90] Bruce Raymond Schatz. Interactiveretrieval in information spaces distributed across
awide-area network. Technica report TR 90-35 (December 1990). Department of
Computer Science, University of Arizona

[Seltzer90] Margo Seltzer and Michael Stonebraker. Transaction support in read optimized and
write optimized file systems. Technical report UCB/ERL M90/37 (April 1990).
Electronics Research Laboratory, College of Engineering, University of Californiaat
Berkeley.

[Steiner88] Jennifer G. Steiner, Clifford Neuman, and Jeffrey 1. Schiller. Kerberos: an authenti-
cation service for open network systems. USENIX Winter Conference (Dalas, TX),
pages 191202 (9-12 February 1988).

154

[Sullivan92] Mark Sullivan and Michael Olson. Anindex implementation supporting fast recovery

[Sunss]

for the POSTGRES storage system. Proceedings of the 8th International Conference
on Data Engineering, pages 293-300 (February 1992).

Sun Microsystems, Incorporated. Network Programming (1988).

[Tanenbaum81] A. S. Tanenbaum. Computer networks (1981). Prentice-Hall.

[Tanenbaum86] Andrew S. Tanenbaum, Sape J. Mullender, and Robbert Van Renesse. Using sparse

[Terry85]

[Thomas79]

[Turek92]

[Tuthill83]

[Wilkes91]

capabilities in a distributed operating system. Proceedings of the 6th International
Conference on Distributed Computing Systems (Cambridge, Mass), pages 558-63
(May 1986).

Douglas Brian Terry. Distributed name servers. naming and caching in large dis-
tributed computing environments. PhD thesis, published as Technical report CSL—
85-1 (February 1985). Xerox Palo Alto Research Center, CA.

R. H. Thomas. A mgjority consensus approach to concurrency control. ACM Trans-
actions on Database Systems, 4:180—209 (1979).

John Turek and Dennis Shasha. The many faces of consensusin distributed systems.
|IEEE Computer, 25(6):8-17 (June 1992).

Bill Tuthill. Development of refer: Bug Fixes and Enhancements (or (unofficially)
“Refer Madness’). Usenix Conference Proceedings (San Diego, CA), pages 99-103
(Winter 1983). Usenix Association.

John Wilkes. The refdbms bibliography database user guide and reference manual.
Technical report HPL-CSP-91-11 (20 May 1991). Hewlett-Packard Laboratories.

